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Chapter 1

Linear Algebra Review

1.1 Introduction

Dynamic systems are systems that evolve with time. Our models for them will comprise
coupled sets of ordinary differential equations (ode’s). We will study how the internal variables
and outputs of such systems respond to their inputs and initial conditions, how their internal
behavior can be inferred from input/output (I/O) measurements, how the inputs can be
controlled to produce desired behavior, and so on. Most of our attention will be focused on
linear models (and within this class, on time invariant models, i.e. on LTI models), for reasons
that include the following:

e linear models describe small perturbations from nominal operation, and most control
design is aimed at regulating such perturbations;

e linear models are far more tractable than general nonlinear models, so systematic and
detailed control design approaches can be developed;

e engineered systems are often made up of modules that are designed to operate in essen-
tially linear fashion, with any nonlinearities introduced in carefully selected locations
and forms.

To describe the interactions of coupled variables in linear models, the tools of linear
algebra are essential. In the first part of this course (4 or 5 lectures), we shall come up to
speed with the “Ax = y” or linear equations part of linear algebra, by studying a variety of
least squares problems. This will also serve to introduce ideas related to dynamic systems —
e.g., recursive processing of I/O measurements from a finite-impulse-response (FIR) discrete-
time (DT) LTI system, to produce estimates of its impulse response coefficients.

Later parts of the course will treat in considerable detail the representation, struc-
ture, and behavior of multi-input, multi-output (MIMO) LTI systems. The “Av = \v”



or eigenvalue-eigenvector part of linear algebra enters heavily here, and we shall devote con-
siderable time to it. Along the way, and particularly towards the end of the course, we shall
thread all of this together by examining approaches to control design, issues of robustness,
etc., for MIMO LTI systems.

What you learn in this course will form a valuable, and even essential, foundation for
further work in systems, control, estimation, identification, signal processing, and communi-
cation.

We now present a checklist of important notions from linear algebra for you to review,
using your favorite linear algebra text. Some of the ideas (e.g. partitioned matrices) may be
new.

1.2 Vector Spaces

Review the definition of a vector space: vectors, field of scalars, vector addition (which
must be associative and commutative), scalar multiplication (with its own associativity and
distributivity properties), the existence of a zero vector 0 such that x+ 0 = x for every vector
x, and the normalization conditions Ox = 0, 1x = x. Use the definition to understand that
the first four examples below are vector spaces, while the fifth and sixth are not:

e R" and C™.

e Real continuous functions f(¢) on the real line (Vt), with obvious definitions of vector
addition (add the functions pointwise, f(t) + ¢g(t)) and scalar multiplication (scale the
function by a constant, af(t)).

e The set of m x n matrices.
e The set of solutions y(t) of the LTT ode y")(t) + 3y(t) = 0.

e The set of points [ 71 2 x3 | in R? satisfying 22 + 23 + 23 = 1, i.e. “vectors” from
the origin to the unit sphere.

e The set of solutions y(t) of the LTI ode y")(t) + 3y(t) = sint.

A subspace of a vector space is a subset of vectors that itself forms a vector space. To
verify that a set is a subspace, all we need to check is that the subset is closed under vector
addition and under scalar multiplication; try proving this. Give examples of subspaces of the
vector space examples above.

e Show that the range of any real n X m matrix and the nullspace of any real m X n matrix
are subspaces of R".

e Show that the set of all linear combinations of a given set of vectors forms a subspace
(called the subspace generated by these vectors, also called their linear span).



e Show that the intersection of two subspaces of a vector space is itself a subspace.

e Show that the wunion of two subspaces is in general not a subspace. Also determine
under what condition the union of subspaces will be a subspace.

e Show that the (Minkowski or) direct sum of subspaces, which by definition comprises
vectors that can be written as the sum of vectors drawn from each of the subspaces, is
a subspace.

Get in the habit of working up small (in R? or R?, for instance) concrete examples for yourself,
as you tackle problems such as the above. This will help you develop a feel for what is being
stated — perhaps suggesting a strategy for a proof of a claim, or suggesting a counterexample
to disprove a claim.

Review what it means for a set of vectors to be (linearly) dependent or (linearly) in-
dependent. A space is n-dimensional if every set of more than n vectors is dependent, but
there is some set of n vectors that is independent; any such set of n independent vectors is
referred to as a basis for the space.

e Show that any vector in an n-dimensional space can be written as a unique linear
combination of the vectors in a basis set; we therefore say that any basis set spans the
space.

e Show that a basis for a subspace can always be augmented to form a basis for the entire
space.

If a space has a set of n independent vectors for every nonnegative n, then the space is
called infinite dimensional.

e Show that the set of functions f(t) = ¢""!, n =1,2,3,--- forms a basis for an infinite
dimensional space. (One route to proving this uses a key property of Vandermonde
matrices, which you may have encountered somewhere.)

Norms

The “lengths” of vectors are measured by introducing the idea of a norm. A norm for a vector
space V over the field of real numbers R or complex numbers C is defined to be a function that
maps vectors x to nonnegative real numbers ||z||, and that satisfies the following properties:

1. Positivity: ||z]| > 0 for z # 0
2. Homogeneity: |laz|| = |a| ||z||, scalar a.

3. Triangle inequality: |z +y| < [lz|| +[lyll , Va,y € V.



Verify that the usual Euclidean norm on R”™ or C" (namely v’z with ' denoting the
complex conjugate of the transpose) satisfies these conditions.

A complex matrix @ is termed Hermitian if Q' = Q; if Q is real, then this condition
simply states that Q is symmetric. Verify that 2'Qu is always real, if Q is Hermitian.
A matrix is termed positive definite if 2'Qz is real and positive for x # 0. Verify that
Va'Qx constitutes a norm if () is Hermitian and positive definite.

Verify that in R™ both ||z||; = X1 || and ||x||cc = max; |z;| constitute norms. These
are referred to as the 1-norm and oo-norm respectively, while the examples of norms
mentioned earlier are all instances of (weighted or unweighted) 2-norms. Describe the
sets of vectors that have unit norm in each of these cases.

The space of continuous fucntions on the interval [0, 1] clearly forms a vector space.
One possible norm defined on this space is the co-norm defined as:

[fllee = sup £ ()]

te(0,1

This measures the peak value of the function in the interval [0, 1]. Another norm is the

2-norm defined as: .
1 2
£l = ([ 1r0Pat)

Verify that these measures satisfy the three properties of the norm.

Inner Product

The vector spaces that are most useful in practice are those on which one can define a notion
of inner product. An inner product is a function of two vectors, usually denoted by < x,y >
where x and y are vectors, with the following properties:

1.
2.

Symmetry: < z,y >=<y,x >

Linearity: < x,ay +bz >= a <,y > + b <x,z > for all scalars a and b.

. Positivity: < x,x > positive for x # 0.

Verify that /< x,x > defines a norm.

Verify that 2'Qy constitutes an inner product if @) is Hermitian and positive definite.
The case of Q = I corresponds to the usual Euclidean inner product.

Verify that
1
/ Sty (t)dt
0

defines an inner product on the space of continuous functions. In this case, the norm
generated from this inner product is the same as the 2-norm defined earlier.



e Cauchy-Schwartz Inequality Verify that for any = and y in an inner product space
| <zy> < z/lyl
with equality if and only if x = ay for some scalar «. (Hint: Expand < z4+ay, z+ay >).

Two vectors z, y are said to be orthogonal if < x,y >= 0; two sets of vectors X and Y
are called orthogonal if every vector in one is orthogonal to every vector in the other. The

orthogonal complement of a set of vectors X" is the set of vectors orthogonal to X', and is
denoted by X't

e Show that the orthogonal complement of any set is a subspace.

1.3 The Projection Theorem
Consider the following minimization problem:
min [ly —m]|
where the norm is defined through an inner product. The projection theorem (suggested by
the figure below), states that the optimal solution 7 is characterized as follows:
(y —m) L M.

To verify this theorem, assume the converse. Then there exists an my, ||mg|| = 1, such
that < y — 1, mg >=d # 0. We now argue that (m + dmg) € M achieves a smaller value to
the above minimization problem. In particular,

ly —mm —dmpll? = |ly —m|>— <y—1n,dmg > — < dmg,y —m > +|6]?||mo||?
= ||y—m||§—|<5|§—|5|2+|5|2
=y =ml* o]

This conradicts the optimality of .

e Given a subspace §, show that any vector x can be uniquely written as * = x5 + xg1,
where 75 € S and 5. € S*.
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1.4 Matrices

Our usual notion of a matrix is that of a rectangular array of scalars. The definitions of matrix
addition, multiplication, etc., are aimed at compactly representing and analyzing systems of
equations of the form

ayry + -+ s = Y1

am1ZT1 + -+ GmnTn = Ym
This system of equations can be written as Ax = y if we define

ayp - Al € 1
A= S , X = : TES
Am1 **° Amn Tn Ym

The rules of matrix addition, matrix multiplication, and scalar multiplication of a matrix
remain unchanged if the entries of the matrices we deal with are themselves (conformably
dimensioned) matrices rather than scalars. A matrix with matrix entries is referred to as a
block matrix or a partitioned matrix.

For example, the a;;, x;, and y; in respectively A, x, and y above can be matrices, and
the equation Ax = y will still hold, as long as the dimensions of the various submatrices are
conformable with the expressions ) a;jz; = y; for i =1,---,m and j = 1,---,n. What this
requires is that the number of rows in a;; should equal the number of rows in y;, the number
of columns in a;; should equal the number of rows in x;, and the number of columns in the
x; and y; should be the same.

e Verify that



1 2| 2 1 2 L 2
01 | 3 :01(89>+3(20)
11| 7 11 7

In addition to these simple rules for matrix addition, matrix multiplication, and scalar
multiplication of partitioned matrices, there is a simple — and simply verified — rule for
(complex conjugate) transposition of a partitioned matrix: if [A];; = a;;, then [A'];; = af;,
i.e., the (i, 7)-th block element of A’ is the transpose of the (j,i)-th block element of A.

For more involved matrix operations, one has to proceed with caution. For instance, the
determinant of the square block-matrix

[ A Ay
is clearly not A1 A4 — AzAs unless all the blocks are actually scalar! We shall lead you to
the correct expression (in the case where A; is square and invertible) in a future Homework.

Matrices as Linear Transformations

T is a transformation or mapping from X to Y, two vector spaces, if it associates to each
x € X a unique element y € Y. This transformation is linear if it satisfies

T(azx + By) = aT(z) + BT (y).
e Verify that an n x m matrix A is a linear transformation from R™ to R".

Does every linear transformation have a matrix representation? Assume that both X and Y
are finite dimensional spaces with respective bases {x1, ... 2.} and {y1, ...y, }. Every x € X
can be uniquely expressed as: © =Y ;" a;x;. Equivalently, every x is represented uniquely in
terms of an element a € R™. Similarly every element y € Y is uniquely represented in terms
of an element b € R". Now: T'(x;) = > ;" b;jy; and hence

T(x) =Y a;T(x;) =Y vi(D_ ajbij)
j=1 =1 =1

A matrix representation is then given by B = (b;;). It is evident that a matrix representation
is not unique and depends on the basis choice.



1.5

Linear Systems of Equations

Suppose that we have the following system of real or complex linear equations:

Amxnxnxl — ym><1

When does this system have a solution x for given A and y?

J a solution x <=y € R(A) <= R([A|y]) = R(A)

We now analyze some possible cases:

(1)
(2)

If n = m, then det(A) # 0 = x = A~ 'y, and x is the unique solution.

If m > n, then there are more equations than unknowns, i.e. the system is “overcon-
strained”. If A and/or y reflect actual experimental data, then it is quite likely that the
n-component vector y does not lie in R(A), since this subspace is only n-dimensional
(if A has full column rank) or less, but lives in an m-dimensional space. The system
will then be inconsistent. This is the sort of situation encountered in estimation or
identification problems, where x is a parameter vector of low dimension compared to
the dimension of the measurements that are available. We then look for a choice of =
that comes closest to achieving consistency, according to some error criterion. We shall
say quite a bit more about this shortly.

If m < n, then there are fewer equations than unknowns, and the system is “undercon-
strained”. If the system has a particular solution x, (and when rank(A) = m, there is
guaranteed to be a solution for any y) then there exist an infinite number of solutions.
More specifically, = is a solution iff (if and only if)

r=x,+x,, Avy,=y, Ar,=0 1ie x,¢c N(A)

Since the nullspace AV(A) has dimension at least n — m, there are at least this many
degrees of freedom in the solution. This is the sort of situation that occurs in many
control problems, where the control objectives do not uniquely constrain or determine
the control. We then typically search among the available solutions for ones that are
optimal according to some criterion.



Exercises

Exercise 1.1 Partitioned Matrices
Suppose

(A Ay
a=(% %)
(a) Write the determinant det A in terms of det A; and det A4. (Hint: Write A as the product

(o) (v 7)

and use the fact that the determinant of the product of two square matrices is the product of
the individual determinants — the individual determinants are easy to evaluate in this case.)

with A; and A4 square.

(b) Assume for this part that A; and A4 are nonsingular (i.e., square and invertible). Now find A=!.
(Hint: Write AB = I and partition B and I commensurably with the partitioning of A.)

Exercise 1.2 Partitioned Matrices
Suppose

_ (A A
= (a2
where the A4; are matrices of conformable dimension.

(a) What can A be premultiplied by to get the matrix

Ay Ad\
A Ay )

(b) Assume that A; is nonsingular. What can A be premultiplied by to get the matrix
A1 A
0o C

(c) Suppose A is a square matrix. Use the result in (b) — and the fact mentioned in the hint to
Problem 1(a) — to obtain an expression for det(A) in terms of determinants involving only the
submatrices Ay, Ao, Az, Ay.

where C = A4 — A3A;1A2 ?

Exercise 1.3 Matrix Identities

Prove the following very useful matrix identities. In proving identities such as these, see if you
can obtain proofs that make as few assumptions as possible beyond those implied by the problem
statement. For example, in (1) and (2) below, neither A nor B need be square, and in (3) neither B
nor D need be square — so avoid assuming that any of these matrices is (square and) invertible!.



(a) det(I — AB) =det(I — BA), if Ais p X ¢ and B is ¢ x p. (Hint: Evaluate the determinants of

I A I —-A I -A I A

B I 0 I ’ 0 I B I
to obtain the desired result). One common situation in which the above result is useful is when
p > q; why is this so?

(b) Show that (I — AB)~'A = A(I — BA)~%.

(c) Show that (A+BCD) ' =A1-A'B(C'+DA'B)"'DA!. (Hint: Multiply the right side
by A+ BCD and cleverly gather terms.) This is perhaps the most used of matrix identities, and
is known by various names — the matrix inversion lemma, the ABC D lemma (!), Woodbury’s
formula, etc. It is rediscovered from time to time in different guises. Its noteworthy feature is
that, if A=! is known, then the inverse of a modification of A is expressed as a modification of
A~! that may be simple to compute, e.g. when C is of small dimensions. Show, for instance,
that evaluation of (I — ab?)~!, where a and b are column vectors, only requires inversion of a
scalar quantity.

Exercise 1.4 Range and Rank

This is a practice problem in linear algebra (except that you have perhaps only seen such results
stated for the case of real matrices and vectors, rather than complex ones — the extensions are routine).

Assume that A € C™*™ (i.e., A is a complex m X n matrix) and B € C™**?. We shall use the
symbols R(A) and N (A) to respectively denote the range space and null space (or kernel) of the matrix
A. Following the Matlab convention, we use the symbol A’ to denote the transpose of the complex
conjugate of the matrix A; R+ (A) denotes the subspace orthogonal to the subspace R(A), i.e. the set
of vectors x such that 2’y =0, Vy € R(A), etc.

(a) Show that R+(A) = NV(4’) and N+ (A) = R(4).
(b) Show that
rank(A4) + rank(B) —n < rank(AB) < min{rank(A), rank(B)}

This result is referred to as Sylvester’s inequality.

Exercise 1.5 Vandermonde Matrix
A matrix with the following structure is referred to as a Vandermonde matrix:

IED VDt D Y
I X A3 - At
1A, A2 An—t



This matrix is clearly singular if the A; are not all distinct. Show the converse, namely that if all n of
the \; are distinct, then the matrix is nonsingular. One way to do this — although not the easiest!
— is to show by induction that the determinant of the Vandermonde matrix is

1,J=n

I =2

i=1;5>i

Look for an easier argument first.

Exercise 1.6 Matrix Derivatives
(a) Suppose A(t) and B(t) are matrices whose entries are differentiable functions of ¢, and assume the
product A(¢)B(t) is well-defined. Show that

dB(t)

©(awBw) = L0 s + a0

dt dt
where the derivative of a matrix is, by definition, the matrix of derivatives — i.e., to obtain the

derivative of a matrix, simply replace each entry of the matrix by its derivative. (Note: The
ordering of the matrices in the above result is important!).

(b) Use the result of (a) to evaluate the derivative of the inverse of a matrix A(t), i.e. evaluate the
derivative of A=L(t).

Exercise 1.7 Suppose T is a linear transformation from X to itself. Verify that any two matrix
representations, A and B, of T are related by a nonsingular transformation; i.e., A = R~!BR for some
R. Show that as R varies over all nonsingular matrices, we get all possible representations.

Exercise 1.8 Let X be the vector space of polynomials of order less than or equal to M.

(a) Show that the set B = {1, x, ... 2™} is a basis for this vector space.
(b) Consider the mapping T from X to X defined as:
() = Tg(a) = -g(a)
dz
Show that 7' is linear.

Derive a matrix representation for 7" in terms of the basis B.

What are the eigenvalues of T'.

L e

Compute one eigenvector associated with one of the eighenvalues.



Chapter 2

Least Squares Estimation

2.1 Introduction

If the criterion used to measure the error e = y — Ax in the case of inconsistent system of
equations is the sum of squared magnitudes of the error components, i.e. €’e, or equivalently
the square root of this, which is the usual Euclidean norm or 2-norm ||e|2, then the problem
is called a least squares problem. Formally it can be written as

min [}y — Ax].. (2.1)

The x that minimizes this criterion is called the least square error estimate, or more simply,
the least squares estimate. The choice of this criterion and the solution of the problem go
back to Legendre (1805) and Gauss (around the same time).

Example 2.1 Suppose we make some measurements y; of an unknown function
f(t) at discrete points t;, i = 1,..., N:

yi=f(t), i=1,...,N.

We want to find the function g(¢) in the space y of polynomials of order m —1 <
N — 1 that best approximates f(t) at the measured points ¢;, where

m—1
X = {g(t) = Z ait', o real}

1=0

For any ¢(t) € x, we will have y; = g(t;) + ¢; for i = 1,..., N. Writing this in



matrix form for the available data, we have

U1 1 tl t% L tgnil (%)) €1
=1: : +
YN Loty 5 - 37 ] L ama en
N e’ N ~ AN - N e’

Yy A x e

N
The problem is to find aq, ..., ®m_1 such that e'e = Z e? is minimized.

i—1

2.2 Computing the Estimate
The solution, &, of Equation 2.1 is characterized by:
(y — Az) L R(A).

All elements in a basis of R(A) must be orthogonal to (y — AZ). Equivalently this is true for
the set of columns of A, [a1,...,ay,]. Thus

(y—Az) LR(A) ©ad(y—Ax)=0 fori=1,...,n
< Ally—Az) =0
o AAG = Ay

This system of m equations in the m unknowns of interest is referred to as the normal
equations. We can solve for the unique % iff A’A is invertible. Conditions for this will be
derived shortly. In the sequel, we will present the generalization of the above ideas for infinite
dimensional vector spaces.

2.3 Preliminary: The Gram Product

Given the array of n4 vectors A = [a; | --- | an,] and the array of np vectors B = [by | - -+ | by ]
from a given inner product space, let < A, B > denote the ny x ng matriz whose (i, j)-th
element is < a;,b; >. We shall refer to this object as the Gram product (but note that this
terminology is not standard!).

If the vector space under consideration is R™ or C™, then both A and B are matrices
with m rows, but our definition of < A, B > can actually handle more general A, B. In
fact, the vector space can be infinite dimensional, as long as we are only examining finite
collections of vectors from this space. For instance, we could use the same notation to treat
finite collections of vectors chosen from the infinite-dimensional vector space £? of square



integrable functions, i.e. functions a(t) for which [°°_a?(t) dt < co. The inner product in £
is < a(t),b(t) >= [°°_a*(t)b(t)dt. (The space £? is an example of an infinite dimensional
Hilbert space, and most of what we know for finite dimensional spaces — which are also Hilbert
spaces! — has natural generalizations to infinite dimensional Hilbert spaces. Many of these
generalizations involve introducing notions of topology and measure, so we shall not venture
too far there. It is worth also mentioning here another important infinite dimensional Hilbert
space that is central to the probabilistic treatment of least squares estimation: the space
of zero-mean random variables, with the expected value E(ab) serving as the inner product
< a,b>.)

For the usual Euclidean inner product in an m-dimensional space, where < a;,b; >=
a;bj, we simply have <A, B>= A'B. For the inner product defined by < a;,b; >= a; Sb;
for a positive definite, Hermitian matrix S, we have <A, B> = A’'SB.

e Verify that the symmetry and linearity of the inner product imply the same for the
Gram product, so < AF,BG+ CH -= F' <A B~ G + F' <A ,C = H, for any
constant matrices F, G, H (a constant matrix is a matrix of scalars), with A, B, C
denoting arrays whose columns are vectors.

2.4 The Least Squares Estimation Problem

The problem of interest is to find the least square error (LSE) estimate of the parameter vector
x that arises in the linear model y = Az, where A is an array of n vectors, A = [a1, -+ , a,].
Defining the error e by

e=y— Ax

what we want to determine is
7 = argmin ||e|| = arg min ||y — Ax|| , y, A given
xr xX

(where “arg min,” should be read as “the value of the argument x that minimizes”). To state
this yet another way, note that as x is varied, Ax ranges over the subspace R(A), so we are
looking for the point

y= AT

in R(A) that comes closest to y, as measured by whatever norm we are using.

Rather than restricting the norm in the above expression to be the Euclidean 2-norm
used in Lecture 1, we shall now actually permit it to be any norm induced by an inner product,
so |le]] = /< e,e>. This will allow us to solve the so-called weighted least squares problem
in a finite dimensional space with no additional work, because error criteria of the form
¢/ Se for positive definite Hermitian S are thereby included. Also, our problem formulation
then applies to infinite dimensional spaces that have an inner product defined on them, with
the restriction that our model Ax be confined to a finite dimensional subspace. This actually
covers the cases of most interest to us; treatment of the more general case involves introducing
further topological notions (closed subspaces, etc.), and we avoid doing this.



We shall also assume that the vectors a;, ¢ = 1,...,n in A are independent. This
assumption is satisfied by any reasonably parametrized model, for otherwise there would be
an infinite number of choices of x that attained any achievable value of the error y — Ax. If
the vectors in A are discovered to be dependent, then a re-parametrization of the model is
needed to yield a well-parametrized model with independent vectors in the new A. (A subtler
problem — and one that we shall say something more about in the context of ill-conditioning
and the singular value decomposition — is that the vectors in A can be nearly dependent,
causing practical difficulties in numerical estimation of the parameters.)

Gram Matrix Lemma

An important route to verifying the independence of the vectors that make up the columns of
A is a lemma that we shall refer to as the Gram Matriz Lemma. This states that the vectors
in A are independent iff the associated Gram matrix (or Gramian) < A, A == [< a;,a; >]
is invertible; all norms are equivalent, as far as this result is concerned — one can pick any
norm. As noted above, for the case of the usual Euclidean inner product, < A, A= = A’A. For
an inner product of the form < a;,a; >= a;Sa;, where S is Hermitian and positive definite,
we have < A, A== A'SA. The lemma applies to the infinite dimensional setting as well (e.g.
£?), provided we are only considering the independence of a finite subset of vectors.

Proof: If the vectors in A are dependent, there is some nonzero vector n such that An =
>_jazn; = 0. But then >, < a;,a; >n; = 0, by the linearity of the inner product; in
matrix form, we can write <A, A>n =0 —so <A, A> is not invertible.

Conversely, if < A, A > is not invertible, then < A, A> 1 = 0 for some nonzero n. But
then ' <A, A> 1 =0, so by the linearity of inner products < Y nia;, > ajn; > = 0,
i.e. the norm of the vector ) a;n; = An is zero, so the vectors in A are dependent.

2.5 The Projection Theorem and the Least Squares Estimate

The solution to our least squares problem is now given by the Projection Theorem, also referred
to as the Orthogonality Principle, which states that

e=(y—A%) L TR(A)

from which - — as we shall see — Z can be determined. In words, the theorem/“principle”
states that the point § = AZ in the subspace R(A) that comes closest to y is characterized
by the fact that the associated error € = y — y is orthogonal to R(A), i.e., orthogonal to the
space spanned by the vectors in A. This principle was presented and proved in the previous
chapter. We repeat the proof here in the context of the above problem.

Proof: We first show that y has a unique decomposition of the form y = y; +y,, where y; € R(A)
and yo € R-(A). We can write any y; € R(A) in the form y; = Aa for some vector a.



If we want (y —y1) € RY(A), we must see if there is an « that satisfies
<aj,(y—Aa)>=0, i=1,...,n
or, using our Gram product notation,
<A (y—Aa)==10
Rearranging this equation and using the linearity of the Gram product, we get
<A A= a=<Ay-

which is in the form of the normal equations that we encountered in Lecture 1. Under
our assumption that the vectors making up the columns of A are independent, the Gram
matrix lemma shows that < A, A > is invertible, so the unique solution of the preceding
equation is

a=<AA-"1< Ay~

We now have the decomposition that we sought.

To show that the preceding decomposition is unique, let y = y1, + Y2, be another such
decomposition, with y1, € R(A) and y2, € R(A). Then

Yr — Yla = Y2 — Y2a

and the left side is in R(A) while the right side is in its orthogonal complement. It is
easy to show that the only vector common to a subspace and its orthogonal complement
is the zero vector, so y1 —y1, = 0 and ys — y2, = 0, i.e., the decomposition of y is unique.

To proceed, decompose the error ¢ = y — Ax similarly (and uniquely) into the sum of
e1 € R(A) and e; € RH(A). Note that

lel® = llex]l* + flez|f?
Now we can rewrite e = y — Ax as

ertex =y +y2— Ax
or

e2 —y2=y1 —e1 — Ax

Since the right side of the above equation lies in R(A) and the left side lies in R+(A),
each side separately must equal 0 — again because this is the only vector common to
a subspace and its orthogonal complement. We thus have eo = g5, and the choice of x
can do nothing to affect e5. On the other hand, e; = y; — Ar = A(a — x), and the best
we can do as far as minimizing ||e||? is to make e; = 0 by choosing x = a, so & = «, i.e.,



T=<AA-"1<Ay>

This solves the least squares estimation problem that we have posed.

The above result, though rather abstractly developed, is immediately applicable to many
concrete cases of interest.

e Specializing to the case of R™ or C™, and choosing x to minimize the usual Euclidean
norm,

m
el = e'e =" lesf
=1

we have

7= (A'4) Ay
Note that if the columns of A form a mutually orthogonal set (i.e. an orthogonal basis
for R(A)), then A’A is diagonal, and its inversion is trivial.

e If instead we choose to minimize ¢’Se for some positive definite Hermitian S (# I), we
have a weighted least squares problem, with solution given by

T= (A'SA)tA'Sy

For instance, with a diagonal S, the criterion that we are trying to minimize becomes

m
> siiled]?
i=1

where the s;; are all positive. We can thereby preferentially weight those equations in
our linear system for which we want a smaller error in the final solution; a larger value
of s;; will encourage a smaller e;.

Such weighting is important in any practical situation, where different measurements y;
may have been subjected to different levels of noise or uncertainty. One might expect
that s; should be inversely proportional to the noise intensity on the ith equation. In
fact, a probabilistic derivation, assuming zero-mean noise on each equation in the system
but noise that is uncorrelated across equations, shows that s;; should vary inversely with
the variance of e;.

A full matrix S rather than a diagonal one would make sense if the errors were correlated
across measurements. A probabilistic treatment shows that the proper weighting matrix
is S = (E[ee'])™!, the inverse of the covariance matriz of e. In the deterministic setting,
one has far less guidance on picking a good S.



e The boxed result also allows us to immediately write down the choice of coefficients x;
that minimizes the integral

/[y(t> —ar(t)r1 — as(t)ws — -+ — an(t)a, P dt

for specified functions y(t) and a;(t). If, for instance, y(¢) is of finite extent (or finite
“support”) T, and the a;(t) are sinusoids whose frequencies are integral multiples of
27 /T, then the formulas that we obtain for the x; are just the familiar Fourier series
expressions. A simplification in this example is that the vectors in A are orthogonal, so
<A, A> is diagonal.

2.6 Recursive Least Squares (optional)

What if the data is coming in sequentially? Do we have to recompute everything each time
a new data point comes in, or can we write our new, updated estimate in terms of our old
estimate?
Consider the model
yi=Aix+e , 1=0,1,..., (2.2)

where y; € C"™¥1, A; € C™*" x € C"¥!, and ¢; € C™%!. The vector e; represents the
mismatch between the measurement y;, and the model for it, Apx, where Ay is known and x
is the vector of parameters to be estimated. At each time k, we wish to find

k k
T = arg min (Z(yz — A;x)iSi(yi — Aﬁ)) = arg min <Z egSiez) , (2.3)
i=1 1=1
where S; € C™*™ ig a positive definite Hermitian matrix of weights, so that we can vary the
importance of the e;’s and components of the e;’s in determining Zy.
To compute Zy.1, let:

Yo Ay €o
Y1 _ A er
Ykt1 = . ; App1 = . ; €py1 = . ;
Yk+1 Apy1 €kl
and
Sk+1 = diag (So, S, ..., Skt1)

where 5; is the weighting matrix for e;.

Our problem is then equivalent to



min(ej,,  Sk18k+1)

subject to:  Tp i1 = Ap1Tp41 + Crgr

The solution can thus be written as

U< - ~ —_ = .
(Ak 15k +1A4k4+1)Tht1 = Apg1 Sk+1Tr41

or in summation form as

k+1 k+1
(Z A;SiAz) Tepr = AlSiyi

i=0 i=0
Defining
k+1
Qrt1 = > AjSiA;.
i=0

we can write a recursion for Q4 as follows:

Qry1 = Qi+ Ay Skr1 Ak

Rearranging the summation form equation for Zjy;, we get

Thy1 = Qs [( o AQSiAi) T+ A§c+15k+1yk+1]

= Q;Zil [Qkf/c + A;c+1sk+1yk+1}

This clearly displays the new estimate as a weighted combination of the old estimate and the
new data, so we have the desired recursion. Another useful form of this result is obtained by
substituting from the recursion for Qxy1 above to get

Thi1 =B — Qty (Ah1Skr1Akr1%k — A1 Se1¥et1)
which finally reduces to

~ ~ -1 ! ~
Tpy1 = Tk + Qi Ak 1% +1 Wkr1 — Ar12k)
| —

~~

Kalman Filter Gain innovations

The quantity Q,;LA;CHSIQH is called the Kalman gain, and ygpy1 — Ag112, is called the
innovations, since it compares the difference between a data update and the prediction given
the last estimate.

Unfortunately, as one acquires more and more data, i.e. as k grows large, the Kalman gain
goes to zero. One data point cannot make much headway against the mass of previous data
which has ‘hardened’ the estimate. If we leave this estimator as is—without modification—the
estimator ‘goes to sleep’ after a while, and thus doesn’t adapt well to parameter changes. The
homework investigates the concept of a ‘fading memory’ so that the estimator doesn’t go to
sleep.



An Implementation Issue

Another concept which is important in the implementation of the RLS algorithm is the com-
putation of Q,:il. If the dimension of Q) is very large, computation of its inverse can be
computationally expensive, so one would like to have a recursion for Q;}rl.

This recursion is easy to obtain. Applying the handy matrix identity

-1
(A+BCD)™" =A™ —A7'B(DAT' B+ C7") DA™

to the recursion for Qg1 yields

—1
Qi1 = Q' — QA (AkJrlQl:lA;c—l—l + S/Zi1) A @yt

Upon defining
Py = Ql:il J
this becomes )
Pip1 =P — P/cAZH(S;;il + Alc+1Pk:A;c+1)7 App1 Py

which is called the (discrete-time) Riccati equation.

Interpretation

We have 7 and yi,q available for computing our updated estimate. Interpreting zjp as a
measurement, we see our model becomes

€k

el |

Ty _ I
Yk+1 Apq1

The criterion, then, by which we choose 2y is thus

T+

~ . / !
Tr1 = argmin (e, Qrex + €1 Sk+1€k+1)

In this context, one interprets Qi as the weighting factor for the previous estimate.



Exercises

Exercise 2.1 Least Squares Fit of an Ellipse

Suppose a particular object is modeled as moving in an elliptical orbit centered at the origin.
Its nominal trajectory is described in rectangular coordinates (r, s) by the constraint equation x17? +
2252 + x37s = 1, where 1, x2, and 3 are unknown parameters that specify the orbit. We have
available the following noisy measurements of the object’s coordinates (r, s) at ten different points on
its orbit:

(0.6728, 0.0589) (0.3380, 0.4093) (0.2510, 0.3559) (-0.0684, 0.5449)

(-0.4329, 0.3657) (-0.6921, 0.0252) (-0.3681, -0.2020) (0.0019, -0.3769)

(0.0825, -0.3508) (0.5294, -0.2918)

The ten measurements are believed to be equally reliable. For your convenience, these ten pairs of
measured (r, s) values have been stored in column vectors named r and s that you can access through
the 6.241 locker on Athena. After add 6.241, and once in the directory in which you are running
Matlab, you can copy the data using cp /mit/6.241/Public/fall95/hwlrs.mat hwirs.mat. Then,
in Matlab, type load hwirs to load the desired data; type who to confirm that the vectors r and s are
indeed available.

Using the assumed constraint equation, we can arrange the given information in the form of the
linear system of (approximate) equations Ax & b, where A is a known 10 x 3 matrix, b is a known 10 x 1
vector, and x = (x1, 22, T3 )T. This system of 10 equations in 3 unknowns is inconsistent. We wish to
find the solution x that minimizes the Euclidean norm (or length) of the error Az —b. Compare the
solutions obtained by using the following four Matlab invocations, each of which in principle gives the
desired least-square-error solution:

(a) z=A\b

(b) = =pinv(A4) *b

(c) x=inv(A"x A)x A" xb

(d) [g,r] = qr(A), followed by implementation of the approach described in Exercise 3.1.

For more information on these commands, try help slash, help qr, help pinv, help inv, etc.
[Incidentally, the prime, ’, in Matlab takes the transpose of the complex conjugate of a matrix; if you
want the ordinary transpose of a complex matrix C, you have to write C." or transp(C).]

You should include in your solutions a plot the ellipse that corresponds to your estimate of x.
If you create the following function file in your Matlab directory, with the name ellipse.m, you can
obtain the polar coordinates theta, rho of n points on the ellipse specified by the parameter vector x.
To do this, enter [theta,rhol=ellipse(x,n); at the Matlab prompt. You can then plot the ellipse
by using the polar (theta,rho) command.

function [theta,rho]=ellipse(x,n)

% [theta,rho]=ellipse(x,n)

%

% The vector x = [x(1),x(2),x(3)]’, defines an ellipse centered at the origin
% via the equation x(1)*r" 2 + x(2)*s" 2 +x(3)*r*s = 1.

% This routine generates the polar coordinates of points on the ellipse,

% to send to a plot command. It does this by solving for the radial

% distance in n equally spaced angular directions.

% Use polar(theta,rho) to actually plot the ellipse.



theta = 0:(2*pi/n):(2*pi);
a = x(1)*cos(theta).” 2 + x(2)*sin(theta).” 2 + x(3)*(cos(theta).*sin(theta));
rho = ones(size(a))./sqrt(a);

Exercise 2.2 Approximation by a Polynomial
Let f(t) = 0.5¢%8¢ ¢ € ]0,2].

(a) Suppose 16 exact measurements of f(t) are available to you, taken at the times ¢; listed in the
array 7" below:

T= [2-1073, 0.136, 0.268, 0.402, 0.536, 0.668, 0.802, 0.936,
1.068, 1.202, 1.336, 1468, 1.602, 1.736, 1.868, 2.000]

Use Matlab to generate these measurements:
yi:f(ti) 1=1,...,16 t,eT

Now determine the coefficients of the least square error polynomial approximation of the mea-
surements, for

1. a polynomial of degree 15, p15(t);
2. a polynomial of degree 2, pa(t).

Compare the quality of the two approximations by plotting y(t;), p15(t;) and pa(t;) for all ¢;
in T. To see how well we are approximating the function on the whole interval, also plot f(t),
p15(t) and p2(t) on the interval [0, 2]. (Pick a very fine grid for the interval, e.g. t=[0:1000]’/500.)
Report your observations and comments.

(b) Now suppose that your measurements are affected by some noise. Generate the measurements
using
yi:f(ti)+e(ti) 1=1,...,16 t; €T

where the vector of noise values can be generated in the following way:

randn('seed’,0);
e = randn(size(T));

Again determine the coefficients of the least square error polynomial approximation of the mea-
surements for

1. a polynomial of degree 15, p15(t);
2. a polynomial of degree 2, pa(t).

Compare the two approximations as in part (a). Report your observations and comments.
Explain any surprising results.



(c) So far we have obtained polynomial approximations of f(t), ¢ € [0,2], by approximating the
measurements at t; € T'. We are now interested in minimizing the square error of the polynomial
approximation over the whole interval [0, 2]:

win | £(£) - pa(8)|2 = min / F(8) — pa(t)? dt

where p,(t) is some polynomial of degree n. Find the polynomial ps(t) of degree 2 that solves
the above problem. Are the optimal po(t) in this case and the optimal py(t) of parts (a) and (b)
very different from each other? Elaborate.

Exercise 2.3 Combining Estimates

Suppose y1 = Ci1x + €1 and yo = Cyx + ez, where z is an n-vector, and C7, Cy have full column
rank. Let Z; denote the value of x that minimizes eTSleh and Zs denote the value that minimizes
655’262, where S; and S, are positive definite matrices. Show that the value Z of x that minimizes
eTSlel + 655’262 can be written entirely in terms of %1, Z2, and the n x n matrices Q1 = C1T51 Ci and
Q- = 02715’202. What is the significance of this result?

Exercise 2.4 Exponentially Windowed Estimates
Suppose we observe the scalar measurements

Yi =T +e; 1=1,2,...

where ¢; and x are possibly vectors (row- and column-vectors respectively).

(a) Show (by reducing this to a problem that we already know how to solve — don’t start from
scratch!) that the value & of x that minimizes the criterion

k
> el some fixed f, 0< f<1
=1

is given by
k k

-1
Ty = (Z fk_iCiTCz‘) (Z fk_iCiTyi)
i=1 i=1
The so-called fade or forgetting factor f allows us to preferentially weight the more recent mea-
surements by picking 0 < f < 1, so that old data is discounted at an exponential rate. We
then say that the data has been subjected to exponential fading or forgetting or weighting or
windowing or tapering or ... . This is usually desirable, in order to keep the filter adaptive to
changes that may occur in . Otherwise the filter becomes progressively less attentive to new
data and falls asleep, with its gain approaching 0.



(b) Now show that
Ty = Tp—1 + Qe (yn — crdpo1)

where
Qr = fQr_1 + ¢} ck, Qo =0

The vector g, = Q;lc{ is termed the gain of the estimator.

(c) If z and ¢; are scalars, and ¢; is a constant ¢, determine g as a function of k. What is the
steady-state gain g7 Does g, increase or decrease as f increases — and why do you expect
this?

Exercise 2.5 Suppose our model for some waveform y(t) is y(t) = asin (wt), where « is a scalar,
and suppose we have measurements y(t1),...,y(t,). Because of modeling errors and the presence of
measurement noise, we will generally not find any choice of model parameters that allows us to pre-
cisely account for all p measurements.

(a) If w is known, find the value of a that minimizes

/4

> ly(t) — asin(wt,)]?

i=1
(b) Determine this value of « if w = 2 and if the measured values of y(t) are:
y(1) = +2.31 y(2) = —2.01 y(3)=—-1.33 y(4) = +3.23

y(5) = —1.28 y(6) = —1.66 y(7) =+3.28 y(8) = —0.88

(I generated this data using the equation y(t) = 3sin(2t) + e(t) evaluated at the integer values
t=1,...,8, and with e(t) for each ¢ being a random number uniformly distributed in the interval
- 0.5 to +0.5.)

(c) Suppose that a and w are unknown, and that we wish to determine the values of these two variables
that minimize the above criterion. Assume you are given initial estimates ag and wqy for the
minimizing values of these variables. Using the Gauss-Newton algorithm for this nonlinear least
squares problem, i.e. applying LLSE to the problem obtained by linearizing about the initial
estimates, determine explicitly the estimates «; and w; obtained after one iteration of this
algorithm. Use the following notation to help you write out the solution in a condensed form:

a= Zsin2(woti) , b= th cos®(wot;) , c= Z t;[sin(wopt;)][cos(wot;)]

(d) What values do you get for a; and w; with the data given in (b) above if the initial guesses
are ap = 3.2 and wy = 1.8 7 Continue the iterative estimation a few more steps. Repeat the
procedure when the initial guesses are ag = 3.5 and wg = 2.5, verifying that the algorithm does
not converge.



(e) Since only w enters the model nonlinearly, we might think of a decomposed algorithm, in which a
is estimated using linear least squares and w is estimated via nonlinear least squares. Suppose,
for example, that our initial estimate of w is wy = 1.8. Now obtain an estimate «; of a using the
linear least squares method that you used in (b). Then obtain an (improved?) estimate w; of w,
using one iteration of a Gauss-Newton algorithm (similar to what is needed in (c), except that
now you are only trying to estimate w). Next obtain the estimate as via linear least squares,
and so on. Compare your results with what you obtain via this decomposed procedure when
your initial estimate is wp = 2.5 instead of 1.8.

Exercise 2.6 Comparing Different Estimators

This problem asks you to compare the behavior of different parameter estimation algorithms by
fitting a model of the type y(t) = asin(2xt) + b cos(4nt) to noisy data taken at values of ¢ that are .02
apart in the interval (0,2].

First synthesize the data on which you will test the algorithms. Even though your estimation
algorithms will assume that a and b are constant, we are interested in seeing how they track parameter
changes as well. Accordingly, let a = 2, b = 2 for the first 50 points, and ¢ = 1, b = 3 for the next 50
points. To get (approximately) normally distributed random variables, we use the function randn to
produce variables with mean 0 and variance 1.

An elegant way to generate the data in Matlab, exploiting Matlab’s facility with vectors, is to
define the vectors t1 = 0.02:0.02: 1.0 and 2 = 1.02 : 0.02 : 2.0, then set

yl = 2%sin(2* pi*tl) + 2 % cos(4 * pi* t1) + s * randn(size(tl))

and
Y2 = sin(2 % pi x t2) + 3 % cos(4 * pi x t2) + s * randn(size(t2))

where s determines the standard deviation of the noise. Pick s = 1 for this problem. Finally, set
y = [y1,y2]. No loops, no counters, no fuss!!

Now estimate a and b from y using the following algorithms. Assume prior estimates ag = 3
and by = 1, weighted equally with the measurements (so all weights can be taken as 1 without loss of
generality). Plot your results to aid comparison.

(i) Recursive least squares.

(ii) Recursive least squares with exponentially fading memory, as in Problem 3. Use f = .96.

(iii) The algorithm in (ii), but with Qj of Problem 3 replaced by qx = (1/n)xtrace(Qy), where
n is the number of parameters, so n = 2 in this case. (Recall that the trace of a matrix is the sum of
its diagonal elements. Note that g itself satisfies a recursion, which you should write down.)

(iv) An algorithm of the form

T =Tk_1 + LLITC;‘C(yk - Cki'kfl)
ckck

where ¢;, = [sin(27t), cos(4nt)] evaluated at the kth sampling instant, so ¢ = .02k.

Exercise 2.7 Recursive Estimation of a State Vector
This course will soon begin to consider state-space models of the form

Ty = Al‘gfl (2'4)



where x, is an n-vector denoting the state at time ¢ of our model of some system, and A is a known
n X n matrix. For example, suppose the system of interest is a rotating machine, with angular position
de and angular velocity wy at time ¢t = (7", where T is some fixed sampling interval. If we believed the
machine to be rotating at constant speed, we would be led to the model

(&)= 1) (&)

Assume A to be nonsingular throughout this problem.

For the rotating machine example above, it is often of interest to obtain least-square-error esti-
mates of the position and (constant) velocity, using noisy measurements of the angular position d; at
the sampling instants. More generally, it is of interest to obtain a least-square-error estimate of the
state vector x; in the model (2.4) from noisy p-component measurements y; that are related to x; by
a linear equation of the form

y; =Czj +e; 7=1,...,2
where C' is a p X n matrix. We shall also assume that a prior estimate Zo of zq is available:
To = To + €o

Let %;); denote the value of z; that minimizes

i
> llesll?
j=0

This is the estimate of x; given the prior estimate and measurements up to time ¢, or the “filtered
estimate” of x;. Similarly, let #;;_; denote the value of z; that minimizes

i—1
> llesll?
=0

This is the least-square-error estimate of x; given the prior estimate and measurements up to time
1 — 1, and is termed the “one-step prediction” of x;.

a) Set up the linear system of equations whose least square error solution would be #;;. Similarly,
set up the linear system of equations whose least square error solution would be Z;);_1.

b) Show that j"i|i—1 = Ai"i—1|i—1'

c) Determine a recursion that expresses Z;; in terms of #;_;;_; and y;. This is the prototype of what
is known as the Kalman filter. A more elaborate version of the Kalman filter would include additive
noise driving the state-space model, and other embellishments, all in a stochastic context (rather than
the deterministic one given here).

Exercise 2.8 Let & denote the value of  that minimizes ||y — Az||?, where A has full column rank.
Let T denote the value of = that minimizes this same criterion, but now subject to the constraint that
z = Dx, where D has full row rank. Show that

7=i+(ATA)1DT (D(ATA)*DT) '~ Da)

(Hint: One approach to solving this is to use our recursive least squares formulation, but modified for
the limiting case where one of the measurement sets — namely z = Dz in this case — is known to
have no error. You may have to use some of the matrix identities from the previous chapter).



Chapter 3

Least Squares Solution of y =< A, x>

3.1 Introduction

We turn to a problem that is dual to the overconstrained estimation problems considered so
far. Let A denote an array of m vectors, A = [ai]--- |ay,], where the a; are vectors from any
space on which an inner product is defined. The space is allowed to be infinite dimensional,
e.g. the space £? of square integrable functions mentioned in Chapter 2 . We are interested
in the vector x, of minimum length, that satisfy the equation

y=<A x> (la)
where we have used the Gram product notation introduced in Chapter 2.

Example 3.1 Let y[0] denote the output at time 0 of a noncausal FIR filter whose
input is the sequence x[k], with

N
ylo] = > hix[—i].
1=—N

Describe the set of input values that yield y[0] = 0; repeat for y[0] = 7. The
solution of minimum energy (or RMS value) is the one that minimizes %y 22[i].

3.2 Constructing all Solutions

When the a;’s are drawn from ordinary (real or complex) Euclidean n-space, with the usual
(unweighted) inner product, A is an n x m matrix of full column rank, and the equation (1a)
is simply

y=Az | (1b)



where A’ has full row rank. Since the m rows of A’ in (1b) are independent, this matrix has m
independent columns as well. It follows that the system (1b), which can be read as expressing
y in terms of a linear combination of the columns of A’ (with weights given by the components
of x) has solutions z for any y.
If A" were square and therefore (under our rank assumption) invertible, (1b) would have
a unique solution, obtained simply by premultiplying (1b) by the inverse of A’. The closest we
come to having an invertible matrix in the non-square case is by invoking the Gram matrix
lemma, which tells us that A’A is invertible under our rank assumption. This fact, and
inspection of (1b), allow us to explicitly write down one particular solution of (1b), which we
denote by &:
i=AA Ay (2a)

Simple substitution of this expression in (1b) verifies that it is indeed a solution. We shall
shortly see that this solution actually has minimum length (norm) among all solutions of (1b).
For the more general equation in (la), we can establish the existence of a solution by
demonstrating that the appropriate generalization of the expression in (2a) does indeed satisfy

(1la). For this, pick
P=A <A A=ty (2b)

It is easy to see that this satisfies (1a), if we use the fact that <A, Aa>==<A, A= « for any
array « of scalars; in our case « is the m x 1 array <A, A>""1 .

Any other x is a solution of (1a) iff it differs from the particular solution above (or any
other particular solution) by a solution of the homogeneous equation < A, z >== 0; the same
statement can be made for solutions of (1b). The proof is easy, and presented below for (1b),
with x denoting any solution, x, denoting a particular solution, and x; denoting a solution
of the homogeneous equation:

y=Az,=Ar = A(r—2,)=0 = z=ux,+x,
Tp

Conversely,

y=Az,, Az,=0 = y=A(x,4+x,) = z=uz,+
——

T

Equations of the form (1a), (1b) commonly arise in situations where x represents a vector
of control inputs and y represents a vector of objectives or targets. The problem is then to
use some appropriate criterion and/or constraints to narrow down the set of controls.

Example 3.2 Let m = 1, so that A’ is a single nonzero row, which we shall denote
by a'. If y = 0, the set of solutions corresponds to vectors x that are orthogonal
to the vector a, i.e. to vectors in the orthogonal complement of a, namely in the
subspace Ra"(a). Use this to costruct all solutions to Example 3.1.



There are several different criteria and constraints that may reasonably be used to select
among the different possible solutions. For example, in some problems it may be natural to
restrict the components x; of x to be nonnegative, and to ask for the control that minimizes
> s;x;, where s; represents the cost of control component x;. This is the prototypical form
of what is termed the linear programming problem. (You should geometrically characterize
the solution to this problem for the case given in the above example.) The general linear
programming problem arises in a host of applications.

We shall focus on the problem of determining the solution z of (1a) for which ||z||? =<
x,x > is minimized; in the case of (1b), we are looking to minimize 2’x. For the situation
depicted in the above example, the optimum =z is immediately seen to be the solution vector
that is aligned with a. It can be found by projecting any particular solution of (1b) onto the
space spanned by the vector a. (This fact is related to the Cauchy-Schwartz inequality: For
x of a specified length, the inner product < a,x > is maximized by aligning = with a, and for
specified < a,xr > the length of x is minimized by again aligning = with a.) The generalization
to m > 1 and to the broader setting of (1a) is direct, and is presented next. You should note
the similarity to the proof of the orthogonality principle.

3.3 Least Squares Solution

Let = be a particular solution of (1a). Denote by x4 its unique projection onto the range of
A (i.e. onto the space spanned by the vectors a;) and let x 41 denote the projection onto the
space orthogonal to this. Following the same development as in the proof of the orthogonality
principle in Lecture 2, we find

ra=A <A A-"1<A x> (3a)
with z 41 = 2 —x4. Now (1la) allows us to make the substitution y =< A, x> in (3a), so
ra=A <A A-"1y (3b)

which is exactly the expression we had for the solution # that we determined earlier by
inspection, see (2b).

Now note from (3b) that x4 is the same for all solutions z, because it is determined
entirely by A and y. Hence it is only x 41 that is varied by varying . The orthogonality of
x4 and z 41 allows us to write

<T,x>=<TA,TA> + < Ty, 1 >

so the best we can do as far as minimizing < x,x > is concerned is to make z 41 = 0. In other
words, the optimum solution is x = 4 = .

Example 3.3 For the FIR filter mentioned in Example 3.1, and considering all in-
put sequences z[k] that result in y[0] = 7, find the sequence for which SN - 22[i]
is minimized. (Work out this example for yourself!)



Example 3.4 Consider a unit mass moving in a straight line under the action of
a force x(t), with position at time ¢ given by p(t). Assume p(0) = 0, p(0) = 0, and
suppose we wish to have p(T') = y (with no constraint on p(7")). Then

T
y=p(T) = [ (T =0a(t)dt =< alt),a(t) > (4)

This is a typical underconstrained problem, with many choices of 2:(¢) for 0 < ¢t < T
that will result in p(T') = y. Let us find the solution z(t) for which

T
/ 22(t) dt =< a(t), 2(t) > (5)
0
is minimized. Evaluating the expression in (2a), we find

() = (T = t)y/(T°/3) (6)

How does your solution change if there is the additional constraint that the mass
should be brought to rest at time T, so that p(7") = 07

We leave you to consider how weighted norms can be minimized.



Exercises

Exercise 3.1 Least Square Error Solution We begin with a mini-tutorial on orthogonal and unitary
matrices. An orthogonal matriz may be defined as a square real matrix whose columns are of unit
length and mutually orthogonal to each other — i.e., its columns form an orthonormal set. It follows
quite easily (as you should try and verify for yourself) that:

e the inverse of an orthogonal matrix is just its transpose;
e the rows of an orthogonal matrix form an orthonormal set as well;

e the usual Euclidean inner product of two real vectors v and w, namely the scalar v'w, equals
the inner product of Uv and Uw, if U is an orthogonal matrix — and therefore the length of v,
namely vv'v, equals that of Uv.

A unitary matriz is similarly defined, except that its entries are allowed to be complex — so its inverse
is the complex conjugate of its transpose. A fact about orthogonal matrices that turns out to be
important in several numerical algorithms is the following: Given a real m x n matrix A of full column
rank, it is possible (in many ways) to find an orthogonal matrix U such that

=1

where R is a nonsingular, upper-triangular matrix. (If A is complez, then we can find a unitary matrix
U that leads to the same equation.) To see how to compute U in Matlab, read the comments obtained
by typing help qr; the matrix @ that is referred to in the comments is just U’.

We now turn to the problem of interest. Given a real m x n matrix A of full column rank, and
a real m-vector y, we wish to approximately satisfy the equation y = Ax. Specifically, let us choose
the vector = to minimize ||y — Az||* = (y — Az)'(y — Az), the squared Euclidean length of the “error”
y — Az. By invoking the above results on orthogonal matrices, show that (in the notation introduced
earlier) the minimizing x is
T = R_lyl

where y; denotes the vector formed from the first n components of Uy. (In practice, we would not
bother to find R~! explicitly. Instead, taking advantage of the upper-triangular structure of R, we
would solve the system of equations RE = y; by back substitution, starting from the last equation.)

The above way of solving a least-squares problem (proposed by Householder in 1958, but some-
times referred to as Golub’s algorithm) is numerically preferable in most cases to solving the “normal
equations” in the form & = (A’A)~! A’y, and is essentially what Matlab does when you write # = A\y.
An (oversimplified!) explanation of the trouble with the normal equation solution is that it implic-
itly evaluates the product (R'R) 'R/, whereas the Householder/Golub method recognizes that this
product simply equals R~', and thereby avoids unnecessary and error prone steps.

Exercise 3.2 Suppose the input sequence {u;} and the output sequence {y,} of a particular system

are related by
Yk = Z hiug—;
i=1



where all quantities are scalar.

(i) Assume we want to have y, equal to some specified number §. Determine ug, ..., u,—1 SO as to
achieve this while minimizing u3 + ... +u?_;.

(ii) Suppose now that we are willing to relax our objective of exactly attaining y, = g. This leads us
to the following modified problem. Determine ug, ..., u,_1 SO as to minimize

P —yn)? +ug+ . Ful_y

where r is a positive weighting parameter.

(a) Solve the modified problem.

(b) What do you expect the answer to be in the limiting cases of » = 0 and r = co? Show that your
answer in (a) indeed gives you these expected limiting results.

Exercise 3.3 Return to the problem considered in Example 3.4. Suppose that, in addition to re-
quiring p(T') = y for a specified y, we also want p(T") = 0. In other words, we want to bring the mass
to rest at the position y at time 7T'. Of all the force functions z(t) that can accomplish this, determine

the one that minimizes < z(t), z(t) >= fOT 22 (t) dt.

Exercise 3.4 (a) Given y = A'x, with A’ of full row rank, find the solution vector x for which
x'Wex is minimum, where W = L'L and L is nonsingular (i.e. where W is Hermitian and posi-
tive definite).

(b) A specified current Iy is to be sent through the fixed voltage source Vj in the figure. Find what
values vy, v2, v3 and vy must take so that the total power dissipation in the resistors is minimized.



Chapter 4

Matrix Norms and Singular Value
Decomposition

4.1 Introduction

In this lecture, we introduce the notion of a norm for matrices. The singular value decom-
position or SVD of a matrix is then presented. The SVD exposes the 2-norm of a matrix,
but its value to us goes much further: it enables the solution of a class of matriz perturbation
problems that form the basis for the stability robustness concepts introduced later; it solves
the so-called total least squares problem, which is a generalization of the least squares estima-
tion problem considered earlier; and it allows us to clarify the notion of conditioning, in the
context of matrix inversion. These applications of the SVD are presented at greater length in
the next lecture.

Example 4.1 To provide some immediate motivation for the study and applica-
tion of matrix norms, we begin with an example that clearly brings out the issue
of matrix conditioning with respect to inversion. The question of interest is how
sensitive the inverse of a matrix is to perturbations of the matrix.

Consider inverting the matrix

100 100
A= < 100.2 100) (4.1)
A quick calculation shows that
1 (-5 5
A7 = <5.01 -5 (42)
Now suppose we invert the perturbed matrix

100 100
A+ Aad= <100.1 100)



The result now is

10.01 -10 (44)

(A+A4) 1= A 4 A4 ) = < —10 10 )
Here AA denotes the perturbation in A and A(A~!) denotes the resulting per-
turbation in A~'. Evidently a 0.1% change in one entry of A has resulted in a
100% change in the entries of A~!. If we want to solve the problem Az = b where
b=[1 —1]7, then x = A~'b = [-10 10.01]7, while after perturbation of A we
get © + Az = (A+ AA)~'h = [-20 20.01]7. Again, we see a 100% change in the

entries of the solution with only a 0.1% change in the starting data.

The situation seen in the above example is much worse than what can ever arise in the
scalar case. If a is a scalar, then d(a ')/(a!) = —da/a, so the fractional change in the
inverse of a has the same maginitude as the fractional change in a itself. What is seen in the
above example, therefore, is a purely matrix phenomenon. It would seem to be related to
the fact that A is nearly singular — in the sense that its columns are nearly dependent, its
determinant is much smaller than its largest element, and so on. In what follows (see next
lecture), we shall develop a sound way to measure nearness to singularity, and show how this
measure relates to sensitivity under inversion.

Before understanding such sensitivity to perturbations in more detail, we need ways to
measure the “magnitudes” of vectors and matrices. We have already introduced the notion
of vector norms in Lecture 1, so we now turn to the definition of matrix norms.

4.2 Matrix Norms

An m x n complex matrix may be viewed as an operator on the (finite dimensional) normed
vector space C™:
AT (C -l ) — (- ) (4.5)

where the norm here is taken to be the standard Euclidean norm. Define the induced 2-norm
of A as follows:

A [Az|
1Al = 2 (4.6)
x#0 ||J?||2
= max [|Az[, . (4.7)
llzll,=1

The term “induced” refers to the fact that the definition of a norm for vectors such as Ax and
x is what enables the above definition of a matriz norm. From this definition, it follows that
the induced norm measures the amount of “amplification” the matrix A provides to vectors
on the unit sphere in C", i.e. it measures the “gain” of the matrix.
Rather than measuring the vectors « and Az using the 2-norm, we could use any p-norm,
the interesting cases being p = 1,2, co. Our notation for this is
||A||p = max ||Agc||p . (4.8)

ll=fl,=1



An important question to consider is whether or not the induced norm is actually a norm,
in the sense defined for vectors in Lecture 1. Recall the three conditions that define a norm:

L. |lz|| =0, and ||z|| =0 <= x = 0;
2. o] = ol Jl2];
3. [l 4+ yll < llll + [yl
Now let us verify that [|A[|, is a norm on C™*™ — using the preceding definition:

L. ||All, > 0 since ||Ax[, > 0 for any x. Futhermore, [|A, =0 <= A =0, since [|A]|, is
calculated from the mazimum of ||Az||, evaluated on the unit sphere.

2. [laAll, = |al [[A]l, follows from |lay[l, = |a [[yl, (for any y).

3. The triangle inequality holds since:

|4+ Bl, = max [(4+B)al,
ax
< max ([Az], +[|Bz],)
[|[|,=1
< Al + 181, -

Induced norms have two additional properties that are very important:
L || Az, < ||All,[lz[|,, which is a direct consequence of the definition of an induced norm;

2. For A™*n, Bnxr,

1AB], < I All, 131, (4.9)
which is called the submultiplicative property. This also follows directly from the defini-
tion:

[ABz|, < |All,lB=|,
< JALIBIL Iz, for any .
Dividing by [|z|,:
1255 <y, 1,
[l]],

from which the result follows.

Before we turn to a more detailed study of ideas surrounding the induced 2-norm, which
will be the focus of this lecture and the next, we make some remarks about the other induced
norms of practical interest, namely the induced 1-norm and induced oo-norm. We shall also



say something about an important matrix norm that is not an induced norm, namely the
Frobenius norm.
It is a fairly simple exercise to prove that

m
A, = 1r£a<x Z la;;|  (max of absolute column sums of A) , (4.10)
and
Al = max Z la;j|  (max of absolute row sums of A) . (4.11)

(Note that these definitions reduce to the familiar ones for the 1-norm and co-norm of column
vectors in the case n = 1.)
The proof for the induced co-norm involves two stages, namely:

1. Prove that the quantity in Equation (4.11) provides an upper bound ~:

[Az]l o <llzllee Vo s

2. Show that this bound is achievable for some x = 2:

JAéll, = All¢l,, for some &

In order to show how these steps can be implemented, we give the details for the oo-norm
case. Let x € C" and consider

n
[Az[le = 12%%'2%95]"
n
< s ol
> lgi)fn. |al]||x]|
Sism i
< Z . .
= max |aij| 121]‘agxn |51

1<i<m 4=

= | max ZI%I 1]l oo

1<i<m

The above inequalities show that an upper bound ~ is given by

max |AZ]|oo < v = max Z |aj].

zlloo=



Now in order to show that this upper bound is achieved by some vector #, let 7 be an index
at which the expression of v achieves a maximum, that is v = >7"_, |a;;|. Define the vector &
as

sgn(az)

sgn(ag)

=
Il

Sgn(afn)

Clearly [|Z||s = 1 and

n
[AZ]loc = D laz;| = 7.
j=1
The proof for the 1-norm proceeds in exactly the same way, and is left to the reader.
There are matrix norms — i.e. functions that satisfy the three defining conditions stated
earlier — that are not induced norms. The most important example of this for us is the
Frobenius norm:

2

14l = (23 layl? (4.12)
j=1:=1
= (trace(A'A)) 2 (verify) (4.13)

In other words, the Frobenius norm is defined as the root sum of squares of the entries, i.e.
the usual Euclidean 2-norm of the matrix when it is regarded simply as a vector in C™".
Although it can be shown that it is not an induced matrix norm, the Frobenius norm still has
the submultiplicative property that was noted for induced norms. Yet other matrix norms
may be defined (some of them without the submultiplicative property), but the ones above
are the only ones of interest to us.

4.3 Singular Value Decomposition

Before we discuss the singular value decomposition of matrices, we begin with some matrix
facts and definitions.

Some Matrix Facts:

e A matrix U € C"*" is unitary if U'U = UU' = I. Here, as in Matlab, the superscript
" denotes the (entry-by-entry) complex conjugate of the transpose, which is also called
the Hermitian transpose or conjugate transpose.

e A matrix U € R"*" is orthogonal if UTU = UUT = I, where the superscript 7 denotes
the transpose.

e Property: If U is unitary, then |Uz|, = ||z||,-



o If S=5'(i.e. S equals its Hermitian transpose, in which case we say S is Hermitian),
then there exists a unitary matrix such that U’SU = [diagonal matrix].!

e For any matrix A, both A’A and AA’ are Hermitian, and thus can always be diagonalized
by unitary matrices.

e For any matrix A, the eigenvalues of A’A and AA’ are always real and non-negative
(proved easily by contradiction).

Theorem 4.1 (Singular Value Decomposition, or SVD) Given any matrix A € C™*",
A can be written as

mxm mxn XN
A=U © V', (4.14)
where U'U =1, V'V =1,
o1
Y= o, , (4.15)
0 |0

and o; = \/ith nonzero eigenvalue of A’A. The o; are termed the singular values of A, and
are arranged in order of descending magnitude, i.e.,

o1>09>-->0,>0.

Proof: We will prove this theorem for the case rank(A) = m; the general case involves very
little more than what is required for this case. The matrix AA’ is Hermitian, and it can
therefore be diagonalized by a unitary matrix U € C"™*™, so that

UMU' = AA'.

Note that Ay = diag(A1, A2, ..., A\mm) has real positive diagonal entries \; due to the fact that
AA’ is positive definite. We can write A; = Y2 = diag(0?,03,...,02,). Define V{ € ¢
by V{ = S'U'A. V{ has orthonormal rows as can be seen from the following calculation:
ViVi = S7'U'AA'UST! = 1. Choose the matrix VJ in such a way that

VI
r_ "
v
is in C"*™ and unitary. Define the m x n matrix ¥ = [£1]0]. This implies that

SV =0,V = U'A.

In other words we have A = UXV'.

!One cannot always diagonalize an arbitrary matrix—cf the Jordan form.



Example 4.2 For the matrix A given at the beginning of this lecture, the SVD

— computed easily in Matlab by writing [u, s, v] = svd(A) — is

A= 7068 7075 2001 O 7075 7068
~ \.7075 . — 7068 0 0.1 —.7068 .7075

Observations:

AA = UzsviveTy!
vy’
o7
0 !
= U 0'3 U }
0 0
which tells us U diagonalizes AA’;
ii)
AA = vxu'usv!
= vxi'sy!
o7
0 !
=V o2 v,
0 0

which tells us V' diagonalizes A’A;

iii) If U and V are expressed in terms of their columns, i.e.,
U:[ul Uy + - um]

and
V:[vl Vg e vn] ,

then
r
!
A= Z oiuv;
=1

(4.16)

(4.17)

(4.18)

(4.19)



which is another way to write the SVD. The u; are termed the left singular vectors of
A, and the v; are its right singular vectors. From this we see that we can alternately
interpret Az as

,

Ar = oiu; (viw) | 4.20

; L ( 2 ) ( )
projection

which is a weighted sum of the u;, where the weights are the products of the singular

values and the projections of & onto the v;.

Observation (iii) tells us that Ra(A) = span{uy, ... u,} (because Ax = > I, c;u; —
where the ¢; are scalar weights). Since the columns of U are independent, dim Ra(A) = r = rank (A),
and {u1, ... w,} constitute a basis for the range space of A. The null space of A is given by
span{v,41,...,v,}. To see this:

USViz =0 «— XV/z=0

o1
= : =0
oL
= va=0,i=1,...,r
< x € span{vp41,...,0n}.
Example 4.3 One application of singular value decomposition is to the solution

of a system of algebraic equations. Suppose A is an m X n complex matrix and b
is a vector in C". Assume that the rank of A is equal to k, with k& < m. We are
looking for a solution of the linear system Ax = b. By applying the singular value
decomposition procedure to A, we get

A = UV’
3110
= U %
010

where 3; is a £ X k non-singular diagonal matrix. We will express the unitary
matrices U and V' columnwise as

U = [ Up Uy ... Um ]
V = [ V1T V2 ... Up ] .
A necessary and sufficient condition for the solvability of this system of equations

is that u;b = 0 for all i satisfying k& < i < m. Otherwise, the system of equations
is inconsistent. This condition means that the vector b must be orthogonal to the



last m — k columns of U. Therefore the system of linear equations can be written
as

21 0
V' = U
0 |0 ]
_u’lbw _uibw
s, 0 ubb ,b
o |y
L 0 0] ' : 0
L] |y ]

Using the above equation and the invertibility of ¥;, we can rewrite the system of
equations as

/ 1,
UII a__lulb
U2 Laubb
Tr = 72
1.
vl oo ugb
By using the fact that
vy
vh
. vi v ... v | =1,
!/
Uk,

we obtain a solution of the form

k

T = Z Uliu;b ;.

i=1

From the observations that were made earlier, we know that the vectors v 1, vg4o, ...

span the kernel of A, and therefore a general solution of the system of linear equa-
tions is given by

i (uib) vi + > Bivs,

i i=ht1

Mw

=1

where the coefficients [3;, with ¢ in the interval k+1 < i < n, are arbitrary complex
numbers.



4.4 Relationship to Matrix Norms

The singular value decomposition can be used to compute the induced 2-norm of a matrix A.

Theorem 4.2
Az ||,

w20 [|%ll;
= 01 (4:2].)

= Umax(A) )

1>

1Al

which tells us that the maximum amplification is given by the maximum singular value.

Proof:
Jarl, _ SVl

sup =
x#£0 ||~T||2 x#£0 ||95||2
sV
iV,
220 [Zls
12yl

y#0 ||Vy||2

_ o Eretl)’
(S wl)?

< o1 .

Fory=1[10--- 0]", |Zy|l, = o1, and the supremum is attained. (Notice that this correponds
to x = v1. Hence, Avy = o1u;.)

Another application of the singular value decomposition is in computing the minimal
amplification a full rank matrix exerts on elements with 2-norm equal to 1.

Theorem 4.3 Given A € C™*™, suppose rank(A) = n. Then

min ||Az|, = 0,(A4) . (4.22)

llzll,=1

Note that if rank(A) < n, then there is an 2 such that the minimum is zero (rewrite A in
terms of its SVD to see this).
Proof: For any ||z|, =1,

[Azlly = USV'z|,

= ||IZV'z|, (invariant under multiplication by unitary matrices)
1=yl



2x2
\ A Av
N AV,
Vv
1

Figure 4.1: Graphical depiction of the mapping involving A%2*2?. Note that Av; = oju; and
that A’Uz = 02U?.

for y = V'x. Now

=

n 2
2
1Zyll, = <Z|Uiyi|>
=1
> oy -

Note that the minimum is achieved for y =[00 --- 0 I]T; thus the proof is complete.

The Frobenius norm can also be expressed quite simply in terms of the singular values.
We leave you to verify that

1>

1Al
j=1i=1

(fﬁfﬁlaﬁ)g

- <Z ag) ’ (4.23)

Example 4.4 Matrix Inequality

We say A < B, two square matrices, if
2’ Ar < 2'Bx for all x # 0.

It follows that for any matrix A, not necessarily square,

|All2 < v & A'A <421



Exercises

Exercise 4.1 Verify that for any A, an m x n matrix, the following holds:
1

Al < 1A]ls < vVl Allo-
ZillAh < l2 < Vm|l4]]

Exercise 4.2 Suppose A’ = A. Find the exact relation between the eigenvalues and singular values
of A. Does this hold if A is not conjugate symmetric?

Exercise 4.3 Show that if rank(A) = 1, then, ||A]|r = ||A]]2-

Exercise 4.4 This problem leads you through the argument for the existence of the SVD, using an
iterative construction. Showing that A = UXV', where U and V are unitary matrices is equivalent to
showing that U'AV = X.

a) Argue from the definition of ||A]|2> that there exist unit vectors (measured in the 2-norm) x € C"
and y € C™ such that Ax = oy, where o = ||4|2.

b) We can extend both x and y above to orthonormal bases, i.e. we can find wunitary matrices
V1 and U; whose first columns are x and y respectively:

Vi=[z W], U=y U7]
Show that one way to do this is via Householder transformations, as follows:

hh'
Vl h,h ) h X [ 707 70]

and likewise for Uj.

c) Now define A; =UjAV;. Why is ||A1|]2 = [|4]|27

A — y'Ax y’A\Nﬁ (o W
L= \UjAz UAV, ) —\0 B

What is the justification for claiming that the lower left element in the above matrix is 07

d) Note that

e) Now show that
41 () I >+ u'o
w

and combine this with the fact that ||A:||2 = ||A||2 = ¢ to deduce that w = 0, so

c 0
w=(5 5)



At the next iteration, we apply the above procedure to B, and so on. When the iterations terminate,
we have the SVD.

[The reason that this is only an existence proof and not an algorithm is that it begins by invoking
the existence of  and y, but does not show how to compute them. Very good algorithms do exist for
computing the SVD — see Golub and Van Loan’s classic, Matriz Computations, Johns Hopkins Press,
1989. The SVD is a cornerstone of numerical computations in a host of applications.]

Exercise 4.5 Suppose the m x n matrix A is decomposed in the form

¥ 0 ,
a=v (3 )y

where U and V' are unitary matrices, and ¥ is an invertible r x r matrix (— the SVD could be used to
produce such a decomposition). Then the “Moore-Penrose inverse”, or pseudo-inverse of A, denoted
by AT, can be defined as the n x m matrix

o
+ !
v (30

(You can invoke it in Matlab with pinv(4).)

a) Show that ATA and AAT are symmetric, and that AATA = A and ATAAT = A*. (These
four conditions actually constitute an alternative definition of the pseudo-inverse.)

b) Show that when A has full column rank then AT = (A’A)"!A’, and that when A has full
row rank then A* = A’(AA") L.

c) Show that, of all « that minimize ||y — Az||s (and there will be many, if A does not have full
column rank), the one with smallest length ||z||z is given by & = ATy.

Exercise 4.6 All the matrices in this problem are real. Suppose

=o(t)

with @ being an m X m orthogonal matrix and R an n X n invertible matrix. (Recall that such a
decomposition exists for any matrix A that has full column rank.) Also let Y be an m x p matrix of

the form
(Y
v=e(y)

where the partitioning in the expression for Y is conformable with the partitioning for A.



(a) What choice X of the n x p matrix X minimizes the Frobenius norm, or equivalently the squared
Frobenius norm, of Y — AX 7 In other words, find

X = argmin ||V — AX||%

Also determine the value of ||Y — AX||%. (Your answers should be expressed in terms of the
matrices @, R, Y1 and Y3.)

(b) Can your X in (a) also be written as (A’A) L A’Y ? Can it be written as A*Y, where A* denotes
the (Moore-Penrose) pseudo-inverse of A 7

(c) Now obtain an expression for the choice X of X that minimizes
Y — AX|[% +11Z - BX ||

where Z and B are given matrices of appropriate dimensions. (Your answer can be expressed in
terms of A, B, Y, and Z.)

Exercise 4.7 Structured Singular Values
Given a complex square matrix A, define the structured singular value function as follows.
1
A) =
Hal4) Minaea{Omaz(A) | det(I — AA) = 0}

where A is some set of matrices.

a) IfA = {al : a € C}, show that ua(A) = p(A), where p is the spectral radius of A, defined
as: p(A) = max; |A;| and the \;’s are the eigenvalues of A.

b) If A={A e C"™"}, show that pua(A) = omas(A)
c) If A={diag(ay,--,a,) |a; € C}, show that

p(A) < pa(A) = pa(D™HAD) < 0pnae(D™HAD)

where
D e {diag(dy,---,d,) | d;i > 0}

Exercise 4.8 Consider again the structured singular value function of a complex square matrix A
defined in the preceding problem. If A has more structure, it is sometimes possible to compute pa (A)
exactly. In this problem, assume A is a rank-one matrix, so that we can write A = uv’ where u, v are
complex vectors of dimension n. Compute pa (A) when

(a) A =diag(dy, ..., 0,), ¢; €C.

(b) A =diag(dy, ..., dn), 06 €R.

To simplify the computation, minimize the Frobenius norm of A in the defintion of pa (A).



Chapter 5

Matrix Perturbations

5.1 Introduction

The following question arises frequently in matrix theory: What is the smallest possible per-
turbation of a matrix that causes it to lose rank? We discuss two cases next, with perturbations
measured in the 2-norm, and then discuss the measurement of perturbations in the Frobenius
norm. This provides us with a new formulation to the least squares estimation problem in
which uncertainty is present in the matrix A as well as the vector y. This is known as total
least squares.

5.2 Additive Perturbation

Theorem 5.1 Suppose A € C"*"™ has full column rank (= n). Then

min  {||A|, | A+ A hasrank <n}=0,(4) . (5.1)
AeC™"

Proof: Suppose A + A has rank < n. Then there exists « # 0 such that ||z[|, = 1 and

(A+A)x=0 .
Since Ax = —Awx,
[Axll, = [Az],
> ga(4) . (5.2)

From the properties of induced norms (see Section 3.1), we also know that

1ALzl = |Az],-



Using Equation (24.3) and the fact that |||, = 1, we arrive at the following:

1A [Az]

>
> o,(A) (5.3)

To complete the proof, we must show that the lower bound from Equation (5.3) can be
achieved. Thus, we must construct a A so that A+ A has rank < n and ||Alj2 = 0,,(A); such
a A will be a minimizing solution. For this, choose

!
A = —0opunv,

where uy, v, are the left and right singular vectors associated with the smallest singular value
o, of A. Notice that ||Al|2 = 0,,(A). This choice yields

(A+A)v, = opup — opunv v,
= OpUn — Opln

= 0.

That is, A + A has rank < n. This completes the proof.

5.3 Multiplicative Perturbation

Theorem 5.2 (Small Gain) Given A € C"™*",

1
min All, | I — AAis singular } = —— . 5.4
min, {IA, b= o (5.4)

Proof: Suppose I — AA is singular. Then there exists x # 0 such that
(I —AA)xz=0

SO
||AA95||2 = HJCHQ . (5.5)

From the properties of induced norms (see Lecture 4 notes),

[AAz]l, < [|All[[Az],

= o(4)]|Azll, .
Upon substituting the result in Equation (5.5) for ||AAz||,, we find

[zlly < o1(A)|Az]y -



Dividing through by o1(A)||z||, yields

1Azl
lzlly — ou(4)
which implies
1
Ally > —— 5.6
I8l > (56)

To conclude the proof, we must show that this lower bound can be achieved. Thus, we
construct a A which satisfies Equation (5.6) with equality and also causes (I — AA) to be

singular. For this, choose

1
A=—"_vu .
(4

o
Notice that the lower bound (Equation (5.6)) is satisfied with equality, i.e., ||All2 = 1/01(A).
Now choose x = uy. Then:

(I —AA)z = (I—AA)w

A !/
= <I— UIUI> U1

= wu; —uy (since Av; = oquy)
= 0.

This completes the proof.

The theorem just proved is called the small gain theorem. The reason for this is that
it guarantees (I — AA) is nonsingular provided

1
1Al < 77 -
> T 1Al
This condition is most often written as
AL lAll, < 1, (5.7)

i.e., the product of the gains is less than one.

Remark: We can actually obtain the additive perturbation result from multiplicative per-
turbation methods. Assume A is invertible, and A is a matrix which makes its sum with A
singular. Since

A+A:AU+A4A),



and A is nonsingular, then (I + A~'A) must be singular. By our work with multiplicative
perturbations, we know that the A associated with the smallest || A||, that makes this quantity

singular satisfies
1

Allp= ———
80 = o=

=o0,(A) .

5.4 Perturbations Measured in the Frobenius Norm

We will now demonstrate that, for the multiplicative and additive perturbation cases where
we minimized the induced 2-norm, we also minimized the Frobenius norm.
Let A € C™*™ and let rank(A) = r.

1
n m 2
A
1Al = {20 layl’ (5.8)
j=1i=1
= (trace(A'A))? (5.9)
1
r 3
= <Z a?) (the trace of a matrix is the sum of its eigenvalues)  (5.10)
i=1
> o1(4) . (5.11)
Therefore,

[AllF = 1Al (5.12)

which is a useful inequality.
In both the perturbation problems that we considered earlier, we found a rank-one solu-
tion, or dyad, for A:
A= auw (5.13)

where o € C, u € C™, v € C" such that ||ul|, = ||v]|, = 1. It is easy to show that the Frobenius
norm and induced 2-norm are equal for rank one matrices of the form in Equation (5.13). It
follows from this that the A which minimizes the induced 2-norm also minimizes the Frobenius
norm, for the additive and multiplicative perturbation cases we have examined. In general,
however, minimizing the induced 2-norm of a matrix does not imply the Frobenius norm is
minimized (or vice versa.)

Example 5.1 This example is intended to illustrate the use of the singular value
decomposition and Frobenius norms in the solution of a minimum distance prob-
lem. Suppose we have a matrix A € C"*", and we are interested in finding the
closest matrix to A of the form ¢W where ¢ is a complex number and W is a



unitary matrix. The distance is to be measured by the Frobenius norm. This
problem can be formulated as

min |A —cW ||
ceC,weC™*™

where W'W = I. We can write

A= eWE = Tr((A—cW)(A-cW))
= Tr(A'A) — T (W'A) — cTe(AW) + | Te(W'W).

Note that Tr(W'W) = Tr(I) = n. Therefore, we have
1A = eWiE = [[Allf — 2Re (¢ Te(W'A)) +nlel?, (5.14)

and by taking
1
c=—Tr(W'A)
n

the right hand side of Equation (5.14) will be minimized. Therefore we have that
1
14 = eWIlE > |47 — —[Te(W A

Now we must minimize the right hand side with respect to W, which is equivalent
to maximizing |Tr(W'A)|. In order to achieve this we employ the singular value
decomposition of A as UXV', which gives

(WA = Te(W'UsV'))?
= | Tx(V'W'UZ)2

The matrix Z = V/W'U satisfies

z7" = V'wW'vu'wv
= 1.

Therefore,
n n 2
Te(Z2)[> = | Y oizil* < (Z az») ,
i=1 i=1
implies that

2
1 n
inl|A—cW||% > |42 — = . 5.15
gﬂégll Wl > [|All% n(Z;ff) (5.15)

In order to complete this example we show that the lower bound in Equation (5.15)
can actually be achieved with a specific choice of W. Observe that

Te(W'USV') = Tt(W'UV'S),



and by letting W' = VU’ we obtain
Te(W'A) =Tr(Z) = > o3

and
1 n
c=—)> o0
-2 0
=1

Putting all the pieces together, we get that
: 2 2 2

A= v =3t (7).

1=

and the minimizing unitary matrix is given by

1 n
W =— | UV
v ()

It is clear also that, in order for a matrix to be exactly represented as a complex
multiple of a unitary matrix, all of its singular values must be equal.

5.5 Total Least Squares

We have previously examined solving least squares problems of the form y = Ax +e. An
interpretation of the problem we solved there is that we perturbed y as little as possible —
in the least squares sense — to make the resulting equation y — e = Ax consistent. It is
natural to ask what happens if we allow A to be perturbed as well, in addition to perturbing
y. This makes sense in situations where the uncertainty in our model and the noise in our
measurements cannot or should not be attributed entirely to y, but also to A. The simplest
least squares problem of this type is one that allows a perturbed model of the form

y=(A+A)z+e . (5.16)
The so-called total least squares estimation problem can now be stated as

2

ngig(ZIAijl2+Zleil2) = minfAle], (5.17)
b 'L,] z )

— minllA 1

@N IF (5.18)

where

A= [A : e] . (5.19)



Weighted versions of this problem can also be posed, but we omit these generalizations.

Note that no constraints have been imposed on A in the above problem statement, and
this can often limit the direct usefulness of the total least squares formulation in practical
problems. In practice, the expected or allowed perturbations of A are often quite structured;
however, the solution of the total least squares problem under such structural constraints is
much harder than that of the unconstrained problem that we present the solution of next.
Nevertheless, the total least squares formulation can provide a useful benchmark. (The same
sorts of comments can of course be made about the conventional least squares formulation:
it is often not the criterion that we would want to use, but its tractability compared to other
criteria makes it a useful point of departure.)

If we make the definitions

. .|
A=[4: —y], x_lll (5.20)
then the perturbed model in Equation (5.16) can be rewritten as
(A+A)i=0. (5.21)

This equation makes evident that what we seek is the A with minimal Frobenius norm that
satisfies Equation (5.21)—the smallest A that makes A 4+ A singular.

Let us suppose that A has full column rank (n), and that it has more rows than columns
(which is normally the case, since in least squares estimation we typically have many more
measurements than parameters to estimate). In addition, let us assume that A has rank
(n + 1), which is also generally true. From what we’ve learned about additive perturbations,
we now see that a minimal (in a Frobenius sense) A that satisfies Equation (5.21) is

A= _O'n+lun+1'l):1+1 , (5.22)

where the 0,41, up4+1 and v,41 are derived from the SVD of A (i.e. on41 is the smallest
singular value of A, etc.). Given that we now know A and A, choosing & = v,41, and
rescaling &, we have

x

1 ] =0

which gives us z, the total least squares solution. This solution is due to Golub and Van Loan
(see their classic text on Matriz Computations, Second Edition, Johns Hopkins University
Press, 1989).

(21+A)

5.6 Conditioning of Matrix Inversion

We are now in a position to address some of the issues that came up in Example 1 of Lecture
4, regarding the sensitivity of the inverse A~! and of the solution = A~'b to perturbations



in A (and/or b, for that matter). We first consider the case where A is invertible, and examine
the sensitivity of A~!. Taking differentials in the defining equation A7'A = I, we find

d(A YA+ A dA =0, (5.23)

where the order of the terms in each half of the sum is important, of course. (Rather than
working with differentials, we could equivalently work with perturbations of the form A+ €P,
etc., where € is vanishingly small, but this really amounts to the same thing.) Rearranging
the preceding expression, we find

dA )y =—-a"1aqa At (5.24)
Taking norms, the result is
la(A™HI < AT ldA] (5.25)
or equivalently
ld(A= Y]] 1y 1dA]]
o < AllA == (5.26)
A= I1A]]

This derivation holds for any submultiplicative norm. The product ||A[|[|A™Y|| is termed the
condition number of A with respect to inversion (or simply the condition number of A) and
denoted by K (A):

K(4) = [|AlllA™" (5.27)

When we wish to specify which norm is being used, a subscript is attached to K(A). Our
earlier results on the SVD show, for example, that

I(Q(A) = Umax/gmin (528)

The condition number in this 2-norm tells us how slender the ellipsoid Az for ||z|s =1 is —
see Figure 5.1. In what follows, we shall focus on the 2-norm condition number (but will omit
the subscript unless essential).

Some properties of the 2-norm condition number (all of which are easy to show, and
some of which extend to the condition number in other norms) are

o K(A)>1;

o K(A)=K(A™);

e K(AB) < K(A)K(B);

e Given U'U =1, K(UA) = K(A).

The importance of (5.26) is that the bound can actually be attained for some choice of the
perturbation dA and of the matrix norm, so the situation can get as bad as the bound allows:
the fractional change in the inverse can be K(A) times as large as the fractional change
in the original. In the case of 2-norms, a particular perturbation that attains the bound



o(A)

Figure 5.1: Depiction of how A (a real 2 x 2 matrix) maps the unit circle. The major axis of
the ellipse corresponds to the largest singular value, the minor axis to the smallest.

can be derived from the A of Theorem 5.1, by simply replacing —o, in A by a differential
perturbation:
dA = —do u,vl, (5.29)

We have established that a large condition number corresponds to a matrix whose inverse
is very sensitive to relatively small perturbations in the matrix. Such a matrix is termed i/l
conditioned or poorly conditioned with respect to inversion. A perfectly conditioned matrix
is one whose condition number takes the minimum possible value, namely 1.

A high condition number also indicates that a matrix is close to losing rank, in the
following sense: There is a perturbation A of small norm (= o,,;,,) relative to | A|| (= omaz)
such that A + A has lower rank than A. This follows from our additive perturbation result
in Theorem 5.1. This interpretation extends to non-square matrices as well. We shall term
the ratio in (5.28) the condition number of A even when A is non-square, and think of it as
a measure of nearness to a rank loss.

Turning now to the sensitivity of the solution x = A~'b of a linear system of equations
in the form Az = b, we can proceed similarly. Taking differentials, we find that

dr=—-AtdAA D+ A ab=—AtdAz+ A (5.30)
Taking norms then yields
ldz || < AT Al + 1A [l db] (5.31)
Dividing both sides of this by ||z||, and using the fact that ||z|| > (||b||/||Al]), we get

[l daz]] ldAll [ldbll
e < SOCE )

(5.32)

We can come close to attaining this bound if, for example, b happens to be nearly collinear
with the column of U in the SVD of A that is associated with o,,;,, and if appropriate
perturbations occur. Once again, therefore, the fractional change in the answer can be close
to K(A) times as large as the fractional changes in the given matrices.



Example 5.2 For the matrix A given in Example 1 of Lecture 4, the SVD is

A= 100 100\  (/.7068  .7075 2001 O 7075 7068
- \100.2 100/ \.7075 .-—7068 0 0.1 —.7068 .7075

(5.33)
The condition number of A is seen to be 2001, which accounts for the 1000-fold
magnification of error in the inverse for the perturbation we used in that example.
The perturbation A of smallest 2-norm that causes A + A to become singular is

A~ 7068 7075 0 0 7075 7068
~ \.7075 . — 7068 0 —-0.1 —.7068 .7075

whose norm is 0.1. Carrying out the multiplication gives
.05  —.05
Ax (—.05 .05 )
With b = [1 —1]7, we saw large sensitivity of the solution x to perturbations in A.
Note that this b is indeed nearly collinear with the second column of U. If, on the
other hand, we had b = [1 1], which is more closely aligned with the first column

of U, then the solution would have been hardly affected by the perturbation in A
— a claim that we leave you to verify.

Thus K (A) serves as a bound on the magnification factor that relates fractional changes
in A or b to fractional changes in our solution x.

Conditioning of Least Squares Estimation

Our objective in the least-square-error estimation problem was to find the value ¥ of x that
minimizes ||y — Az||3, under the assumption that A has full column rank. A detailed analysis
of the conditioning of this case is beyond our scope (see Matriz Computations by Golub and
Van Loan, cited above, for a detailed treatment). We shall make do here with a statement of
the main result in the case that the fractional residual is much less than 1, i.e.

ly — AZ[|,

LK1 5.34
ol (5.34)

This low-residual case is certainly of interest in practice, assuming that one is fitting a rea-
sonably good model to the data. In this case, it can be shown that the fractional change
|dZ||2/]|Z||2 in the solution Z can approach K(A) times the sum of the fractional changes in
A and y, where K(A) = 042(A)/0min(A). In the light of our earlier results for the case of
invertible A, this result is perhaps not surprising.

Given this result, it is easy to explain why solving the normal equations

(A'A)z = Aly



to determine T is numerically unattractive (in the low-residual case). The numerical inversion
of A’A is governed by the condition number of A’A, and this is the square of the condition
number of A:

K(A'A) = K%(A)

You should confirm this using the SVD of A. The process of directly solving the normal
equations will thus introduce errors that are not intrinsic to the least-square-error problem,
because this problem is governed by the condition number K(A), according to the result
quoted above. Fortunately, there are other algorithms for computing ¥ that are governed
by the condition number K(A) rather than the square of this (and Matlab uses one such
algorithm to compute  when you invoke its least squares solution command).



Exercises

Exercise 5.1 Suppose the complex m x n matrix A is perturbed to the matrix A + E.

(a) Show that
| Omazx (A + E) — Omaz (A) | S Omazx (E)

Also find an E that results in the inequality being achieved with equality.

(Hint: To show the inequality, write (A + E) = A+ E and A = (A + E) — E, take the 2-norm
on both sides of each equation, and use the triangle inequality.)

It turns out that the result in (a) actually applies to all the singular values of A and A + E, not
just the largest one. Part (b) below is one version of the result for the smallest singular value.

(b) Suppose A has less than full column rank, i.e. has rank< n, but A + E has full column rank.
Show (following a procedure similar to part (a) — but looking at min ||(A + E)z||2 rather than
the norm of A + E, etc.) that

Umin(A + E) S Omaz (E)

Again find an E that results in the inequality being achieved with equality.

[The result in (b), and some extensions of it, give rise to the following sound (and widely used)
procedure for estimating the rank of some underlying matrix A, given only the matrix A + E
and knowledge of ||E||2: Compute the SVD of A + E, then declare the “numerical rank” of A to
be the number of singular values of A 4+ E that are larger than the threshold || E||2. The given
information is consistent with having an A of this rank.]

(c) Verify the above results using your own examples in MATLAB. You might also find it interesting
to verify numerically that for large m, n, the norm of the matrix E = s x randn(m,n) — which
is a matrix whose entries are independent, zero-mean, Gaussian, with standard deviation s —
is close to s x (y/m ++/n). So if A is perturbed by such a matrix, then a reasonable value to use
as a threshold when determining the numerical rank of A is this number.

Exercise 5.2 Let A and E be m x n matrices. Show that

min  ||[A — E|l2 = o,41(4).
rank E<r

To prove this, notice that the rank constraint on E can be interpreted as follows: If vy, ..., v,41 are
linearly independent vectors, then there exists a nonzero vector z, expressed as a linear combination
of such vectors, that belongs to the nullspace of E. Proceed as follows:

1. Select the v;’s from the SVD of A.

2. Select a candidate element z with ||z||s = 1.

3. Show that ||[(A — E)z||2 > 0,+1. This implies that ||A — El||2 > 0y41.
4

. Construct an E that achieves the above bound.



Exercise 5.3 Consider the real, square system of equations Ar = (USV7T)z =y, where U and V
are orthogonal matrices, with

1 0 1
== < 0 10°° ) » y=U ( 106 )

All norms in this problem are taken to be 2-norms.

(a) What is the norm of the exact solution z ?

(b) Suppose y is perturbed to y + dy, and that correspondingly the solution changes from « in (a) to
x + 0. Find a perturbation dy, with ||6y|| = 1075, such that

152 15yl
~K(A) T
TRRSAT

where x(A) is the condition number of A.

(c) Suppose instead of perturbing y we perturb A, changing it to A + JA, with the solution corre-
spondingly changing from x to z + dx (for some dx that is different than in part (b)). Find a
perturbation 0 A, with ||§A|| = 1077, such that

o] lloAll
~Kk(A) T
||| 1Al

Exercise 5.4 Positive Definite Matrices

A matrix A is positive semi-definite if 2’ Az > 0 for all x # 0. We say Y is the square root of a
Hermitian positive semi-definite matrix if Y'Y = A. Show that Y always exists and can be constructed
from the SVD of A.

Exercise 5.5 Let A and B have compatible dimensions. Show that if
|Az||> < [|Bz|| for all z,
then there exists a matrix ¥ with ||Y||2 < 1 such that
A=YB.

Assume B has full rank to simplicity.

Exercise 5.6 (a) Suppose

|Gl =

Show that there exists a matrix Y with ||Y||2 < 1 such that

W=

X =Y (7% - A'A)



(b) Suppose

(X A<~
Show that there exists a matrix Z with || Z|| < 1 such that X = (y2] — AA*)2 Z.

Exercise 5.7 Matrix Dilation
The problems above can help us prove the following important result:

(& D)l=mc{iean (2]}

This is known as the matrix dilation theorem. Notice that the left hand side is always greater
than or equal to the right hand side irrespective of the choice of X. Below, we outline the steps
necessary to prove that this lower bound is tight. Matrix dilations play an important role in systems
theory particularly in model reduction problems.

2. Use the previous exercise to show that there exists two matrices Y and Z with norms less than
or equal to one such that

Yo 1= mln

1. Let 1 be defined as
"= maX{H(C A)|

Show that:
Yo = M-

B=Y (I - AA)>, C=(’I-AA")3Z.

3. Define a candidate solution to be X = —Y A*Z. Show by direct substitution that

(] Il (s P %)Hl
= 107 (emeartam: e )l

(&%)

This implies that v9 < v; which proves the assertion.

4. Show that

Exercise 5.8 Prove or disprove (through a counter example) the following singular values inequali-
ties.

1. Omin(A+ B) < omin(A) + 0min(B) for any A and B.

)
S
3
5
'
_|_
S
IN
S
3
2

(E) whenever A does not have column rank, and F is any matrix.



3. If 0maz(A) < 1, then

Ay e -
Imaz (I A) - 1 — Omaz (A)

4. O'i(I-i—A) < O'I(A) + 1.



Chapter 6

Dynamic Models

6.1 Introduction: Signals, Systems and Models

A system may be thought of as something that imposes constraints on — or enforces re-
lationships among — a set of variables. This “system as constraints” point of view is very
general and powerful. Rather more restricted, but still very useful and common, is the view
of a system as a mapping from a set of input variables to a set of output variables; a mapping
is evidently a very particular form of constraint.

A (behavioral) model lists the variables of interest (the “manifest” variables) and the
constraints that they must satisfy. Any combination of variables that satisfies the constraints
is possible or allowed, and is termed a behavior of the model.

To facilitate the specification of the constraints, one may introduce auxiliary ( “latent”)
variables. One might then distinguish among the manifest behavior, latent behavior, and full
behavior (manifest as well as latent).

For a dynamic model, the “variables” referred to above are actually signals that evolve as a
function of time (and/or a function of other independent variables, e.g. space). We first need
to specify a time azis T (discrete, continuous, infinite, semi-infinite ...) and a signal space
W, i.e. the space of values the signals live in at each time instant. A dynamic model for a
set of signals {w;(t)} is then completed by listing the constraints that the w;(¢) must satisfy.
Any combination w(t) = [ wi(t), ---, we(t) ] of signals that satisfies the constraints is a
behavior of the model, w(t) € B, where B denotes the behavior.

We now present some examples of dynamic models, to highlight various possible model
representations.

Example 6.1 (Circuit)



O E

Suppose the signals (variables) of interest — the manifest signals — in the above
circuit diagram are w (t), wo(t) and w3 (t) for ¢ > 0, so the signal space W is R3
and the time axis T is RT (i.e. the interval [0, 00]). Picking all other component
voltages and currents as latent signals, we can write the constraints that define
the model as:

2 Kirchhoff’s voltage law (KVL) equations
2 Kirchhoft’s current law (KCL) equations
4 defining equations for the components

Any set of manifest and latent signals that simultaneously satisfies (or solves) the
preceding constraint equations constitutes a behavior, and the behavior B of the
model is the space of all such solutions.

The same behavior may equivalently be described by a model written entirely in
terms of the manifest variables, by eliminating all the other variables in the above
equations to obtain

0 = %Jrcwl—wz (6.1)
0 = —w3 + lez + wy (6.2)

Still further reduction to a single second-order differential equation is possible, by
taking the derivative of one of these equations and eliminating one variable.

Example 6.2 (Mass-Spring System)

An object of mass M moves on a horizontal frictionless slide, and is attached to
one end of it by a linear spring with spring constant k. A horizontal force wu(t)
is applied to the mass. Assume that the variable z measures the change in the
spring length from its natural length. From Newton’s law we obtain the model

Mz =—kz+ u.

Example 6.3 (Inverted Pendulum)
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Figure 6.1: Mass Spring System.

A cart of mass M slides on a horizontal frictionless track, and is pulled by a
horizontal force u(t). On the cart an inverted pendulum of mass m is attached
via a frictionless hinge, as shown in Figure 28.1. The pendulum’s center of mass
is located at a distance [ from its two ends, and the pendulum’s moment of inertia
about its center of mass is denoted by I. The point of support of the pendulum
is a distance s(t) from some reference point. The angle 0(t) is the angle that the
pendulum makes with respect to the vertical axis. The vertical force exerted by
the cart on the base of the pendulum is denoted by P, and the horizontal force by
N. What we wish to model are the constraints governing the (manifest) signals
u(t), s(t) and 0(t).

First let us write the equations of motion that result from the free-body diagram
of the cart. The vertical forces P, R and Mg balance out. For the horizontal
forces we have the following equation:

M§=u~—N. (6.3)

From the free-body diagram of the pendulum, the balance of forces in the hori-
zontal direction gives the equation

d2
mw(s—i—lsinw)) = N, or
m (5 = Lsin(0)(0)* +Leos(0)d) = N, (6.4)

and the balance of forces in the vertical direction gives the equation
2
Mmoo (lcos(f)) = P —myg, or

m (—l cos(6)(6)% — lsin(@)é) = P —myg. (6.5)

From equations (28.16) and (28.17) we can eliminate the force N to obtain

(M +m)s +m (Lcos(0)f - Lsin(0)(8)?) = u. (6.6)
By balancing the moments around the center of mass, we get the equation

16 = Plsin(0) — Nicos(f). (6.7)
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Figure 6.2: Inverted Pendulum

Substituting (28.17) and (28.18) into (28.19) gives us
16 = 1 (mg — ml cos(9)(0)> — ml sin(Q)é) sin(#)

-1 (ms — misin(0)(0)? + ml COS(Q)G) cos(h).
Simplifying the above expression gives us the equation
(I + mi?)0 = mgl sin(8) — ml5 cos(d). (6.8)

The equations that comprise our model for the system are (28.20) and (28.21).

We can have a further simplification of the system of equations by removing the
term 6 from equation (28.20), and the term § from equation (28.21). Define the
constants

M = M+m
I _ I—I—le‘
ml




Substituting @ from (28.21) into (28.20), we get

(1 - MilL COS(9>2> S+ Ming sin(f) cos(#) — %l sin(6) ()% = %u (6.9)
Similarly we can substitute § from (28.20) into (28.21) to get

= os(0)? ) i — L m 2oL
(1 I cos(0) ) =L sin(0) + o sin(6) cos(0)()* = — = cos(0)u. (6.10)

Example 6.4 (Predator-Prey Model)

While the previous examples are physically based, there are many examples of
dynamic models that are hypothesized on the basis of a behavioral pattern. For
a classical illustration, consider an island populated primarily by goats and foxes.
Goats survive on the island’s vegetation while foxes survive by eating goats.

To build a model of the population growth of these two interacting animals, define:

Ni(t) = number of goats at time t (6.11)
Ny(t) = number of foxes at time t (6.12)

where t refers to (discrete) time measured in multiples of months. Volterra pro-
posed the following model:

Ni(t+1) = aNi(t) — BNy (E)Na(t) (6.13)
Nz(t—{-l) = CNQ(t)‘erNl(t)NQ(t) (6.14)

The constants a, b, ¢, and d are all positive, with ¢ > 1, ¢ < 1. If there were no
goats on the island, N1(0) = 0, then — according to this model — the foxes’ pop-
ulation would decrease geometrically (i.e. as a discrete-time exponential). If there
were no foxes on the island, then the goat population would grow geometrically
(presumably there is an unlimited supply of vegetation, water and space). On
the other hand, if both species existed on the island, then the frequency of their
encounters, which is modeled as being proportional to the product N;Ns, deter-
mines at what rate goats are eaten and foxes are well-fed. Among the questions
that might now be asked are: What sorts of qualitative behavioral characteristics
are associated with such a model, and what predictions follow from this behav-
ior? What choices of the parameters a, b, ¢, d best match the behavior observed in
practice?

Example 6.5 (Smearing in an Imaging System)

Consider a model that describes the relationship between a two-dimensional ob-
ject and its image on a planar film in a camera. Due to limited aperture, lens
imperfections and focusing errors, the image of a unit point source at the origin



in the object, represented by the unit impulse é(x,y) in the object plane, will be
smeared. The intensity of the light at the image may be modeled by some func-
tion h(x,y), x,y € R, for example h(x,y) = e~ 2@ +y%)  An object u(x,y) can be
viewed as the superposition of individual points distributed spatially, i.e.,

ute,g) = [ [ 8w = Ay = wuh mad

Assuming that the effect of the lens is linear and translation invariant, the image
of such an object is given by the following intensity function:

ma) = [ [ b= Ay = ulh dwddy

We can view u as the input to this system, m as the output.

6.2 System Representations

There are two general representations of a dynamic model that we shall be interested in,
namely behavioral and input-output description.

6.2.1 Behavioral Models

This a very general representation, which we have actually taken as the basis for our initial
definition of a dynamic model. In this representation, the system is described as a collection
of constraints on designated signals, w;. Any combination w(t) = [ wy(t), ---, we(t) ] of
signals that satisfies the constraints is a behavior of the model, w(t) € B, where B denotes
the behavior. An example of such a representation is Example 6.1.

Linearity

We call a model linear if its behavior constitutes a vector space, i.e. if superposition applies:
we(t), wp(t) € B = awy(t) + Bwp(t) € B (6.15)

where « and 3 are arbitrary scalars. Example 6.1 is evidently linear.

Time-Invariance

We call a model time-invariant (or translation-invariant, or shift-invariant) if every possible
time shift of a behavior — in which each of the signals is shifted by the same amount — yields
a behavior:

w(t) eB = o,w(t) =w(t—r1) € B, (6.16)

for all valid 7, i.e. 7 for which T —7 C T, with o, denoting the 7-shift operator. Example 6.1
is evidently time-invariant.



Memoryless Models

A model is memoryless if the constraints that describe the associated signals w( - ) are purely
algebraic, i.e., they only involve constraints on w(tg) for each ty € T (and so do not involve
derivatives, integrals, etc.). More interesting to us are non-memoryless, or dynamic systems,
where the constraints involve signal values at different times.

6.2.2 Input-Output Models

For this class of models, the system is modeled as a mapping from a set of input signals ()
to a set of output signals, y(t). We may represent this map as

y(t) = (S u) (t) (6.17)

(i.e., the result of operating on the entire signal u(-) with the mapping S yields the signal
y(-), and the particular value of the output at some time ¢ is then denoted as above). The
above mapping clearly also constitutes a constraint relating u(¢) and y(t¢); this fact could be
emphasized by trivially rewriting the equation in the form

y(t) — (Su)(t)=0. (6.18)

The definitions of linearity, time-invariance and memorylessness from the behavioral case
therefore specialize easily to mappings. An example of a system representation in the form of
a mapping is Example 6.5.

Linearity and Time-Invariance

From the behavioral point of view, the signals of interest are given by w(t) = [u(t) y(¢)]. It
then follows from the preceding discussion of behavioral models that the model is linear if
and only if

(5 (awa + Bun)) () = aga(t) + B(t) = a(S wa) () + HS w)(®)  (6.19)
and the model is time-invariant if and only if
(S o) () = (0-9) (1) = y(t - 7) (6.20)
where o, is again the 7-shift operator (so time-invariance of a mapping corresponds to requir-
ing mapping to commute with the shift operator).
Memoryless Models

Again specializing the behavioral definition, we see that a mapping is memoryless if and
only if y(to) only depends on u(ty), for every ty € T:

y(to) = (S u) (to) = f(ulto)) - (6.21)



Causality

We say the mapping is causal if the output does not depend on future values of the input.
To describe causality conveniently in mathematical form, define the truncation operator Pr
on a signal by the condition

(Pru) (t) = { g(t) o = (6.22)

Thus, if u is a record of a function over all time, then (Pp u) is a record of u up to time T,
trivially extended by 0. Then the system S5 is said to be causal if

PrSPr = PrS . (6.23)
In other words, the output up to time 1" depends only on the input up to time 7.

Example 6.6 Example 6.5 shows a system represented as an input-output map.
It is evident that the model is linear, translation-invariant, and not memoryless
(unless h(x,y) = d(x,y)).

Notes

For much more on the behavioral approach to modeling and analysis of dynamic systems, see

J. C. Willems, “Paradigms and Puzzles in the Theory of Dynamic Systems,” IEEE
Transactions on Automatic Control, Vol. 36, pp. 259-294, March 1991.



Exercises

Exercise 6.1 Suppose the output y(t) of a system is related to the input wu(t) via the following
relation:

y(t) = /000 e~ u(s)ds.

Verify that the model is linear, time-varying, non-causal, and not memoryless.

Exercise 6.2 Suppose the input-output relation of a system is given by

):{ w(t) if u(t)] <1

t w .
y( SO fu(t)] > 1

This input-output relation represents a saturation element. Is this map nonlinear? Is it memoryless?

Exercise 6.3 Consider a system modeled as a map from u(t) to y(t), and assume you know that
when

u(t) =

b

1 for 1<t<2
0 otherwise

the corresponding output is
et=1 —et—2 for t<1
y(t) =< 2—el"t—et"2 for 1<t <2
et —elt for t>2

In addition, the system takes the zero input to the zero output. Is the system causal? Is it memoryless?
A particular mapping that is consistent with the above experiment is described by

y(t) = /jo e 1=slu(s)ds. (6.24)

Is the model linear? Is it time-invariant?

Exercise 6.4 For each of the following maps, determine whether the model is (a) linear, (b) time-
invariant, (c) causal, (d) memoryless.

(i)



Chapter 7

State-Space Models

7.1 Introduction

A central question in dealing with a causal discrete-time (DT) system with input u, output
y, is the following:

Given the input at some time n, i.e. given u[n], how much information do we need about
past inputs, i.e. about u[k] for k < n, in order to determine the present output, namely y[n]?

The same question can be asked for continuous-time (CT) systems. This question addresses
the issue of memory in the system. Why is this a central question? Some reasons:

e The answer gives us an idea of the complexity, or number of degrees of freedom, asso-
ciated with the dynamic behavior of the system. The more information we need about
past inputs in order to determine the present output, the richer the variety of possible
output behaviors.

e In a control application, the answer to the above question suggests the required degree
of complexity of the controller, because the controller has to remember enough about
the past to determine the effects of present control actions on the response of the system.

e For a computer algorithm that acts causally on a data stream, the answer to the above
question suggests how much memory will be needed to run the algorithm.

We now describe the general structure of state-space models, for which the preceding question
has an immediate and transparent answer.



7.2 General Description

For a causal system with m inputs u;(¢) and p outputs y;(¢) (hence m + p manifest variables),
an nth-order state-space description is one that introduces n latent variables x,(t) called state
vartables in order to obtain a particular form for the constraints that define the model. Letting

uy (t) y1(t) 1 (1)
u(t) = : cyt) =1 cox(t)=| ;
U (t) yp(t) (1)
an nth-order state-space description takes the form

#(t) = f(x(t),u(t),t) (state evolution equations) (7.1)
y(t) = g(x(t),u(t),t) (instantaneous output equations) .

To save writing the same equations over for both continuous and discrete time, we interpret

dz(t
#(t) = "Zi) , teRor RV

for CT systems, and
i(t)=a(t+1), teZorZ"

for DT systems. We will only consider finite-order (or finite-dimensional, or lumped) state-
space models, although there is also a rather well developed (but much more subtle and
technical) theory of infinite-order (or infinite-dimensional, or distributed) state-space models.

DT Models

The key feature of a state-space description is the following property, which we shall refer to
as the state property. Given the present state vector (or “state”) and present input at time
t, we can compute: (i) the present output, using (7.2); and (ii) the next state using (7.1). It
is easy to see that this puts us in a position to do the same thing at time ¢ + 1, and therefore
to continue the process over any time interval. Extending this argument, we can make the
following claim:

State Property of DT state-Space Models
Given the initial state x(ty)
and input u(t) for to <t <ty
(with to and ¢y arbitrary),
we can compute the output y(t) for to <t <ty
and the state z(t) for ty <t <ty.




Thus, the state at any time ¢, summarizes everything about the past that is relevant to the
future. Keeping in mind this fact — that the state variables are the memory variables (or, in
more physical situations, the energy storage variables) of a system — often guides us quickly
to good choices of state variables in any given context.

CT Models

The same state property turns out to hold in the CT case, at least for f(.) that are well
behaved enough for the state evolution equations to have a unique solution for all inputs of
interest and over the entire time axis — these will typically be the only sorts of CT systems
of interest to us. A demonstration of this claim, and an elucidation of the precise conditions
under which it holds, would require an excursion into the theory of differential equations
beyond what is appropriate for this course. We can make this result plausible, however, by
considering the Taylor series approximation

e(to+e) ~ w(ty) + (dfl(tt>>t:t . (7.3)
= a(to) + f (x(to),u(to),to) € (7.4)

where the second equation results from applying the state evolution equation (7.1). This
suggests that we can approximately compute z(ty + €), given x(t9) and u(tp); the error in the
approximation is of order €%, and can therefore be made smaller by making e smaller. For
sufficiently well behaved f(-), we can similarly step forwards from ¢y + € to to + 2¢, and so on,
eventually arriving at the final time ¢, taking on the order of ¢! steps in the process. The
accumulated error at time ¢y is then of order e~ 1.e? = ¢, and can be made arbitrarily small
by making e sufficiently small. Also note that, once the state at any time is determined and
the input at that time is known, then the output at that time is immediately given by (7.2),
even in the CT case.

The simple-minded Taylor series approximation in (7.4) corresponds to the crudest of
numerical schemes — the “forward Euler” method — for integrating a system of equations of
the form (7.1). Far more sophisticated schemes exist (e.g. Runge-Kutta methods, Adams-Gear
schemes for “stiff” systems that exhibit widely differing time scales, etc.), but the forward
Euler scheme suffices to make plausible the fact that the state property highlighted above
applies to CT systems as well as DT ones.

Example 7.1 RC Circuit

This example demonstrates a fine point in the definition of a state for CT systems.
Consider an RC circuit in series with a voltage source u. Using KVL, we get the
following equation describing the system:

—u+vgp+ RCoc = 0.

It is clear that ve defines a state for the system as we described before. Does vp
define a state? If vgr(tp) is given, and the input u(t), to <t < t; is known, then



one can compute vc(tp) and using the state property ve(ty) can be computed
from which vg(ty) can be computed. This says that vg(t) defines a state which
contradicts our intuition since it is not an energy storage component.

There is an easy fix of this problem if we assume that all inputs are piece-wise
continuous functions. In that case we define the state property as the ability
to compute future values of the state from the initial value x(tg) and the input
u(t), to <t < ty. Notice the strict inequality. We leave it to you to verify that
this definition rules out vr as a state variable.

Linearity and Time-Invariance
If in the state-space description (7.1), (7.2), we have

flae@),ut),t) = f(x(t),u(t)) (7.5)
g (x(t),ul®),t) = g(x(t),u(t)) 7.6

then the model is time-invariant (in the sense defined earlier, for behavioral models). This
corresponds to requiring time-invariance of the functions that specify how the state variables
and inputs are combined to determine the state evolution and outputs. The results of exper-
iments on a time-invariant system depend only on the inputs and initial state, not on when
the experiments are performed.

If, on the other hand, the functions f(.) and g¢(.) in the state-space description are
linear functions of the state variables and inputs, i.e. if

fz(t),u(t),t) = A(t)x(t) + B(t)u(t) (7.7)
g(z(t),u(t),t) = C(t)x(t) + D(t)u(t) (7.8)

then the model is linear, again in the behavioral sense. The case of a linear and periodically
varying (LPV) model is often of interest; when A(t) = A(t +T), B(t) = B(t+T), C(t) =
C(t+1T),and D(t) = D(t+T) for all ¢, the model is LPV with period T

Of even more importance to us is the case of a model that is linear and time-invariant
(LTI). For an LTI model, the state-space description simplifies to

f(z(t),u(t),t) = Ax(t)+ Bu(t) (7.9)
g (z(t),u(t),t) = Cxz(t)+ Dul(t) . (7.10)

We will primarily study LTI models in this course. Note that LTI state-space models are
sometimes designated as (A, B,C, D) or

G

as these four matrices completely specify the state-space model.



o(t) = ta?(t) NLTV
o(t) = 2%(t) NLTI
@(t) = tx(t) LTV
#(t) = (cost)z(t) | LPV
i(t) = x(t) LTI

Table 7.1: Some examples of linear, nonlinear, time-varying, periodically-varying, and time-
invariant state-space descriptions.

Some examples of the various classes of systems listed above are given in Table 7.1. More
elaborate examples follow.

One might think that the state-space formulation is restrictive since it only involves
first-order derivatives. However, by appropriately choosing the state variables, higher-order
dynamics can be described. The examples in this section and on homework will make this
clear.

Example 7.2 (Mass-Spring System)

For the mass-spring system in Example 6.2, we derived the following system rep-
resentation:
Mz =—kz+ u.

To put this in state space form, choose position and velocity as state variables:

rT = =z
Tro = z. (7.11)
Therefore,
I"l = ZZLEQ
A S O S
I = MZ MU— Mxl Mu .

The input is the force u and let the output be the position of the mass. The
resulting state space description of this system is

1 _ T
o - —%xl + ﬁu

y = I



The above example suggests something that is true in general for mechanical systems: the
natural state variables are the position and velocity variables (associated with potential energy
and kinetic energy respectively).

Example 7.3 (Nonlinear Circuit)

L R
— = (00—
+ .
X3 + + i=n(x,)
% CZ** X5 C, T Xq [

Figure 7.1: Nonlinear circuit.

We wish to put the relationships describing the above circuit’s behavior in state-
space form, taking the voltage v as an input, and choosing as output variables
the voltage across the nonlinear element and the current through the inductor.
The constituent relationship for the nonlinear admittance in the circuit diagram
18 inontin = N (Vnoniin), where NV'(.) denotes some nonlinear function.

Let us try taking as our state variables the capacitor voltages and inductor cur-
rent, because these variables represent the energy storage mechanisms in the cir-
cuit. The corresponding state-space description will express the rates of change
of these variables in terms of the instantaneous values of these variables and the
instantaneous value of the input voltage v. It is natural, therefore, to look for
expressions for Cyiq (the current through Cy), for Cai (the current through Cs),
and for Lig (the voltage across L).

Applying KCL to the node where R, C7, and the nonlinear device meet, we get

Chiy = w — N(x1)

Applying KCL to the node where R, Cy and L meet, we find

(x2 — 21)
R

Finally, KVL applied to a loop containing L yields

CQI"Q = X3 —

LL‘E?,:’U_ZUZ

Now we can combine these three equations to obtain a state-space description of
this system:

1 o (B — Na)) 0
5.82 = s ($3 - 1‘2;]%231) + 10 (712)
T3 —1ay TV



y = [‘“] . (7.13)

T3

Observe that the output variables are described by an instantaneous output equa-
tion of the form (7.2). This state-space description is time-invariant but nonlinear.
This makes sense, because the circuit does contain a nonlinear element!

Example 7.4 (Discretization)

Assume we have a continuous-time system described in state-space form by

dflit) = Ax(t) + Bu(t),
y(t) = Cux(t)+ Du(t).

Let us now sample this system with a period of T', and approximate the derivative
as a forward difference:

1

T (x ((k+1)T)—ax(kT)) = Ax (KT) + Bu (kT), k€ Z. (7.14)
It is convenient to change our notation, writing x[k] = x(kT'), and similarly for u
and y. Our sampled equation can thereby be rewritten as

zlk+1] = ([ +TA)zk] +TBulk]
= Ax[k] 4+ Bulk],
ylk] = Ca[k]+ Dulk] . (7.15)

which is in standard state-space form.

In many modern applications, control systems are implemented digitally. For that purpose,
the control engineer must be able to analyze both discrete-time as well as continuous-time
systems. In this example a crude sampling method was used to obtain a discrete-time model
from a continuous-time one. We will discuss more refined discretization methods later on in
this book.

It is also important to point out that there are physical phenomena that directly require or
suggest discrete-time models; not all discrete-time models that one encounters in applications
are discretizations of continuous-time ones.

7.3 Linearization

Much of our attention in this course will be focused on linear models. Linear models frequently
arise as descriptions of small perturbations away from a nominal solution of the system.
Consider, for example, the continuous-time (CT) state-space model

w(t) = fle(t),ud),?)
y(t) = gla(t),u(t),?) (7.16)



where x(t) is the n-dimensional state-vector at time ¢, u(t) is the m-dimensional vector of
inputs, and y(¢) is the p-dimensional vector of outputs. Suppose z,(t), u,(t) and y,(t) con-
stitute a nominal solution of the system, i.e. a collection of CT signals that jointly satisfy
the equations in (7.16). Now let the control and initial condition be perturbed from their
nominal values to u(t) = u,(t) + ou(t) and 2(0) = x,(0) 4+ dx(0) respectively, and let the state
trajectory accordingly be perturbed to xz(t) = z,(t) + dx(t). Substituting these new values
into (7.16) and performing a (multivariable) Taylor series expansion to first-order terms, we

find
Sz (t) %]Oéx(t) + [% oéu(t)
Sy(t) ~ {%L&C(t) + {%Lau(w (7.17)

where the nxn matrix [0f/0z], denotes the Jacobian of f(.,.,.) with respect to x, i.e. a matrix
whose ij-th entry is the partial derivative of the ith component of f(.,.,.) with respect to the
Jth component of x, and where the other Jacobian matrices in (7.17) are similarly defined.
The subscript , indicates that the Jacobians are evaluated along the nominal trajectory, i.e.
at x(t) = x,(t) and u(t) = u,(t). The linearized model (7.17) is evidently linear, of the form

Sx(t) = A(t)da(t) + B(t) dult)
Sy(t) = C(t)da(t) + D(t) du(t). (7.18)

When the original nonlinear model is time-invariant, the linearized model will also be time-
invariant if the nominal solution is constant (i.e. if the nominal solution corresponds to
a constant equilibrium); however, the linearized model may be time varying if the nominal
solution is time varying (even if the original nonlinear model is time-invariant), and will be
periodic — i.e., have periodically varying coefficients — if the nominal solution is periodic (as
happens when the nominal solution corresponds to operation in some cyclic or periodic steady
state).

The same development can be carried out for discrete-time (DT) systems, but we focus
in this lecture on the CT case.

Example 7.5 (Linearizing a Nonlinear Circuit Model)

Consider linearizing the state-space model we obtained for the nonlinear circuit in
Example 7.3. We ended up there with a nonlinear model of the form

9:61 C%l(m—l_zrl _x-/\_[ixl)) 0
‘?2 = [ ($3 - %) + 10 . (719)
T3 —Lay TU

For the linearization, all that happens is each z; is replaced by dz;, and N (z) is
replaced by [dN (x1)/dx1], 01, resulting in a linear state-space model of the form

§i(t) = Adz(t) + B ov(t) (7.20)



with

1 1 dN 1
Eezeimen [m} ;0 0
A= 1 L1 | B=] o0 (7.21)
RCo RCy (O 1
0 0 2

Example 7.6 (Linearizing the Inverted Pendulum)

Recall from Example 6.3 the equations that describe the dynamics of the inverted
pendulum. Those equations are nonlinear due to the presence of the terms sin(f),

cos(#), and (0)2. We can linearize these equations around § = 0 and ¢ = 0, by
assuming that 6(¢) and 0(t) remain small. Recall that for small 6

1
sin(f) ~ 60— 693
cos(f) ~ 1-— %92,

and using the linear parts of these relations the linearized system of equations
takes the form

ml\. mlg 1
(1_ML>3+HEQ MY
ml\ . g 1
(1 - m) A Vi
Using as state vector
s
s
=1,

6

the following state-space model can be easily obtained:

Tl 01 0 0 1 0
ml
d | a2 _ 0 0 —agrg O w2 | L i "
dt T3 0 0 0 1 T3 0
T4 0 0 Oz% 0 T4 —ﬁ
y = [1 00 o}x,

where the constant « is given by

1

(L=4)

a =



Exercises
Exercise 7.1 Consider the nonlinear difference equation
ylk+n)=Flylk+n—-1),...,yk),u(k+n—1),...,u(k),k]
where n is a fixed integer, and k is the time index.

(a) Find a state-space representation of order 2n — 1 for this difference equation.

(b) Find an nth-order state-space representation in LTI case (what is the form of F in this case?),
using z-transforms for guidance (natural state variables are the coefficients of the initial-condition

terms in the z-transformed version of the difference equation — try a third-order difference
equation — remind of forward shift theorem from z-transforms). This part will guide the solution
of (c).

(c) Find an nth-order state-space representation for the nonlinear system in (a) for the case where
F.] has the special form

F[.] =Zfi[y(k+n—z'>,u<k+n—z'>1

(Hint: Note that the difference equation in part (b) has this form; use your definition of state
variables in (b) to guide your choice here.)

Exercise 7.2 Consider a causal continuous-time system with input-output representation y(t) =
h * u(t), where * denotes convolution and h(¢) is the impulse response of the system:

h(t) =2e " —ce ™ fort>0

Here ¢ denotes a constant.

(a) Suppose ¢ = 2. Use only the input-output representation of the system to show that the variables
x1(t) = y(t) and x2(t) = y(t) qualify as state variables of the system at time ¢.

(b) Compute the transfer function of the system, and use it to describe what may be special about
the case c = 2.

Exercise 7.3 The input u(t) and output y(t) of a system are related by the equation

le—Sft) + ao(t)y(t) = bo(t)u(t) + by (t)

du(t)
dt

Find a linear, time varying state-space representation of this system.



Exercise 7.4 Given the periodically varying system z(k + 1) = A(k)z(k) + B(k)u(k) of period N,
with A(k+ N) = A(k) and B(k+ N) = B(k), define the sampled state z[k] and the associated extended
input vector v[k] by
u(kN)
u(EN +1)
z[k] = x(kEN) , v[k] = )
uw(kN + N —1)

Now show that z[k + 1] = Fz[k] + Gu[k] for constant matrices F' and G (i.e. matrices independent of
k) by determining F' and G explicitly.

Exercise 7.5 Let the state space representations of two given systems be
zi(k+1) = Aizi(k) + Biuwi(k) ,  yi(k) = Cizi(k) , i=1,2
Determine a state-space representation in the form

z(k+1) = Ax(k)+ Bu(k)
y(k) = Cux(k)

for the new system obtained when systems 1 and 2 are interconnected (a) in series, (b) in parallel, and
in a feedback loop. Assume the size of the inputs and outputs of the two systems are consistent for
each of the above configuration to make sense.

Exercise 7.6 Consider a pendulum comprising a mass m at the end of a light but rigid rod of length
r. The angle of the pendulum from its equilibrium position is denoted by 6. Suppose a torque u(t)
can be applied about the axis of support of the pendulum (e.g. suppose the pendulum is attached to
the axis of an electric motor, with the current through the motor being converted to torque). A simple
model for this system takes the form

mr20(t) + fO(t) + mgrsin8(t) = u(t)

where the term fé represents a frictional torque, with f being a positive coefficient, and g is the
acceleration due to gravity.

(a) Find a state-space representation for this model. Is your state-space model linear? time invariant?
(b) What nominal input u,(t) corresponds to the nominal motion 6,(t) = Q¢ for all ¢, where Q is
some fixed constant?

(c) Linearize your state-space model in (a) around the nominal solution in (b). Is the resulting model
linear? Is it time invariant or periodically varying?



Exercise 7.7 Consider the horizontal motion of a particle of unit mass sliding under the influence
of gravity on a frictionless wire. It can be shown that, if the wire is bent so that its height h is given
by h(x) = V,(x), then a state-space model for the motion is given by

Suppose V, (7)) = 2t — az?.

(a) Verify that the above model has (z,z) = (0,0) as equilibrium point for any « in the interval

—1 < a<1,andit also has (z,z) = <0, +4/ %) as equilibrium points when « is in the interval
O0<a<l.

(b) Derive the linearized system at each of these equilibrium points.



Chapter 8

Simulation/Realization

8.1 Introduction

Given an nth-order state-space description of the form

#(t) = f(x(t),u(t),t) (state evolution equations) (8.1)
y(t) = g(x(t),u(t),t) (instantaneous output equations) . (8.2)

(which may be CT or DT, depending on how we interpret the symbol &), how do we simulate
the model, i.e., how do we implement it or realize it in hardware or software? In the DT
case, where #(t) = x(t + 1), this is easy if we have available: (i) storage registers that can be
updated at each time step (or “clock cycle”) — these will store the state variables; and (ii)
a means of evaluating the functions f(-) and ¢(-) that appear in the state-space description
— in the linear case, all that we need for this are multipliers and adders. A straightforward
realization is then obtained as shown in the figure below. The storage registers are labeled
D for (one-step) delay, because the output of the block represents the data currently stored
in the register while the input of such a block represents the data waiting to be read into the
register at the nezt clock pulse. In the CT case, where &(t) = dx(t)/dt, the only difference is
that the delay elements are replaced by integrators. The outputs of the integrators are then
the state variables.

8.2 Realization from I/O Representations

In this section, we will describe how a state space realization can be obtained for a causal
input-output dynamic system described in terms of convolution.

8.2.1 Convolution with an Exponential

Consider a causal DT LTI system with impulse response h[n] (which is 0 for n < 0):
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Figure 8.1: Simulation Diagram

n

yln] = Y hln — kJulk]

= (ni: hin — k]u[k]) + h[0]u[n] (8.3)

The first term above, namely
n—1
x[n] = Z h[n — kJulk] (8.4)

represents the effect of the past on the present. This expression shows that, in general (i.e.
if h[n] has no special form), the number x[n] has to be recomputed from scratch for each n.
When we move from n to n + 1, none of the past input, i.e. u[k] for k < n, can be discarded,
because all of the past will again be needed to compute x[n + 1]. In other words, the memory
of the system is infinite.

Now look at an instance where special structure in h[n| makes the situation much better.

Suppose
hin] = A" for n > 0, and 0 otherwise (8.5)
Then )
xn] = Z AR u[k] (8.6)
and
xn+1] = Z AL R k]

n—1
= /\(Z: )\nfku[k‘]> + Au[n]

= Az[n]+ Au[n] (8.7)



(You will find it instructive to graphically represent the convolutions that are involved here, in
order to understand more visually why the relationship (8.7) holds.) Gathering (8.3) and (8.6)
with (8.7), we obtain a pair of equations that together constitute a state-space description for
this system:

z[n+1] = Xz[n]+ \uln] (8.8)
yln] = z[n] +uln] (8.9)

To realize this model in hardware, or to simulate it, we can use a delay-adder-gain system
that is obtained as follows. We start with a delay element, whose output will be x[n] when its
input is z[n +1]. Now the state evolution equation tells us how to combine the present output
of the delay element, x[n], with the present input to the system, u[n], in order to obtain the
present input to the delay element, x[n + 1]. This leads to the following block diagram, in
which we have used the output equation to determine how to obtain y[n] from the present
state and input of the system:

y[n]

Y
Y

D x[n + 1] )\

A
A

8.2.2 Convolution with a Sum of Exponentials

Consider a more complicated causal impulse response than the previous example, namely
hln] = pod[n] + (p1A] + p2)y + -+ + prAL) (8.10)

with the p; being constants. The following block diagram shows that this system can be
considered as being obtained through the parallel interconnection of causal subsystems that
are as simple as the one treated earlier, plus a direct feedthrough of the input through the
gain pg (each block is labeled with its impulse response, with causality implying that these
responses are 0 for n < 0):

pod[n]

Y

]| — yl]

>

Y
Y
Y
A

Y

PLAT,




Motivated by the above structure and the treatment of the earlier, let us define a state
variable for each of the L subsystems:

n—1
ziln] =Y AN Fulk], i=1,2,...,L (8.11)
— 00
With this, we immediately obtain the following state-evolution equations for the subsystems:

xi[n+ 1] = Nizg[n] + Nu[n] , i=1,2,...,L (8.12)

Also, after a little algebra, we directly find

L

yln] = pra[n] + pawan] + - + prar[n] + QO pi) uln] (8.13)

We have thus arrived at an Lth-order state-space description of the given system. To write
the above state-space description in matrix form, define the state vector at time n to be

x[n] = : (8.14)
xp[n]

Also define the diagonal matrix A, column vector b, and row vector c as follows:

A0 0 0 O A1
0 X O 0 O A2
0 0 0 --- 0 Ap AL

Then our state-space model takes the desired matrix form, as you can easily verify:

x[n+1] = Ax[n]+ buln] (8.17)
y[n] = cx[n]+ du[n] (8.18)
where
L



8.3 Realization from an LTI Differential /Difference equation

In this section, we describe how a realization can be obtained from a difference or a differential
equation. We begin with an example.

Example 8.1 (State-Space Models for an LTI Difference Equation)

Let us examine some ways of representing the following input-output difference
equation in state-space form:

y[n] + ary[n — 1] + azy[n — 2] = byu[n — 1] + bauln — 2] (8.20)

For a first attempt, consider using as state vector the quantity

y[n —1]
_ | yln—2]
x[n] = uln — 1] (8.21)
u[n — 2]
The corresponding 4th-order state-space model would take the form
y[n] —a; —az by by y[n — 1] 0
| yln—1] _ 1 0 0 O y[n — 2] 0
A =1 0o 0o o0 o an—1 | |1 |
u[n — 1] 0 0 1 0 u[n — 2] 0
yln — 1]
_ (., y[n —2]
yln] = ( ap —az by by ) ufn —1] + (0) u[1(B.22)
u[n — 2]

If we are somewhat more careful about our choice of state variables, it is possible
to get more economical models. For a 3rd-order model, suppose we pick as state

vector
yln]
x[n] = | yn—1] (8.23)
u[n — 1]

The corresponding 3rd-order state-space model takes the form

y[n + 1] —a1 —ay by y[n] by
x[n+1] = y[n] = 1 0 0 yn—=1] |+ 0 [u[n]
uln] 0 0 0 uln — 1] 1
yln]
yn] = (1.0 0)| yln—1] | +(0)uln] (8.24)

uln — 1]



A still more clever/devious choice of state variables yields a 2nd-order state-space
model. For this, pick

_ yln]
xlnl = ( —asy[n — 1] + bau[n — 1] ) (8:25)

The corresponding 2nd-order state-space model takes the form

( y[n +1] ) _ ( —ap 1 ) ( y[n] ) N ( by )u[n]
—azy[n] + bauln] —az 0 —azy[n — 1] + bpu[n — 1] by
_ [n]
yn] = (1 0) ( syl — 19] by 1] ) +(0)uln] (8.26)

It turns out to be impossible in general to get a state-space description of order
lower than 2 in this case. This should not be surprising, in view of the fact that we
started with a 2nd-order difference equation, which we know (from earlier courses!)
requires two initial conditions in order to solve forwards in time. Notice how, in
each of the above cases, we have incorporated the information contained in the
original difference equation that we started with.

This example was built around a second-order difference equation, but has natural
generalizations to the nth-order case, and natural parallels in the case of CT
differential equations.

Next, we will present two realizations of an nth-Order LTI differential equation. While
realizations are not unique, these two have certain nice properties that will be discussed in
the future.

8.3.1 Observability Canonical Form
Suppose we are given the LTI differential equation
Y™ a1y 4 agy = bou + brit 4 -+ - 4 bp_qu™Y,
which can be rearranged as
Y™ = (b1 — b1y DY £ (bp_ou™ 2 = oy D) 4 -+ (bou — agy).

Integrated n times, this becomes

Yy = /(bn,lu —anp-1y) + / /(bn,gu —an-_2y) + -+ / . /(bgu — apy). (8.27)

The block diagram given in Figure 8.2 then follows directly from (8.27). This particular
realization is called the observability canonical form realization — “canonical” in the sense of



bo b1

—ap

—ay

—Qp—2 —Op—1

Figure 8.2: Observability Canonical Form

“simple” (but there is actually a strict mathematical definition as well), and “observability”
for reasons that will emerge later in the course.

We can now read the state equations directly from Figure 8.2, once we recognize that
the natural state variables are the outputs of the integrators:

5'81 = —Qp_1T1 +2T2 + bn,1U
5'82 = —Qp_92T1 +T3+ bn,QU
Tn = —aopx1 + bou

y = T1.

If this is written in our usual matrix form, we would have

—Gp_1 1 0 0 [ b1

—Gp_o 0 1 0 bn—2

A = 7 b — :

1 :

—ay 0 0 bo
c=1]10 0].

The matrix A is said to be in companion form, a term used to refer to any one of four matrices
whose pattern of 0’s and 1’s is, or resembles, the pattern seen above. The characteristic
polynomial of such a matrix can be directly read off from the remaining coefficients, as we shall



see when we talk about these polynomials, so this matrix is a “companion” to its characteristic
polynomial.

8.3.2 Reachability Canonical Form

There is a “dual” realization to the one presented in the previous section for the LTI differential
equation
¥ a1y o agy = cou + et + -+ cuoqu™Y, (8.28)

First, consider a special case of this, namely the differential equation
w™ + a4 w4 g =u (8.29)

To obtain an nth-order state-space realization of the system in 8.29, define

— 1 W w
T2 w
T3 w
xr = =
d" 2w
:I:’n*l dtn—2
J d"lw
L In L @1

Then it is easy to verify that the following state-space description represents the given model:

[ oz ] [ 0 1 0 0 0 _(CUI_ (0_
xI9 0 1 0 e 0 X9 0
d | s - 0 0 0o 1 0 | |0
dt : B : : :
Tn—1 0 0 0 e 0 1 Tn—-1
. L —ag(t) —ai(t) —as(t) ... —ap—o(t) —an—1(t) | L T Ll_
.
9 W
3
w:[looo...o]
ITn—1
L Tn J

(The matrix A here is again in one of the companion forms; the two remaining companion
forms are the transposes of the one here and the transpose of the one in the previous section.)
Suppose now that we want to realize another special case, namely the differential equation

T(n) + anflr(n_l) + -4 agr = U (830)



which is the same equation as (8.29), except that the RHS is @ rather than u. By linearity, the
response of (8.30) will r = w(t), and this response can be obtained from the above realization
by simply taking the output to be x5 rather than zy, since xro = w = r.

Superposing special cases of the preceding form, we see that if we have the differential
equation (8.28), with an RHS of

cou + e+ - -+ cpoqu™Y
then the above realization suffices, provided we take the output to be

y=cor1 +c1r2+ -+ cp_12n. (8.31)
i.e., we just change the output equation to have

c=1|c¢ ¢ ¢ -+ Cn_q |. (8.32)

A block diagram of the final realization is shown below in 8.3. This is called the reachability
or controllability canonical form.

- )&
Cn—1 €1 o
A A A
Tp—1 T2 / Ta| T1 / 1
Y Y Y
—Ap—2 —ai —ap

Figure 8.3: Reachability Canonical Form

Finally, for the obvious DT difference equation that is analogous to the CT differential
equation that we used in this example, the same scheme will work, with derivatives replaced
by differences.



Exercises

Exercise 8.1 Suppose we wish to realize a two-input differential equation of the form

y(”) + an_1y(n_1) + -t agy = borur + bi1dy + -+ + bn_l,lugnil)

+ b()QUQ + b121l2 + -+ bn_l,guén_l)

Show how you would modify the observability canonical realization to accomplish this, still using only
n integrators.

Exercise 8.2 How would reachability canonical realization be modified if the linear differential equa-
tion that we started with was time varying rather than time invariant?

Exercise 8.3 Show how to modify the reachability canonical realization— but still using only n
integrators — to obtain a realization of a two-output system of the form

y§") + an_1y§"*“ +day = coutcntt o+ e u®

W b any" YV o aoys = Caout Corit+ e+ o u™TY.

Exercise 8.4 Consider the two-input two-output system:

1 o= y1+aup +us,
Yo = Y2 +ui+us

(a) Find a realization with the minimum number of states when a # 1.

(b) Find a realization with the minimum number of states when o = 1.



Chapter 10

Discrete-Time Linear State-Space
Models

10.1 Introduction

In the previous chapters we showed how dynamic models arise, and studied some special
characteristics that they may possess. We focused on state-space models and their properties,
presenting several examples. In this chapter we will continue the study of state-space models,
concentrating on solutions and properties of DT [linear state-space models, both time-varying
and time-invariant.

10.2 Time-Varying Linear Models
A general nth-order discrete-time linear state-space description takes the following form:

x(k+1) = A(k)z(k)+ B(k)u(k)
y(k)y = C(k)x(k)+ D(k)u(k) , (10.1)

where x(k) € R". Given the initial condition x(0) and the input sequence u(k), we would like
to find the state sequence or state trajectory x(k) as well as the output sequence y(k).

Undriven Response

First let us consider the undriven response, that is the response when u(k) = 0 for all k € Z.
The state evolution equation then reduces to

x(k+1) = Ak)x(k) . (10.2)



The response can be derived directly from (10.2) by simply iterating forward:

z(1) = A(0)z(0)
z(2) = A(1)z(1)
= A(1)A(0)z(0)
e(k) = A(k—1)A(k —2)... A(1)A(0)z(0) (10.3)

Motivated by (10.3), we define the state transition matrix, which relates the state of the
undriven system at time k to the state at an earlier time /:

x(k) =@k, 0)x(l) k>1. (10.4)
The form of the matrix follows directly from (10.3):

@(k,[):{ f(k‘—l)A(k‘—%---A(f) :iﬁzo - (10.5)

If A(k—1), A(k—2),..., A(() are all invertible, then one could use the state transition matrix
to obtain x(k) from x(¢) even when k < ¢, but we shall typically assume & > ¢ when writing
o(k, 0).

The following properties of the discrete-time state transition matrix are worth highlight-
ing:

ok k) = I
x(k) = ®(k,0)x(0)
B(k+1,0) = Ak)D(k,0). (10.6)

Example 10.1 (A Sufficient Condition for Asymptotic Stability)

The linear system (10.1) is termed asymptotically stable if, with u(k) = 0, and for
all 2(0), we have x(n) — 0 (by which we mean ||z(n)|| — 0) as n — oo. Since
u(k) = 0, we are in effect dealing with (10.2).
Suppose

AR <v <1 (10.7)

for all k, where the norm is any submultiplicative norm and ~ is a constant (inde-
pendent of k) that is less than 1. Then

[ (n, 0)]| <~"
and hence
lz(n)]] < ~"{lz(0)]]
so x(n) — 0 as n — oo, no matter what x(0) is. Hence (10.7) constitutes a

sufficient condition (though a weak one, as we’ll see) for asymptotic stability of
(10.1).



Example 10.2 (“Lifting” a Periodic Model to an LTI Model)

Consider an undriven linear, periodically varying (LPV) model in state-space form.
This is a system of the form (10.2) for which there is a smallest positive integer
N such that A(k + N) = A(k) for all k; thus N is the period of the system. (If
N =1, the system is actually LTI, so the cases of interest here are really those
with N > 2.) Now focus on the state vector x(mN) for integer m, i.e., the state
of the LPV system sampled regularly once every period. Evidently

smMN+N) = [AN = 1DAN =2)--- A(0) | 2(mN)
= ®(N,0)z(mN) (10.8)
The sampled state thus admits an LTI state-space model. The process of con-
structing this sampled model for an LPV system is referred to as lifting.
Driven Response

Now let us consider the driven system, i.e., u(k) # 0 for at least some k. Referring back to
(10.1), we have

z(1) = A(0)z(0) + B(0)u(0)
2(2) = A(1)z(1) + B(1)u(1)
= A(1)A(0)(0) + A(1)B(0)u(0) + B(1)u(1) (10.9)
which leads to
w(k) = <I>(k,0)x(0)+l§<1>(k,€+ 1)B(C)u(l)
= @(k,O)x(O)Jr?:((;s,O)u(k,O), (10.10)
where
u(0)
T(k,0) = [®(k, 1)B(0) | ®(k,2)B(1) | -+ | Bk —1)] , U(k,0) = “(:” (10.11)
u(k —1)

What (10.10) shows is that the solution of the system over k steps has the same form as
the solution over one step, which is given in the first equation of (10.1). Also note that the
system response is divided into two terms: one depends only on the initial state x(0) and the
other depends only on the input. These terms are respectively called the natural or unforced
or zero-input response, and the zero-state response. Note also that the zero-state response
has a form that is reminiscent of a convolution sum; this form is sometimes referred to as a
superposition sum.



If (10.10) had been simply claimed as a solution, without any sort of derivation, then its
validity could be verified by substituting it back into the system equations:

k
zk+1) = @(k+1,00z0)+> ®(k+1,0+1)B(C)u(l)
(=0
k—1
= ®(k+1,002(0) + > ®(k+ 1,0+ 1)B(O)u(l) + B(k)u(k)
(=0
k—1
= A(k) |®(k,0)x(0) + > _ ®(k,( + 1)B(O)u(()| + B(k)u(k)
(=0
= A(k)z(k) + B(k)u(k) . (10.12)

Clearly, (10.12) satisfies the system equations (10.1). It remains to be verified that the pro-
posed solution matches the initial state at £ = 0. We have

x(0) = ®(0,0)x(0) = x(0) , (10.13)

which completes the check.
If Y(k,0) is defined similarly to U(k,0), then following the sort of derivation that led to
(10.10), we can establish that

Y(k,0) = O(k, 0)z(0) + T(k, 0)4(k, 0) (10.14)

for appropriately defined matrices O(k,0) and ¥(k,0). We leave you to work out the details.
Once again, (10.14) for the output over k steps has the same form as the expression for the
output at a single step, which is given in the second equation of (10.1).

10.3 Linear Time-Invariant Models

In the case of a time-invariant linear discrete-time system, the solutions can be simplified
considerably. We first examine a direct time-domain solution, then compare this with a
transform-domain solution, and finally return to the time domain, but in modal coordinates.

Direct Time-Domain Solution

For a linear time-invariant system, observe that

Ak) = A

> .
B(k) = B } for all k>0, (10.15)

where A and B are now constant matrices. Thus

Ok, 0) = Ak —1)...A(l) = A¥ ¢ k>0 (10.16)



so that, substituting this back into (10.10), we are left with

z(k) = Akx(0)+I§Ak*f*13u(5)

=0
u(0)
— a4 [amareg ) oop] | (10.17)

Note that the zero-state response in this case exactly corresponds to a convolution sum.
Similar expressions can be worked out for the outputs, by simplifying (10.14); we leave the
details to you.

Transform-Domain Solution

We know from earlier experience with dynamic linear time-invariant systems that the use of
appropriate transform methods can reduce the solution of such a system to the solution of
algebraic equations. This expectation does indeed hold up here. First recall the definition of
the one-sided Z-transform :

Definition 10.1 The one-sided Z-transform, F(z), of the sequence f(k) is given by

for all z such that the result of the summation is well defined, denoted by the Region of
Convergence (ROC).

The sequence f(k) can be a vector or matrix sequence, in which case F'(z) is respectively a
vector or matrix as well.

It is easy to show that the transform of a sum of two sequences is the sum of the individual
transforms. Also, scaling a sequence by a constant simply scales the transform by the same
constant. The following shift property of the one-sided transform is critical, and not hard to

establish. Suppose that f(k) AN F(z). Then
1.



Convolution is an important operation that can be defined on two sequences f(k), g(k) as

k

Frglk)y=">" g(k —m)f(m),

m=0

whenever the dimensions of f and ¢ are compatible so that the products are defined. The Z
transform of a convolutions of two sequences satisfy

Z(frg) = 3 fwglh)

k=0
0o k

- S (z f(k—m)g(m)>
k=0 m=0

= > > 2 Ffk—m)g(m)
m=0k=m

=SS hg(m)
m=0 k=0

_ oy (z zkf<k>) o(m)
m=0 k=0

= F(2)G(z).

Now, given the state-space model (10.1), we can take transforms on both sides of the
equations there. Using the transform properties just described, we get

2X(2) —z22(0) = AX(z)+ BU(2) (10.18)
Y(z) = CX(z)+ DU(z). (10.19)

This is solved to yield

X(2) = z(2I —A)~'2(0) + (2 — A)"'BU(z)
Y(2) = 2C(zI—A)~'2(0) + [C(z1 = A)' B+ D] U() (10.20)

Transfer Function

To correlate the transform-domain solutions in the above expressions with the time-
domain expressions in (10.10) and (10.14), it is helpful to note that

(2T —A)y t=2 22442347+ (10.21)

as may be verified by multiplying both sides by (zI — A). The region of convergence for the
series on the right is all values of z outside of some sufficiently large circle in the complex
plane. What this series establishes, on comparison with the definition of the Z-transform, is



that the inverse transform of z(2I — A)~! is the matrix sequence whose value at time k is A*
for £ > 0; the sequence is 0 for time instants k£ < 0. That is we can write

(I,A,AZ,A3,A4,...) s a(z] — A

(0,1, A, A% A3 ) Es (21— A7

Also since the inverse transform of a product such as (2 — A)~'BU(z) is the convolution of
the sequences whose transforms are (21 — A)~'B and U(z) respectively, we get

((0), A2(0), A%2(0), A%2(0),...) = 2(=] — A)"x(0)
(0,B,AB,A2B,A3B,...)*(u(O),u(l),u(Q),u(B),...) Zs (I - A)LBU(2).

Putting the above two pieces together, the parallel between the time-domain expressions and
the transform-domain expressions in (10.20) should be clear.



Exercises

Exercise 10.1 (a) Give an example of a nonzero matrix whose eigenvalues are all 0.

(b) Show that A* = 0 for some finite positive power k if and only if all eigenvalues of A equal 0. Such
a matrix is termed nilpotent. Argue that A™ = 0 for a nilpotent matrix of size n.

(c) If the sizes of the Jordan blocks of the nilpotent matrix A are n1 < ns < ... < ny, what is the
smallest value of k for which A* =0?

(d) For an arbitrary square matrix A, what is the smallest value of k for which the range of A*+!
equals that of A*? (Hint: Your answer can be stated in terms of the sizes of particular Jordan
blocks of A.)

Exercise 10.2 Consider the periodically varying system in Problem 7.4. Find the general form of
the solution.

Exercise 10.3 Gambler’s Ruin

Consider gambling against a bank of capital A; in the following way: a coin is fliped, if the
outcome is heads, the bank pays one dollar to the player, and if the outcome is tails, the player payes
one dollar to the bank. Suppose the probability of a head is equal to p, the capital of the player is A,
and the game continues until one party looses all of their capital. Calculate the probability of breaking
the bank.



Chapter 11

Continuous-Time Linear
State-Space Models

11.1 Introduction

In this chapter, we focus on the solution of CT state-space models. The development here
follow the previous chapter.

11.2 The Time-Varying Case
Consider the nth-order continuous-time linear state-space description

B(t) = A(t)z(t) + B(t)u(t)
y(t) = Ct)z(t) + D(t)ul(t) . (11.1)

We shall always assume that the coefficient matrices in the above model are sufficiently well
behaved for there to ezist a unique solution to the state-space model for any specified initial
condition x(tg) and any integrable input u(t). For instance, if these coefficient matrices are
piecewise continuous, with a finite number of discontinuities in any finite interval, then the
desired existence and uniqueness properties hold.

We can describe the solution of (11.1) in terms of a matrix function ®(¢,7) that has the
following two properties:

d(t,7) = A@R)D(t,7T), (11.2)
o(r,7) = 1. (11.3)

This matrix function is referred to as the state transition matrix, and under our assumption
on the nature of A(t) it turns out that the state transition matrix ezists and is unique.



We will show that, given z(tp) and u(t),

t
x(t) = ®(t,to)x(to) + [ @(t,7)B(r)u(r)dr . (11.4)

to
Observe again that, as in the DT case, the terms corresponding to the zero-input and zero-
state responses are evident in (11.4). In order to verify (11.4), we differentiate it with respect

to t:
t

#(t) = d(t,to)a(te) + [ B(t,7)B(r)u(r)dr + Bt t)B(t)u(t) . (11.5)

to

Using (11.2) and (11.3),

(1) = At to)x(to) + | AWD(L ) B(r)u(r)dr + B(t)u(t) . (11.6)

to

Now, since the integral is taken with respect to 7, A(t) can be factored out:

()

A(t) [(I)(t,to)x(tg) + /ttq)(t,T)B(T)u(T)dT + Btu(t) , (11.7)
— AWz(t) + BOu(t) (11.8)

so the expression in (11.4) does indeed satisfy the state evolution equation. To verify that it
also matches the specified initial condition, note that

z(to) = @(to, to)x(to) = x(to)- (11.9)

We have now shown that the matrix function ®(¢,7) satisfying (11.2) and (11.3) yields the
solution to the continuous-time system equation (11.1).

Exercise: Show that ®(¢, 7) must be nonsingular. (Hint: Invoke our claim about uniqueness
of solutions.)

The question that remains is how to find the state transition matrix. For a general linear
time-varying system, there is no analytical expression that expresses ®(¢,7) analytically as
a function of A(t). Instead, we are essentially limited to numerical solution of the equation
(11.2) with the boundary condition (11.3). This equation may be solved one column at a
time, as follows. We numerically compute the respective solutions x'(t) of the homogeneous
equation

(t) = A(t)x(t) (11.10)
for each of the n initial conditions below:
] U 0
0 1
0
1 0 2 n 0
€T (t()) = 0 y X (t()) = 0 , ey T (f,o) =




Then
Ot t) = [ 2M(t) ... a"(t) ] (11.11)

In summary, knowing n solutions of the homogeneous system for n independent initial
conditions, we are able to construct the general solution of this linear time varying system.
The underlying reason this construction works is that solutions of a linear system may be
superposed, and our system is of order n.

Example 11.1 A Special Case

Consider the following time-varying system

dfaw)]_[ aty 5@ [
dt | x2(t) —B(t) «ft) xo(t) |’
where a(t) and [(t) are continuous functions of ¢. It turns out that the special

structure of the matrix A(¢) here permits an analytical solution. Specifically, verify
that the state transition matrix of the system is

Bty — | XPUl (i) cos([i B(rdr)  exp(f o(r)dr) sin(fy, 5(r)dr)
’ - exp(ft0 a(T)dr) sin(ft0 B(r)dr) exp(ft0 a(t)dr) cos([,, B(T)dr)
The secret to solving the above system — or equivalently, to obtaining its state

transition matrix — is to transform it to polar co-ordinates via the definitions

P2t = (2)%(8) + (22)°(1)
o(t) = tan™" (@) .
(t) an p
We leave you to deduce now that
%TZ = 2ar?
d
—0 = —-4.
dt g

The solution of this system of equations is then given by

r2(t) = exp <2 /t: a(T)dT) 2 (to)

and
t

0(t) = 0(to) — | B(r)dr

to



Further Properties of the State Transition Matrix

The first property that we present involves the composition of the state transition matrix
evaluated over different intervals. Suppose that at an arbitrary time ¢y the state vector is
x(tg) = xg, with x¢ being an arbitrary vector. In the absence of an input the state vector
at time ¢ is given by x(t) = ®(¢,t9)xp. At any other time ¢, the state vector is given by
x(t1) = ®(t1,t9)xg. We can also write

.%'(t) = (I)(t,tl)x(tl):(I)(t,tl)q)(tl,to)xg
= (I)(t,t[)).%‘g.

Since xq is arbitrary, it follows that

P(t,t1)®(t1,t0) = P(t, o)
for any ty and t;. (Note that since the state transition matrix in CT is alway invertible,
there is no restriction that ¢; lie between ty and ¢ — unlike in the DT case, where the state
transition matrix may not be invertible).

Another property of interest (but one whose derivation can be safely skipped on a first
reading) involves the determinant of the state transition matrix. We will now show that

det(D(t, o)) = exp(/t: trace[A(7)]dr) , (11.12)

a result known as the Jacobi-Liouville formula. Before we derive this important formula, we
need the following fact from matrix theory. For an n X n matrix M and a real parameter ¢,
we have
det(I + eM) = 1 + etrace (M) + O(é?) ,

where O(€?) denotes the terms of order greater than or equal to €
fact, let U be a similarity transformation that brings M to an upper triangular matrix 7", so
M = U~!'TU. Such a U can always be found, in many ways. (One way, for a diagonalizable
matrix, is to pick U to be the modal matrix of M, in which case T is actually diagonal; there
is a natural extension of this approach in the non-diagonalizable case.) Then the eigenvalues
{Ai} of M and T are identical, because similarity transformations do not change eigenvalues,
and these numbers are precisely the diagonal elements of T'. Hence

det(I +eM) = det(I+€T)
= I, (T4eh)
= 1+ etrace (M) + O(€?).
Returning to the proof of (11.12), first observe that

2. In order to verify this

d
Bt +eto) = (tto) +e Bt to) + O(€%)

= B(t,tg) + eA(t)D(t, 1) + O(€?).



The derivative of the determinant of ®(¢,y) is given by

L det[(t,10)] = lim - (det[d(t + e, t0)] — det[D(t, t0)])

dt e—0 e

— lim - (det[ (t,t0>+eA(t)<1>(t,t0)]—det[cb(t,to)])

e—0 €

= det(®(t,t0)) hr% (det[[—i— eA(t)] — 1)
= trace [A(t)] det[®(t, to)].

Integrating the above equation yields the desired result, (11.12).

11.3 The LTI Case

For linear time-invariant systems in continuous time, it is possible to give an explicit formula
for the state transition matrix, ®(¢,7). In this case A(t) = A, a constant matrix. Let us
define the matrix exponential of A by an infinite series of the same form that is (or may
be) used to define the scalar exponential:

et — T4 (t—10)A+ l(t—t )2A% 4

> 1
= Z (=) )k Ak, (11.13)

It turns out that this series is as nicely behaved as in the scalar case: it converges absolutely
for all A € R™™™ and for all ¢ € R, and it can be differentiated or integrated term by term.
There exist methods for computing it, although the task is fraught with numerical difficulties.

With the above definition, it is easy to verify that the matrix exponential satisfies the
defining conditions (11.2) and (11.3) for the state transition matrix. The solution of (11.1) in
the LTT case is therefore given by

w(t) = e A2 t0) + [ AT Bu(r)dr, (11.14)
to

After determining x(t), the system output can be obtained by

y(t) = Cx(t) + Du(t). (11.15)



Transform-Domain Solution of LTI Models

We can now parallel our transform-domain treatment of the DT case, except that now we use
the one-sided Laplace transform instead of the Z-transform:

Definition 11.1 The one-sided Laplace transform, F(s), of the signal f(t) is given by
F(s) = / e SLF(¢) dt
t=0—
for all s where the integral is defined, denoted by the region of convergence (R.0.C.).

The various properties of the Laplace transform follow. The shift property of Z transforms
that we used in the DT case is replaced by the following differentiation property: Suppose

that f(t) <= F(s). Then

o) =T — G = s () - F(0-)

Now, given the state-space model (11.1) in the LTI case, we can take transforms on both
sides of the equations there. Using the transform property just described, we get

sX(s) —x(0—) = AX(s)+ BU(s) (11.16)
Y(s) = CX(s)+ DU(s). (11.17)

This is solved to yield

X(s) = (sI—A)ta(0=)+ (s — A)LBU(s)
Y(s) = C(sI—A)"'2(0-)+ [C(s] - A)~'B+ D| U(s) (11.18)

Transfer Function

which is very similar to the DT case.
An important fact that emerges on comparing (11.18) with its time-domain version
(11.14) is that

E(eAt> =(sI —A)L.

Therefore one way to compute the state transition matrix (a good way for small examples!)
is by evaluating the entry-by-entry inverse transform of (sI — A)~!.

Example 11.2 Find the state transition matrix associated with the (non-diagonalizable!)

matrix
1 2
A= [ 01 ] )



Using the above formula,

E(eAt> = (sI—A)'= l 861 S__Zl ]1

By taking the inverse Laplace transform of the above matrix we get

t t
A e' 2te
etzlo et]'



Exercises

Exercise 11.1 Companion Matrices

(a) The following two matrices and their transposes are said to be companion matrices of the poly-
nomial ¢(z) = 2" + ¢,_12" ! + ... + qo. Determine the characteristic polynomials of these four
matrices, and hence explain the origin of the name. (Hint: First find explanations for why all
four matrices must have the same characteristic polynomial, then determine the characteristic
polynomial of any one of them.)

-1 1 0 ... 0 0 1 0o ... 0
—qn—2 0 1 0 0 0 1 0
Al — . . A2 — . :
-¢ 0 0 1 0 0 0 1
—q¢p 0 0 0 ¢ —7@1 —q2 ... —Gn-1

(b) Show that the matrix A; above has only one (right) eigenvector for each distinct eigenvalue A;,
and that this eigenvector is of the form [1 \; A? ... AM717T,

(c) If
01 0
A=(0 0 1
6 5 -2
what are A® and e4*? (Your answers may be left as a product of three — or fewer — matrices;
do not bother to multiply them out.)

Exercise 11.2 Suppose you are given the state-space equation
z(t) = Ax(t) + Bu(t)
with an input u(t) that is piecewise constant over intervals of length T':

ult)=ulk] , kKT <t<(k+1)T

(a) Show that the sampled state z[k] = x(kT') is governed by a sampled-data state-space model of the
form

x[k + 1] = Fa[k] + Gulk]

for constant matrices F' and G (i.e. matrices that do not depend on ¢ or k), and determine these
matrices in terms of A and B. (Hint: The result will involve the matrix exponential, e*.) How
are the eigenvalues and eigenvectors of F' related to those of A?



(b) Compute F' and G in the above discrete-time sampled-data model when

=(Za) 2= (0)

(c) Suppose we implement a state feedback control law of the form u[k] = Hzx[k], where H is a gain
matrix. What choice of H will cause the state of the resulting closed-loop system, z[k + 1] =
(F + GH)z[k], to go to 0 in at most two steps, from any initial condition (H is then said to
produce “deadbeat” behavior)? To simplify the notation for your calculations, denote coswoT'
by ¢ and sinwyT by s. Assume now that woT = 7/6 , and check your result by substituting in
your computed H and seeing if it does what you intended.

(d) For woT = m/6 and wp = 1, your matrices from (b) should work out to be

(% ) o ()

Use Matlab to compute and plot the response of each of the state variables from £ = 0 to k = 10,
assuming z[0] = [4, 0]7 and with the following choices for u[k]:

e (i) the open-loop system, with u[k] = 0;
e (ii) the closed-loop system with u[k] = Hz[k], where H is the feedback gain you computed
in (c), with wg = 1; also plot u[k] in this case.

(e) Now suppose the controller is computer-based. The above control law u[k] = Hzx[k] is imple-
mentable if the time taken to compute Hz[k] is negligible compared to T'. Often, however, it
takes a considerable fraction of the sampling interval to do this computation, so the control that
is applied to the system at time k is forced to use the state measurement at the previous instant.
Suppose therefore that ulk] = Hz[k — 1]. Find a state-space model for the closed-loop system
in this case, written in terms of F\, G, and H. (Hint: The computer-based controller now has
memory!) What are the eigenvalues of the closed-loop system now, with H asin (c¢)? Again use
Matlab to plot the response of the system to the same initial condition as in (d), and compare
with the results in (d)(ii). Is there another choice of H that could yield deadbeat behavior? If
so, find it; if not, suggest how to modify the control law to obtain deadbeat behavior.

Exercise 11.3 Given the matrix

show that

exp <t[ cow D _ { et cos(wt) et sin(wt) ]

Exercise 11.4 Suppose A and B are constant square matrices. Show that

=[5 5])=1% &)



Exercise 11.5 Suppose A and B are constant square matrices. Show that the solution of the
following system of differential equations,

i(t) = e " Betx(t) ,

is given by
g :L'(t) _ e_tAe(t_tO)(A+B)6t0A$(t0) i

Exercise 11.6 Suppose A is a constant square matrix, and f(¢) is a continuous scalar function of ¢.
Show that the state transition matrix for the system

@(t) = f(H)Ax(t)

is given by

B(t,t5) = exp <(/tt f(T)dT)A> .

Exercise 11.7 (Floquet Theory). Consider the system
z(t) = A(t)x(t)
where A(t) is a periodic matrix with period T, so A(t + T) = A(t). We want to study the state
transition matrix ®(t,ty) associated with this periodically time-varying system.
1. First let us start with the state transition matrix ®(¢,0), which satisfies
d = AP
®(0,0) = 1.

Define the matrix ¥(¢,0) = ®(¢ + T, 0) and show that ¥ satisfies

U(t,0) = A(t)¥(t,0)
v(0,0) = &(T,0).
2. Show that this implies that ®(¢t + 7,0) = ®(¢,0)®(7,0).

3. Using Jacobi-Liouville formula, show that ®(7',0) is invertible and therefore can be written as
®(T,0) = TR

4. Define
P(t)~! = ®(t,0)e" %,

and show that P(t)~!, and consequently P(t), are periodic with period 7. Also show that
P(T) = I. This means that
®(t,0) = P(t) te'l.

5. Show that ®(0,ty) = ® 1(tp,0). Using the fact that ®(t,ty) = ®(¢,0)®(0,t), show that
O(t,to) = P(t)"'e' "R P(t).

What is the significance of this result?



Chapter 12

Modal Decomposition of
State-Space Models

12.1 Introduction

The solutions obtained in previous chapters, whether in time domain or transform domain,
can be further decomposed to give a geometric understanding of the solution. The modal
decomposition expresses the state equation as a linear combination of the various modes of
the system and shows precisely how the initial conditions as well as the inputs impact these
modes.

12.2 The Transfer Function Matrix

It is evident from (10.20) that the transfer function matriz for the system, which relates the
input transform to the output transform when the initial condition is zero, is given by

H(z)=C(zxI — A)~'B+ D. (12.1)

For a multi-input, multi-output (MIMO) system with m inputs and p outputs, this results in
a p X m matrix of rational functions of z. In order to get an idea of the nature of these rational
functions, we express the matrix inverse as the adjoint matrix divided by the determinant, as

follows:
1

The determinant det(z] — A) in the denominator is an n*-order monic (i.e. coefficient of 2"
is 1) polynomial in z, known as the characteristic polynomial of A and denoted by a(z). The



entries of the adjoint matrix (the cofactors) are computed from minors of (21 — A), which are
polynomials of degree less than n. Hence the entries of the matrices

1

(I - 4)" = det(z1 — A)

adj(zI — A)

and

H(z)— Cadj(zI — A)B

p—_ Y

det(zI — A)
are strictly proper, 7.e. have numerator degree strictly less than their denominator degree.
With the D term added in, H(z) becomes proper that is all entries have numerator degree
less than or equal to the degree of the denominator. For |z| /oo, H(z) — D.

The polynomial a(z) forms the denominators of all the entries of (2 — A)~! and H(z),
except that in some, or even all, of the entries there may be cancellations of common factors
that occur between a(z) and the respective numerators. We shall have a lot more to say later
about these cancellations and their relation to the concepts of reachability (or controllability)
and observability. To compute the inverse transform of (21 — A)~! (which is the sequence
A*~1) and the inverse transform of H(z) (which is a matrix sequence whose components are
the zero-state unit sample responses from each input to each output), we need to find the
inverse transform of rationals whose denominator is a(z) (apart from any cancellations). The
roots of a(z) — also termed the characteristic roots or natural frequencies of the system, thus
play a critical role in determining the nature of the solution. A fuller picture will emerge as
we proceed.

Multivariable Poles and Zeros

You are familiar with the definitions of poles, zeros, and their multiplicities for the scalar
transfer functions associated with single-input, single-output (SISO) LTI systems. For the
case of the p x m transfer function matriz H(z) that describes the zero-state input/output
behavior of an m-input, p-output LTI system, the definitions of poles and zeros are more
subtle. We include some preliminary discussion here, but will leave further elaboration for
later in the course.

It is clear what we would want our eventual definitions of MIMO poles and zeros to
specialize to in the case where H(z) is nonzero only in its diagonal positions, because this
corresponds to completely decoupled scalar transfer functions. For this diagonal case, we
would evidently like to say that the poles of H(z) are the poles of the individual diagonal
entries of H(z), and similarly for the zeros. For example, given

2
H(z) = diagonal < i il )

(z4+0.5)2 7 (242)(z+0.5)

we would say that H(z) has poles of multiplicity 2 and 1 at z = —0.5, and a pole of multiplicity
1 at z = —2; and that it has zeros of multiplicity 1 at —2, at z = 0, and at z = oco. Note that



in the MIMO case we can have poles and zeros at the same frequency (e.g. those at —2 in
the above example), without any cancellation! Also note that a pole or zero is not necessarily
characterized by a single multiplicity; we may instead have a set of multiplicity indices (e.g.
as needed to describe the pole at —0.5 in the above example). The diagonal case makes clear
that we do not want to define a pole or zero location of H(z) in the general case to be a
frequency where all entries of H(z) respectively have poles or zeros.

For a variety of reasons, the appropriate definition of a pole location is as follows:

e Pole Location: H(z) has a pole at a frequency py if some entry of H(z) has a pole at
Z = DPo-

The full definition (which we will present later in the course) also shows us how to determine
the set of multiplicities associated with each pole frequency. Similarly, it turns out that the
appropriate definition of a zero location is as follows:

e Zero Location: H(z) has a zero at a frequency 7y if the rank of H(z) drops at z = .

Again, the full definition also permits us to determine the set of multiplicities associated with
each zero frequency. The determination of whether or not the rank of H(z) drops at some
value of z is complicated by the fact that H(z) may also have a pole at that value of z;
however, all of this can be sorted out very nicely.

12.3 Similarity Transformations

Suppose we have characterized a given dynamic system via a particular state-space represen-
tation, say with state variables x1,x2, -, ;. The evolution of the system then corresponds
to a trajectory of points in the state space, described by the succession of values taken by the
state variables. In other words, the state variables may be seen as constituting the coordinates
in terms of which we have chosen to describe the motion in the state space.

We are free, of course, to choose alternative coordinate bases — i.e., alternative state
variables — to describe the evolution of the system. This evolution is not changed by the
choice of coordinates; only the description of the evolution changes its form. For instance, in
the LTI circuit example in the previous chapter, we could have used ¢; —v¢ and if, +v¢ instead
of iy, and veo. The information in one set is identical with that in the other, and the existence
of a state-space description with one set implies the existence of a state-space description with
the other, as we now show more concretely and more generally. The flexibility to choose an
appropriate coordinate system can be very valuable, and we will find ourselves invoking such
coordinate changes very often.

Given that we have a state vector x, suppose we define a constant invertible linear
mapping from x to r, as follows:

r=T"'2 , x=1Tr (12.2)

Since T is invertible, this maps each trajectory x(k) to a unique trajectory r(k), and vice versa.
We refer to such a transformation as a similarity transformation. The matrix T embodies



the details of the transformation from z coordinates to r coordinates — it is easy to see from
(12.2) that the columns of T" are the representations of the standard unit vectors of r in the
coordinate system of x, which is all that is needed to completely define the new coordinate
system.

Substituting for x(k) in the standard (LTI version of the) state-space model (10.1), we
have

Trk+1) = A(Tr(k))+ Bu(k) (12.3)
y(k) = C(Tr(k))+Du(k). (12.4)

r(k+1) = (T YAT)r(k) + (T 'B)u(k)
= Ar(k)+ Bu(k)
y(k) = (ACT) r(k) + Du(k)
= Cr(k)+ Du(k)

We now have a new representation of the system dynamics; it is said to be similar to the
original representation. It is critical to understand, however, that the dynamic properties of
the model are not at all affected by this coordinate change in the state space. In particular,
the mapping from wu(k) to y(k), i.e. the input/output map, is unchanged by a similarity
transformation.

12.4 Solution in Modal Coordinates

The proper choice of a similarity transformation may yield a new system model that will be
more suitable for analytical purposes. One such transformation brings the system to what are
known as modal coordinates. We shall describe this transformation now for the case where
the matrix A in the state-space model can be diagonalized, in a sense to be defined below; we
leave the general case for later.

Modal coordinates are built around the eigenvectors of A. To get a sense for why the
eigenvectors may be involved in obtaining a simple choice of coordinates for studying the
dynamics of the system, let us examine the possibility of finding a solution of the form

w(k)y=Nv, v#0 (12.9)

for the undriven LTT system
x(k+1) = Ax(k) (12.10)

Substituting (12.9) in (12.10), we find the requisite condition to be that

(A —A)v =0 (12.11)



i.e., that A be an eigenvalue of A, and v an associated eigenvector. Note from (12.11) that
multiplying any eigenvector by a nonzero scalar again yields an eigenvector, so eigenvectors
are only defined up to a nonzero scaling; any convenient scaling or normalization can be used.
In other words, (12.9) is a solution of the undriven system iff A is one of the n roots \; of the
characteristic polynomaial

a(z) =det(sI —A) = 2"+ an_12" L+ 4 ag (12.12)

and v is a corresponding eigenvector v;. A solution of the form z(k) = A\fv; is referred to as a
mode of the system, in this case the ith mode. The corresponding \; is the ith modal frequency
or natural frequency, and v; is the corresponding modal shape. Note that we can excite just
the ith mode by ensuring that the initial condition is 2(0) = A?v; = v;. The ensuing motion
is then confined to the direction of v;, with a scaling by \; at each step.

It can be shown fairly easily that eigenvectors associated with distinct eigenvalues are
(linearly) independent, i.e. none of them can be written as a weighted linear combination of
the remaining ones. Thus, if the n eigenvalues of A are distinct, then the n corresponding
eigenvectors v; are independent, and can actually form a basis for the state-space. Distinct
eigenvalues are not necessary, however, to ensure that there exists a selection of n independent
eigenvectors. In any case, we shall restrict ourselves for now to the case where — because of
distinct eigenvalues or otherwise — the matrix A has n independent eigenvectors. Such an
A is termed diagonalizable (for a reason that will become evident shortly), or non-defective.
There do exist matrices that are not diagonalizable, as we shall see when we examine the
Jordan form in detail later in this course.

Because (12.10) is linear, a weighted linear combination of modal solutions will satisfy
it too, so

a(k) =Y aivi)f (12.13)
=1

will be a solution of (12.10) for arbitrary weights a;, with initial condition
x(0) =) aiv; (12.14)
i=1

Since the n eigenvectors v; are independent under our assumption of diagonalizable A, the
right side of (12.14) can be made equal to any desired x(0) by proper choice of the coefficients
«y;, and these coefficients are unique. Hence specifying the initial condition of the undriven
system (12.10) specifies the «; via (12.14) and thus, via (12.13), specifies the response of the
undriven system. We refer to the expression in (12.13) as the modal decomposition of the
undriven response. Note that the contribution to the modal decomposition from a conjugate
pair of eigenvalues A and \* will be a real term of the form av\¥ + a*v* \**.

From ( 12.14), it follows that a = V ~"12(0), where « is a vector with components a;. Let
W =V~ and w! be the i row of W, then

z(k) = Zn: Mevwlz(0) (12.15)
=1



It easy to see that w; is a left eigenvector corresponding to the eigenvalue A;. The above
modal decomposition of the undriven system is the same as obtaining the diadic form of A*.
The contribution of 2(0) to the i mode is captured in the term w!x(0).

Before proceeding to examine the full response of a linear time-invariant model in modal
terms, it is worth noting that the preceding results already allow us to obtain a precise
condition for asymptotic stability of the system, at least in the case of diagonalizable A (it
turns out that the condition below is the right one even for the general case). Recalling the
definition in Example 10.1, we see immediately from the modal decomposition that the LTI
system (12.10) is asymptotically stable iff |\;] < 1 for all 1 < i < n, i.e. iff all the natural
frequencies of the system are within the unit circle. Since it is certainly possible to have this
condition hold even when || A|| is arbitrarily greater than 1, we see that the sufficient condition
given in Example 1 is indeed rather weak, at least for the time-invariant case.

Let us turn now to the LTI version of the full system in (10.1). Rather than approach-
ing its modal solution in the same style as was done for the undriven case, we shall (for a
different point of view) approach it via a similarity transformation to modal coordinates, i.e.,
to coordinates defined by the eigenvectors {v;} of the system. Consider using the similarity
transformation

x(k) =Vr(k) (12.16)

where the ith column of the n X n matrix V is the ith eigenvector, v;:
V= ( vi Uz - Uy ) (12.17)

We refer to V' as the modal matriz. Under our assumption of diagonalizable A, the eigenvec-
tors are independent, so V' is guaranteed to be invertible, and (12.16) therefore does indeed
constitute a similarity transformation. We refer to this similarity transformation as a modal
transformation, and the variables r;(k) defined through (12.16) are termed modal variables or
modal coordinates. What makes this transformation interesting and useful is the fact that the
state evolution matrix A now transforms to a diagonal matrix A:

M 0 -0
0 X --- 0

VLAV = diagonal {\y,---, ANy =| . . | | =A (12.18)
0 0 -+ M\

The easiest way to verify this is to establish the equivalent condition that AV = V' A, which
in turn is simply the equation (12.11), written for i = 1,---,n and stacked up in matrix form.
The reason for calling A “diagonalizable” when it has a full set of independent eigenvectors
is now apparent.
Under this modal transformation, the undriven system is transformed into n decoupled,
scalar equations:
ri(k+1) = Nri(k) (12.19)



for i = 1,2,...,n. Bach of these is trivial to solve: we have r;(k) = A\¥ r;(0). Combining this
with (12.16) yields (12.13) again, but with the additional insight that

a; =1;(0) (12.20)

Applying the modal transformation (12.16) to the full system, it is easy to see that the
transformed system takes the following form, which is once again decoupled into n parallel
scalar subsystems:

Ti(k + 1) = /\Zn(k) + Blu(k) , t=1,2,...,n (12.21)
y(k) = &ri(k) + -+ &urn(k) + Du(k) (12.22)

where the 3; and &; are defined via

61
vp_| e\

&1 & o & ] (12.23)
Pn

The scalar equations above can be solved explicitly by elementary methods (compare also

with the expression in (22.2):

k—1
ri(k) = Af ri(0) + > AT Biu(e) (12.24)
0
ZIR .
ZSR

where “ZIR” denotes the zero-input response, and “ZSR” the zero-state response. From the
preceding expression, one can obtain an expression for y(k). Also, substituting (12.24) in
(12.16), we can derive a corresponding modal representation for the original state vector x(k).
We leave you to write out these details.

Finally, the same concepts hold for CT systems. We leave the details as an exercise.

Example 12.1

Consider the following system:

HEHSE

We will consider the modal decomposition of this system for the zero input re-
sponse. The eigenvalues of A are -4 and 2 and the associated eigenvectors are
[1 —4]) and [ 1 2 ]. The modal matrix is constructed from the eigenvectors

above:
1 1
V= < 4 9 ) (12.26)

Tl

! ] " (12.25)



Its inverse is given by

It follows that:

o a0l 400
WAV_A_lO Ag]_[o 2].

Now let’s define r in modal coordinate as
x(t) =Tr — r(t) = T z(t).

Then in terms of r, the original system can be transformed into the following:

fl —4 0 (A
GRAR e

The response of the system for a given initial state and zero input can now be
expressed as:

x(t) = Vrt) = Vet Wwa(ty)
_ 1 1 ||ttt 12 -1
T -4 2 o eww |g|a 1 |

For instance, if the initial vector is chosen in the direction of the first eigenvector,
iLe., #(tg) =vy =[ 1 —4 ] then the response is given by:

x(t) _ [ _14 ] 6_4(t_t0)'

Example 12.2 Inverted Pendulum

Consider the linearized model of the inverted pendulum in Example 7.6 with the
parameters given by: m = 1, M = 10, ] = 1, and ¢ = 9.8. The eigenvalues
of the matrix A are 0, 0, 3.1424, and —3.1424. In this case, the eigenvalue at
0 is repeated, and hence the matrix A may not be diagonalizable. However, we
can still construct the Jordan form of A by finding the generalized eigenvectors
corresponding to 0, and the eigenvectors corresponding to the other eigenvalues.
The Jordan form of A, A = T~'AT and the corresponding transformation 7" are

given by:
0 1 0 0 0.0909 0 —0.0145 0.0145
A~ 0 0 0 0 T 0 0.0909 —0.0455 —0.0455
| 0 0 3.1424 0 T 0 0 0.1591  —0.1591
0 0 0 —3.1424 0 0 0.5000  0.5000



We can still get quite a bit of insight from this decomposition. Consider the
zero input response, and let (0) =v; =[1 0 0 0 |]. This is an eigenvector
corresponding to the zero eigenvalue, and corresponds to a fixed distance s, zero
velocity, zero angular position, and zero angular velocity. In that case, the system
remains in the same position and the response is equal to x(0) for all future time.
Now, let 2(0) = v =[0 1 0 0 ], which corresponds to a non-zero velocity
and zero position, angle and angular velocity. This is not an eigenvector but rather
a generalized eigenvector, i.e., it satisfies Avs = v;. We can easily calculate the
response to be z(t) =[t 1 0 0] implying that the cart will drift with constant
velocity but will remain in the upright position. Notice that the response lies in
the linear span of v1 and vs.

The case where x(0) = v3 corresponds to the eigenvalue A\ = 3.1424. In this
case, the cart is moving to the left while the pendulum is tilted to the right with
clockwise angular velocity. Thus, the pendulum tilts more to the right, which
corresponds to unstable behavior. The case where x(0) = vy corresponds to the
eigenvalue A = —3.1424. The cart again is moving to the left with clockwise
angular velocity, but the pendulum is tilted to the left. With an appropriate
combination of these variables (given by the eigenvector v4) the response of the
system converges to the upright equilibrium position at the origin.



Exercises

Exercise 12.1 Use the expression in (12.1) to find the transfer functions of the DT versions of the
controller canonical form and the observer canonical form defined in Chapter 8. Verify that the transfer
functions are consistent with what you would compute from the input-output difference equation on
which the canonical forms are based.

Exercise 12.2 Let v and w’ be the right and left eigenvectors associated with some non-repeated
eigenvalue A\ of a matrix A, with the normalization w'v = 1. Suppose A is perturbed infinitesimally to
A+ dA, so that ) is perturbed to A + dA, v to v + dv, and w' to w' + dw’. Show that d\ = w'(dA)v.



Chapter 13

Internal (Lyapunov) Stability

13.1 Introduction

We have already seen some examples of both stable and unstable systems. The objective of
this chapter is to formalize the notion of internal stability for general nonlinear state-space
models. Apart from defining the various notions of stability, we define an entity known as a
Lyapunov function and relate it to these various stability notions.

13.2 Notions of Stability
For a general undriven system

i(t) = f(z(t),0,t) (CT) (13.1
e(k+1) = f(z(k),0,k) (DT, (13.2)

~

we say that a point T is an equilibrium point from time tg for the CT system above if f(T,0,t) =
0, Vt > tg, and is an equilibrium point from time ky for the DT system above if f(Z,0,k) =
T, Yk > ky. If the system is started in the state T at time tg or kg, it will remain there for all
time. Nonlinear systems can have multiple equilibrium points (or equilibria). (Another class
of special solutions for nonlinear systems are periodic solutions, but we shall just focus on
equilibria here.) We would like to characterize the stability of the equilibria in some fashion.
For example, does the state tend to return to the equilibrium point after a small perturbation
away from it? Does it remain close to the equilibrium point in some sense? Does it diverge?

The most fruitful notion of stability for an equilibrium point of a nonlinear system is
given by the definition below. We shall assume that the equilibrium point of interest is at
the origin, since if T # 0, a simple translation can always be applied to obtain an equivalent
system with the equilibrium at 0.



Definition 13.1 A system is called asymptotically stable around its equilibrium point at the
origin if it satisfies the following two conditions:

1. Given any € > 0, 307 > 0 such that if |z (to)|| < 1, then ||z(t)|| <€, V t > to.
2. 302 > 0 such that if ||z (to)|| < 2, then x(t) — 0 as t — oc.

The first condition requires that the state trajectory can be confined to an arbitrarily
small “ball” centered at the equilibrium point and of radius €, when released from an arbitrary
initial condition in a ball of sufficiently small (but positive) radius ¢;. This is called stability in
the sense of Lyapunov (i.s.L.). It is possible to have stability in the sense of Lyapunov without
having asymptotic stability, in which case we refer to the equilibrium point as marginally
stable. Nonlinear systems also exist that satisfy the second requirement without being stable
i.s.L., as the following example shows. An equilibrium point that is not stable i.s.L. is termed
unstable.

Example 13.1 (Unstable Equilibrium Point That Attracts All Trajectories)

Consider the second-order system with state variables xy and xs whose dynamics
are most easily described in polar coordinates via the equations

o= r(l—r)
0 = sin®(9/2) (13.3)

where the radius r is given by r = /27 + 22 and the angle §# by 0 < 6 =
arctan (z2/x1) < 2m. (You might try obtaining a state-space description directly
involving x; and z3.) It is easy to see that there are precisely two equilibrium
points: one at the origin, and the other at r = 1, § = 0. We leave you to verify
with rough calculations (or computer simulation from various initial conditions)
that the trajectories of the system have the form shown in the figure below.

Evidently all trajectories (except the trivial one that starts and stays at the origin)
end up at » = 1, § = 0. However, this equilibrium point is not stable i.s.L.,
because these trajectories cannot be confined to an arbitrarily small ball around
the equilibrium point when they are released from arbitrary points with any ball
(no matter how small) around this equilibrium.



o
G

unit circle

W/

Figure 13.1: System Trajectories

13.3 Stability of Linear Systems

We may apply the preceding definitions to the LTI case by considering a system with a
diagonalizable A matrix (in our standard notation) and u = 0. The unique equilibrium point
is at @ = 0, provided A has no eigenvalue at 0 (respectively 1) in the CT (respectively DT)
case. (Otherwise every point in the entire eigenspace corresponding to this eigenvalue is an
equilibrium.) Now

i(t) = eMx(0)
e>\1t
. V6 waz(0)  (CT) (13.4)
eAnt
x(k) = AFz(0)
M
=V wxz(0)  (DT) (13.5)
)\lc

n

Hence, it is clear that in continuous time a system with a diagonalizable A is asymptotically
stable iff

Re(N;)) <0, ie{l,...,n}, (13.6)
while in discrete time the requirement is that
INil <1 die{l,...,n}, (13.7)

Note that if Re(\;) =0 (CT) or |[A\;| =1 (DT), the system is not asymptotically stable, but
is marginally stable.



Exercise: For the nondiagonalizable case, use your understanding of the Jordan form to show
that the conditions for asymptotic stability are the same as in the diagonalizable case. For
marginal stability, we require in the CT case that Re()\;) < 0, with equality holding for at
least one eigenvalue; furthermore, every eigenvalue whose real part equals 0 should have its
geometric multiplicity equal to its algebraic multiplicity, i.e., all its associated Jordan blocks
should be of size 1. (Verify that the presence of Jordan blocks of size greater than one for
these imaginary-axis eigenvalues would lead to the state variables growing polynomially with
time.) A similar condition holds for marginal stability in the DT case.

Stability of Linear Time-Varying Systems

Recall that the general unforced solution to a linear time-varying system is
.%‘(t) = ‘I)(t,to)x(tg),
where ®(t,7) is the state transition matrix. It follows that the system is

1. stable i.s.L. at T = 0 if sup ||®(¢, tp)|| = m(ty) < 0.
t
2. asymptotically stable at T = 0 if tlim |®(t, to)|| = 0, Vito.
— 00

These conditions follow directly from Definition 13.1.

13.4 Lyapunov’s Direct Method

General Idea

Consider the continuous-time system

@(t) = f(x(t)) (13.8)

with an equilibrium point at x = 0. This is a time-invariant (or “autonomous”) system, since f
does not depend explicitly on ¢. The stability analysis of the equilibrium point in such a system
is a difficult task in general. This is due to the fact that we cannot write a simple formula
relating the trajectory to the initial state. The idea behind Lyapunov’s “direct” method is to
establish properties of the equilibrium point (or, more generally, of the nonlinear system) by
studying how certain carefully selected scalar functions of the state evolve as the system state
evolves. (The term “direct” is to contrast this approach with Lyapunov’s “indirect” method,
which attempts to establish properties of the equilibrium point by studying the behavior of
the linearized system at that point. We shall study this next Chapter.)

Consider, for instance, a continuous scalar function V(z) that is 0 at the origin and
positive elsewhere in some ball enclosing the origin, i.e. V(0) =0 and V' (z) > 0 for x # 0 in
this ball. Such a V(z) may be thought of as an “energy” function. Let V() denote the time
derivative of V' (z) along any trajectory of the system, i.e. its rate of change as x(t) varies



according to (13.8). If this derivative is negative throughout the region (except at the origin),
then this implies that the energy is strictly decreasing over time. In this case, because the
energy is lower bounded by 0, the energy must go to 0, which implies that all trajectories
converge to the zero state. We will formalize this idea in the following sections.

Lyapunov Functions

Definition 13.2 Let V' be a continuous map from R" to R. We call V(x) a locally positive
definite (Ipd) function around x = 0 if

1. V(0) =0.
2. V(z) >0, 0 <|z] <r for some r.

Similarly, the function is called locally positive semidefinite (Ipsd) if the strict inequality on
the function in the second condition is replaced by V(z) > 0. The function V(z) is locally
negative definite (Ind) if —V (x) is Ipd, and locally negative semidefinite (Insd) if —V'(z) is
Ipsd. What may be useful in forming a mental picture of an Ipd function V(x) is to think of
it as having “contours” of constant V' that form (at least in a small region around the origin)
a nested set of closed surfaces surrounding the origin. The situation for n = 2 is illustrated
in Figure 13.2.

V(X):C 2

V(x)=c 3

Figure 13.2: Level lines for a Lyapunov function, where ¢; < ¢2 < c3.

Throughout our treatment of the CT case, we shall restrict ourselves to V() that have
continuous first partial derivatives. (Differentiability will not be needed in the DT case —
continuity will suffice there.) We shall denote the derivative of such a V' with respect to time

along a trajectory of the system (13.8) by V(x(t)). This derivative is given by

B av(z) . _ dV (z)
 dx T dx

V((t) f(x)

aVv(z)

where == is a row vector — the gradient vector or Jacobian of V with respect to x —

containing the component-wise partial derivatives %.




Definition 13.3 Let V be an Ipd function (a “candidate Lyapunov function”), and let V be
its derivative along trajectories of system (13.8). If V is Insd, then V is called a Lyapunov
function of the system (13.8).

Lyapunov Theorem for Local Stability

Theorem 13.1 If there exists a Lyapunov function of system (13.8), then x = 0 is a stable
equilibrium point in the sense of Lyapunov. If in addition V(z) < 0, 0 < ||z|| < r1 for some
ri, i.e. if V is Ind, then x = 0 is an asymptotically stable equilibrium point.

Proof: First, we prove stability in the sense of Lyapunov. Suppose € > 0 is given. We need
to find a 6 > 0 such that for all ||z(0)|| < 4, it follows that ||z(¢)|] < e, V¢ > 0. The Figure
19.6 illustrates the constructions of the proof for the case n = 2. Let ¢ = min(e, r). Define

Figure 13.3: Ilustration of the neighborhoods used in the proof

m = min V(z).
llzll=€x

Since V(x) is continuous, the above m is well defined and positive. Choose § satisfying
0 < § < ¢ such that for all [|z|| < 6, V(z) < m. Such a choice is always possible, again
because of the continuity of V'(z). Now, consider any x(0) such that ||x(0)|| < J, V(x(0)) < m,
and let x(t) be the resulting trajectory. V(z(t)) is non-increasing (i.e. V(z(t)) < 0) which
results in V(z(t)) < m. We will show that this implies that ||z(¢)|| < €;. Suppose there
exists ¢; such that ||z(¢1)|| > €1, then by continuity we must have that at an earlier time ¢,
|z (t2)|| = €1, and miny, =, |V (z)|| = m > V(x(t2)), which is a contradiction. Thus stability
in the sense of Lyapunov holds.



To prove asymptotic stability when V is Ind, we need to show that as t — oo, Vix(t)) —
0; then, by continuity of V', ||z(¢)|| — 0. Since V' (z(t)) is strictly decreasing, and V' (z(t)) >0
we know that V(z(t)) — ¢, with ¢ > 0. We want to show that ¢ is in fact zero. We can argue
by contradiction and suppose that ¢ > 0. Let the set S be defined as

S={zxeR"|V(zx)<c},
and let B, be a ball inside S of radius «,
B, = {z € S|||z| < a}.

Suppose x(t) is a trajectory of the system that starts at x(0), we know that V(x(t)) is
decreasing monotonically to ¢ and V(x(t)) > ¢ for all ¢t. Therefore, x(t) ¢ B,; recall that
B, C S which is defined as all the elements in R™ for which V(z) < ¢. In the first part of
the proof, we have established that if ||(0)|| < ¢ then ||z(t)|| < e. We can define the largest
derivative of V(x) as ‘

- AL

Clearly —v < 0 since V(x) is Ind. Observe that,

V(z(t) = V(z

0)) + /Ot V(:E(T))dr
< V(z(0)) —~t

(
(0
which implies that V' (x(¢)) will be negative which will result in a contradiction establishing
the fact that ¢ must be zero.

Example 13.2 Consider the dynamical system which is governed by the differ-
ential equation
i =—g(x)

where g(z) has the form given in Figure 13.4. Clearly the origin is an equilibrium
point. If we define a function

V(r) = /Om 9(y)dy

then it is clear that V(x) is locally positive definite (Ipd) and

which is locally negative definite (Ind). This implies that = = 0 is an asymptotically
stable equilibrium point.



9(x)

Figure 13.4: Graphical Description of g(x)

Lyapunov Theorem for Global Asymptotic Stability

The region in the state space for which our earlier results hold is determined by the region
over which V(x) serves as a Lyapunov function. It is of special interest to determine the
“basin of attraction” of an asymptotically stable equilibrium point, i.e. the set of initial
conditions whose subsequent trajectories end up at this equilibrium point. An equilibrium
point is globally asymptotically stable (or asymptotically stable “in the large”) if its basin of
attraction is the entire state space.

If a function V(x) is positive definite on the entire state space, and has the additional
property that |V (x)| oo as ||z| ~ oo, and if its derivative V is negative definite on the
entire state space, then the equilibrium point at the origin is globally asymptotically stable.
We omit the proof of this result. Other versions of such results can be stated, but are also
omitted.

Example 13.3

Consider the nth-order system
& =—-C(x)

with the property that C'(0) =0 and 2'C(z) > 0 if  # 0. Convince yourself that
the unique equilibrium point of the system is at 0. Now consider the candidate

Lyapunov function
V(z) =a'x

which satisfies all the desired properties, including |V (z)| * oo as ||z|| /* oc.
Evaluating its derivative along trajectories, we get

V(z) =22'd = —22'C(x) <0 for x #0

Hence, the system is globally asymptotically stable.



Example 13.4 Consider the following dynamical system

il = —581+4£E2

i‘g = —LUl—LU%.

The only equlibrium point for this system is the origin = 0. To investigate the
stability of the origin let us propose a quadratic Lyapunov function V = z? + ax3,
where a is a positive constant to be determined. It is clear that V is positive
definite on the entire state space R%. In addition, V is radially unbounded, that
is it satisfies |V (x)| * oo as ||x|| ,/* 0o. The derivative of V' along the trajectories
of the system is given by

. —x1 + 4x
VvV = [2351 2&332][ —xll—x%Z]

= =227 + (8 — 2a)x 20 — 2023,

If we choose a = 4 then we can eliminate the cross term xqx9, and the derivative
of V' becomes

V= —2.%‘% — 8.%‘%,
which is clearly a negative definite function on the entire state space. Therefore
we conclude that = 0 is a globally asymptotically stable equilibrium point.

Example 13.5 A highly studied example in the area of dynamical systems and
chaos is the famous Lorenz system, which is a nonlinear system that evolves in R3
whose equations are given by

i = oly—a)
] = rT—Yy—2I2

Z = wzy—bz,

where o, r and b are positive constants. This system of equations provides an
approximate model of a horizontal fluid layer that is heated from below. The
warmer fluid from the bottom rises and thus causes convection currents. This
approximates what happens in the atmosphere. Under intense heating this model
exhibits complex dynamical behaviour. However, in this example we would like to
analyze the stability of the origin under the condition r < 1, which is known not to
lead to complex behaviour. Le us define V' = aj 2% 4+asy? 4322, where a1, as, and
«g are positive constants to be determined. It is clear that V' is positive definite
on R? and is radially unbounded. The derivative of V along the trajectories of the
system is given by

. oy —x)
V = 201 200y 203z ] rr—y— oz
xy — bz



= —2aj01°— 2a2y2 — 2a3b22

+ay(2ai0 + 2rag) + (2ag — 209)xyz.

If we choose oy = a3 =1 and a1 = % then the V becomes

Vo= =2 (902 +y? +202% — (1 + r)xy)
1 2 1
- —2[<x—§(1+r)y> +<1—(¥)2>y2+622

Since 0 < r < 1 it follows that 0 < % < 1 and therefore V is negative definite on
the entire state space R3. This implies that the origin is globally asymptotically
stable.

Example 13.6 (Pendulum)

The dynamic equation of a pendulum comprising a mass M at the end of a rigid
but massless rod of length R is

MRé—l—Mgsint‘):O

where 6 is the angle made with the downward direction, and g is the acceleration
due to gravity. To put the system in state-space form, let z; = 6, and x9 = 6;
then

33'1:3:2

A
T = ——=SITq

R

Take as a candidate Lyapunov function the total energy in the system. Then

1
Vie) = §MR233% + MgR(1 — cosxq) = kinetic 4+ potential
dv : 2 T
V—% () [MgRsinzy MR xz][ ~gsing ]

=0
Hence, V is a Lyapunov function and the system is stable i.s.LL.. We cannot conclude
asymptotic stability with this analysis.

Consider now adding a damping torque proportional to the velocity, so that the
state-space description becomes

58'1:582

. g .
Ty = —Dxyg— =sinz
R



With this change, but the same V' as before, we find

V = —DMR%*:2 <

From this we can conclude stability i.s.L.. We still cannot directly conclude asymp-
totic stability. Notice however that V =0 = 6§ = 0. Under this condition,
§ = —(g/R)sin . Hence, 0 # 0 if 0 # kr for integer k, i.e. if the pendulum is not
vertically down or vertically up. This implies that, unless we are at the bottom or
top with zero velocity, we shall have 0 # 0 when V= 0, so 6 will not remain at
0, and hence the Lyapunov function will begin to decrease again. The only place
the system can end up, therefore, is with zero velocity, hanging vertically down or
standing vertically up, i.e. at one of the two equilibria. The formal proof of this
result in the general case (“LaSalle’s invariant set theorem”) is beyond the scope

of this course.

The conclusion of local asymptotic stability can also be obtained directly through
an alternative choice of Lyapunov function. Consider the Lyapunov function can-

didate . .
V(z) = §I% + 5(961 + 29)? 4+ 2(1 — cos z1).
It follows that
V= _(95% +rysinrg) = — — (92 +0sinf) <0

Also, 02 +fsinf =0 = 62 = 0, fsinf =0= 60 =0, 6 = 0. Hence, Vs strictly
negative in a small neighborhood around 0. This proves asymptotic stability.

Discrete-Time Systems

Essentially identical results hold for the system
w(k+1) = f(x(k))

provided we interpret V as

le. as
V(next state) — V(present state)

Example 13.7 (DT System)

Consider the system

r(k+1) = H—sz(%]{:()k)
2ok + 1) e fi’gzk)

(13.9)



which has its only equilibrium at the origin. If we choose the quadratic Lyapunov

function
V(x) = 2% + 23
we find )
V@) = V) (TammE — 1) <0

from which we can conclude that the equilibrium point is stable i.s.L. In fact,
examining the above relations more carefully (in the same style as we did for the
pendulum with damping), it is possible to conclude that the equilibrium point is
actually globally asymptotically stable.

Notes

The system in Example 2 is taken from the eminently readable text by F. Verhulst, Nonlinear
Differential Equations and Dynamical Systems, Springer-Verlag, 1990.



Exercises

Exercise 13.1 Consider the horizontal motion of a particle of unit mass sliding under the influence
of gravity on a frictionless wire. It can be shown that, if the wire is bent so that its height h is given
by h(xz) = V,(x), then a state-space model for the motion is given by

Suppose V,, (z) = 2* — az?.

(a) Verify that the above model has (z,z) = (0,0) as equilibrium point for any « in the interval
—1 < a<1,and it also has (z,z) = (07 +4/ %) as equilibrium points when « is in the interval
O0<a<l.

(b) Verify that the linearized model about any of the equilibrium points is neither asymptotically
stable nor unstable for any « in the interval —1 < a < 1.

Exercise 13.2 Consider the dynamic system described below:
§4 a1y + asy + cy® = u + 1,
where g is the output and u is the input.

(a) Obtain a state-space realization of dimension 2 that describes the above system.
(b) If a; =3, as = 2, ¢ = 2, show that the system is asymptotically stable at the origin.

(c) Find a region (a disc of non-zero radius) around the origin such that every trajectory, with an
initial state starting in this region, converges to zero as t approaches infinity. This is known as
a region of attraction.

Exercise 13.3 Consider the system

dx

where P(x) has continuous first partial derivatives. The function P(z) is referred to as the potential
function of the system, and the system is said to be a gradient system. Let T be an isolated local
minimum of P(z), i.e. P(Z) < P(z) for 0 < || — Z|| < r, some r.

(a) Show that Z is an equilibrium point of the gradient system.



(b) Use the candidate Lyapunov function
V() = Pl@) - P@)

to try and establish that Z is an asymptotically stable equilibrium point.

Exercise 13.4 The objective of this problem is to analyze the convergence of the gradient algorithm
for finding a local minimum of a function. Let f : R™ — R and assume that z* is a local minimum; i.e.,
f(@*) < f(z) for all z close enough but not equal to z*. Assume that f is continuously differentiable.
Let g7 : R — R"™ be the gradient of f:
T 0 0
(3 - 72)-
It follows from elementary Calculus that g(z*) = 0.
If one has a good estimate of =*, then it is argued that the solution to the dynamic system:

&= —g(z) (13.10)

with z(0) close to z* will give z(t) such that

. _ *
tlggo z(t) = x*.
(a) Use Lyapunov stability analysis methods to give a precise statement and a proof of the above

argument.

(b) System 13.10 is usually solved numerically by the discrete-time system
z(k+1) =z(k) — al(zr)g(zk), (13.11)

where a(zy) is some function from R™ — R. In certain situations, a can be chosen as a constant
function, but this choice is not always good. Use Lyapunov stability analysis methods for
discrete-time systems to give a possible choice for a(z) so that

lim z(k+1) =",

k—o0

(c) Analyze directly the gradient algorithm for the function

1
flx) = ixTQx, Q@ Symmetric, Positive Definite.
Show directly that system 13.10 converges to zero (= x*). Also, show that a in system 13.11
can be chosen as a real constant, and give tight bounds on this choice.

Exercise 13.5 (a) Show that any (possibly complex) square matrix M can be written uniquely as
the sum of a Hermitian matrix H and a skew-Hermitian matrix S, i.e. H' = H and S’ = —S.
(Hint: Work with combinations of M and M'.) Note that if M is real, then this decomposition
expresses the matrix as the sum of a symmetric and skew-symmetric matrix.



(b) With M, H, and S as above, show that the real part of the quadratic form 2’ Mz equals 2'Hzx,
and the imaginary part of 2’ Mx equals 2'Sz. (It follows that if M and x are real, then 2’ Mx =
x'Hz.)

(c) Let V(z) = 2’ Mz for real M and z. Using the standard definition of dV(x)/dx as a Jacobian
matrix — actually just a row vector in this case — whose jth entry is 0V (z)/0x;, show that

dV (x)

=22'H
dx v

where H is the symmetric part of M, as defined in part (a).

(d) Show that a Hermitian matrix always has real eigenvalues, and that the eigenvectors associated
with distinct eigenvalues are orthogonal to each other.

Exercise 13.6 Consider the (real) continuous-time LTI system z(t) = Az(t).

(a) Suppose the (continuous-time) Lyapunov equation
PA+AP=-TI (3.1)

has a symmetric, positive definite solution P. Note that (3.1) can be written as a linear system
of equations in the entries of P, so solving it is in principle straightforward; good numerical
algorithms exist.

Show that the function V(z) = 2’ Px serves as a Lyapunov function, and use it to deduce the
global asymptotic stability of the equilibrium point of the LTI system above, i.e. to deduce that
the eigenvalues of A are in the open left-half plane. (The result of Exercise 13.5 will be helpful
in computing V (z).)

What part (a) shows is that the existence of a symmetric, positive definite solution of (3.1) is
sufficient to conclude that the given LTI system is asymptotically stable. The existence of such
a solution turns out to also be necessary, as we show in what follows. [Instead of —I on the
right side of (3.1), we could have had —@Q for any positive definite matrix Q. It would still be
true that the system is asymptotically stable if and only if the solution P is symmetric, positive
definite. We leave you to modify the arguments here to handle this case.]

(b) Suppose the LTI system above is asymptotically stable. Now define
P= / R(t)dt ,  R(t) = e*te? (3.2)
0

The reason the integral exists is that the system is asymptotically stable — explain this in more
detail! Show that P is symmetric and positive definite, and that it is the unique solution of the
Lyapunov equation (3.1). You will find it helpful to note that

R(c0) — R(0) = /OOO %Et)dt



The results of this problem show that one can decide whether a matrix A has all its eigenvalues
in the open left-half plane without solving for all its eigenvalues. We only need to test for the
positive definiteness of the solution of the linear system of equations (3.1). This can be simpler.

Exercise 13.7 This problem uses Lyapunov’s direct method to justify a key claim of his indirect
method: if the linearized model at an equilibrium point is asymptotically stable, then this equilibrium
point of the nonlinear system is asymptotically stable. (We shall actually only consider an equilibrium
point at the origin, but the approach can be applied to any equilibrium point, after an appropriate
change of variables.)

Consider the time-invariant continuous-time nonlinear system given by

(t) = Ax(t) + h(z(t) (4.1)

where A has all its eigenvalues in the open left-half plane, and h(.) represents “higher-order terms”, in
the sense that ||h(z)||/||z]] = 0 as ||z|| — O.

(a) Show that the origin is an equilibrium point of the system (4.1), and that the linearized model at
the origin is just @(t) = Ax(¢).

(b) Let P be the positive definite solution of the Lyapunov equation in (3.1). Show that V(z) = 2/ Px
qualifies as a candidate Lyapunov function for testing the stability of the equilibrium point at
the origin in the system (4.1). Determine an expression for V(z), the rate of change of V()
along trajectories of (4.1)

(c) Using the fact that 2’x = ||z||?, and that ||Ph(z)|| < ||P||[|h(z)||, how small a value (in terms of
||P||) of the ratio ||h(z)||/||z|| will allow you to conclude that V (z(t)) < 0 for z(t) # 07 Now
argue that you can indeed limit ||h(z)||/||z|| to this small a value by choosing a small enough
neighborhood of the equilibrium. In this neighborhood, therefore, V (z(t)) < 0 for z(t) # 0. By
Lyapunov’s direct method, this implies asymptotic stability of the equilibrium point.

Exercise 13.8 For the discrete-time LTT system z(k + 1) = Ax(k), let V(z) = 2/ Pz, where P is a
symmetric, positive definite matrix. What condition will guarantee that V (x) is a Lyapunov function
for this system? What condition involving A and P will guarantee asymptotic stability of the system?
(Express your answers in terms of the positive semidefiniteness and definiteness of a matrix.)



Chapter 14

Internal Stability for LTI Systems

14.1 Introduction

Constructing a Lyapunov function for an arbitrary nonlinear system is not a trivial exercise.
The complication arises from the fact that we cannot restrict the class of functions to search
from in order to prove stability. The situation is different for LTI systems. In this chapter,
we address the question of constructing Lyapunov functions for linear systems and then we
present and verify Lyapunov indirect method for proving stability of a nonlinear system.

14.2 Quadratic Lyapunov Functions for LTI Systems

Consider the continuous-time system
&(t) = Ax(t) . (14.1)

We have already established that the system (14.1) is asymptotically stable if and only if all
the eigenvalues of A are in the open left half plane. In this section we will show that this result
can be inferred from Lyapunov theory. Moreover, it will be shown that quadratic Lyapunov
functions suffice. A consequence of this is that stability can be assessed by methods that
may be computationally simpler than eigenanalysis. More importantly, quadratic Lyapunov
functions and the associated mathematics turn up in a variety of other problems, so they are
worth mastering in the context of stability evaluation.

Quadratic Positive-Definite Functions

Comnsider the function
V(z) =a2T Pz, xeR"



where P is a symmetric matrix. This is the general form of a quadratic function in R™. It is
sufficient to consider symmetric matrices; if P is not symmetric, we can define P; = %(P +pPT).
It follows immediately that =7 Pz = 2T Pya (verify, using the fact that 27 Pz is a scalar).

Proposition 14.1 V(z) is a positive definite function if and only if all the eigenvalues of P
are positive.

Proof: Since P is symmetric, it can be diagonalized by an orthogonal matrix, i.e.,
P =UTDU with UTU = I and D diagonal.

Then, if y =Ux
V(z) =2TU'DUx =y Dy = Z Ailyil?.

Thus,
V(z) >0 VYV #0< N\, >0, Vi.

Definition 14.1 A matrix P that satisfies
2TPr >0 VYo #0 (14.2)

is called positive definite. When P is symmetric (which is usually the case of interest, for
the reason mentioned above), we will denote its positive definiteness by P > 0. If 27 Px >
0 Va #0, then P is positive semi-definite, which we denote in the symmetric case by P > 0.

For a symmetric positive definite matrix, it follows that

Amin (P)[[2]* < V(2) < Amax(P) 2.
This inequality follows directly from the proof of Proposition 14.1.
It is also evident from the above discussion that the singular values and eigenvalues of
any positive definite matrix coincide.

Exercise: Show that P > 0 if and only if P = GITG where G is nonsingular. The matrix
G is called a square root of P and is denoted by P2. Show that H is another square root
of P if and only if G = W H for some orthogonal matrix W. Can you see how to construct
a symmetric square root? (You may find it helpful to begin with the eigen-decomposition
P =UTDU, where U is orthogonal and D is diagonal.)



Quadratic Lyapunov Functions for CT LTI Systems

Consider defining a Lyapunov function candidate of the form
V(z) =Pz, P>0, (14.3)
for the system (14.1). Then

V(z) = i'Px+a2TPi
= 2TATPz+2TPAx
= 2T(ATP 4+ PA)x
= —'Qu,

where we have introduced the notation Q = —(AT P + PA); note that Q is symmetric. Now
invoking the Lyapunov stability results from Lecture 5, we see that V' is a Lyapunov function
if @ > 0, in which case the equilibrium point at the origin of the system (14.1) is stable i.s.L.
If @ > 0, then the equilibrium point at the origin is globally asymptotically stable. In this
latter case, the origin must be the only equilibrium point of the system, so we typically say
the system (rather than just the equilibrium point) is asymptotically stable.

The preceding relationships show that in order to find a quadratic Lyapunov function
for the system (14.1), we can pick @ > 0 and then try to solve the equation

ATP+ PA=-Q (14.4)

for P. This equation is referred to as a Lyapunov equation, and is a linear system of equations
in the entries of P. If it has a solution, then it has a symmetric solution (show this!), so
we only consider symmetric solutions. If it has a positive definite solution P > 0, then we
evidently have a Lyapunov function 7 Pz that will allow us to prove the asymptotic stability
of the system (14.1). The interesting thing about LTI systems is that the converse also holds:
If the system is asymptotically stable, then the Lyapunov equation (14.4) has positive definite
solution P > 0 (which, as we shall show, is unique). This result is stated and proved in the
following theorem.

Theorem 14.1 Given the dynamic system (14.1) and any @ > 0, there exists a positive
definite solution P of the Lyapunov equation

ATP+ PA=-Q

if and only if all the eigenvalues of A are in the open left half plane (OLHP). The solution P
in this case is unique.

Proof: If P > 0 is a solution of (14.4), then V(z) = ' Px is a Lyapunov function of
system (14.1) with V(x) < 0 for any x # 0. Hence, system (14.1) is (globally) asymptotically
stable and thus the eigenvalues of A are in the OLHP.



To prove the converse, suppose A has all eigenvalues in the OLHP, and @ > 0 is given.
Define the symmetric matrix P by

P = / etATQetA dt . (14.5)
0

This integral is well defined because the integrand decays exponentially to the origin, since
the eigenvalues of A are in the OLHP. Now

ATP+PA = / AT AT QetAgt + / A" QetA Adt
0 0

= /OOO % [etATQetA] dt

= —Q
so P satisfies the Lyapunov equation.
To prove that P is positive definite, note that
T T AT o A
' Pxr = / e Qe adt
0
AL tA_q2
= [TIQk a2 0

0

and .
xTPx:0:>QietAac:0:>$:0,

where Q% denotes a square root of (). Hence P is positive definite.
To prove that the P defined in (14.5) is the unique solution to (14.4) when A has all
eigenvalues in the OLHP, suppose that P is another solution. Then

< g
P, = — / = [ Pttt (verity this identity)
0

- / A" (ATP, + PyA) et
0

= / etATQetAdt:P
0

This completes the proof of the theorem.
A variety of generalizations of this theorem are known.

Quadratic Lyapunov Functions for DT LTI Systems

Consider the system
ot +1) = Ax(t) = f(2(1)) (14.6)

If
V(z) = 2T Pz,



then
Vi) 2V(f(x) - V(z) = 2T ATPAz — 2T P

Thus the resulting Lyapunov equation to study is
ATPA-P=-Q. (14.7)

The following theorem is analogous to what we proved in the CT case, and we leave its proof
as an exercise.

Theorem 14.2 Given the dynamic system (14.6) and any @ > 0, there exists a positive
definite solution P of the Lyapunov equation

ATPA+P=-Q

if and only if all the eigenvalues of A have magnitude less than 1 (i.e. are in the open unit
disc). The solution P in this case is unique.

Example 14.1 Differential Inclusion

In many situations, the evolution of a dynamic system can be uncertain. One way
of modeling this uncertainty is by differential (difference) inclusion which can be
described as follows:

x(t) C {Az(t)|A C A}

where A is a set of matrices. Consider the case where A is a finite set of matrices
and their convex combinations:

A:{A:ZaiAi| Zai =1}
i=1 i=1

One way to guarantee the stability of this system is to find one Lyapunov function
for all systems defined by A. If we look for a quadratic Lyapunov function, then
it suffices to find a P that satisfies:

ATP+PA; < —Q, i=1,2,...m

for some positive definite Q. Then V (z) = T Pz satisfies V (x) < —2zTQx (verify)
showing that the system is asymptotically stable.

Example 14.2 Set of Bounded Norm

In this problem, we are interested in studying the stability of linear time-invariant
systems of the form &(t) = (A 4+ A)x(t) where A is a real matrix perturbation
with bounded norm. In particular, we are interested in calculating a good bound
on the size of the smallest perturbation that will destabilize a stable matrix A.



This problem can be cast as a differntial inclusion problem as in the previous

example with
A={A+ A|||A]| <7, A is a real matrix}

Since A is stable, we can calculate a quadratic Lyapunov function with a matrix
P satisfying ATP + PA < —Q and Q is positive definite. Applying the same
Lyapunov function to the perturbed system we get:

V(z)=2" (ATP+PA+ATP+PA)x
It is evident that all perturbations satisfying
ATP+PA<Q
will result in a stable system. This can be guaranteed if

2Umar(P)Umaw(A) < Umzn(Q)

This provides a bound on the perturbation although it is potentially conservative.

Example 14.3 Bounded Perturbation

Casting the perturbation in the previous example in terms of differential inclusion
introduces a degree of conservatism in that the value A takes can change as a
function of time. Consider the system:

#(t) = (A+ A)(t)

where A is a known fixed stable matrix and A is an unknown fixed real perturba-
tion matrix. The stability margin of this system is defined as

v(A4) = min {[|A|| A+ A is unstable }.
AcR™*™

We desire to compute a good lower bound on y(A). The previous example gave

one such bound.

First, it is easy to argue that the minimizing solution A, of the above problem
results in A + Ay having eigenvalues at the imaginary axis (either at the origin,
or in two complex conjugate locations). This is a consequence of the fact that
the eigenvalues of A + pAj will move continuously in the complex plane as the
parameter p varies from 0 to 1. The intersection with the imaginary axis will
happen at p = 1; if not, a perturbation of smaller size can be found.

We can get a lower bound on v by dropping the condition that A is a real matrix,
and allowing complex matrices (is it clear why this gives a lower bound?). We can
show:

in {||A]|| A+ A is unstable } = min omin (A — jwl).
Jluin {[IA]] is unstable } gélﬁgmzn( jwl)



To verify this, notice that if the minimizing solution has an eigenvalue at the
imaginary axis, then jwol —A— A should be singular while we know that jwg—A is
not. The smallest possible perturbation that achieves this has size o in (A —jwol).
We can then choose wy that gives the smallest possible size. In the exercises, we
further improve this bound.

14.3 Lyapunov’s Indirect Method: Analyzing the Lineariza-
tion

Suppose the system
&= f(x) (14.8)

has an equilibrium point at T = 0 (an equilibrium at any other location can be dealt with
by a preliminary change of variables to move that equilibrium to the origin). Assume we can
write

f(z) = Az + h(x)

where
Il _,

[Jf|=0 |||

i.e. h(x) denotes terms that are higher order than linear, and A is the Jacobian matrix
associated with the linearization of (14.8) about the equilibrium point. The linearized system
is thus given by

i=Ax. (14.9)

We might expect that if (14.9) is asymptotically stable, then in a small neighborhood around
the equilibrium point, the system (14.8) behaves like (14.9) and will be stable. This is made
precise in the following theorem.

Theorem 14.3 If the system (14.9) is asymptotically stable, then the equilibrium point of
system (14.8) at the origin is (locally) asymptotically stable.

Proof: If system (14.9) is asymptotically stable, then for any @ > 0, there exists P > 0 such
that
ATP+PA=-Q

and V(z) = 27 Px is a Lyapunov function for system (14.9). Consider V(x) as a Lyapunov
function candidate for system (14.8). Then
V(z) = 2T(ATP+ PA)x + 22T Ph(x)
< Anin @l + 2l - I s (P)

~ [rain(@ — 220 P) LN o

IN



From the assumption on h, for every € > 0, there exists r > 0 such that
[h(2)]] <ellzll, V=] <7
This implies that V is strictly negative for all ||2|| < r, where r is chosen for

Amin (Q)

€< 2)\max(P)'

This concludes the proof.

Notice that asymptotic stability of the equilibrium point of the system (14.8) can be
concluded from the asymptotic stability of the linearized system (14.9) only when the eigen-
values of A have negative real parts. It can also be shown that if there is any eigenvalue of A
in the right half plane, i.e. if the linearization is exponentially unstable, then the equilibrium
point of the nonlinear system is unstable. The above theorem is inconclusive if there are
eigenvalues on the imaginary axis, but none in the right half plane. The higher-order terms of
the nonlinear model can in this case play a decisive role in determining stability; for instance,
if the linearization is polynomially (rather than exponentially) unstable, due to the presence
of one or more Jordan blocks of size greater than 1 for eigenvalues on the imaginary axis (and
the absence of eigenvalues in the right half plane), then the higher-order terms can still cause
the equilibrium point to be stable.

It turns out that stronger versions of the preceding theorem hold if A has no eigenvalues
on the imaginary axis: not only the stability properties of the equilibrium point, but also the
local behavior of (14.8) can be related to the behavior of (14.9). We will not discuss these
results further here.

Similar results hold for discrete-time systems.

Example 14.4
The equations of motion for a pendulum with friction are
¥ = g
Ty = —x9—sina

The two equilibrium points of the system are at (0,0) and (m,0). The linearized
system at the origin is given by

LE'1 = T2
Ty = —T1— T2
or

. 0 1
x—[_l _I]x—Ax.



This A has all its eigenvalues in the OLHP. Hence the equilibrium point at the
origin is asymptotically stable. Note, however, that if there were no damping, then
the linearized system would be
T = 0 1 x
=10

and the resulting matrix A has eigenvalues on the imaginary axis. No conclusions
can be drawn from this situation using Lyapunov linearization methods. Lya-
punov’s direct method, by contrast, allowed us to conclude stability even in the
case of zero damping, and also permitted some detailed global conclusions in the
case with damping.

The linearization around the equilibrium point at (,0) is
Z'l = 29
22 = 421 — 29

where 21 = 11 — 7 and 22 = w9, so these variables denote the (small) deviations of
1 and xo from their respective equilibrium values. Hence

0 1
A—ll _llaj—Ax,

which has one eigenvalues in the RHP, indicating that this equilibrium point is
unstable.



Exercises

Exercise 14.1 Bounded Perturbation Recall Example 14.3. In this problem we want to improve
the lower bound on y(A4).

(a) To improve the lower bound, we use the information that if A is real, then poles appear in complex

conjugate pair. Define
A wl
Aw = (—wl A > ’

v(A4) > min opmin[Aw]-
wE]R

Show that

(b) If you think harder about your proof above, you will be able to further improve the lower bound.
In fact, it follows that

V(A) Z min 0—2n71[Aw]
we

where 02,1 is the next to last singular value. Show this result.

Exercise 14.2 Consider the LTI unforced system given below:

0 1 0 0 0
0 0 1 0 0
T = Ax = . T
—aN—1 —aN—-2 ... ... ... —Qp

(a) Under what conditions is this system asymptotically stable?

Assume the system above is asymptotically stable. Now, consider the perturbed system

&= Ax + Az,
where A is given by
0 0 0 0o ... 0
0 0 0 0o ... 0
A= : : : : : : J o € R.
—0N_1 —ON—2 .. . ... —0p

(b) Argue that the perturbation with the smallest Frobenius norm that destabilizes the system (makes
the system not asymptotically stable) will result in A+ A having an eigenvalue at the imaginary
axis.

(c) Derive an exact expression for the smallest Frobenius norm of A necessary to destabilize the above
system (i.e., # = (A+ A)z is not asymptotically stable). Give an expression for the perturbation
A that attains the minimum.

(d) Evaluate your answer in part 3 for the case N =2, and ap = a1.



Exercise 14.3 Periodic Controllers

(a) Show that the periodically varying system in Exercise 7.4 is asymptotically stable if and only if
all the eigenvalues of the matrix [Ay_;...4p] have magnitude less than 1.

(b) (i) Given the system

x(k+1):((1) _11>x(k)+(?>u(k), y(k) = (1 1)a(k)

write down a linear state-space representation of the closed-loop system obtained by implement-
ing the linear output feedback control (k) = g(k)y(k).

(ii) It turns out that there is no constant gain g(k) = g for which the above system is asymp-
totically stable. (Optional: Show this.) However, consider the periodically varying system
obtained by making the gain take the value —1 for even k and the value 3 for odd k. Show that
any nonzero initial condition in the resulting system will be brought to the origin in at most 4
steps. (The moral of this is that periodically varying output feedback can do more than constant
output feedback.)

Exercise 14.4 Delay Systems
The material we covered in class has focused on finite-dimensional systems, i.e., systems that
have state-space descriptions with a finite number of state variables. One class of systems that does
not belong to the class of finite-dimensional systems is continuous-time systems with delays.
Consider the following forced continuous-time system:

y(t) + a1yt — 1)+ ay(t —2)+...+any(t — N)=u(t) t>N,teR.

This is known as a delay system with commensurate delays (multiple of the same delay unit). We
assume that u(t) =0 for all t < N.

(a) Show that we can compute the solution y(t), ¢ > N, if y(t) is completely known in the interval
[0,N). Explain why this system cannot have a finite-dimensional state space description.

(b) To compute the solution y(¢) given the initial values (denote those by the function f(t), t € [0, N),
which we will call the initial function) and the input u, it is useful to think of every non-negative
real number as ¢t = 7+ k with 7 € [0,1) and k being a non-negative integer. Show that for every
fixed 7, the solution evaluated at 7+ k (y(7 + k)) can be computed using discrete-time methods
and can be expressed in terms of the matrix

0 1 0 O 0
0 0 1 0 0
A= .
—aN —aN—-1 .- .. ... —Q1

and the initial vector
(f(r) f(r+1) ... fG+N-=-1)".

Write down the general solution for y(t).



(c) Compute the solution for N = 2, f(t) = 1 for t € [0,2), and u(t) = e=*=2) for t > 2.

(d) This system is asymptotically stable if for every € > 0, there exists a § > 0 such that for all initial
functions with |f(¢)| < d,t € [0, N), and u = 0, it follows that |y(¢)| < €, and lim;—, o y(t) = 0.
Give a necessary and sufficient condition for the asymptotic stability of this system. Explain
your answer.

(e) Give a necessary and sufficient condition for the above system to be BIBO stable (co-stable).
Verify your answer.

Exercise 14.5 Local Stabilization

(a) One method for stabilizing a nonlinear system is to linearize it around an equilibrium point and
then stabilize the resulting linear system. More formally, consider a nonlinear time-invariant
system

i‘:f(l‘,u)

and its linearization around an equilibrium point (Z, @)
bz = Adx + Bou.

As usual, dz = x — 7 and du = u — @. Suppose that the feedback du = Kz asymptotically
stabilizes the linearized system.

1. What can you say about the eigenvalues of the matrix A + BK.
2. Show that & = f(z, Kz) is (locally) asymptotically stable around Z.

(b) Consider the dynamic system S; governed by the following differential equation:
G+t +9%u+y>=0

where v is the input.

1. Write down a state space representation for the system S; and find its unique equilibrium
point z*.

2. Now try to apply the above method to the system S; at the equilibrium point x* and
u* = 0. Does the linearized system provide information about the stability of S;. Explain
why the method fails.

(c) To find a stabilizing controller for S;, we need to follow approaches that are not based on local
linearization. One approach is to pick a positive definite function of the states and then construct
the control such that this function becomes a Lyapunov function. This can be a very frustrating
exercise. A trick that is commonly used is to find an input as a function of the states so that
the resulting system belongs to a class of systems that are known to be stable (e.g. a nonlinear
circuit or a mechanical system that are known to be stable). Use this idea to find an input u as
function of the states such that S; is stable.



Exercise 14.6 For the system

& (t) = sinfz(t) + y(1)]

g(t) = e*® —1
determine all equilibrium points, and using Lyapunov’s indirect method (i.e. linearization), classify
each equilibrium point as asymptotically stable or unstable.

Exercise 14.7 For each of the following parts, all of them optional, use Lyapunov’s indirect method
to determine, if possible, whether the origin is an asymptotically stable or unstable equilibrium point.

(a)

j:l = —x1 + l‘%
To = —562(501 + 1)
(b)
j:l = 1‘? + i)
j?g =T — T2
(c)
T1 = —x1 + X2

. 2
Ty = —T2 + 2]

(d)

(e)
z1(k+1) =1 — emr(Rz2(k)

l‘g(k + 1) = CCl(k) + 2$Q(k)

Exercise 14.8 For each of the nonlinear systems below, construct a linearization for the equilibrium
point at the origin, assess the stability of the linearization, and decide (using the results of Lyapunov’s
indirect method) whether you can infer something about the stability of the equilibrium of the nonlin-
ear system at the origin. Then use Lyapunov’s direct method prove that the origin is actually stable
in each case; if you can make further arguments to actually deduce asymptotic stability or even global
asymptotic stability, do so. [Hints: In part (a), find a suitable Lyapunov (energy) function by inter-
preting the model as the dynamic equation for a mass attached to a nonlinear (cubic) spring. In parts
(b) and (c), try a simple quadratic Lyapunov function of the form pz? + ¢y?, then choose p and ¢
appropriately. In part (d), use the indicated Lyapunov function.]



() 3 2
-y

y=zy—y°

T=-T

(c)

l‘z(k)
1+ 23(k)
_ (k)
- 1+ a23(k)

SCl(k—l- 1) =

JCQ(kJ + 1)

(d)
&=yl -z
y=-z(l-y)
Vizgy)=—xz—In(l—2) —y—In(1 —vy)



Chapter 15

External Input-Output Stability

15.1 Introduction

In this lecture, we introduce the notion of external, or input-output, stability for systems.
There are many connections between this notion of stability and that of Lyapunov stability
which we discussed in the previous two chapters. We will only make the connection in the LTI
case. In addition, we will point out the fact that the notion of input-output stability depends
in a non-trivial fashion on the way we measure the inputs and the outputs.

15.2 Signal Measures

The signals of interest to us are defined as maps from a time set into R". A continuous-time
signal is a map from R — R”, and a discrete-time signal is a map from Z — R". If n = 1 we
have a scalar signal, otherwise we have a vector-valued signal. It is helpful, in understanding
the various signal measures defined below, to visualize a discrete-time signal w(k) as just
a vector of infinite (or, if our signal is defined only for non-negative time, then a vector of
semi-infinite) length or dimension, concretely representing it as the array

wO) | o | w(y) | (15.1)

Three of the most commonly used DT signal measures are then natural generalizations of
the finite-dimensional vector norms (co-, 2- and 1-norms) that we have already encountered
in earlier chapters, generalized to such infinite-dimensional vectors. We shall examine these
three measures, and a fourth that is related to the 2-norm, but is not quite a norm. We shall
also define CT signal measures that are natural counterparts of the DT measures.



The signal measures that we study below are:
1. peak magnitude (or oo-norm);
2. energy (whose square root is the 2-norm);
3. power (or mean energy, whose square root is the “rms” or root-mean-square value);

4. “action” (or 1-norm).

Peak Magnitude: The co-Norm

The oo-norm ||w||~ of a signal is its peak magnitude, evaluated over all signal components
and all times:

lwl| o 2 max magnitude of w

1>

sup max |w; (k)| = sup||w(k)||eo (for DT systems) (15.2)
koot k

supmax |w;(t)| = sup [|w(t)]|s (for CT systems) (15.3)
£ i t

where w;(k) indicates the i-th component of the signal vector w(k). Note that ||w(k)|c
denotes the oo-norm of the signal value at time k, i.e. the familiar oo norm of an n-vector,
namely the maximum magnitude among its components. On the other hand, the notation
|lw]|so denotes the co-norm of the entire signal. The “sup” denotes the supremum or least
upper bound, the value that is approached arbitrarily closely but never (i.e., at any finite
time) exceeded. We use “sup” instead of “max” because over an infinite time set the signal
magnitude may not have a maximum, i.e. a peak value that is actually attained — consider,
for instance, the simple case of the signal

1

- —,
1+ |k

which does not attain its supremum value of 1 for any finite k.

Note that the DT definition is the natural generalization of the standard oco-norm for
finite-dimensional vectors to the case of our infinite vector in (15.1), while the CT definition is
the natural counterpart of the DT definition. This pattern is typical for all the signal norms
we deal with, and we shall not comment on it explicitly again.

Example 15.1 Some bounded signals:
(a) Forw(t) =1, teR, t>0
[wlloo =1



The space of all signals with finite co-norm are generally denoted by ¢~ and Lo,
for DT and CT signals respectively. For vector-valued signals, the size of the
vector may be explicitly added to the symbol, e.g., (% . These form normed-vector
spaces.

Energy and the 2-Norm

The 2-norm of a signal is the square root of its “energy”, which is in turn defined as the sum
(in DT) or integral (in CT) of the squares of all components over the entire time set:

A .
|lw|l, = square-root of energy in w

= [Z wT(k)w(k)] 2 = lz ||w(k)||%] 2 (for DT systems) (15.4)
k k
2 {/ufaﬁuwd45 - Ll”w@ﬂ@d4§ (for CT systems) . (15.5)
Example 15.2 Some examples:

(b) For w(t) =1 and time set ¢ > 0O:

lwlly = oo
(¢) For w(t) = cosw,t and time set t > 0:
lwlly = oo.

These examples suggest that bounded-energy signals go to zero as time progresses. For
discrete-time signals, this expectation holds up: if |w||, < oo, then ||w(k)| — 0 as k — oo.
However, for continuous-time signals, the property of having bounded energy does not imply
that ||w(t)|| — 0 as t — oo, unless additional assumptions are made. This is because
continuous-time bounded energy signals can still have arbitrarily large excursions in ampli-
tude, provided these excursions occur over sufficiently narrow intervals of time that the integral
of the square remains finite — consider, for instance, a CT signal that is zero everywhere,
except for a triangular pulse of height k& and base 1/k* centered at every nonzero integer value
k. If the continuous-time signal w(t) is differentiable and both w and its derivative w have
bounded energy (which is not the case for the preceding triangular-pulse example), then it is
true that ||w(t)|| — 0 as t — oco. The reader may wish to verify this fact.

It is not hard to show that DT or CT signals with finite 2-norms form a vector space.
On the vector space (9 (respectively L£5) of DT (respectively CT) signals with finite 2-norm,
one can define a natural inner product as follows, between signals x and y:

mwélzwmwl (for DT systems) (15.6)
k



2

/xT(t)y(t) dt] (for CT systems) . (15.7)

(The 2-norm is then just the square root of the inner product of a signal with itself.) These
particular infinite-dimensional inner-product vector spaces are of great importance in appli-
cations, and are the prime examples of what are known as Hilbert spaces.

Power and RMS Value

Another signal measure of interest is the “power” or mean energy of the signal. One also often
deals with the square root of the power, which is commonly termed the “root-mean-square”
(or “rms”) value. For a signal w for which the following limits exist, we define the power by

[ N-l
P, 2 lim [— Z wT(k)w(k)] (for discrete — time systems)  (15.8)
N—oo | 2N
k=—(N-1)
2 lim [ / w? dt] (for continuous — time systems) . (15.9)
L—oo | 2L

(The above definitions assume that the time set is the entire time axis, but the necessary
modifications for other choices of time set should be obvious.) We shall use the symbol p,,
to denote the rms value, namely \/P,. The reason that p, is not a norm, according to the
technical definition of a norm, is that p,, = 0 does not imply that w = 0.

Example 15.3 Some finite-power signals:
(a ) For w(t) =
=1
(b ) w(t) such that |Jw||, < oo:
=0
(c) For w( ) = coswot (with t € R or t € Z):
Pw = \/5-

Example ¢) points out an important difference between bounded power and bounded energy
signals: unlike bounded energy signals, if p,, < 00, the signal doesn’t necessarily decay to
Zero.

As a final comment on the definition of the power of a signal, we elaborate on the hint
in the preamble to our definition that the limit required by the definition may not exist for
certain signals. The limit of a sequence or function (in our case, the sequence or function is the
set of finite-interval rms values, considered over intervals of increasing length) may not exist
even if the sequence or function stays bounded, as when it oscillates between two different
finite values. The following signal is an example of a CT signal that is bounded but does not
have a well-defined power, because the required limit does not exist:

(1) = 1 if t €[22k, 2241 for £ =0,1,2,...
Y=Y 0 otherwise



Also note that the desired limit may exist, but not be finite. For instance, the limit of a
sequence is +oo if the values of the sequence remain above any chosen finite positive number
for sufficiently large values of the index.

Action: The 1-Norm

The 1-norm of a signal is also sometimes termed the “action” of the signal, which is in turn
defined as the sum (in DT) or integral (in CT) of the 1-norm of the signal value at each time,
taken over the entire time set:

lwll, 2 action of w

1>

lz llw (k) Hl] (for discrete — time systems) (15.10)
k

(1>

{/ llw(t)|]1 dt] (for continuous — time systems) . (15.11)

Recall that ||w(k)|| for the n-vector w(k) denotes the sum of magnitudes of its components.
The space of all signals with finite 1-norm are generally denoted by ¢; and £y for DT
and CT signals respectively. These form normed-vector spaces.
We leave you to construct examples that show familiar signals of finite and infinite 1-
norm.

Relationships Among Signal Measures

a) If w is a discrete-time sequence, then

lw|l, < oo = |lw],, < oo (15.12)

but
[wl]ly < o0 #= [lwl|, < oo (15.13)

b) If w is a continuous-time signal, then

Jlly < s0 = ], < oc. (15.14)

and
el < 00 #= flwll, < ox. (15.15)

c) If ||w||,, < oo, then (when p,, exists)

pw < Jlwllog



Item a) is true because of the relationship between energy and magnitude for discrete-time
signals. Since the energy of a DT signal is the sum of squared magnitudes, if the energy is
bounded, then the magnitude must be bounded. However, the converse is not true —take for
example, the signal w(k) = 1. As item b) indicates, though, bounded energy implies nothing
about the boundedness of magnitude for continuous time signals.

(Many more relationships of the above form can be stated.)

15.3 Input-Output Stability

At this point, it is important to make a connection between the stability of a system and its
input-output behavior. The most important notion is that of ¢,-stability (p-stability).

Definition 15.1 A system with input signal « and output signal y that is obtained from u
through the action of an arbitrary operator H, so y = H(u), is (,-stable or p-stable (p =
1, 2, co) if there exists a finite C' € R such that

1yllp < Cllull (15.16)
for every input u.

A p-stable system is therefore characterized by the requirement that every input of finite
p-norm gives rise to an output of finite p-norm. For the case p = 0o, this notion is known
as Bounded-Input Bounded-Output (BIBO) stability. We will see that BIBO stability is
equivalent to p-stability for finite-dimensional LTI state-space systems, but not necessarily in
other cases.

Example 15.4 The system described by one integrator:
y=u

is not BIBO stable. A step input is mapped to a ramp which is unbounded. It is
not hard to see that this system is not p-stable for any p.

15.3.1 BIBO Stability of LTI Systems

A continuous-time LTI system may be characterized by its impulse response matriz, H(-),
whose (7, 7)th entry h;;(-) is the impulse response from the jth input to the ith output. In
other words the input-output relation is given by

y(t) = /H(t— Pu(r)dr .

Theorem 15.1 A CT LTI system with m inputs, p outputs, and impulse response matrix
H(t) is BIBO stable if and only if

m

hiqi(t)| dt .



Proof: The proof of sufficiency involves a straightforward computation of bounds

input signal that satisfies ||u||sc < o0, i.e. a bounded signal, then we have

u(t) = [ Mt = ru(rdr,

and

imax |yi(t)] = max

/ Z hij(t — T)uj(7)dr
j=1

IN

{max/z |hij(t —7)] dT} max sup |u;(t)|.
e ; J t
It follows that

1l = supmax|y:(t)] < [m,axz / |hij<t>|dt] Julloe < co.
J

. Ifwis an

In order to prove the converse of the theorem, we show that if the above integral is
infinite then there exists a bounded input that will be mapped to an unbounded output. Let
us consider the case when p = m = 1, for notational simplicity (in the general case, we can
still narrow the focus to a single entry of the impulse response matrix). Denote the impulse

response by h(t) for this scalar case. If the integral

/|h(t)| dt

is unbounded then given any (large) M there exists an interval of length 27" such that

T
/ ()] dt > M.
-7
Now by taking the input ups(t) as

£ — sgn(h(=t)) -T <t<T
mit) =1 it > T ’

we obtain an output yys(t) that satisfies

sup [y (B)] = yu (0) - =



In other words, for any M > 0, we can have an input whose maximum magnitude is 1 and
whose corresponding output is larger than M. Therefore, there is no finite constant C' such
that the inequality (24.3) holds.

Further reflection on the proof of Theorem 15.1 reveals that the constant ||H||; defined by
I#ll = max Y [ Jhis (0]
J

is the smallest constant C' that satisfies the inequalty (24.3) when p = oco. This number is
called the ¢;-norm of #H(t). In the scalar case, this number is just the ¢;—norm of h(-),
regarded as a signal.

The discrete-time case is quite similar to continuous-time where we start with a pulse
response matriz, H(-), whose (i, j)th entry h;;(-) is the pulse response from the jth input to
the ith output. The input-output relation is given by

y(t) =Y H(t = 1)u(7) .

Theorem 15.2 A DT LTI system with m inputs, p outputs, and pulse response matrix H ()
is BIBO stable if and only if

m

112%»; Zt: |haj(t)| < oo.

=1

In addition, the constant ||H||; defined by

1Ml = m?XZ > |hij(t)]
F

is the smallest constant C' that satisfies the inequalty (24.3) when p = co. We leave the proof
of these facts to the reader.

Application to finite-dimensional State-Space Models

Now consider the application to the following causal CT LTI system in state-space form (and
hence of finite order):

t = Ax+ Bu (15.17)
= Cx+ Du (15.18)

The impulse response of this system is given by

H(t) = CeMB + Dé(t) fort >0



which has Laplace transform
H(s)=C(sI— A 'B+D
The system (15.18) is BIBO stable if and only if the poles of H(s) are in the open left half

plane. (We leave the proof to you.) This is in turn guaranteed if the system is asymptotically
stable, i.e. if A has all its eigenvalues in the open left half plane.

Example 15.5 BIBO Stability Doesn’t Imply Asymptotic Stability
It is possible that a system be BIBO stable and not asymptotically stable. Consider

the system
. (0 1 n 0
T = 1 0)° e

y = (1 1)z

This system is not stable since A has an eigenvalue at 1. Nevertheless, thanks
to a pole-zero cancellation, the only pole that H(s) has is at —1, so the system
is BIBO stable. We shall have much more to say about such cancellations in the
context of reachability, observability, and minimality (the example here turns out
to be unobservable).

Marginal stability of an LTI system, i.e., stability in the sense of Lyapunov but without
asymptotic stability, is not sufficient to guarantee BIBO stability. For instance, consider a
simple integrator, whose transfer function is 1/s.

Time-Varying and Nonlinear Systems

Although there are results connecting Lyapunov stability with I/O stability for general time-
varying and nonlinear systems, they are not as powerful as the linear time-invariant case. In
particular, systems may be I/O stable with respect to one norm and not stable with respect
to another. Below are some examples illustrating these facts.

Example 15.6 A Time-Varying System
Consider the time-varying DT system given by:
y(t) = H(u)(t) = u(0).
H is obviously oco-stable with gain less than 1. However, it is not 2-stable.
Example 15.7 A Nonlinear System
Consider the nonlinear system given by:
T =—x+e"u, y=ux.

The unforced system is linear and is asymptotically stable. On the other hand the
system is not I/O stable. To see this, consider the input u(¢t) = 1. Since e* > z,
& is always strictly positive, indicating that x is strictly increasing. Hence, for a
bounded input, the output is not bounded.



15.3.2 p-Stability of LTI Systems (optional)

In this section we will continue our analysis of the p-stability of systems described through
input-output relations. Let us start with the continuous-time case, and restrict ourselves to
single-input single-output. The input wu(t) is related to the output y(¢) by

y(t) = /h(t — u(r)dr

where h(t) is the impulse response. The following theorem shows that the constant C' in 24.3
is always bounded above by ||A]|;.

Theorem 15.3 If ||h|; < oo and |ul|, < co then ||y||, < oo and furthermore

1ylly < [1Pllaflellp -

Proof: In Theorem 15.1 we have already established this result for p = oo. In what follows

p = 1,2. The output y(t) satisfies
P = I s ) oF =| [~ b= ryatr) drf < ([~ wte =l i) ar)”

therefore,

ncaly = [ wew@pdes [T ([T pe—nl @) ) ar.

— 00 — 00 — 00

Next we analyze the inner integral

[ =l u@ldar = [ = o ng = 0 () dr

< ([T me=niar)" ([ me e ar)”

where the last inequality follows from Minkowski’s inequalities, and % + % = 1. Hence,

/_O; </_°; Ih(t — 7)] dT)p/q (/_o:o Wt — 7)] [u(r)]? d7> dt

s ([ inte =) futryp ar) e

— 00

= W[ [t =l )l dr de

— 1R [ e ([ me = at) ar
= W [ty ar

— 00

IN

172wl

I flly



Therefore

17 wllp < [lAlly [lullp -

Recall that when p = oo, ||h||; was the smallest constant for which the inequality ||y, <
Cl|ul|, for all w. This is not the case for p = 2, and we will see later that a smaller constant
can be found. We will elaborate on these issues when we discuss systems’ norms later on in
the course. The discrete-time case follows in exactly the same fashion.

Example 15.8 For a finite-dimensional state-space model, a system H is p-stable
if and only if all the poles of of H(s) are in the LHP. This coincides with BIBO
stability.



Exercises

Exercise 15.1 Non-causal Systems In this chapter, we only focused on causal operators, although
the results derived were more general. As an example, consider a particular CT LTI system with a
bi-lateral Laplace transform:

s+ 2
(s—2)(s+1) "

G(s) =
(a) Check the p-stability and causality of the system in the following cases:

(i) the ROC (Region of Convergence) is Ry = {s € C| Re(s) < —1} where Re(s) denotes the
real part of s;

(ii)the ROCis Ry = {s € C| —1 < Re(s) < 2};
(iii) the ROC is R3 = {s € C| Re(s) > 2}.
(b) In the cases where the system is not p-stable for p = 2 and p = oo, find a bounded input that

makes the output unbounded, i.e., find an input v € L, that produces an output y € L,, for
p =2, 0.

Exercise 15.2 In nonlinear systems, p-stability may be satisfied in only a local region around zero.
In that case, a system will be locally p-stable if:

IGully < Cllull,,  for all u with [jull, < 8
Consider the system:
& = Ax+ Bu
z = Cx+ Du
y = 9y

Where ¢ is a continuous function on [T, T']. Which of the following systems is p-stable, locally
p-stable or unstable for p > 1:

(a) g(z) = cosz.
(b) g(z) =sinz.

(c) g(z) = Sat(z) where
z |z| <1

Sat(z) = { 1 2] >1



Chapter 16

System Norms

16.1 Introduction

As in the matrix case, the measure on a system should be induced from the space of signals
it operates on. Thus, the size of a system is best measured by the maximum amplification it
exerts on a set of signals with unit norm. Let us denote by || H]||,; the induced norm of the
system G as it operates on L, ({p), i.e.,

[ Hull
[1H |lpi = sup .

. (16.1)
w0 |ullp

Observe that a system G is p-stable if and only if ||H||,; is finite. In particular, the induced
norm is the smallest constant C' such that [|y||, < C|lu||,. In this chapter, we calculate the
induced norms over finite-amplitude signals and over finite-energy signals.

16.2 L.-Induced Norm

A continuous-time LTI system may be characterized by its impulse response matriz, H(-),
whose (7, 7)th entry h;;(-) is the impulse response from the jth input to the ith output. In
other words the input-output relation is given by

y(t) = /”H(t— Pu(r)dr .

Theorem 16.1 The L-induced norm of a CT LTI system with m inputs, p outputs, and
impulse response matrix H(t) is given by v

Il = oo 32 f Vs 0



Proof: If u is an input signal that satisfies ||u]|s < 00, i.e. a bounded signal, then we have

y(t) = /H(t — 7)u(T)dT,

and

max [yi(t)] = max

/Zhij(t - T)Uj(T) dr
j=1

IN

[m;@x/z Ihij (t —T)|dT] maxsup fuy (1)

It follows that
I/l = supmax|y; (1) < {mgxz / |hij<t>|dt} Julloe < cc.
J

To show that the above upper bound can be achieved, we show that for any small number
e > 0 we can exhibit an input whose peak magnitude is 1 and that results in an output whose
peak magnitude is larger than |||, —e. We will do this for the case when p = m = 1 where
the impulse response is h(t), for notational simplicity. Since h(t) is absolutely integrable, for
any given € > 0 there exists a time 7" such that

T
/T|h(t)|dt > |kl — .

Now choose the input

_ ) sgn(h(=t)) -T<t<T
UT(t) = { 0 |t| T s

we get
T
sup[y(t)] = Iy(O)IZI[Th(O—T)uT(T)dTI

T

_ / IB(0 — 7)|dr
T

> (||h||1—6)81;p|UT(t)|

= |kl —e

This induced norm is called the £1-norm of #H(t). In the scalar case, this number is just
the £1—norm of h(-), regarded as a signal.



l(+-Induced Norm

The discrete-time case is quite similar to continuous-time where we start with a pulse response
matriz, H(-), whose (i, j)th entry h;;(-) is the pulse response from the jth input to the ith
output. The input-output relation is given by

y(t) =Y H(t = 1)ulr) .

Theorem 16.2 The (. ,-induced norm of a DT LTI system with m inputs, p outputs, and
pulse response matrix H(t) is:

m
hi (£)].
lrg%jzzztjl i ()]

This induced norm is called the ¢; norm of the system H.

16.3 Ls-Induced Norm

A CT LTI system is, in general, characterized by the impulse response matrix function #(-).
Here, we will also assume that the system is causal and its Laplace transform exists in some
right half plane in the complex plane, and is denoted by H(s). The input-output relation is
then given by

Y(s)=H(s)U(s).

It is evident that if H(s) has a pole in the RHP, then it is not Lo-stable (verify!). To calculate
Lo-induced norm, we will assume that H(s) is analytic in the open RHP (no poles in the open
RHP).

Theorem 16.3 The Ls-induced norm of a causal, CT LTI system H (s) which is analytic in
the open RHP is

sg}p Omax [H(jw)] .

Proof: Recall Parseval’s equality,
2 1 o0 ! . .
Iyl = o= [ Y'Y (juw)dw.
™ J—c

Using this equality we can get the following bound on ||y/|2:

3 < 5= | G [HGWIU o)V Gro)dw < sup o [H ()] [l

— max max
27 J o

To show that this bound is tight, we need to show that if oax [H (jwg)] > ¢ then there exists
an input with 2-norm equal to one, that produces an output with 2-norm arbitrarily close



to c. If H is a SISO system, then the construction of such an input is straightforward; pick
u(t) = %e‘j“’Ot, 0 <t <T. Then, as T approaches infinity, the ||y||2 approaches H(jwp). In
the general MIMO case, this signal is multiplied by the singular vector associated with the
largest singular value of H(jwg). The details of this are left as an exercise.

l5-Induced Norm

A DT LTT causal system with a unit sample response H has a Z- Transform, H(z), which is
analytic outside some disc in the complex plain. Here we assume that H(z) is analytic outside
the unit disc.

Theorem 16.4 The (3-induced norm of a causal, CT LTI system H(z) which is analytic
outside the open unit disc is

SUP Omax [H(ejw)] .

The quantity sup,, Omax [H (jw)] is known as the Hoo-norm of the system. It measures
the maximum energy amplification of finite energy inputs. It turns out (See Exercise 16.1)
that this measures the maximum amplification over signals with finite power. In the SISO
case, the Ho.-norm corresponds to the peak value of the Bode plot.

Computation of ||H||_ for Continuous-time Systems

One method of computing || H || for a CT system would be to sample the function ¢4, [H (jw)]
over a number of points in w € [0,00). In principle, if one samples finely enough, the location
of the peak singular value can be found; however, what constitutes a sufficiently fine sampling
of O pmax [H(jw)] in the frequency domain? For example, a high order system may have a fre-
quency response which moves around considerably, with a large number of peaks and valleys.
An alternative approach is to use a state space technique, which we will now discuss.

Theorem 16.5 Let H(s) be a transfer function derived from a stable linear time-invariant
system with description (A, B,C,0) (assume D = 0). Define

l A lBBT]
vy

M —%CTC —AT

=
Then, the ||H||,, <~ if and only if M, has no purely imaginary eigenvalues.
Proof: First, observe that

|Hl|, <y = I- %H'(jw)H(jw) is invertible for all w € R
-1

1
— |I- —ZHT(—8>H(8> has no poles on the imaginary axis
Y



The first equivalence follows directly from the definition of the H,, norm. The converse relies
on the strict properness of of H, i.e., if |H||oc > = then there exists at least one frequency
that hits this bound. The second equivalence is straightforward.

Now, we show that M, is the A matrix of (I — 5 HT(—s)H(s))~. This is done by
constructing a realization of the system shown in Figure 16.1.

+ >
+

LHT(—s) [ LH(s) <
v — 2l —
Y2 U2 = Y1 Uy =y

Figure 16.1: Construction of [I — 7—12HT(—3)H(3)]

Notice that for this system, the transfer function mapping u to y is [I — 7—12HT(—3)H(3)] -
Since H(s) ~ (A, B,C,0), it follows that H' (—s) ~ (—=A",—C",B” 0). The composite
system can be described as

5‘81 = ASEl + By
1
n = —Cm
Y
j?g = —ATJ?Q — C’Ty1
1
y» = —Blaxy
Yy = u-+ys.
By eliminating the internal signals y; and ys we get the following realization of the closed-loop
system
i Tl . A %BBT X1 + B
dt | x| — | -icTC AT T o |
- 1T
y = [ 0 ’YB ] + 1

which proves the claim.

This theorem allows us to calculate ||H||,, to any arbitrary precision via the following
bisection procedure:

1. Start with a guess for a lower bound to ||H||,, and denote it by ;.



2. Guess an upper bound to ||H ||, 7u, and verify that it is an upper bound by computing
the eigenvalues of M., and verifying that none are purely imaginary.

3. If v, — 7 is within the required accuracy, stop.

4. Define v = %(’Yl +74), and compute the eigenvalues of M.,. If there are purely imaginary
eigenvalues then set v; = =, otherwise set v, = 7.

5. Go to step 3.

16.4 The H; Norm: Energy of the Response to an Impulse

Suppose we have a stable continuous-time system with a transfer function H(s) = C(sI —
A)~'B, and impulse response H(t) = Ce!4 B, then we define the H5 norm as

15 = 52 [ trace(H () H(w)deo

27 /oo

= |Inll3
= /OOO trace(H(t)T H(t))dt.

The computation of the Hs norm can be performed by solving a Lyapunov equation. Observe
that

W = [ trace(nT e CT e Byt
0

= trace(BTQB)

where @ is refered to as the observability gramian which can be computed by solving the

following Lyapunov equation
ATQ+QA+CcTc =o0.

Equivalently we can write
oo
||h||§ = / trace(CetABBTetATCT)dt
0

= trace(CPCT)

where P is refered to as the controllability gramian which can be computed by solving the
following Lyapunov equation
AP +PA" + BB =0.
Finally, the Ho norm for DT LTT systems is defined as
1 2w . .
||H||§ = —/ trace(H (e")* H(e™))do
21 Jo

2
=Rl

= > trace(H(t)"H(t)).
t=0



This norm can also be computed via solving DT Lyapunov equations.

16.5 Submultiplicative Property

As in the matrix case, induced norms satisfy the submultiplicative property. For any 2 systems
G1, G5 with compatible dimension such that G1G5 is defined, it follows that

1G1Ga2llpi < |G lpill G2llpi-

For a BIBO stable LTI system, it follows then that both the ¢; and the H,, norms satisfy
this property, however, the Hy does not.

Example 16.1 Norm Computations

Let’s consider the following two-mass two-spring system G :

mii + g + kv + (i — 92) F k(v —y2) = w
mafa + c2(y2 — 91) +h2(y2 —y1) = wua.

Let x1 = y1, 22 = 41, T3 = y2, and x4 = 3. Then the equations above can be written in an
LTT state space form as follows:

1 0 1 0 0 2 0 0
. ki1+k c1+c k c
I e S I T I
‘fg 0 0 0 1 I3 0 0 Uz
o >R L2 k2 o N 0o L
m2 m2 m2 m2 ma
1
mY _ (1000 s
Y2 - 0 010 xrs3
Ty
Ul u2
K1 K2

YV M1 YV M2
M M
U U

Y1 Y2

Figure 16.2: 2-mass 2-spring system




— & = Axz+ Bu
y = Cz.

With m; =mg =1, ¢ = ¢ =1, and k; = ko = 1, we have the following A and B matrices:

0 1 0 O 0 0
-2 =2 1 1 10
A= 0 0 O 1 B = 0 0
1 1 -1 -1 0 1

Let’s first compute £; norm of this system. For that purpose, we need need the impulse
response of the system, H(t), where

y(t) = /H(t — PYul(r)dr.

The impulse response matrix is given by H(t) = Ce!AB. To compute this matrix, we select a
matrix M that puts A in a modal form. It follows that:

H(t)=Ce"B=CcM BB,

where
a1 a19 0 0
QR | T2 an 0 0
0 0 ass as
0 0 —as4 ass
with
ayn = e"eos(wit)
app = e sin(wit)
a3z3 = e”2tcos(w2t)
azs = e sin(wot)
where 01 = —1, w1 = 2, and 09 = —.5, w9 = ? are the real and imaginary parts of the first

and second complex conjugate pairs of eigenvalues. Thus ¢; norm of the system G can be
computed as follows:

Wl = max 3 [ [his(e)lde
J

= g [ 25 1@l
“\ X S |hej(t)|dt

B 0.4415
= Al 0.8833

= 0.8833
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Figure 16.3: Singular values of the system - Solid: 0,4z , Dashed: 0pmin

Thus ¢; norm of this system is 0.8833.
In order to compute Ho norm of the system, we solve the following Laypunov equation

AP+PTA+BBT =0

which yields
1 0 —-15 0
0 05 0 05
1.5 0 25 0

From this, it follows that

= o
o O
N——
—
cno
]
o('.ﬂ
[\
cno
]
OO‘!
VN
O =
o O
—_
o O
N——
~
Il
w
ot

|H|3 = trace(CPCT) = trace ( é 8

Therefore
|H|l2 = V3.5 = 1.8708.

We will compute the ||H||» for a CT system by sampling the function o4, [H (jw)] over
a number of points in w € [0, 00). The plot of 0,4, [H (jw)] as a function of w is plotted below.
It can be seen directly from the plot that the maximum value of 0,,q,[H (jw)] is about 4.45
at w = 0.56.

Alternatively, using the iterative procedure outlined in steps 1-5 above, we can con-
struct the matrices M, for various v values to obtain ||H||». As shown in the table below,
||H ||~ is approximately 4.4531 , which matches with the approximation obtained by sampling
Omaz (H (jw)).



o0 Yu v Eigenvalues of M,
3 5 4 +/-1.3067 +/- 0.9479i, +/-0.6473i, +/-0.4461i
4 5 4.5 +/-1.3072 +/- 0.94861, +/-0.0287 +/- 0.55661
4 4.5 4.25 | +/-1.3070 +/- 0.9483i, +/-0.6160i, +/-0.48851
4.25 4.5 4.375 | +/-1.3071 +/- 0.9484i, +/-0.5932i, +/-0.5159i
4.375 4.5 4.4375 | +/-1.3072 +/- 0.9485i, +/-0.5731i, +/- 0.5381i
44375 | 4.5 | 4.4688 | +/-1.3072 +/- 0.9485i, +/-0.0164 +/- 0.5561i
4.4375 | 4.4688 | 4.4531 | +/-1.3072 +/- 0.9485i, +/-0.5601i, +/-0.5517i




Exercises

Exercise 16.1 We have shown in class that the Ho,-norm arises from measuring the largest I/0
energy-to-energy amplification. In this problem, we want to show that the ., norm can also be seen
as determining the largest power-to-power amplification. For that, consider a CT LTI system with
transfer function H(s), input v € R™ and output y € R"™. Recall that the Ho.-norm of the system,
which we simply denote by ||H ||, is given by

[Hlloo = sup maa [H(jw)] .

Remember also that the power of a continuous-time signal v is given by

. IR
P, = lim (E [ v (t)v(t)dt)

Define the set X = {Ei\; wedVit : u; € R”, w; € ]R}. In this problem, we want to show that

supp, -1 P, = [|H||%, at least for u € X (although the result holds more generally for any u that

has a well-defined power spectrum).

(a) Let u € X. Compute the power of u.
(b) Compute the power of the system output y.
(c) Now show that supp, _; P, <||H|%.

(d) Show that equality can be achieved by picking the appropriate input u € X.

Exercise 16.2 (a) Consider a DT LTI system (not necessarily finite-dimensional) specified by the
I/0O convolution relationship y(k) = hxu(k), where the unit sample response h(k) has z-transform
H(z). Show that if the system is co-stable then it is 2-stable. (Hint: Show that ||h * u|ls <
[|A]]1 [Jull2-) Although the converse is true for finite-dimensional LTI systems, it is not true in
general, as part (b) below shows.

(b) First show that if a sequence is ¢; then its z-transform evaluated on the unit circle is continuous,
i.e., if h € {; then H(e’?) is continuous in §. Now show that the system with transfer function

H(z) _ (=)

is 2-stable but not co-stable. You have to show that H(z) is analytic outside the unit circle and
bounded on the circle, but that it is not continuous on the circle.

Exercise 16.3 The table below shows the induced norms of an LTI system with respect to several
input and output norms. Some entries have already been shown in this chapter or in the exercises.
Verify the rest of the entries.



| Output\Input | loo | ly |Power|

Eoo Zl 7‘[2 o0
0 00 Hoo 00
Power < Heo 0 Hoo

Table 16.1: Comparison of induced norms.



Chapter 17

Interconnected Systems and
Feedback: Well-Posedness,
Stability, and Performance

17.1 Introduction

Feedback control is a powerful approach to obtaining systems that are stable and that meet
performance specifications, despite system disturbances and model uncertainties. To under-
stand the fundamentals of feedback design, we will study system interconnections and some
associated notions such as well-posedness and external stability. Unless otherwise noted, our
standing assumption for the rest of the course — and a natural assumption in the control
setting — will be that all our models for physical systems have outputs that depend causally
on thewr inputs.

17.2 System Interconnections

Interconnections are very common in control systems. The system or process that is to be
controlled — commonly referred to as the plant — may itself be the result of interconnecting
various sorts of subsystems in series, in parallel, and in feedback. In addition, the plant is
interfaced with sensors, actuators and the control system. Our model for the overall system
represents all of these components in some idealized or nominal form, and will also include
components introduced to represent uncertainties in, or neglected aspects of the nominal
description.

We will start with the simplest feedback inteconnection of a plant with a controller,
where the outputs from the plant are fed into a controller whose own outputs are in turn fed



back as inputs to the plant. A diagram of this prototype feedback control configuration is
shown in Figure 17.1.

D P

K

Figure 17.1: Block diagram of the prototype feedback control configuration.

The plant P and controller K could in general be nonlinear, time-varying, and infinite-
dimensional, but we shall restrict attention almost entirely to interconnections of finite-
order LTI components, whether described in state-space form or simply via their input-
output transfer functions. Recall that the transfer functions of such finite-order state-space
models are proper rationals, and are in fact strictly proper if there is no direct feedthrough
from input to output. We shall use the notation of CT systems in the development that
follows, although everything applies equally to DT systems.

The plant and controller should evidently have compatible input/output dimensions; if
not, then they cannot be tied together in a feedback loop. For example, if P(s) is the p x m
transfer function matrix of the (nominal LTI model of the) plant in Figure 17.1, then the
transfer function K (s) of the (LTI) controller should be an m x p matrix.

All sorts of other feedback configurations exist; two alternatives can be found in Fig-
ures 17.2 and 17.3. For our purposes in this chapter, the differences among these various
configurations are not important.

K(s)

P(s)

Figure 17.2: A (“servo”) feedback configuration where the tracking error between the com-
mand r and output y is directly applied to the controller.

Our discussion for now will focus on the arrangement shown in Figure 17.4, which is an
elaboration of Figure 17.1 that represents some additional signals of interest. Interpretations
for the various (vector) signals depicted in the preceding figures are normally as follows:

e 1 — control inputs to plant



Kl(s)

Figure 17.3: A two-parameter-compensator feedback scheme.

d
Y
D P(s) )
y
K(s) ~—
f q n

Figure 17.4: Including plant disturbances d and measurement noise n.

e y — measured outputs of plant

e d — plant disturbances, represented as acting at the output

e 1 — noise in the output measurements used by the feedback controller
e 7 — reference or command inputs

e ¢ — tracking error r — y.

f — output of feedback compensator

Transfer Functions

We now show how to obtain the transfer functions of the mappings relating the various signals
found in Figure 17.4; the transform argument, s, is omitted for notational simplicity. We also
depart temporarily from our convention of denoting transforms by capitals, and mark the
transforms of all signals by lower case, saving upper case for transfer function matrices (i.e.
transforms of impulse responses); this distinction will help the eye make its way through the
expressions below, and should cause no confusion if it is kept in mind that all quantities below
are transforms. To begin by relating the plant output to the various input signals, we can



write

y = Pu+d
= Pir+K(y+n)]+d
(I —PK)y = Pr+PKn+d
y = (I-PK)'Pr4 (I - PK) 'PKn+ (I - PK) 4

Similarly, the control input to the plant can be written as

u = r+K(y+n)

= r+K(Pu+d+n)
(I-KPju = r+Kn+Kd
u = (I-KP)'r+(I-KP) 'Kn+ (I - KP) 'Kd

The map u — f (with the feedback loop open and r = 0, n = 0, d = 0) is given by
L = KP, and is called the loop transfer function.

The map d — y (with n = 0, r = 0) is given by S, = (I — PK) ! and is called the
output sensitivity function.

The map n — y (with d = 0, r = 0) is given by T = (I — PK)"'PK and is called the
complementary sensitivity function.

The map r — u (with d = 0, n = 0) is given by S; = (I — KP)™" and is called the
mput sensitivity function.

The map r — y (d =0, n=0)is given by (I — PK)flP is called the system response
function .

The map d — v (with n =0, r = 0) is given by (I — KP) 'K.

Note that the transfer function (I — KP) 'K can also be written as K(I — PK)™", as
may be proved by rearranging the following identity:

(I - KP)K = K(I — PK)

Y

Similarly the transfer function (I — PK) 'P can be written as P(I — KP) '
Note also that the output sensitivity and input sensitivity functions are different, because,
except for the case when P and K are both single-input, single-output (SISO), we have

(I-KP)'#(I-PK)"



17.3 Well-Posedness

We will restrict attention to the feedback structure in Figure 17.5. Our assumption is that
H, and H> have some underlying state-space descriptions with inputs u;, ue and outputs yi,
Y2, so their transfer functions Hi(s) and Hs(s) are proper, i.e. Hy(oo), Hy(o0) are finite. It
is possible (and in fact typical for models of physical systems, since their response falls off to
zero as one goes higher in frequency) that the transfer function is in fact strictly proper.

Y1

!
_.l_
" Hi(s)

Hj(s) )
Y2 U "2

Figure 17.5: Feedback Interconnection.

The closed-loop system in Figure 17.5 can now be described in state-space form by
writing down state-space descriptions for Hy(s) (with input u; and output y;) and Ha(s) (with
input us and output ys), and combining them according to the interconnection constraints
represented in Figure 17.5. Suppose our state-space models for Hy and Hy are

Al By A2 By

with respective state vectors, inputs, and outputs (z1, u1,y1) and (x2, ug,y2), S0

1 = Aizi+ Biug
y1 = Cirp+ Dy
o = Asxo+ Bous
yo = Coxo+ Dous . (17.1)

Note that D; = Hi(co) and Dy = Ha(oo). The interconnection constraints are embodied in
the following set of equations:

uy = r1+y2:r1+02x2+D2u2
up = ro+y; =rz+ Cixr + Diug,

which can be rewritten compactly as

BRI F R



We shall label the interconnected system well-posed if the internal signals of the feed-
back loop, namely uq and us, are uniquely defined for every choice of the system state variables
x1, w9 and external inputs 1, ro. (Note that the other internal signals, y; and ys, will be
uniquely defined under these conditions if and only if u; and us are, so we just focus on the
latter pair.) It is evident from (17.2) that the condition for this is the invertibility of the

matrix
l —21 _?2 ] : (17.3)
This matrix is invertible if and only if
I — D1 D> or equivalently I — DD, is invertible. (17.4)
This result follows from the fact that if X, Y, W, and Z are matrices of compatible dimensions,
and X is invertible then

det [ )Z( ;; ] = det(X) det(W — ZX 1Y) (17.5)

A sufficient condition for (17.4) to hold is that either Hy or Hs (or both) be strictly proper;
that is, either D1 =0 or Dy = 0.

The significance of well-posedness is that once we have solved (17.2) to determine wuy
and wug in terms of x1, x9, 1 and re, we can eliminate u; and ug from (17.1) and arrive at a
state-space description of the closed-loop system, with state vector

()

We leave you to write down this description explicitly. Without well-posedness, u; and us
would not be well-defined for arbitrary =1, 2, 1 and ry, which would in turn mean that there
could not be a well-defined state-space representation of the closed-loop system.

The condition in (17.4) is equivalent to requiring that

-1
(I — Hl(s)H2(3)> or equivalently (I — Hg(s)Hl(s)) exists and is proper. (17.6)

Example 17.1 Consider a discrete-time system with Hy(z) =1 and Ha(z) =1—
z~1in (the DT version of ) Figure 17.5. In this case (1—Hj(o0)Ha(c0)) = 1—1 =0,
and thus the system is ill-posed. Note that the transfer function from r to y;
for this system is

(1 — HlHQ)ilHl = (1 — 14+ Z71)71 =z

which is not proper — it actually corresponds to the noncausal input-output re-
lation
yl(k) :Tl(k-Fl) y

which cannot be modeled by a state-space description.



Example 17.2 Again consider Figure 17.4, with H;(s) = % and Hs(s) = zﬁ

The expression (1 — Hy(o0)Hy(00)) = 0, which implies that the interconnection is
ill-posed. In this case notice that,
(1—Hi(s)Ha(s)) = 1-1
= 0 VseC !

Since the inverse of (1 — HyH>) does not exist, the transfer functions relating
external signals to internal signals cannot be written down.

17.4 External Stability

The inputs in Figure 17.5 are related to the signals y;, and yo as follows:

y1 = Hi(ya+1m)
y2 = Ha(y1 +r2),

which can be written as

I —H v | | Hi O r
IR )

We assume that the interconnection in Figure 17.5 is well-posed. Let the map T (Hj, H2) be

defined as follows:
( s > h 10) ( 5 > ‘
Y2 2

From the relations 17.7 the form of the map 7 (H;, Hz) is given by
I — H1H2>71H1 (I — HlHQ)ilHlHQ
T(Hy,Hy) = ( Z _

(Hy, Hy) l (I — HoHy)"'HoHy (I — HoHy)™'Hy

We term the interconnected system externally p-stable if the map T (Hy, Hs) is p-
stable. In our finite-order LTI case, what this requires is precisely that the poles of all the
entries of the rational matrix

T, H) = l (I —H\Hy) 'H, (I —H Hy) 'HH, ]

(I — HyHy)"'HyH, (I — HoH,)"'H,

be in the open left half of the complex plane.

External stability guarantees that bounded inputs r1, and ro will produce bounded re-
sponses y1, Y2, u1, and ug. External stability is guaranteed by asymptotic stability (or inter-
nal stability) of the state-space description obtained through the process described in our
discussion of well-posedness. However, as noted in earlier chapters, it is possible to have exter-
nal stability of the interconnection without asymptotic stability of the state-space description



(because of hidden unstable modes in the system — an issue that will be discussed much more
in later chapters). On the other hand, external stability is stronger than input/output stabil-
ity of the mapping (I — HyHs) ' Hy between r; and yi, because this mapping only involves a
subset of the exposed or external variables of the interconnection.

Example 17.3 Assume we have the configuration in Figure 17.5, with H; = %
and Hy = —sil. The transfer function relating r1 to y; is
H, s—1 < 1 )1
—_— = 1+
1— H1H2 s+1 s+1
_ s—1 s+1
B (g + 1) <s + 2)
o os—1
542
Since the only pole of this transfer function is at s = —2, the input/output relation
between r; and y is stable. However, consider the transfer function from ry to

u1, which is

H, 1 1
1-HH,  s—1 (1#%1)
_ s+1
(s =1)(s4+2)

This transfer function is unstable, which implies that the closed-loop system is
externally unstable.

17.5 A More General Description

There are at least two reasons for going to a more general system description than those shown
up to now. First, our assessment of the performance of the system may involve variables that
are not among the measured/fed-back output signals of the plant. Second, the disturbances
affecting the system may enter in more general ways than indicated previously. We do still
want our system representation to separate out the controller portions of the system (the
K’s or Ky, K, of the earlier figures), as these are the portions that we will be designing. In
this section we will introduce a general plant description that organizes the different types of
inputs and outputs, and their interaction with a controller. A block diagram for a general
plant description is shown in Figure 17.6.
The different signals in Figure 17.6 can be classified as follows.

e Inputs:

1. Control input vector u, which contains the actuator signals driving the plant and
generated by a controller.
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Figure 17.6: General plant description.

2. Exogeneous input vector w, which contains all other external signals, such as ref-
erences and disturbances.

e Outputs:

1. Measured output vector y, which contains the signals that are available to the
controller. These are based on the outputs of the sensor devices, and form the
input to the controller.

2. Regulated output vector z, which contains the signals that are important for the
specific application. The regulated outputs usually include the actuator signals,
the tracking error signals, and the state variables that must be manipulated.

Let the transfer function matrix

have the state-space realization

T = Ax+ Blw + BQU
z = Cix+ Dyyw + Disu
y = Cyx+ Dyyw + Dau

Example 17.4 Consider the unity feedback system in Figure 17.7, where P is a
SISO plant, K is a scalar controller, 3 is the output, u is the control input, v is
a reference signal, and d is an external disturbance that is “shaped” by the filter
H before it is injected into the measured output. The controller is driven by the
difference e = v — ¢/ (the “tracking error”). The signals v and d can be taken to
constitute the exogeneous input, so

w:m.

In such a configuration we typically want to keep the tracking error e small, and
to put a cost on the control action. We can therefore take the regulated output z

to be
[e]
z = .
U
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Figure 17.7: Example of a unity feedback system.

The input to the controller is e, therefore we set the measured output y to be
equal to e. With these choices, the generalized plant transfer function G, which
relates z and y to w and u, can be obtained from

.o —Pu—-Hd+v | | =P -+ 1 —H w
- u - 1 0 0
y = —Pu—l—[l —H]w.
Let us suppose that P = ?11 and H = ﬁ Then a state-space realization of G

is easily obtained:
d | = B 1 0 T

o -1 -1 Tl

Tl o 0 | o

If we close the loop, the general plant/controller structure takes the form shown in
Figure 17.8.

The plant transfer matrix G is a 2 x 2 block matrix mapping the inputs w, v to the
outputs z, y, where the part of the plant that interacts directly with the controller is just
Gyu. The map (or transfer function) of interest in performance specifications is the map from
w to z, denoted by ®, and easily seen to be given by the following expression:

® =Gy + Gou(I — KGyy) ' KGyy (17.8)

0 0
0 1

10
0 0

w +

1]
o |U
Ou
1

+[1 0]w+0u.

+ w +
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Figure 17.8: A general feedback configuration.

In this new settup we would like to determine under what conditions the closed-loop
system in Figure 17.9 is well-posed and externally stable. For these purposes we inject
signals r and v as shown in Figure 17.9, which is similar to what we did in the previous
sections. Note that by defining the signals

() = ()
w=(0) »=(7)

this structure is equivalent to the structure in Figure 17.5. This is illustrated in Figure 17.10,

with
GZ’LU GZU
0] . Jo o
Hy = [Ilh[o I]_lo K]

This interconnection is well-posed if and only if
(I B ( Gin(00)  Gu(o0) ) ( 0 0 ))
Gyu(0) Gyuloo) ) \ 0 K(ox)
is invertible. This is the same as requiring that
(I — K(5)Gyu(s)) " or equivalently (I — Gy, (s)K(s)) ' exists and is proper

The inputs in Figure 17.9 are related to the signals z, v and y as follows:

I —-G,, O z G., 0 O w
0 I -K u | = 0 I K T (17.9)
0 -Gy, I Y Gyw 0 O v
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Figure 17.9: A more general feedback configuration.

Let the map 7 (P, K) be defined as follows:

z w
u | =TP,K)| r
)

The interconnected system is externally p-stable if the map from r1,ry to y1, yo is p-stable,
see Figure 17.10. This is equivalent to requiring that the map 7 (P, K) is p-stable.

17.6 Obtaining Stability and Performance: A Preview

In the lectures ahead we will be concerned with developing analysis and synthesis tools for
studying stability and performance in the presence of plant uncertainty and system distur-
bances.

Stabilization

Stabilization is the first requirement in control design — without stability, one has nothing!
There are two relevant notions of stability:

(a) nominal stability (stability in the absence of modeling errors), and
(b) robust stability (stability in the presence of some modeling errors).

In the previous sections, we have shown that stability analysis of an interconnected feedback
system requires checking the stability of the closed-loop operator, 7 (P, K). In the case where
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Figure 17.10: A more general feedback configuration.

modeling errors are present, such a check has to be done for every possible perturbation of the
system. Efficient methods for performing this check for specified classes of modeling errors
are necessary.

Meeting Performance Specifications

Performance specifications (once stability has been ensured) include disturbance rejection,
command following (i.e., tracking), and noise rejection. Again, we consider two notions of
performance:

(a) nominal performance (performance in the absence of modeling errors), and
(b) robust performance (performance in the presence of modeling errors).

Many of the performance specifications that one may want to impose on a feedback
system can be classified under the following two types of specifications:

1. Disturbance Rejection. This corresponds to minimizing the effect of the exogenous
inputs w on the regulated variables z in the general 2-input 2-output description, when the
exogenous inputs are only partially known. To address this problem, it is necessary to provide
a model for the exogenous variables. One possibility is to assume that w has finite energy but
is otherwise unknown. If we desire to minimize the energy in the z produced by this w, we
can pose the performance task as involving the minimization of

[Pw]2

w0 [lwll2

where @ is the map relating w to z. This is just the square root of the energy-energy gain,
and is measured by the H,,-norm of ®.



Alternatively, if w is assumed to have finite peak magnitude, and we are interesed in the
peak magnitude of the regulated output z, then the measure of performance is given by the
peak-peak gain of the system, which is measured by the ¢;/L£;-norm of ®. Other alternatives
such as power-power amplification can be considered.

A rather different approach, and one that is quite powerful in the linear setting, is to
model w as a stochastic process (e.g, white noise process). By measuring the variance of z,
we obtain a peformance measure on .

2. Fixed-Input Specifications. These specifications are based on a specific command or
nominal trajectory. One can, for instance, specify a template in the time-domain within which
the output is required to remain for a given class of inputs. Familiar specifications such as
overshoot, undershoot, and settling time for a step input fall in this category.

Finally, conditions for checking whether a system meets a given performance measure in
the presence of prescribed modeling errors have to be developed. These topics will be revisited
later on in this course.



Exercises

Exercise 17.1 Let P(s) = e~2* — 1 be connected in a unity feedback configuration. Is this system
well-posed?

Exercise 17.2 Assume that P, and K in the diagram are given by:
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1. Is the closed loop system stable for all a > 07
2. Is the closed loop system stable for a = 07

Exercise 17.3 Consider the standard servo loop, with

1

P(S):m, IX(S):]C

but with no measurement noise. Find the least positive gain such that the following are all true:

e The feedback system is internally stable.

With no disturbance at the plant output (d(t) = 0), and with a unit step on the command signal
r(t), the error e(t) = r(t) — y(t) settles to |e(oco0)| < 0.1.

Show that the £, to L, induced norm of a SISO system is given by Hs norm of the system.
e With zero command (r(t) = 0), ||y||co < 0.1 for all d(t) such ||d||» < 1. [ADD NEW Problem]

Exercise 17.4 Parametrization of Stabilizing Controllers
Consider the diagram shown below where P is a given stable plant. We will show a simple way

of parametrizing all stabilizing controllers for this plant. The plant as well as the controllers are finite
dimensional.
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1. Show that the feedback controller

K=QU-PQ) ' =(-QP)'Q
for any stable rational @ is a stabilizing controller for the closed loop system.

2. Show that every stabilizing controller is given by K = Q(I — PQ)~! for some stable Q. (Hint:
Express @ in terms of P and K).

3. Suppose P is SISO, w; is a step, and we = 0. What conditions does @ have to satisfy for the
steady state value of u to be zero. Is it always possible to satisfy this condition?

Exercise 17.5 Consider the block diagram shown in the figure below.
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(a) Suppose P(s) = Po(s) =

R 1 and @ = 2. Calculate the transfer function from r to y.
s — s —
(b) Is the above system internally stable?

(c) Now suppose that P(s) = Py(s) = H(s) for some H(s). Under what conditions on H(s) is the
system internally stable for any stable (but otherwise arbitrary) Q(s)?



Exercise 17.6 Consider the system shown in the figure below.

The plant transfer function is known to be given by:

ST
Pisy=| s+t
L s+2J

A control engineer designed the controller K (s) such that the closed-loop transfer function from r to
y is:

- -
0
H(s) = 834 1
L s+4J

(a) Compute K (s).
(b) Compute the poles and zeros (with associated input zero directions) of P(s) and K (s).

(c) Are there pole/zero cancellations between P(s) and K(s)?

(d) Is the system internally stable? Verify your answer.

Exercise 17.7 An engineer wanted to estimate the peak-to-peak gain of a closed loop system h (the
input-output map). The controller was designed so that the system tracks a step input in the steady
state. The designer simulated the step response of the system and computed the amount of overshoot
(e1) and undershoot (ez) of the response. He/She immediately concluded that

||h||1 Z 1+ 261 + 262.

Is this a correct conclusion? Verify.



Chapter 18

Performance of Feedback Systems

18.1 Introduction

It is now time to turn to issues of performance. As noted in earlier chapters, performance
specifications typically involve the closed-loop relations between the exogenous inputs w and
the regulated outputs z. These relationships are typically captured through the use of the
signal and system norms. The analysis of a given controlled system usually involves evaluating
the appropriate norms. The synthesis of a controller is a harder problem, as it involves picking
a feedback compensator I for which the closed-loop performance specifications are attained.

We begin our discussions with the single-input, single-output (SISO) case, and then
move on to study multi-input, multi-output (MIMO) extensions. Much of what we present
for the SISO case actually echoes what is done in “classical feedback control”, although our
perspective is somewhat more modern (or neo-classical or post-modern or ...!).

18.2 SISO Loop Shaping

The Classical Viewpoint

The standard “servo” or tracking configuration of classical feedback control is shown in Fig-
ure 18.1. In this arrangement, the controller K is fed by an error signal e, which is the
difference between a reference r and the measured output y of the plant P. The measurement
is perhaps corrupted by noise n. The output of the controller is the input u to the plant. In
addition, external disturbances may drive the plant, and are represented here via the signal
d added in at the output of the plant. In a typical classical control design, the compensator
K would be picked as the lowest-order system that ensures the following:

1. the closed-loop system is stable;
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Figure 18.1: Standard feedback configuration with noise, disturbance, and reference inputs.

2. the loop gain P(jw)K (jw) has large magnitude at frequencies (low frequencies, typi-
cally) where the power of the plant disturbance d or reference input r is concentrated;

3. the loop gain has small magnitude at frequencies (high frequencies, typically) where the
power of the measurement noise n is concentrated.

The need for the first requirement is clear. The origins of the second and third requirements
will be explained below. In order to simultaneously attain all three objectives, it is most
convenient to have a criterion for closed-loop stability that is stated in terms of the (open-
loop) loop gain, and this is provided by the Nyquist stability criterion.

The reasons for the second and third requirements above lie in the sensitivities of the
closed-loop system to plant disturbances, reference signals, and measurement noise. Let S
denote the transfer function that maps a disturbance d to the output y in the closed-loop
system. This S is termed the (output) sensitivity function, and for the arrangement in
Figure 18.1 it is given by

S=(1+PK)"' . (18.1)

Speaking informally for the moment, if |P(jw)K (jw)| is large at frequencies where (in some
sense) the power of d is concentrated, then |S(jw)| will be small there, so the effect of the
disturbance on the output will be attenuated. Since plant disturbances are typically con-
centrated around the low end of the frequency spectrum, one would want |P(jw)K (jw)| to
be large at low frequencies. Thus, disturbance rejection is a key motivation behind classical
control’s low-frequency specification on the loop gain.

Note that (in the SISO case) S is also the transfer function from r to e. If we want
y to track r with good accuracy, then we want a small response of the error signal e to
the driving signal r. This again leads us to ask for |S(jw)| to be small — or equivalently
for |P(jw)K (jw)| to be large — at frequencies where the power of the reference signal r is
concentrated. Fortunately, in many (if not most) control applications, the reference signal
is slowly varying, so this requirement again reduces to asking for |P(jw)K (jw)| to be large
at low frequencies. Thus, tracking accuracy is another motivatoin behind classical control’s
low-frequency specification on the loop gain.



In contrast, the motivation behind classical control’s high frequency specification is noise
rejection. Let T denote the transfer function that maps the noise input n to the output y.
Given the arrangement in Figure 18.1,

T=PK(1+PK) " . (18.2)
This T is termed the complementary sensitivity function, because
T+S=1. (18.3)

Note that T is also the transfer function from r to y. If |P(jw)K (jw)| is small at frequencies
where the power in n is concentrated, then |T'(jw)| will be small there, so the effect of the noise
on the output will be attenuated. Measurement noise tends to occur at higher frequencies, so
to minimize its effects on the output, we typically specify that |P(jw)K (jw)| be small at high
frequencies. This constraint fortunately does not conflict with the low-frequency constraints
imposed above by typical d and r. Also, the constraint is well matched to the inevitable fact
that the gain of physical systems will eventually fall off with frequency.

The picture of the control design task that emerges from the above discussion is the
following: Given the plant P, one typically needs to pick the compensator K so as to obtain a
loop gain magnitude |P(jw)K (jw)| that is large at low frequencies, “rolls off” to low values at
high frequencies, and varies in such a way that the Nyquist stability criterion is satisfied. [For
the special case of open-loop stable plants and compensators, the stability condition can be
stated in alternative forms that are easy to check using Bode plots rather than Nyquist plots,
and this can be more convenient. The standard rule of thumb focuses on the roll-off around the
crossover frequency we, defined as the frequency where the loop gain magnitude is unity; this
frequency is a crude measure of closed-loop bandwidth. The specification is that the roll-off of
the loop gain magnitude around w, should be no steeper than —20dB/decade. Furthermore,
w, should be picked below frequencies where the loop gain is significantly affected by any
right-half-plane zeros of the loop transfer function PK; this provides an initial indication that
right-half-plane zeros can limit the attainable closed-loop performance.]

A Modern Viewpoint

The challenge now is to translate the above classical control design approach into something
more precise and systematic, and more likely to have a natural MIMO extension. The following
example points the way, and makes free use of the signal and system norms that we defined
in Lectures 11 and 12.

Example 18.1 (SISO Disturbance Rejection and Weighted Sensitivity)

We have already seen that the expression relating y to d in the SISO feedback
configuration depicted in Figure 18.1 is

y=(1+PK)'d . (18.4)
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Figure 18.2: Representing the plant disturbance d as the output of a shaping filter W whose
input e is an arbitrary bounded energy or bounded power signal, or possibly white noise.

Typically, d has frequency content concentrated in the low-frequency range. In
order to get the requisite frequency characteristic, one might model d as the output
of a shaping filter with transfer function W, as shown in Figure 18.2, with the input
e of the filter being an arbitrary bounded energy or bounded power disturbance
(or, in the stochastic setting, white noise). Thus e has no spectral “coloring”, and
all the coloring of d is embodied in the frequency response of W.

For the rest of this example, let us focus on the bounded energy or bounded power
models for e. Suppose our goal now is to choose K to minimize the effect of the
disturbance d on the output y. From Lectures 11 and 12, and given our model
for d, we know that this is equivalent to minimizing the H..-gain of the transfer
function from e to y, because in the case of a bounded power e this gain is the
attainable or “tight” bound on the ratio of rms values at the output and input,

B < (1 + P(jw) K (jw) " W ()l

e

while in the case of a bounded energy e we again have the tight bound

L < N0+ PR G) W i)

In terms of the sensitivity function,
S(jw) = (1 + Pw)K(jw) ',

the task is to pick K to minimize the Ho norm ||S(jw)W (jw)|| .-

It
1SGOW (jo)lloe < (18.5)
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Figure 18.3: Graphical interpretation of the sensitivity function being bounded by a scaled
reciprocal of the weighting filter frequency response.

then
|S(G) W (jw)| <7, Yw. (18.6)

This implies that

1S(jw)| <~ (18.7)

(W (jw)|
which tells us that the sensitivity function is bounded by a scaled reciprocal of the
weighting filter. A graphical representation of this bound is shown in Figure 18.3.
From Figure 18.3 we can see that the value v and the filter W (jw) give us a clear
picture of the constraint on the sensitivity function. This allows one to more sys-
tematically design a controller, since we directly get the closed loop characteristics.
Note also that with the Q-parametrization of K, the sensitivity function S is affine
in @, and this form is much easier to work with than the fractional form that S
takes as a function of K.

The major benefit of the formulation in the above example is that a MIMO version of it
is quite immediate, as we see in the next section.

18.3 MIMO Loop Shaping

Let us now revisit the above example in the MIMO setting. The example will require the
following facts about singular values, so we ask you to confirm these facts for yourself before
proceeding:



1. 0maz(AB) < 0max(A)omaz(B), and

2. If 01naz(CD) < 1 then 0,4, (C) < assuming D is invertible.

The first statement follows from the fact that 0,4, is the induced 2-norm, and therefore
submultiplicative. To prove the second, apply the first with A = CD and B = D7!.)
Example 18.2 (MIMO Disturbance Rejection and Weighted Sensitivity)

The set-up and formulation for the MIMO case are the same as in the SISO
example, with the obvious replacements of SISO subsystems by MIMO subsystems.
One again arrives at the equation (18.5). However, the inference from this equation
in the MIMO case is no longer (18.6) and (18.7), but rather
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This leads us to the singular value plot shown in Figure 18.4, which is the natural
extension of the plot we had in the SISO example.

Omaz (I + P(jw) K (j) '] <
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Figure 18.4: Singular value plot for a MIMO system.

With the insight provided by the above example, we can formulate a variety of MIMO
performance problems in terms of appropriate weighting operators. Alternatively, having seen
what sorts of modifications of the SISO statements are needed for the MIMO case, we can
actually describe various MIMO control tasks in a language that is closer to that of classical
SISO control, and this is what we do in the rest of this lecture. We shall return to the explicit
use of weighting functions in later lectures.



Typical Closed-Loop Perfomance Constraints

Typically in control systems the disturbances d have frequency content that is concentrated
in the low-frequency range. Therefore, in order to attenuate the effects of disturbances on
the output, we require that o,,4.(S(jw)) be small in the range of frequencies where the
disturbances are active, say 0 < w < wgy. On the other hand, typically the noise input n has
frequency content that is concentrated in the high-frequency range. Therefore, in order to
attenuate the effect of n on the output we require that 0,4, (7T (jw)) be small over a frequency
range of the form w > wy,. The controller K should also enable the closed-loop system to track
reference inputs r that are typically concentrated in the low frequency range, for example in
the interval 0 < w < w,. This objective requires that T'(jw) =~ [ for all w in the interval
0 < w < w,. This requirement can be restated as

Omaz(T(jw)) =~ 1
Omin(T(jw)) =~ 1,

in the frequency range 0 < w < w;.
The control signals must also generally be kept as small as possible in the presence of
both disturbances d and measurement noise n. It is easy to see that

u= I+ KP) 'Kr—(I+KP)'K(d+n).
Therefore, in order to keep the control signal small, we must make sure that
Omaz (I + K (jw)P(jw) " K (jw))

remains small in the frequency range where disturbances and/or measurement errors are
effective. We can summarize these design requirements in the following table:

Design Requirement Closed-Loop Condition Frequency Range
Sensitivity to Disturbances | 0. (I + P(jw)K(jw))™t) ~ 0 Low frequency
0 <w < wgy
Noise Propagation
Attenuation Omaz (I + P(jw)K (jw)) 1 P(jw)K(jw)) = 0 | High Frequency
W > Wiy

Tracking of Reference
Signals Tmaz (I + P(jw) K (jw)) ' P(jw) K (jw))

Omin ((I + P(jw)]&"(jw))_le(jw)K ]w)) 0<w<w,

Low frequency

d and n are
dominant

Low Control Energy Omaz (I + K(jw)P(jw)) 'K (jw)) =0 Frequencies where

Translation to Open-Loop Constraints

Now let us relate the closed-loop requirements that are summarized in the preceding table
to open-loop conditions, i.e., conditions on the singular values of the loop gain operator



PK. The first design requirement is that o, ((I + PK)~!) be small in the frequency range
0 < w < wsy. The relation

: - 1
7mas (14 PGAK G ™) = o p o)
implies that if o, (P(jw)K (jw)) >> 1 then
. . 1
Omaz (I + P(j0)K (jw)) ™) ~ — R )R (18.8)

Therefore, if 7,in (P(jw)K (jw)) >> 1 for all w in the interval [0, wsy], then opqs (I + P(jw) K (jw)) 1)
will be small in that interval.
For noise attenuation, consider

Sman (T()) = Omas (I = (1 + P)K ()™
= e (1 (PGK G ) )
1

Omin (I + (P(jw)K (jw)) 1)’

Therefore, for the frequency range w > wy, we require that o, (I + (P(jw)K (jw))™!) be
as large as possible. This can be guaranteed if we make o, ((P(jw)K (jw))™!) as large as
possible or equivalently by making 0,4, (P(jw)K (jw)) as small as possible.

The tracking objective can be achieved if we ensure that

Omaz (I + P(j0)K (jw)) ' P(jw)K (jw)) ~ 1
Tmin ((T+ P(j0)K (jw)) ™' Pj) K (jw)) =~ 1

over the frequency interval [0, w,]. Since
I —(I+ P(jw)K (jw) ™" = (I + P(jw)K (jw)) ™" P(jw) K (jw)

the tracking objective can be achieved if we require (I + P(jw)K (jw)) * to be close to zero
on the frequency range [0, w,], that is omae (I + P(jw)K (jw))™!) to be small in that interval.
Equivalently, we may require o, (I + P(jw)K (jw)) to be as large as possible on the interval
[0, w,]. This can be ensured if we require that o,,i, (P(jw)K (jw)) be as large as possible over
the frequency range [0, w;].

The constraint of small control energy leads to the condition that oyma: (I + K (jw))P(jw)) LK (jw))
be made as small as possible. However, we have

Omaz (1 + K (j0)P(j0) 'K (jw)) < Omas (1 + K (j0)P(j0)) ") Omae (K ()

oK ()
= oI+ Ko P@) (189)




Note that

Omin (I + K(jw)P(jw)) < omaz (I + K(jw)P(jw))
< 1+ O-max(P(jw))O'maac (K(]w))
Umax(K(jw)) > O-mam(‘[((jw))
Omin (I + I((jW)P(jw)) - 14 Uma:r(P(jw>)Umar (I((jw»

1
) + Omaz (P(jw)) ‘

Omaz (K (Jw

Therefore, we can minimize the right hand side of equation 18.9 only if we make

1

O'maac(I((jW)) +0max(P(jw))

large in the ranges of frequencies where d and/or n are dominant. For example, if 0,4, (P(jw))
is small at a certain set of frequencies of interest then necessarily o, (K (jw)) must also be
small on that set. Clearly this condition is not necessary or sufficient to make

Omas (1 + K (jw) P(jw) K (jw))

small. It only applies to the upper bound of o pas ((I + K (jw)P(jw)) t K (jw)), which is given
by
Omaz (K (Jw))
Omin (I + I{(JW)P(]W))

and it is only necessary for the upper bound to be small.
The following table summarizes our discussion above on open-loop requirements

Design Requirement Open-Loop Condition Frequency Range

Sensitivity to Disturbances Omin (P(jw)K (jw)) large | Low frequency
0 <w < wgy

Noise Propagation Attenuation | oy (P(jw)K (jw))small | High Frequency
W > Wiy

Tracking of Reference Signals | opin (P(jw)K (jw)) large | Low frequency
0<w<Lw

Low Control Energy Omaz (K (jw)) small Frequencies where
Omaz (P(jw)) is
not large enough

Figure 18.6 illustrates the open-loop conditions that we have formulated. Note that in
this plot the minimum passband open-loop gain is bounded by o, [P(jw)K (jw)], and the
maximum stopband open loop gain bounded by 4. [P(jw)K (jw)].
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Figure 18.5: Singular value bounds for the open loop gain, P(jw)K (jw).

18.4 Algebraic Constraints

In general we would like to design feedback controllers to attenuate both noise and distur-
bances at the output. We have examined SISO and MIMO conditions that guarantee rejection
of low frequency disturbances as well as similar conditions for the rejection of high frequency
noise. However, one might wonder if we can

1. minimize the influence of either noise or disturbances over all frequencies, and/or
2. minimize the influence of both noise and disturbances at the same frequency.
Let us begin this discussion by recalling the following;:
o S=(I+ PK)f1 is the transfer function mapping disturbances to the output;
e T =PK(I+ PK)f1 is the transfer function mapping noise to the output.

As we mentioned earlier, in a control design it is usually desirable to make both S and T" small.
However, because of algebraic constraints, both goals are not simultaneously achievable at the
same frequency. These constraints are as follows.

General Limitations
S+ T = I for all complex (Laplace domain) frequencies s. This is easily verified, since
S+T = (I+PK)'+PK(I+PK)™"

= (I+PK)(I+PK)™!
= 1



This result implies that if o, [S(jw)] is small in some frequency range, omaq [T(jw)] ~ 1.
The converse is also true.

Fortunately, we rarely need to make both of these functions small in the same frequency
region.

Limitations Due to RHP Zeros and Poles

Before we discuss these limitations, we quote the following fact from complex analysis:

Let H(s) be a stable, causal, linear time-invariant continuous-time system. The
mazimum modulus principle implies that

Omaz [H(S)] < sup omee [H(jw)] = |H||,, Vs & RHP

In other words, a stable function, which is analytic in the RHP, achieves its maximum value
over the RHP when evaluated on the imaginary axis.

Using this result, we can arrive at relationships between poles and zeros of the plant P
located in the RHP and limitations on performance (e.g., disturbance and noise rejection).

SISO Systems: Disturbance Rejection

Consider the stable sensitivity function S = (1 + PK)_1 for any stabilizing controller, K;
then,

S(z) = (14+P(z)K(z)) '=1 for all RHP zeros z; of P
S(p;) = (1+Ppi)K(p:)) =0 for all RHP poles p; of P

Since the H,, norm bounds the gain of a system over all frequencies,
1=5(z)] <151l

This means that we cannot uniformly attenuate disturbances over the entire frequency range
if there are zeros in the RHP.

SISO Systems: Noise Rejection

Since the transfer function relating a noise input to the output is 7' = PK(1 + PK)_I, an
argument for T similar to S can be made, but with the roles of poles and zeros interchanged.
In this case, RHP poles of the plant restrict us from uniformly attenuating noise over the
entire frequency range.



MIMO Systems: Disturbance Rejection

Suppose P has a transmission zero at Z € RHP with left input zero direction n*. Then
n*P(2)K(2) =0, and thus
n(I+PEKE) ™ =0

Stated equivalently,
n*S(z)=n" . (18.10)

Also, taking the conjugate transpose of both sides,
S*(En=n . (18.11)
We then multiply the expressions in (18.10) and (18.11), obtaining
" SE)S* En=n"n
which can be alternately written as
m =1 . (18.12)
nn

Applying the maximum modulus principle (i.e., maxscRHP Omax[S($)] occurs on the imaginary
axis) and observing that the left hand side of (18.12) is less than or equal to o2, [S(Z)], we

conclude that . o\ s~
7S(2)S(E)n

'

Thus, the conclusion regarding disturbance rejection for MIMO systems is the same as the
conclusion we reached for SISO systems. Namely, RHP zeros make disturbance attenuation
over all frequencies impossible.

2
I511% = =1

18.5 Analytic Constraints: The “Waterbed Effect”

One performance limitation of LTI SISO Feedback systems (these systems have rational sensi-
tivity transfer functions), is known as the waterbed effect. Loosely speaking, when one designs
a controller to “push” the sensitivity function in a particular direction, another part of the
sensitivity function necessarily “pulls” back in the opposite direction. This effect is due to a
property of analytic functions f(s) as stated by Cauchy’s theroem. In words, this theorem
says that the line integral of an analytic function around any simple closed contour C' in a
region R is zero, i.e.,

/C f(s)ds =0.

for every contour C' in R.



A proof of this theorem will not be shown here but can be found in standard complex analysis
textbooks. One consequence of this theorem is the following integral constraint (known as
Bode’s Integral) on the rational sensitivity transfer function S(jw):

/ In|S(jwldw = ZﬂRe(pi),
0 i

where Y, mRe(p;), is the sum over the unstable open-loop poles (poles of P(jw)K (jw)). This
result holds for all closed-loop systems as long as the product PK has relative degree two.
The result implies that making S(jw) small at almost all frequencies (a common performance
objective) is impossible since the integrated value of In|S(jw)| over all frequencies must be
constant. This constant is zero for open-loop stable systems (PK stable) and positive oth-
erwise. Therefore, lowering the sensitivity function in one range of frequencies, increases
the same function in another range-hence the name “waterbed effect.” Figure 18.5 below
illustrates this phenomenon.

Figure 18.6: Water-bed Effect

Constraints on Singular Value Plots

From what we have seen already, it is clear that singular value plots over all frequencies are
the MIMO system analogs of Bode plots. The following fact establishes some simple bounds
involving singular values of S and T

Fact 18.5.1 If S= (I + PK) ' and T = (I + PK) ' PK then the following hold
|1 - Uma$(5)| S Uma:n(T) S 1 + Uma:n(s)

and
|1 - Umao:(T)| < Umax(s) <1+ Umaw(T)'

Proof: Since S + T = I then clearly

Umam(T) = Umax(l - S) < Umao:(l) + Uma:c(s>7



and therefore 0,42 (T) < 1+ 0z (S). For any element x € C" with ||z||2 = 1 we have

x—Sr = Tx

Hzllz = [ISzll2| < [lz = Szll2 = [[T2]|2
1= 1Szll2] < Omaa(T)
|1_0mam(s)| S Umar(T)-

Combining this relation with o,,0:(T) < 1 4 04z (S), we obtain
|1 - Umam(5)| < Umam(T) <1+ Umam(s)-

The other relation follows in exactly the same manner.



Exercises
Exercise 18.1 Suppose a discrete-time plant is given by
1722—711
P=| 17
1—.52—1
Does there exist a controller that uniformly attenuates the input sensitivity function (I + KP)™!, i.e.,
(I + KP)™||» < 1. Explain.

Exercise 18.2 Let a plant be given by

s—1 -5
6= ik o)
(s+1)2 s+1

We are interested in verifying whether or not there exists a controller K such that the output
sensitivity S = (I + PK)~! satisfies ||S||c < 1 (i.e., the maximum singular value is strictly less than
1 for all frequencies). If this is possible, we would like to find such a controller.

1. One engineer argued as follows: Since the transfer functions from w; to y; and wus to y» have
nonminimum-phase zeros, then the sensitivity cannot be uniformly attenuated. Do you accept
this argument. If so, explain her/his rationale, and if not explain why not.

2. Another engineer suggested that the controller can invert the plant and add a scaling factor, so
that the sensitivity is uniformly less than 1. Again discuss this option and argue for it or against
it.

Exercise 18.3 Consider the following MIMO plant P(s) whose state-space description is

15 1 0 1 1 0
. 2 -3 2 0 0 0
z(t) = 0 5 9 1 x(t) + 11 u(t)
1 —15 0 =5 0 18
0 24 -31 1
v =1 %6 _5 _as|*®

(a) Use Matlab to compute the poles and the zeros of the plant, as well as the associated input zero
directions. (The transmission zeros should turn out to be around —.544 + j2.43.)

(b) Plot the singular values of P(jw) for w € [-1072,10%] rad/sec. Relate the shapes of the singular
values to the pole and zero frequencies of P(s).



(c¢) Compute ||P||s using the Hamiltonian matrix and “gamma iteration”, and compare the result to
part b).

(d) Consider the standard MIMO servo feedback loop with a compensator of transfer matrix K (s)
preceding P(s) in the forward loop. The input to the compensator is the error signal e(t) =
r(t)—y(t), where r(t) is an external reference signal. Design K (s) to have the following properties:

(i) K (s) should be strictly proper, second-order (i.e. a minimal realization of it is second-order),
with no transmission zeros, and with poles that exactly cancel the transmission zeros of P(s) —
so P(s)K (s) does not have these zeros.

(if) lims_yo P(s)K (s) = 401

Also obtain a state-space description of K (s).

(e) Plot the singular values of the open-loop frequency response P(jw)K (jw), the sensitivity func-

tion S(jw), and the closed-loop frequency response (or complementary sensitivity function)
T(jw) = I - S(jo).

(f) Predict the steady-state value of the output vector y(t) when the reference input to the closed-loop
system (which is assumed initially at rest) is the step

7
r(t) = [ s ] . t>0 (18.13)
and verify by computing (with Matlab!) the transient response for the above step input. By
carefully examining the transients of the control input and output signals, discuss the implica-
tions of having oscillatory poles in the compensator that cancel the plant transmissions zeros.

(g) Predict the steady-state maximum and minimum value of the tracking error e(t) when the com-
mand input vector comprises unit sinusoids at a frequency of w = 1 rad/sec. Repeat for w = 2.5
rad/sec.



Chapter 19

Robust Stability in SISO Systems

19.1 Introduction

There are many reasons to use feedback control. As we have seen earlier, with the help of an
appropriately designed feedback controller we can reduce the effect of noise and disturbances,
and we can improve the tracking of command signals. Another very important use for feedback
control is the reduction of the effects of plant uncertainty. The mathematical models that we
use to describe the plant dynamics are almost never perfect. A feedback controller can be
designed so as to maintain stability of the closed-loop and an acceptable level of performance
in the presence of uncertainties in the plant description, i.e., so as to achieve robust stability
and robust performance respectively.

For the study of robust stability and robust performance, we assume that the dynamics
of the actual plant are represented by a transfer function that belongs to some uncertainty
set Q2. We begin by giving mathematical descriptions of two possible uncertainty sets. Many
other descriptions exist, and may be treated by methods similar to those we present for these
particular types of uncertainty sets.

19.2 Additive Representation of Uncertainty

It is commonly the case that the nominal plant model is quite accurate for low frequencies
but deteriorates in the high-frequency range, because of parasitics, nonlinearities and/or time-
varying effects that become significant at higher frequencies. These high-frequency effects may
have been left unmodeled because the effort required for system identification was not justified
by the level of performance that was being sought, or they may be well-understood effects that
were omitted from the nominal model because they were awkward and unwieldy to carry along
during control design. This problem, namely the deterioration of nominal models at higher
frequencies, is mitigated to some extent by the fact that almost all physical systems have



strictly proper transfer functions, so that the system gain begins to roll off at high frequency.
In the above situation, with a nominal plant model given by the proper transfer function

Py(s), the actual plant represented by P(s), and the difference P(s) — Py(s) assumed to be

stable, we may be able to characterize the model uncertainty via a bound of the form

|P(jw) — Po(jw)| < la(w) (19.1)
where
B “Small” ; |w| < we
lalw) = { “Bounded” ; |w|>w, (19.2)

This says that the response of the actual plant lies in a “band” of uncertainty around that of
the nominal plant. Notice that no phase information about the modeling error is incorporated
into this description. For this reason, it may lead to conservative results.

The preceding description suggests the following simple additive characterization of the
uncertainty set:

Q, ={P(s) | P(s) = Py(s) + W(s)A(s)} (19.3)
where A is an arbitrary stable transfer function satisfying the norm condition
1Allee = sup[A(jw)] < 1, (19.4)

and the stable proper rational weighting term W (s) is used to represent any information we
have on how the accuracy of the nominal plant model varies as a function of frequency. Figure
19.1 shows the additive representation of uncertainty in the context of a standard servo loop,
with K denoting the compensator.

When the modeling uncertainty increases with frequency, it makes sense to use a weight-
ing function W (jw) that looks like a high-pass filter: small magnitude at low frequencies,
increasing but bounded at higher frequencies.

g
¥
r b K > By :Q/ > Y

Y

w

)

Figure 19.1: Representation of the actual plant in a servo loop via an additive perturbation
of the nominal plant.

Caution: The above formulation of an additive model perturbation should not be interpreted
as saying that the actual or perturbed plant is the parallel combination of the nominal system
Py(s) and a system with transfer function W(s)A(s). Rather, the actual plant should be
considered as being a minimal realization of the transfer function P(s), which happens to be
written in the additive form Py(s) + W (s)A(s).

Some features of the above uncertainty set are worth noting:



e The unstable poles of all plants in the set are precisely those of the nominal model. Thus,
our modeling and identification efforts are assumed to be careful enough to accurately
capture the unstable poles of the system.

e The set includes models of arbitrarily large order. Thus, if the uncertainties of major
concern to us were parametric uncertainties, i.e. uncertainties in the values of the
parameters of a particular (e.g. state-space) model, then the above uncertainty set
would greatly overestimate the set of plants of interest to us.

The control design methods that we shall develop will produce controllers that are guar-
anteed to work for every member of the plant uncertainty set. Stated slightly differently,
our methods will treat the system as though every model in the uncertainty set is a possible
representation of the plant. To the extent that not all members of the set are possible plant
models, our methods will be conservative.

Suppose we have a set of possible plants II such that the true plant is a member of that
set. We can try to embed this set in an additive perturbation structure. First let Py € II be
a certain nominal plant in II. For any other plant P € II we write,

P(jw) = Py(jw) + W (jw)A(jw).

The weight |W (jw)| satisfies

W)l > [W(w)AG)] = [P(jw) — Po(jw)|
W)l 2 max|Pe) = Poljs] = faljo)

With the knowledge of the lower bound /,(jw), we find a stable system W(s) such that
(W (jw)| = la(jw)
19.3 Multiplicative Representation of Uncertainty

Another simple means of representing uncertainty that has some nice analytical properties is
the multiplicative perturbation, which can be written in the form

Q= {P|P=P(1+WA), [A] <1} (19.5)

W and A are stable. As with the additive representation, models of arbitrarily large order

A w
Y 0

>+ P[) E—

Y
Y

Figure 19.2: Representation of uncertainty as multiplicative perturbation at the plant input.



are included in the above sets.

The caution mentioned in connection with the additive perturbation bears repeating
here: the above multiplicative characterizations should not be interpreted as saying that the
actual plant is the cascade combination of the nominal system Py and a system 1 4+ WA.
Rather, the actual plant should be considered as being a minimal realization of the transfer
function P(s), which happens to be written in the multiplicative form.

Any unstable poles of P are poles of the nominal plant, but not necessarily the other
way, because unstable poles of Py may be cancelled by zeros of I + WA. In other words,
the actual plant is allowed to have fewer unstable poles than the nominal plant, but all its
unstable poles are confined to the same locations as in the nominal model. In view of the
caution in the previous paragraph, such cancellations do not correspond to unstable hidden
modes, and are therefore not of concern.

As in the case of additive perturbations, suppose we have a set of possible plants II such
that the true plant is a member of that set. We can try to embed this set in a multiplicative
perturbation structure. First let Py € II a certain nominal plant in II. For any other plant
P € II we have,

P(jew) = Po(jeo) (1 + W (jw)A(jw)).

The weight |V (jw)| satisfies

Wl > WG AGe)| = | L)

Py(jw)
Pjw) — Py(jw) ‘ ,
- =/{,,(jw).
Py(jw) (e
With the knowledge of the envelope ¢, (jw), we find a stable system W (s) such that |W (jw)| >
U (jw)

] >
W(jw)l = max

Example 19.1 Uncertain Gain

Suppose we have a plant P = kP(s) with an uncertain gain k& that lies in the
interval k; < k < ky. We can write k = «(1 + Sz) such that

k’l = Oz(l—ﬂ)
k‘2 = Oz(1+ﬁ)

Therefore a = kl";”, b= ’kf;;’kfi, and we can express the set of plants as

k1 + ko S ( ko — k1 ) }
IMm=<P(s)|P(s) = ——=P 1 —-1<a<1;.
{P@)IP(s) = P22 P(s) (14 2 ) —1 <o <
We can embed this II in a multiplicative structure by enlarging the uncertain
elements = which are real numbers to complex A(jw) representing dynamic per-
turbations. This results in the following set

ki1 + ko = ko — ky
2, = { PP = P2 Pls) (14 2508 ) Al < 1.



Note that in this representation Py = ’“LZ@P, and W = ﬁ;;ﬁi

Example 19.2 Uncertain Delay

Suppose we have a plant P = e~**Py(s) with an uncertain delay 0 < k < k;. We
want to represent this family of plants in a multiplicative perturbation structure.
The weight W (s) should satisfy

eI Py (jw) — Py(jw)

[W(jw)] > max

T 0<k<h Py(jw)
=  max |e 7 1]
0<k<ki
B |1—e*j“k1| cu<,€—7r1
o 0 w > -
= lp(w).
A stable weight that satisfies the above relation can be taken as
2rk
W(s) = a—rt
7Tk18 +1

where o« > 1. The reader should verify that this weight will work by ploting
|W(jw)| and ¢,,(w), and showing that ¢,,(w) is below the curve |W (jw)| for all w.

19.4 The Nyquist Criterion

Before we analyze the stability of feedback loops where the plant is uncertain, we will review
the Nyquist criterion. Consider the feedback structure in Figure 19.3. The transfer function

D

Y
h
Y

Y

Figure 19.3: Unity Feedback Confuguration.

L is called the open-loop transfer function. The condition for the stability of the system
in 19.3 is assured if the zeros of 1 + L are all in the left half of the complex plane. The
agrument principle from complex analysis gives a criterion to calculate the difference between
the number of zeros and the number of poles of an analytic function in a certain domain, D
in the complex plane. Suppose the domain is as shown in Figure 19.4, and the boundary of
D, denoted by D, is oriented clockwise. We call this oriented boundary of D the Nyquist
contour.



Nyquist Domain

Figure 19.4: Nyquist Domain.

As the radius of the semicircle in Figure 19.4 goes to infinty the domain covers the right
half of the complex plane. The image of §D under L is called a Nyquist plot, see Figure 19.5.
Note that if L has poles at the jw axis then we indent the Nyquist contour to avoid these
poles, as shown in Figure 19.4. Define

i = Open — loop poles = Number of poles of L in D = Number of poles of 1 + L in D
mg = Closed — loop poles = Number of zeros of 1 + L in D.

From the argument principle it follows that
Tei—Tor = The number of clockwise encirclements that the Nyquist Plot makes of the point —1.

Using this characterization of the difference of the number of the closed-loop poles and the
open-loop poles we arrive at the following theorem for the stability of Figure 19.3

Theorem 19.1 The closed-loop system in Figure 19.3 is stable if and only if the Nyquist plot
e does not pass through the origin,

o makes T, counter-clockwise encirclements of —1.

19.5 Robust Stability

In this section we will show how we can analyze the stability of a feedback system when the
plant is uncertain and is known to belong to a set of the form that we described earlier. We
will start with the case of additive pertubations. Consider the unity feedback configuration
in Figure 19.1. The open-loop transfer function is L(s) = (Py(s) + W(s)A(s))K (s), and the



Nyquist Plot
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Figure 19.5: Nyquist Plot.

nominal open-loop transfer function is Lo(s) = Py(s)K(s). The nominal feedback system
with the nominal open-loop transfer function Lg is stable, and we want to know whether the
feeback system remains stable for all A(s) satisfying |A(jw)| < 1 for all w € R. We will
assume that the nominal open-loop system is stable. This causes no loss of generality and the
result holds in the general case. From the Nyquist criterion, we have that the Nyquist plot of
Ly does not encircle the point —1. For the perturbed system, we have that

1+ L(jw) = 1+ P(jw)K(jw)
1+ (P (jw) + W(jw)A(jw)) K (jw)
= 1+ Lo(jw) + W(jw)A(jw) K (jw)

From the Figure 19.6, it is clear that L(jw) will not encircle the point —1 if the following
condition is satisfied,
(W (jw) K (jw)| <14 Lo(jw)l,
which can be written as o
W(jw) K(jw)

T Lofi) ‘ <1 (19.6)

A Small Gain Argument

Next we will present a different derivation of the above result that does not rely on the
Nyquist criterion, and will be the basis for the multivariable generalizations of the robust
stability results. Since the nominal feedback system is stable, the zeros of 1+ Lg(s) are all in
the left half of the complex plane. Therefore, by the continuity of zeros, the perturbed system
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Figure 19.6: Nyquist Plot Illustrating Robust Stability.

will be stable if and only if
1+ (Po(jw) + W (jw)A(jw)) K (jw)| >0

for all w € R, ||Al| < 1. By rearranging the terms, the perturbed system is stable if and
only if

W (jw) K (jw)
1+ Py(jw)K (jw)

The following lemma will help us to transform this condition to the one given earlier.

m A(jw)‘ >0 forallweR
|AGw)I<1

Lemma 19.1 The following are equivalent

1.
W (jw) K (jw) : ‘
min ’ —~ _A(jw)| >0 or allw € R
|AGw)|<1 1+ Py(jw) K (jw) () d
2.
1-—- ‘ W(jw) K (jw) ‘ >0 forallweR

1+ Py(jw)K (jw)

Proof. First we show that 2) implies 1), which is a consequence of the following inequalities

W@ EGe) W) K (o)
1+Po(jW)B'(jW)A(]w)‘ . _‘1+P0(jw)K(jw)A(]w)‘

[t
T+ Ry(j) K (o) |



For the converse suppose 2) is violated, that is there exists wy such that

W (juwo) K (jwo)
14 Po(jwo)fﬁy(ng)

Write . .
W(jwo)K(jwo) el
1+ Py(jwo) K (jwo) ’

and let A(jwy) = Le %797, Clearly, |A(jwp)| < 1 and
W (jwo) K (jwo) %

1+ - ————A(Jwg) = 0.
1+ Py(jwo) K (jwo) (jeco)
Now select a real rational perturbation A(s) as
~ 1s—
A(s) = +-2—2%
as—+a
such that £L2-2 = e IOIT,
T oA W
)
K \J Fo g

Figure 19.7: Representation of the actual plant in a servo loop via a multiplicative perturba-
tion of the nominal plant.

A similar set of results can be obtained for the case of multiplicative perturbations. In
particular, a robust stability of the configuration in Figure 19.7 can be guaranteed if the
system is stable for the nominal plant Py and

W (jw)Po(jw) K (jw)
1+ Py(jw)K (jw)

<1. forallweR. (19.7)

Example 19.3 Stabilizing a Beam

We are interested in deriving a controller that stabilizes the beam in Figure 19.8
and tracks a step input (with good properties). The rigid body model from torque
input to the tip deflection is given by

6.28
Py(s) = =



Position Sensor
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DC Motor Felxible Beam Mass

Figure 19.8: Flexible Beam.

Consider the controller

500 10
Ko(s) = 500(s + 10)
s+ 100
The loop gain is given by
. 3140(s + 10
Po(s) Ko (s) = 2200 £ 10)

s?(s + 100)

and is shown in Figure 19.9. The closed loop poles are located at -49.0, -28.6,
-22.4, and the nominal Sensitivity function is given by

1 52(s 4+ 100)

T 1+ Py(s)Ko(s) 7+ 10052 + 3140s + 31400

S[)(S)

and is shown in Figure 19.10. It is evident from this that the system has good
disturbance rejection and tracking properties. The closed loop step response is
show in Figure 19.11

While this controller seems to be an excellent design, it turns out that it performs
quite poorly in practice. The bandwidth of this controller (which was never con-
strained) is large enough to excite the flexible modes of the beam, which were not
taken into account in the model. A more complicated model of the beam is given
by

Py(s) 6.28 n 12.56
S) = _
! 52 s2 +0.707s + 28
~—— ~
nominal plant flexible mode

If Ky is connected to this plant, then the closed loop poles are -1.24, 0.29, 0.06,
-0.06, which implies instability.

Instead of using the new model to redesign the controller, we would like to use
the nominal model Py, and account for the flexible modes as unmodeled dynamics
with a certain frequency concentration. There are several advantages in this. For



200 iy

100

Gain dB

[P IS I N O RSO N R S R MOt

Frequency (rad/sec)

-120 L B AL L R R B A L B A AL L B AL

Phase deg

_180 L - ‘ 1 “HHL L L “HHL L L “HHL L R
10 10 10° 10" 10 10
Frequency (rad/sec)

Figure 19.9: Open-loop Bode Plot

one, the design is based on a simpler nominal model and hence may result in a
simpler controller. This approach also allows us to acomodate additional flexible
modes without increasing the complexity of the description. And finally, it enables
us to tradeoff performance for robustness.

Consider the set of plants:
Q={P=PFP1+A); |A(jw)| <l(w),A is stable}

where

w2

28 — w? + 0.707jw

l(w) <2
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Figure 19.10: Nominal Sensitivity

This set includes the model P;. The stability Robustness Condition is given by:

T < —

T (jw)| )
Where T is the nominal closed loop map with any controller K. First, consider
the stability analysis of the initial controller Ky(s). Figure 19.12 shows both
the frequency response for |Ty(jw)| and [¢(w)]~!. It is evident that the Stability
robustness condition is violated since

) 1
|To(jw)| £ @) 3 <w < 70 rad/sec
15 T T T T T T
g 1t :
2
=
=
<0.5F A
0 | | | | | |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Time (sec)

Figure 19.11: Step Response



(dB)

Gain

00—
00~
0 T
N
qooliiiiiii G oieicia ¢ § g

10 10 10° 10 10
Frequency (rad/sec)
Figure 19.12: |Tp(jw)| and [¢(w)] ™!

Let’s try a new design with a different controller

(5 x 107%)(s +0.01)

Ky(s) =
Gi(s) S+0.1
The new loop-gain is
i 3.14 x 1073)(s + 0.01
Py(s)K1(s) = ( ) )

s?(s +0.1)

which is shown in the Figure 19.13 We first check the robustness condition with

the new controller. T7 is given by

_ Py(s)Kq(s)
Ti(s) =1 +0P0(s)}{1(s)

Figure 19.14 depicts both |T}(jw)| and [¢(w)]™'.

was necessary to prevent instability.

It is clear that the condition
is satisfied. Figure 19.15 shows the new nominal step response of the system.
Observe that the response is much slower than the one derived by the controller
Ky. This is essentially due to the limited bandwidth of the new controller, which



Exercises

Exercise 19.1 Suppose P(s) = ¢ is connected with a controller K'(s) in a unity feedback configu-

ration. Does there exists a K such that the system is stable for both ¢ =1 and a = —1.

Exercise 19.2 For P(s) and K (s) given by

P(s) =

b

1 !
(s+2)(s+a) K(s) = s

find the range of a such that the closed loop system with P and K is stable.

Exercise 19.3 Let P be given by:
P(s) = (1+ W(s)A(s)) P,

where
Po(s)= 0 W) = o
s—1 s+ 10
and A is arbitrary stable with ||Al|c < 2. Find a controller K (s) = k (constant) gain such that the
system is stable. Compute all possible such gains.

Exercise 19.4 Find the stability robustness condition for the set of plant described by:

Py
p={—2°%
{1+AWP0’

Assume W P is strictly proper for well posedness.

1Al < 1}

Exercise 19.5 Suppose

P(s) = L and K(s) = 10,

s—a

are connected in standard feedback configuration. While it is easy in this case to compute the exact
stability margin as a changes, in general, such problems are hard to solve when there are many
parameters. One approach is to embed the problem in a robust stabilization problem with unmodeled
dynamics and derive the appropriate stability robustness condition. Clearly, the later provides a
conservative bound on a for which the system remains stable.

(a) Find the exact range of a for which the system is stable.
(b) Assume the nominal plant is Py = % Show that P belongs to the set of plants:

I

Q:{P:1+WAP0

Al <1}

and W = —a.



(c) Derive a condition on the closed loop system that guarantees the stability of the set 2. How does
this condition constrain a? Is this different than part (a)?

(d) Repeat with nominal plant Py = —55 +1100.

Exercise 19.6 Let a model be given by the stable plant:

Py(z) = . 1>>a0>0.

21— (1 + 0,0)

Consider the class of plants given by:

Q:{(z):zl%(l_kbﬂ —2a0§b§2a0}.

1. Can the set 2 be embedded in a set of additive or multiplicative norm bounded perturbations,
with nominal plant Py? Show how or explain your answer.

2. If your answer to the previous part is NO, show that the class 2 can be embedded in some other
larger set characterized by norm-bounded perturbations. Give a sufficient condition for stability
using the small gain theorem.

3. Improve your earlier condition so that it captures the fact that the unknown is a real parameter.
(The condition does not have to be necessary, but should still take into consideration the phase
information!).

Exercise 19.7 Consider Exercise 17.4. Suppose that due to implementation problems (e.g. quanti-
zation effects), the actual controller can be modeled as:

K,=(-KWA) 'K

where W is a fixed stable filter, and A is a stable perturbation of H.,-norm less than 1, but otherwise
arbitrary. Provide a non-conservative condition for the stability robustness of the closed loop system.
Use the parametrization of K in terms of @ to express your condition as a function of P and Q.
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Chapter 20

Stability Robustness

20.1 Introduction

Last chapter showed how the Nyquist stability criterion provides conditions for the stability
robustness of a SISO system. It is possible to provide an extension of those conditions by gen-
eralizing the Nyquist criterion for MIMO systems. This, however, turns out to be unnecessary
and a direct derivation is possible through the small gain theorem, which will be presented in
this chapter.

20.2 Additive Representation of Uncertainty

It is commonly the case that the nominal plant model is quite accurate for low frequencies
but deteriorates in the high-frequency range, because of parasitics, nonlinearities and/or time-
varying effects that become significant at higher frequencies. These high-frequency effects may
have been left unmodeled because the effort required for system identification was not justified
by the level of performance that was being sought, or they may be well-understood effects that
were omitted from the nominal model because they were awkward and unwieldy to carry along
during control design. This problem, namely the deterioration of nominal models at higher
frequencies, is mitigated to some extent by the fact that almost all physical systems have
strictly proper transfer functions, so that the system gain begins to roll off at high frequency.
In the above situation, with a nominal plant model given by the proper rational matrix
Py(s), the actual plant represented by P(s), and the difference P(s) — Py(s) assumed to be
stable, we may be able to characterize the model uncertainty via a bound of the form

Omaz [P(jw) = Po(jw)] < la(w) (20.1)

where

B “Small” ; |w| < we
lalw) = { “Bounded” ; |w| > w, (20.2)



This says that the response of the actual plant lies in a “band” of uncertainty around that of
the nominal plant. Notice that no phase information about the modeling error is incorporated
into this description. For this reason, it may lead to conservative results.
The preceding description suggests the following simple additive characterization of the
uncertainty set:
Q= {P(s)| P(s) = Pols) + W(s)A(s)} (20.3)

where A is an arbitrary stable transfer matrix satisfying the norm condition

1Alloo = Sup Tmac (A(jw)) < 1 (20.4)

and the stable proper rational (matrix or scalar) weighting term W (s) is used to represent
any information we have on how the accuracy of the nominal plant model varies as a function
of frequency. Figure 20.1 shows the additive representation of uncertainty in the context of a
standard servo loop, with I denoting the compensator.

When the modeling uncertainty increases with frequency, it makes sense to use a weight-
ing function W (jw) that looks like a high-pass filter: small magnitude at low frequencies,
increasing but bounded at higher frequencies. In the case of a matrix weight, a variation
on the use of the additive term WA is to use a term of the form Wi AWs; we leave you to
examine how the analysis in this lecture will change if such a two-sided weighting is used.

Y

. A w
Y 0

Figure 20.1: Representation of the actual plant in a servo loop via an additive perturbation
of the nominal plant.

Caution: The above formulation of an additive model perturbation should not be interpreted
as saying that the actual or perturbed plant is the parallel combination of the nominal system
Py(s) and a system with transfer matrix W(s)A(s). Rather, the actual plant should be
considered as being a minimal realization of the transfer function P(s), which happens to be
written in the additive form Py(s) + W (s)A(s).

Some features of the above uncertainty set are worth noting:
e The unstable poles of all plants in the set are precisely those of the nominal model. Thus,

our modeling and identification efforts are assumed to be careful enough to accurately
capture the unstable poles of the system.

e The set includes models of arbitrarily large order. Thus, if the uncertainties of major
concern to us were parametric uncertainties, i.e. uncertainties in the values of the



parameters of a particular (e.g. state-space) model, then the above uncertainty set
would greatly overestimate the set of plants of interest to us.

The control design methods that we shall develop will produce controllers that are guar-
anteed to work for every member of the plant uncertainty set. Stated slightly differently,
our methods will treat the system as though every model in the uncertainty set is a possible
representation of the plant. To the extent that not all members of the set are possible plant
models, our methods will be conservative.

20.3 Multiplicative Representation of Uncertainty

Another simple means of representing uncertainty that has some nice analytical properties is
the multiplicative perturbation, which can be written in the form

Q={P|P=PR(I+WA), |l < 1}. (20.5)

A w
Y 0
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Figure 20.2: Representation of uncertainty as multiplicative perturbation at the plant input.

An alternative to this input-side representation of the uncertainty is the following output-
side representation:

Q={P|P=(I+WAP, |Ale <1} (20.6)

In both the multiplicative cases above, W and A are stable. As with the additive represen-
tation, models of arbitrarily large order are included in the above sets. Still other variations
may be imagined; in the case of matrix weights, for instance, the term WA can be replaced
by WIAWQ.

The caution mentioned in connection with the additive perturbation bears repeating
here: the above multiplicative characterizations should not be interpreted as saying that the
actual plant is the cascade combination of the nominal system Py and a system I + WA.
Rather, the actual plant should be considered as being a minimal realization of the transfer
function P(s), which happens to be written in the multiplicative form.

Any unstable poles of P are poles of the nominal plant, but not necessarily the other
way, because unstable poles of Py may be cancelled by zeros of I + WA. In other words,
the actual plant is allowed to have fewer unstable poles than the nominal plant, but all its
unstable poles are confined to the same locations as in the nominal model. In view of the
caution in the previous paragraph, such cancellations do not correspond to unstable hidden
modes, and are therefore not of concern.



20.4 More General Representation of Uncertainty

Consider a nominal interconnected system obtained by interconnecting various (reachable and
observable) nominal subsystems. In general, our representation of the uncertainty regarding
any nominal subsystem model such as Fy involves taking the signal ¢ at the input or output
of the nominal subsystem, feeding it through an “uncertainty block” with transfer function
WA or Wi AWy, where each factor is stable and [|A|ls < 1, and then adding the output
@ of this uncertainty block to either the input or output of the nominal subsystem. The
one additive and two multiplicative representations described earlier are special cases of this
construction, but the construction actually yields a total of three additional possibilities with
a given uncertainty block. Specifically, if the uncertainty block is WA, we get the following
additional feedback representations of uncertainty:

e P=Py(I-WAP,)™ Y
e P=Py(I—-WA)!;
e P=(I-WA)'P,.

A useful feature of the three uncertainty representations itemized above is that the unstable
poles of the actual plant P are not constrained to be (a subset of) those of the nominal plant
Py.

Note that in all six representations of the perturbed or actual system, the signals ¢ and
0 become internal to the actual subsystem model. This is because it is the combination of
Py with the uncertainty model that constitutes the representation of the actual model P, and
the actual model is only accessed at its (overall) input and output.

In summary, then, perturbations of the above form can be used to represent many types of
uncertainty, for example: high-frequency unmodeled dynamics, unmodeled delays, unmodeled
sensor and/or actuator dynamics, small nonlinearities, parametric variations.

20.5 A Linear Fractional Description

We start with a given a nominal plant model Py, and a feedback controller K that stabilizes
Py. The robust stability question is then: under what conditions will the controller stabilize
all P € Q7 More generally, we assume we have an interconnected system that is nominally
internally stable, by which we mean that the transfer function from an input added in at
any subsystem input to the output observed at any subsystem output is always stable in
the nominal system. The robust stability question is then: under what conditions will the
interconnected system remain internally stable for all possible perturbed models.

If the plant uncertainty is specified (additively, multiplicatively, or using a feedback
representation) via an uncertainty block of the form WA, where W and A are stable, then
the actual (closed-loop) system can be mapped into the very simple feedback configuration
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Figure 20.3: Standard model for uncertainty.

shown in Figure 20.3. (The generalization to an uncertainty block of the form Wi AW; is
trivial, and omitted here to avoid additional notation.)

As in the previous subsection, the signals ¢ and 6 respectively denote the input and output
of the uncertainty block. The input w is added in at some arbitrary accessible point of the
interconnected system, and z denotes an output taken from an arbitrary accessible point. An
accessible point in our terminology is simply some subsystem input or output in the actual
or perturbed system; the input ¢ and output € of the uncertainty block would not qualify as
accessible points.

If we remove the perturbation block A in Fig. 20.3, we are left with the nominal closed-
loop system, which is stable by hypothesis (since the compensator K has been chosen to
stabilize the nominal plant and is lumped in G). Stability of the nominal system implies that
the transfer functions relating the outputs ¢» and z of the nominal system to the inputs 6 and
w are all stable. Thus, in the transfer function representation

w(s)\ _ [ Mls) N(s) ) [ ) 20
Z(s) J(s) L(s) W (s) '
each of the transfer matrices M, N, J, and L is stable.
Now incorporating the constraint imposed by the perturbation, namely

O=(A)T (20.8)
and solving for the transfer function relating z to w in the perturbed system, we obtain
Gu:(s) = L+ JA(I — MA)"!N. (20.9)

Note that M is the transfer function “seen” by the perturbation A, from the input 6 that
it imposes on the rest of the system, to the output ) that it measures from the rest of the
system. Recalling that w and z denoted arbitrary inputs and outputs at the accessible points
of the actual closed-loop system, we see that internal stability of the actual (i.e. perturbed)
closed-loop system requires the above transfer function be stable for all allowed A.



20.6 The Small-Gain Theorem

Since every term in G, other than (I—MA)~! is known to be stable, we shall have stability of
G-, and hence guaranteed stability of the actual closed-loop system, if (I — MA)~! is stable
for all allowed A. In what follows, we will arrive at a condition — the small-gain condition
— that guarantees the stability of (I — MA)~!. It can also be shown (see Appendix) that if
this condition is violated, then there is a stable A with ||Al|sc < 1 such that (I — MA)~! and
A(I — MA)~! are unstable, and G,,, is unstable for some choice of z and w.

Theorem 20.1 (“Unstructured” Small-Gain Theorem) Define the set of stable pertur-

bation matrices A 2 {A | |Allee £ 1}. If M is stable, then (I — MA)™" and A(I — MA)™!
are stable for each A in A if and only if | M|~ < 1.

Proof. The proof of necessity (see Appendix) is by construction of an allowed A that causes
(I—MA) !t and A(I—MA) ! to be unstable if | M|, > 1, and ensures that G, is unstable.

For here, we focus on the proof of sufficiency. We need to show that if ||M||o < 1 then
(I — MA)~! has no poles in the closed right half-plane for any A € A, or equivalently that
I — M A has no zeros there. For arbitrary z # 0 and any sy in the closed right half-plane
(CRHP), and using the fact that both M and A are well-defined throughout the CRHP, we
can deduce that

I = M(s1)A(s4)]xl2 lellz = 1M (s 1) Als )z ll2
lell2 = omaa[M (s4) A(s)]]] |2
lellz = (1M loo | Ao ll]l2

0 (20.10)

V IV IV IV

The first inequality above is a simple application of the triangle inequality. The third inequal-
ity above results from the Maximum Modulus Theorem of complex analysis, which says that
the largest magnitude of a complex function over a region of the complex plane is found on the
boundary of the region, if the function is analytic inside and on the boundary of the region.
In our case, both ¢/ M'Mq and ¢’ A’ Aq are stable, and therefore analytic, in the CRHP, for
unit vectors ¢; hence their largest values over the CRHP are found on the imaginary axis.
The final inequality in the above set is a consequence of the hypotheses of the theorem, and
establishes that I — M A is nonsingular — and therefore has no zeros — in the CRHP.

20.7 Stability Robustness Analysis

Next, we present a few examples to illustrate the use of the small-gain theorem in stability
robustness analysis.

Example 20.1 (Additive Perturbation)



For the configuration in Figure 20.1, it is easily seen that

M=—-K(I+PK)"'W=—-(I+KP)"'KW

Example 20.2 (Multiplicative Perturbation)

A multiplicative perturbation of the form of Figure 20.2 can be inserted into the
closed-loop system at either the plant input or output. The procedure is then
identical to Example 20.1, except that M becomes a different function. Again it
is easily verified that for a multiplicative perturbation at the plant input,

M = —(I + KPy)"'KPyW, (20.11)
while a perturbation at the output yields
M = —(I + PyK) 'PyKW. (20.12)

What the above examples show is that stability robustness requires ensuring the weighted
versions of certain familiar transfer functions have H., norms that are less than 1. For
instance, with a multiplicative perturbation at the output as in the last example, what we
require for stability robustness is ||TW||loo < 1, where T is the complementary sensitivity
function associated with the nominal closed-loop system. This condition evidently has the
same flavor as the conditions we discussed earlier in connection with nominal performance of
the closed-loop system.

The small-gain theorem fails to take advantage of any special structure that there might
be in the uncertainty set A, and can therefore be very conservative. As examples of the kinds
of situations that arise, consider the following two examples.

Example 20.3

Suppose we have a system that is best represented by the model of Figure 20.4.
When this system is reduced to the standard form, A will have a block-diagonal

Y

W, A, Ay W,

A 4

K ~+ Py x >

Figure 20.4: Plant with multiple uncertainties.

structure, since the two perturbations enter at different points in the system:

A, 0
A:[ 0 Ab] (20.13)



Thus, there is some added information about the plant uncertainty that can-
not be captured by the unstructured small-gain theorem, and in general, even if
||M||oo > 1 for the M that corresponds to the A above, there may be no admissible
perturbation that will result in unstable (I — MA)~!.

Example 20.4

Suppose that in addition to norm bounds on the uncertainty, we know that the
phase of the perturbation remains in the sector [-30°, 30°]. Again, even if || M||oc >
1 for the M that corresponds to the A for this system, there may be no admissible
perturbation that will result in unstable (I — MA)~!.

In both of the preceding two examples, the unstructured small-gain theorem gives con-
servative results.

Relating Stability Robustness to the (SISO) Nyquist Criterion

Suppose we have a SISO nominal plant with a multiplicative perturbation, and a nominally
stabilizing controller K. Then P = Py(1 + WA), and the compensated open-loop transfer
function is

PK = PByK + PBhKWA. (20.14)

Since Py, K, and W are known and |A| < 1 with arbitrary phase, we may deduce from (20.14)
that the “real” Nyquist plot at any given frequency wy is contained in a region delimited by
a circle centered at Py(jwo)K (jwp), with radius [Py KW (jwp)|. This is illustrated in Figure
20.5(a). Clearly, if the circle of uncertainty ever includes —1, there is the possibility that the
“real” Nyquist plot has an extra encirclement, and hence is unstable. We may relate this
to the robust stability problem as follows. From Example 20.2, the SISO system is robustly
stable by the small gain theorem if

‘ P K

_ 1 . 20.1
1+POKW‘< L Vw (20.15)

Equivalently,
|PoKW| < |14+ PyK|. (20.16)

The right-hand side of (20.16) is the magnitude of a translation of the Nyquist plot of the
nominal loop transfer function. In Figure 20.5(b), because of the translation, encirclement
of zero will destabilize the system. Clearly, this cannot happen if (20.16) is satisfied. This
makes the relationship of robust stability to the SISO Nyquist criterion clear.

Performance as Stability Robustness

Suppose that, for some plant model P, we wish to design a feedback controller that not only
stabilizes the plant (first order of priority!), but also provides some performance benefits, such
as improved output regulation in the presence of disturbances. Given that something is known
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Figure 20.5: Relation of Nyquist criterion and robust stability.

about the frequency spectrum of such disturbances, the system model might look like Figure
20.6, where ||£|]2 < 1, and the modeling filter W can be constructed to capture frequency
characteristics of the disturbance. Calculating the transfer function of this loop from £ to
y, we have that y = (I + PK)™'W¢. We assume that the performance specification will be
met if ||(I + PK) W/« < 1, which does not restrict the problem, since W can always be
scaled to reflect the actual magnitude of the disturbance or performance specification. This
formulation looks analogous to a robust stability problem, and indeed, it can be verified that
the small-gain theorem applied to the system of Figure 20.7 captures the identical constraint
on the system transfer function. By mapping this system into the standard form of Figure
20.3, we find that M = (I + PK) 'W, which is exactly the M that is needed if the small-gain
condition is to yield the desired condition.

Finally, plant uncertainty has to be brought into the picture simultaneously with the
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Figure 20.6: Plant with disturbance.
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Figure 20.7: Mapping performance specifications into a stability problem.

performance constraints. This is necessary to formulate the performance robustness problem.
It should be evident that this will lead to situations with block-diagonal A, as was obtained
in the context of the last example in the previous subsection. The treatment of this case will
require the notion of structured singular values, as we shall see in the next lecture.

Appendix

Necessity of the small gain condition for robust stability can be proved by showing that if
Omaz|M (jwg)] > 1 for some wy, we can construct a A of norm less than one, such that the
resulting closed-loop map G, is unstable. This is done as follows. Take the singular value
decomposition of M (jwy),

01
M(jwy) =UZV' =U V' (20.17)

On
Since Opmax[M (jwo)] > 1, 01 > 1. Then A(jwp) can be constructed as:
1/01

A(jwy) =V . v’ (20.18)



Clearly, opmq:A(jwy) < 1. We then have
o] 1/oy

(I—MA) '(jwy)= I-U . 1% . U’

—U |I- _ U (20.19)

1

which is singular. Only one problem remains, which is that A(s) must be legitimate as the
transfer function of a stable system, evaluating to the proper value at s = jwg, and having
its maximum singular value over all w bounded below 1. The value of the destabilizing
perturbation at wqg is given by

1

A (jwo) = —Umax(M(ij»UlU'l
Write the vectors vy and ) as
:|:|al|e]jz1
v = i|a2:|e] Sl [ e bl o bl ], (20.20)
:|:|an.|ej9"

where 0; and ¢; belong to the interval [0, 7). Note that we used £ in the representation of
the vectors v; and u} so that we can restrict the angles 6; and ¢; to the interval [0, 7). Now
we can choose the nonnegative constants oy, a9, --+, an and 1, B2, ---, [, such that the
phase of the function :_gl at s = jwp is 0;, and the phase of the function :_g at s = juwp Is
¢;. Now the destabilizing A(s) is given by

1
A(s) = ——————g(s)h! (s) (20.21)
Tmaz (M (jwo))
where 5
(G v b1 55
+las| 5752 [ba | $757
g(s) = ST h(s) = R (20.22)
Ean| e b | 5



Exercises

Exercise 20.1 Consider a plant described by the transfer function matrix

[} 1
Pu(s) = < 253111 SII )

s(s—1) s—1

where « is a real but uncertain parameter, confined to the range [0.5, 1.5]. We wish to design a
feedback compensator K (s) for robust stability of a standard servo loop around the plant.

(a) We would like to find a value of «, say &, and a scalar, stable, proper rational W (s) such that the
set of possible plants P, (s) is contained within the “uncertainty set”

Ps(s)[I + W (s)A(s)]

where A(s) ranges over the set of stable, proper rational matrices with ||A]lco < 1. Try and find
(no assurances that this is possible!) a suitable & and W (s), perhaps by keeping in mind that
what we really want to do is guarantee

Tmaz{ Pz " (jw)[Pa(jw) — Pz (jw)]} < [W(jw)|

What specific choice of A(s) yields the plant P (s) (i.e. the plant with a =1) ?

(b) Repeat part (a), but now working with the uncertainty set
Pa(s)[I + Wi(s)A(s)Wa(s)]

where Wi (s) and Wa(s) are column and row vectors respectively, and A(s) is scalar. Plot the
upper bound on

Umax{Pgl(jw)[Pa(jw) - P&(]w)]}

that you obtain in this case.

(c) For each of the cases above, write down a sufficient condition for robust stability of the closed-loop
system, stated in terms of a norm condition involving the nominal complementary sensitivity
function T' = (I + KPz) 'K P5; and W — or, in part (b), W; and Ws.

Exercise 20.2 It turns out that the small gain theorem holds for nonlinear systems as well. Con-
sider a feedback configuration with a stable system M in the forward loop and a stable, unknown
perturbation in the feedback loop. Assume that the configuration is well-posed. Verify that the closed
loop system is stable if | M||||A]| < 1. Here the norm is the gain of the system over any p-norm. (This
result is also true for both DT and CT systems; the same proof holds).

Exercise 20.3 The design of a controller should take into consideration quantization effects. Let us
assume that the only variable in the closed loop which is subject to quantization is the output of the
plant. Two very simple schemes are proposed:
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Figure 20.8: Quantization in the Closed Loop.
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Figure 20.9: Quantization Modeled as Bounded Noise.

1. Assume that the output is passed through a quantization operator @) defined as:

|]

Q) :aL.S—I-a

|sgn(z), a>0

where |r] denotes the largest integer smaller than r. The output of this operator feeds into
the controller as in Figure 20.8. Derive a sufficient condition that guarantees stability in the
presence of Q.

2. Assume that the input of the controller is corrupted with an unknown but bounded signal, with
a small bound as in Figure 20.9. Argue that the controller should be designed so that it does
not amplify this disturbance at its input.

Compare the two schemes, i.e., do they yield the same result? Is there a difference?



Chapter 21

Robust Performance and
Introduction to the Structured
Singular Value Function

21.1 Introduction

As discussed in Lecture 20, a process is better described in terms of a set of plants centered around a
nominal model. The robust stabilization problem is concerned with finding non conservative conditions
on the stable nominal closed loop system that guarantee the stability of all possible closed loop systems.
An equally important problem is the robust performance problem which is concerned with finding non
conservative conditions on the nominal closed loop system that guarnatee that the performance is met
for all possible closed loop systems.

21.2 Robust Disturbance Rejection

We will focus our discussion on one prototype problem, namely, the robust disturbance rejection
problem shown in Figure 21.1. This motivates the following problem:

Robust Disturbance Rejection Problem (RP)

Find conditions on the nominal closed-loop system (P,, K) such that
1. K robustly stabilizes all P € Q, where Q ={P | P = (I + A{W1)P,, ||A|l, <1}
2. [|[(I + PK)™'"Ws||, < 1forall P e

From Lecture 20, a performance objective in terms of the H,,-norm of some closed loop map
between some exogenous input w, to a regulated variable z, is mathematically equivalent to a robust
stabilization problem with a perturbation block mapping the regulated output 2 to the exogenous input
w. Obviously, the new perturbed system is stable if and only if ||T%,||co < 1, which is the performance
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Figure 21.1: Uncertain Plant with Disturbance

objective. Notice that if the performance objective consists of several closed loop maps, then several
perturbation blocks can be introduced in exactly the same fashion.

Proceeding for RP, we can “wrap” a frequency-weighted perturbation from the output to the
input of interest, which results in the model of Figure 21.2. Next, we can re-arrange the system into the

21
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Figure 21.2: Robust Performance Model

M-A feedback form (a nominal stable M in feedback with the perturbation A) as in Figure 21.3. In
this case, however, there are multiple inputs and outputs to consider. We use the following procedure
to generate M and A:

1. Define w;, z; to be the output and input, respectively, of the perturbation A;.
2. For a total of m perturbations, compute the matrix transfer function M as the map from
w1 Z1
w = to z= . (21.1)

w?n Zm

In other words, all the A blocks are removed, and the transfer functions “seen” by the blocks
from each input w; to each output z; are calculated and used as the (i, )th element of M.
3. The perturbation matrix A will have the structure
Ay
A= L Al < L (21.2)
A

For a SISO system, each A;(jw) is a scalar, so that A becomes a diagonal matrix with complex
entries. In the MIMO case, A is block-diagonal.



Example 21.1 (Robust Disturbance Rejection)
Applying the robust performance procedure to Figure 21.2 yields:

Wy ([ + P()I()_IP()K Wy ([ + PoKr)_IP()K
M = . (21.3)
WQ(I + P()K)_l WQ(I"‘ f’o[()_1

The transfer functions on the diagonal are identical to those in the single-block robust
stability and disturbance-rejection problems, respectively, while the off-diagonal terms
account for the interaction between the two constraints. Having found the appropriate M
and A, we have thereby reduced the robust performance problem to a stability problem
for the system of Figure 21.3.

A

.

Figure 21.3: M-A Feedback Form

A sufficient condition for robust stability is given by the small gain theorem, namely,
Ulnax[M(jw)]alnax[A(jw)] S 7 < 1, for all w.

Since A is norm bounded by one, this condition translates to ||M||oc < 7. This condition, however, is
far from necessary since A has a block diagonal structure.

21.3 The Structured Singular Value

For an unstructured perturbation, the supremum of the maximum singular value of M (i.e. ||M]| )
provides a clean and numerically tractable method for evaluating robust stability. Recall that, for the
standard M-A loop, the system fails to be robustly stable if there exists an admissible A such that
(I — MA) is singular. What distinguishes the current situation from the unstructured case is that
we have placed constraints on the set /. Given this more limited set of admissible perturbations, we
desire a measure of robust stability similar to ||M|_ . This can be derived from the structured singular
value pu(M).

Definition 21.1 The structured singular value of a complex matrix M with respect to a class of

perturbations A is given by
1

M) = A e A. 21.4
W) = o A) [ det(T = MA) =0} € (214)

If det(I — MA) #0 for all A € A, then u(M) =0.

>




Theorem 21.1 The M-A System is stable for all A € A with ||A||,, <1 if and only if

sup (M (jw)) < 1.

Proof: Immediate, from the definition. Clearly, if 4 < 1, then the norm of the smallest allowable
destabilizing perturbation A must by definition be greater than 1.

21.4 Properties of the Structured Singular Value

It is important to note that y is a function that depends on the perturbation class A (sometimes, this
function is denoted by p 4 to indicate this dependence). The following are useful properties of such a
fucntion.

1. u(M) > 0.

2. If A ={A | A € C}, then u(M) = p(M), the spectral radius of M (which is equal to the
magnitude of the eigenvalue of M with maximum magnitude).

3. If A = {A | A is an arbitrary complex matrix} then p = omax(M), from which sup, u =
| M| -

Property 2 shows that the spectral radius function is a particular p function with respect to
a perturbation class consisting of matrices of the form of scaled identity. Property 3 shows that
the maximum singular value function is a particular p function with respect to a perturbation class
consisting of arbitrary norm bounded perturbations (no structural constraints).

4. If A = {diag(A1,...,A,) | A; complex}, then u(M) = u(D~' M D) for any D = diag(ds, ..., d,), |di| >

0. The set of such scales is denoted D.

This can be seen by noting that det(I — AB) = det(I — BA), so that det(I — D™'MDA) = det(I —
MDAD™) = det(I — MA). The last equality arises since the diagonal matrices A and D commute.

5. If A =diag(Aq,...,A,), A; complex, then p(M) < u(M) < omax(M).

This property follows from the following observation: If A; C Ao, then uy < ps. It is clear that the
class of perturbations consisting of scaled identity matrices is a subset of A which is a subset of the
class of all unstructured perturbations.

6. From 4 and 5 we have that (M) = u(D~*MD) < inf pep Omax (D~ M D).

21.5 Computation of p

In general, there is no closed-form method for computing . Upper and lower bounds may be computed
and refined, however. In these notes we will only be concerned with computing the upper bound. If
A = diag(Aq,...,A,), then the upper bound on p is something that is easy to calculate. Furthermore,
property 6 above suggests that by infimizing o, (D~ M D) over all possible diagonal scaling matrices,
we obtain a better approximation of . This turns out to be a convex optimization problem at each



frequency, so that by infimizing over D at each frequency, the tightest upper bound over the set of D
may be found for p.

We may then ask when (if ever) this bound is tight. In other words, when is it truly a least upper
bound. The answer is that for three or fewer A’s, the bound is tight. The proof of this is involved,
and is beyond the scope of this class. Unfortunately, for four or more perturbations, the bound is not
tight, and there is no known method for computing p exactly for more than three perturbations.

21.6 Robust Disturbance Rejection (SISO)

As shown earlier, the disturbance rejection requirement could be converted to a robust stability problem
with two blocks of uncertainty, as in Figure 21.2, where A; and A, are SISO stable systems. Hence
A is the set of 2 x 2 diagonal complex matrices (which result from evaluating A at each frequency).

Now, since this is a two-block problem, it should be possible to find u by infimizing oax (D~ M D).
We have D = diag(d,, dz), so that

_WIP()K(‘ ) _do Wi K ( )
I+ K 4 T+ P K J
pM(jw)) = nf 3 Omax : (21.5)
1,d2> di WaP, . Wo .
R TR rUw) T (Jw) |
A(a)

with the “pure” robust stability requirement occupying the upper left diagonal, and the nominal
performance requirement on the lower right. Setting a = d2/d; and fixing w, and taking the definition
of A(a) from (21.5), we have

n(M(jw)) = lif‘lfo{)\il/fx(z‘l* (@) A(a))}- (21.6)
a|>
Now, for nominal performance, we require that
W
—(y <1. 21.7
gl < (217)
For robust stability, we need
Wlp()[( .,
— <1. 21.8
].+P0[X’(jw) - ( )
For robust performance, the necessary and sufficient condition is
(M (jw)) < 1. (21.9)
A bit of algebra yields
} Wl.[&' . 2 2 . 2
Amax(A¥A) = 2 — ra——— 21.10
A7) = o | )| + | e (2110
Wi\KP, . 2 1 Wa Py . 2
—_— — | —— 21.11
T+ Rk YY) TP [T e U (21.11)
from which we have
. * Wik K . ‘ ‘ W . 2
f Amax(A7A) = ‘7 S : 21.12
inf Amax(474) <1+P0A(‘7w) Tl Rr Y (21.12)
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Figure 21.4: Robust Performance/Nyquist Criterion

This minimum occurs at

| |2 — |W2P0|

|W, K|

which is not equal to 1 in general, so that sup,, i < ||[M||,. In other words, p is a less conservative
measure than |||, in this case.

Once again, there is a graphical interpretation of the SISO robust disturbance rejection problem,
in terms of the Nyquist criterion. From (21.12), we have

(21.13)

Wi Py K
1+ PR K

(jw>‘ N ‘Lom‘ <1 (21.14)

M(jw)) <1
MM (jw)) <1 = N

Letting L(jw) represent the nominal loop gain PyK (jw), this can be rewritten as:
[WiL(jw)| + [W2| < |1+ L(jw)]. (21.15)

Graphically, we can represent this at each frequency w as a circle centered at —1 of radius |Ws|, and
a second circle centered at L(jw) of radius |W; L(jw)|. Robust performance will be achieved as long
as the two circles never intersect.

Loop-shaping Revisited

Loop-shaping is a well-established method of control design that concentrates on the frequency-domain
characteristics of the open-loop transfer function L = PyK. Based primarily on design experience,
there are certain characteristics of the loop transfer function that translate into desirable control
performance. Other open-loop characteristics are known by experience to result in undesirable or
unpredictable behavior. This method differs from p-synthesis and H,, methods, which concentrate
on optimizing the characteristics of the closed-loop transfer function. Since, presumably, a controller
with good behavior designed by loop-shaping should be similar in some way to a controller designed
by more recent methods, it is of interest to look for parallels in the heuristic rules of loop-shaping and
the more methodical methods of p-synthesis and H,.



Identifying the sensitivity and complementary sensitivity functions from (21.14), we can write
the RP requirement as
(W1(jw)T (jw)| + W2 (jw) S (jw)| < 1. (21.16)

Model uncertainty typically increases with frequency, so it is important that the complementary sensi-
tivity function decreases with increasing frequency. For disturbance rejection, which is typically most
critical over a low frequency range, we require that S(jw) remain small. The weighting functions W
and W5 are designed to reflect this, and so might take on the form of Figure 21.5. Normally, at low

.

Figure 21.5: Typical Weighting Functions

frequency, L(jw) >> 1 and at high frequency, L(jw) << 1. Now,

L 1

T:— S:—
71+ T 1+l

(21.17)
so that at low frequency, Tp &~ 1 and Sy &~ 1/L. Thus we can approximate the RP requirement at the

low end as: ) |W|
W Wo=| <1 L|> "2 21.18
| 1|+\ zL\_ e (21.18)

At high frequency, the approximation is Tp ~ L and Sy ~ 1, which leads to:

1 — Wy

Wi L Wy <1, = |LI<——v—.
| 1|+| 2|_ ) ||_ |W1|

(21.19)
These constraints are summarized in Figure 21.6, which also notes another design rule, which is that
the 0 dB crossing should occur at a slope no more negative than -40 dB per decade. If W; and W5
do not overlap significantly in frequency, then the upper and lower bounds reduce to |W»| and 1/|W|,
respectively.

Example 21.2 (Loop Shaping)

Agssume P, is minimum phase stable with relative degree 1. Designing a controller by
shaping the loop gain L = PyK is not affected by Py; just the relative degree is needed.
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Figure 21.6: Typical Loop-shaping Problem

Suppose the multiplicative uncertainty is described by

s+ 1

Wy=-—
"7 20(0.015 + 1)

i.e., the multiplicative perturbations of the plant are upper bounded by Wi (jw) at each
frequency.

The objective is to track sinusoidal signals at the reference input in the frequency range
[0,1] rad/s. We would like to make the tracking error small; however, we do not know yet
by how much. Let W (jw) have the following frequency response

a 0<w<l1
0 otherwise

W) = {

Note that this may not correspond to a stable Ws(s); however, this does not affect the
resulting loop shape. We are going to exhibit the design by trial and error. Let

b
L =
() cs+1
At high frequency, w > 20,
1— |[Ws| 1
L ——= = w > 20.
- W WA -

If we pick ¢ = 1, then the largest value for b such that the above is satisfied is b = 20.
Hence

20
L(s) = .
() s+1
At low frequency, w < 1,
W-
o> el e
1— (Wi 1—|Wy]



Since |L(jw)| is decreasing and |W; (jw)| is increasing in the range [0, 1], the largest a can

be solved for:
a

L(j1)| = ———,
N S AR
which implies that a = 13.15. Checking the RP condition

WaS(jw)| + Wi T(jw)| <092 Voo

which implies RP is achieved and the tracking error is smaller than 1/13.15 in the range
[0,1]. If a better performance is desired, a possibly more complicated L needs to be used.

The discussion in this chapter has focused on perturbations that are arbitrary dynamic systems.
This alowed us to think of any class of structured perurbations as sets of arbitrary (structured) matrices
at each frequency point. These matrices correspond to evaluating the dynamic system at a given
frequency.

In practical applications, some perturbations may be static and not dynamic. These arise in
problems with real parameter uncertainties. We can still proceed as before and transform such problems
to the general M-A diagram. In this case, A will have a combination of both static and dynamic
perturbations. u for such a class can be defined as before, and it will provide a necessary and sufficient
condition for robust stability.

The main issue here is computing a good upper bound for p. Of course, we can always embed
this class of perturbations in a larger class containing dynamic perturbations and use D-scaling to
obtain an upper bound. This, however, gives conservative conditions. Computing non-conservative
upper bounds of y for such perturbations remains an active area of research.

21.7 Rank-One u

Although we do not have methods for computing u exactly, there is one particular situation where this
is possible. This situation occurs if M has rank 1, i.e.

M = ab*

where a,b € C". Then it follows that p with respect to A containing complex diagonal perturbations
is given by

1
—— = inf {opnx(A) | det(I — MA) =0}.
) = A0 fomax(2) | det(I ~ M) = 0}
However,
det(I — MA) = det(I —ab"A)
= det(I —b*Aa)
b:ﬂll
b2(12
= det | [ —[A1---Ay]
bon
b:lal
b2a2

bnany



and opax(A) = max; |A;|. Hence,

b:lal
1 b2a2
—— = inf max |A;] | [Ay -+ A,] . =1
w(M)  ar,A, i :
bpn

Optimizing the RHS, it follows that (verify)

1 1 _
= n — Ay M) = b;a;|-
(M) 3L [bias] ( ; | |

Notice that the SISO robust disturbance rejection problem is a rank-one problem. This follows since

-Wi K

Py 1
M = - -].
W2 [].—FPQIX ].-f-PQI&]
Then Wi Py K W
M3 — 140 . 2 .
(01 G) = | TR G| + | e )

which is the condition we derived before.

Coprime Factor Perturbations

Consider the class of SISO systems

N
Q:{Déz)) ‘ N = Ny + AyWi, D = Do + AW, ||A:]] < 1}

where the nominal plant is Ny/Dg with the property that both Ny and Dg are stable with no common
zeros in the RHP. Assume that K stabilizes No/Dp. This block diagram is shown in Figure 21.7.

z w w z
> W1 1: Al ! 2 AQ < 2 W2 <
U _ —1 y
+ > NO DO >
K |

Figure 21.7: Coprime Factor Perturbation Model



The closed loop block diagram can be mapped to the M-A diagram where

- WK WK
Do+NoK Do+NoK -|
M =
Ws Ws J
L Do+NoK Do+NoK
- WK
Do+NoK
- 1.
Wo
L Dot oK
Hence, M has rank 1 and
. Wl.[&' W2
u(M(jo) = . |.
D() + N()IX Do + No[&

Robust Hurwitz Stability of Polynomials with Complex Perturbations

Another application of the structured singular value with rank one matrices is the robust stabil-
ity of a family of polynomials with complex perturbations of the coefficients. In this case let § =

[ On1 Op—a ... Op ]T and consider the polynomial family
P(S, 6) = Sn + (anfl + 7n716n71)5n71 +...+ (ao + 7060)7

where a;, v;, and §; € C and |6;|] < 1. We want to obtain a condition that is both necessary and
sufficient for the Hurwitz stability of the entire family of polynomials P(s,d). We can write the
polynomials in this family as

P(s,0) = P(s,0)+ P(s,0) (21.20)
= (Sn + an_ls”_l +...+ a()) + (’}/n_lén_lsn_l +...+ "}/0(50) R (21.21)

which can also be rewritten as

On—1 0 0 0 "}/n_lsn_l
0 5n72 0 0 7n725n72
P(s,6) =P(s,0)+[1 1 ...1] : :
(51 0 Y18
0 0 N 0 (50 Yo

We assume that the center polynomial P(s,0) is Hurwitz stable. This implies that the stability of the
entire family P(s,0) is equivalent to the condition that

On—1 0 0 0 fyn_l(jw)"_l
1 0 Opn 0 ... 0 ’}/n_g(jw)n_Q
7 or 0 71 (Jjw)

0 0 0 60 Yo



for all w € R and |§;| < 1. This is equivalent to the condition that

’Yn—l(]:w)n_l
1 ’Yn—Q(]w)n_Q
I+ —- : 1 1 ...1 A
det | I+ PUw.0) 3 [ ] #0
71 (jw)
Yo

for all w € R and A € A with ||A]| < 1. Now using the concept of the structured singular value we
arrive at the following condition which is both necessary and sufficient for the Hurwitz stability of the
entire family

(M (jw)) <1

for all w € R, where

’anl(jw)nil
1 7n72(jw)n72
M(Jw):m 7(;”) [1 1 ...1].
Yo

Clearly this is a rank one matrix and by our previous discussion the structured singular value can be
computed analytically resulting in the following test

1 - n—t
WZWn—iHM <1
’ i=1

for all w € R.



Exercises

Exercise 21.1 In decentralized control, the plant is assumed to be diagonal and controllers are de-
signed independently for each diagonal element. If however, the real process is not completely decou-
pled, the interactions between these separate subsystems can drive the system to instability.

Consider the 2 x 2 plant
Py Py
P(s) = .
(s) <P21 P22)

Assume that Py and P»; are stable and relatively small in comparison to the diagonal elements, and
only a bound on their frequency response is available. Suppose a controller K = diag(K;, K>) is
designed to stabilize the system Py = diag(Pi1, Pa2).

1. Set-up the problem as a stability robustness problem, i.e., put the problem in the M — A form.

2. Derive a non-conservative condition (necessary and sufficient) that guarantees the stability ro-
bustness of the above system. Assume the off-diagonal elements are perturbed independently.
Reduce the result to the simplest form (an answer like u(M) < 1 is not acceptable; this problem
has an exact solution which is computable).

3. How does your answer change if the off-diagonal elements are perturbed simultaneously with the
same A.

Exercise 21.2 Consider the rank 1 y problem. Suppose /A, contains only real perturbations. Com-
pute the exact expression of u(M).

Exercise 21.3 Consider the set of plants characterized by the following sets of numerators and de-
nominators of the transfer function:

N(s) = No(s) + Ns(s)d, D(s) = Do(s) + Ds(s)d

Where both Ny and Dg are polynomials in s, § € R™, and Ns, Ds are polynomial row vectors. The
set of all plants is then given by:

N(s)
D(s)

Q={ |0 € R, 16;] < v}

Let K be a controller that stabilizes % Compute the exact stability margin; i.e., compute the largest

~ such that the system is stable. ’



Chapter 22

Reachability of DT LTI Systems

22.1 Introduction

We now begin a series of lectures to address the question of synthesizing feedback controllers. This
objective requires a detailed understanding of how inputs impact the states of a given system, a notion
we term reachability. Also, this objective requires a detailed understanding of the information the
output provides about the rest of the states of the dynamic system, a notion we term observability.
These notions together define the minimal set of conditions under which a stabilizing feedback controller
exists.

22.2 The Reachability Problem

In previous lectures we have examined solutions of state-space models, the stability of undriven models,
some properties of interconnections, and input-output stability. We now turn to a more detailed
examination of how inputs affect states, for the n!”-order DT system

x(i+1) = Az(i) + Bu(i) . (22.1)

(The discussion of reachability in the DT case is generally simpler than in the CT case that we will
consider next Chapter, but some structural subtleties that are hidden in the CT case become more
apparent in the DT case. For the most part, however, DT results parallel CT results quite closely.)
Recall that

k—1
z(k) = Akx(0)+ZAk_i_1Bu(i)
=0
u(0)
k k-1 k2 u(l)
- Ax(o)+[A BlA B|~~~|B] _

= AF2(0) + Ry Uy (22.2)



where the definition of Ry and U}, should be clear from the equation that precedes them. Now consider
whether and how we may choose the input sequence u(i), ¢ € [0, k— 1], so as to move the system from
2(0) = 0 to a desired target state x(k) = d at a given time k. If there is such an input, we say that
the state d is reachable in k steps. It is evident from (22.2) that — assuming there are no constraints
placed on the input — the set R}, of states reachable from the origin in k steps, or the k-reachable set,
is precisely the range of Ry, i.e.

Ry = Ra(Ry) (22.3)

The k-reachable set is therefore a subspace, and may be referred to as the k-reachable subspace. We
call the matrix Ry, the k-step reachability matriz.

Theorem 22.1

For k <n </,
Ra(Ry) C Ra(R,) = Ra(Ry) (22.4)

so the set of states reachable from the origin in some (finite) number of steps by appropriate choice of
control is precisely the subspace of states reachable in n steps.

Proof.

The fact that Ra(Rx) C Ra(R,,) for k < n follows trivially from the fact that the columns of Ry, are in-
cluded among those of R,. To show that Ra(R,) = Ra(Ry) for { > n, note from the Cayley-Hamilton
theorem that A’ for ¢ > n can be written as a linear combination of A”~!, ... A, I, so all the columns
of Ry for ¢ > n are linear combinations of the columns of R,,. Thus (22.4) is proved, and the rest of
the statement of the theorem follows directly.

In view of Theorem 22.1, the subspace of states reachable in n steps, i.e. Ra(R,), is referred
to as the reachable subspace, and will be denoted simply by R; any reachable target state, i.e. any
state in R, is reachable in n steps (or less). The system is termed a reachable system if all of R" is
reachable, i.e. if rank(R,) = n. The matrix

R,=|A"1B| A" 2B - |B] 7 (22.5)

is termed the reachability matriz (often written with its block entries ordered oppositely to the order
that we have used here, but this is not significant).

Example 22.1 Consider the single-input system
[ wk+1) | =0 1 || a) | T |HE)
The reachable subspace is evidently (from symmetry) the line #; = x2. This system is
not reachable.

The following alternative characterization of R}, is useful, particularly because its CT version
will play an important role in our development of the CT reachability story. Let us first define the
k-step reachability Gramian Py by

k—1
Py = RI@RE = Z AzBBT(AT)z (22.6)
=0

This matrix is therefore symmetric and positive semi-definite. We then have the following result.



Lemma 22.1

Ra(”Pk) = Ra(Rk) = Rk . (227)

Proof.
It is easy to see that Ra(Pi) C Ra(Ry). For the reverse inclusion, we can equivalently show that

Ra™(P.) C Ra*(Ry)
For this, note that

¢"PrL=0 = ¢"Prg=0
<~ (RTq,RIq)=0
«— ¢"R, =0

so any vector in Ra™(Py) is also in Ra™(Ry).
Thus the reachable subspace can equivalently be computed as Ra(F;) for any ¢ > n. If the system is
stable, then P, := P is well defined, and is easily shown to satisfy the Lyapunov equation

APAT — P =-BB? (22.8)

We leave you to show that (22.8) has a (unique) positive definite (and hence full rank) solution P if
and only if the system (A, B) is reachable.

Reachability from an Arbitrary Initial State

Note from (22.2) that getting from a nonzero starting state x(0) = s to a target state x(k) = d requires
us to find a U}, for which
d— AFs = Ry U, (22.9)

For arbitrary d, s, the requisite condition is the same as that for reachability from the origin. Thus we
can get from an arbitrary initial state to an arbitrary final state if and only if the system is reachable
(from the origin); and we can make the transition in n steps or less, when the transition is possible.

Controllability versus Reachability

Now consider what is called the controllability problem, namely that of bringing an arbitrary initial
state x(0) to the origin in a finite number of steps. From (22.2) we see that this requires solving

—A*2(0) = Ry U, (22.10)

If A is invertible and x(0) is arbitrary, then the left side of (22.10) is arbitrary, so the condition for
controllability of z(0) to the origin in a finite number of steps is precisely that rank(Rj) = n for some
k, i.e. just the reachability condition that rank(R,) = n.

If, on the other hand, A is singular (i.e. has eigenvalues at 0), then the left side of (22.10) will
be confined to a subspace of the state space, even when x(0) is unrestricted. The range of A* for
a singular A may decrease initially, but Ra(A*) = Ra(A"™) for k > n (since by stage n the Jordan
blocks associated with the zero eigenvalues of A are all guaranteed to have been “zeroed out” in A™).
Meanwhile, as we have seen, the range of Ry may increase initially, but Ra(R;) = Ra(R,,) for k > n.



It follows from these facts and (22.10) that an arbitrary initial state is controllable to 0 in finite time,
i.e. the system is controllable, iff
Ra(A™) C Ra(R,) (22.11)

For invertible A, we recover our earlier condition. (The distinction between reachability and controlla-
bility is not seen in the CT case, because the state transition matrix there is eA* rather than A*, and
is always invertible.)

22.3 Modal Aspects

The following result begins to make the connection of reachability with modal structure.
Corollary 22.1

The reachable subspace R is A-invariant, i.e. = € R = Az € R. We write this as AR c R
Proof.
We first show
Ra(AR,) C Ra(R,) (22.12)
For this, note that
AR, =[ A"B| A""'B|..-| AB ]

The last n — 1 blocks are present in R,, while the Cayley-Hamilton theorem allows us to write A™B
as a linear combination of blocks in R,,. This establishes (22.12). It follows that z = R,a = Az =
AR,a = R,3 € R.

Some feel for how this result connects to modal structure may be obtained by considering what
happens if the subspace R is one-dimensional. If v (# 0) is a basis vector for R, then Corollary 22.1
states that

Av = v (22.13)

for some A, i.e. R is the space spanned by an eigenvector of A. More generally, it is true that any
A-invariant subspace is the span of some eigenvectors and generalized eigenvectors of A. (It turns out
that R is the smallest A-invariant subspace that contains Ra(B), but we shall not pursue this fact. )

Standard Form for Unreachable Systems

If a system of the form (22.1) is unreachable, it is convenient to choose coordinates that highlight this
fact. Specifically, we shall show how to change coordinates (using a similarity transformation) from

z=Tzto
=T "'z = A
Z2

where z; is an r-vector and 29 is an (n — r)-vector, with r denoting the dimension of the reachable
subspace, r = dim R. In these new coordinates, the system (22.1) will take the form

Z1 (k‘ + ].) _ Ay | Ao Z1 (k) B;
[ wk+1) | = [0 T4 || »m | F 0| W (22.14)
with the reachable subspace being the subspace with zo = 0. We shall refer to a system in the form
(22.14) as being in the standard form for an unreachable system.




The matrix 7' is constructed as follows. Let T7"*" be a matrix whose columns form a basis for
the reachable subspace, i.e.
Ra(Ty) = Ra(R,) ,

and let T *("=7) he a matrix whose columns are independent of each other and of those in 77. Then
choose
T=[Th|T>].

This matrix is invertible, since its columns are independent by construction. We now claim that

_ ATXT A
ATV |T,] = TA :[T1|T2]{ 0 A122 ] (22.15)
B;Xm
B = TB =[T)|Ty]| — -
0

Our reasoning is as follows. Since the reachable subspace is A-invariant, the columns of AT} must
remain in Ra(T}), which forces the 0 block in the indicated position in A. Similarly, the presence of
the zero block in B is a consequence of the fact that the columns of B are in the reachable subspace.

The above standard form is not uniquely defined, but it can be shown (we leave you to show it!)
that any two such standard forms are related by a block upper triangular similarity transformation.
As a result, A; and Ay are unique up to similarity transformations (so, in particular, their Jordan
forms are uniquely determined).

From (22.14) it is evident that if 25(0) = 0 then the motion of 21 (k) is described by the r*-order
reachable state-space model

This is also called the reachable subsystem of (22.1) or (22.14). The eigenvalues of Ay, which we may
refer to as the reachable eigenvalues, govern the ZIR in the reachable subspace. Also, the behavior of
z2(k) is described by the undriven state-space model

Zg(k + 1) = AQZQ(k) (22.17)

and is governed by the eigenvalues of A, which we may call the unreachable eigenvalues.

There is no loss of generality in assuming a given unreachable system has been put in the standard
form for unreachable systems; proofs of statements about unreachable systems are often much more
transparent if done in these coordinates.

Modal Reachability Tests

An immediate application of the standard form is to prove the following modal test for (un)reachability.
Theorem 22.2

The system (22.1) is unreachable if and only if w?' B = 0 for some left eigenvector w’ of A. We say
that the corresponding eigenvalue ) is an unreachable eigenvalue.

Proof.

If w"B =0 and wTA = Aw” with wT # 0, then wT AB = Mw” B = 0 and similarly w" A*B = 0, so
wTR,, =0, i.e. the system is unreachable.



Conversely, if the system is unreachable, transform it to the standard form (22.14). Now let wl

denote a left eigenvector of Az, with eigenvalue \. Then w” = [ 0 wl ] is a left eigenvector of the

transformed A matrix, namely A, and is orthogonal to the (columns of the) transformed B, namely B.
An alternative form of this test appears in the following result.

Corollary 22.2

The system (22.1) is unreachable if and only if [ 21 — A | B ] loses rank for some z = A. This \ is
then an unreachable eigenvalue.

Proof.

The matrix [ 21 — A | B | has less than full rank at 2 = A iff w”[ sI — A | B ] =0 for some w? # 0.
But this is equivalent to having a left eigenvector of A being orthogonal to (the columns of) B.

Example 22.2

Consider the system
30 1
x(k-{—l)—{o 3]x(k)+{1}u(k)

S—— S~——
A B
Left eigenvectors of A associated with its eigenvalue at A = 3 are wf = [ 1 0] and wZ[ 0 1],
neither of which is orthogonal to B. However, wl = [ 1 —1 ]is also a left eigenvector associated

with A = 3, and is orthogonal to B. This example drives home the fact that the modal unreachability
test only asks for some left eigenvector to be orthogonal to B.

Jordan Chain Interpretation

Recall that the system (22.1) may be thought of as having a collection of “Jordan chains” at its
core. Reachability, which we first introduced in terms of reaching target states, turns out to also
describe our ability to independently “excite” or drive the Jordan chains. This is the implication of
the reachable subspace being an A-invariant subspace, and is the reason why the preceding modal tests
for reachability exist.

The critical thing for reachability is to be able to excite the beginning of each chain; this excitation
can then propagate down the chain. An additional condition is needed if several chains have the same
eigenvalue; in this case, we need to be able to independently excite the beginning of each of these
chains. (Example 22.2 illustrates that reachability is lost otherwise; with just a single input, we are
unable to excite the two identical chains independently.) With distinct eigenvalues, we do not need to
impose this independence condition; the distinctness of the eigenvalues permits independent motions.

Some additional insight is obtained by considering the distinct eigenvalue case in more detail.
In this case, A in (22.1) is diagonalizable, and A = VAW, where the columns of V are the right
eigenvectors of A and the rows of W are the left eigenvectors of A. For z(0) = 0 we have

xz(k) = Z’U(U}ngz(k) (22.18)
=1

where

k—1
ge(k) = Ay tu(i) (22.19)
=0



If w]TB = 0 for some j, then (22.18) shows that (k) is confined to the span of {ve}e+;, i.e. the system
is not reachable. For example, suppose we have a second-order system (n = 2), and suppose wi B = 0.
Then if 2(0) = 0, the response to any input must lie along vo. This means that vy spans the reachable
space, and that any state which has a component along v; is not reachable.



Exercises

Exercise 22.1 Suppose you are given the single-input, nth-order system x(k + 1) = Axz(k) + bu(k),
and assume the control u at every time step is confined to lie in the interval [0, 1]. Assume also that an
eigenvalue of A, say Ap, is real and nonnegative. Show that the set of states reachable from the origin
is confined to one side of a hyperplane through the origin in R™. (Hint: An eigenvector associated
with A; will help you make the argument.)

[A hyperplane through the origin is an (n — 1)-dimensional subspace defined as the set of vectors
2 in R™ for which o’z = 0, where a is some fixed nonzero vector in R". Evidently a is normal to the
hyperplane. The two “sides” of the hyperplane, or the two “half-spaces” defined by it, are the sets of
x for which ¢’z <0 and o'z > 0.]

Exercise 22.2 Given the system

w(k+1) = (8 i’) x(k) + (f) u(k)

where a, b, ¢, d, e are scalars, deduce precisely what condition these coefficients satisfy when the
system is not reachable. Draw a block diagram corresponding to the above system and use it to
interpret the following special cases in which reachability is lost: (a) e = 0; (b) b =0 and d = 0; (c)
b=0and c =a.

Exercise 22.3 (a) Given m-input system z(k + 1) = Axz(k) + Bu(k), where A is the Jordan-form

matrix
2 1 0 0 O
0 2 0 0O
A=]10 0 2 0 O
0 0 0 3 1
0 0 0 0 3

obtain conditions that are necessary and sufficent for the system to be reachable. (Hint: Your
conditions should involve the rows b; of B. Some form of the modal reachability test will — not
surprisingly! — lead to the simplest solution.)

(b) Generalize this reachability result to the case where A is a general n x n Jordan-form matrix.

(c) Given the single-input, reachable system z(k + 1) = Az (k) + bu(k), show that there can be only
one Jordan block associated with each distinct eigenvalue of A.

Exercise 22.4 Given the n-dimensional reachable system xz(k + 1) = Ax(k) + Bu(k), suppose that
u(k) is generated according to the nonlinear feedback scheme shown in the figure, where u(k) =
w(k) + f(xz(k)), with f(.) being an arbitrary but known function, and w(k) being the new control
input for the closed-loop system.



Show that w(k) can always be chosen to take the system state from the origin to any specified target
state in no more than n steps. You will thereby have proved that reachability is preserved under (even
nonlinear) state feedback.

4
Y+
o
O
jot
Y
"

System

A

f¢)

Tpy1 = Axy + B(wy, + f(2r))

Exercise 22.5 Consider the following linear SISO System, X:

e(k+1) = A(k)z(k) + Bk)u(k)
y(k) = C(k)a(k) + D(kyu(k)

where A(k) = A(k + N)Vk > 0, similarly for B(k),C(k), and D(k).

(a) Show that ¥ is N-Periodic, i.e., for zero initial conditions, show that if y is the output response
for some input u, then y(k — N) is the output response for u(k — N). Assume for simplicity that
u(k) =0 for k < 0.

We want to get a different representation of this system that is easier to work with. To achieve
this, we will group together every N successive inputs starting from & = 0. We will also do the
same for the output. To be more precise, we will define a mapping L, called a lifting, such that

L: (u(0), u(l), u(2), ..., u(k),...) > a

where
u(0) u(N) u(kN)
o u(1) u(N +1) u(kN +1)
w(N =1/ \u@N =1) w((k+1)N 1)

Similarly, L : y — .

(b) Show that the system mapping @ to § is linear time invariant. We will denote this by %, the
lifted system. What are the dimensions of the inputs and outputs. (In other words, by lifting
the inputs and outputs, we got rid of the periodicity of the system and obtained a Multi-Input
Multi-Output System).



(c) Give a state-space description of the lifted system. (Hint: Choose as a state variable Z(k) = z(kN),
i.e., samples of the original state vector. Justify this choice).

(d) Show that the reachable subspace of the lifted system ¥ is included in the reachable subspace of
the periodic system ¥. Show that the converse is true if the periodic system is reachable in T
steps with 7' = rN (a multiple of the period).

(e) Is it true that reachability of the periodic system ¥ implies reachability of the lifted system .
Prove or show a counter example.



Chapter 23

CT Reachability, Canonical Forms

23.1 Introduction

The definition of reachability for CT systems is identical to that of DT systems. However, while in
the DT case Reachability can be checked through simple matrix conditions, it is not so clear that
one can derive simple matrix conditions for CT systems. It is somewhat a surprising result that the
reachability condition for CT systems is exactly the same as DT systems.

23.2 The Reachability Problem in CT
We turn now to the n'?-order CT model
(t) = Ax(t) + Bul(t) . (23.1)

Consider whether and how we may choose the input u(t), ¢t € [0, L], so as to move the system from

z(0) = 0 to a desired target state (L) = d at a given time L > 0. If there is such an input, we say

that the state d is reachable in time L. We shall soon show that the choice of L is not critical (unlike in

the DT case, where the choice of time interval was not critical provided it was not less than n steps).
The relationship of z(L) to u(t) under the above conditions is given by

(L) = /OLe(Lt)ABu(t)dt (23.2)
= /LFT(t)U(t)dt (23.3)

0
= (F(t),u(t)) . (23.4)

where the Gram product in (23.4) is defined by (23.3), and

FT(t) =ell=94PB, (23.5)



The set R of reachable states forms a subspace, because

za(L) = (F(t),ual(t)),
& = awq (L) + fay(L) = (F(t), aua(t) + Sus(t)), (23.6)
(L) = (F(t),u(t))

i.e. any linear combination of reachable states is reachable. (This assumes, of course, that there are
no constraints placed on u(t).) We therefore refer to R as the reachable subspace. (Strictly speaking,
we should make clear that all this is for target states at time L, but as already mentioned, the choice
of L turns out to be irrelevant.) If R is the entire state space, i.e. if the entire state space can be
reached, then we refer to the system (23.1) as a reachable system.

The key characterization of R is the following result.

Theorem 23.1

The reachable subspace R is related to the reachability Gramian (at time L), namely Py, = (F(t), F (1)),
as follows:

R = Ra(P) (23.7)
L
Ra ( / FT(t)F(t)dt> (23.8)

(where (23.8) makes explicit the definition of the reachability Gramian — we leave it to you to verify
that Py, is symmetric and positive semidefinite.)

Proof.

We first show that

R c Ra(Py) (23.9)

or equivalently, that
Ra*(Py) c R* (23.10)
For this, note that
¢"PL=0 = ¢ Prg=0

= (F(t)q, F(t)g) =0

— ¢'FTt)=0

= ¢'z(L)=0 (23.11)

where the last implication follows from (23.2), (23.3) and (23.4). So any vector in Ra™(Py) is also in

RL

~—~~

Now we show that R = Ra(P;) by showing that any target state d € Ra(Pr) can be reached.
Suppose d = Ppa, and pick u(t) = F(t)a. Then

(L) = /LFT(t)F(t)adt
0
Pra=d. (23.12)

A characterization that does not involve integrals or matrix exponentials is provided by the
following result.



Theorem 23.2
Ra(PL) = Ra([ A"'B|A"?B|---|B]) (23.13)
_ Ra(R), (23.14)

where the definition of the reachability matriz R, in (23.14) is clear from (23.13).
Proof.
We shall prove, equivalently, that the orthogonal complements of the above two subspaces are equal.

¢"'Pr=0 = AL B =0 (as in the proof of Theorem 23.1)
¢"B = 0 (sett= L above)
q"AB = 0 (differentiate and set ¢t = L)
= .
qTAnle = 0

— ¢'R,=0.

Conversely, ¢" R, = 0 = ¢"e*L~ B = 0 (since, by Cayley-Hamilton, e*(*~ can be written as a
time-varying combination of I, A, ---, A"71) = ¢TP;, =0.

Corollary 23.1
The system in (23.1) is reachable iff rank R,, = n.
Remark 23.2.1

From Theorem 23.2, and the fact that R,, does not depend on L, note that the reachable subspace is
independent of the choice of L. This is why we were not insistent on marking d, R, etc. with something
to indicate the time interval over which the target was to be reached. However, the characteristics of
the control used to attain a particular target state will depend on L; the smaller L is, the “larger” (in
some sense) we expect u(t) to be.

Remark 23.2.2

Theorem 23.2 shows that the condition for CT reachability is expressed in the same way — for a
given (A, B) — as the condition for DT reachability. Hence all our DT results on standard forms for
unreachable systems, modal tests, and so on, remain unchanged. We therefore do not repeat any of
these DT results for the CT case, but count on you to explicitly note the CT versions of our earlier
DT results.

Remark 23.2.3

Getting from a starting state x(0) = s to a target state z(T') = d requires us to find a u(t) for which
d—e*s = (F(t),u(t)), (23.15)

For arbitrary d, s, the requisite condition is the same as that for reachability from the origin.

Remark 23.2.4

An initial state z(0) = s is termed controllable if there is a w(t) that will result in z(7') = 0. What
(23.15) shows is that the controllable subspace is e"ATR. It follows that a CT system is controllable
iff it is reachable. (In DT, this is not quite the case, as we have seen.) Because the distinction between
controllability and reachability does not exist in CT, the two terms are often used interchangeably in
the literature (even when talking about DT systems! - — in which case what is intended is reachability).



Further Notes on the Reachability Gramian
As noted, we define the reachability Gramian at time t by

t
P, 2 / e BBT (e dr.
0

If A is stable (by which we mean that its eigenvalues are in the open left half plane), we can define the
reachability Gramian at t = oo or simply the reachability Gramian as follows:

P2 lim P, = / e ABBT(e™)Tdr

t—o0 0

Theorem 23.3 The reachability Gramian P satisfies the continuous-time algebraic Lyapunov equa-
tion:
AP +PAT = -BB” (23.16)

Proof: First, note that

/ %etABBT(etA)Tdt — etABBT(etA)T|(O)o
0

= —-BBT.
But we can also write

©d
/ _etABBT(etA)Tdt

= / {Ae'*BB" (e'")" + BB (') AT} dt
0

A / e BBT (e!T dt + < / e BB (e!)T dt) AT
0 0

= AP +PAT.

which of course implies (23.16), and the proof is complete.

We can therefore solve for the continuous-time reachability Gramian by solving the relatively
simple Lyapunov equation.

Additional Remarks on Reachability

Reachability is lost only under special conditions. For a randomly picked (or typical, or generic) pair
of matrices (A, B), we will find the system to be reachable. However, for a system assembled out of
components in a structured way, i.e. with an A, B pair that has structured constraints, it is possible
for unreachability to arise even if the entries of A, B are otherwise arbitrary (i.e. arbitrary except for
the constraints). This is one reason for examining the notion of reachability.

It is also possible to have systems that are mearly unreachable, either in the sense that small
perturbations of A and B will make the system unreachable (e.g. if the minimum singular value
of [ \I = A | B ] for some X is small compared to ||[[ A | B ]|,), or in the sense that inordinate
control effort is needed to move the state significantly away from a particular subspace. In discussing
such situations, our understanding of reachability Gramians, unreachable systems, etc., provides a
benchmark.



23.3 Canonical Forms for Reachable Systems

Consider an n'"-order reachable single-input (SI) system in CT or DT, namely

(t)
or = Ax(t) + bu(t) (23.17)
xz(t+1)
Its reachability matrix
R=[ A" | A" 2b| - | b ] (23.18)

is nxn and invertible. Suppose we use the matrix R to carry out a similarity transformation of (23.17),
so that the pair (A4, b) is transformed to (A, b), with

AR = RA, b= Rb. (23.19)
Now substitute (23.18) in (23.19), and use the Cayley-Hamilton theorem to write
A" = —(an 1 A" b+ - + agh) (23.20)
where the coefficients {a;} are those of the characteristic polynomial of A:
aN) =M — Al = A"+ a1 A"+ +ag (23.21)

What these substitutions show is that

g 10 - 0 0
—ap 0 1 0 0

A= ] b=1|0]. (23.22)
—a; 0 0 1 :
—a 0 0 0 1

The state-space description associated with the pair (A4,b) will be said to be in reachability (or con-
trollability) canonical form. The word “canonical” denotes “simplest”; there is also a precise technical
meaning, but we bypass that. What is clear about the description (A, b) is that it has just the minimum
number of coefficients needed to establish the characteristic polynomial of A, and is thus as simple as
on might expect to get. Note that A is in companion form, and that the reachability matrix R of the
pair in (23.22) is just I.

We have established that any nt*-order SI reachable system can be transformed to the reachability
canonical form determined by its characteristic polynomial. In particular, the SI system corresponding
to the pair (A,b) below,

0 1 0 0 0
0 0 1 0 0
A= : : S : ; b= : (23.23)
0 0 0 e 1 0
—ap —a1 —az -+ —Op_i 1

is easily verified to have characteristic polynomial a(\) as given in (23.21), and to be reachable (its
reachability matrix R is lower triangular, with 1’s on the diagonal, and is therefore nonsingular).



Hence (23.23) can be similarity transformed to its reachability canonical form, which is evidently
(23.22) again. We shall refer to the form (23.23) as the controller canonical form.
Putting together the above results, we see that

AR=RA, b= Rb A(RR™') = (RR™1)A
and o = < and N , (23.24)
AR=RA, b=Rb b= (RR )b

i.e. the original SI reachable system (23.17) can also be transformed to controller canonical form,
using the matrix RRL. Just as it was convenient to have a standard form for unreachable systems
(see Lecture 14) in order to study problems associated with such systems, it will also turn out to be
useful to have canonical forms for reachable systems. The controller canonical form, in particular, will
permit an easy analysis of state feedback in SI systems (next lecture).

In the case of multi-input (MI) reachable systems, canonical forms can again be developed using
transformation matrices derived from the reachability matrix R. Now, however, R has nm columns
(for an m-input system), so there are many ways to select n independent columns from R. One way of
selecting these columns is by proceeding from right to left in R, keeping columns that are independent
of ones that are already selected, and discarding the rest. The resulting transformed system will then
be in what can be termed the MI reachability canonical form. An alternative procedure is to pick
the rightmost nonzero column b; in R, then Ab;, A?by, etc., until we reach a column that depends
on previously selected columns; now pick the rightmost column by that is independent of previously
selected ones, followed by Aby, A%bs, etc.; continue until n independent columns have been picked.
This leads to a transformation that produces the MI controller canonical form. We shall not pursue
the details of these.



Exercises

Exercise 23.1 Consider the single-input LTI system @(t) = Ax(¢) + bu(t) with

0 1 0
=loa] e=[3]
1 1 o
We want to reach the target state x5 = % 1 from the origin in 1 second.

(a) Find e?'b.

(b) Find the reachability Gramian G over an interval of length 1. Show that z; € Ra(G), i.e. that
zy = Ga for some a, and find a.

(c) Use your results from (a) and (b) to help you find an input u(t) such that

1
/ ANy (t) dt = x5
0

(i.e. an input that will take you from the origin at time 0 to the target state at time 1). Express
the “energy” of this input, namely
1
/ u?(t)dt
0

in terms of G and «, and evaluate the result. How does this input compare with the minimum-
energy input required to reach x from the origin in 1 second?

(d) If we choose a different target state, the energy of the input constructed by the above procedure
will in general be different. Find a (possibly different) target state xy with ||z ||z = 1 such that
the energy of the input constructed by the above procedure is the mazimum possible.

Exercise 23.2 Given the asymptotically stable LTT model #(t) = Ax(¢) + Bu(t), show that the
reachability Gramian G corresponding to the interval [0, c0] is the unique solution of the Lyapunov-
type equation (see Problem 3 of Homework 6)

AG+GA'=-BB'

Exercise 23.3 An LTI model of the form &(t) = Ax(t) + Bu(t), with

0 1 0 0 0 O

3w? 0 0 2w 1 0

A= 0 0 0 1 B = 0 O
0 —2w 0 O 0 1

describes the perturbations in radial and tangential positions and velocities for a satellite orbiting at
nominally constant angular velocity w (so w is a constant positive parameter in the above model).
The first input component w; (¢) is the radial thrust, and the second component u»(t) is the tangential
thrust.



(a) Is the system asymptotically stable?
(b) Show that the system is reachable.
(c) Is the system reachable if the radial thruster fails?

(d) Is the system reachable if the tangential thruster fails?

Exercise 23.4 Consider the perturbed Single-Input dynamic system:
z=Ax+ (b+0)u,
where § € R" is a perturbation vector. Assume that the nominal system (A, b) is reachable.

(a) Find the smallest ||d]|2 so that the system is not reachable. This gives a robustness measure to
the reachability of a system.

(b) To improve the robustness of reachability, an engineer suggested to apply a control input that
consists of a feedback component; i.e.,

u=fle+o,

where f € R” and v is the external signal. She/He argued that for a special choice of f you
need a larger 6 (than part 1) to make the system not reachable. Do you agree with her/him?
Prove or disprove this claim. (If you think it is true, it suffices to find one f that does the job.
If you think it is not true, prove your claim).

Exercise 23.5 Let a rocket car of unit mass be subjected to only the force of the rocket thrust.
Suppose that the car is initially at position z;(0) = 0 with velocity #(0) = z2 = 1m/sec. The
equation of motion is given by:

T =-u

(a) Write down the solution of the above differential equation for any input and the given initial
conditions.

(b) Is the system reachable? Compute Pr (the Reachability Gramian at time T')

(c) Suppose we wish to bring the car to rest at = 0 after time T" sec. Find the control input of
minimum energy that achieves this objective, i.e.,

min ||ug such that z1(T) =0, 22(T) = 0.

Verify your choice. How does your answer relate to the Reachability Gramian Pr.

(d) Compute the optimal u for T' = .001 sec. Comment on its characteristics.



Chapter 24

Observability

24.1 Introduction

Observability is a notion that plays a major role in filtering and reconstruction of states from inputs
and outputs. Together with reachability, observability is central to the understanding of feedback
control systems.

24.2 Observability

It turns out it is more natural to think in terms of “unobservability” as reflected in the following
definition.

Definition 24.1 A state g of a finite dimensional dynamic system is said to be unobservable over [0, T')
if, with z(0) = ¢ and for every u(t) over [0, T'), we get the same y(t) as we would with z(0) = 0, i.e.
an unobservable initial condition cannot be distinguished from the zero initial condition. The dynamic
system is called unobservable if it has an unobservable state, and otherwise it is called observable.

The initial state 2(0) can be uniquely determined from input/output measurements iff the system
is observable (prove this). This can be taken as an alternate definition of observability.
24.3 Discrete-Time Analysis
We begin with the system description in state space:

x(k+1) = Ax(k)+ Bu(k)
y(k) = Cx(k)+ Du(k) (24.1)



Suppose we are given u(t) and y(t) for 0 <t <T. We can expand (24.1) as follows:

y(0) C
y(1) cA
. = . x(0)

y(T —1) | CAT

[ D 0 0 - 0 u(0)

CB D 0 -~ 0 u(1)

N . . , . (24.2)
| CAT2B CA"™3B 0 --- D u(T —1)

Now the second term on the right — the forced response — is known, so we can subtract it from the
vector of measured outputs to get

C

CA
y= : x(0) = Orx(0), (24.3)

CA.T—I

where we have made the obvious definitions for y and the T-step observability matriz Or. The issue
of observability over T steps then boils down to our ability to determine x(0) uniquely from knowledge
of y. Equation (24.3) shows that we only need to check observability for u = 0; the effect of a nonzero
input is just to change what y is, but in either case y is a known vector. The following result is an
immediate consequence of (24.3). B

Theorem 24.1 The set of states that is unobservable over T steps is precisely N'(Or), and is therefore
a subspace.

Notice also that

N(Oy) D N(Opir) (24.4)
N(On) = N(Opie), (>1 (24.5)

Equations (24.4) and (24.5) lead to the following theorem.

Theorem 24.2 If x(0) = ¢ is unobservable over n steps, then it is unobservable over any number of
steps. Equivalently, the system is observable if and only if rank(O,,) = n.

Proof: The proofs of all of these results parallel the proofs of similar results in reachability, and are
left to the reader to complete.

Note that in the context of reachability, it was the set of reachable states that formed a subspace,
whereas now it is the set of unobservable states that forms a subspace. We denote this subspace by

O(c, A) or simply Q. It is evident that
0(c,4) =R (4, ¢")
where R(A’, C") is the reachable subspace that would be associated with the system
d(k +1) = A'd(k) + C'e(k)



(whose state vector is d and input is e). Reachability and unobservability are said to be dual concepts,
on account of the preceding connections.

Example 24.1 (Harmonic Oscillator)

24.3.

Suppose the position and velocity of a particle that is oscillating harmonically at a fre-
quency of w are sampled with a sampling period of A seconds. A state-space description
of the sampled state vector is given by:

cos(wA)  Lsin(wA)

x(k+1) = —wsin(wA)  cos(wA) } x(k),

where ;1 is the position of the particle, and z» is the velocity. Suppose the measured
output is x1, i.€e.

y(k)y=Cx(k)=[1 0 ]x(k).

The subspace of initial conditions that is unobservable over 1 time step is just the nullspace

of C-:
N(©) =N 1 O]ZSpan{[?]}.

The subspace unobservable over 2 time steps is

1 0
cos(wA)  LsinwA |

span{[?]} ifwA=Nn, NeZ

0 if WA# N7

\

This simply says that if the sampling interval is an integer multiple of one-half the os-
cillation period, the system will not be observable. Note that an unobservable system
with N = 1 corresponds to sampling at exactly the Nyquist rate; the system is always
observable at sampling frequencies higher than the Nyquist rate.

1 Modal Interpretation of Unobservability

We start with the time-domain representation of the output for u(k) = 0. If A is diagonalizable, this

yields

y(k) = CA*x(0)

= C Z MeviwI'x(0)
=1

= Zn: Cvi[wlx(0)]AF.

(24.6)

(24.7)

Suppose there exists an eigenvector v, 1 <i* < n, such that Cv;» = 0. Is there an initial state such
that y(k) =0 , Vk > 07 If we choose x(0) = v;+, then, referring to (24.7), we see that

wlx(0) =wlv,. =0, for i#i"

But when ¢ =" in (24.7), Cv;« = 0. Hence y(k) =0, Vk>O0.



24.3.2 The Observability Gramian
We begin by defining the k-step observability Gramian as

Q. = 070,
k—1 . .
> (A)Te Al

=0

The unobservable space over k steps is evidently the nullspace of Q. The system is observable if and
only if rank(Q,,) = n. If the system is stable, then we can define the observability Gramian as

— i _ iNT ~T P
Q= lim @, =) (4)TcToA.

=1
Q satisfies a Lyapunov equation that is quite similar to the reachability gramian, i.e.,

ATQA -9 =-CTcC.

24.4 Continuous-Time Analysis

As with reachability, the discussion of observability for continuous-time systems is algebraically very
similar to the discussion for discrete-time systems. We begin with a theorem.

Theorem 24.3 For continuous-time systems, the following conditions are equivalent:
1. x(0) is unobservable in time 7.

2. x(0) is unobservable in any time.

C
CA

3. 0,x(0) = ) x(0) = 0.
CAn—l
Proof: 1) = 2):

If ¢ is unobservable in time T', then for x(0) = ¢, if u(¢) = 0 then y(¢t) =0, 0 <t < T. It follows
that
0=Cete, 0<t<T

From this, it follows that

Cel¢ = Ce=0

d
—Celte = CAE=0
dt o
dk At k

—Cete = cAF¢=o.

dt* t=0



Now, since the power series representation is valid V¢ > 0, this implies that
CeMe=0, Vt>0.

Hence the result.

2) = 1):

This is immediate.

2) <= 3): This follows from the Taylor series argument, since by Cayley-Hamilton,

C C
CA CA
=N Vk>0
C’A"71 CAnJrle

24.4.1 The Observability Gramian
Define .
Q= / (eA)T'cTCcetmdr.
0

The system is then observable if and only if rank(Q;) = n, V¢ > 0. If A is stable, then we may
define the observability Gramian as

Q= / (eA)TCT CeATdr.
0

Once again, Q satisfies a Lyapunov equation:

AT+ 90A=-CTc.

24.5 Further Results

In view of duality, we can use our reachability results to immediately derive various conclusions, tests,
standard and canonical forms, etc., for observable and unobservable systems. We shall simply list the
main results:

Fact 1: The unobservable subspace is A-invariant (and is in fact the largest A-invariant subspace
contained in the nullspace of C').

Fact 2: An unobservable pair (C, A) can be taken by a similarity transformation to the form

o 4 (24.8)

C — [0 ] (24.9)

A - |:A1 A12]



where (C2, As) is observable. The unobservable subspace of the system associated with (24.8), (24.9)

is given by states of the form * ] The eigenvalues of A; are the unobservable eigenvalues of the

0
system, while those of A, are the observable eigenvalues.

Fact 3: The system is unobservable iff Cv = 0 for some right eigenvector v of A, associated with an
eigenvalue \; or equivalently iff
[ sk 4 ] (24.10)

c
drops rank for some s = A. This A is an unobservable eigenvalue of the system.

Fact 4: The dual of the problem of controllability to the origin is referred to as constructability of
the final state, i.e. instead of trying to uniquely determine the initial state x(0) from input/output
measurements over an interval, we wish to determine the final state. In CT, the condition for this
reduces to the observability condition, but in DT it turns out that (k) (for k£ > n) can be determined
from (i), y(i) over [0, k — 1] iff

N(O,) C N(A™). (24.11)

We leave you to prove this. Note that for invertible A we recover the observability condition.

Fact 5: Any single-output (SO) observable n?-order system is similarity transformable to an observ-
ability canonical form (dual to the reachability /controllability canonical form presented last lecture)
or to an observer canonical form (dual to the controller canonical form of last lecture).

24.5.1 Standard Form for Unobservable Systems

Given an arbitrary system, we can construct a rectangular matrix 72", whose columns span the
nullspace of the observability matrix O,,. We may then construct 7" by selecting (n — r) linearly
independent vectors, such that

rank(T"*") =rank [ T5 T’ | =n.

Since T is invertible, we can perform a similarity transform to generate an equivalent system, where
we have:

AT=A[T5 T ] (24.12)

ENEESIFED

CT=Cc[T; T'] = T=[0 ¢ | (24.13)

The presence of the zero blocks in the transformed system and output matrices follows from an argu-
ment similar to that used for the reachable canonical form coupled with the fact the the unobservable
space is also A-invariant. It follows from (24.12) and (24.13) that

cT 0 C
_ CAT 0 C)A;s
CAM 1T 0 ChAL !

Now since the transformed system is equivalent to the original one,

rank(0,,) = rank(0,,).



Theorem 24.4 (Modal Test) A continuous-time system is observable if and only if

A —A

rank { c

]:n, vie C

Proof: The proof follows from the observable canonical form.



Exercises

Exercise 24.1 (a) Given the observable nth-order DT system x(k + 1) = Axz(k) + Bu(k), y(k) =
Cz(k) + Du(k), show that we can uniquely determine the initial condition x(0) from output
measurements alone, i.e. without knowledge of the inputs (i), if D = 0, CB = 0, CAB =
0,...,CA" 2B =0.

(b) (Optional) Prove that the sufficient condition in (a) is also necessary in the case where the output
y is scalar.

(c) Verify in the case of a single-input, single-output (SISO) system that the condition in (a) corre-
sponds to the transfer function of the system having no (finite) zeros, only poles.

Exercise 24.2 Consider the system z(k+1) = Ax(k), y(k) = Cz(k), and suppose that A and C have
the following form:

Al Aqs 0 0
Ao Ass Aoz 0
A= : : : - :
Ap_1n A1 Arciz oo A
Ap1 Ao Ars .. Apk
c=(C 0 0 0)

with the A;_;; and C; all having full column rank, and with the A;; all square.

(a) Show that the system is observable. (Hint: Show first that if P and @ have full column rank,
then PQ has full column rank.)

(b) What can you say about the system if A,_; j, instead of having full column rank, is actually 07

[The results of this problem form the basis for one of the best numerical methods for checking
observability (or, using a dual set of results and computations, for checking reachability). The
point is that orthogonal (and therefore numerically well behaved) similarity transformations can
be used to bring a (C, A) pair to the structured form above.]

Exercise 24.3 (a) Counsider the CT single-output nth-order observable system @(t) = Ax(t) , y(t) =
cz(t), where ¢ is an n-component vector. Suppose we observe only samples of the output, taken
at times t = kKT for integer k and some fixed 7. Write down a DT state-space model that
describes the evolution of these output samples.



(b) Find a necessary and sufficient condition, stated in terms of the eigenvalues of A, for your DT
model in (a) to be observable. (Hint: First show that there is no loss of generality in taking A
to be in Jordan form.)

Exercise 24.4 Consider an observable single output LTI system. Find the smallest perturbation of
the C row vector, ||0]|2, so that the system becomes unobservable.

Exercise 24.5 Consider a SISO, stable, discrete-time system with a state-space description given by
(A, B,C,0), both reachable and observable. The dimension of the state vector is equal to n. We are
interested in studying the effects of past inputs on future outputs in a precise fashion. It turns out
that this information is quite valuable in model reduction problems, but we will not look into that
here. Recall that the energy of a signal u is given by

[ee)

Iull = 0% = (3w}

t=—o0

(Don’t be afraid to transpose infinite vectors or matrices).

The precise quantity that we would like to compute is:

—1

a= mgx{z y(t)? | Z u(t)? <1, u(k) = 0Vk > 0}

t=—o0

In words, we want to find the maximal achievable energy of the output after ¢ = 0 which is the response
to an input starting at —oo and ending at —1, i.e., the has the following form

u=(... u(=N) uw(=N+1) ... u(=1) 0 ...)"
with energy less than or equal to one.

(a) Find an expression for x(0) in terms of the above input. Does the value z(—o00) enter your
expression. Explain.

(b) Can any ¢ € R™ be achieved by some choice of an input of the above form? If so, find an expression
of the minimum energy input, .., that achieves the value z(0) = £. Compute the square of
the energy of t,,,. Write this expression in terms of the Reachability Gramian, and denote it

by a1 (§).

(c) If some input ,;, results in 2(0) = &, write an expression of the output for ¢ > 0. Compute the
square of the energy of the output (for ¢ > 0) as a function of £. Write this in an expression
involving the Observability Gramian and denote it by as(§).

(d ) Argue that « is given by
o = max{az (&) |ar (§) < 1}



(e) Prove that
a = Am,az{Q7D}
where P and Q are the reachability and observability gramians of the system, and A,,,, denotes
the maximum eigenvalue of a matrix.

(Hint: Use the fact that any symmetric positive semi-definite matrix can be written as M7 M.
Also you may need the fact that A\pao(MTGM) = Moo (GMM?T)).



Chapter 25

Minimal State-Space Realization

25.1 Introduction

Our goal in this lecture and a couple that follow is to further explore the “structural” significance
of the assumptions of reachability and observability, and to understand their role in connecting the
input/output (or transfer function) description of a system to its internal (or state-space) description.
The development will be phrased in the language of DT systems, but the results hold unchanged (apart
from some details of interpretation) for the CT case.

25.2 The Kalman Decomposition

In earlier lectures we presented two types of standard forms, one that depended on a separation of
the state space into the reachable subspace and its complement, and another that separated the state
space into the unobservable subspace and its complement. The question naturally arises as to whether
these two standard forms can somehow be combined. The Kalman decomposition does exactly that.

Suppose (A4, B,C, D) are the matrices that specify the given n*"-order LTI state-space model,
and suppose we construct a transformation matrix

T=[Ts Tr0o T T | (25.1)

where the submatrices are defined as follows:

1. The columns of T3 form a basis for Rﬂ@7 the subspace that is both reachable and unobservable
(verify that the intersection of two subspaces is a subspace);

2. Ty, complements T,5 in the reachable subspace, so that Ra [ Ts T, ] =R;
3. Trs complements T} in the unobservable subspace, so that Ra [ T,5 Trs | = O

4. T%, complements [ Tz Tro Trs ] to span R", so that T is invertible.

Of course, any of these matrices may turn out to be of dimension 0, e.g. when the system is both
reachable and observable, the matrix 7., is n X n, and all the other submatrices disappear. We now



perform a similarity transformation using 7', thereby carrying out the mapping
(A,B,C,D) — (T*AT,T'B,CT,D) = (A, B,C, D).

The system (2, B, 6, D) is said to be in Kalman decomposed form. This is a standard form that has
a very illuminating structure, which we will now deduce based on the form of the 7" matrix and the
following additional constraints:

AR ¢ R (25.2)
A0 ¢ O (25.3)
Ra(B) C R (25.4)
QO C Null(C) (25.5)

Equations (25.2) and (25.3) simply restate the fact that the reachable and unobservable subspaces are
A-invariant. To determine the form of A, we begin by writing

AT =TA
which can be expanded into

A A Az Al
Ay Axp Az Aoy
Asr A3y Az Ay
Ay A Agz Ay

A[ TT5 Tro Tﬁ TFO ] = [ TTE Tro Tﬁ TFo ] (256)

From (25.2) and (25.3), we have that the range of AT,; remains in Ra(T,35), the space that is both
reachable and unobservable. From (25.6),

AT, = [ Ts T T Tr ]

so we must have Aoy, Agy and A4y = 0. Similarly, from (25.2) we deduce that Asy and A4e must be
zero. From (25.3), it follows that Aa3 and A43 are zero. By applying all of these conditions (and with
a notational change in the subscripts), we arrive at the final form of A:

Az A Az Ay
0 A, 0 Ay

A= 0 0 A= As (25.7)
0 0 0 A
Proceeding with the same line of logic, and noting conditions (25.4) and (25.5), we have
BTE
Bro
B=TB=[Ts Tro Tw Trn ]| ;° | (25.8)
0

and, from CT = 6,
ClTws Tho Trs Tro |=[0 Cro 0 Ci ]. (25.9)



In the resulting Kalman-decomposed form (ﬁ, E, 5, D), the subsystem (Ao, Bro, Cro, D) is both
reachable and observable (prove this!). Similarly, the reachable subsystem is

Az A B.5
(L% 2z [52] te e1m)
with its unobservable portion already displayed in standard form, and the observable subsystem is
Aro A24 Bro C
(% 4] [ 5] res eo)

with its reachable portion already displayed in standard form. The Figure 25.1 constitutes a represen-
tation of the system (A, B,C, D):

Y

27’5

Y

E?o

Figure 25.1: Kalman Decomposition of a State Space Model.

As can be shown quite easily, the Kalman decomposition is unique up to a similarity transforma-
tion that has the same block structure as A. (To show this for yourself, first prove that the columns

of full-column-rank matrices P, Q are bases for the same space iff P = QM for some invertible matrix
M) Tt follows that:

e the matrices A,5, Ao, A7, A7, are uniquely defined up to a similarity transformation — their
eigenvalues (and indeed their Jordan structure) are thus uniquely defined, and may be classified
as ro, ro, To, To respectively;

e the ro subsystem (as also the reachable subsystem and the observable subsystem) is uniquely
defined up to similarity.



It is clear from the Kalman decomposition and the associated figure above that the input/output
behavior of the system for zero initial conditions is determined entirely by the ro part of the system.
Also, the output behavior for arbitrary input and initial conditions is determined by the observable
part of the system.

25.3 State-Space Realizations of Transfer Functions
Given a DT LTI state-space model (A, B,C, D), we have seen that its transfer function is simply
H(z)=C(:I — A)~'B+D.

(For a CT system (A, B,C, D), we obtain the same expression for the transfer function, except that z
is replaced by s.) For a MIMO system with m inputs and p outputs, this results in a p X m matrix
of rational functions of z (or s, in CT). Recall that H(z) is in general proper (i.e., all entries have
numerator degree less than or equal to the degree of the denominator), and for |z| — oo, we have
H(z) — D (so the transfer function is strictly proper if D = 0).

Now consider the converse problem. Given a transfer function, can one always find a state-space
representation? This is called the realization problem.

Definition 25.1 (A, B,C, D) is called a realization of the transfer function H(z) if
H(z)=C(:I - A)™'B+D.
To phrase the above problem in the time domain, expand H(z) as
H(z)=Ho+ 2 "H + 2 Hy + ... (25.10)

In the SISO DT case, we know that Hy, Hy, Hs, ... constitute the output response at time 0, 1, 2, ...
to a unit sample at time 0 applied to the input of the system when it is at rest (z(0) = 0), i.e. the
sequence {Hy} is the unit-sample response or “impulse” response of the system. In the MIMO case,
the interpretation is similar, except that now the ij** entry of H}, is the value at time k of the zero-state
response at the i* output to a unit impulse at the 5" input. (The Hj, are also referred to as Markov
parameters.) For the state-space model (A, B, C, D), it is straightforward to see that

Hy = D,
H, = CA*'B, k>1 (25.11)

This can be verified directly in the time domain, or by expanding (21 — A)~! in (25.3) as
(2l —A) P =27 4 22 A4 23A% (25.12)

(an expansion that is valid for |z| greater than the spectral radius of A) and then equating the coeffi-
cients of z~* with those in the expression (25.10). The realization problem, i.e. the problem of finding
(A, B, C, D) such that (25.3) holds, can now be rephrased equivalently as that of finding a state-space
model (A, B, C, D) such that the relations in (25.11) hold.

It is evident that state-space realizations are not unique. For instance, given one realization, we
can obtain an infinite number of realizations through similarity transformations. (You should verify



algebraically that this is indeed the case.) However, the Kalman decomposition makes clear that there
are still other possible realizations. Specifically, you should verify that

H(z) = C(I-A)"'B+D
Cro(2I — Ayo) *Bo + D (25.13)

i.e. only the ro part of a system contributes to its transfer function, so if a given realization is not
ro, then its ro subsystem (or any similarity transformation of it) constitutes an alternative realization
of H(z). Going in the other direction, one can obtain a new realization from a given one by adding
unreachable and/or unobservable dynamics. Thus, different realizations of H(z) can differ in their
orders. A minimal realization is one of least possible order.

25.4 Minimal Realizations

SISO Systems

To get some feel for how realizations relate to transfer functions, consider a SISO system in controller
canonical form:

—ay ... ... —ap 1
- 1 - 0
A: N b:
25.14
1 0 0 ( )
E:[cl e, Cn ], d.

(You should draw yourself a block diagram of this, using delays, adders, gains.) Now verify that its

transfer function is o

H(z)=—22 T %o (25.15)

2"+ a1z" o Fan
We can argue quite easily that there is a realization of order < n for this H(z) iff the numerator and
denominator polynomials, c(z) = ¢;2"" ' + -+ + ¢, and a(z) = z" + a;2" "' + -+ + a, respectively,
have a common factor that cancels out. (If there is such a factor, we can get a controller canonical
form realization of order < n, by inspection. Conversely, if there is a realization of order < n, then
its transfer function will have denominator degree < n, which implies that ¢(z), a(z) above have a
common factor.)
Now, a common factor (z — A) between ¢(z) and a(z) exists iff

An—l

[er oo en ] \ =0 (25.16)
1

for some A that is a root of a(z) = |2 — A|, i.e. for some X that is an eigenvalue of A. Verifying
that the column vector in the preceding equation is the corresponding eigenvector of A, we recognize
from the modal test for observability that the condition in this equation is precisely equivalent to
unobservability of the controller-form realization. We are now in a position to prove the following
result:



Theorem 25.1 A state-space realization of a SISO transfer function H(z) is minimal iff it is reach-
able and observable.

Proof.
If the realization is not ro, then the ro part of its Kalman decomposition will yield a lower-order
realization, which means the original realization was not minimal.

Conversely, if the realization is reachable and observable, it can be transformed to controller
canonical form, and the denominator |z — A| of H(z) will have no cancellations with the numerator,
so the realization will be minimal.

MIMO Systems

The preceding theorem also holds for the MIMO case, as we shall demonstrate now. Our proof of the
MIMO result will use a different route than what was used in the SISO case, because a proof analogous
to the SISO one would rely on machinery — such as matrix fraction descriptions of rational matrices
— which we shall not be developing for the MIMO case in this course. There is nevertheless some
value in seeing the SISO arguments above, because they provide additional insight into what is going
on.

Theorem 25.2 A realization is minimal iff it is reachable and observable.

Proof. If a realization is not reachable or not observable, we can use the Kalman decomposition to
extract its ro part, and thereby obtain a realization of smaller order.

For the converse, suppose (A, B, C, D) is a reachable, observable realization of order n, but is
not minimal. Then there is a minimal realization (A*, B*, C*, D*) of order n* < n (and necessarily
reachable and observable, from the first part of our proof). Now

C
CA
O.R, = , [B AB ...A"'B ]
i C’A"71
H, H, --- H,
= }{2 = O'R" (25.17)
| H, - -+ Hyn,y

The reachability and observability of (A, B, C, D) ensures that rank(O,R,) = n (as can be verified
using Sylvester’s inequality) while rank(O} R}) = rank(O}. R:.) = n*, but then (25.17) is impossible.
Hence there is no realization of order less than n if there is a reachable and observable one of order n.

The following theorem shows that minimal realizations are tightly connected; in fact there is in
effect only one minimal realization of a given H(z), up to a similarity transformation (or change of
coordinates) !

Theorem 25.3 All minimal realizations of a given transfer function are similar to each other.



Proof. Suppose (A4, B, C, D) and (A, B, C, D) are two minimal realizations of order n. Then D = D
and CA*B = CA*B, k>0, so o
OwR, = O, R,. (25.18)
Also o
0,AR, = O, AR, (25.19)

Let us introduce the notation M to denote the (“Moore-Penrose”) pseudo-inverse of a matrix M. If M
has full column rank, then M+ = (M'M)~'M’, while if M has full row rank, then M+ = M'(MM')~1
(and in the general case the pseudo-inverse can be explicitly written in terms of the SVD of M, but
we shall not need this case for the proof). It is then easy to verify from (25.18) that

R.Rf =010, =T (25.20)

and that R .
7' =050, = R.R} (25.21)

n n

(You should note how the reachability and observability of the minimal realizations are invoked to
make the necessary arguments.) It is then easy to check, using (25.18) and (25.19) that

AT =TA, B=TB, C =CT (25.22)
i.e. the realizations are similar.

All of the above results carry over to the CT case. The only modification is in the interpretation
of the Markov parameters; a CT interpretation can be found in terms of moments of the impulse
response, but is not particularly interesting.

We have seen how to obtain realizations of SISO transfer functions, by building on canonical
forms. The situation is more involved for MIMO transfer functions. One brute-force realization
approach would be to simply realize all of the SISO elements h;;(s) of H(s), and then connect them
to form the outputs.

Example 25.1 (We use a CT system in this example to make the point that all the pre-
ceding development carries over unchanged to the CT case.) The 2 x 2 transfer function
1
H(s) = [ 561 1 ] can be immediately realized in state-space form by construct-
s—1

ing (minimal) realizations of the individual entries of H(s) and interconnecting them as
needed:



A

u2

Ol -

L.

The corresponding state-space model is

a=[at)m=[ 8] e[ 8] o= [5 4]

and this is easily verified to be reachable and observable, hence minimal. However, the
component-wise realization procedure is not guaranteed to produce a minimal realization.
For instance, with

A

1 1

H(S) = [ s—1 s—1 ]7
combining component-wise realizations into an overall realization would lead to a second-
order realization, but there is a (minimal) realization of order 1 (which you should find!).

Exercise 25.4 guides you through a general procedure for the construction of a minimal realization
if the minimal order is known, using the Markov parameters computed from the transfer function.
Following, we describe another approach (“Gilbert’s method”) that is based on the residues at the
poles of the transfer matrix.

Gilbert’s Realization

Suppose we have a proper matrix transfer function H(z), and we factor out the polynomial d(z) that
is the least common denominator of all the entries of H(z) (i.e. the least common multiple of the
denominators of all the entries). If d(z) has no repeated roots, then it is possible to construct a
minimal realization via Gilbert’s method. (There is a generalization for repeated poles, but we omit
it.) First apply a partial fraction expansion to each of the elements of H(z) and collect residues for
each distinct pole. Denoting the ¢ roots of d(z) by p1,- -, pg, We can write the transfer function matrix
in the following form:

1

2= pP;

q
H(z)=D+)_ R;
=1

where R; is also p x m and D = H(oo). Let us denote the rank of R; by r;; it will turn out that r; is
the minimum number of poles with location p; required to realize H(z). Since the rank of R; is r;, this



matrix can be decomposed as the product of two matrices with full column and row rank, respectively,
each with rank r;:
Ri = CipX'r’iB;';Xm7 rank(Ri) =7T;

It is now easy to verify that H(z) = C(2I — A) !B + D, where

P1 O
P1
N B
T1 32
A: .., B: .
0 " B,
Pq
~—_———
C’:[C’l Cy - Cq], D.

This realization is easily verified to be reachable and observable, hence minimal.



Exercises

Exercise 25.1 Find a state-space description of the circuit below, in the form #(t) = Ax(t) + Bi(t),
with output equation v(t) = Cx(t) + Di(t), choosing i;, and v as state variables, and with Ry, Ra, L
and C all equal to 1.

(a) Is the system controllable? Is it observable? What is its transfer function? (Evaluate the trans-
fer function using the state-space description, and make sure that all common factors between
numerator and denominator are cancelled. Then check your answer by direct impedance calcu-
lations with the circuit.)

(b) What are the eigenvalues and the left and right eigenvectors of A? Is A diagonalizable? Also
verify that your eigenvectors are consistent with your conclusions regarding controllability and
observability in (a).

(c) By carefully interpreting the results of (a) and (b), or by explicitly computing the Kalman de-
composition, determine how many eigenvalues of A are in each of the following categories:

(i

) co: controllable and observable;
(ii) co: controllable and unobservable;
)

)

(iii) €o: uncontrollable and unobservable;

(iv) co: uncontrollable and observable.
(d) Only one of the following equations (for some appropriate choice of the parameters) precisely

represents the set of voltage waveforms v(¢t) that are possible for this circuit, assuming arbitrary
initial conditions. Determine which one, and specify the coefficients, stating your reasoning.

(i) v(t) = ai(t);
(i) [dv(t)/dt] + po(t) = [di(t)/dt] + ai(t);
(iii) [d®v(t)/dt?] + [dv(t)/dt] + Bo(t) = [d?i(t)/dt?] + v[di(t)/dt] + i(t).

Exercise 25.2 (a) Find a third-order state-space realization in controller canonical form for the
transfer function Hi(s) = (s + f)/(s+4)3, where f is a parameter. (To do this, assume the “A”
and “b” of the state-space model are in controller form, then find what “¢” and “d” need to be
to make the transfer function come out right.) For what values of f does your model lose (i)
observability? (ii) controllability?



Similarly, find a first-order controller canonical form realization of the transfer function Hy(s) =

1/(s — 2).

(b) Now suppose the realizations in (a) are connected in cascade, with the output of the first system
used as the input to the second. The input to the first system then becomes the overall system
input, and the output of the second system becomes the overall system output:

u— Hy(s) — Hy(s) — vy

Write down a fourth-order state-space description of the cascade. Is the cascaded system asymp-
totically stable? — and does your answer depend on f7

Now determine for what values of f the cascaded system loses (i) observability, (ii) controllability.
Interpret your results in terms of pole-zero cancellations between Hi(s) and Ha(s). Is there a
value of f for which the cascaded system is bounded-input/bounded-output (BIBO) stable but
not asymptotically stable.

Exercise 25.3 Suppose a least one eigenvalue of the n x n matrix A is at 0, and that this eigenvalue is
reachable with input vector b and observable with output vector ¢. Show that A + bgc, for any nonzero
g, has no eigenvalues at 0.

Exercise 25.4 You are given the Markov parameters { H;} associated with a particular p x m transfer
matrix H(z) = Ho+ 2" H; + 272H, + - - -, and you are told that all minimal realizations of H(z) are
of a given order n. This problem aims at finding a minimal realization from the Markov parameters.

Let z(k+1) = Az(k)+ Bu(k), y(k) = Cz(k)+ Du(k) denote some specific, but unkown, minimal
realization of H(z), with B,, and C,, denoting its reachability and observability matrices respectively.
(For notational convenience, we shall drop the subscript n in what follows.) We shall construct a
realization of H(z) that will be shown to be similar to this minimal realization, and therefore itself
minimal. The following two matrices (with “block-Hankel” structure) will be needed for this problem:

H, H, H,
K= | M M
H, H,y1 - Hyp
H, Hs -+ Hpp
% Hy Hy - Huyo
2_ . -

Hyt1 Hpyo -+ Hap



(a) Show that K} =CB and K, = CAB.
[(b)] Show that K; has rank n.

[(c)] We can decompose K; (for example using its SVD) into a product LR, where the left
factor L has full column rank (= n, from (b)), and the right factor has full row rank (= n also).
Show that B = T1R and C = LT5 for some nonsingular matrices 71 and T», and prove that
T, =Tt

(d) Define C; to be the matrix formed from the first p rows of L, and show that C; = CT;. Similarly,
define B; to be the matrix formed from the first m columns of R, and show that B; = Tle.

(e) Define A1 = LTKyR™, where the superscript + denotes the pseudo-inverse of the associated
matrix, and show that A; = TI_IATl.

The desired minimal realization is now (A1, By,C1, D), where D; = Hy.

Exercise 25.5 (a) Obtain a minimal realization of the system:

(s—1)2 (s—1)
H(s) =
—6 1
(s—1)(s+3) (s+3)

Explicitly verify its minimality.

(b) Compute the poles (including multiplicities) of this transfer function using the minimal realization
you obtained.



Exercise 25.6 The two-input, two-output system below is obtained by interconnecting four SISO
subsystems as shown. (Note, incidentally, that none of the SISO transfer functions has any zeros.)
The scalar gain « is real and nonzero, but can be either positive or negative.

ui(s) 11 :O yi(s)
S
I
_ 1
|os+1
N o
1 os—1
y+

4

uz(s) 1 R y2(s)
s +2 + \j

(a) Assemble minimal state-space realizations of the SISO subsystems into an overall state-space
description of the two-input, two-output system. Determine whether the resulting system is
reachable and observable, and also find its natural frequencies.

(b) Determine the transfer function matrix G(s) that relates the two outputs to the two inputs. How
do the poles of G(s) relate to the natural frequencies that you found in (a)?

(c¢) Compute the number and locations of the MIMO transmission zeros as a function of a, by finding
expressions for the frequencies at which G(s) loses rank. Are there any allowed (i.e. nonzero)
values of a that yield transmission zeros at the same locations as poles?

(d) Now set @ = +1. Determine the transmission zero location s = ¢ and the corresponding input
direction ug from the null space of the matrix G({). Now obtain the analytical solution to the
state equations for arbitrary values of the initial state at time 0, as well as the corresponding
analytical expressions for the two outputs y;(t) and y=(t), when the system is driven by the
specific input u(t) = uge¢t for t > 0. (Note that the expressions for the outputs do not contain
the zero-frequency term et ; it has been “absorbed” by the system.) Also determine what initial
state would yield both y; (t) = y2(t) = 0 for all ¢ > 0, with this particular input.



Chapter 26

Balanced Realization

26.1 Introduction

One popular approach for obtaining a minimal realization is known as Balanced Realization. In this
approach, a new state-space description is obtained so that the reachability and observability gramians
are diagonalized. This defines a new set of invariant parameters known as Hankel singular values. This
approach plays a major role in model reduction which will be highlighted in this chapter.

26.2 Balanced Realization

Let us start with a system G with minimal realization

o~[213]

As we have seen in an earlier lecture, the controllability gramian P, and the observability gramian @
are obtained as solutions to the following Lyapunov equations

AP+ PA'+BB" = 0
AQ+QA+C'C = o0.

P and @ are symmetric and since the realization is minimal they are also positive definite. The
eigenvalues of the product of the controllability and observability gramians play an important role
in system theory and control. We define the Hankel singular values, ¢;, as the square roots of the
eigenvalues of PQ

o £ (N (PQ)).
We would like to obtain coordinate transformation, 7', that results in a realization for which the con-
trollability and observability gramians are equal and diagonal. The diagonal entries of the transformed
controllability and observability gramians will be the Hankel singular values. With the coordinate
transformation 7' the new system realization is given by
T'AT |T'B| [ A|B
CR Rl

G ~



and the Lyapunov equations in the new coordinates are given by

AT P Y +(T'PT" YA + BB =0

AT'QT) + (T'QT)A + C'C = 0.

Therefore the controllability and observability gramian in the new coordinate system are given by

P = T'PT!
Q = T'QT.
We are looking for a transformation 7" such that
o1
. A 02
P=0Q=x=
On
We have the relation
(T'PT Y\ T'QT) = 2,

T'PQT = ¥

(26.1)

Since Q = Q' and is positive definite, we can factor it as Q@ = R'R, where R is an invertible matrix.

We can write equation 26.1 as T-'PR'RT = Y2, which is equivalent to

(RT)"'RPR/(RT) = X%

(26.2)

Equation 26.2 means that RPR’ is similar to ¥2? and is positive definite. Therefore, there exists an

orthogonal transformation U, U'U = I, such that

RPR =UX?U'.

By setting (RT)"*UX2 = I, we arrive at a definition for T and T~! as

T = R'Us:
T°! = Y :IUR
With this transformation it follows that
P = (S3U'R)P(RUS™3)
= (STUNUSUNUSF)
= ¥,
and
Q = (R'US:)RRR'US?)

(S2U")(R''R'RR™Y)(US?)
= =

(26.3)



26.3 Model Reduction by Balanced Truncation

Suppose we start with a system
A| B
Ntaral

where A is asymptotically stable. Suppose T is the transformation that converts the above realization

to a balanced realization, with
A|B
G ~
Rarat

and P = Q = ¥ = diag(o1,09,...,0,). In many applications it may be beneficial to only consider
the subsystem of G that corresponds to the Hankel singular values that are larger than a certain small
constant. For that reason, suppose we partition ¥ as

(% 0
°=(7 =)

where Y5 contains the small Hankel singular values. We can partition the realization of G accordingly
as

1{111 1{112 1:31
G~ A21 A22 By
¢t Co | D

Recall that the following Lyapunov equations hold
AS+TA' + BB =0

AT +TA+C'C =0,

which can be expanded as

ATy ApD S AL DAL, BB, BB, 0
ATy A, Sy AL, Sy Ab, BB, B.By | 7
[ 1{1'1121 4'2122 } [ E11%11 E11‘}12 ] { C:'{C:H C:'{C:E } —o.
A’lel A,2222 22A21 221422 CéCl CéCQ
From the above two matrix equations we get the following set of equations
AT+ 5145, + BB, =0 (26.4)
ATy + 514 + BB, =0 (26.5)
Agy¥g + SgAby 4+ BBy =0 (26.6)

A+ 514 +CLC =0 (26.7)



Al S + 51 A+ CLCy =0 (26.8)

AloSy + Sy Agy 4+ CHCy = 0. (26.9)

From this decomposition we can extract two subsystems

All Bl 14122 B2
Gy ~ Gy ~ .
' { Ci | D ]7 : [ Cy | D ]

Theorem 26.1 G is an asymptotically stable system. If X1 and Yo do not have any common diagonal
elements then Gy and G2 are asymptotically stable.

Proof: Let us show that the subsystem
Gy ~ Ay | B
Cy | D

is asymptotically stable. Since flu satisfies the Lyapunov equation
AT+ 5145, + BB, =0

then it immediately follows that all the eigenvalues of Ay must be in the closed left half of the complex
plane; that is, Re)\i(flu) < 0. In order to show asymptotic stability we must show that Ay has no
purely imaginary eigenvalues.

Suppose jw is an eigenvalue of fin, and let v be an eigenvector associated with jw; (An —jwl)v =
0. Assume that the Kernel of (fin — jwl) is one-dimensional. The general case where there may be
several independent eigenvectors associated with jw can be handled by a slight modification of the
present argument.

Equation 26.7 can be written as

(A1y — jwI)'Si + (A — jwl) + C1CL =0
By multiplying the above equation by v on the right and v’ on the left we get
v'(fin —jwI)'Tiv +v' S (A1 — jwl)v + U'é’{élv =0
which implies that (Cyv) (Cv) = 0, and this in turn implies that
Civ=0. (26.10)
Again from equation 26.7 we get
(A1y — jwI)'S1v + 21 (A — jwl)v+ CCrv =0,

which implies that .
(A11 - ij)'Zlv =0. (2611)

Now we multiply equation 26.4 from the right by ¥;v and from the left by v'3; to get

V'S (A1 — jwl)S20 + 0" (A1 — jwl)'S1o 4+ 0'S B B0 = 0.



This implies that v’ B;)(B1Xv) = 0, and B X;v = 0. By multiplying equation 26.4 on the right by
Y1v we get

(12111 — ]CLJI)E%’U + El(All — jLLJI),El’U + BlﬁiElv =0

and hence .
(A1 — jwI)S2v = 0. (26.12)

Since that the kernel of (An — jwl) is one dimensional, and both v and £2v are eigenvectors, it follows
that Xv = 6%v, where & is one of the diagonal elements in ¥7.
Now multiply equation 26.5 on the left by v'¥; and equation 26.8 by v’ on the left we get

V'S AT, +0'S2AL, =0 (26.13)

and

V' Al Sy +0'S1 Ay = 0. (26.14)
From equations 26.13 and 26.14 we get that

—0' AL %2 4620 AL, =0,
which can be written as

(v Apy) [-52 + 6°1] = 0.

Since by assumption ¥3 and X? have no common eigenvalues, then 62 and X5 have no common
eignevalues, and hence As;v = 0. We have

(1411 —ij)v = 0
fizlv = 0,

fill A12 v - iw v

Ao As JLO T [0 ]
This statement implies that jw is an eigenvalue of A, which contradicts the assumption of the theorem
stating that G is asymptotically stable.

which can be written as



Chapter 27

Poles and Zeros of MIMO Systems

27.1 Introduction

You are familiar with the definitions of poles, zeros, and their multiplicities for the scalar transfer
functions associated with SISO LTT systems. Also recall the interpretation (stated here for the CT
case, but the analogous statement holds in the DT case) of a pole frequency py as being a “generated
frequency” of the system, in the sense that an exponential of the form cePo! for ¢ > 0 (and for
some nonzero constant ¢) is present in the output even when the input for ¢ > 0 comprises a sum of
exponentials that does not contain a term with this frequency. Similarly, the frequency (o of a zero
may be interpreted as an “absorbed frequency”, in the sense that even when the input comprises a
sum of exponentials that contains a term of the form ceo? for t > 0, the output does not contain a
component at this frequency.

For the case of the p x m transfer function matriz H(s) that describes the zero-state input/output
behavior of an m-input, p-output LTI (CT) system, the definitions of poles and zeros are more subtle.
We would still like them to respectively have the interpretations of generated and absorbed frequencies,
in some sense, but that still leaves us with many choices. We begin by discussing the case of diagonal
transfer function matrices. (We continue to use the notation of CT systems in what follows, but the
DT story is identical.)

27.2 Poles and Zeros for Diagonal H(s)

It is clear what we would want our eventual definitions of poles and zeros for multi-input, multi-output
(MIMO) systems to specialize to in the case where H(s) is nonzero only in its diagonal positions,
because this corresponds to completely decoupled scalar transfer functions. For this diagonal case, we
would evidently like to say that the poles of H(s) are the poles of the individual diagonal entries of
H(s), and similarly for the zeros.

Example 27.1 Given the 3 x 3 transfer matrix

. s+ 2 s
H(s) = diagonal <(8+3)2 T (s+2)(s+3)° 0>




we would say that H(s) has poles at —3 of multiplicity 2 and 1 respectively, and a pole at
—2 of multiplicity 1; and that it has zeros at —2, at 0, and at oo, all with multiplicity 1.

Note from the above example that in the MIMO case we can have poles and zeros at the same
frequency (e.g. those at —2 in the example), without any cancellation! Also note that a pole or zero is
not necessarily characterized by a single multiplicity; we may instead have a set of multiplicity indices
(e.g. as needed to describe the pole at —3 in the above example). The diagonal case makes clear
that we do not want to define a pole or zero location of H(s) in the general case to be a frequency
where all entries of H(s) respectively have poles or zeros. The particular H(s) that we have shown in
the example has a normal rank (i.e. for most values of s) of 2, and this rank drops at precisely the
locations of the zeros of the individual entries.

27.3 MIMO Poles

We might consider defining a pole location as follows:
e (Pole Location) H(s) has a pole at a frequency py if some entry of H(s) has a pole at s = py.

This choice would still have the significance of a generated frequency, for an appropriately chosen input
and output. The above definition is indeed the one that is picked. The full definition also shows us
how to determine the set of multiplicities associated with each pole frequency. For completeness —
but not because we expect you to understand the motivation for it, or to remember and use it — we
state the prescription here:

e (Pole Multiplicities) Determine the largest multiplicity v4 (po) with which the pole pg occurs
among the 1 x 1 minors of H(s), then the largest multiplicity v2(po) of the pole pp among the
2 x 2 minors of H(s), and so on. Stop at minors of size k x k if k is the first size for which
vi(po) > Vi+1(po) (this k will actually depend on pg, so we should really write k(pg), but we
omit the argument in the interest of keeping the notation streamlined), or if all minors of larger
size vanish. The set of multiplicities associated with the pole at py is now given by the set of

numbers v (po) , v2(po) — v1(po), -+ 5 k(Po) — ve—1(po)-

(Caution: For all the computations with minors described above and later in these notes, any common
factors between the expressions obtained for the numerator and denominator of a minor must first be
cancelled out, of course.) You should verify that you get the expected values for pole multiplicities
when you apply this definition to the preceding example of a diagonal H (s).

Determining Poles from a State-Space Realization

Given this definition of poles (and their multiplicities) for MIMO transfer functions, what can be
said about the relation of the poles of H(s) to properties of a realization (A, B,C, D) of this transfer
function? What is clear is that the poles of

H(s)=C(sI —A)'B+D

must be contained among the eigenvalues of A, because the denominator terms in the entries of
H(s) are all a(s) = det(sI — A), apart from possible cancellations between a(s) and the entries of



C(adj[s] — A])B. In fact, the poles of H(s) must be contained among the reachable and observable
eigenvalues of A, as only the reachable and observable part of the realization contributes to the transfer
function. What can be shown, although this is more than we are equipped to do in this course, is that
the poles of H(s) are precisely equal — in location and multiplicity — to the reachable and observable
eigenvalues of A. In fact, the multiplicity indices associated with a pole of H(s) are precisely the sizes
of the Jordan blocks associated with the corresponding eigenvalue of A.

You can verify from the preceding facts that:

e the characteristic polynomial of a minimal realization of H(s) — which we may refer to
as the pole polynomial — equals the least common multiple of the denominators of all possible
minors (of all sizes) in H(s).

Example 27.2 Consider the 2 x 2 transfer function
! 1
Hi(s) = [ 'S 1

0 s+3

Its only polar frequency is at —3. The largest multiplicity of this pole in the 1 x 1 minors
is 1, and its largest multiplicity in the 2 x 2 minor (there is only one minor of this size)
is 2. Hence the multiplicities of the pole at —3 are 1 and 2 — 1 = 1. The characteristic
polynomial of a minimal realization of Hj(s) is (s + 3)2.

Now consider the transfer function

1 1
HQ(S): |: stB ST3 :| .
s+3 s+3
Its only polar frequency is again at —3. The largest multiplicity of this pole in the 1 x 1
minors is 1, and its 2 x 2 minor vanishes. Hence the pole at —3 has a multiplicity of just
1, and the characteristic polynomial of a minimal realization of Hs(s) is simply (s + 3).

You should verify that the above results are consistent with the minimal realizations
produced by Gilbert’s method. Suppose

1 1
H3(s) = | o097 o2 G59)

Verify that this transfer matrix has a pole at 1 of multiplicity 2, and a pole at —3 of
multiplicity 2. The characteristic polynomial of a minimal realization of H3(s) is thus
(s — 1)%(s + 3)2.

27.4 MIMO Zeros

We have already established, with guidance from the diagonal case, that a zero should not be defined
as a frequency where all entries of H(s) have zeros. It is also not satisfying in the general MIMO case
(although it is correct in the diagonal case) to define a zero location as a frequency where some entry
of H(s) has a zero. Among the objections to this definition are the following:



i) although such a frequency can be hidden from a particular output even when it is present in a
g
particular input (since it is “absorbed” by the corresponding entry of H(s)), this frequency will
in general not be hidden from all outputs, and is therefore not really “absorbed” in a MIMO
sense;

(ii) we will not in general have the desirable feature that the zeros of an invertible H(s) will be poles
of H™1(s).

A much more satisfactory definition of a zero is the following:

e (Zero Location) H(s) has a zero at a frequency (p if it drops rank at s = (p.

This particular definition corresponds to what is termed a transmission zero, and is the only definition
of interest to us in this course. Consider, for example, the case of an H(s) of full column rank (as a
rational matrix — i.e. there is no rational vector u(s) # 0 such that H(s)u(s) = 0), and assume it
is finite at s = (g, i.e. has no poles at (5. Then H(s) drops rank at s = {y iff H((p)uo = 0 for some
Uo ;é 0.

As we have seen, however, a MIMO transfer function can have poles and zeros at the same
frequency, so a more general characterization of rank loss is needed to enable us to detect a drop in
rank even at frequencies where some entries of H (s) have poles. This is provided by the following test,
which is restricted to the case of full-column-rank H(s), but an obvious transposition will handle the
case where H(s) has full row rank, and somewhat less obvious extensions will handle the general case:

e (Zero Location — refined) A rational matrix H (s) of full column rank has a zero at s = (p if
there is a rational vector u(s) such that u((p) is finite and nonzero, and lim,_,¢ [H(s)u(s)] = 0.

Example 27.3 Consider

o=y 7).

It is clear that H(s) has a pole at s = 3, but it may not be immediately obvious that it
also has a zero at s = 3. Observe that for s approaching 3, the second column of H(s)
approaches alignment with the first column, so the rank of H(s) approaches 1, i.e. there
is a rank drop at s = 3. To confirm this, pick

0-( )

and verify that lim,_,3 H(s)u(s) = 0 even though u(3) is (finite and) nonzero.

As suggested earlier, one of the nice features of our definition of zeros is that, for an
invertible H(s), they become poles of the inverse. In this example,

#w=(y 7))

which evidently has a pole s = 3.

There is also a prescription for establishing the multiplicities of the zeros, and again we state it
for completeness, but not with the expectation that you learn to work with it:



e (Zero Multiplicities) Determine the largest multiplicity with which (p occurs as a pole among
the 1 x 1 minors or, if it doesn’t appear as a pole, then determine the smallest multiplicity with
which it occurs as a zero of every 1 x 1 minor; denote this by v1({p). Continue similarly with
the 2 x 2 minors, and so on, stopping with minors of size r equal to the rank of H(s) (beyond
which size all minors vanish). Let ¢ denote the first size for which v,({p) < ve—1({p) (this ¢
will actually depend on (p, so we should denote it by ¢({p), but we omit the argument to keep
the notation simple). Then the set of multiplicities associated with the zero at (y is given by

ve—1(Co) — ve(Co) > ve(Co) — ve+1(Co) s+ 5 ¥r—1(Co) — v+ (Co)-

Given these definitions of the poles and zeros (and their multiplicities) for MIMO transfer func-
tions, it can be shown that for an invertible H(s) the total number of poles (summed over all frequen-
cies, including infinity, and with multiplicities accounted for) equals the total number of zeros (again
summed over all frequencies, including infinity, and with multiplicities accounted for). However, for
non-invertible square H(s) and for non-square H(s), there will be more poles than zeros — an inter-
esting difference from the scalar case. In fact, if the coefficients of the rationals in H(s) are picked
“randomly”, then a square H(s) will typically (or “generically”) be invertible and will have zeros,
while a non-square H (s) will typically not have zeros. (Of course, the coefficient values in our idealized
models of systems are not picked randomly, so the non-generic cases are of interest t0o.)

Determining Zeros from a Minimal Realization

What can be said about the relation of the zeros of H(s) to properties of a minimal realization
(A, B, C, D) of this transfer function? (The non-minimal parts of a realization do not contribute to the
transfer matrix, and therefore play no role in determining poles and transmission zeros.) The answer
is provided by the following nice result (which we shall demonstrate immediately below, but only for
those zero locations that are not also pole locations, because the general proof requires tools beyond
those developed here):

¢ (Finite Zeros from a Minimal State-Space Model) Given a minimal state-space realization
(A, B,C, D) of H(s), the finite zeros of H(s), in both location and multiplicity, are the same as
the finite zeros of the system matriz
s—A -B
C D '

(The finite zeros of the system matrix are defined as before, namely as the finite values of s for
which the matrix drops rank.)

Thus, the locations of the finite zeros of H(s) are the values of s for which the system matrix of
a minimal realization drops rank. Note that the system matrix has no finite poles to confound our
determination of which values of s correspond to rank loss. (If the realization is not minimal, then the
system matrix has additional zeros, corresponding to the unobservable and/or unreachable eigenvalues
of the realization. These zeros, along with the transmission zeros, comprise what are referred to as the
invariant zeros of the system.)

To demonstrate the above result for the special case where pole and zero locations do not coincide,
we begin with the identity

( —C(SII—A)*1 ? ) < Slc_‘A _DB ) = < SI(;A };(E;) ) : (27.1)

Several facts can be deduced from this identity, including the following:



o If { is not an eigenvalue of A and thus not a pole of H(s), the first matrix in the above identity
is well-defined and invertible at s = (g, so the other two matrices in the identity must have the
same rank at s = (p. Therefore, since (oI — A is invertible, it follows in this case that H(s) drops
rank at s = (p iff the system matrix drops rank at s = (p. This is the result we were aiming to
demonstrate.

e The above identity also shows that the rank of H(s) as a rational matrix (where this rank may
be defined as the size of the largest non-vanishing minor of H (s), and is also the rank that H(s)
has for most values of s) is n less than the rank of the system matrix, where n is the order of
the realization (A, B,C, D). It follows that H(s) has full column (respectively, row) rank as a
rational matrix iff the system matrix has full column (row) rank as a rational (or polynomial)
matrix.

e For square H(s), we can take determinants on both sides of the above identity, and thereby
conclude that
det (system matrix) = det(s] — A) det H(s)

Thus, if det H(s) is a non-zero rational, then the zeros of H(s) are precisely the roots of the
polynomial det(sI — A) det H(s). For this reason, the product of the pole polynomial of H(s)
and of det H(s) — in the case where det H(s) # 0 — may be referred to as the zero polynomial
of H(s).

The problem of finding the values of s where a matrix of the form s& — A drops rank, with
€ possibly singular or even non-square, is referred to as a generalized eigenvalue problem, and the
corresponding values of s are referred to as generalized eigenvalues. The problem of computing the
transmission zeros of a system using the system matrix of an associated minimal realization is evidently
of this type. Good numerical routines (e.g. the “qz” algorithm in Matlab) exist for solving the
generalized eigenvalue problem.

Exercise Suppose

o= (3 )

Find a minimal realization of this transfer function, and use the associated system matrix to establish
that H(s) has a single pole and a single zero at s = 3.

Zero Directions

Now let us consider in more detail the particular but important case where H(s), and therefore the
system matrix of a minimal realization of it, have full column rank as rational matrices. For this case,
rank loss in the system matrix at s = (y corresponds to having

(et 5 ()=(0) (5)#(5) o

The observability of the realization ensures (by the modal observability test) that ug # 0 in the above
equation, and the assumption that the system matrix — or equivalently H(s) — has full column-rank
as a rational matrix ensures that xg # 0. The vector z( in this equation is referred to as the state
zero direction associated with (g, and ug is the input zero direction. The dynamical significance of the
state and input zero directions is given by the following result:



¢ (Dynamical Interpretation of Zero Location and Zero Directions) Suppose (j is a zero
location of H(s) and xo, ug are associated state and input zero directions computed from the
system matrix of a minimal realization of H(s). Then, with initial condition x(0) = zo # 0
and input u(t) = uge® # 0 for t > 0, the state response of the system (A, B,C, D) is x(t) =
Tpet # 0 and the output response is identically 0, i.e. y(t) =0, for t > 0.

The proof of the above statement is by simple verification. Thus note that z(t) = x¢e®! and u(t) =
uget satisfy the state equation i (t) = Az(t) + Bu(t), in view of the top row of (27.2). Therefore the
(unique) state trajectory obtained by choosing zo as the initial condition x(0) and choosing the input
as u(t) = uget is precisely z(t) = xge®t. The corresponding output is y(t) = Cx(t) + Du(t), and the
bottom row of (27.2) shows that this expression evaluates to 0.

The above result shows that a MIMO zero still has an interpretation as an absorbed frequency.
The components of the input zero direction vector ug specify the proportions in which the exponential
ot should be present at the corresponding inputs of the system to ensure — when the initial condition
is picked to be the state zero direction vector zo — that this exponential appears in none of the outputs.
For the case where (p is not a pole of H(s), we can use (27.1) to deduce that H({o)up = 0.

One can similarly develop “duals” of the preceding results to focus on the loss of row rank
rather than column rank, invoking left zero directions rather than the right zero directions that we
have introduced above, but we omit the details and summarize the results in Table 27.1. Also, there
are natural (but notationally cumbersome) generalizations of the above construction to expose the
dynamical significance of having a zero with multiplicities larger than 1.

Example 27.4 A transfer function matrix is given by

0

s—1 2
Ho = | 2
s+1

The reader should be able to verify that there is a pole at —1 with multiplicity 2, and a
pole at 2 with multiplicity 1. The normal rank of H(s) is 2. At oo, H(co) has rank 1
which implies that the system has a zero at oo. This transfer function matrix also loses
rank at s = 0. The third zero (note that since the transfer function matrix is square there
is an equal number of poles and zeros) must be at the location of the pole s = 2. To see

this, we define
_ | —2(s-2)
u(s) = { (s+1)(s—1) ] )

It is clear that u(2) is finite and

lim H (s)u(s) = lim [ @ } = { 8 ]

s—2 s—2 s+1

which confirms that H(s) has a zero at 2.

Another way of determining the finite zeros is to obtain a realization and analyze the
system’s matrix. Using Gilbert’s realization, we get

d I 2 0 0 I 1 0
Zle | = o -1 0 2o |+ 1 0 |u
L 0 0 -1 3 0 1
J1 o0 21| ™ 1o
Y = 1o -1 0 T2 1 0|4



The system matrix is

s—2 0 0
sI—A —-B 0 s+1 0
c D = 0 0 s+1
1 0 2
0 -1 0
and its determinant is N
sl — —-B
det { o D ] = 2s(s — 2),

from which it is clear that the finite zeros are 0 and 2.



H(s)ispxm H(s)ispxm Comments
full column rank transfer matrix full row rank transfer matrix
H()—AB nimal H()—AB inimal

s)=| o p | minima s)=| o p | minima
o is a zero of H(s) if o is a zero of H(s) if characterizes
rank H((o) < m rank H((p) < p zeros that
Equivalently there exists wug Equivalently there exists wug are different
such that H((o)ug = 0 such that ul H((y) =0 from poles
(o is a zero of H(s) if (o is a zero of H(s) if characterizes
there exists u(s) such that there exists u(s) such that all zeros
u((p) is finite and u((p) is finite and
lims_,¢, H(s)u(s) =0 limg ¢, u(s)TH(s) =0
(o is a zero of H(s) if o is a zero of H(s) if characterizes

(I—-A -B
rank( C D <n+m

rank ( Gl =4

C

-B

D ><n+p

finite zeros

(o is a zero of H(s) if
0
0

there exists io # ( such that
0

(@t ()= (6

Co is a zero of H(s) if

there exists

—

Lo

T Cof A
)

) # < 8 ) such that

)=(0 o)

D

-B

characterizes

finite zeros

o is a zero of H(s) if
there exists xg # 0, ug # 0

such that if 2(0) =z and u(t) = e“tuy

the solution of & = Ax + Bu
y = Cx + Du satisfies

y(t) =0

o is a zero of H(s) if
there exists xg # 0, ug # 0

such that if #(0) =z and u(t) = e“tuq
the solution of & = ATz + CTu

y = BTz + DTy satisfies

y(t) =0

characterizes
finite zeros

Table 27.1: Duality between right and left zeros



Chapter 28

Stabilization: State Feedback

28.1 Introduction: Stabilization

One reason feedback control systems are designed is to stabilize systems that may be unstable. Al-
though our earlier results show that a reachable but unstable system can have its state controlled by
appropriate choice of control input, these results were obtained under some critical assumptions:

e the control must be unrestricted (as our reachability results assumed the control could be chosen
freely);

e the system must be accurately described (i.e. we must have an accurate model of it);
e the initial state must be accurately known.

The trouble with unstable systems is that they are unforgiving when assumptions such as the above do
not hold. Even if the first assumption above is assumed to hold, there will undoubtedly be modeling
errors, such as improperly modeled dynamics or incompletely modeled disturbances (thus violating
the second assumption). And even if we assume that the dynamics are accurately modeled, the initial
state of the system is unlikely to be known precisely (violating the third assumption). It is thus clear
that we need ongoing feedback of information about the state of the system, in order to have a hope
of stabilizing an unstable system. Feedback can also improve the performance of a stable system (or,
if the feedback is badly chosen, it can degrade the performance and possibly cause instability!). We
shall come to understand these issues better over the remaining lectures.

How, then, can we design feedback controllers that stabilize a given system (or plant — the word
used to describe the system that we are interested in controlling) ? To answer this, we have to address
the issues of what kind of feedback variables are available for our controller. There are, in general, two
types of feedback:

e state feedback

e output feedback.

With state feedback, all of the state variables (e.g., z) of a system are available for use by the controller,
whereas with output feedback, a set of output variables (e.g., y = Cx+Du) related to the state variables



are available. The state feedback problem is easier than the output feedback one, and richer in the
sense that we can do more with control.

In the remainder of this chapter, we examine eigenvalue placement by state feedback. All our
discussion here will be for the case of a known LTI plant. The issue of uncertainty and unmodeled
dynamics should be dealt with as discussed in previous chapters; namely, by imposing a norm constraint
on an appropriate closed loop transfer function. Our development in this lecture will use the notation
of CT systems — but there is no essential difference for the DT case.

28.2 State Feedback

In the case of state feedback, we measure all of the state variables. Thus the plant specification is
(A, B,1,0) — we omit the direct-feedthrough matrix, D, for simplicity, because including it would
introduce only notational complications, without changing any conclusions. Our plant specification
implies that the output equation is simply y = . (In many applications, direct measurement of all
system state variables is either impossible or impractical. We address the important topic of output
feedback a little later in this lecture.)

For now, let us examine state feedback in further detail. Let our control, u, be specified by
u = Fz + v, where F' is a constant matrix, and v is an external input. This corresponds to LTI state
feedback. Combining this control law with the state-space description for our nth-order plant, namely,

dx = Az + Bu (28.1)
y = z, (28.2)

we find that the closed-loop dynamics are described by
d0x = (A+ BF)x + Bu, (28.3)

where we adopt the notation

S — { o & for CT systems (28.4)

k+1) for DT systems

As is apparent from (28.3), the closed-loop system is stable if and only if the eigenvalues of
A+ BF are all in the stable region. In other words, F' stabilizes this system if and only if

Open left half of the complex plane in continuous — time

open unit disc in discrete — time ’ (28.5)

o(A+ BF) C {

where o(A + BF) is the spectrum (set of eigenvalues) of (A + BF).
A key question is: “Can F' be chosen so that the eigenvalues of (A + BF') are placed at arbitrary
desired locations?” The answer is provided by the following theorem.

Theorem 28.1 (Eigenvalue Placement) There exists a matriz F' such that

det (A — [A + BF]) = ﬁ()\ — 1) (28.6)

for any arbitrary self-conjugate set of complex numbers uy, ..., u, € Cif and only if (A, B) is reachable.



Proof. To prove that reachability is necessary, suppose that A; € 0(A) is an unreachable mode. Let
wiT be the left eigenvector of A associated with \;. It follows from the modal reachability test that
wl'A = \w! and w! B = 0. Therefore,

w! (A + BF) w! A+ (w] B)F
wl A+0

= \w! . (28.7)

Equation (28.7) implies that \; is an eigenvalue of (A + BF) for any F. Thus, if \; is an unreachable
mode of the plant, then there exists no state feedback matrix F' that can move it.

We shall prove sufficiency for the single-input (B = b) case only. (The easiest proof for the multi-
input case is, as in the single-input case below, based on a canonical form for reachable multi-input
systems, which we have not examined in any detail, and this is why we omit the multi-input proof.)
Since (A, b) is reachable, there exists a similarity transformation # = Tz such that T='AT and T~'b
have the controller canonical form

_al _az - .. _an
- 1 0 -0
A=T1AT = ) (28.8)
1 0
1
- 0
b=T"1p=1| | . (28.9)
0

Recall that the coefficients a; in the matrix A define the characteristic polynomial of A and A:
aA) ="+ a4t (28.10)

Let

IO =) = A"+ afA" "t 4+ 0l = at()) . (28.11)

=1

If w = Fz with F being the row vector

F=[f fn]
then B ~ ~
—a1+fi —azt+fo 0 —ant+ fa
e 1 0 - 0
A+ bF = . . (28.12)
1 0
It is evident that we simply have to choose ﬁ =—ad+a;fori=1,...,n to get the desired closed-loop

characteristic polynomial a?()).
We have thus been able to place the eigenvalues in the desired locations. Now, using the similarity
transformation and F, we must find F so that A + bF has the same eigenvalues. Since u = Fz and



r=Tz u= FT~'z. Thus we should define F = FT~'. (Verify that A+ bF has the same eigenvalues
as A+ bF'.) This completes the proof.

The calculation that was described above of a feedback matrix that places the poles of A+ bF at
the roots a specified polynomial a’(s) can be succinctly represented in a simple formula. The matrix
A and A have the same characteristic polynomial, a(\), which implies that A satisfies

(A" = —a A" — AV 2 — . —a,l.
Based on the above relation the desired characteristic polynomial satisfies
ad(A) = A"+ adA™ 1t padAn? 4 4l
= (! —a)A" 4+ (ad —a) A" 2+ 4 (ol —ay)].
We define the unit vectors el , i =1,2,...,n as

it" position

T _
& =10 0 ... 0 1 0 ... 0

Due to the special structure of the matrix A the reader should be able to check that

efad(Ad) = (af —a)el A" 4 (ad —an)el A2 4. 4 (o —ay)elT
= (of —an)ef + (a5 —a)es +... + (ap —an)ey
~F.

Recall that the transformation 7' that transforms a system into reachable form is given by T =
~ 1

R, R, where
R, = [b Ab ... A”_lb],

R, i1 ).

I
—
S
e
<=

The matrix R, has the following form

1 x  x%

— 0O 1 = ...

R, = . . . , (28.13)
0 0 1

where * denotgs entries that can be different from zero. The feedback matrix F is related to F' via the
relation F' = FT~! which implies that

F = FT°!
—elad(A)T~!

= —ela¥(T AT

= —el'rT oA TT!
= —e'R,R, 'at(A).

Note that from Equation 28.13 we have eZ]f%vn = eI’ which results in the following formula, which is
commonly called Ackermann’s formula

F=—el'R,"a%(A). (28.14)

Some comments are in order:



1. If (A, B) is not reachable, then the reachable modes, and only these, can be changed by state
feedback.

2. The pair (A, B) is said to be stabilizable if its unreachable modes are all stable, because in this
case, and only in this case, F' can be selected to change the location of all unstable modes to
stable locations.

3. Despite what the theorem says we can do, there are good practical reasons why one might temper
the application of the theorem. Trying to make the closed-loop dynamics very fast generally
requires large F', and hence large control effort — but in practice there are limits to how much
control can be exercised. Furthermore, unmodeled dynamics could lead to instability if we got
too ambitious with our feedback.

The so-called linear-quadratic regulator or LQR formulation of the controller problem for linear
systems uses an integral-square (i.e. quadratic) cost criterion to pose a compromise between the
desire to bring the state to zero and the desire to limit control effort. In the LTI case, and with
the integral extending over an infinite time interval, the optimal control turns out to be precisely
an LTI state feedback. The solution of the LQR problem for this case enables computation of the
optimal feedback gain matrix F** (most commonly through the solution of an algebraic Riccati
equation). You are led through some exploration of this on the homework. See also the article
on “Linear Quadratic Regulator Control” by Lublin and Athans in The Control Handbook, W.S.
Levine (Ed.), CRC Press, 1996.

4. State feedback cannot change reachability, but it can affect observability — either destroying it
or creating it.

5. State feedback can change the poles of an LTI system, but does not affect the zeros (unless the
feedback happens to induce unobservability, in which case what has occurred is that a pole has
been shifted to exactly cancel a zero). Note that, if the open-loop and closed-loop descriptions
are minimal, then their transmission zeros are precisely the values of s where their respective
system matrices drop rank. These system matrices are related by a nonsingular transformation:

(s[—(fé+BF) —OB> _ <515A —OB> <§ ?> 25.15)

Hence the closed-loop and open-loop zeros are identical. (We omit a more detailed discussion of
what happens in the nonminimal case.)

Example 28.1 Inverted Pendulum

A cart of mass M slides on a frictionless surface. The cart is pulled by a force u(¢). On the
cart a pendulum of mass m is attached via a frictionless hinge, as shown in Figure 28.1.
The pendulum’s center of mass is located at a distance [ from either end. The moment
of inertia of the pendulum about its center of mass is denoted by I. The position of the
center of mass of the cart is at a distance s(t) from a reference point. The angle 6(t) is
the angle that the pendulum makes with respect to the vertical axis which is assumed to
increase clockwise.

First let us write the equations of motion that result from the free-body diagram of the
cart. The vertical forces P, R and Mg balance out. For the horizontal forces we have the
following equation

M§=u— N. (28.16)
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Figure 28.1: Inverted Pendulum

From the free-body diagram of the pendulum, the balance of forces in the horizontal
direction gives the equation

d? .
Mo (s+1sin(d)) = N,,
d /. ;
me (s + lcos(9)0) = N,
m (s — Isin(8)(6)? + zcos(e)é’) - N, (28.17)
and the balance of forces in the vertical direction gives the equation
d2
el - p_
mes (I cos(6)) mg,
d . N
me (—181n(9)0) = P —mg,
m (—zcos(e)(é)2 - zsin(e)é’) - P—myg. (28.18)

Finally by balancing the moments around the center of mass we get the equation

I6 = Plsin(h) — Nlcos(h). (28.19)



From equations 28.16, 28.17 we can eliminate the force N to obtain

(M +m)é +m (z cos(8)d — zsin(e)(é)2) = u.

Substituting equations 28.17, 28.18 into equation 28.19 gives us

H =1 (mg — mlcos(8)(8)% — ml sin(a)e) sin(6)
-1 (m[s' — mlsin(6)()* + ml cos(0)é> cos(f).
Simplifying the above expression gives us the equation

(I + mi?)8 = mglsin(h) — mlscos(f).

(28.20)

(28.21)

The equations that describe the system are 28.20 and 28.21. We can have a further
simplification of the system of equations by removing the term 6 from equation 28.20, and

the term § from equation 28.21. Define the constants

Mt = M+m
I - I+m12.
ml

Substituting 6 from equation 28.21 into equation 28.20 we get

(1 ~ ML cos(f) ) Starrd sin(6) cos(6) — 7 sin(6)(6)” = R

t

Similarly we can substitute § from equation 28.20 into equation 28.21 to get

ml N g . ml . N2
<1 VL cos(6) )9 Lsm(0) + VL sin(@) cos(0)(9)* = VL

cos(8)u.

(28.22)

(28.23)

These are nonlinear equations due to the presence of the terms sin(f), cos(f), and (19)2
We can linearize these equations around # = 0 and 6 = 0, by assuming that 6(t) and 6(t)

remain small. Recall that for small &

L3
0_60
Lo
cos(f) = 1—507

Q

sin(6)

and using these relations we can linearize the equations 28.22 and 28.23. The linearized

system of equations take the form

ml\. mlg 1
1- I = —
( MtL>S+MtLL9 7
ml\ . g 1
1- _ 9y = _ :
( MtL>9 f ML

Choose the following state variables

8
|
. D »- »



to write a state space model for the invert ed pendulum. Using these state variables the
following state space model can be easily obtained

T 01 0 0 1 0
ml o4
i T2 _ 0 0 —«o M;,Lg 0 T2 + M, u
dt | 3 0 0 0 1 T3 0
7y 00 af 0/ \um s
y = [1 0 0]z,
where the constant « is given by
1
o=

"
(1- %)
Intuitively it is clear that the equilibrim point [s = constant,$ = 0,0 = 0,6 = 0] is an

unstable equilibrim point. To verify this we compute the eigenvalues of the matrix A by
solving the equation det(A — A) = 0. The eigenvalues are

{00 v —yT ).
Therefore we have two eigenvalues at the jw axis and one eigenvalue in the open right half

of the complex plane, which indicates instability.

Now let us consider the case where M = 2kg, m = .1kg, | = .5m, I = .025kgm?, and of
course g = 9.8m/ s2. Assume that we can directly measure the state variables, s, §, § and
6. We want to design a feedback control law u = F'z + r to stabilize this system. In order
to do that we will choose a feeback matrix F' to place the poles of the closed-loop system
at {—1,—1,—-3,—3}. Using Ackermann’s formula

F=-[0 0 0 1]R, "a%4)

where a?(\) = (A + 1)(A + 1)(A + 3)(\ + 3) which is the ploynomial whose roots are
the desired new pole locations, and R,, is the reachability matriz. In specific using the
parameters of the problem we have

1

0 0.4878 0 0.1166 | 9.0 240 7.7

0.4878 0 0.1166 0 0 90 -249

Fo= _[0 00 1] 0 —0.4878 0 —4.8971 0 0 330.6
—0.4878 0 —4.8971 0 0 0 1047.2

= [ 1.8827 5.0204 67.5627 21.4204 ]

The closed-loop system is given by

2 0 1.0 0 0 2 0

d | o | | 00184 2440 327184 10.449 v 0.4878

@l e | T 0 0 0 1.0 N 0
4 —0.9184 —2.4490 —22.9184 —10.4490 | | x4 —0.4878

In Figure 28.2 we show the time trajectories of the closed-loop linearized system when the
reference input () is identically zero and the intial angular displacement of the pendulum

-1.9
—7.7
104.3
330.6
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Figure 28.2: Plot of the State Variables of the Closed-Loop Linearized System with » = 0 and
the Initial Condition s =0, $§=0,0=1.0,and § =0



is 1.0 radians. In this simulation the initial conditions on all the other state variables are
Zero.

We can also look at the performance of this controller if it is applied to the nonlinear
system. In this case we should simulate the dynamics of the following nonlinear system
of equations

" i 1 01
ml . ml .
d | @ | _ | ~35% ey sin(es) cos(xs) + T are sin(s) (24)? . e
dt I3 T4 0
T4 £ a(;g) sin(z3) — A}':[L 04(9133) sin(z3) cos(x3)(x4)? _ MltL czs(xs))
T
u = [ 1.8827 5.0204 67.5627 21.4204 ] iQ +
3
T4

where a(x3) is defined as

alz;) = <1 - AZZL cos(x3)2> .

In Figure 28.3 we show the time trajectories of the nonlinear closed-loop system when the
reference input r(t) is identically zero and the intial angular displacement of the pendulum
is 1.0 radians. In this simulation the initial conditions on all the other state variables are
Zero.
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Exercises

Exercise 28.1 Let (A4, B, C, 0) be areachable and observable LTI state-space description of a discrete-
time or continuous-time system. Let its input w be related to its output y by the following output
feedback law:

u=Fy+r

for some constant matrix F', where r is a new external input to the closed-loop system that results
from the output feedback.

(a) Write down the state-space description of the system mapping r to y.
(b) Is the new system reachable? Prove reachability, or show a counterexample.

(c) Is the new system observable? Prove observability, or show a counterexample.

Exercise 28.2 (Discrete Time “Linear-Quadratic” or LQ Control)
Given the linear system z;,11 = Az; + Bu; and a specified initial condition zp, we wish to find the
sequence of controls ug, u1,...,uyx that minimizes the quadratic criterion

N

Jon (X0, o, - -y un) = Y (251 Quirs + uf Rus)
0

Here Q is positive semi-definite (and hence of the form Q = VTV for some matrix V') and R is positive
definite (and hence of the form R = WTW for some nonsingular matrix W). The rationale for this
criterion is that it permits us, through proper choice of Q and R, to trade off our desire for small
state excursions against our desire to use low control effort (with state excursions and control effort
measured in a sum-of-squares sense). This problem will demonstrate that the optimal control sequence
for this criterion has the form of a time-varying linear state feedback.

Let the optimal control sequence be denoted by wg, ..., u%, let the resulting state sequence be
denoted by z7,...,2}, and let the resulting value of Jo (7o, uo, ..., un) be denoted by Lg v (zo).
(a) Arguethatu},...,u} is also the the sequence of controls uy, . . ., uy that minimizes Ji (2}, uk, . . .

0 < k < N. [This observation, in its general form, is termed the principle of optimality, and
underlies the powerful optimization framework of dynamic programming.]

(b) Show that

N
Jk:7N(xk7u/€7 s 7UN) = Z ||€g||2
k

o). o-()

where ¢, = Cxy + Duy and

332

)uN)>



(c) Let
Uk €k
Ue,n = : , EuN =
UN EN
Show that ¢ n = Ck,nTr + Dy, Ui, n for appropriate matrices Cy y and Dy, n, and show that
Di,n has full column rank.

(d) Note from (b) that Jy n (g, ug,...,un) = ||€ n||?. Use this and the results of (a), (c) to show
that
Uy n = —(Dj yDi,x) ™ Dy Cr vy

and hence that u;, = Fjz; for some state feedback gain matrix F}', 0 < k < N. The optimal
control sequence thus has the form of a time-varying linear state feedback.

(e) Assuming the optimal control problem has a solution for N = oo, argue that in this “infinite-
horizon” case the optimal control is given by uj; = F*zj for a constant state feedback gain
matrix F'*.

Exercise 28.3 (Continuous-Time LQ Control)
Consider the controllable and observable system @(t) = Ax(t) + Bu(t), y(t) = Cxz(t). It can be
shown that the control which minimizes

7= [T + v oR 1

with R positive definite, is of the form u(t) = F*z(t), where
F*=-R'B'P (2.1)

and where P is the unique, symmetric, positive definite solution of the following equation (called the
algebraic Riccati equation or ARE):

PA+AP+Q-PBR'BP=0, Q=C'C (2.2)

The control is guaranteed to be stabilizing. The significance of P is that the minimum value of .J is
given by 2'(0)Px(0).

In the case where u and y are scalar, so R is also a scalar which we denote by r, the optimum
closed-loop eigenvalues, i.e. the eigenvalues of A + BF*, can be shown to be the left-half-plane roots
of the so-called root square characteristic polynomial

a(s)a(=s) + p(s)r~'p(-s)
where a(s) = det(sI — A) and p(s)/a(s) is the transfer function from u to y.

Now consider the particular case where

A:(S é) B:(?) C=(1 0)

This could represent a magnetic suspension scheme with actuating current w and position y (or a
simplified model of an inverted pendulum).



(a) Show that the system is unstable.
(b) Find the transfer function from w to y.

(c) Using the root square characteristic polynomial for this problem, approximately determine in
terms of r the optimum closed-loop eigenvalues, assuming r < 1.

(d) Determine the optimum closed-loop eigenvalues for » — oo, and find the F™* that gives this set of
eigenvalues.

(e) Verify the result in (d) by computing the optimal gain F* via the formulas in (2.1) and (2.2). (In
order to get a meaningful solution of the ARE, you should not set »—! = 0, but still use the fact
that r>> 1.)

Exercise 28.4 (Eigenstructure Assignment) Let (A, B, I,0) be an m-input, reachable, nth-order
LTT system. Let the input be given by the LTI state feedback

u=Fz

Suppose we desire the new, closed-loop eigenvalues to be u;, with associated eigenvectors p;. We have
seen that the u; can be placed arbitrarily by choice of F' (subject only to the requirement that they
be at self-conjugate locations, i.e. for each complex value we also select its conjugate). Assume in this
problem that none of the u;’s are eigenvalues of A.

(a) Show that the eigenvector p; associated with p; must lie in the m-dimensional subspace Ra[(u;] —

A)71B], ie.,
pi = (il — A)"' By
for some ¢; .
(b) Show that if p1,...,p, are a set of attainable, linearly independent, closed-loop eigenvectors, then
-1
F= [QI7 Tt Qn] [plv ey pn]
where ¢, ..., q, are as defined in (a).

(c) Verify that specifying the closed-loop eigenvalues and eigenvectors, subject to the restrictions in
(a), involves specifying exactly nm numbers, which matches the number of free parameters in
F.



Chapter 29

Observers, Model-based Controllers

29.1 Introduction

In here we deal with the general case where only a subset of the states, or linear combinations of them,
are obtained from measurements and are available to our controller. Such a situation is referred to as
the output feedback problem. The output is of the form

y=Cx+ Du. (29.1)

We shall examine a class of output feedback controllers constructed in two stages:

1. building an observer — a dynamic system that is driven by the inputs and the outputs of the
plant, and produces an estimate of its state variables;

2. using the estimated state instead of the actual state in a state feedback scheme.

The resulting controller is termed an observer-based controller or (for reasons that will become clear)
a model-based controller. A diagram of the structure of such a controller is given in Figure 29.1.

29.2 Observers

An observer comprises a real-time simulation of the system or plant, driven by the same input as the
plant, and by a correction term derived from the difference between the actual output of the plant and
the predicted output derived from the observer. Denoting the state vector of the observer by &, we
have the following state-space description of the observer:

83 = Ai + Bu— L(y — §) , (29.2)

where L, the observer gain, is some matrix that will be specified later, and § = CZ + Du is an estimate
of the plant output. The term “model-based” for controllers based on an observer refers to the fact
that the observer uses a model of the plant as its core.
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Figure 29.1: Structure of an observer-based, or model-based controller, where L denotes the
observer gain and F' the state feedback gain.

Define the error vector as £ = x — &. Given this definition, the dynamics of the error are
determined by the following error model:

0r = dxr—9oz
= Az + Bu— A% — Bu+ L(y—9)
= A(x—-2)+ L(Cx - C2)
= (A+LO)i. (29.3)

In general, Z(0) # 0, so we select an L which makes Z(¢), the solution to (29.3), approach zero for
large t. As we can see, Z(t) — 0 as t — oo for any #(0) if and only if (A + LC) is stable. Note that
if Z(t) - 0 as t — oo then &(¢) — x(¢) as t — oo. That is, the state estimates eventually converge
to their actual values. A key point is that the estimation error does not depend on what the control
inputs are.

It should be clear that results on the stability of (A + LC') can be obtained by taking the duals
of the results on eigenvalue placement for (A + BF'). What we are exploiting here is the fact that the
eigenvalues of (A + LC') are the same as those of (A’ + C'L’). Specifically we have the following result:

Theorem 29.1 There exists a matriz L such that

n

det (AT — [A+ LC]) = [T (X — ) (29.4)
=1
for any arbitrary self-conjugate set of complex numbers py,...,u, € C if and only if (C, A) is observ-

able.

In the case of a single-output system; i.e ¢ is a row vector, one can obtain a formula that is dual
to the feedback matrix formula for pole-assignment. Suppose we want to find the matrix L such that
A + Le has the characteristic polynomial a?()\) then the following formula will give the desired result

L=-a%A)0, e,

n



where O, is the observability matrix defined as

C

CA
0, =

CAn—l

The above formula is the dual of Ackermann’s formula which was obtained earlier.
Some remarks are in order:

1. If (C, A) is not observable, then the unobservable modes, and only these, are forced to remain
as modes of the error model, no matter how L is chosen.

2. The pair (C, A) is said to be detectable if its unobservable modes are all stable, because in this
case, and only in this case, L can be selected to change the location of all unstable modes of the
error model to stable locations.

3. Despite what the theorem says we can do, there are good practical reasons for being cautious in
applying the theorem. Trying to make the error dynamics very fast generally requires large L,
but this can accentuate the effects of any noise in the measurement of y. If y = Cx + n, where n
is a noise signal, then the error dynamics will be driven by a term Ln, as you can easily verify.
Furthermore, unmodeled dynamics are more likely to cause problems if we use excessively large
gains.

The Kalman filter, in the special form that applies to the problem we are considering here, is
simply an optimal observer. The Kalman filter formulation models the measurement noise n as
a white Gaussian process, and includes a white Gaussian plant noise term that drives the state
equation of the plant. It then asks for the minimum error variance estimate of the state vector of
the plant. The optimal solution is precisely an observer, with the gain L* chosen in a particular
way (usually through the solution of an algebraic Riccati equation). The measurement noise
causes us to not try for very fast error dynamics, while the plant noise acts as our incentive
for maintaining a good estimate (because the plant noise continually drives the state away from
where we want it to be).

4. Since we are directly observing p linear combinations of the state vector via y = Cz, it might
seem that we could attempt to estimate just n — p other (independent) linear combinations of
the state vector, in order to reconstruct the full state. One might think that this could be done
with an observer of order n — p rather than the n that our full-order observer takes. These
expectations are indeed fulfilled in what is known as the Luenberger/Gopinath reduced-order
observer. We leave exploration of associated details to some of the homework problems. With
noisy measurements, the full-order observer (or Kalman filter) is to be preferred, as it provides
some filtering action, whereas the reduced-order observer directly presents the unfiltered noise
in certain directions of the Z space.

29.3 Model-Based Controllers

Figure 29.2 shows the model-based controller in action, with the observer’s state estimate being fed
back through the (previously chosen) state feedback gain F'.

Note that, for this model-based controller, the order of the plant and controller are the same.
The number of state variables for the closed-loop system is thus double that of the open-loop plant,
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Figure 29.2: Closed-loop system using the model-based output feedback controller.

since the state variables of both the plant, x, and of the estimator, & — or some equivalent set of
variables — are required to describe the dynamics of the system. The state equation for the plant is

éx = Az + Bu
which becomes

dx = Ax+ B(r+ Fz%)
= Ax+ BFi+ Br

by substituting F'Z+r for the control u and expanding. To eliminate Z so that this equation is solely in
terms of the state variables z and &, we make the substitution & = 2 — & (since & = ¢ — &), producing
the result

0x = Ax+ BF(x— %)+ Br
= (A+BF)x — BFi+Br.

Coupling this with 6% = (A + LC)Z, which is the state equation for the estimator (derived in 29.3),
we get the composite system’s state description:

ox A+ BF —BF x B
{6;&}:[ 0 A+LC}[£}+[O]T' (29.5)
Since the composite system matrix is block upper triangular, the closed-loop eigenvalues are given by
0(A+BF)Uo(A+ LC), where, as indicated earlier, the notation o(A) represents the set of eigenvalues
of A. This fact is referred to as the separation theorem, and indicates that the plant stabilization and
estimator design can be tackled separately.

In the stochastic setting, with both plant noise and measurement noise, one can pose the so-called
LQG problem (where the initials stand for linear system, quadratic criteria, Gaussian noise). The
solution turns out to again be a model-based compensator, with a closed-loop system that is again
governed by a separation result: the optimal F* can be chosen according to an LQR formulation,
ignoring noise, and the optimal L* can be determined as a Kalman filter gain, ignoring the specifics
of the control that will be applied. For a summary of the equations that govern a model-based
compensator designed this way, see the article on “Hy (LQG) and H., Control” by Lublin, Grocott
and Athans in The Control Handbook referred to earlier (specifically look at Theorem 1 there).



A comment about the effect of modeling errors: If there are differences between the parameter
matrices A, B, C of the plant and those assumed in the observer, these will cause the entries in the
2n x 2n matrix above to deviate from the values shown there. However, for small enough deviations, the
stability of the closed-loop system will not be destroyed, because eigenvalues are continuous functions
of the entries of a matrix. The situation can be much worse, however, if (as is invariably the case)
there are uncertainities in the order of the model. The field of robust control is driven by this issue,
and we shall discuss it more later.

Example 29.1 Inverted Pendulum with Output Feedback

In the previous section we discussed the inverted pendulum problem. In that example a
state feedback controller was given that stabilizes the pendulum around the equilibrium
point of the vertical position. We will continue with this example by designing an observer-
based stabilizing controller. Recall that the nonlinear system’s equationsa are given by

T Lo 0
i Z2 — - ﬁ,lgL' m sin(wx3) cos(x3) + % a(is) Sin(x3)(x4)2 N ML, 01(9133) .
dt | x3 24 B
x4 £ a(is) sin(z3) — A}':[L (is) sin(z3) cos(x3)(x4)? _ MltL Czs(xgj)
T
y = [1 00 0] Z 7
T4

where ; = s, 12 = §, 13 = 0, and x4 = 6. The function a(zs) is given by

alzs) = <1 - AZZL cos(x3)2> .

The linearized system was also obtained in the previous example and was shown to have
the following description

0

o 0 1 0 - 0
ml o
i o — 0 0 —«a M;,Lg 0 o + M, u
dt T3 0 0 0 1 T3 0
Ty 0 0 a% 0 Ty - L?/Ia
y = [1 0 0]z

In order to design an observer-based controller we need to compute the observer gain L
to place the eignevalues of A + LC at stable locations. Suppose we choose to place the
eigenvalues at {—4,—4,—4,—4} then by Ackermann’s formula the observer gain will be
given by

L = —at(a)o;!

— o O O

—16.0
—106.0
1743.0
5524.7
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Figure 29.3: Plot of the state variables and the observer variables of the closed-Loop linearized
system with » = 0 and the initial condition s =0, § =0, 0 = .2, 6 = 0, 21 =0, 22 =0, and
T3 = 0, T4, = 0. The solid lines represent the state variables and the dashed lines represent
the observer variables

where in the above expression we have a?(\) = (A + 4)%. The closed loop system is
simulated as shown in Figure 29.3. Note that the feedback matrix F' is the same as was
obtained in the first example in this chapter. It is clear that the estimates Z, Z2, 3 and
T4 converge to the state variables x1, x2, 3 and x4. The initial angle of the pendulum is
chosen to be .2 radians and the initial condition for the observer variables as well as the
other state variables are chosen to be zero, and .

The observer-based controller is applied to the nonlinear model and the simulation is given
in Figure 29.4.
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Exercises

Exercise 29.1 Consider the mass-spring system shown in the figure below.

_Jc_L(t) _xi(t)
a o
2 AN
k

Let 21 (t) denote the position of mass m;, x2(t) the position of mass ms, x3(t) the velocity of mass
my, x4(t) the velocity of mass ms, u(t) the applied force acting on mass mj, and w(¢) a disturbance
force acting on mass mg, k is the spring constant. There is no damping in the system.

The equations of motion are as follows:

a1(t) = x3(t)

T2(t) = w4(t)

i3(t) = —(k/m1)zi(t) + (k/m1)z2(t) + (1/ma)u(t)
24(t) = (k/m2)x1(t) — (k/m2)za(t) + (1/m2)w(t)

The output is simply the position of mass ms, so
y(t) = z2(t)
Assume the following values for the parameters:

m1:m2:1; k=1

(a) Determine the natural frequencies of the system, the zeros of the transfer function from u to y,
and the zeros of the transfer function from w to y.

(b) Design an observed-based compensator that uses a feedback control of the form u(t) = Fz(t)+r(¢),
where Z(t) is the state-estimate provided by an observer. Choose F' such that the poles of the
transfer function from r to y are all at —1. Design your observer such that the natural frequencies
governing observer error decay are all at —5.

(c) Determine the closed-loop transfer function from the disturbance w to the output y and obtain
its Bode magnitude plot. Comment on the disturbance rejection properties of your design.

(d) Plot the transient response of the two position variables and of the control when x2(0) = 1 and
all the other state variables, including the compensator state variables, are initially zero.



(e) Plot the transient response of the two position variables and of the control when the system is
initially at rest and the disturbance w(t) is a unit step at time ¢ = 0.

Exercise 29.2 Reduced Order Observer

The model-based observer that we discussed in class always has dimension equal to the dimension of
the plant. Since the output measures part of the states (or linear combinations), it seems natural that
only a subset of the states need to be estimated through the observer. This problem shows how one
can derive a reduced order observer.

Consider the following dynamic system with states x; € R", x5 € R?:

o1\ _ (A A\ (m B,
()= ) () + (82)

Yy = x2.

and

Since x5 is completely available, the reduced order observer should provide estimates only for z;, and
its dimension is equal to r, the dimension of z;. Thus

One may start with the following potential observer:

@1 = An@y + Ay + Biu+ Ly — 9)
Since § = C'# = w2 (since o is known exactly), the correction term in the above equation is equal to
zero (L(y — §) = 0). This indicates that this proceedure may not work.

Suppose instead, that we define a new variable z = x1 — Lzs, where L is an r X p matrix that we will
choose later. Then if we can derive an estimate for z, denoted by Z, we immediately have an estimate
for 1, namely, &1 = Z 4+ Lxs.

(a) Express Z in terms of z,y, and uw. Show that the state matrix (matrix multiplying z) is given by

(b) To be able to place the poles of A;; — LAy in the left half plane, the pair (A1, As1) should be
observable (i.e., a system with dynamic matrix A;; and output matrix As; should be observable).
Show that this is the case if and only if the original system is observable.

(c) Suggest an observer for z. Verify that your choice is good.

(d) Suppose a constant state feedback matrix F' has been found such that A + BF is stable. Since
not all the states are availabe, the control law can be implemented as:

U:F£:F1£1+F2x2

where F' = (F; Fy) is decomposed conformally with z; and z2. Where do the closed loop
poles lie? Justify your answer.



Exercise 29.3 (Observers and Observer-Based Compensators) The optimal control in Prob-
lem 28.3 cannot be implemented when z is not available to us. We now examine, in the context of the
(magnetic suspension) example in that problem, the design of an observer to produce an estimate Z,
and the design of an observer-based compensator that uses this estimate instead of x. Assume for this
problem that the output measurement available to the observer is the same variable y that is penalized
in the quadratic criterion. [In general, the penalized “output” in the quadratic criterion need not be
the same as the measured output used for the observer.]

(a) Design a full-order observer for the original open-loop system, to obtain an estimate &(t) of x(t),
knowing only u and y. The eigenvalues that govern error decay are both to be placed at —6.

(b) Suppose we now use the control u(t) = F*&(t)+v(t), where F* is the same as in (d), (e) of Problem
2, and v(t) is some new external control. Show that the transfer matrix of the compensator,
whose input vector is (v y)" and whose output is the scalar f = F*Z, is given by

_ ﬁ [6(s+15)  486(s+3)]

Also determine the transfer function from v to y.

(c) As an alternative to the compensator based on the full-order observer, design a reduced-order
observer — see Problem 1(c) — and place the eigenvalue that governs error decay at —6. Show
that the transfer matrix in (b) is now replaced by

and determine the transfer function from v to y.

Exercise 29.4 Motivated by what we have done with observer-based compensators designed via state-
space methods, we now look for a direct transform-domain approach. Our starting point will be a given
open-loop transfer function for the plant, p(s)/a(s), with a(s) being a polynomial of degree n that has
no factors in common with p(s). Let us look for a compensator with the structure of the one in Problem
3(b), with input vector (v y)’, output f that constitutes the feedback signal, and transfer matrix

where w(s) is a monic polynomial (i.e. the coefficient of the highest power of s equals 1) of degree n,
while ¢(s) and r(s) have degrees n — 1 or less. With this compensator, the input to the plant is given
by v = f 4+ v, where v is some new external control signal.

(a) Find an n-th order realization of the above compensator. (Hint: Use the familiar SISO observer
canonical form, modified for 2 inputs.) (You will not need to use this realization for any of the
remaining parts of this problem — the intent of this part is just to convince you that an n-th
order realization of the compensator exists.)



(b) Show that the transfer function from v to y is

_ p(s)w(s)
9(s) = [w(s) + q(s)]a(s) + r(s)p(s)

and argue that the characteristic polynomial of the system must be
[w(s) + q(s)]a(s) + r(s)p(s)

It turns out that, since a(s) and p(s) are coprime, we can choose [w(s) + ¢(s)] and r(s) to
make the characteristic polynomial equal to any monic polynomial of degree 2n. The following
strategy for picking this polynomial mimics what is done in the design of an observer-based
compensator using state-space methods: pick w(s) to have roots at desirable locations in the
left-half-plane (these will correspond to observer error decay modes); then pick ¢(s) and r(s) so
that the characteristic polynomial above equals a(s)w(s), where a(s) is a polynomial of degree
n that also has roots at desirable positions in the left-half- plane. With these choices, we see
that

9(s) = [p(s)w(s)]/[als)w(s)] = p(s)/als)

This compensator has thus shifted the poles of the closed-loop system from the roots of a(s) to
those of a(s), and the roots of w(s) correspond to hidden modes.

(c) Design a compensator via the above route for a plant of transfer function 1/(s? — 9), to obtain an
overall transfer function of 1/(s + 3)? , with two hidden modes at —6. Compare with the result
in Problem 3(b).

(d) The above development corresponds to designing a compensator based on a full-order observer.
A compensator based on a reduced-order observer — see Problem 1(c) — is easily obtained as
well, by simply making w(s) a monic polynomial of degree n — 1 rather than n and making any
other changes that follow from this. After noting what the requisite changes would be, design a
compensator for a plant of transfer function 1/(s?> —9), to obtain an overall transfer function of
1/(s+3)? , with one hidden mode at —6. Compare with the result in Problem 3(c).

Exercise 29.5 Consider a plant described by the transfer function matrix

(a) Design a model-based (i.e. observer-based) controller such that the closed loop system has all
eigenvalues at s = —1.

(b) Suppose that Py (s) is perturbed to 2££. For the controller you designed, give the range of e for

which the system remains stable. Discuss your answer.



Exercise 29.6 Assume we are given the controllable and observable system &(¢) = Ax(t) + Bu(t),
2(t) = Cx(t), with transfer matrix P(s). The available measurement is y(t) = z(t) + d(t), where d(¢)
is a disturbance signal. An observer for the system comprises a duplicate of the plant model, driven
by the same input u(t), but also by a correction term e(t) = y(t) — CZ(t) acting through an observer
gain L, which is chosen to obtain stable error dynamics.

For an observer-based stabilizing compensator, suppose we pick u(t) = F#(t) +r(t) +v(t), where
Z(t) is the estimate produced by an observer, F' is the gain we would have used to stabilize the system
under perfect state feedback, r(t) is some external input, and v(t) is the output of a stable finite
dimensional LTI system whose input is e(t) and whose (proper, rational) transfer function matrix is
Q(s). (The case of Q(s) = 0 constitutes the “core” observer-based stabilizing compensator that we
have discussed in detail in class.) A block diagram for the resulting system is given below.

(a) Show that this system is stable for any stable finite-dimensional system . [Hint: The transfer
function from v to e is equal to zero regardless of what r and d are!]

(b) Obtain a state-space description of the overall system, and show that its eigenvalues are the union
of the eigenvalues of A + BF, the eigenvalues of A + LC, and the poles of Q(s).)

(c) What is the transfer function matrix K (s) of the overall feedback compensator connecting y to
u? Express it in the form K(s) = [W(s) — Q(s)M(s)] *[J(s) — Q(s)N(s)], where the matrices
W, M, J, N are also stable, proper rationals.

It turns out that, as we let Q(s) vary over all proper, stable, rational matrices, the matrix K (s)
ranges precisely over the set of proper rational transfer matrices of feedback compensators that stabilize
the closed-loop system. This is therefore referred to as the “Q-parametrization” of stabilizing feedback
compensators.
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Chapter 30

Minimality and Stability of
Interconnected Systems

30.1 Introduction: Relating I/O and State-Space Properties

We have already seen in Chapter 25 that a minimal realization of a transfer matrix H(s) is uniquely
defined by H(s), up to a similarity transformation. We therefore expect properties of a minimal
realization to be tightly associated with properties of the transfer matrix. This expectation is reflected
in some of the results described in Chapter 27.

Specifically, we claimed in Chapter 27 that the poles of H(s) are precisely given — in both location
and multiplicity — by the eigenvalues and associated Jordan structure of the matrix A in a minimal
realization (A4, B,C, D) of H(s) = C(sI — A)"!B + D; this structure is in turn equivalent to the zero
structure of the matrix (sI — A), although we did not draw attention to this fact in Chapter 27. The
general proof of the preceding result is beyond the scope of the tools that we have available, but it is
not hard to prove in the special case of an H(s) that is amenable to the Gilbert realization procedure of
Chapter 25, as we show below. Before turning to this demonstration, we note the following important
implication of the result:

e For a minimal system, BIBO stability is equivalent to asymptotic stability; the state-space model
is asymptotically stable if and only if H(s) has no unstable (i.e. right half plane) poles.

For the Gilbert realization to work, each entry of H(s) is required to have poles of multiplicity
1 only. For such an H(s), using the notation of Chapter 25 and the definitions of poles and their
multiplicities from Chapter 27, it is quite straightforward to argue that H(s) has r; poles located at
pi, each of multiplicity 1. The A matrix of the corresponding Gilbert realization that we constructed
(and hence the A matrix of any other minimal realization of this transfer function) evidently has r;
Jordan blocks of size 1 associated with the eigenvalue at p;. Also, the matrix (sI — A) for the Gilbert
realization evidently has r; zeros of multiplicity 1 at p;.

Similarly, as noted in Chapter 27, the zeros of H (s) are given — in both location and multiplicity
— by the generalized eigenvalues and associated “Jordan-Kronecker” structure of the matrix pair (£, .A)
associated with the system matrix s€ — A of a minimal realization of H (s), or equivalently by the zero



structure of the system matrix. We shall not attempt to prove anything on zeros beyond what has
already been shown in Chapter 27.

30.2 Loss of Minimality in Interconnections

In this section we shall examine the conditions under which minimality is lost when minimal subsystems
are interconnected in various configurations, such as the series connection in Fig. 30.1 below. The
standard convention in interpreting such figures, where the individual subsystem blocks are labeled
with their transfer functions, is to assume that each subsystem block contains a minimal realization,
i.e. a reachable and observable realization, of the indicated transfer function. This is a reasonable
convention, since the transfer function is inadequate to describe any unreachable and/or unobservable
parts of the system; if such parts existed and were important to the problem, they would have to be
described in some appropriate way.

We will denote the minimal realization of H;(s) by (A;, B;,Ci, D;), and denote its associated
input, state and output vectors by wu;, x;,y; respectively. When it simplifies some of the algebra, we
shall feel free to assume that D; = 0, as the presence of a direct feedthrough from input to output
adds no essential difficulty and introduces no significant features in the problems that we consider,
but often makes the algebra cumbersome. Note that our assumption of minimality on the subsystems
ensures that the eigenvalues of A; are precisely the poles of H;(s), both in location and in multiplicity.

Series Connection

Consider subsystems with transfer matrices H;(s) and H(s) connected in series (or “cascaded”) as
shown in Fig. 30.1. The transfer function of the cascaded system is evidently H(s) = Ha(s)H;(s) (the

Y1 = U2 Y2

I
<

—  Hi(s)

HQ(S)

Figure 30.1: Two subsystems in series.

factors must be written in that order unless the subsystems are SISO!). The natural state vector for
the cascaded system comprises x; and 2, and the corresponding state-space description of the cascade
is easily seen to be given (when D; = 0) by the matrices

_ Al 0 _ Bl _ —
A_<3201 A2>,B_<O>,C_(O Cy),D=0. (30.1)

The structure of A shows that its eigenvalues, which are the natural frequencies of the cascade, are
the eigenvalues of A; and As taken together, i.e. the natural frequencies of the individual subsystems
taken together.

The question of interest to us now is whether the cascaded system is minimal, i.e., is (4, B,C) a
minimal realization of H(s)? It should be clear at this point that the cascade is minimal if and only
if the number of poles of H(s) is the sum of the number of poles in H;(s) and Hy(s) (multiplicities



included). Otherwise the number of poles in H(s) — and hence the number of state variables in a
minimal realization of H(s) — ends up being less than the number of state variables (and modes) in
the cascaded system, signaling a loss of reachability and/or observability.

In the case of SISO subsystems, this condition for minimality can evidently be restated as re-
quiring that no pole of H;(s), respectively Ha(s), be canceled by a zero of Ha(s), respectively Hj (s).
Furthermore, it is a straightforward exercise (which we leave you to carry out, using the controller or
observer canonical forms for the subsystem realizations, the state-space description in (30.1) for the
cascade, and the modal tests for reachability and observability) to show very explicitly that

e the cascade is unreachable if and only if a pole of Ha(s) is canceled by a zero of Hi(s);
e the cascade is unobservable if and only if a pole of H;(s) is canceled by a zero of Hs(s).

(The demonstration of these results is worth working out in detail, and will make clear why we invested
time in discussing canonical forms and modal tests.) These conditions make intuitive sense, in that
the first kind of cancellation blocks access of the input to a system mode that is generated in the
second subsystem, and the second kind of cancellation blocks access to the output for a system mode
generated in the first subsystem.

Essentially the same interpretations in terms of pole-zero cancellations hold in the MIMO case,
subject to certain rank conditions on the matrices. We shall content ourselves with demonstrating how
the loss of observability is related to a pole of Hi(s) being cancelled by a zero of Hy(s). For this, note
from the modal test and the structure of the model in (30.1) that observability of the cascade is lost
iff, for some A,

A — Ay 0
—ByC; A — Ay (”1> =0, <”1> £ 0, (30.2)
V2 V2
0 Cs

Now we must have v, # 0, otherwise (30.2) shows (by the modal test) that the assumed observability
of the second subsystem is contradicted. Hence v; is an eigenvector of the first subsystem. Also
Cyv1 # 0, otherwise (again by the modal test!) the observability of the first subsystem is contradicted.
Now rewriting the bottom two rows of (30.2), we get

/\[—AQ —BQ U2 _
( o )(Cm ) _ (30.3)

Thus the cascade is unobservable iff (30.3) holds for some eigenvalue and eigenvector pair (A, v;) of
the first subsystem. From Chapter 27 we know that this equation is equivalent, in the case where
Hs(s) has full column rank, to the second subsystem having a transmission zero at A, with input zero
direction Cyv; and state zero direction va(# 0). [If Ha(s) does not have full column rank, then the
loss of observability may be due to a mode of the first subsystem “hiding” in the nullspace of Hs(s),
rather than due to its being blocked by a transmission zero. Some exploration with diagonal H; (s)
and H(s) will show you what sorts of things can happen.]

Parallel Connection

A parallel connection of two subsystems is shown in Fig. 30.2. The transfer function of this system is
H(s) = Hi(s) + Hz(s). The natural state vector for the parallel system again comprises z; and x5, and
the corresponding state-space description of the combination is easily seen to be given by the matrices

A 0 B
A:(Ol A2),B:(B;)7C:(Cl 02)7D:D1+D2. (304)
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Figure 30.2: Two subsystems in parallel.

The structure of A shows that its eigenvalues, which are the natural frequencies of the parallel sys-
tem, are the eigenvalues of A; and As taken together, i.e. the natural frequencies of the individual
subsystems taken together (just as in the case of cascaded subsystems).

It is easy in this case to state and prove the precise conditions under which reachability or
observability is lost. We treat the case of observability below, and leave you to provide the dual
statement and proof for reachability.

e Claim: The parallel combination loses observability if and only if:

(i) Ay and A, have a common eigenvalue, and

(ii) some choice of associated right eigenvectors v; and v, satisfies Cjv; +Covy = 0 (this second
condition is always satisfied in the single-output case if the first condition is satisfied).

Proof: By the modal test, the parallel system is unobservable iff there is an eigenvector

v
=)

associated with some eigenvalue A of A (so Av = Av, v # 0) such that Cv = Cyv; + Cyve = 0.
If both v; # 0 and vy # 0, then we can conclude that A is an eigenvalue of both A; and A,
and the claim would be proved. To show v; # 0, note that vy = 0 would imply Csve = 0
which, together with the fact that Asvs = Avy, would contradict the assumed observability of
the second subsystem. Similarly, we must have vs # 0.

In the single-output case, the fact that the quantities Cyv; # 0 and Caovs # 0 are scalars means
that we can always scale the eigenvectors so as to obtain Cyjv; + Cove = 0. Hence all that
is needed to induce unobservability in the single-output case is for the subsystems to have a
common eigenvalue.

Feedback Connection

A feedback connection of two systems is shown in Fig. 30.3 We leave you to show that this feedback
configuration is reachable from w if and only if the cascade configuration in Fig. 30.1 is reachable.
(Hint: Feeding back the output of the cascade configuration does not affect whether it is reachable
or not.) Similarly, argue that the feedback configuration in Fig. 30.3 is observable if and only if the
cascade configuration in Fig 30.4 is observable.
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Figure 30.3: Two subsystems in a feedback configuration.

Y2 = Uy Y1

I
<

—  Hs(s)

Hl(S)

Figure 30.4: A cascade configuration whose observability properties are equivalent to those of
the feedback system in Fig. 20.3.

A state-space description of the feedback configuration (with D; = 0) is easily seen to be given

. A1 BiCy ([ B .
A_<B201 Az),3_<0)7c_(o ) . (30.5)

The eigenvalues of A are not evident by inspection, unlike in the case of the cascade and parallel
connections, because feedback can shift eigenvalues from their open-loop locations. The characteristic
polynomial of A, namely a(s) = det(sI — A), whose roots are the natural frequencies of the system, is
easily shown (using various identities from Homework 1) to be

by

a(s) = ai(s)as(s) det (1 - Hl(s)Hz(s)) . (30.6)

If there is a pole-zero cancellation between Hi(s) and Ha(s), then this pole is unaffected by the
feedback, and remains a natural frequency of the closed-loop system.

30.3 Stability of Interconnected Systems

The composite state-space description of an interconnected system is obtained by combining state-
space realizations of the individual subsystems, using as state variables the union of the subsystem
state variables. If a subsystem is specified by its transfer function, then we are obliged to use a
minimal realization of this transfer function in constructing the composite description. Examples of
such composite descriptions have already been seen in (30.1), (30.4) and (30.5). The interconnected



system is said to be well-posed precisely when its composite state-space description can be obtained
(see Chapter 17).

Once a state-space description (A, B, C, D) of the interconnected system has been obtained, it is
in principle straightforward to determine its natural frequencies and assess its asymptotic stability by
examining the eigenvalues of A. However, if each subsystem has been specified via its transfer function,
one might well ask if there is a way to determine the natural frequencies and evaluate stability using
transfer function computations alone, without bothering to construct minimal realizations of each
subsystem in order to obtain a composite realization of the interconnection.

A first thought might be to look at the poles of the transfer function between some input and
output in the interconnected system. However, we know (and have again confirmed in the preceding
section) that the poles of the transfer function between some input u and some output y will fail to
show all the natural frequencies of the system if (and only if) some mode of the system is unreach-
able and/or unobservable with that input/output pair. Furthermore, the method we prescribe for
determining natural frequencies through transfer function computations alone should be able to find
natural frequencies even when no external inputs and outputs have been designated, because natural
frequencies are well defined even when the system has no inputs or outputs.

In view of the above problem with “hidden” modes, a second thought might be to not limit
ourselves to prespecified inputs and outputs of the interconnection. Instead, we could evaluate the
transfer functions from input signals added in at all subsystem entries, to output signals taken at all
subsystem outputs. This turns out to be the right idea, and we develop it in detail for the case of two
subsystems interconnected in feedback.

Suppose we are given the feedback configuration in Fig. 30.5, and are asked to determine its
natural frequencies. The first step is to add in inputs at each subsystem, as in Fig. 30.6.

3} U1
Hi(s)

H2 (S)
Y2 U2

Figure 30.5: A feedback interconnection, with no prespecified external inputs or outputs.

Then examine the (four) transfer functions from vy and ve to y; and ys, or equivalently the
transfer matrix oH (s) that relates
() e ()
V3 Y2

(in Chapter 17, H(s) = T (Hy, H3)(s)). Instead of looking at the response at y; and y2, we could
alternatively compute the response at u; and wus, or at w; and y;, or at us and y;, because the
response at y; and y» can be determined from these other responses, knowing v; and v». The choice
is determined by convenience.

Letting (A;, B;, C;) denote minimal realizations of H;(s) as before (and assuming for simplicity
that the direct feedthrough term D; is zero), we now have the following theorem, which provides the
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Figure 30.6: The same feedback interconnection, but with inputs added in at each subsystem.

basis for what we were seeking, namely a transfer function based approach to determining the natural
frequencies of the interconnection.

Theorem 30.1 The composite state-space description
_ A B1Cy (B 0 _(Ci 0
A= ( B,C, A, , By = 0 B, ) Cy = 0 Oy (30.7)
for the system in Fig. 30.6 is a minimal realization of the transfer function H(s) from the external

subsystem inputs vy and vy to the subsystem outputs y, and yo, so its natural frequencies, i.e. the
eigenvalues of A, are precisely the poles of H(s).

Proof. By inspection, a minimal (or equivalently, reachable and observable) realization of

H(s) = < Hlo(s) HQO(S) ) ,

which is the transfer matrix from uy, us to y1, yo, is given by

(40 (B 0 [ C 0
Ad‘(o A2>’Bd_<0 B2>’Cd_<0 02>'

Now output feedback around this realization will not destroy its reachability or observability, so

0 I

Ad+Bd< I 0

) Ci, By, Cq (30.8)

is a minimal realization of the system obtained by implementing the output feedback specified by the
feedback gain matrix
0 I
(70)

It is easy to check that the resulting system is precisely the one in Fig. 30.6, and the realization in
(30.8) is precisely the composite description in (30.7), since

0 I _ A BiCy _
Ad+Bd<I o)cd_ <3201 A, )‘A'



Now, for a minimal realization, the poles of the transfer function are equal to the natural frequencies
of the system, so the poles of H(s) are precisely the eigenvalues of A.

Note that this same A matrix is obtained in the composite state-space descriptions of the systems in
Fig. 30.3, Fig. 30.5 and Fig. 30.6, because these systems only differ in their specifications of inputs
and outputs. For all these systems, we can determine the natural frequencies by determining the poles
of Hi(s), and we can assess the asymptotic stability of these systems (i.e. the asymptotic stability of
their composite realizations) by checking that the poles of H(s) are all in the left half plane, i.e. by
checking BIBO stability from vy, v2 to y1,y2. (We leave you to construct examples that show the need
to check all four of the transfer function entries in H(s), because a natural frequency can hide from
any three of them — the fourth one is needed to flush such a natural frequency out.)

The same argument we used for the special feedback configuration above actually works for any
well-posed interconnected system. We leave you to fashion a proof. Also, it should go without saying
that everything we have done here in continuous-time holds for discrete-time systems too. You may
find it profitable to revisit some of the examples of Chapter 17 with the new perspectives gained from
this chapter.

1. Assume we have the configuration in Figure 17.4, with P = :_1 and K = —Sil. The transfer
function relating r to y is
I YA -
1-PK  s+1 s+1
_ s—1 s+1
N s+1 s+2
_os—1
542
Since the only pole of this transfer function is at s = —2, the input/output relation between r
and y is stable. However, consider the transfer function from d to u, which is
K 1 ( 1 )
—— = —
1—-PK s—1\1+ 7
_ s+1
(s =1)(s+2)

This transfer function is unstable, which implies that the closed-loop system is externally un-
stable.

2. We leave you to show that the interconnected system in Figure 17.4 is externally stable if and
only if the matrix
(I-PK)™'P (I-PK)™"

(I-KP)™' —(I-PK)'K (30.9)

has all its poles in the open left half plane.





