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Preface

For many problems of the design, implementation, and operation of automatic con-
trol systems, relatively precise mathematical models for the static and dynamic be-
havior of processes are required. This holds also generally in the areas of natural
sciences, especially physics, chemistry, and biology, and also in the areas of medical
engineering and economics. The basic static and dynamic behavior can be obtained
by theoretical or physical modeling, if the underlying physical laws (first principles)
are known in analytical form. If, however, these laws are not known or are only par-
tially known, or if significant parameters are not known precisely enough, one has
to perform an experimental modeling, which is called process or system identifica-
tion. Then, measured signals are used and process or system models are determined
within selected classes of mathematical models.

The scientific field of system identification was systematically developed since
about 1960 especially in the areas of control and communication engineering. It is
based on the methods of system theory, signal theory, control theory, and statistical
estimation theory and was influenced by modern measurement techniques, digital
computations and the need for precise signal processing, control, and automation
functions. The development of identification methods can be followed in wide spread
articles and books. However, a significant influence had the IFAC-symposia on sys-
tem identification, which were since 1967 organized every three years around the
world, in 2009 a 15" time in Saint-Malo.

The book is intended to give an introduction to system identification in an easy
to understand, transparent, and coherent way. Of special interest is an application-
oriented approach, which helps the user to solve experimental modeling problems. It
is based on earlier books in German, published in 1971, 1974, 1991 and 1992, and
on courses taught over many years. It includes own research results within the last
30 years and publications of many other research groups.

The book is divided into eight parts. After an introductory chapter and a chapter
on basic mathematical models of linear dynamic systems and stochastic signals, part
I treats identification methods with non-parametric models and continuous time sig-
nals. The classical methods of determining frequency responses with non-periodic
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and periodic test signals serve to understand some basics of identification and lay
ground for other identifications methods.

Part I is devoted to the determination of impulse responses with auto- and cross-
correlation functions, both in continuous and discrete time. These correlation meth-
ods can also be seen as basic identification methods for measurements with stochas-
tic disturbances. They will later appear as elements of other estimation methods and
allow directly the design of binary test signals.

The identification of parametric models in discrete time like difference equations
in Part III is based mainly on least squares parameter estimation. These estimation
methods are first introduced for static processes, also known as regression analysis,
and then expanded to dynamic processes. Both, non-recursive and recursive param-
eter estimation methods are derived and various modifications are described, like
methods of extended least squares, total least squares, and instrumental variables.
The Bayes and maximum likelihood methods yield a deeper theoretical background,
also with regard to performance bounds. Special chapters treat the parameter estima-
tion of time-variant processes and under closed-loop conditions.

Part IV now looks at parameter estimation methods for continuous-time models.
First parameter estimation is extended to measured frequency responses. Then, the
parameter estimation for differential equations and subspace methods operating with
state variable filters are considered.

The identification of multi-variable systems (MIMO) is the focus of Part V. First
basic structures of linear transfer functions and state space models are considered.
This is followed by correlation and parameter estimation methods, including the
design of special uncorrelated test signals for the simultaneous excitation of sev-
eral inputs. However, sometimes it is easier to identify single-input multiple outputs
(SIMO) processes sequentially.

Of considerable importance for many complex processes is the identification of
non-linear systems, treated in Part V1. Special model structures, like Volterra series,
Hammerstein- and Wiener-models allow applying parameter estimation methods di-
rectly. Then, iterative optimization methods are treated, taking into account multi-
dimensional, non-linear problems. Powerful methods were developed based on non-
linear net models with parametric models like neural networks and their derivations
and look-up tables (maps) as non-parametric representations. Also, extended Kalman
filters can be used.

Some miscellaneous issues, which are common to several identification methods,
are summarized in Part VII, as e.g. numerical aspects, practical aspects of parameter
estimation and a comparison of different parameter estimation methods.

Part VIII then shows the application of several treated identification methods fo
real processes like electrical and hydraulic actuators, machine tools and robots, heat
exchangers, internal combustion engines and the drive dynamic behavior of automo-
biles.

The Appendix as Part IX then presents some mathematical aspects and a de-
scription of the three mass oscillator process, which is used as a practical example
throughout the book. Measured data to be used for applications by the reader can be
downloaded from the Springer web page in the Internet.
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The wide topics of dynamic system identification are based on the research per-
formed by many experts. Because some early contributions lay the ground for many
other developments we would just like to mention a few authors from early semi-
nal contributions. The determination of characteristic parameters of step responses
was published by V. Strejc (1959). First publications on frequency response measure-
ment with orthogonal correlation go back to Schaefer and Feissel (1955) and Balchen
(1962). The field of correlation methods and ways to design pseudo-random-binary
signals was essentially brought forward by e.g. Chow, Davies (1964), Schweitzer
(1966), Briggs (1967), Godfrey (1970) and Davies (1970). The theory and appli-
cation of parameter estimation for dynamic processes was around 1960 until about
1974 essentially promoted by works of J. Durbin, R.C.K. Lee, V. Strejc, P. Eykhoff,
K.J. Astrém, V. Peterka, H. Akaike, P. Young, D.W. Clarke, R.K. Mehra, J.M.
Mendel, G. Goodwin, L. Ljung, and T. S6derstrom.

This was followed by many other contributions to the field which are cited in the
respective chapters, see also Table 1.3 for an overview over the literature in the field
of identification.

The authors are also indebted to many contributions for developing and applying
identifications methods from researchers at our own group since 1973 until now, like
M. Ayoubi, W. Bamberger, U. Baur, P. Blessing, H. Hensel, R. Kofahl, H. Kurz,
K.H. Lachmann, O. Nelles, K.H. Peter, R. Schumann, S. Toepfer, M. Vogt, and R.
Zimmerschied. Many other developments with regard to special dynamic processes
are referenced in the chapters on applications.

The book is dedicated as an introduction to system identification for undergrad-
uate and graduate students of electrical and electronic engineering, mechanical and
chemical engineering and computer science. It is also oriented towards practicing
engineers in research and development, design and production. Preconditions are ba-
sic undergraduate courses of system theory, automatic control, mechanical and/or
electrical engineering. Problems at the end of each chapter allow to deepen the un-
derstanding of the presented contents.

Finally we would like to thank Springer-Verlag for the very good cooperation.

Darmstadt, Rolf Isermann
June 2010 Marco Miinchhof
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Introduction

The temporal behavior of systems, such as e.g. technical systems from the areas of
electrical engineering, mechanical engineering, and process engineering, as well as
non-technical systems from areas as diverse as biology, medicine, chemistry, physics,
economics, to name a few, can uniformly be described by mathematical models. This
is covered by systems theory. However, the application of systems theory requires
that the mathematical models for the static and dynamic behavior of the systems
and their elements are known. The process of setting up a suitable model is called
modeling. As is shown in the following section, two general approaches to model-
ing exist, namely theoretical and experimental modeling, both of which have their
distinct advantages and disadvantages.

1.1 Theoretical and Experimental Modeling

A system is understood as a confined arrangement of mutually affected entities, see
e.g. DIN 66201. In the following, these entities are processes. A process is defined
as the conversion and/or the transport of material, energy, and/or information. Here,
one typically differentiates between individual (sub-)processes and the entire pro-
cess. Individual processes, i.e. (sub-)processes, can be the generation of mechanical
energy from electric energy, the metal-cutting machining of workpieces, heat trans-
fer through a wall, or a chemical reaction. Together with other sub-processes, the
entire process is formed. Such aggregate processes can be an electrical generator, a
machine tool, a heat exchanger, or a chemical reactor. If such a process is understood
as an entity (as mentioned above), then multiple processes form a system such as e.g.
a power plant, a factory, a heating system, or a plastic material production plant. The
behavior of a system is hence defined by the behavior of its processes.

The derivation of mathematical system and process models and the representa-
tion of their temporal behavior based on measured signals is termed system analysis
respectively process analysis. Accordingly, one can speak of system identification
or process identification when applying the experimental system or process analy-
sis techniques described in this book. If the system is excited by a stochastic signal,

R. Isermann, M. Miinchhof, Identification of Dynamic Systems,
DOI 10.1007/978-3-540-78879-9 1, © Springer-Verlag Berlin Heidelberg 2011
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Fig. 1.1. Basic procedure for system analysis

one also has to analyze the signal itself. Thus the topic of signal analysis will also
be treated. The title Identification of Dynamic Systems or simply Identification shall
thus embrace all areas of identification as listed above.

For the derivation of mathematical models of dynamic systems, one typically dis-
criminates between theoretical and experimental modeling. In the following, the ba-
sic approach of the two different ways of modeling shall be described shortly. Here,
one has to distinguish lumped parameter systems and distributed parameter systems.
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The states of distributed parameter systems depend on both the time and the location
and thus their behavior has to be described by partial differential equations (PDE's).
Lumped parameter systems are easier to examine since one can treat all storages and
states as being concentrated in single points and not spatially distributed. In this case,
one will obtain ordinary differential equations (ODEs).

For the theoretical analysis, also termed theoretical modeling, the model is ob-
tained by applying methods from calculus to equations as e.g. derived from physics.
One typically has to apply simplifying assumptions concerning the system and/or
process, as only this will make the mathematical treatment feasible in most cases. In
general, the following types of equations are combined to build the model, see also
Fig. 1.1 (Isermann, 2005):

1. Balance equations: Balance of mass, energy, momentum. For distributed param-
eter systems, one typically considers infinitesimally small elements, for lumped
parameter systems, a larger (confined) element is considered

2. Physical or chemical equations of state: These are the so-called constitutive
equations and describe reversible events, such as e.g. inductance or the second
Newtonian postulate

3. Phenomenological equations: Describing irreversible events, such as friction and
heat transfer. An entropy balance can be set up if multiple irreversible processes
are present

4. Interconnection equations according to e.g. Kirchhoff’s node and mesh equa-
tions, torque balance, etc.

By applying these equations, one obtains a set of ordinary or partial differential
equations, which finally leads to a theoretical model with a certain structure and de-
fined parameters if all equations can be solved explicitly. In many cases, the model
is too complex or too complicated, so that it needs to be simplified to be suitable
for subsequent application. Figure 1.2 shows the order of the execution of individ-
ual simplifying actions. The first steps of this simplification procedure can already
be carried out as the fundamental equations are set up by making appropriate sim-
plifying assumptions. It is very tempting to include as many physical effects into
the model as possible, especially nowadays, where simulation programs offer a wide
variety of pre-build libraries of arbitrary degrees of complexity. However, this often
occludes the predominant physical effects and makes both the understanding and the
work with such a model a very tiresome, if not infeasible, endeavor.

But even if the resulting set of equations cannot be solved explicitly, still the
individual equations give important hints concerning the model structure. Balance
equations are always linear, some phenomenological equations are linear in a wide
range. The physical and chemical equations of state often introduce non-linearities
into the system model.

In case of an experimental analysis, which is also termed identification, a mathe-
matical model is derived from measurements. Here, one typically has to rely on cer-
tain a priori assumptions, which can either stem from theoretical analysis or from
previous (initial) experiments, see Fig. 1.1. Measurements are carried out and the in-
put as well as the output signals are subjected to some identification method in order
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Fig. 1.2. Basic approach for theoretical modeling

to find a mathematical model that describes the relation between the input and the
output. The input signals can either be a section of the the natural signals that act
on the process during normal operation or can be an artificially introduced test sig-
nal with certain prespecified properties. Depending on the application, one can use
parametric or non-parametric models, see Sect. 1.2. The resulting model is termed
experimental model.

The theoretically and the experimentally derived models can be compared if both
approaches can be applied and have been pursued. If the two models do not match,
then one can get hints from the character and the size of the deviation, which steps
of the theoretical or the experimental modeling have to be corrected, see Fig. 1.1.

Theoretical and experimental models thus complement one another. The analysis
of the two models introduces a first feedback loop into the course of action for system
analysis. Therefore, system analysis is typically an iterative procedure. If one is not
interested in obtaining both models simultaneously, one has the choice between the
experimental model (case A in Fig. 1.1) and the theoretical model (case B in Fig. 1.1).
The choice mainly depends on the purpose of the derived model:

The theoretical model contains the functional dependencies between the physical
properties of a system and its parameters. Thus, this model will typically be preferred
if the system shall already be optimized in its static and dynamic behavior during the
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design phase or if its temporal behavior shall be simulated prior to the construction,
respectively completion of the system.

On the contrary, the experimental model does only contain numbers as para-
meters, whose functional relations to the process properties remain unknown. How-
ever, this model can describe the actual dynamics of the system better and can be
derived with less effort. One favors these experimental models for the adaptation of
controllers (Isermann, 1991; Isermann et al, 1992; Astrom et al, 1995; Astrom and
Wittenmark, 1997) and for the forecast of the respective signals or fault detection (Is-
ermann, 2006).

In case B (Fig. 1.1), the main focus is on the theoretical analysis. In this set-
ting, one employs the experimental modeling only once to validate the fidelity of
the theoretical model or to determine process parameters, which can otherwise not
be determined with the required accuracy. This is noted with the sequence B/1 in
Fig. 1.1.

In contrast to case B, the emphasis is on the experimental analysis in case A.
Here, one tries to apply as much a priori knowledge as possible from the theoretical
analysis, as the model fidelity of the experimental model normally increases with
the amount of a priori knowledge exploited. In the ideal case, the model structure is
already known from the theoretical analysis (path A/2 in Fig. 1.1). If the fundamental
equations of the model cannot be solved explicitly, if they are too complicated, or if
they are not even completely known, one can still try to obtain information about the
model structure from this incomplete knowledge about the process (sequence A/1 in
Fig. 1.1).

The preceding paragraphs already pointed out that the system analysis can typi-
cally neither be completely theoretical nor completely experimental. To benefit from
the advantages of both approaches, one does rarely use only theoretical modeling
(leading to so-called white-box models) or only experimental modeling (leading to
so-called black-box models), but rather a mixture of both leading to what is called
gray-box models, see Fig. 1.3. This is a rather suitable combination of the two ap-
proaches, which is determined by the scope of application of the model and the sys-
tem itself. The scope of application defines the required model accuracy and hence
the effort that has to be put into the analysis. This introduces a second feedback loop
into the schematic diagram presented in Fig. 1.1, which starts at the resulting models
(either theoretical or experimental) and goes back to the individual modeling steps,
hence one is confronted with a second iteration loop.

Despite the fact that the theoretical analysis can in principle deliver more infor-
mation about the system, provided that the internal behavior is known and can be
described mathematically, experimental analysis has found ever increasing attention
over the past 50 years. The main reasons are the following:

Theoretical analysis can become quite complex even for simple systems
Mostly, model coefficients derived from the theoretical considerations are not
precise enough

e Not all actions taking place inside the system are known
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Fig. 1.3. Different kinds of mathematical models ranging from white box models to black box
models

e The actions taking place cannot be described mathematically with the required
accuracy

e Some systems are very complex, making the theoretical analysis too time-
consuming

o Identified models can be obtained in shorter time with less effort compared to
theoretical modeling

The experimental analysis allows the development of mathematical models by
measurement of the input and output of systems of arbitrary composition. One major
advantage is the fact that the same experimental analysis methods can be applied to
diverse and arbitrarily complex systems. By measuring the input and output only,
one does however only obtain models governing the input-output behavior of the
system, i.e. the models will in general not describe the precise internal structure of
the system. These input-output models are approximations and are still sufficient for
many areas of application. If the system also allows the measurement of internal
states, one can obviously also gather information about the internal structure of the
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Table 1.1. Properties of theoretical modeling and identification

Theoretical Modeling

Identification

Model structure follows from laws of
nature

Modeling of the input/output behavior
as well as the internal behavior

Model parameters are given as function
of system properties

Model is valid for the entire class of
processes of a certain type and for dif-
ferent operating conditions

Model coefficients are not known ex-
actly

Models can be build for non-existing
systems

The internal behavior of the system
must be known and must be describable
mathematically

Typically lengthy process which takes
up much time

Models may be rather complex and de-
tailed

Model structure must be assumed

Only the input/output behavior is iden-
tified

Model parameters are “numbers” only,
in general no functional dependency to
system properties known

Model is only valid for investigated sys-
tem and within operating limits

Model coefficients are more precise for
the given system within operating limits
Model can only be identified for an ex-
isting system

Identification methods are independent
of the investigated system and can thus
be applied to many different systems

Fast process if identification methods
exist already

Model size can be adjusted according to
the area of application of the model

system. With the advent of digital computers starting in the 1960s, the development
of capable identification methods has started. The different properties of theoretical
modeling and identification have been summarized and set in contrast in Table 1.1.

1.2 Tasks and Problems for the Identification of Dynamic Systems

A process with a single input and a single output (SISO) is considered in the follow-
ing. The process shall be stable to ensure a unique relation between input and output.
Both the input and the output shall be measured without error. The task of identifying
the process P is to find a mathematical model for the temporal behavior of the pro-
cess from the measured input u(t) = up(¢), the measured output y(¢) = ym(¢) and
optionally additional measured signals, see Fig. 1.4. This task is made more com-
plicated, if disturbances 7, ... z; are acting on the process and are influencing the
output signal. These disturbances can have various causes. The disturbances seen in
the measured signals often stem from noise and hence will also be included in the
term noise in the remainder of this book. The output is thus corrupted by a noise
n(t). In this case, one has to apply suitable techniques to separate the wanted signal
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Fig. 1.4. Dynamic process with input u, Fig. 1.5. Disturbed dynamic process with
output y and disturbances z; input u, output y, and noise n

yu(t), i.e. the response of the system due to the input u(z), from the disturbances
n(t).

The term identification and the required subsequent tasks can thus be defined as
follows:

Identification is the experimental determination of the temporal behavior of a
process or system. One uses measured signals and determines the temporal behavior
within a class of mathematical models. The error (respectively deviation) between
the real process or system and its mathematical model shall be as small as possible.

This definition stems from Zadeh (1962), see also (Eykhoff, 1994). The measured
signals are typically only the input to the system and the output from the system.
However, if it is also possible to measure states of the process, then one can also
gather information about the internal structure of the process.

In the following, a linear process is considered. In this case, the individual distur-
bance components z1,...,Zz; can be combined into one representative disturbance
n(t), which is added to the wanted signal y,(¢), see Fig. 1.5. If this disturbance n(t)
is not negligibly small, then its counterfeiting influence must be eliminated by the
identification method as much as possible. For decreasing signal-to-noise ratios, the
measurement time 7y must typically be increased.

For the identification itself, the following limitations have to be taken into con-
sideration:

1. The available measurement time Ty is always limited, either due to technical
reasons, due to time variance of the process parameters or due to economical
reasons (i.e. budget), thus

TM =< TM,max (121)

2. The maximum allowable change of the input signal, i.e. the test signal height
up is always limited, either due to technical reasons or due to the assumption of
linear process behavior which is only valid within a certain operating regime

Umin = u(t) =< Umax (122)

3. The maximum allowable change of the output signal, yy, may also be limited
due to technical reasons or due to the assumption of linear process behavior
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Fig. 1.6. Examples of disturbance components. (a) high frequent quasi-stationary stochastic
disturbance. (b) low-frequent non-stationary stochastic disturbance. (c) disturbance with un-
known character

which again is only valid within a certain operating regime

Ymin < Y(f) < Ymax (1.2.3)

4. The disturbance n(t) typically consists of different components, which can be
classified according to the following groups, see also Fig. 1.6:
a) High-frequent quasi-stationary stochastic noise n(z) with E{n(¢)} = 0.
Higher frequent deterministic signal with n(¢) = 0.
b) Low-frequent non-stationary stochastic or deterministic signal (e.g. drift, pe-
riodic signals with period times of one day or one year) d(t)
¢) Disturbance signal of unknown character (e.g. outliers) /(¢)

It is assumed that within the limited measurement time, the disturbance compo-
nent n(¢) can be treated as a stationary signal. The low-frequent component d(t)
must be treated as non-stationary, if it has stochastic character. Low-frequent deter-
ministic disturbances can be drift and periodic signals with long period times such
as one day or one year. Disturbance components with unknown character A(t) are
random signals, which cannot be described as stationary stochastic signals even for
long measurement periods. This can be e.g. suddenly appearing, persistent, or disap-
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pearing disturbances and so-called outliers. These disturbances can e.g. stem from
electromagnetic induction or malfunctions of the measurement equipment.

Typical identification methods can only eliminate the noise n(¢) as the measure-
ment time is prolonged. Simple averaging or regression methods are often sufficient
in this application. The components d () require more specifically tailored measures
such as special filters or regression methods which have been adapted to the very
particular type of disturbance. Almost no general hints can be given concerning the
elimination of the influence of 4(¢). Such disturbances can only be eliminated man-
ually or by special filters.

Effective identification methods must thus be able to determine the temporal be-
havior as precisely as possible under the constraints imposed by

the given disturbance y,(t) = n(t) + d(¢t) + h(¢)

the limited measurement time Ty < 7w, max

the confined test signal amplitude upyi, < u(f) < Umax

the constrained output signal amplitude yi, < y(f) < Ymax
the purpose of the identification.

Figure 1.7 shows a general sequence of an identification. The following steps
have to be taken:

First, the purpose has to be defined as the purpose determines the type of model,
the required accuracy, the suitable identification methods and such. This decision
is typically also influenced by the available budget, either the allocated financial
resources or the expendable time.

Then, a priori knowledge must be collected, which encompasses all readily avail-
able information about the process to be identified, such as e.g.

recently observed behavior of the process

physical laws governing the process behavior

rough models from previous experiments

hints concerning linear/non-linear, time-variant/time-invariant as well as propor-
tional/integral behavior of the process

settling time

dead time

amplitude and frequency spectrum of noise

operating conditions for conduction of measurements.

Now, the measurement can be planned depending on the purpose and the avail-
able a priori knowledge. One has to select and define the

e input signals (normal operating signals or artificial test signals and their shape,
amplitude and frequency spectrum)

sampling time

measurement time

measurements in closed-loop or open-loop operation of the process

online or offline identification

real-time or not



1.2 Tasks and Problems for the Identification of Dynamic Systems

Fundamental Physical Equations

Task Initial Experiments
Budget Operating Conditions
Purpose A-Priori Knowledge

. Planning of I -
Measurements

A
l Signal Generation

Measurement
Results

A

Data Inspection
and Preprocessing

A y
Application of Assumption of
"] Identification Method [~ Model Structure |~
A
A
Process Model
. Determination of
P Non-Para- | Parametric > Model Structure |
metric
Model Vali- No
v dation
Yes
A
Resulting
Model

Fig. 1.7. Basic sequence of the identification
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necessary equipment (e.g. oscilloscope, PC, ...)
filtering for elimination of noise
limitations imposed by the actuators (saturation, ...).

Once these points have been clarified, the measurements can be conducted. This
includes the signal generation, measurement, and data storage.

The collected data should undergo a first visual inspection and outliers as well
as other easily detectable measurement errors should be removed. Then, as part of
the further pre-processing, derivatives should be calculated, signals be calibrated,
high-frequent noise be eliminated by e.g. low-pass filtering, and drift be removed.
Some aspects of disturbance rejection and the removal of outliers by graphical and
analytical methods are presented in Chap. 23. Methods to calculate the derivatives
from noisy measurements are shown in Chap. 15.

After that, the measurements will be evaluated by the application of identification
techniques and determination of model structure.

A very important step is the performance evaluation of the identified model, the
so-called validation by comparison of model output and plant output or comparison
of the experimentally established with the theoretically derived model. Validation
methods are covered in Chap. 23. Typically, an identified model with the necessary
model fidelity will not be derived in the first iteration. Thus, additional iteration steps
might have to be carried out to obtain a suitable model.

Therefore, the last step is the possible iferation, i.e. the repeated conduction of
measurements and evaluation of the measurements until a model meeting the im-
posed requirements has been found. One often has to conduct initial experiments,
which allow to prepare and conduct the main experiments with better suited para-
meters or methods.

1.3 Taxonomy of Identification Methods and Their Treatment in This
Book

According to the definition of identification as presented in the last section, the dif-
ferent identification methods can be classified according to the following criteria:

e Class of mathematical model
e C(lass of employed test signals
e Calculation of error between process and model

It has proven practical to also include the following two criteria:

e Execution of experiment and evaluation (online, offline)
o Employed algorithm for data processing

Mathematical models which describe the dynamic behavior of processes can be
given either as functions relating the input and the output or as functions relating
internal states. They can furthermore be set up as analytical models in the form of
mathematical equations or as tables or characteristic curves. In the former case, the
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Generalized Equation Error

Fig. 1.8. Different setups for calculating the error between model M and process P

parameters of the model are explicitly included in the equation, in the latter case, they
are not. Since the parameters of the system play a dominant role in identification,
mathematical models shall first and foremost be classified by the model type as:

Parametric models (i.e. models with structure and finite number of parameters)
Non-parametric models (i.e. models without specific structure and infinite num-
ber of parameters)

Parametric models are equations, which explicitly contain the process para-
meters. Examples are differential equations or transfer functions given as an alge-
braic expression. Non-parametric models provide a relation between a certain input
and the corresponding response by means of a table or sampled characteristic curve.
Examples are impulse responses, step responses, or frequency responses presented in
tabular or graphical form. They implicitly contain the system parameters. Although
one could understand the functional values of a step response as “parameters”, one
would however need an infinite number of parameters to fully describe the dynamic
behavior in this case. Consequently, the resulting model would be of infinite dimen-
sion. In this book, parametric models are thus understood as models with a finite
number of parameters. Both classes of models can be sub-divided by the type of
input and output signals as continuous-time models or discrete-time models.

The input signals respectively test signals can be deterministic (analytically de-
scribable) stochastic (random), or pseudo-stochastic (deterministic, but with proper-
ties close to stochastic signals).

As a measure for the error between model and process, one can choose between
(see Fig. 1.8) the following errors:

e Input error
e QOutput error
e Generalized equation error
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Fig. 1.9. Different setups for the data processing as part of the identification

Because of mathematical reasons, typically those errors are preferred, which depend
linearly on the process parameters. Thus, one uses the output error if e.g. impulse
responses are used as models and the generalized equation error if e.g. differential
equations, difference equations, or transfer functions are employed. However, also
output errors are used in the last case.

If digital computers are utilized for the identification, then one differentiates be-
tween two types of coupling between process and computer, see Fig. 1.9:

e Offline (indirect coupling)
e Online (direct coupling)

For the offline identification, the measured data are first stored (e.g. data storage) and
are later transferred to the computer utilized for data evaluation and are processed
there. The online identification is performed parallelly to the experiment. The com-
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puter is coupled with the process and the data points are operated on as they become
available.

The identification with digital computers also allows to discern the identification
according to the type of algorithm employed:

e Batch processing
e Real-time processing

In case of batch processing, the previously stored measurements will be processed
in one shot, which is typically the case for offline applications. If the data are pro-
cessed immediately after they become available, then one speaks of real-time pro-
cessing, which necessitates a direct coupling between the computer and the process,
see Fig. 1.9. Another feature is the processing of the data. Here, one can discern:

e Non-recursive processing
e Recursive processing

The non-recursive methods determine the model from the previously stored measure-
ments and are thus a method of choice for offline processing only. On the contrary,
the recursive method updates the model as each measurement becomes available.
Hence, the new measurement is always used to improve the model derived in the
previous step. The old measurements do not need to be stored. This is the typical
approach for real-time processing and is called real-time identification. As not only
the parameters, but also a measure of their accuracy (e.g. variance) can be calculated
online, one can also think about running the measurement until a certain accuracy of
the parameter estimates has been achieved (Astrom and Eykhoff, 1971).
Finally, the non-recursive method can further be subdivided into:

e Direct processing
e [terative processing

The direct processing determines the model in one pass. The iferative processing
determines the model step-wise. Thus, iteration cycles are emerging and the data
must be processed multiple times.

1.4 Overview of Identification Methods

The most important identification methods shall be described shortly. Table 1.2 com-
pares their most prominent properties. A summary of the important advantages and
disadvantages of the individual methods can be found in Sect. 23.4.

1.4.1 Non-Parametric Models

Frequency response measurements with periodic test signals allow the direct deter-
mination of discrete points of the frequency response characteristics for linear pro-
cesses. The orthogonal correlation method has proven very effective for this task and
is included in all frequency response measurement units. The necessary measurement
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Table 1.2. Overview of the most prominent identification methods
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Table 1.2. Overview of the most prominent identification methods (continued)

so1sAyd sseooxd
SurA[1opun oy} ynoqe d3pajmouy

s1qeardde 10N = - ‘panns [[om Jou Inq 9[qIssod =( ) d[qeorjddy = 4

sLoureIe

10M10
ou 01 oI M SurPpo & | ITERAY | A - - Val Val - [ewsaqued | A Val k _E:um
uondP JNE] o
SID[OJUOD TBIUI[UOU JO UFISO( o
poon N - - N N - [ews oq ueo | - N SPOYIdIIN
D N doedsqng
SISA[euy [ePOJAl 10J PAS(]
SWAISAS
JIEUI[UOU JO UOIBWINSI IS o 101
sonnuenb ojerpauLIuL JO ofeloay | A N A \»v N N VAl oferone VAl VAl uewey]
JUSWIAINSLAW OU *§"9) uonewnsd q&i PopudXy
J10j0weled pue 9je)s PauIqUIo)) o
S[OPOW JO UONLZIIDOWEIR] o pooD Kiop
uonoap g« 15 N - - A S - Jlrwsoqued | A - uoneziundo
SIO[[01IU0D JBAUI[UOU JO UFIS( o ped i QAIIRIN]
uoneorddy jo ododg | fyreprg @ m 23|37 |79 |FQ | FQ| onwosioN |F oN ey mding  [9poN induy POYRIN
o | 22|22 |E2|EE(EF|85| omus [EE S 2
Suymsoy | 2 C | 2 <428 & 20 | 2% | oqemoy (22 |27
B8 |3 =3 5 8
5 |0 & | g (5] (]
=




18 1 Introduction

time is long if multiple frequencies shall be evaluated, but the resulting accuracy is
very high. These methods are covered in this book in Chap. 5.

Fourier analysis is used to identify the frequency response from step or impulse
responses for linear processes. It is a simple method with relatively small compu-
tational expense and short measurement time, but at the same time is only suitable
for processes with good signal-to-noise ratios. A full chapter is devoted to Fourier
analysis, see Chap. 3.

Correlation analysis is carried out in the time domain and works with continuous-
time as well as discrete-time signals for linear processes. Admissible input signals
are both stochastic and periodic signals. The method is also suitable for processes
with bad signal-to-noise ratios. The resulting models are correlation functions or in
special cases impulse responses for linear processes. In general, the method has a
small computational expense. Correlation analysis is discussed in detail in Chap. 6
for the continuous-time case and Chap. 7 for the discrete-time case.

For all non-parametric identification techniques, it must only be ensured a priori
that the process can be linearized. A certain model structure does not have to be
assumed, what makes these methods very well suited for both lumped as well as
distributed parameter systems with any degree of complexity. They are favored for
the validation of theoretical models derived from theoretical considerations. Non-
parametric models are favored since in this particular area of application, one is not
interested in making any a priori assumptions about the model structure.

1.4.2 Parametric Models

For these methods, a dedicated model structure must be assumed. If assumed prop-
erly, more precise results are expected due to the larger amount of a priori knowledge.

The most simple method is the determination of characteristic values. Based on
measured step or impulse responses, characteristic values, such as the delay time, are
determined. With the aid of tables and diagrams, the parameters of simple models can
then be calculated. These methods are only suitable for simple processes and small
disturbances. They can however be a good starting point for a fast and simple ini-
tial system examination to determine e.g. approximate time constants, which allow
the correct choice of the sample time for the subsequent application of more elabo-
rate methods of system identification. The determination of characteristic values is
discussed in Chap. 2.

Model adjustment methods were originally developed in connection with ana-
log computers. However, they have lost most of their appeal in favor of parameter
estimation methods.

Parameter estimation methods are based on difference or differential equations of
arbitrary order and dead time. The methods are based on the minimization of certain
error signals by means of statistical regression methods and have been complemented
with special methods for dynamic systems. They can deal with an arbitrary excita-
tion and small signal-to-noise ratios, can be utilized for manifold applications, work
also in closed-loop, and can be extended to non-linear systems. A main focus of the
book is placed on these parameter estimation methods. They are discussed e.g. in
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Chap. 8, where static non-linearities are treated, Chap. 9, which discusses discrete-
time dynamic systems, and Chap. 15, which discusses the application of parameter
estimation methods to continuous-time dynamic systems.

Iterative optimization methods have been separated from the previously men-
tioned parameter estimation methods as these iterative optimization methods can
deal with non-linear systems easily at the price of employing non-linear optimiza-
tion techniques along with all the respective disadvantages.

Subspace-based methods have been used successfully in the area of modal analy-
sis, but have also been applied to other areas of application, where parameters must
be estimated. They are discussed in Chap. 16.

Also, neural networks as universal approximators have been applied to experi-
mental system modeling. They often allow to model processes with little to no know-
ledge of the physics governing the process. Their main disadvantage is the fact that
for most neural networks, the net parameters can hardly be interpreted in a physical
sense, making it difficult to understand the results of the modeling process. How-
ever, local linear neural nets mitigate these disadvantages. Neural nets are discussed
in detail in Chap. 20.

The Kalman filter is not used for parameter estimation, but is rather used for
state estimation of dynamic systems. Some authors suggest to use the Kalman filter
to smoothen the measurements as part of applying parameter estimation methods. A
more general framework, the extended Kalman Filter allows the parallel estimation
of states and parameters of both linear and non-linear systems. Its use for parameter
estimation is reported in many citations. Chapter 21 will present the derivation of
the Kalman filter and the extended Kalman filter and outline the advantages and
disadvantages of the use of the extended Kalman filter for parameter estimation.

1.4.3 Signal Analysis

The signal analysis methods shown in Table 1.2 are employed to obtain parametric
or non-parametric models of signals. Often, they are used to determine the frequency
content of signals. The methods differ in many aspects.

A first distinction can be made depending on whether the method is used for
periodic, deterministic signals or for stochastic signals. Also, not all methods are
suited for time-variant signals, which in this context shall refer to signals, whose pa-
rameters (e.g. frequency content) change over time. There are methods available that
work entirely in the time domain and others that analyze the signal in the frequency
domain.

Not all methods are capable of making explicit statements on the presence or
absence of single spectral components, i.e. oscillations at a certain single frequency,
thus this capability represents another distinguishing feature. While many methods
are capable of detecting periodic components in a signal, many methods can still not
make a statement whether the recorded section of the signal is in itself periodic or
not. Also, not all methods can determine the amplitude and the phase of the peri-
odic signal components. Some methods can only determine the amplitude and some
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methods can neither determine the amplitude nor the phase without a subsequent
analysis of the results delivered by the signal analysis method.

Bandpass filtering uses a bank of bandpass filters to analyze different frequency
bands. The biggest advantage of this setup is that past values do not need to be stored.
The frequency resolution depends strongly on the width of the filter passband.

Fourier analysis is a classical tool to analyze the frequency content of signals
and is treated in detail in Chap. 3. The biggest advantage of this method is the fact
that many commercial as well as non-commercial implementations of the algorithms
exist.

Parametric spectral estimation methods can provide signal models as a form
filter shaping white noise. They can also decompose a signal into a sum of sinusoidal
oscillations. These methods are much less sensitive to the choice of the signal length
than e.g. the Fourier analysis, where the sampling interval length typically has to be
an integer multiple of the period length. These methods are discussed in Sect. 9.2.

Correlation analysis is discussed in detail in Chaps. 6 and 7. It is based on the
correlation of a time signal with a time-shifted version of the same signal and is ex-
tremely well suited to determine whether a time signal is truly periodic and determine
its period length.

Spectrum analysis examines the Fourier transform of the auto-correlation func-
tion, while the ARMA parameter estimation determines the coefficients of an ARMA
form filter that generates the stochastic content of the signal. This will be presented
in Sect. 9.4.2.

Finally, methods have been developed that allow a joint time-frequency analysis
and can be used to check for changes in the signal properties. The short time Fourier
transform applies the Fourier transform to small blocks of the recorded signals. The
wavelet analysis calculates the correlation of the signal with a mother wavelet that is
shifted and/or scaled in time. Both methods are presented in Chap. 3.

1.5 Excitation Signals

For identification purposes, one can supply the system under investigation either
with the operational input signals or with artificially created signals, so-called fest
signals. Such test signals must in particular be applied, if the operational signals do
not excite the process sufficiently (e. g. due to small amplitudes, non-stationarity,
adverse frequency spectrum), which is often the case in practical applications. The
favorable signals typically satisfy the following criteria:

e Simple and reproducible generation of the test signal with or without signal gen-
erator

e Simple mathematical description of the signal and its properties for the corre-
sponding identification method
Realizable with the given actuators
Applicable to the process
Good excitation of the interesting system dynamics
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Fig. 1.10. Overview of some excitation signals. (a) non-periodic: step and square pulse. (b)
periodic: sine wave and square wave. (c¢) stochastic: discrete binary noise
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Fig. 1.11. Process P consisting of the subprocesses P1 and P»

Often, one cannot influence the input u,(¢) that is directly acting on the sub-
process P,, which is to be identified. The input can only by influenced by means
of the preceding subprocess P; (e.g. actuator) and its input u;(¢), see Fig. 1.11. If
u,(t) can be measured, the subprocess P, can be identified directly, if the identifi-
cation method is applicable for the properties of u,(¢). Is the method applicable for
a special test signal u(¢) only, then one has to identify the entire process P and the
sub-process P; and calculate P, which for linear systems is given as

Gr(s)
Gp (S) ’

where the G (s) are the individual transfer functions.

Gpa(s) =

(1.5.1)
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Fig. 1.12. Disturbed linear process with Fig. 1.13. Identification of a process in
disturbed measurements of the input and closed-loop
output

1.6 Special Application Problems

There are a couple of application problems, which shall be listed here shortly to sen-
sitize the reader to these issues. They will be treated in more detail in later chapters.

1.6.1 Noise at the Input

So far, it was assumed that the disturbances acting on the process can be combined
into a single additive disturbance at the output, y,. If the measurement is disturbed
by a disturbance &,(¢), see Fig. 1.12, then this can be treated together with the dis-
turbance y,(¢) and thus does not pose a significant problem. More difficult is the
treatment of a disturbed input signal u(z), being counterfeit by &,(¢). This is de-
noted as errors in variables, see Sect. 23.6. One approach to solve this problem is the
method of total least squares (TLS) or the principal component analysis (PCA), see
Chap. 10.

Proportional acting processes can in general be identified in open-loop. Yet, this
is often not possible for processes with integral action as e.g. interfering disturbance
signals may be acting on the process such that the output drifts away. Also, the pro-
cess may not allow a longer open loop operation as the operating point may start to
drift. In these cases as well as for unstable processes, one has to identify the process
in closed-loop, see Fig. 1.13. If an external signal such as the setpoint is measurable,
the process can be identified with correlation or parameter estimation methods. If
there is no measurable external signal acting on the process (e.g. regulator settings
with constant setpoint) and the only excitation of the process is by y,(¢), then one
is restricted in the applicable methods as well as the controller structure. Chapter 13
discusses some aspects that are proprietary to identification in closed-loop.

1.6.2 Identification of Systems with Multiple Inputs or Outputs

For linear systems with multiple input and/or output signals, see Fig. 1.14, one can
also employ the identification methods for SISO processes presented in this book.
For a system with one input and r outputs and one test signal, one can obtain r



24 1 Introduction

a) b) c)
-V l’lll‘» 314’ )
°u—p P ——Vs)}z 24’ P L >y 24’ P —_>§y2
), U U, —p ),
u—» P y u=y P >y u—> P y

Fig. 1.14. Identification of (a) SIMO system with 1 input and r outputs, (b) MISO system
with p inputs and 1 output, (¢) MIMO system with p inputs and r outputs

input/output models by applying the identification method r times to the individual
input/output combinations, see Fig. 1.14. A similar approach can be pursued for
systems with 7 inputs and one output (MISO). One can excite one input after the
other or one can excite all inputs at the same time with non-correlated input signals.
The resulting model does not have to be the minimum realizable model, though.

For a system with multiple inputs and outputs (MIMO), one has three options:
One can excite one input after the other and evaluate all outputs simultaneously, or
one can excite all inputs at the same time and evaluate one output after the other,
or one can excite all inputs simultaneously and also evaluate all outputs at the same
time. If a model for the input/output behavior is sufficient, then one can success-
fully apply the SISO system identification methods. If however, one has p inputs
which are excited simultaneously and r outputs, one should resort to methods specif-
ically tailored to the identification of MIMO systems, as the assumed model structure
plays an important role here. Parameter estimation of MIMO systems is discussed in
Chap. 17.

1.7 Areas of Application

As already mentioned, the application of the resulting model has significant influ-
ence on the choice of the model classes, the required model fidelity, the identifica-
tion method and the required identification hardware and software. Therefore, some
sample areas of application shall be sketched in the following.

1.7.1 Gain Increased Knowledge about the Process Behavior

If it proves impossible to determine the static and dynamic behavior by means of
theoretical modeling due to a lack of physical insight into the process, one has to re-
sort to experimental modeling. Such complicated cases comprise technical processes
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as e.g. furnaces, combustion engines, bio-reactors, biological and economical pro-
cesses. The choice of the identification method is mainly influenced by the questions
whether or not special test signals can be inserted, whether the measurements can
be taken continuously or only at discrete points in time, by the number of inputs
and outputs, by the signal-to-noise ratio, by the available time for measurements and
by the existence of feedback loops. The derived model must typically only be of
good/medium fidelity. Often, it is sufficient to apply simple identification methods,
however, one also applies parameter estimation methods quite frequently.

1.7.2 Validation of Theoretical Models

Due to the simplifying assumptions and the imprecise knowledge of process para-
meters, one quite frequently needs to validate a theoretically derived model with
experiments conducted at a real process. For a (linear) model given in the form of a
transfer function, the measurement of the frequency response provides a good tool
to validate the theoretical model. The Bode diagram provides a very transparent rep-
resentation of the dynamics of the process, such as resonances, the negligence of the
higher frequent dynamics, dead time and model order. The major advantage of the
frequency response measurement is the fact that no assumptions must be made about
the model structure (e.g. model order, dead time,...). The most severe disadvantage
is the long measurement time especially for processes with long settling times and
the necessary assumption of linearity.

In the presence of mild disturbances only, it may also be sufficient to compare
step responses of process and model. This is, of course, very transparent and natural.
In the presence of more severe disturbances, however, one has to resort to correlation
methods or parameter estimation methods for continuous-time models. The required
model fidelity is medium to high.

1.7.3 Tuning of Controller Parameters

The rough tuning of parameters, e.g. for a PID controller, does not necessarily re-
quire a detailed model (like Ziegler-Nichols experiment). It is sufficient to determine
some characteristic values from the step response measurement. For the fine-tuning
however, the model must be much more precise. For this application, parameter es-
timation methods are favorable, especially for self-tuning digital controllers, see e.g.
(i\strém and Wittenmark, 1997, 2008; Bobadl et al, 2005; O’Dwyer, 2009; Crowe
et al, 2005; Isermann et al, 1992). These techniques should gain more momentum in
the next decades as the technicians are faced with more and more controllers installed
in plants and nowadays more than 50% of all controllers are not commissioned cor-
rectly, resulting in slowly oscillating control loops or inferior control performance
(Pfeiffer et al, 2009).

1.7.4 Computer-Based Design of Digital Control Algorithms

For the design of model-based control algorithms, for e.g. internal model or pre-
dictive controllers or multi-variable controllers, one needs models of relatively high
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fidelity. If the control algorithms as well as the design methods are based on para-
metric, discrete-time models, parameter estimation methods, either offline or online,
are the primary choice. For non-linear systems, either parameter estimation methods
or neural nets are suitable (Isermann, 1991).

1.7.5 Adaptive Control Algorithms

If digital adaptive controllers are employed for processes with slowly time-varying
coefficients, parametric discrete-time models are of great benefit since suitable mod-
els can be determined in closed loop and online by means of recursive parameter
estimation methods. By the application of standardized controller design methods,
the controller parameters can be determined easily. However, it is also possible to
employ non-parametric models. This is treated e.g. in the books (Sastry and Bodson,
1989; Isermann et al, 1992; Ikonen and Najim, 2002; Astrom and Wittenmark, 2008).
Adaptive controllers are another important subject due to the same reasons already
stated for the automatic tuning of controller parameters. However, the adaptation
depends very much on the kind of excitation and has to be supervised continuously.

1.7.6 Process Supervision and Fault Detection

If the structure of a process model is known quite accurately from theoretical con-
siderations, one can use continuous-time parameter estimation methods to determine
the model parameters. Changes in the process parameters allow to infer on the pres-
ence of faults in the process. The analysis of the changes also allows to pinpoint the
type of fault, its location and size. This task however imposes high requirements on
the model fidelity. The primary choice are online identification methods with real
time data processing or block processing. For a detailed treatment of this topic, see
e.g. the book by Isermann (2006). Fault detection and diagnosis play an important
role for safety critical systems and in the context of asset management, where all
production equipment will be incorporated into a company wide network and all
equipment will permanently assess its own state of health and request maintenance
service autonomously upon the detection of tiny, incipient faults, which can cause
harmful system behavior or stand-still of the production in the future.

1.7.7 Signal Forecast

For slow processes, such as e.g. furnaces or power plants, one is interested in fore-
casting the effect of the operator intervention by means of a simulation model to
support the operator and enable him/her to judge the effects of his/her intervention.
Typically, recursive online parameter estimation methods are exploited for the task
of deriving a plant model. These methods have also been used to the prediction of
economical markets as described e.g. by (Heij et al, 2007) as well as Box et al (2008).



Table 1.3. Bibliographical list for books on system identification since 1992 with no claim
on completeness. v'=Yes, (v')=Yes, but not covered in depth, C=CD-ROM, D=Diskette,
M=MatLab code or toolbox, W=Website. For a reference on books before 1992, see (Iser-
mann, 1992). Realization theory based methods in (Juang, 1994; Juang and Phan, 2006) are

sorted as subspace methods.

1.7 Areas of Application
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28 1 Introduction
1.7.8 On-Line Optimization

If the task is to operate a process in its optimal operating point (e.g. for large Diesel
ship engines or steam power plants), parameter estimation methods are used to derive
an online non-linear dynamic model which then allows to find the optimal operating
point by means of mathematical optimization techniques. As the price for energy and
production goods, such as crude oil and chemicals, is increasing at a rapid level, it
will become more and more important to operate the process as efficiently as possi-
ble.

From this variety of examples, one can clearly see the strong influence of the in-
tended application on the choice of the system identification methods. Furthermore,
the user is only interested in methods that can be applied to a variety of different
problems. Here, parameter estimation methods play an important role since they can
easily be modified to not only include linear, time-invariant SISO processes, but also
cover non-linear, time-varying, and multi-variable processes.

It has also been illustrated that many of these areas of application of identification
techniques will present attractive research and development fields in the future, thus
creating a demand for professionals with a good knowledge of system identification.
A selection of applications of the methods presented in this book is presented in
Chap. 24.

1.8 Bibliographical Overview

The development of system identification has been pushed forward by new develop-
ments in diverse areas:

System theory

Control engineering

Signal theory

Time series analysis
Measurement engineering
Numerical mathematics
Computers and micro-controllers

The published literature is thus spread across the different above-mentioned areas
of research and their subject-specific journals and conferences. A systematic treat-
ment of the subject can be found in the area of automatic control, where the IFAC
Symposia on System Identification (SYSID) have been established in 1967 as a trien-
nial platform for the community of scientists working in the area of identification of
systems. The symposia so far have taken place in Prague (1967, Symposium on Iden-
tification in Automatic Control Systems), Prague (1970, Symposium on Identification
and Process Parameter Estimation), The Hague (1973, Symposium on Identification
and System Parameter Estimation), Tbilisi (1976), Darmstadt (1979), Washington,
DC, (1982), York (1985), Beijing (1988), Budapest (1991), Copenhagen (1994), Ki-
takyushu (1997), Santa Barbara, CA (2000), Rotterdam (2003), Newcastle (2006)
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and Saint-Malo (2009). The International Federation of Automatic Control (IFAC)
has also devoted the work of the Technical Committee 1.1 to the area of modeling,
identification, and signal processing.

Due to the above-mentioned fact that system identification is under research in
many different areas, it is difficult to give an overview over all publications that have
appeared in this area. However, Table 1.3 tries to provide a list of books that are
devoted to system identification, making no claim on completeness. As can be seen
from the table many textbooks concentrate on certain areas of system identification.

Problems

1.1. Theoretical Modeling

Describe the theoretical modeling approach. Which equations can be set up and com-
bined into a model? Which types of differential equations can result? Why is the
application of purely theoretical modeling approaches limited?

1.2. Experimental Modeling
Describe the experimental modeling approach. What are its advantages and disad-
vantages?

1.3. Model Types
What are white-box, gray-box, and black-box models?

1.4. Identification
What are the tasks of the identification?

1.5. Limitations in Identification
Which limitations are imposed on a practical identification experiment?

1.6. Disturbances
Which typical disturbances are acting on the process? How can their effect be elimi-
nated?

1.7. Identification
Which steps have to be taken in the sequence of system identification?

1.8. Taxonomy of Identification Methods
According to which features can identification methods be classified?

1.9. Non-Parametric/Parametric Models
What is the difference between a non-parametric and a parametric model? Give ex-
amples.

1.10. Areas of Application
Which identification methods are suitable for validation of theoretical linear models
and the design of digital control algorithms.
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2

Mathematical Models of Linear Dynamic Systems and
Stochastic Signals

The main task of identification methods is to derive mathematical models of pro-
cesses and their signals. Therefore, the most important mathematical models of lin-
ear, time-invariant SISO processes as well as stochastic signals shall shortly be pre-
sented in the following. It is assumed that the reader is already familiar with time-
and frequency domain based models and methods. If this is not the case, the reader is
referred to the multitude of textbooks dealing with control engineering and covering
this topic in much more breadth (Astrém and Murray, 2008; Chen, 1999; Dorf and
Bishop, 2008; Franklin et al, 2009; Goodwin et al, 2001; Nise, 2008; Ogata, 2009).
The following short discussion is only meant to agree upon the notation and allow
the reader to recall the most important relations.

Systems are termed linear, if the superposition principle can be applied. The sys-
tem output due to multiple input signals is then given as the superposition of the
corresponding output signals. In the most simple case, the behavior of the linear sys-
tem is described by means of a linear ordinary differential equation (ODE). If the
coefficients do not change, the system is termed time-invariant, otherwise, i.e. if the
system parameters change over time, one has to deal with a time-variant system.
Suitable models for non-linear processes are introduced with the respective identifi-
cation methods in later chapters. Systems are termed affine, if they have a constant
term added to the output.

The taxonomy of the models described in the following leans on criteria which
have been found useful with respect to the taxonomy of identification methods as
well as the latter scope of application of the resulting model. In general, a distinction
is made between parametric and non-parametric models, models in input/output or
state space representation, time domain and frequency domain based models.

2.1 Mathematical Models of Dynamic Systems for Continuous Time
Signals

First, the theory of mathematical models for dynamic systems in continuous-time

shall be reviewed shortly as the understanding of these fundamentals is indispensable

R. Isermann, M. Miinchhof, Identification of Dynamic Systems,
DOI 10.1007/978-3-540-78879-9 2, © Springer-Verlag Berlin Heidelberg 2011



34 2 Mathematical Models of Linear Dynamic Systems and Stochastic Signals

Fig. 2.1. Dynamic process with input u

ug(t)» g .&» and output y
u (i) G (iw) v (i0)

for the understanding and application of the identification methods presented in the
remainder of this book.

2.1.1 Non-Parametric Models, Deterministic Signals

Mathematical models of processes, but also of signals, can be either non-parametric
or parametric. Non-parametric models represent the relation between the input and
the output by means of a table or curve. They do not exhibit a certain structure, are
typically of infinite dimension and lay the foundation for so-called black-box meth-
ods. Thus, they shall be called black models in the following. The most prominent
non-parametric models of time-invariant, linear processes are the impulse response,
step response and the frequency response, see Fig. 2.1.

Impulse Response

The impulse response g(t) is defined as the output of a process being excited by an
impulse (Dirac’s delta function) §(¢). This impulse function is defined as

oo fort =0
(1) = {0 for 2 0 @2.1.1)
/ 8(t) dt = lsec. (2.1.2)

By means of the impulse response, one can determine the output of a linear process
for an arbitrary, deterministic input by employing the convolution integral as

t

y(@) = /0 gt —t)u(r)dr = /0 g(@u( —r)dr. (2.1.3)

The step function o (t) is also called the Heaviside function #(t). It is defined as

1 fort >0

olt) = {0 fort <O0. 2.1.4)

A step can be obtained by integrating the impulse with respect to time ¢. The system
output is defined as the step response h(t) and can be calculated by convoluting the
input signal with the impulse response g(¢) as

t

h(t) = /0 gr)o(t—1)dr = /(; g(r)dr . (2.1.5)

The impulse response is thus the time-derivative of the step response, i.e.
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dh
g(t) = # . (2.1.6)

Note that the Heaviside function can also be defined as

1fort >0
He(t) = cfort =0 2.1.7)
Ofort <0,

where ¢ = 0 (Follinger, 2010), ¢ = 1/2, which increases the symmetry (Bracewell,
2000; Bronstein et al, 2008) or ¢ = 1 which makes the definitions of the continuous-
time and the discrete-time step function (which is also 1 for k = 0) quite similar.

Frequency Response, Transfer Function

The frequency response is the equivalent of the impulse response in the frequency
domain. It is defined as the ratio of the vectors of the input and output quantity, if
the process is excited by a harmonic oscillation and one waits until the steady-state
response is fully developed,

i(wt+¢(w))

_ y(a)t) _ YO(w)e _ yo(w)ei(p(w)
Cu(wt)  ug(w)e®  ug(w) '

G(iw) (2.1.8)

By means of the Fourier transform, which is treated in detail e.g. in (Papoulis,
1962; Follinger and Kluwe, 2003), the frequency response can also be determined
for non-periodic signals. The Fourier transform maps the function x(¢) in the time

domain to the function x (iw) in the frequency domain as

o0

F{x (D)} = x(iw) = f x(t)e @ldr . (2.1.9)

—0o0
The corresponding inverse Fourier transform is given as

F Hx(w)} =x@) = 1 /oo x(iw)edw . (2.1.10)

27 J s

If f(¢) is piecewise continuous and absolutely integrable, i.e.

/oo |x (@) dt < o0, (2.1.11)

then the Fourier transform exists and is a bounded continuous function (Poularikas,
1999) The frequency response is defined for non-periodic signals as the ratio of the
Fourier transform of the output and the input,

Fro})  yio)

Gliw) = @) ulio)

(2.1.12)
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The relation of the input and output in the time domain by means of the convolution
is given as a simple multiplication

y(iw) = G(iw) u(iw) (2.1.13)

in the frequency domain. Since the Fourier transform of the Dirac delta impulse is

F{8(1)} = 1sec, (2.1.14)
one gets from (2.1.12)
N 140 N ot g, L
G(iw) = —%{S(t)} = /0 g(t)e “dr Teec (2.1.15)

which shows that the frequency response is the Fourier transform of the impulse re-
sponse. The Fourier transform is treated again in Chap. 3, where the implementation
of the Fourier transform on digital computers and the effect of applying the Fourier
transform to data sequences of finite length are discussed in detail.

Since the Fourier transform does not exist for certain, often encountered input
signals, such as e.g. the step function or the ramp function, one is interested in a way
to determine the transfer function for these non-periodic signals as well. For this task,
the Laplace transform is given as

oo

L{x @)} = x(s) = /0 x(t)e stdr , (2.1.16)

assuming that x(¢) = 0 for ¢ < 0, with the Laplace variable s = § + iw, § > 0 and
the inverse Laplace transform
1 §+ioco
S_I{x(s)} =x(t) = — x(s)eslds . (2.1.17)
271 Js—ioo
Now, the transfer function is given as the ratio of the Laplace transform of the
output and the input as

o) v

G(s) = E{u(t)} = 70) (2.1.18)
and in analogy to (2.1.15),
_e0) _ [ g, )
G(s) = 8{8(1)} —/0 g(t)e dtﬁ . (2.1.19)

For § — 0 and thus s — iw, the transfer function evolves into the frequency response

lim G(s) = G(iw) . (2.1.20)

This concludes the composition of the most important fundamental equations for
non-parametric, linear models and deterministic signals.
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2.1.2 Parametric Models, Deterministic Signals

Parametric models represent the relation between the input and output by means
of equations. In general, they contain a finite number of explicit parameters. These
equations can be set up by the application of theoretical modeling techniques as
was described in Sect. 1.1. By means of formulating balance equations for stored
quantities, physical or chemical equations of state and phenomenological equations,
a system of equations is constructed, which contains the physically defined para-
meters ¢;, which shall be called process coefficients (Isermann, 2005). This system
of equations reveals the elementary model structure and can be represented by means
of a detailed block diagram. Models that exhibit such an elementary model structure
can be called white models (white box) in contrast to the non-parametric, so-called
black models that have been introduced in the previous section, recall also Fig. 1.3
for a comparison of the different modeling approaches ranging from white-box to
black-box modeling.

Differential Equations

If only the input/output behavior of the process is of interest, then the system states
will be eliminated (if possible). The resulting mathematical model assumes the form
of an ordinary differential equation (ODE) for a lumped parameter system. In the
linear case, this ODE is given as

YD) + anm1y V@) + .+ a1y () + aoy(t)

(2.1.21)
=D ™ (1) + by u™ V(1) + ... + bpii(t) + bou(t) .

The model parameters a; and b; are determined by the process coefficients ¢;. For
the transition from the physical process to the input/output model, the underlying
model structure may be lost. For processes with distributed parameters, one can ob-
tain similar partial differential equations (PDEs).

Transfer Function and Frequency Response

By application of the Laplace transform to the ODE in (2.1.21) and setting all initial
conditions to zero, one obtains the (parametric) transfer function

y(s) bo+bis+...+bus™  B(s)

G = prmm— _ .
() u(s) ag+ais + ...+ aps” A(s)

(2.1.22)

By determining the limit s — iw, the (parametric) frequency response is obtained as
G(iw) = lim G(s) = |G(iw)[e*® (2.1.23)
S—>10

with the magnitude |G (iw)| and the phase (argument) ¢(iw) = ZG(iw), which can
be expressed in dependence of the model parameters.
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Fig. 2.2. State space representation of a SISO system

State Space Representation

If one is not only interested in the behavior of the output, but also the internal states
of the system, one has to represent the system in its state space form. For a linear
time-invariant process with one input and one output, the equations are given as

x(t) = Ax(t) + bu(?) (2.1.24)
y(t) =cx(t) + du(t) . (2.1.25)

The elements of these equations are called state vector (x (t)), state matrix (A), input
vector (b), output vector (cT) and direct feedthrough (d). The first equation is termed
state equation and the second output equation. A block diagram representation is
shown in Fig. 2.2.

The time solution of (2.1.24) and (2.1.25), which is important for the evaluation
of e.g. the Kalman filter (see Chap. 21) is given as

x(t) = D(t —to)x(to) + /t @D (t — 1)bu(r)dr (2.1.26)

fo
with the transition matrix @ being determined by the matrix exponential

12 t"
&(1) = et = lim (I+At+A2—+...+A"—). (2.1.27)
n—00 2! n!

Apart from the direct evaluation of the series as in (2.1.27), there are several other
ways to calculate the matrix exponential (e.g. Moler and van Loan, 2003). Using the
transition matrix, the output can be calculated as

y(t) = cT®(t —to)x(to) + T /t @D (¢t — 1)bu(r)dr + du(r) . (2.1.28)

to

From the state space representation, one can also determine the transfer function in
continuous-time by
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Fig. 2.3. Analog-digital conversion process and the subsequent generation of an amplitude-
modulated discrete-time and discrete-amplitude, discrete-time signal

_ Y _
_u(s)_

leading to a rational transfer function as in the form of (2.1.22).

G(s) "1 -4)""b, (2.1.29)

2.2 Mathematical Models of Dynamic Systems for Discrete Time
Signals

For the digital processing of measurements and thus also for the identification with
digital computers, the measurements are sampled and digitized in the analog-digital
converter (ADC). By this sampling and discretizing process, discrete signals are gen-
erated, which are both quantized in time and in amplitude. It is assumed that the
quantization error for the amplitude is so small that the amplitude values can be
assumed to be quasi-continuous. If the sampling process is periodic with the sam-
ple time T}, then an amplitude modulated train of pulses, apart by the sample time
Ty, results, see Fig. 2.3. This sampled signal can then be processed inside the dig-
ital computer, e.g. for control purposes (Franklin et al, 1998; Isermann, 1991) or
for other purposes such as process identification. It is important to recognize that the
process model inevitable also contains the sampling process at the input of the digital
computer and the subsequent holding element as well as the sampling process at the
output of the computer. A detailed description of discrete-time signals can be found
in textbooks on digital control (Franklin et al, 1998; Isermann, 1991; Phillips and
Nagle, 1995; Soderstrom, 2002). Therefore, only a short synopsis shall be provided
in the following.

2.2.1 Parametric Models, Deterministic Signals
& Impulse Series, z-Transform

If the continuous-time input and output of a process are sampled with a sufficiently
high sample rate (compared to the process dynamics), one can obtain difference
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equations describing the process behavior by discretizing the differential equation
using finite differences as a replacement for the continuous-time derivatives. How-
ever, a more suitable treatment, which is valid also for large sampling times is to
approximate the pulses of the sampled signal xg(¢) which have the width / by an
area-equivalent § impulse,

h o
xs(1) ~ () = — > x(kTo)8(t —kT) . (2.2.1)
k=0

With the normalization 2 = 1sec, one gets

oo

x*(1) =Y x(kTo)8(t —kT) . (2.2.2)
k=0

This expression can be subjected to the Laplace transform, yielding

[e.0]

X*(s) = &{x* (1)} = ) x(kTo)e ™ 705 . (2.2.3)
k=0

The Laplace transform x*(s) is periodic with
x*(s) = x*(s +ivawg), v=10,1,2,... (2.2.4)

with the sampling frequency wo = 27/ Ty. Introducing the short hand notation

7 = el0s = To@+iw) (2.2.5)
one obtains the z-transform
o0
x(z) = 3x(kTo} = > x(kTo)z ™" . (2.2.6)
k=0

If x(kTp) is bounded, x(z) converges for |z| > 1, which can be achieved for most
interesting signals by an appropriate choice of §. Similarly to the Laplace transform,
it is assumed that x(kTp) = O for k < 0 and § > O (Poularikas, 1999; Follinger
and Kluwe, 2003). x(z) is in general a series of infinite length. For many test signals
however, one can provide closed-form expressions.

Discrete Impulse Response

Since the response of a system due to the excitation with a §-impulse is the impulse
response g (), one obtains the convolution sum

[o.¢]

y(kTo) =D u(wTo)g((k — v)To) (2.2.7)

v=0
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Fig. 2.4. Dynamic process with sampled

T,
M} elqT) —Mb input u and output y being characterized
u(z) G(2) »@) by its (discrete) impulse response and its

z transfer function

which can be used to calculate the system output due to an input u (kTp), where

o

w*(t) = Y u(kTo)8(t — kTo) (2.2.8)

k=0

is the §-impulse approximation of the input. If the output is sampled synchronously
to the input, then the convolution sum is given as

oo

y(kTo) = Y u(wTo)g((k —v)To) = Z (k =To)g(vTo) . (2.29)

v=0 v=0

z-Transfer Function
The sampled and §-impulse approximated output
oo
*
y*(0) = y(kTo)8(t — kTo) (2.2.10)
k=0
is being subjected to the Laplace transform to obtain
o0 o0
YH) =) > uluTo)g((v —wTo)e T 22.11)
v=0u=0

With the substitution ¢ = v — p one gets

V) =Y g(qTo)e ™08 3 u(uTo)e ™00 = G*(su*(s) . (2.2.12)
- =
Here,
G*(s) = Zg(qT ye~4Tos (2.2.13)
*( ) =

is called the impulse transfer function. The impulse frequency response then becomes

G*(iw) = lim G*(s), w < — . (2.2.14)
s—iw To
It must be kept in mind that for a continuous signal that has been sampled at the
angular frequency wy = 21/ Ty, only harmonic signals with an angular frequency
w < ws With
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o _ 7 2.2.15
ws = — = To (2.2.15)
can be detected correctly as harmonic signals with the true angular frequency w
according to Shannon’s theorem. For signals with @ > wg one gets phantom output
signals with a lower frequency upon sampling of the signal. This is described as the
aliasing effect.
Upon introduction of the short hand notation z = eTos = eTo(6+io) jh10 (2.2.14),
one obtains the z-transfer function (see Fig. 2.4)

G(z) = % = kgog(kTo)Z_k = 3{g(kTo)} . (2.2.16)

For a given s-transfer function G(s) one obtains the z-transfer function by

=

G(z) = 3{[8—1{G(S)}] TO} =3{G(s)} . (2.2.17)

The abbreviation 3{...} means to take the corresponding z-transform for a given
s-transform from an s- and z-transform table (e.g. Isermann, 1991).

If the process with the transfer function G(s) is driven by a sample and hold
element of order zero, the resulting z-transfer function is given as

HG(z) = 3{H(s)G(s)} = 3%%{1 — e_Tos}G(s)}

SN ISR ETY

N Z S

(2.2.18)

Note that the parameters @; and b; of the z-transfer function (2.2.19) are different
from those of the s-transfer function in (2.1.22).

z-Transfer Function

If the differential equation (2.1.21) of a linear process is known, one can determine
the corresponding s-transfer function by (2.1.22) and subsequently determine the
z-transfer function by means of (2.2.17) or (2.2.18) as

y(@)  bo+biz7 4. 4+ bpz™  BY)
u(z) l4+aiz7'+...+apz™" A(z™YH

Giz™hH = (2.2.19)
In many cases, the polynomial order of numerator and denominator will be the same.
If the process contains a dead time Tp = d Ty withd = 1,2, ..., then the z-transfer
function is given as

B(Z -1 ) —d

Gz hH= mz (2.2.20)
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Fig. 2.5. State space representation of a SISO system with sampled input and output

Difference Equations
If (2.2.19) is rewritten in the form

y@ (M +aiz '+ . +apz) =u@)(bo+ b1z + ...+ buz ™) (2221)
one can rewrite this in the time domain as

yk)+arytk—1)~+...+ayyk —n) = bou(k) +bju(k —1)+...+ bpu(k —m)

(2.2.22)
with the short hand notation (k) instead of (kTy). The coefficients of this difference
equation will of course be different from the coefficients of the differential equation
in (2.1.21). The shape of the impulse response can be derived from the difference
equation by choosing the §-impulse as input, which is equal to

Ofork #0

uk) = l1fork =0

(2.2.23)

in the discrete time. It follows from (2.2.22) with y (k) = g(k)

g(0) = b
g(1) =b1 —ai1g(0)
g(2) = by —a1g(1) —axg(0)

gky=>br —a1gtk —1)—...—arg(0)fork <m
glk) =—a1gtk —1)—...—a,glk —n) fork >m .

State Space Representation

For discrete-time signals, the state space representation is given as
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x(k +1) = Agx (k) + bau(k) (2.2.24)
y(k) = ejx (k) + dqu(k) (2.2.25)

with the state vector
x(k) = (x10k) x20k) ... xm(k))" (2.2.26)

see Fig. 2.5. With the relations

Ag = & (Tp) = e4T0 (2.2.27)
To
by = H(Tp) = / eATo=Dpdr (2.2.28)
0
cl=cT (2.2.29)
di=d, (2.2.30)

compare (2.1.27), one can calculate the discrete-time representation in the state space
from a continuous-time model. Furthermore, using

Gz = 2@ _ ci(zl —Ag) by, (2.2.31)

u(z)
one can derive a transfer function representation in the form given in (2.2.19). The
derivation and further properties are in detail discussed e.g. in (Isermann, 1991; Heij
et al, 2007). In Sect. 15.2.2, techniques are presented that interpolate the input signal
u (k) between the sampling points.
The response of the state space MIMO system to an arbitrary input is given as

k—1

x(k) = Akx () + > A5 Bau(v) (22.32)
v=0

y(k) = Cqx (k) + Dgu(k) (2.2.33)

and will become important for subspace identification methods presented in Chap. 16.
For discrete-time state space systems, a few more properties shall be introduced now,
also with respect to the later discussed subspace methods.

In the following, the index “d” will not be used for the discrete-time matrices.
The term realization will be used for a MIMO state space system consisting of the
matrices Aq, B, C, and D. There is an infinite number of realizations that describe
the same input/output behavior, therefore the term minimal realization will be intro-
duced. Such a realization has the least number of state variables necessary to describe
a certain input/output behavior.

A realization is called controllable if any final state x (¢1) can be reached in the
finite time interval [#¢, ¢1] from any arbitrary initial state x (¢9) by choosing an appro-
priate input sequence. A realization with state space dimension 7 is controllable, if
the controllability matrix Qs
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Os = (B AB ...A"_lB) (2.2.34)

has full rank (i.e. rank 7). Other conditions that allow to test for controllability are
e.g. given in (Heij et al, 2007) and (Chen, 1999), where also the continuous-time
case is treated in detail and controllability indices are introduced.

Observability means that the states at time ¢ and any other time ¢ in the interval
[to, 1] can be reconstructed from a measurement of the input u(k) and output y (k)
over the time interval [, ¢1]. A realization with state space dimension 7 is observable
if the observability matrix Qg defined as

Cc
CA
Op = . (2.2.35)

crA

has full rank (i.e. rank n), see also (Heij et al, 2007) and (Chen, 1999). Observ-
ability does not depend on the measured data, but is a system property (Grewal and
Andrews, 2008). In the same citation, it is pointed out that due to the normally in-
evitable differences between the mathematical model and the real system, the formal
measure of observability might fall to short. One should always check the condition
number of the observability matrix to see how close this matrix is to being singular.
Finally, a realization is minimal, if and only if the realization is both controllable and
observable.

2.3 Models for Continuous-Time Stochastic Signals

The course of a stochastic signal is random in its nature and can thus not be charac-
terized exactly. However, by means of statistic methods, the calculus of probabilities
as well as averaging, properties of these stochastic signals can be described. Mea-
surable stochastic signals are typically not entirely random, but have some internal
coherences which can be cast into mathematical signal models. In the following, the
most important terms and definitions of stochastic signal models will be presented
in brief. The scope is limited to those terms and definitions required for the identifi-
cation methods described in this book. An extensive treatment of the subject matter
can be found e.g. in (Astrém, 1970; Hénsler, 2001; Papoulis and Pillai, 2002; Soder-
strom, 2002; Zoubir and Iskander, 2004).

Due to the random behavior, there exists not only one certain realization x1 (¢),
but rather an entire family (termed ensemble) of random time signals

{xl(t), x2(t), ..., xn(t)} . 2.3.1)

This ensemble of signals is termed a stochastic process (signal process). A single
realization x; (t) is termed sample function.
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Statistical Description

If the signal value of all sample functions x;(¢) is considered at a certain point in
time ¢t = ¢, then the statistical properties of the signal amplitudes of the stochastic
process are described by the probability density function (PDF), p(x;(ty)) fori =
1,2,...,n.

Internal coherences are described by the joint probability density function at dif-
ferent points in time. For the two points in time #; and 7, the two-dimensional joint
PDF is given as
0< 11 <00

p(x(t1), x(t2)) for 0=t <00’ (2.3.2)

which is a measure for the probability that the two signals values x (1) and x(t2)
appear at #; and #, respectively. For the appearance of n signal values at the times
t1,12,..., 1, one has to consider the n-dimensional joint PDF

p(x(t1). x(12), ..., x(t)) . (2.3.3)

A stochastic process is fully characterized if the PDF and all joint PDFs for all n and
all # are known.

So far, it has been assumed that the PDF and all joint PDFs are a function of time.
In this case, the stochastic process is termed non-stationary. For many areas of ap-
plication however, it has not proven necessary to use such a broad all-encompassing
definition. Therefore, only certain classes of stochastic processes will be considered
in the following.

Stationary Processes

A process is strict sense stationary (SSS) if all PDFs are independent from a shift in
time. By calculation of the expected value, denoted by the linear operator E{. . .},

E{f(x)} = /_ f(x)p(x)dx . (2.3.4)

one can derive characteristic values and characteristic curves of stationary processes.
With f(x) = x", one obtains the n'" moment of a PDF. The moment of order 1 is

the (linear) mean
X =E{x(1)} = f

o0

x(t)p(x)dx (2.3.5)

of all sample functions at time ¢ and the central moment of second order is the vari-

ance
o0

o7 =E{(x(t) —%)*} = / (x(t) = X)%p(x)dx . (2.3.6)

The two-dimensional joint PDF of a stationary process is according to its definition
only dependent on the time difference t = ¢, — f1, thus

p(x(t1).x(t2)) = p(x(1).x(t + 7)) = p(x.7) . (2.3.7)
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The expected value of the product x(¢)x (¢ 4 ) is then

Ru(t) = E{x()x(t + 1)} = /_00 /_oo x()x(t + t)p(x,r)dxdx, (2.3.8)

which is also only a function of 7 and is termed auto-correlation function (ACF).
A process is wide sense stationary (WSS) if the expected values

E{x(r)} = X = const (2.3.9)
E{x(1)x(t + 1)} = R« (t) = const (2.3.10)

are independent of time, i.e. the mean is time independent and the ACF does only
depend on the time difference t. Furthermore, the variance needs to be finite (Ver-
haegen and Verdult, 2007). The linear combination of stationary processes is also
stationary (Box et al, 2008).

Ergodic Processes

The expected values used so far are termed ensemble averages, since one averages
over multiple similar random signals, which have been generated by statistically
identical signal sources at the same time. According to the ergodic hypothesis, one
can obtain the same statistical information (which one gets from ensemble averag-
ing) also from averaging a single sample function x(¢) over time, if infinitely long
intervals of time are considered. Thus, the mean of an ergodic process is given as

T
% =E{x()} = lim % / " x@)dt 23.11)

NN

and the quadratic mean as

~

o} =E{(x( =07} = lim %/ (x(t) —%)dr . (23.12)

S

N

Ergodic processes are always stationary. The opposite may not be true.

Correlation Function

Some first information about the internal coherences of stochastic processes can be
gathered from the two-dimensional joint PDF as well as from the ACF. For Gaussian
processes, this information does already determine all joint PDFs of higher order
and thus also all internal coherences. Since many processes can approximately be
assumed to be Gaussian, knowledge of the ACF is often sufficient to describe the
internal coherences of the signal. By multiplying the signal x (¢) with its time shifted
counterpart (in negative ¢-direction) x (¢ 4+ 7) and averaging, one gets information
about the internal coherences respectively conservation tendency. If the product is



48 2 Mathematical Models of Linear Dynamic Systems and Stochastic Signals

R (7) Fig. 2.6. General shape of the auto-
A correlation function of a stationary
stochastic process x(¢)

large, then there is a strong internal coherence, if it is small, then there is little coher-
ence. By correlating the signals, however, the time information of x (¢), i.e. the phase
is lost.

The auto-correlation function is given as

Ry (1) =E{x()x(t + 1)} = Tlim %/i x(t)x(t + t)dt
. 2 (2.3.13)
— lim %/_Zx(t—t)x(t)dt.

T —o00

In the past, it had sometimes been termed correlogram (Box et al, 2008).
For stationary stochastic signals of infinite length, the ACF has the following
properties:

1. The ACF is an even function, Ry (7) = Rxx(—7)
2. Rx(0) = xz(t)
3. Ry (oc0) = x(t) , which means that for t — o0, the signals can be considered

uncorrelated
4. R(7) < R (0)

With these properties, one gets in principle the curve shown in Fig. 2.6. The faster
the ACF decays to both sides, the smaller the conservation tendency of the signal,
see Fig. 2.7b and Fig. 2.7c. The ACF can also be determined for periodic signals.
They show the same periodicity and are ideally suited to separate noise and periodic
signals, see Fig. 2.7d and Fig. 2.7e.

The statistical coherence between two different stochastic signals x () and y(¢)
is given by the cross-correlation function CCF,

Ry(r) = E{x(t)y(t + 1)} = Th_r)noo % /_7 x()y(t + ©)de

r
2

. (2.3.14)
= lim ?/ x(t—1)y(t)de .

T —o00 T
2
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Signal Auto-Correlation Power Spectral
Function Density
a) Xx(f) R.(@) S(@)
A
Not Repre- -
sentable

—

b)

<)

d)

e)

¢ yE
T

Fig. 2.7. Auto correlation function and power spectral densities of different signals. (a) white
noise, (b) high-frequent noise, (¢) low-frequent noise, (d) harmonic signal, (e) harmonic signal
and noise, (f) constant signal
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The CCF is in contrast to the ACF not a symmetric function. The relative phase
between the two signals is conserved. The CCF has the following properties:

Ryy(7) = Ryx(—7)
R,y (0) = x(#)y (), i.e. mean of the product

Ryy(00) = x(t) y(t),i.e. product of the means
Ryy(1) < 1/2(Rxx(0) 4+ Ryy(0))

Sl

Covariance Function

The above defined correlation functions depend on the mean of the signals. If one
however subtracts the mean of each signal before calculating the correlation func-
tions, one gets the so-called covariance functions. For a scalar process x(t), the
auto-covariance function is defined as

Cux(7) = cov(x,7) = B{(x (1) = X)(x(t + 1) = X)} = B{x()x(t + 1)} — %>
(2.3.15)
With 7 = 0, one gets the variance of the signal process. The cross-covariance func-
tion of two scalar processes is defined as

Cyy(v) = cov(x,y,7) = B{(x(t) = X)(y(t + 1) =)} = E{x())y(t + 1)} =Xy .

(2.3.16)
If the mean of the two processes is zero, correlation and covariance function are
identical. Vectorial processes will be described by the covariance matrix accordingly.

Power Spectral Density

So far, the stochastic signal processes have been examined in the time domain. By
transforming the signals into the frequency domain, one gets a spectral representa-
tion. For a non-periodic deterministic function x(¢), the complex amplitude density
is defined as the Fourier transform of the signal x(¢). Accordingly, the power spec-
tral density of a stationary stochastic signal is defined as the Fourier transform of the
auto-correlation function, i.e.

S (iw) = / = Ry (T)e ' @%dr . (2.3.17)

o

The inverse Fourier transform is then given as

o

1 .
Rix() = 5 / Syx(iw)e®dw . (2.3.18)
—00

Since the auto-correlation function is an even function, i.e. Rxx(7) = Rxx(—7), the
power spectral density is a real-valued function,

Su(@) =2 /0

oo oo

Ry (1)e @dr =2 / Ry (1) cos wtdr . (2.3.19)
0
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It is also an even function, since Six(w) = Sy (—w). With T = 0, from (2.3.18)
follows

Ru(0) = B{x0) %} = GO -9 = 0 = 5= [ sis(ioe
T -0 (2.3.20)

1 o0
= —[ S (iw)dw .
T Jo

The quadratic mean respectively the average power of the signal x(¢) — X is thus
proportional to the integral of the power spectral density. Some examples of shapes
of the power spectral density are shown in Fig. 2.7.

The cross power spectral density of two stochastic signals x(¢) and y(¢) is de-
fined as the Fourier transform of the cross-correlation function, i.e.

o0
Syy(iw) = / Ryy(v)e“Tdr (2.3.21)
—0o0
and the inverse transform
1 © .
Ryy(7) = —/ Syy(iw)e' T dw . (2.3.22)
27 J oo

Since Ryy(7) is no symmetric function, Syy(iw) is a complex function with axis-
symmetric real part and point-symmetric imaginary part. As a side note, (2.3.17),
(2.3.18), (2.3.21), and (2.3.22) are termed Wiener-Khintchin relations.

2.3.1 Special Stochastic Signal Processes
Independent, Uncorrelated, and Orthogonal Processes

The stochastic processes x1(¢), x2(), ..., X, (¢) are termed statistically independent
if

p(x1, X2,..., Xp) = p(x1)p(x2) ... p(xn) , (2.3.23)

that is if the joint PDF is equal to the product of the individual PDFs. Pairwise inde-

pendence
p(x1, x2) = p(x1) p(x2) (2.3.24)
p(x1, x3) = p(x1)p(x3) o

does not imply total statistical independence. It does only indicate that the non-
diagonal elements of the covariance matrix will be zero, meaning that the processes
are uncorrelated, i.e.

cov(x;, xj, t) = Cx;x,;(t) =0fori # j . (2.3.25)

Statistical independent processes are always uncorrelated, the opposite may how-
ever not be true. Stochastic processes are termed orthogonal if they are uncorrelated
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and their means are zero, so that also the non-diagonal elements of the correlation
matrix become zero,
Ryix;(t) =0fori # j . (2.3.26)

Zero-mean random variables are orthogonal, if they are uncorrelated, the opposite
may not be true.

Gaussian or Normal Distributed Processes

A stochastic process is termed Gaussian or normal distributed, if it has Gaussian or
normal amplitude distribution. Since the Gaussian distribution is entirely determined
by the two first moments, i.e. the mean X and the variance 03, the distribution laws
of a Gaussian process are entirely defined by the mean and the covariance function.
From this follows that a Gaussian process which is wide-sense stationary is also
strict-sense stationary. Due to the same reason, uncorrelated Gaussian processes are
also statistically independent. Under all linear algebraic operations and also under
differentiation and integration, the Gaussian character of the distribution remains. A
short hand notation for a Gaussian process is given by (X, o).

White Noise

A signal process is designated as white noise if signal values, which are only in-
finitesimally small apart in time are still statistically independent, such that the auto-
correlation function is given as

Ryx(t) = Spé(7) . 2.3.27)

White noise in continuous-time is thus a signal process with infinitely large ampli-
tudes which has no internal coherences. One can think of this process as a series of
§-impulses with infinitesimally small distances. The power spectral density is given
as

o0
S (1) = / Sod(v)e ®Tdr = S . (2.3.28)

The power spectral density is thus constant for all angular frequencies. Therefore
all angular frequencies from zero to infinity are equally represented (alluding to the
frequency spectrum of white light, which contains all vsisble spectral components).
The mean power follows from (2.3.28) as

1 [ So [

x2(t) = — Six(w)dw = — do = . (2.3.29)
7 Jo T Jo

White noise in continuous-time is therefore not realizable. It is a theoretical noise

with infinitely large mean power. By applying suitable filters, one can generate broad

band-limited “white” noise with finite power or small band-limited colored noise.
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Periodic Signals

The correlation functions and power spectral densities are not limited to stochastic
signals, but can also be applied to periodic signals. For a harmonic oscillation

2w
x(t) = x¢ sin(wot + «) with wy = T (2.3.30)

0

the auto-correlation function is given as
T
22 (2 , x3
Rix(7) = T sin(wot + @) sin(wg(t + 1) + @)dt = 2 coswot . (2.3.31)
0o Jo

It is sufficient to integrate over half a period. The ACF of a sine oscillation with
arbitrary phase «, is thus a cosine oscillation. Frequency wo and amplitude x( are
conserved, the phase information « is lost. Harmonic signals thus have a harmonic
ACF. The harmonic signals are hence treated different than stochastic signals. This
is a feature, which makes the correlation function a well suited foundation for many
identification methods.

The power spectral density of a harmonic signal follows from (2.3.17) as

X2 [’}
S (@) = =2 cos W T cos wtdt
2
—00

x2 e8] )C2 o0
=2 / cos(w — wg)tdr + —Of cos(w + wp)tdr (2.3.32)
2 J 2

2
- %O(S(w — wo) + 8( + wo)) -

As can be seen, the power spectral density of a harmonic oscillation thus con-
sists of two §-impulses at the frequencies wg and —wyg. This allows an easy and
well performing separation of periodic signals from stochastic signals. The CCF
of two periodic signals x(¢f) = xgsin(nwot + o) with n = 1,2,3,... and
y(t) = yo sin(mwot + o) withm = 1,2,3,... s

X0Y0
Ty

T
7
Ry(r) = / sin(nwot + o) sin(mwo(t + 1) + oy)dt =0ifn #m ,
0

(2.3.33)
which means that only harmonics of the same frequency contribute to the CCF. This
is another important property that is exploited in some identification methods, such
as the orthogonal correlation, Sect.5.5.2.

Linear Process with Stochastic Signals

A linear process with the impulse response g(t) is driven by a stationary stochastic
signal u(¢) which evokes the zero-mean output signal y(¢). The CCF is then given
as
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Ruy(1) = E{u(0)y(t + 1)} . (2.3.34)

If one substitutes the convolution integral for y (¢ + 7), the CCF becomes
(o)
Ry(7) = E{u(z‘)/ g(u@ + v —t)dt
0
oo
=f g E{u(tyu(t + v —1')}dr’ (2.3.35)
0

= /Oo g(t")Ry(z —t))dt" .
0

Similarly to the input u(#) and output y(¢) of a linear system, compare (2.1.3), also
the ACF and CCF are linked by the convolution integral. The cross power spectral
density, i.e. the Fourier transform of the CCEF, is given as

S .
Suy(iw) =/ Ryy(r)e ' “Tdr

[e.]

_OO o0 .
= / / gt )Ry (r —t')dt'e " dr
—o0 J0

o oo ' (2.3.36)
= / g(t’)dt’/ Ry (z —t)dt'e™*"dr
0Oo ' —/oo
= / g(te 0 dt Syu(iw) .
0
Thus, it follows, that
Suy(iw) = G(iw)Sw(iw) , (2.3.37)
and furthermore
Syy(iw) = G(iw) Sy, (iw) (2.3.38)
Syu(iw) = Suy(—iw) (2.3.39)
Syy(iw) = G(iw)G(—iw) Sy (iw) = |G (iw)|*Swu(iw) . (2.3.40)

The term G(—iw) stands for the complex conjugate of the transfer function G (iw),
the complex conjugate transfer function is sometimes also denoted as G* (iw), see
e.g. (Hansler, 2001; Kammeyer and Kroschel, 2009). Using white noise with the
power spectral density Sy as input, one can generate different colored noises with
the power spectral density

Syy(iw) = |G(iw)|*So (2.3.41)

by shaping the frequency response with an appropriate filter.

2.4 Models for Discrete Time Stochastic Signals

Discrete time stochastic signals are typically the result of sampling a continuous-time
stochastic signal. The statistical properties are very similar to those just described for
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continuous-time signals, from the statistic representation to ergodicity up to the cal-
culation of the correlation functions and covariance functions. The main differences
are that one uses the discrete-time k = ¢t/Ty = 0,1,2,... and that the integrals
are replaced by sums. The PDF (probability density function) does not change since
the amplitudes remain continuous. A thorough treatment of discrete-time stochastic

processes is e.g. presented by Gallager (1996) and Hénsler (2001).

Stationary Processes

The equations are given as follows:

e Mean

e Quadratic mean (variance)
1N
2 _ _H2 — i ey
of = E{(x(k) =%} = lim — k§_1:<x<k> )

e Auto-correlation function (ACF)

N

R (1) = E{x(k)x(k + 1)} = ngnoo% > x(k)x(k + 1)

k=1

e Cross-correlation function (CCF)
N
1

Ry (r) =E{x(k)y(k + )} = lim — 3 x(k)y(k + 1)

k=1

1 N
= Jim ; x(k =)y (k)

e Auto-covariance function
C (1) =cov(x,7) = E{(x(k) = X)(x(k + 1) — %)}
=E{x (k)x(k + t)} —x?
e Cross-covariance function

Cyy(1) =cov(x. y.7) = B{(x(k) = D)(y(k + ) = )}
=E{x(k)y(k + 1)} - Ty

2.4.1)

(2.4.2)

(2.4.3)

2.4.4)

(2.4.5)

(2.4.6)
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Power Spectral Density

The power spectral density of a stationary signal is defined as the Fourier transform
of the auto-correlation function and is given as

S:x(ia)) = %{ xx(r) Z Ry (7)e” itwTy (2.4.7)

T=—00

or by applying the two-sided z-transform

Sw(2) = 3{Ru(0)} = Z R (0)27°. (2.4.8)

T=—00

White Noise

A discrete-time signal process is termed white noise if the (finitely separated) sam-
pled signal values are statistically independent. Then, the correlation function is
given as

Ry (1) =02 8(7), (2.4.9)
where §(7) in this context refers to the Kronecker Delta function defined as

lfork =0

§(k) = {O for k £ 0 (2.4.10)

and o7 refers to the variance. The power spectral density (2.4.8) of a discrete white
noise signal is given as

o0
Swx(z) = sz Z 8(r)z7 t = o = S0 = const . 2.4.11)
T=—00

The power spectral density is thus constant in the interval 0 < |o| < n/Tp. It
is noteworthy that the variance of a discrete-time white noise is finite and thus the
signal becomes realizable in contrast to a continuous-time white noise signal.

Linear Process with Stochastic Signals

In analogy to the continuous-time case, the ACF Ry, () and the CCF Ry (7) are
linked by the convolution sum as

Ruy(t) = Y glk)Ru(t — k) . (2.4.12)

k=0
For the power spectral density, one gets

Sl:‘y(iw) G*(iw)S;,(iw) in the interval |w| < % (2.4.13)
0

or
Suy(2) = G(2)Swi(2) (2.4.14)
respectively.
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Stochastic Signal Models

MA AR
: ) = pintal oy
C C

Deterministic Models with Stochastic Disturbance

ARX

Fig. 2.8. Different models for stochastic signals and deterministic models with stochas-
tic ditsurbance. Model naming as follows: AR=Auto Regressive, MA=Moving Average,
X=eXogenous input, OE=Output Error, BJ=Box-Jenkins, FIR=Finite Impulse Response, v
white noise, u process input, y (disturbed) process output, see also (Ljung, 1999; Nelles,
2001)

Stochastic Difference Equation

Scalar stochastic processes can be described by stochastic difference equations in the
form of a parametric model, which in the linear case is given as

yk)+ciytk—1D)+...4+chpyltk—n) =dov(k)+divik—1)+...+dpv(ik —m) ,
(2.4.15)
where y (k) is the output of an imaginary filter with the z-transfer function

y(@) _do+diz7' +...+duz™" _ DT

Ge(z™h) = = =
) v(z) l4+ciz7l 4+ 4 cpz™ C(z™h)

(2.4.16)

and v(k) being a statistically independent signal, i.e. a white noise with (0, 1), see
Fig. 2.8. Stochastic differential equations thus represent a stochastic process as a
function of a discrete-time white noise. For the analysis of stochastic processes, the
following typical cases must be considered.

The auto-regressive process (AR) of order n is described by the difference equa-
tion

yk)+caytk—1)4+...+cpytk —n) =dov(k) . (2.4.17)
In this case, the signal value y(k) depends on the random value v(k) and the
weighted past values y(k — 1), y(k — 2),..., thus the term auto-regression, see

Fig. 2.8. The moving average process (MA) in contrast is governed by the differ-
ence equation
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y(k) = dov(k) + dyw(k — 1) + ... + dwv(k —m) . (2.4.18)

It is thus the sum of the weighted random values v(k), v(k — 1),..., v(k —m),
which is a weighted average and can also be termed as an accumulating process. Pro-
cesses governed by (2.4.17) and (2.4.18) are called autoregressive moving-average
processes (ARMA), Fig. 2.8. Examples are given e.g. in the book by Box et al (2008).
If the output y (k) of such an ARMA process is integrated 1 up to d times over time,
then an ARIMA process results, where the I stands for integrating. For the extensive
treatment of discrete-time stochastic processes, such as Poisson processes, renewal
processes, Markov chains, Random Walks and Martingales, the reader is referred to
(Gallager, 1996; Astrﬁm, 1970).

Deterministic Models with Stochastic Disturbances

If a deterministic model is combined with a stochastic disturbance, then several dif-
ferent model structures can result, see Fig. 2.8 for a selection of the most typical
ones. If the system is also controlled by an exogenous input u(k), then one is faced
with an ARX, where the X stands for eXogenous input. The ARX model is given as

yk)y+ciytk—1)+...+cpytk—n) =dov(k) +byutk —1)+ ...+ byu(k —n) .

(2.4.19)
This model is most often used for identification tasks (Mikle§ and Fikar, 2007).
Goodwin and Sin (1984) suggested to use a leading “D” to denote a deterministic
model. Typically a leading “N” refers to a non-linear model and “C” has been used
by some authors to denote a continuous-time model.

2.5 Characteristic Parameter Determination

To get a rough idea about the process to be identified and even find approximate val-
ues, it is often advisable to throw a glance at the step response or impulse response.
While the step response respectively impulse response is in many cases easy to mea-
sure, it can give some rough estimates of important system parameters as e.g. the
settling time, the damping coefficient, and such. This section will provide a compi-
lation of characteristic values of special cases of the generic transfer function

_y(8) _ B(s)  bo+bis+ ...+ bu 15" + bys™
T uls)  A() 14 ais+ ...+ an_15" 4 aust

based on some basic properties of e.g. step responses.

The individual characteristic values can directly be taken from the recorded step
responses (or sometimes impulse responses) and can be used to determine coeffi-
cients of special transfer functions by means of simple calculations. They are the ba-
sis of very simple identification methods. These simple identification methods have
been derived in the time around 1950-1965 and allow to generate simple parametric
models based on the characteristic values of easy to measure step responses. It is
assumed in the following that

G(s) 2.5.1)
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Fig. 2.9. Characteristics of the step re-
sponse of a first order system

o)

¥

4 L
T T

e the recorded step response is almost disturbance-free
e the process can be linearized and approximated by a simple model
e the rough approximation is sufficient for the application at hand.

A detailed derivation of the characteristic values shall not be presented as this can be
found in many books on the fundamentals of controls engineering (e.g. Ogata, 2009).
In mechanical analysis, one often deals with the impulse response, when a structure
is hit e.g. by a hammer and the acceleration of different parts of the structure is
recorded.

2.5.1 Approximation by a First Order System

A first order delay is given by the transfer function

b K
Gisy =2 = Lo _ (2.52)
u(s) l+as 14sT
and the step response
y(t) = Kug(1—eT). (2.5.3)
For a unit step with uy = 1, the step response is given as
h(ty=K(1—eT). (2.5.4)

The step response is fully described by the gain K and the time-constant 7'. After
the time t = 7, 37, 5T, the step response has reached 63%, 95%, 99% of its final
value. The gain can easily be determined by the ratio between the final value y(co)
and the step height u¢ as

y(0)

K = . 2.5.5)
Uo

In order to obtain the time constant T, one can exploit the property that for any

arbitrary point in time
dy(®) _ y(c0)
dt T

If one constructs the tangent to the step response at an arbitrary point in time #1, then

S

(2.5.6)
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12 t [min] | T'[°C]
116 0:05 11.0
0:11 10.5
10 | 0:24 10.0
0:40 9.5
9 0:55 9.0
=Y 1:15 8.5
02 8 1:35 8.0
& 2:00 7.5
7 2:34 7.0
3:25 6.5
6 4:01 6.0
5:30 5.5
5 7:40 5.0

4

o 1 2 3 4 5 6 7 8 9 10
Fig. 2.10. Step response of a resistance thermometer (¢ = 5 mm) surrounded by quiet air

Ay(t)/y(o0) e T
At T

i.e. it intersects the final value line at a distance 7" from point ¢1, see Fig. 2.9. Espe-
cially, for t; = 0,

(2.5.7)

Ay(0) _ y(oo)

At T

so that one can read out the time constant 7 by constructing the tangent to the step

response at the origin and considering the intersection of this tangent with the final
value line.

(2.5.8)

Example 2.1 (Transfer Function of a Resistance Thermometer (d = 5mm) Sur-
rounded by Quiet Air).

In this example, the transfer function of a digital thermometer has been identified.
For this experiment, the thermometer has first been covered by a shutter and has then
been exposed to the outside temperature. The measurements are shown in Fig. 2.10
and the time constant has been identified as 7 = 2.18 min. O

2.5.2 Approximation by a Second Order System

A second order system is governed by the transfer function

() bo B K _ K
u(s) 14ais+axs? 1+ Tys + TEs? 1+%€S+#s2 ’
(2.5.9)
where K is the gain, ¢ the damping ratio and w, the undamped natural frequency.

The two poles are given as

G(s)
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S12 =wn<—§:|: Vet - 1). (2.5.10)

Depending on the size of £, the radicant is positive, zero, or negative. One can thus
distinguish three cases as discussed in the following. A parameter study of { can be
seen in Fig. 2.11

Case 1: Overdamped, ¢ > 1, Two Real Poles

In this case, the poles are negative real and unequal. The system can hence be realized
by a series connection of two first order systems. The step response is given as

h(t) = K(l + (52”1 —sle”’)) . (2.5.11)

51— 82

Case 2: Critically Damped, ¢ = 1, Double Pole on the Real Axis

Here, the poles are still negative real, but are now equal. This case can be realized by
the series connection of two identical first order systems and is characterized by the
shortest response time of all second order systems. The step response reads as

h(t) = K(1 = (1+ 0n(1)) - (2.5.12)

Case 3: Underdamped, 0 < ¢ < 1, Conjugate Complex Pair of Poles

In contrast to the first two cases, the system will show damped oscillations. Two
additional characteristic values will now be introduced

wg = way/1 =2 2 Damped natural frequency (2.5.13)
y = lw, Damping coefficient . (2.5.14)

With these definitions, the step response is given as

1
h(t) = K (1 — ———=¢""sin(wat + (p)) (2.5.15)
V1-2¢2
with
(O] 2
¢ = arctan — = arctan{y/1 — {“ . (2.5.16)
4

(2.5.15) describes a phase-shifted damped sine function. The maximum overshoot
over the final value line is given by

Ty
wq ’

Ymax,K = Ymax — K= KCXP— 2.5.17)
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Fig. 2.11. Step response of a second order system for different damping factors ¢

For a given step response, one can first identify the intersection points of the step
response with the final value line. The period time of the oscillation 7p leads to the
damped natural frequency as

2n (2.5.18)
W= — . S.
4=
From the maximum overshoot, one can then determine the damping coefficient as
K
y =20, (2.5.19)
T ymax,K
From (2.5.13) and (2.5.14), one can calculate wg and ¢ as
1
{=—7F— (2.5.20)
[0}
(5) +1
o =Y. (2.5.21)

¢

The amplitude of the frequency response has a maximum at the resonant frequency

wr = wpy/1 =282 (2.5.22)

for0<¢ <1/ /2 with the maximum magnitude given as
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K
ofi-2

2.5.3 Approximation by n'" Order Delay with Equal Time Constants

1G(wy)| = (2.5.23)

Aperiodic systems of order n are typically realized by a series connection of n mu-
tually independent storages of first order with different time constants, thus

G(s) = y(s) k=1 _ K
(s) n l4+ais+...+a,s"
1_[(1 + Tys) " (2.5.24)
k=1
Ksisy...5,

T s —52) ... (5 —sn)

with
a1=T1+To+...4+T, (2.5.25)
an =T T»...T, (2.5.26)
1
=—. 2.5.27
Sk T ( )

Thus, the behavior of the system is fully characterized by the gain K and the n time
constants, 7;. The corresponding step response is given as

n
h(t) = K(l + anesa”) , (2.5.28)
a=1
where :
cq = lim —(s —s54)G(5) . (2.5.29)
S—>Sa S

For passive systems, the energy/mass/momentum stored in the system during the
step response is proportional to the individual time constant Ty. Therefore, the total
amount of energy/mass/momentum stored in the whole system of order n must be
proportional to the sum of all time constants. Thus, the area A in Fig. 2.12 is given
as

A=Ky(00) Y Ty =Ky©)(T1+ T2 +...+ Tp)

a=1

=Ky(c0)Ts = Ky(c0)a; .

(2.5.30)

In the following,
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y() Area 4 = Stored EneM

64

h() [-]

h(t) [-]

h(@) [-]

l‘./Tz [-]

Fig. 2.14. Step responses of an aperiodic system of order n with equal time constants (Radtke,

1966)
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Fig. 2.15. Step responses of an aperiodic system of order n with transfer function G(s) =
1/(Ts+ 1)"andn =1,2,...,10

Ty =) Ty (2.5.31)

will denote the sum of time constants. It is an additional characteristic quantity to de-
scribe the systems behavior. The sum of time constants can be estimated by drawing
a parallel line to the y-axis at t = T, such that the area A is divided into two areas
Aj and A, of identical size, see Fig. 2.13. Figure 2.14 depicts the step responses of
aperiodic systems of order n with equal time constants

T=Ti=Th=..=T,. (2.5.32)

The step responses are shown in a time scale ¢ which is referred to the sum of time
constants Ty, which guarantees that all systems store the same amount, i.e. the area
A in Fig. 2.12 is the same. Step responses with equal time constants represent the
limiting case of a critically damped system. The step responses with n > 2 intersect
each other in one point. The variation of the order n is also shown in Fig. 2.15. It
graphs the step response of the system

K

on the referred time scale ¢/ T'. The step responses are given as

n—1

h(t) = K(l —e T 3 %(%)Q) . (2.5.34)

a=0
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Fig. 2.16. Impulse responses of an aperiodic system of order n with transfer function G(s) =
1/(Ts+ D"andn =1,2,...,10

The impulse responses are governed by (Strejc, 1959)

tn—l

) K - (2.5.35)
=——7 ¢ 5.
§ " (n—1)!
These impulse responses forn = 1,2, ..., 10 are shown in Fig. 2.16. The maximum
of the impulse response results as
max Umax) = ————— 2.5.36
Zmax (fmax) T =1 ( )
at the time
t =thx = m—1)T forn>2. (2.5.37)
For equal time constants, one gets in the limiting case n — oo
. —n : Ts - —Tss
Gis)=1lim(A+Ts)™" = lim |14+ —s =e 'F (2.5.38)
n—00 n—o00 n

with Ty = nT and |Txs/n| < 1. Thus, it follows that the coupling of infinitely
many first order systems with infinitesimally small time constants shows the same
behavior as a dead time with Tp = Tx.

A common method to characterize the transfer function of systems with order
n > 2 is by means of the characteristic times 7p and 75 which can be determined by
constructing the tangent at the inflection point Q with tg and yq, see Fig. 2.17. From
(2.5.33), one can determine the characteristic quantities fq, yq, Tp, and Ts,
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Fig. 2.17. Determination of delay time 7p
and settlement time 7g for the step re-
sponse of system with order n > 2

IQ
= =n-1 2.5.39
T =" ( )
n—1
— 1V
Y _ | -1 3 (=" ' ) (2.5.40)
Yoo 0 v
TS (l’l - 2)' n—1
—_= 2.5.41
T~ n—1)yn—2° 2.541)
To =20 (,, S@-1
v=0
Forn = 1,..., 10, the values are tabulated in Table 2.1. The characteristic values

Tp/Ts and yq do not depend on the time constant 7' but only the oder n. For 1 <
n <7, the approximation

T
na10-2 + 1 (2.5.43)
Ts

is valid. By determining the values Tp, Ts, and y., from the measured step response
according to Fig. 2.17, one can then use Table 2.1 to determine the parameters K, T,
and n of the approximate continuous-time model according to (2.5.38).

For the approximation by an n™ order system with equal time constants one
should use the following approach:

1. First of all, one has to test whether the system under investigation can in fact
be approximated by the system given in (2.5.38). To determine the feasibility,
one has to estimate the total time constant 7 according to Fig. 2.13. Then,
the measured data can be drawn in a diagram with the axis ¢ referred to the
total time constant Ty, and it can be checked whether the system can in fact be
approximated by the model in (2.5.38). If the system under scrutiny contains a
dead time, this dead time has to be subtracted from the delay time Tp,.

2. Designation of system order n: By means of the ratio between delay time and
settlement time, Tp/ Ts, the system order can be read out from Table 2.1. The
result can be validated by checking the y coordinate of the inflection point. It
must be equal to yq.



68 2 Mathematical Models of Linear Dynamic Systems and Stochastic Signals

Table 2.1. Characteristic values of a system of order n with equal time constants (Strejc, 1959)

) Ty o Ty T Yo
Ts T T T Yoo

1 0 0 1 0 0
2 0.104 1 2.718 0.282 0.264
3 0.218 2 3.695 0.805 0.323
4 0.319 3 4.463 1.425 0.353
5 0.410 4 5.119 2.100 0.371
6 0.493 5 5.699 2.811 0.384
7 0.570 6 6.226 3.549 0.394
8 0.642 7 6.711 4.307 0.401
9 0.709 8 7.164 5.081 0.407
10 0.773 9 7.590 5.869 0.413

3. Specification of the time constant 7': The characteristic values fq, Tp, Ts allow
to determine the time constant 7" in three different ways based on Table 2.1.
Typically, the average of the three (different) estimates for T is taken.

4. Fixing the gain K: The ratio of the height of the step input, ug, and the final
displacement yo, of the system yields the gain K as

K== (2.5.44)

In the case of a non-integer system order 2, one can obtain a better approximation
by choosing the next lower integer system order 7, choosing the corresponding delay
time 77 and assigning the delta ATp = Tp — T} to a newly introduced dead time.
The approximation method described in this section requires little effort, but on the
other hand is very susceptible to noise and disturbances.

2.5.4 Approximation by First Order System with Dead Time

The step response of an n'" order system can be approximated by a first oder system

with dead time as
K

14+ Tps

with the delay time 7p and the settlement time Ty as defined in Fig. 2.17. The ap-
proximation fidelity achieved by this simple model is however in many cases not
sufficient.

Other identification methods with the determination of characteristic parameters
of step responses, as for second order systems or n™ order systems with unequal or
staggered time constants are summarized in (Isermann, 1992).

G(s) = e Tss (2.5.45)
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0 Fig. 2.18. Step response of a system with
4 integral action and additional delays

2.6 Systems with Integral or Derivative Action

The methods presented so far have been targeting proportional acting systems. How-
ever, with some easy modifications, also systems with integral or derivative action
can be investigated employing the methods derived so far.

2.6.1 Integral Action

An integral element with the transfer function

G(s) = e _ K1 2.6.1)

u(s) s :m

and the integral action coefficient K7 or the integral time 77 shows the response

_
() = TIt (2.6.2)

for a step input of height 1. The slope of the response is thus given as

dy@®) _ uo

= . 2.6.3
dt T ( )

By determining the slope dy(z)/d¢, the characteristic value 77 can be determined as

dt

If the system contains further delay elements according to
RGN 1

Tis ’
[T+ Tes)
k=1

(2.6.5)

then for the step response with u(s) = ug/s follows
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. dy(@®) T 2 T _Uo
zll>n<>lo 5 = }Ef(l)s y(s) = Sh_r)r(l)sG(s)uo =T (2.6.6)
The characteristic value 77 can thus be determined from the final value of the slope of
the step response by means of (2.6.3) and (2.6.6), see also Fig. 2.18. If the derivative

of the step response of the system is created graphically or by means of a computer

and therefore q
t
53{ %} — 5y(5) 2.6.7)

is treated as the system output, then the output can be generated by a proportional
acting system with
y(s) 1 1
G = == , 2.6.8
p(s) W) T (2.6.8)
[T0+ Tes)

k=1

whose characteristic values T} can be determined by means of the tools introduced
so far.

If the integral acting system with transfer function G(s) is excited by a short
square pulse of height uy and duration 7', which can be approximated by a §-impulse
of area u( 7T, then the Laplace transform of the output is given as

y(s) = G(s)uoT = I__ 1 W ) (2.6.9)

nr s
[]a+Ts)
v=1

The response can thus be interpreted as that of a proportional-acting system respond-
ing to a step input of height 1y and can then be examined by the methods learned so
far to obtain Ky = T'/ Ty and the T}.

2.6.2 Derivative Action

Systems with the transfer function

y(s) _ Tps
" Ta+ 7

k=1

G(s) =

(2.6.10)

with the differential action time Tp or differential action coefficient Kp = Tp have
step responses with the final value y(co) = 0. If one integrates the recorded step
response and interprets the result as the response to a step input, then the input and
output are connected by the hypothetical proportional acting system

2(5) o
s — , (2.6.11)
u(s) n
[]a+Ts)

v=1

Gp(s) =
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and its characteristic values 7Tp and Ty can again be identified by the methods pre-
sented so far.
Another method is to excite the system by a ramp

u(t) = ctoru(s) = % . (2.6.12)
s
Then one gets
T c
) = < (2.6.13)
[T+ Tus)
v=1

which corresponds to the step response of a proportional acting system. Thus one
can reduce the analysis of both systems with integral action as well as systems with
differencing action to the analysis of proportional acting systems.

2.7 Summary

After compiling some basic relations for continuous-time and discrete-time pro-
cesses and stochastic signals in the first section and defining some notations used
throughout the sequel chapters, some easy to apply methods for parameter determi-
nation of simple linear processes were described. These classic parameter determi-
nation methods use characteristic values from measured system responses for simple
models, and allow a fast and simple evaluation by hand. The methods described in
this chapter yield approximate models which allow a rough examination of the sys-
tem characteristics. They are in general only suitable for measurements with little to
no disturbances.

The determination of characteristic values for systems of first and second order
can be determined by visual inspection, thus no special methods are needed in this
case. For systems of higher order with low-pass characteristics, a bunch of meth-
ods has been developed in the past, which allow the determination of characteristic
values. While the approximation by a first order system with dead time is seldom ac-
curate enough, an approximation of a higher order system with equal time constants
can yield good results in many cases. Furthermore in this chapter, methods have
been shown that allow the application of techniques for proportional acting systems
(as described mainly in this chapter) to systems with integral and derivative action as
well.

Problems

2.1. Fourier Transform

Summarize the conditions for the direct application of the Fourier transform to a
signal. Why does the Fourier transform of the step response of a first order system
not exist?
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2.2. Impulse Response, Step Response, and Frequency Response

How are the impulse response, the step response, and the frequency response related
to each other? Calculate these responses for a first order system (G(s) = K/(T's +
1)) with K =0.8and T = 1.5s.

2.3. First Order Process

A process of first order with a time constant 7 = 10 s is sampled with a sample time
of Ty = 0.5s. What is the largest frequency for determining the frequency response
by sinusoidal excitation of the input.

2.4. Sampling
Describe how a signal becomes amplitude- and time-discrete by sampling.

2.5. Stochastic Signals
By which characteristic values and parameters can stationary stochastic signals be
described?

2.6. White-Noise
What are the statistical properties of white noise? What is a fundamental difference
between continuous-time white noise and discrete-time white noise?

2.7. ARMA Processes
Give the z-transfer function of an auto-regressive and a moving-average process of
second order.

2.8. First Order System
Determine the gain and time constant for the thermometer governed in Example 2.1.

2.9. Systems with Integral Action How can the system parameters of systems with
integral action be determined?

2.10. Systems with Derivative Action How can the system parameters of systems
with derivative action be determined?
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IDENTIFICATION OF NON-PARAMETRIC MODELS IN THE
FREQUENCY DOMAIN — CONTINUOUS TIME SIGNALS



3

Spectral Analysis Methods for Periodic and Non-Periodic
Signals

Calculating the spectrum of a signal is important for many applications. To be able to
automatically calculate the spectrum and also treat signals of arbitrary shape, there
is a special interest in methods for numerical determination of the Fourier trans-
form. These methods are typically implemented on digital computers, which makes
it necessary to sample and store the signal before it is transformed. This brings along
special ramifications that are discussed in later sections of this chapter. As the data
sequences can be quite long, one is also especially interested in computationally ef-
ficient implementations of the Fourier transform on digital computers.

3.1 Numerical Calculation of the Fourier Transform

Often, one is interested in the frequency content of non-periodic signals to determine
the frequency range and magnitude. In the context of identification, it is important to
analyze the frequencies, which are excited by a certain test signal or to determine the
frequency response function of a system due to non-periodic test signals. In the latter
case, the frequency response must be calculated with non-periodic test signals ac-
cording to (4.1.1), which necessitates knowledge of the Fourier transform of the input
and the output. If the input u(¢) and/or the output y(¢) are provided as sampled sig-
nals with measurements taken at the discrete-time points 7 and k = 0,1,2,..., N,
then the Fourier transform (4.1.4) must be determined numerically. For the calcu-
lation of the Fourier transform of a sampled and time limited signal, one needs the
Discrete Fourier Transform (DFT). Of special interest is the Fast Fourier Transform
(FFT) which is a computationally more time saving realization of the discrete Fourier
transform. These aspects will be discussed in the following sections.

3.1.1 Fourier Series for Periodic Signals

Every periodic function x(¢) with period time T, i.e. x(t) = x(¢t + kT) for any
integer k can be written as an infinite series

R. Isermann, M. Miinchhof, Identification of Dynamic Systems,
DOI 10.1007/978-3-540-78879-9 3, © Springer-Verlag Berlin Heidelberg 2011
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o0
2
x(t) = a?() + 1; ay cos(kwot) + by sin(kwot) with wg = Tn . (3.1.1)

This series is termed a Fourier series. Typically, only a finite number of series ele-
ments is considered. The Fourier coefficients ay and by can be determined via

2 T
ar = ?/0 x(t) cos(kwot)dt (3.1.2)

T
b = %[ x(t) sin(kwot)dt , (3.1.3)
0

where the integration can also be carried out over any other interval of length 7.
With the complex exponential function, the above Fourier series can also be written
as

o0
x() =Y cxekeor (3.1.4)
k=—00
with
1 r —ikwot
k= — x(t)e "*@0tdr . (3.1.5)
T Jo

A side-note should be made to Gibbs phenomenon (Gibbs, 1899). It basically states
that a Fourier series cannot approximate a piecewise continuously differentiable pe-
riodic functions at jump discontinuities even if the number of series elements goes
towards infinity. There will always be an overshoot, whose height in the limit as
N — oo can be determined to be roughly 18% of the step height. This fact plays
an important role in signal processing as it introduces artifacts at stepwise discon-
tinuties e.g. in a signal or a picture that is processed by a 2 — D Fourier transform.
Figure 3.1 illustrates the approximation of a rectangular periodic signal by a Fourier
series with an increasing number of elements.

3.1.2 Fourier Transform for Non-Periodic Signals

Now, the interval length can formally be extended to T — oo to be able to treat
non-periodic signals. The Fourier transform was introduced in (2.1.9) as

[e.]

Fix@)} = x(iw) =f x(t)e™®'dr . (3.1.6)

—00

If the non-periodic continuous-time signal x(¢) is sampled with a sample time T,
then the signal can be written as a series of Dirac impulses with the appropriate
height

o o0

xs(k)= Y x(1)8(t—kTo)= Y x(kTo)8(t—kTo) . (3.1.7)

k=—00 k=—00

Then (2.1.9) respectively (3.1.6) becomes



3.1 Numerical Calculation of the Fourier Transform 79

1 Series Element 5 Series Elements

1| /\\ ,,,,,,,,,,,,,, [ 1 FiboremendA {A\

y@ [-]
[«
~
y@ [-]
[}
D>
>
p
D

y@® [-]
(@[]
()

Fig. 3.1. Gibbs phenomenon: Even as the number of series elements is increased, the rectan-
gular wave cannot be fully reconstructed

o

xs(iw) = / > x(kTo)s(t —kTo)e ™ *Todr = 3~ x(kTo)e 70 .

X k=—0c0 k=—00
(3.1.8)
This transformation is termed the Discrete Time Fourier Transform (DTFT). The

inverse transformation of the DTFT is given as

T, 7o _
x(k) = —2" / * xs(iw)ekeTody . (3.1.9)
T — T

To

As the continuous-time signal x (¢) is multiplied with a series of Dirac impulses,
the resulting Fourier transform x;(iw) is periodic in the frequency domain. This can
be explained as follows: The multiplication in the time domain becomes a convolu-
tion in the frequency domain. The convolution of a frequency spectrum (i.e. the spec-
trum of the original, un-sampled signal) and a train of Dirac impulses leads to a pe-
riodic continuation. The periodicity can also be derived from the argument of the ex-
ponential function, which is periodic with 2. Since the spectrum is periodic, it must
only be evaluated in the range between 0 < w < 27/ Ty or —/ Ty < w < 7/ Tp.

The periodicity also motivates Shannon’s theorem, which states that only fre-

quencies up to
1 1
<— =—fs, 3.1.10
/= Ty "2 /s ( )
where fs is the sampling frequency, can be sampled correctly. All other frequencies
will be sampled incorrectly due to the periodicity of the frequency spectrum leading
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to the so-called aliasing effect. A fault-free reconstruction of the signal is only possi-
ble, if the frequency spectrum is band-limited, i.e. x (iw) must vanish for |®| > @max,
which is only possible for periodic signals. Therefore, all time-limited signals cannot
have a band-limited frequency spectrum.

Since the computer has only limited storage capabilities, the summation in (3.1.8)
cannot be evaluated in the interval —oo < k < oco. The number of datapoints is hence
limited to N and sampled between 0 < k < N — 1. The Discrete Fourier Transform
is then given as

N—-1
x(iw) = Y x(kTp)e *eTo
k=0
N-1 N-1 (3.1.11)
= Y x(kTo)cos(kaTo) —i Y _ x(kTo) sin(kwTo)
k=0 k=0

Re{x(io)} + Im{x(iw)} .

The limitation of the number of datapoints that can be processed leads directly to the
notion of windowing, see Sect. 3.1.4.

The frequency spectrum is still a continuous, periodic function. However, due
to the fact that also in the frequency domain, the computer can only store a limited
number of datapoints, the frequency variable @ must be discretized, too. Due to the
periodicity, it is sufficient to sample the frequency spectrum in the interval between
0 < w < 27/ Tp. The continuous spectrum is hence also multiplied with a sampling
function, compare (3.1.8),

M-1
F(ivAw) = Y x(iw)s(iw —ivAomega) . (3.1.12)
v=0

where X (ivAw) denotes the sampled Fourier transform, Aw is the frequency incre-
ment and M is the number of sampling points, which is determined by the frequency
increment Aw as M = 2n/(TyAw). This leads to a convolution in the time domain
and means that the signal in the time domain is now also periodically continued out-
side the bounds of the sampling interval by the sampling in the frequency domain,
ie.

2
x(kTo) = x(kTo + uTy), £ =0,1,2,..., and T, = A—” . (3.1.13)
w

The frequency increment is now chosen such that 7, = N Tj so that the periodicity
is equivalent to the duration of the measurement in the time domain. Hence, also
M = N points should be sampled in the frequency domain.

Finally, the pair of transforms for the DFT is given as
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Fig. 3.2. Scaling of the FFT: (a) time signal to be converted, (b) output of the FFT (un-
scaled), (¢) output of the FFT, scaled according to (3.1.16) and the frequency axis calculated
by (3.1.17)

N—-1
x(inAw) = DFT{x(kTp)} = Z x (kTy)e knaeTo (3.1.14)
k=0
N-—1
x(kTo) = DFT ™ {xs(inAw)} = Y x(inAw)e* 2T . (3.1.15)

k=0

One can conclude that by application of the DFT and the inverse DFT, the signal
and its spectrum both become periodic.

For each frequency w, the DFT needs N multiplications and (N —1) summations.
Therefore, for the complete spectrum, one will need N2 products and N(N — 1)
summations. The computational expense is obviously quite high. In the next sec-
tion, more efficient algorithms, the so-called Fast Fourier Transforms will be intro-
duced. A detailed discussion of the Discrete Fourier Transform can be found e.g.
in (Brigham, 1988; Stearns, 2003).

As the DFT (and subsequently also the FFT) processes only a vector of numbers,
it shall finally shortly be discussed, how the output of the FFT must be interpreted.
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Figure 3.2 shows the FFT and the analytically determined Fourier transform of a
rectangular pulse. In order to determine the correct height of the amplitudes, the
output of the FFT must be scaled by the sample time 7§ as

F{x(kTo)} = Tox(ikAw) . (3.1.16)
see (Isermann, 1991). The frequency vector belonging to the data is given as

2
w = (0.Aw.2A0. ... (N — 1)Aw) with Aw = T—;; , G.1.17)

where Ty is the measurement time and N the number of samples.

3.1.3 Numerical Calculation of the Fourier Transform

The calculation of the DFT (3.1.14) necessitates the multiplication of the sampled
signal with the complex rotary operator

e—iknAwTo _ Wﬁk ) (3.1.18)

Thus, the discrete Fourier transform can be rewritten as

N—-1
x(n) =" x(k)Wxk, (3.1.19)

k=0

where the sample time 7y and the frequency increment Aw will no longer be written
down.

For the derivation of algorithms for the Fast Fourier Transform, typically the fact
is exploited that the rotary operator WI’\}" has cyclic and symmetric properties. The
Fourier transform can e.g. be split into two sums, one for the odd and one for the
even numbered elements

N—-1
x(n) =Y x(k)yWx*

k=0
| !

= > x@OWEF + 3 x@k + HWREHY
k=0 k=0
N1 N1

= > x@OWFF + Wi Y x(2k + D)Wk
k=0 k=0

= xe(n) + W]Gxo(n) s

(3.1.20)

which is the basis for the radix-2 decimation-in-time (DIT) FFT, a very easy to mo-
tivate and possibly the most commonly used form of the Cooley-Tuckey algorithm
(Cooley and Tukey, 1965). Both sums now have a rotary operator that is periodic



3.1 Numerical Calculation of the Fourier Transform

x(0) X(0)
> >
x(1) ” X1
=
x(2) p XQ)
R ——
x(3) o = L 0,
x(4) = X4
== = |—»
x(5) 5 X(5)
e ———
x(6) £ X(6)
—>
X(7) e X(7)
B — —
x(0)=x,0) ) X0 ] X0
x(2)=x,(1) £z 2z | xO) I
———P S § z X(1)
X(4)=x(2) S E X2 = ’—X(z)’
X(6)=x,3) o B5F LXO) | B, o
£ 3 >
5 E X(4)
x(1)=x,0) X,(0) £2 —>X(5)
—» © -
x(3)=x,(1) £= 2 | x() E 0
N — BB 3 X(6)
x(5)=x,2) £3 5 X2 I R
(7)=x3) &2 | x3 LD,
g ) g
OO0 orrore X0 X0
XAx@x ) fgemee L xm ) ES
14 . - E
£875 sz;
< 5 E o =,
OO orrarme | K@ £ 22 U0 5
M(O=xB)=x (1) f frenedd | X)) ) 25 : s
E
s
x(D=x0)=x,(0) DFT ofthe a0 ] o= X,(0) 2
X(5)=x,(2)=x,(1) g LXO ) ES, g 5
' : EgE D 8
e 255 A2
x(3)7xo(1)7xno(0) DFT of the )(00(0) » 8 éo 5 X(3)
DBy (1)) ddedd | X @) ) 2B .

Fig. 3.3. Application of the FFT to N = 8 data points
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Fig. 3.3. Application of the FFT to N = 8 data points (continued)

with N/2. The two sums have been denoted as “e” for even and “o0” for odd. These
two sums can now again be split into two sums each. For each split, an additional
letter is added to the index, therefore “ee” denotes then even, even elements. The
principle of this divide et impera algorithm is illustrated for N = 8 in Fig. 3.3.

In the subsequent steps, the sums for the FFT are iteratively split up into two
sums, each processing half of the elements of the initial sum. The algorithm stops,
when the Fourier transform is applied to single numbers only, since the Fourier trans-
form of a single element is just that very element itself. The entire decomposition can
be seen in Fig. 3.3. One can also see from the figures that the recombination algo-
rithm works on adjacent elements throughout the entire algorithm. Before the first
recombination however, the samples have to be rearranged.
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Fig. 3.4. First step of the recursion in the FFT’s underlying algorithm in (3.1.20)

For this regrouping, the elements must be ordered according to their inverse
binary index. For example, the element with index n = 100, becomes element
n = 001, after this regrouping. This can be done by a simple, fast, and efficient
algorithm. In this algorithm, two pointers are maintained. One pointer k is walking
through the elements from 0 to N — 1. The other pointer 1 always maintains the cor-
responding inverse bit order of k. The variable n will hold the number of elements in
this algorithm.

The algorithm works in two stages: The first part of the loop adds 1 to the pointer
k and also the inverse pointer 1 utilizing the following rules:
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if the LSB (Left-Most Bit) is 0, it is set to 1

if the LSB (Left-Most Bit) is 1, it is set to zero and the second Left-Most Bit is

increased by 1. Once again there are two case:

— If the second Left-Most Bit is 0, it is set to 1

— If the second Left-Most Bit is 1, it is set to zero and the third Left-most Bit is
increased by one and so forth

One other result that can be exploited is the fact the while the inverse bit order of
kis 1, at the same time, the inverse bit order of 1 is k. Thus, one can always swap two
elements. One only swaps elements if k is less than 1 to avoid back-swapping. The
second part of the algorithm covers the recombination, here one repeatedly multiplies
with the rwiddle-factors, a name coined by Gentleman and Sande (1966). These fac-
tors should be computed ahead of time and stored in a table. Finally, the results of
these multiplications are added up as illustrated in Fig. 3.4.

Today, there is a multitude of algorithms for the Fast Fourier Transform available.
There are radix-4, radix-8 or radix-2" algorithms available, which, while processing
on larger data blocks, can bring down the total number of multiplications between
25% and 40% for the radix-4 and radix-8 algorithms respectively. Other authors that
have contributed to the FFT are Bruun (1978), Rader (1968), Bluestein (1970), and
Goertzel (1958). The Goertzel algorithm is of special interest whenever it is only
necessary to compute a few spectral lines and not the entire spectrum. Also, split-
radix techniques have been proposed (e.g. Sorensen et al, 1986).

Good implementations of the FFT and other algorithms can be found in the book
by Press et al (2007) and the FFTW library (Frigo and Johnson, 2005). The latter
is a software library for computing the discrete Fourier transform in one or more
dimensions with arbitrary input size and both of real and complex data.

While the DFT needed a total of N2 complex multiplications and N(N — 1)
complex additions, where O(N) operations could be saved, because they are trivial
(multiplication with 1), the FFT as implemented above can bring this number down
to N log, N complex multiplications and N log, N complex additions, where once
again, trivial operations are included in the count and could be saved.

The FFT accepts both real-valued and complex data as it is formulated for com-
plex data also in the time domain. If measurements, consisting of real-valued data
only, are supplied to the FFT, then unnecessary operations, e.g. multiplications with
zero, are carried out. One remedy would be to modify the calculation to accept real-
valued data only. However, after the first stage of the FFT, the data to be processed
will inevitably become complex. Therefore, one would need two realizations of the
same algorithm, one for real and one for complex data. A much better idea is to com-
bine two real-valued data points into one complex data point such that the results can
be separated again after the Fourier transform has been carried out (Kammeyer and
Kroschel, 2009; Chu and George, 2000).

One can transform two-real valued signals y(k) and z(k) at the same time by
first combining the signals,

(k) = y(k) +iz(k) (3.1.21)
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Table 3.1. Comparison of FLOPS for DFT and FFT

Complex-Valued Function in Time Domain, Complex Operations

N DFT FFT
Add Mul Add Mul
128 16256 16384 896 896
1024 1047552 1048576 10240 10240
4096 16773120 16777216 49152 49152

Complex-Valued Function in Time Domain, Real Operations

N DFT FFT
Add Mul Add Mul
128 65280 65536 3584 3584
1024 4192256 4194304 40960 40 960
4096 67100672 67108 864 196 608 196 608

Real-Valued Functions in Time Domain, Real Operations

N DFT FFT
Add Mul Add Mul
128 16256 16384 768 512
1024 1047552 1048576 7680 5632
4096 16773120 16777216 34816 26 624

Note: For the calculation of the FFT, a radix-2 algorithm was assumed, because of its wide
spread.

then transforming the combined signal,

X(n) = DFT{x(k)} . (3.1.22)

and then separating the results
y(n) = %(}?(n) + X*(N —n)) (3.1.23)
z(n) = %(fc(n) —X*(N —n)) . (3.1.24)

If only one sequence is to be transformed, one can divide it into two sequences
of half the length,

y(k) = x(2k) - N -1
200 — ok g 1y (WK =0. (3.1.25)

Then, these sequences of real-valued data are merged into
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X(k) = y(k) +iz(k), (3.1.26)
and transformed into the frequency domain by

X(n) = DFT{x(k)} . (3.1.27)
Finally, the Fourier transform of x (k) is given as

x(n) = %(i(n) +X5(N —n)) + eV %(i(n) —X*(N —n)) . (3.1.28)
This combination of two real-valued data points into one complex data point further
speeds up the calculation of the FFT by a factor of almost 2. Table 3.1 illustrates the
computational expense for different applications.

Every time-limited signal of length N can be augmented with an arbitrary num-
ber of zeros to the total length L,

x(k)for0<k <N -1

XK)=00for N <k<L—1andL> N (3.1.29)

with the effect of an increase in the resolution of the spectrum. This technique is
termed zero padding and is often used to bring the length of a signal to an opti-
mal length for the use of different FFT algorithms (Kammeyer and Kroschel, 2009).
However, zero padding will inevitably give cause to the leakage effect for periodic
signals.

3.1.4 Windowing

The limitation of the number of data points in the time domain can be understood as
a multiplication of the time function x (¢) with a so-called window function to obtain
the time-limited function x,,(¢). The data that are sampled hence do not stem from
x(t), but rather from the product

Xw() =x@) w(t) . (3.1.30)

When applying the Fourier transform, one does not obtain the Fourier transform of
x(w) = F{x (1)}, where x (¢) is a signal of long or infinite time duration, but rather

Xy(iw) = %{xw(t)} = %{x(t) w(t)} = x(iw) * f(iw) , (3.1.31)

i.e. the convolution of the frequency spectrum of the original signal and the frequency
spectrum of the window function.

The effect of the window functions can best be illustrated by considering a sin-
gle, distinct spectral line of a periodic sine at the moment. The considerations can
however easily be applied to arbitrary non-periodic signals as well. If considering a
single spectral line convoluted with the Fourier transform of the window function,
one will see that the spectral line has “spilled over” to adjacent frequencies, thus this
effect is also called spill over. The spill over effect can be controlled by means of
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so-called window functions, where one always has to find a compromise between a
narrow and high main maximum and the suppression of side maxima.

For example, the Bartlett Window achieves a strong suppression of the side max-
ima at the cost of a low and broad main maximum. An even stronger suppression of
the side maxima can be achieved by the Hamming Window. which in fact minimizes
the main maximum in the restricted band. The Hann window and the Blackmann win-
dow are other typical window functions and are all shown in Table 3.2. An overview
and detailed comparison of these along with many other window functions can be
found in the books by Poularikas (1999) and Hamming (2007). The function of win-
dowing is explained by Schoukens et al (2009) by showing that the Hann window
does nothing else than take the second derivative of the frequency spectrum, thereby
reducing the leakage effects. At the same time however, a smoothing of the spectrum
is carried out, which introduces a smoothing error. A different tradeoff between the
two types of errors is presented as the Diff window, which takes the difference be-
tween two adjacent spectral lines. For a thorough treatment of windowing, see also
(Harris, 1978).

3.1.5 Short Time Fourier Transform

The Fourier transform, which was introduced at the beginning of this chapter, has an
infinite time scale. However, in applications such as the identification of time-varying
systems or fault detection, one wants to know how the frequency content varies as a
function of the time. The Short Time Fourier Transform (STFT) has been introduced
as a tool which has been tailored to the specific task of a joint time-frequency analysis
and will be presented in the following, see also (Qian and Chen, 1996).

The Fourier transform as introduced in (2.1.9),

o0

F{x ()} = x(iw) :/ x(t)e @ldr . (3.1.32)

—0o0
is again rewritten as a sum of sampled values. The summation is once again carried

out over a finite interval and the factor Ty neglected. Thus, one obtains

N-1
x(iw) = Y x(kTp)e 70 . (3.1.33)
k=0
A window function is now introduced along with the time shift parameter 7. The
resulting calculation rule for the STFT is then given as

R—1
x(@.7) = Y x((k — 1) To)w(k)e 70 (3.1.34)
k=0
or
R—1
x(w,7) = Z x(kTo)w(k + r)ekTo (3.1.35)

k=0
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Table 3.2. Typical window functions (left: function over time; right: Fourier transform) (Har-
ris, 1978)

Name, Shape and Equation

Bartlett Window
! 0
— ) |
= = 100 [fY)
g | = [T
= 05—/ N g |
< | £ 200 b
‘ B ‘
0 | 300 1
0 0.5 1 =100 0 100
4T [-] o T[]
2|t—g| ]
wBartlett(t) ={1- T ifo<t<T
0 otherwise
Hamming Window
0
T =)
: =
; = 50
£ £ 00
=
0 | ~150 1
0 0.5 1 100 0 100
T[] o T[]

0.54 —0.46cos(2n %) if0 <t <T

WHamming (1) = 0 otherwise

To see the changes of a signal over time, the signal is divided into small blocks and
the STFT is calculated for each block separately as defined in (3.1.34) or (3.1.35),
see Fig. 3.5. Therefore, the STFT depends on both the time and the frequency.

The two-dimensional plot of the STFT is termed spectrogram. The tuning para-
meters of the algorithm are the block length R and the overlap. A long block length
R provides a higher frequency solution and a coarser resolution in the time domain.
It is termed narrowband spectrogram. A short block length R on the contrary pro-
vides a higher time resolution and is termed wideband spectrogram. The overlap of
the individual blocks allows to use longer blocks and thus increase the frequency
domain resolution. It also allows to detect changes in the frequency spectrum earlier.

The spectrogram of a time-varying signal is shown in Fig. 3.6, where the STFT
has been applied to a chirp signal.
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Table 3.2. Typical window functions (left: function over time; right: Fourier transform (Harris,
1978)) (continued)

Name, Shape and Equation

Hann Window
1 0
- 3
L § = 50
= 0S5 S W )
< ‘ g‘ -100
0 3 -150 :
0 0.5 1 -100 0 100
0T [-] o T[]
_J05(1—cos(2n %)) if0<t<T
WHann (1) = 0 otherwise
Blackmann Window
1 0
—_ )
L =
205 &
g H
E £ —100 |
= 2
= |
0 : -150 .
0 0.5 1 -100 0 100
HT[-] o T[]
0.42 —0.5cos(27 %) +0.08 cos(4n L) if0 <t <T
wBlackma.nn(t) = ( T) ( T) -

0 otherwise

3.2 Wavelet Transform

The STFT determines the similarity between the investigated signal and a windowed
harmonic signal. In order to obtain a better approximation of short time signal
changes with sharp transients, the similarity with a short time prototype function
of finite duration can be calculated. Such prototype or basis functions which show
some damped oscillating behavior are wavelets that origin from a mother wavelet
Ww(t), see (Qian and Chen, 1996; Best, 2000). Table 3.3 shows some typical mother
wavelets, which can now be time-scaled (dilatation) by a factor a and time shifted
(translation) by t, leading to

UH(t,a, 1) = %w(’_f). (3.2.1)
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0 1 2 3 4

STFT No. 5
STFT No. 4
Overlap
4, STFT No. 3

STFT No. 2

STFT No. 1

+—
Block Length R

STFT No. 1 STFT No. 2 STFT No. 3 STFT No. 4 STFT No. 5

x(0) -]
s

0 1 0.75 1.75 1.5 2.5 225325
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- 0.5 0.5 0.5 0.5
% 0.25 0.25 0.25 0.25 “
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0 20 0 20 0 20 0 20

J[Hz] J [Hz] J [Hz] J [Hz] J [Hz]

Fig. 3.5. Application of the STFT: Calculation of five Fourier transforms for overlapping re-
gions of the time signal applied to a chirp signal starting at f = OHz for t = 0Os and ending
at f = 10Hzfort = 4s

The factor 1/+/a is introduced in order to reach a correct scaling of the power-density
spectrum. If the mean frequency of the wavelet is wy, the scaling of the wavelet by
t /a results in the scaled mean frequency wg/a.
The continuous-time wavelet transform (CWT) then is given as
1 o t—t
CWT(y,a,7) = — y(t)llf(—)dt : (3.22)
Va J-w a

which is real-valued for real-valued y(¢) and ¥(¢). Note that in contrast, the STFT
is typically a complex-valued function. Some sample wavelet functions have been

tabulated in Table 3.3. The advantages of the wavelet transform stem from the signal
adapted basis function and the better resolution in time and frequency. The signal
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Fig. 3.6. Spectrogram of a chirp signal starting at f/ = OHz for t = Os and ending at f =
300Hz fort =25

adaptation for example is illustrated by the Haar wavelet which does not give raise
to Gibbs phenomenon.

The wavelet functions correspond to certain band-pass filters where, for example,
by a reduction of the mean frequency through the scale factor also a reduction of the
bandwidth is achieved, compared to the STFT, where the bandwidth stays constant.

3.3 Periodogram

The periodogram is often also mentioned as a tool to determine the spectrum of a
signal. It is defined as

N—-1N-1

S [ _ 1 . 2 _ 1 . * _ 1 —iw(w+u) T,
Salio) = - [¥(@)* = Cx(io)x" () = + D0 x(x(ue e tiTo
v=0 pu=0
(3.3.1)
It can be shown (e.g. Kammeyer and Kroschel, 2009) that the expected value of the
estimate is given as

N-1

E{Sa(o)} = Y wanea(v) Ry (n)e™¥70 (33.2)
v=—(N-1)

where R, (v) denotes the auto-correlation function of the signal x(z). Hence the
estimate of the spectrum is given as the true power spectral density Sy (iw) convo-
luted with the Fourier transform of the Bartlett window. So, the periodogram is only
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Table 3.3. Typical Wavelets Functions

Name, Shape and Equation Name, Shape and Equation
Haar Wavelet Mexican Hat Wavelet
1 S 1
c{ OF— ,-% 0
By 5
R e e -1 S e
0 0.5 1 -5 0 5
t[s] t[s]
1if0<r<0.5 2
Wraar(1) = { —1if 0.5 <1 < 1 Wlexican Hat (1) (1 = 1%)e™ 2
0 otherwise

One-Cycle-Sine Wavelet

1

Wocs(t) [_]
S

t[s]
sin(?) if |t] < m

Yocs (1) = 0 otherwise

asymptotically bias-free at the frequency points wy, it is not a consistent estimate as
the variance of the periodogram does not go to zero for k — oo (Verhaegen and Ver-
dult, 2007; Heij et al, 2007). Due to this negative property, the Periodogram should
not be used per se, but only with certain modifications.

Bartlett proposed to divide the measurement into several data sets, then calculate
the periodogram for each data set separately and finally average over the individual
periodograms (e.g. Proakis and Manolakis, 2007). It can be shown that the variance
can effectively be reduced by a factor 1/M if M individual periodograms are calcu-
lated. The expected value is still given by (3.3.2), hence the estimate still is biased
for a finite number of data points. Also, the number of data points for each individ-
ual periodogram is reduced, which reduces the spectral resolution. However, by the
averaging, the estimate becomes consistent in the mean square.
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Welch (1977) also divides the data into shorter sequences that are processed in-
dividually. However, a window function is applied to the individual time sequences
before they are processed. Furthermore, Welch suggested to use overlapping data
segments hence allowing to form more data segment. The overlap can be up to
50%, consequently doubling the number of available data sets for the averaging and
hence reducing the variance by 50%. Different window functions can be used, Welch
(1977) for example suggested a Hann window.

3.4 Summary

In this chapter, methods for the spectral analysis of non-periodic signals have been
presented. The Fourier transform has been introduced as a tool to determine the fre-
quency content of signals. While the Fourier transform is applied to continuous-time
signals and has an infinite time and frequency support, the signals that are processed
in experimental applications are typically sampled and furthermore only recorded
over a finite measurement interval.

Sampled data in the time domain can be processed by means of the Discrete
Time Fourier Transform. It was shown that by the sampling in the time domain,
the frequency spectrum becomes periodic. Also the frequency spectrum will only
be determined at a finite number of discrete frequencies, which leads to the discrete
Fourier transform.

As the DFT is very computationally demanding, different algorithms have been
developed that allow a much faster calculation of the Fourier transform and are called
the Fast Fourier Transform. The idea behind many of these algorithms is to divide
the original sequence into a number of shorter subsequences that are transformed
separately and then recombined appropriately. It has also been shown, how the output
of an FFT algorithm can be interpreted correctly.

Since the signals are evaluated over a finite interval by the DFT/FFT, the fre-
quency spectrum might get corrupted, which is the so-called leakage effect respec-
tively spill-over. The time signal can be multiplied with a window function to mit-
igate the leakage effect. In windowing, there is always a trade-off between a good
suppression of the side maxima and a narrow main lobe.

To analyze changes in the spectral properties as a function of time, joint time
frequency representation methods have been developed. Two examples, the short
time Fourier transform and the wavelet transform have been presented.

The periodogram has been introduced as an estimator for the power spectrum of
a signal. It was shown that this estimator is only asymptotically bias-free and that
furthermore the variance does not go to zero as N — oo. Methods proposed by
Bartlett and Welsh, which are based on averaging multiple periodograms determined
from different intervals of the measured signal avoid this disadvantage.



96 3 Spectral Analysis Methods for Periodic and Non-Periodic Signals
Problems

3.1. Fourier Transform
How is the Fourier transform defined for analytical signals? Determine the Fourier
transform of the sawtooth:

u(t)

How does the frequency spectrum change, if 2, 3, ... sawtooth pulses are combined
in series? What calculation rule must be used for an infinite number of pulses? What
effects does this have on the resulting spectrum.

3.2. Fast Fourier Transform

Use the FFT algorithm as implemented in a numerical software package to deter-
mine the Fourier transform of the time signal x(¢) = sin(27¢). Compare it to the
theoretically expected result and try to understand the scaling of the results as well
as the frequency resolution.

3.3. Fast Fourier Transform 1
In your own words, describe the algorithms involved in the Fast Fourier Transform.

3.4. Fast Fourier Transform 2
How can the resolution in the frequency domain be increased if the number of data-
points, that have been measured, is fixed?

3.5. Windowing 1
Describe the effect of the windowing. What is the typical trade-off in windowing?
Try to find more window functions.

3.6. Windowing 2
Why is the spectrum obtained by the DFT not falsified, if a periodic signal is sampled
over an integer number of periods?

3.7. Short Time Fourier Transform
Generate a chirp signal and analyze it using the short time Fourier transform. Com-
ment on overlapping and on the choice of the parameter R.

3.8. Short Time Fourier Transform and Wavelet Transform
What are differences between the wavelet transform and the short time Fourier trans-
form?

3.9. Periodogram
How is the periodogram defined? What is critical about the application of the peri-
odogram?
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4

Frequency Response Measurement with Non-Periodic
Signals

The Fourier analysis with non-periodic test signals can be applied to determine the
non-parametric frequency response function of linear processes by first bringing the
input and the output signal to the frequency domain and then determining the transfer
function by an element-wise division of the former two.

4.1 Fundamental Equations

The frequency response function in non-parametric form can be determined from
non-periodic test signals by means of the relation

_ o) _ SO} _ fo y@e @ dr
u(iw) %{u([)} fooou(l)e_i“”dt ’

where the integral can furthermore be split up into real and imaginary part as

T
y(w) = lim (/ y(t) coswtdt —i/
T—o00 0 0

Here, the Fourier transform of the input as well as the output must be determined,
i.e. the (typically noisy) signals must be subjected to a Fourier transform. Since the
Fourier transform of many typical test signals, such as e.g. the step or the ramp
function, does not converge, one typically uses the Laplace transforms with the limit
s — iw instead of (4.1.1). For the step and the ramp response, for example, there
exists with limg_i, u(s), (0 # 0) a representation, which is similar to the Fourier
transform, see Sec. 4.2.3. Hence, if the Fourier transform does not converge, one can
use the ratio of the Laplace transforms with the limiting value s — iw instead of
4.1.1) as

G(iw) “4.1.1)

T
y(t) sinwt dt) . 4.1.2)

N L C) . IS y(@)estde _ y(iw)
Gliw) = lim & = o, JCuestdr — ulio) “4.13)

R. Isermann, M. Miinchhof, Identification of Dynamic Systems,
DOI 10.1007/978-3-540-78879-9 4, © Springer-Verlag Berlin Heidelberg 2011



100 4 Frequency Response Measurement with Non-Periodic Signals

The integral can furthermore be split up into real and imaginary part as

T T
y(iw) = Slin}) (/ y(t)e % cos wrdt —i/ y(t)e 8 sinwt dt) . (414
-0 \Jo 0

T —o00

The transform u (iw) can be written correspondingly.

As far as the signals are concerned, one has to use the small signal quantities, i.e.
the deviation from their steady-state levels. If U(¢) and Y (¢) denote the large signal
values and Uy, Yo denote their respective steady-state values before the measure-
ment, then

y(t) =Y () — Yoo (4.1.5)
u(t) =U(@) — Ugo (4.1.6)

In order to simplify the generation and subsequent evaluation of the results, one
typically chooses test signals with a simple shape. Figure 4.1 shows some exam-
ples. For these simple signals, the Fourier transform can be determined a priori, see
Sect. 4.2. The simple analytical expressions allow for example to optimize the test
signal with respect to the identification task at hand, the plant under investigation
and so on. Furthermore, one must only determine the Fourier transform of the output
y(t) (Isermann, 1967, 1982).

The frequency response function determination from non-parametric test signal
excitation is typically applied to get a first quick system model, which gives hints
on how to design the subsequent, more time-consuming experiments, which then
yield the final system model. This method is often used in the analysis of mechanical
structures, when e.g. the object is hit by a special hammer and the accelerations of
different parts of the structure are measured. The Fourier transform of an impulse is
just the height of the impulse or the contact force during the hammer hit respectively.
Therefore, the input signal does not need to be Fourier transformed at all.

4.2 Fourier Transform of Non-Periodic Signals

To be able to determine the frequency response according to (4.1.3) and to atten-
uate the influence of noise in the frequency band of interest, the Fourier transform
and amplitude density of various test signals in analytical form should be known.
Therefore, this section will provide the Fourier transforms of the test signals shown
in Fig. 4.1 and will analyze their amplitude density (Bux and Isermann, 1967). For
simplicity in notation, the pulse width 7p is replaced by 7.

4.2.1 Simple Pulses

First, the test signals a) through d) of Fig. 4.1 will be analyzed. They have in common
that the test signal is always positive. Their major disadvantage is that they are not
perfectly well suited for systems with integral action as the integrator will not come
back to zero at the end of the test signal. Further discussion of this topic can be found
later in following subsections.



4.2 Fourier Transform of Non-Periodic Signals 101

a) b)
t t
u(t), u(t)
U, U
|
|
|
|
|- : .
Ll 1 T >
t T t
+«—>
¢) d)
t t
u(t), u(t)
U, Uy
1 1
| |
| |
1 1
I T Lt | T, i i T, Lt
| |
la T :I
e) f)
t t
N )
U, Uy
g t 1 't
|
|
l
|
Uy Uyt 1
I T I I T I
+—> +—P»

Fig. 4.1. Simple non-periodic test signals: (a) step function (b) ramp function (c) rectangular
pulse (d) trapezoidal pulse (e) double rectangular pulse (f) double trapezoidal pulse
Trapezoidal Pulse

The Fourier transform for the case 7, = 77 can be determined. By transforming the
three sections (ramp, constant, ramp) separately and adding the results together, one
gets from using (4.1.4)

sin @71\ [ sin 27=T1) T
ug(iv) = uog(T — T)) wa wm;l) e i, 4.2.1)
2 2
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Rectangular Pulse

The rectangular pulse can easily be determined from (4.2.1) by considering the limit
Ty — 0. This limiting case is given as

. sin% T
Ugq(iw) = uoT e 2. 4.2.2)

ol
2

Pintelon and Schoukens (2001) suggest to choose the pulse length 7" as

1
= , 423
2.5 fmax ( )
where fi.x is the highest interesting frequency to be identified.
Triangular Pulse
With Ty = T, = T /2 the Fourier transform follows from (4.2.1) as
2
) T (sin 2L _joT
uyi(iw) = Uo— ( ﬂ“ ) e 2, 4.2.4)
1

Dimensionless Representation

To be able to compare the Fourier transforms of the individual test signals in an easy
way, the related (starred) quantities

u()

u*(t) = 4.2.5)

Uo
t

t* = — 4.2.6

T (4.2.6)
. oT

0wt = — “4.2.7)
21

are introduced. The Fourier transforms are furthermore normalized with respect to
the maximum possible amplitude of the Fourier transform of a rectangular pulse,

T
Usq(iw)|w=0 = / uodt = uoT . 4.2.8)
0

By the use of the referred quantities, test signals which are similar in their shape, but
differ in their height u( and their pulse length 7" have the same amplitude density
|u*(iw™*)| and the same phase Zu*(iw*). Thus, only the pulse shape determines the
Fourier transform. For the three pulse shapes introduced so far, one gets
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Fig. 4.2. Referred amplitude density of various non-periodic test signals

. sinr@*T{\ (sinmw*(T* — T;)
M:;(IC()*)Z (T*_Tl*)( 1 )( 1

)e—i”w* (4.2.9)

rw*T rw*(T* = T))
: *
ul (iw*) = (w)e—im* (4.2.10)
Tw
. 1 [ sin Z&- i
ul(in*) = 5(T2) e imeT 4.2.11)

The amplitude density is plotted as a function of the referred angular frequency in
Fig. 4.2. The largest value of each amplitude density is at * = 0 and is given as the
area under the pulse. With increasing frequency, the amplitude spectra of the pulses
decrease until the first zero is reached. This first zero is followed by additional zeros
and intermediate local maxima of the amplitude spectra. These individual zeros are
given as

o w; =2mn/Tiorwf =n/T} = first row of zeros for trapezoidal pulse
wy =2nn/(T —Ty) or wy = n/(T* — T}*) = second row of zeros for trape-
zoidal pulse
w =2nwn/T or w* = n = only row of zeros for rectangular pulse
®w =4nmn/T or w* = 2n = only row of zeros for triangular pulse

with n = 1,2, .... Trapezoidal and rectangular pulses have single zeros, triangular
pulses double zeros. In the former case, the amplitude density curve intersects the
w-axis, in the latter case, it is a tangent to the w-axis.
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Variation of the Pulse Width

If the duration 7' of a pulse is increased, then the amplitude density increases at
small frequencies, as the area underneath the pulse curve increases, see Fig. 4.3. The
decay at higher frequencies at the same time gets steeper, since the zeros move to-
ward smaller frequencies. One can construct an envelope which displays the highest
possible amplitude at any given angular frequency w. This envelope is given as

. 1 0.3183
|u:q(1w*)|max = m =

4.2.12)

a)*
for the rectangular pulse and

|y (0™) [ max = —0'23*02 4.2.13)
1)

for the triangular pulse. For the trapezoidal test signal, one gets various envelopes
depending on the shape. They are all bounded by the envelopes for the rectangular
and triangular pulse respectively. Rectangular pulses have the largest amplitude at
low frequencies compared with all other single-sided pulses with the same maximum

height ©¢. One can state the following reasons for this:

e At low frequencies, the area underneath the pulse curve determines the ampli-
tude. Rectangular pulses have the maximum possible area for any given pulse
width T.

e For medium frequencies, the envelope determines the amplitude density. Rect-
angular pulses have the highest envelope and thus in the area at ®* = 1/2 the
highest amplitude density. In Fig. 4.2, one can see that the rectangular pulse has
the highest amplitude density in the entire range of low to medium frequencies,
0<w*<1/2.

e For higher frequencies, rectangular pulses also have the highest amplitude den-
sity in certain areas left and right of the second, third, etc. extremum. This is for
most applications however not of interest as the excitation is too low.

4.2.2 Double Pulse
Point-Symmetric Rectangular Pulse

Next, the double rectangular pulse as depicted in Fig. 4.1e with height 1o and pulse
width T will be considered. The Fourier transform is in this case given as

. Sin2 % _wT—7x
u(iw) = uoT e’ 2 (4.2.14)

ol
4

and with referred quantities as

2 mw*
SN —— . 2w¥—
u* (iw*) = (—z)e—”’2 e (4.2.15)
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Fig. 4.3. Amplitude density of rectangular pulses with different pulse width T

The zeros are located at

4

wz?n orw* =2nwithn =0,1,2,... . (4.2.16)
With exception of n = 0, all roots are double roots. The amplitude density thus
touches the w* axis forn = 1,2, .. .. In contrast to the simple rectangular pulse, the

amplitude density is zero at * = 0 and has a maximum at the finite frequency
[u* (iw™)|max = 0.362 at 0™ = 0.762, 4.2.17)

see also Fig. 4.2.

Axis-Symmetric Rectangular Pulse

For an axis-symmetric double rectangular pulse, one gets

ol
Sin 2
oT

2

u(iw) = uoT

2coswT . 4.2.18)

Figure 4.4 shows (for the time shifted double pulse) that the amplitude density at
o* = 0 and ®* = 0.5 is twice as high as that of the single rectangular pulse. The
frequency interval of interest, ] < w* < w5, is quite small. Outside of this area of
interest, the amplitude density is smaller than that of the single rectangular pulse. The
concatenation of two rectangular pulses yields an increase in the level of excitation
in the area around w* = 0.5 and all mutiples, i.e. * = 1.5, ®* = 2.5, etc. at the
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Fig. 4.4. Amplitude spectra of rectangular pulses with different number of rectangles

expense of an attenuation in the lower intermediate and all upper frequency ranges
except for integer multiples.

If one concatenates not only two, but even more rectangular pulses at a distance
of 27, the amplitude density in the vicinity of w* = 0.5 (and w* = 0) grows ever
larger. At the same time the interval w{ < o* < wj gets smaller. In the limiting
case of an infinite number of rectangular pulses, the Fourier transform develops to a
8-impulse at * = 0.5 (and w* = 0 as well as w* = 1.5, ®* = 2.5 and so forth).

4.2.3 Step and Ramp Function

Step and ramp functions do not satisfy the convergence criteria (2.1.11) so that a
Fourier transform cannot directly be determined by (2.1.9) or (4.1.4) respectively.
However, there are still means to determine a frequency domain representation.

By calculating the limiting value s — iw, one can obtain the Fourier transform
in a strictly formal way from the Laplace transform

u u u 4
ug(iw) = lim Lug(r)) = lim — = = = 2% (4.2.19)
s—iw s—iw S 1w w

Rewriting this equation with referred quantities yields

1

e 3. (4.2.20)
2mw*

uy(iw) =

Similarly, one can now cope with the ramp function. For a ramp with rise time
Ty, see Fig. 4.1b), one gets
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N
g(iw) = lim L (1)} = lim O (1—e Nty = ”—O(SIH 2 ) 42.21)

s—iw TIS w w_T1
2
or
ul(iw*) = SO exp(Z — nw*) (4.2.22)
2rw*\ mw*T) 2
respectively.
The amplitude density of a step function follows as
U
lug(io)] = =2 or [ut(iw*)| = forw # 0, @* # 0 (4.2.23)
w 2rw*

and thus represents a hyperbolic function. Since there are no zeros, all frequencies
in the range 0 < w < oo will be excited. Figure 4.2 as well as (4.2.12) exhibit that
the amplitude spectrum of the step function is always half as high as the envelope
of the amplitude spectrum of the rectangular pulses. The amplitude density of a step
function and any rectangular pulse are equally high at

b4 . 1
Wy = —= orwg = — = 0.1667 . (4.2.24)

3T | 6
In the area of small frequencies, 0 < @ < wy, the step function has the larger
amplitude density compared to the rectangular pulse and thus the largest amplitude
density of all non-periodic test signals of height ug.

The amplitude density of a ramp function is by a factor

_ Jutio)] _ sin®Ft

B |usl(ia))| B wTTl

(4.2.25)

smaller. This factor is equal to the shape of the amplitude density function of the
rectangular pulses. At w = 2wn/Ty, withn = 1,2,... one can find zeros. This is
in contrast to the step function, which has no zeros. The first zero moves to higher
frequencies as the rise time 77 of the ramp gets smaller, which means that the edge
of the signal gets steeper. This points to a general property of all test signals: The
steeper the edges, the stronger the excitation at high frequencies.

In many cases, one is interested in whether a step function can be assumed for a
ramp-wise excitation with rise time 77. The factor « in (4.2.25) provides an answer
to this question. If one accepts an error of < 1% or < 5% up to the largest angular
frequency wmax, then the factor k can be k > 0.95 or k > 0.99 respectively. Thus,
the rise time is limited to

1.1 0.5

or Tl ,max =<
wmax a)max

Tl ,max =<

(4.2.26)

In conclusion, the analysis of the amplitude density of different non-periodic test
signals shows that for a given test signal height u¢, the highest amplitude density of
all possible test signals can be achieved with
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e step functions for small frequencies
e rectangular pulses for medium to high frequencies

Thus, according to (4.3.6), these signals provide the smallest error in the identi-
fication of the frequency responses from noisy measurements of the response (Iser-
mann, 1967). Non-periodic test signals in contrast to periodic test signals excite all
frequencies in the range 0 < w < oo at once with the exception of the zeros which
show up for pulse responses and ramp responses.

4.3 Frequency Response Determination

Now, the properties of the frequency response determination by means of (4.1.1), i.e.

s ylio)  FyO)
Cl0) = o) — Flu)

will be analyzed. Here, special attention must be paid to the influence of noise on the
output: The systems response y,(¢) evoked by the test signal u(¢) is usually affected
by noise which is superimposed as

(4.3.1)

(1) = yu(t) +n(1) . (4.3.2)

By substituting into (4.3.1), one gets

lim (/Oc yu(t)e 'dt + /oo”(t)e_ndt) 4.3.3)
0 0

é(lw) - u(la)) s—iw

and .
G(iw) = Go(iw) + AG,(iw) . 4.3.4)

The estimated frequency response G(iw) thus consists not only of the exact fre-
quency response Gg(iw), but also of the frequency response error AG,,(iw) which is
evoked by the noise n(z) and is given as

AG, (i) = tim ™) — @) (4.3.5)
s—io u(s)  u(iow)
Hence, the magnitude of the error results as
[AG,(iw)| = Ww)' . (4.3.6)
[u(iow)]

The frequency response error gets smaller as |u(iw)| becomes larger in relation to
|n(iw)|. Thus, for a given noise |n(iw)|, one must try to make |u(iw)], i.e. the am-
plitude density at w of the test signal u(t), as large as possible. This can be achieved
by
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e Choosing the height u( of the test signal as large as possible. However, limita-
tions on u¢ are often imposed by the process itself, the operating range in which
the process can be linearized, limitations of the actuator and so on, see Sect. 1.2.

e Selecting an appropriate shape of the test signal so that the amplitude density is
concentrated in the frequency area of interest.

The influence of noise and the properties of the frequency response function estimate
will be discussed again in the next section.

Example 4.1 (Frequency Response Function). An example of a frequency response
function estimate of the Three-Mass Oscillator, see Fig. B.1, using a non-periodic test
signals is shown in Fig. 4.5. The test signal employed was a rectangular pulse with
the length T = 0.15 s. One can see the relative good match between the frequency
response determined by means of the orthogonal correlation described in Sect. 5.5.2
(which will serve as a reference) and the frequency response determined by the aid
of the Fourier transform for w < 25rad/s. In Fig. 4.6 on the contrary, the excitation
was chosen as a triangular pulse, where the first zero coincides with the maximum
magnitude of the transfer function G (iw). Hence, the frequency response can only
be determined for w < 13.5Hz. O

4.4 Influence of Noise

The output signals of many processes do not only contain the response to the test
signal, but also some noise, see Fig. 1.5. This noise can have manifold reasons.
Noise can be caused by external disturbances acting on the process or by inter-
nal disturbances located within the processes boundaries. As has been outlined
in Sect. 1.2, one can differentiate between higher-frequent quasi-stochastic distur-
bances (Fig. 1.6a), low-frequent non-stationary stochastic disturbances, e.g. drift,
(Fig. 1.6b), and disturbances of unknown character, e.g. outliers, (Fig. 1.6¢).

Identifying a process with a single non-stationary test signal as described in this
chapter is typically only possible if the noise has a small amplitude compared to the
test signal and if the noise has a constant mean. If non-stationary noise or noise with
an unknown type is acting on the system, it is in most cases impossible to obtain
any useful identification results from the relative short time interval in which the
response y(¢) is recorded. One rather has to wait for a time period, where the noise
has constant mean or take resort to other identification methods that can better cope
with non-stationary noises.

In the following, the influence of stationary, stochastic noise n(t) with E{n(t)} =
0 on the fidelity of the identified frequency response will be investigated. The inves-
tigation will assume that the noise n(¢) is additively superimposed onto the undis-
turbed output y,(¢) evoked by the test signal (4.3.2). The noise can be created by a
form filter with transfer function G,(iw) from white noise with the power spectral
density S,9, see Fig. 4.7.
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Fig. 4.5. Frequency response measurement of the Three-Mass Oscillator with a rectangular
pulse of length T = 0.15s. Measurement by Fourier transform (solid line), orthogonal cor-
relation as reference (dashed line), frequency range of the Bode diagram (gray shaded area).
The input signal is the torque My(¢) applied by the electric motor, the output the rotational
speed w3 (t) of the third mass.
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Fig. 4.6. Frequency response measurement of the Three-Mass Oscillator with a triangular
pulse of length 77 = 0.09s. First zero of the input frequency spectrum located at the first
resonant frequency at w ~ 15rad/s of the process. Erroneous results are obtained for angular
frequencies around w & 13.5rad/s and at all integer multiples k. Also for higher frequencies,
the excitation by the test signal is too small. Measurement by Fourier transform (solid line),
orthogonal correlation as reference (dashed line), frequency range of the Bode diagram (gray

shaded area)
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Fig. 4.7. Block diagram of a linear process Fig. 4.8. Error AGy(iw) of a frequency re-
disturbed by a stochastic noise 7 () sponse

In the following, the error caused by a disturbed response will be investigated. A
stochastic noise acting on the process in the time period 0 < t < Tg causes the error

AG, (i) = ™10 (4.4.1)
u(iw)
in the frequency response, see Fig. 4.8. Its magnitude is given by
|AGy(iw)] = 1L (4.4.2)
[u(iw)]
The auto-correlation function of noise of finite duration can be estimated by
. 1 [Te
Dn(7) = —/ nr(t)nt(t + v)dr , 4.4.3)
Tt Jo

see Sect. 6.1. One can then determine the power spectral density and determine the
expected value. Knowledge of the power spectral densities of the noise and the input
(4.4.2) allows to determine the expected value of the magnitude of the error

. E{Su(io)}
E{|AG,(i0)]*} = ——— 4.4.4
{1AG,(i0)]?} ) (4.4.4)
Since the test signal is deterministic,
SN2
Suu(w) = 10@)] (4.4.5)
Tg

The variance of the relative frequency response error upon evaluation of a response
of length T is thus given as

) {m@mW} San(@) T

G2 |~ [G(io)Pulo)}? (4.4.6)

0G1 =

If N responses are evaluated, then
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: 2 : 2
Suu(w)le’;v(;f:” =N|”(;f:)| . (4.4.7)

The standard deviation is in this case given as

_ vV Snn(a))TE
G (iw)||u(iw)|[V'N

(4.4.8)

The error in the frequency response is thus inversely proportional to the signal-to-
noise ratio and inversely proportional to the square root VN of the number of re-
sponses recorded. Hence, in order to decrease the influence of a stochastic noise
n(t), one can record more than one responses evoked by the same test signal and
determine the averaged response by

1 N-—1
OESDBSIOR (44.9)
k=0

Especially in the case of different test signals, one can also determine the mean fre-
quency response as

=z

N
G (iw) =%ZGk(ia)) ZRe Gi(iw)} +i— Z {Gr(iw)} . (4.4.10)
k=1

k 1 k=1

As can be seen in (4.4.8), the standard deviation decays with a factor 1/+/N such

that |
OGN = —=0Gl - “4.4.11)

VN

It is important however, that one may only take the mean of the real and imaginary
part and never the mean of the amplitude and phase.
For the form filter in Fig. 4.7, one can write

Son (@) = |Gr(s)]*Syo , (4.4.12)

so that finally

_ 1Ga (@) v/Su0Ts
|G (iw)||u(iw)|[V'N

(4.4.13)

Example 4.2 (Influence of Noise on the Frequency Response Function Estimate). The
accuracy of the estimation in the presence of noise shall now be illustrated for the
Three-Mass Oscillator excited by rectangular pulses. The standard deviation of the
noise n(¢) given as o, shall be 1. The noise-to-signal ratio is given as

On A
~4% =1:25, 4.4.14)

)7:

y max
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Fig. 4.9. Rectangular pulse response with step height g = 3 Nm and duration AT = 0.15s
and frequency response without noise
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Fig. 4.10. Rectangular pulse response with step height u9 = 3 Nm and duration AT = 0.15s
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Fig. 4.11. Frequency responses determined from averaging multiple measurements with a
rectangular pulse with noise 0 = 1. (solid line): Average of 5 frequency responses, (dashed
line): Direct frequency response measurement with sinusoidal excitation and evaluation with
orthogonal correlation (see Sect. 5.5.2)
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which corresponds to a signal-to-noise ratio of 1/ = 25 : 1. Such a disturbance is
quite small, the peak-to-peak value for a Gaussian distribution of the signal ampli-
tudes is given as

b ~ 4o, . (4.4.15)

Figure 4.9 shows the noise-free case, whereas Fig. 4.10 depicts the case of a noisy
measurement. One can see that the results in the range of medium frequencies is still
relatively good, but the peak of the second resonance in the amplitude plot cannot be
determined any longer. Figure 4.11 shows how the fidelity of the estimated frequency
response can be increased by averaging multiple noisy measurements.

The agreement with the discrete measured frequency response is very good in
the range of medium frequencies, i.e. 10rad/s < w < 25rad/s which validates the
analysis of the excitation signals in Sect. 4.2. O

Summarizing, the spectral estimation of the transfer function as

G iw) = 20 (4.4.16)
u(iw)
has the following properties
lim E{G(iw)} = G(i 4.4.17
Jim {G(iw)} = G(iw) ( )
. A _ Snn(iw)
ngnoo var(G (iw)) = Suli) (4.4.18)

see (Ljung, 1999; Heij et al, 2007; Verhaegen and Verdult, 2007). As one can see,
the variance does not diminish as N — oo. Also, the estimate is only unbiased if
there are no transients (Broersen, 1995), and if there is no noise acting on the input
u(t). Transients can only be avoided if there are no responses due to u(t) # 0 for
t < 0 and also that the input signal is of finite duration and also the system response
has died out before the end of the measurement period. For signals that have not died
out at the end of the measurement period, the issue of windowing and the effect of
windowing on the estimates comes up. For this topic, see (Schoukens et al, 2006).
Windowing has already been discussed in detail in Sect. 3.1.4.

4.5 Summary

In this chapter, the estimation of the frequency response function by means of di-
viding the Fourier transform of the output y(¢) by the Fourier transform of the input
u(t) was presented. As the quality of the estimate strongly depends on the excitation
of the dominant process dynamics, the amplitude density of different test signals has
been derived analytically and then compared with each other. Based on this analysis,
suggestions on the design of advantageous test signals can now be given. Windowing
can also have a detrimental effect on the identification results. The interested reader is
referred to the studies by Schoukens et al (2006) and Antoni and Schoukens (2007).
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The use of this method as an initial tool for quick system analysis is also suggested
by Verhaegen and Verdult (2007).

The term advantageous shall denote those realizable test signals, which have the
highest amplitude density in a certain frequency range. These signals will yield the
smallest error in the estimate of the frequency response in that particular frequency
range. As has already been shown in this chapter, the most advantageous test sig-
nals for small frequencies are the step signal and the rectangular pulse for medium
frequencies. (4.4.8) can be used to determine the required amplitude for the identifi-
cation of a process with stochastic disturbances as

\Y Snn (1(1)) TE
G (iw)|oG (iw) VN

[u(i0)req = 4.5.1)

In this equation, oG (iw) denotes the maximum allowable standard deviation for
the frequency response error. From (4.5.1), one can see that the required amplitude
density of the test signal depends on the power spectral density of the noise and the
intended application, which determines o (iw). Generic requirements on the ampli-
tude density can hardly be formulated without knowledge of the process. The experi-
ence gained in controller synthesis (Isermann, 1991) however shows that the relative
frequency response error must be small in the medium frequency range, which is for
example fulfilled for short rectangular pulses.

It is now self-evident that one should use not only one test signal, but rather a
test sequence combined of different test signals, where each test signal is advanta-
geous for the identification of a certain frequency range. For processes, which may
be displaced permanently, one should use,

e a sequence of a few step responses to determine the frequency response at low
frequencies

e asequence of rectangular pulses to determine the frequency response at medium
and high frequencies

A guiding value for the distribution can be 20% — 30% of the measurement time
for step responses and 80% —70% rectangular pulses. The length T of the rectangular
pulses is determined so that the highest amplitude density is approximately at the
highest interesting process frequency wpmax, i.e.

T

T = 4.5.2)

wmax

If possible, one should evaluate the response for both directions to attenuate certain
non-linear effects by the subsequent averaging. At this point, the close resemblance
between these test sequences and the binary test signals, which are treated later in
Sect. 6.3 shall already be pointed out.

After discussing the design of ideal test signals, the properties of the frequency
response function estimate have been discussed in detail. It has been shown that if the
system is excited with the same test signal u(¢) in each experiment, one can calculate
the average of the system response y(¢) and then determine the frequency response
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function based on this average. If different test signals are used, one can also estimate
a frequency response function for each measurement individually and then calculate
the average of all frequency response functions.

Problems

4.1. Frequency Response Measurement with Non-Periodic Test Signals

How can the frequency response of a linear system be determined with non-periodic
test signals? What are the advantages/disadvantages compared to periodic test sig-
nals?

4.2. Fourier Transform of Test Signals

Which test signals yield the highest amplitude density for very low, low, medium,
or high frequencies respectively? Assume that all test signals are constrained to the
same maximum height u.

4.3. Trapezoidal Pulse
Determine the Fourier transform of the trapezoidal pulse.

4.4. Rectangular Pulse
Determine the Fourier transform of the rectangular pulse for 7 = 20s.

4.5. Test Signals
How do the steepness of the edges and the excitation of high frequencies relate to
each other?

4.6. Noise

How can one improve the identification result, if the process is
(a) excited multiple times with the same test signals

(b) excited multiple times with different test signals

4.7. Advantageous Test Signals
Describe an advantageous test signal sequence.
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Frequency Response Measurement for Periodic Test
Signals

The frequency response measurement with periodic test signals allows the determi-
nation of the relevant frequency range for linear systems for certain, discrete points
in the frequency spectrum. Typically, one uses sinusoidal signals at fixed frequencies,
see Sect. 5.1. However, one can also use other periodic signals such as e.g. rectan-
gular, trapezoidal, or triangular signals as shown in Sect. 5.2. The analysis can be
carried out manually or with the aid of digital computers, where the Fourier analysis
or special correlation methods come into play.

Based on the determination of correlation functions, special frequency response
measurement techniques have been developed, which work well even in the pres-
ence of larger disturbances and noise, Sect. 5.5. Here, Sect. 5.5.1 describes the gen-
eral approach in determining the frequency response from correlation functions. An
especially well suited approach for the determination of the frequency response is
governed in Sect. 5.5.2, which describes the orthogonal correlation, a very powerful
technique. It is remarkably well suited for disturbance rejection and performs very
reliably in the presence of large noise levels.

Special attention must be paid to the characteristics of the actuator, as was al-
ready stressed in Sect. 1.5. The use of sinusoidal test signals typically requires that
the static and dynamic behavior of the actuator is linear within the input signal in-
terval that is used for the experiments. If the static behavior is linear, then one can
realize a sinusoidal input to the plant by connecting the actuator to a signal generator.
This applies to actuators which are proportional acting or exhibit integral action with
variable actuation speed. For actuators with integral action, it is often advisable to
use an underlying position controller and supply a sinusoidal setpoint signal to this
controller to maintain a constant mean and avoid drifting of the actuator. For actua-
tors with integral action and constant speed operation (e.g. AC motor drives), one can
use a three point controller for the displacement of the actuated variable to generate
an approximate sinusoidal oscillation at lower frequencies. For higher frequencies
however, such an actuator can only generate trapezoidal or triangular signals.

Frequently, the static characteristics of the actuator is non-linear, so that the ac-
tuator generates distorted sinusoidal or trapezoidal signals, which show a frequency
spectrum that is different from the original test signal. One can try to determine the

R. Isermann, M. Miinchhof, Identification of Dynamic Systems,
DOI 10.1007/978-3-540-78879-9 5, © Springer-Verlag Berlin Heidelberg 2011
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Fig. 5.1. Direct determination of the frequency response by analyzing the measured input and
output. Evaluation after the stationary oscillation has fully developed

frequency response of the subsequent process by analyzing the first harmonic of the
response only. The problem of the non-linear distortion can however be avoided by
employing rectangular signals (or trapezoidal signals with steep edges) as an input
signal. Here, one does only switch between two discrete points of the non-linearity
at the input of the actuator. Therefore the non-linear behavior between the two single
operating points must not be considered. If the actuator can be operated manually, it
is also possible to apply rectangular or trapezoidal signals by hand.

5.1 Frequency Response Measurement with Sinusoidal Test Signals

The easiest and probably most well-known identification method for the determi-
nation of a discrete point of the frequency response is the direct determination of
the amplitude ratio and phase angle of the recorded input and output oscillation, see
Fig. 5.1. For this identification technique, one needs only a two channel oscilloscope
or two channel plotter. The experiment has to be repeated for each frequency wy that
is of interest. The gain and phase can then be determined from

Glion)| = 222

LG (iwy) = —tywy , (5.1.2)

(5.1.1)
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Fig. 5.2. Direct determination of the frequency response by analyzing the measured input and
output of the Three-Mass Oscillator
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where #, denotes the time of the phase lag and is positive if the output y(¢) is “later”
than the input u(¢) or has a lag compared to the input. The phase ZG(iw) is in this
case negative. If disturbances are present, the gain and phase can be determined by
averaging the results from (5.1.1) and (5.1.2) for multiple points of the recorded input
and output signals.

Example 5.1 (Direct Determination of the Frequency Response).

The direct determination of the frequency response is shown for the Three-Mass
Oscillator in Fig. 5.2. The amplitude of the input signal is #y = 0.4 Nm. The ampli-
tude of the output oscillation is yg = 9.85rad/s. Thus, the gain is given as

) Yo  9.85rad/s rad
G(iw)|p=2.89rd/s = — = ——— = 24.63 —— . 5.1.3
|G(iw)|w=2.89 rad/s o 04Nm Nms ( )
The phase can be determined by two subsequent zero crossings of the input and
output signal for stationary oscillation of the output. The input signal has a zero
crossing at 1 = 2.57s and the output has its corresponding zero crossing at t, =
3.06 s. The phase is thus given as

()| o = (3.065 —2.575) 2.89 ™9
iw _ rad/s = —lo = . S— 2. S .
@ ®=2.89rad/ ® S 5.14)

= —1.41rad = —81.36° .

This result can later be compared with the frequency response as determined by the
orthogonal correlation. O
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Fig. 5.3. Harmonic decomposition of a rectangular wave

5.2 Frequency Response Measurement with Rectangular and
Trapezoidal Test Signals

In some cases, it is more convenient to apply rectangular signals or trapezoidal sig-
nals instead of the typical sinusoidal signals. In the following, a simple identification
method shall be described, which allows the recording of the frequency response
with rectangular waves and is especially well suited for slow processes with order
n > 3 (Isermann, 1963).

A rectangular wave of the amplitude u¢ and the frequency wy = 27/ T can be
written as a Fourier series,

4 1 1
u(t) = —up (sinwot + 3 sin 3wgt + 3 sin5wg + . . ) . 5.2.1)
T

Figure 5.3 shows the first four harmonics and their superposition, which resembles a
rectangular wave already quite well. The response to this input is given as

4
$(t) = ~uo(|GGwo)] sin(wot + p(o))
+ %IG(i3w0)| sin(3wot + ¢(3wp)) (5.2.2)
+ §|G(i5w0)| sin(Swot + ¢(5w0)) + ) )

One starts off with the identification of the frequency response for high frequencies.
In this frequency range, the amplitude of the second harmonic with the frequency
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Fig. 5.4. Evaluation sections for the measurement of the frequency response with rectangular
waves

3w is by a factor of y = 1/3" (n is the order of a delay with identical time constants)
smaller than the amplitude of the fundamental. For n > 3 follows that y < 0.04.
The higher harmonics are thus damped so strongly that the resulting output closely
resembles a pure sinusoidal oscillation whose amplitude and phase with respect to
the input signal can easily be determined. In this manner, one can determine part I of
the Nyquist plot shown in Fig. 5.4 (Isermann, 1963).

For medium frequencies, the amplitude of the second harmonic at 3w grows to
a value where it can no longer be neglected, thus

y(1) ~ %Mo<|G(iw0)| sin(wot + ¢(wo)) + %|G(i3w0)| sin(3wot + <P(3wo))> .
(5.2.3)
The third harmonic with the frequency 5wy can still be neglected as can be all higher-
frequent harmonics. One can obtain the response that belongs to the fundamental
frequency by subtracting the response evoked by the second harmonic

41 . .
V3w (1) = ;§u0|G(13a)o)| sin(3wot + ¢(3wo)) (5.2.4)

from the measured system output y(¢). The amplitude and phase of the component
V3w, are known from the frequency response identification for high frequencies (part
I of the Nyquist plot). One can thus obtain part II of the Nyquist plot shown in Fig. 5.4
For lower frequencies, part I11 of the Nyquist plot (see Fig. 5.4) can be determined
by subtracting the response due to as many harmonics as necessary.
The response due to the sinusoidal fundamental is given as
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4 : .
;uolG(1w0)| sin(wo? + @(wp))
L. .
=y- u0§|G(13w0)| sin(3wot + ¢(3wy)) (5.2.5)
1
— u0§|G(i5a)o)| sin(Sa)ot + (p(Sa)o)) -

One will however apply this method typically only for the identification of the
higher-frequent part of the frequency response where the evaluation work is small.
However, it is more efficient to determine the lower-frequent part of the fre-
quency response from recorded step responses, see Sect. 4.2.3 and 4.3. The eval-
uation can also be carried out by means of a Fourier analysis.
The advantages of this identification method can be summarized as follows:

e The rectangular wave test signal can often easier be realized than the sinusoidal
test signal.
The static transfer behavior of the actuator does not need to be linear.
For a given amplitude u, the rectangular wave has the highest amplitude of the
fundamental sine wave compared to all other periodic input signals (e.g. sinu-
soidal, trapezoidal or triangular oscillation). Thus the ratio for a given distur-
bance with respect to the wanted output is the smallest.

The jump from +u¢ to —uo must not be carried out in an infinitely small time
interval, but can take a certain time 7}*. As can be seen by a comparison of the coef-
ficients of the Fourier transformed trapezoidal and rectangular pulse, the coefficients
of the Fourier transform of the trapezoidal pulse are by a factor

- wT]
Sin >

a)Tl
2

K = (5.2.6)

smaller. If one accepts an error of 5% (respectively 1%), which means « = 0.95
(respectively k = 0.99), then the switching time from +uo to —u( and vice versa

may be as large as

1.1 0.5
resp. T} < , (5.2.7)

wmax wmax

E
T <

where wmay is the highest frequency of interest. If the actuation time T," gets larger
and the error resulting by the approximation with a rectangular pulse should be
avoided, then one has to determine the Fourier coefficients of the trapezoidal os-
cillation.

5.3 Frequency Response Measurement with Multi-Frequency Test
Signals

The periodic test signals treated in the last section use only the basic frequency. This
requires several evaluation runs with each having an unused settling phase before
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Fig. 5.5. Example for a binary multi-frequency signal for 6 frequencies
o, 2wo, 4wg, 8w, 16wg, 32w and N = 256 intervals

reaching stationary oscillations. This drawback can, however, be avoided if test sig-
nals are designed which contain several frequency components at once with relatively
low amplitudes.

Levin (1960) superimposed several sinusoidal oscillations at the frequencies
o, 2wp, 4wo, 8wy, . ... Using binary signals, Jensen (1959) designed a multifre-
quency signal with 7 frequencies at wg, 2wy, 4wy, ... with u(z) = u(t)/|u(t)|. An-
other proposal was made by Werner (1965) with rectangular oscillations of frequen-
cies wg, 3w, 9wy, ... and amplitudes ug, 2/3up,2/3uy, .... However, these sig-
nals did not result in best efficiency or only in small amplitudes with regard to the us-
able frequencies. Therefore, van den Bos (1967) then optimized binary signals with
regard to the largest amplitudes for 6 frequencies wg, 2wy, 4wg, 8wy, 16wy, 32wy,
with periods 7§ of the lowest frequency as N = 512, 256, or 128 intervals. The size
of the amplitudes is about ¢y = 0.585a.

Figure 5.5 shows a binary multifrequency signal for N = 256. The discrete-time
instants for switches are for half a period 1242 -4 +2-23 +12-3+ 13 -5+
2—-6+1—-6+12—-446—.

The evaluation of the frequency response due to the multisine signal follows from
the Fourier coefficients as

2 nTp
ayy = T y(t) cos wytdt
”2P 0 T (5.3.1)
b,y = — t)si tdet
yv nTo Jo y(t)sinw,

with integer values for n representing the total measurement time 7y = n7Tp and

G(iwy)| = 7i-/a3, + b3,

_ ayv
¢(w,) = arctan By

(5.3.2)

Finally, a Schroeder multisine (Schroeder, 1970) is given as
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N
u(t) = Z Acos2r fr.t + ¢r) (5.3.3)
k=1
with
Jie =l fo with [ € N (5.3.4)
k(k + 1m
Pr = —% . (5.3.5)

The goal in designing this signal was to reduce the maximum amplitude of the com-
bined signal as much as possible.

5.4 Frequency Response Measurement with Continuously Varying
Frequency Test Signals

In telecommunication engineering, analysis of electronic circuits and audio engi-
neering, one often uses a sweep sine test signal, which is also referred to as a chirp
signal. Here, the frequency of the signal varies as a function of time. This brings up
the question, how the current frequency of a signal can be measured. The Fourier
transform is only defined for an infinite time interval and also the short time Fourier
transform requires at least an interval of finite length and hence does not allow to
determine the frequency of a signal at a single point in time. Here, the notion of the
instantaneous frequency (Cohen, 1995) of a signal comes into play. The instanta-
neous frequency is defined as the time derivative of the phase of a complex valued
signal,

d
w= E(Ax(t)) . 5.4.1)

This notion can easily be applied to the sweep sine signal.
A sweep sine is given as

x(t) = sin(2mf (1) 1) . (5.4.2)

The phase is hence given as the argument of the sine function and the instantaneous
frequency can therefore be determined as

d
0= (f)1). (5.4.3)

Now, a function f(¢) shall be defined for the case of a linear transition from
frequency fy to f1 intime 7 and for a logarithmic transition. For the linear transition,
the frequency function f(¢) will be given as

ft)y=at+b. (5.4.4)

Hence, the instantaneous frequency is given as
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d
0= E(Zn(at +b) 1) = 2w (2at +b) . (5.4.5)

To obtain the instantaneous frequency w(t = 0) =2nfpatt =0andw(t = T) =
27 f1 at T, one has to select the frequency function f(¢) as

fi— fo
t) = —t. 5.4.6
O = fot+ —r (5:4.6)
With a similar derivation, one can determine the frequency function f(¢) for an ex-

ponential transition as

fmzfo(%)*. (547)

These two frequency sweeps have been shown in Table 5.1. Sweep sines are often
used in circuit and network analysis. Here, a so-called wobble generator produces a
sweep sine in linear or exponential form which is then used as an input to a circuit.
The output is analyzed, the amplitude and phase are determined and are displayed
on a screen or saved for later reference.

5.5 Frequency Response Measurement with Correlation Functions

The frequency response measurement methods presented so far have mainly only
been suitable for small disturbances. For larger disturbances, techniques are required,
which automatically separate the wanted, useful signal from the noise. Especially
well suited for this task are correlation methods which correlate the test signal and
the disturbed output. In Sects. 5.5.1 and 5.5.2, identification techniques based on
the determination of correlation functions are presented. The methods are basically
exploiting the fact that the correlation of a periodic function is again periodic and
thus is easily separable from the correlation functions of stochastic disturbances, as
was already illustrated in Sect. 2.3.

5.5.1 Measurement with Correlation Functions

For a linear system, the auto-correlation function (ACF) of the input signal is given
as

T
1 2
Ry (r) = lim — Hu(t dr , 5.5.1
(= tim o [ o+ o (55.1)
see (2.3.8). For the cross-correlation function (CCF) follows from (2.3.14)

1

Ruy(0) = Efu@y (¢ + o)) = fim 7 [ u@y (e + vy

* (5.5.2)
1
= Tll_I)l’(l)O?[ u(t —1)y(t)de .

NN N
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Table 5.1. Linear and Exponential Sine Sweep

Name, Shape and Equation

Linear Sweep
Equation Time Response

x(t) = sinQu f(t) t)
with
f@) = fo+ o

0 5 10
t[s]
Fourier Transform Spectrogram
0 3 3 100
'5‘ H H
= s ‘ 5
= 50 [Nt T, 50
S I ~
=
—100 : 0
0 200 400
f1Hz] t[s]
Exponential Sweep
Equation Time Response
x(t) = sinQu f(t) t)
with

x(0) [-]

1
o =n(4#)"

0 5 10
t[s]
Fourier Transform Spectrogram
100

=)
% g 50
5 =
= |

~100 3 0

0 200 400
J1Hz7]
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They are both connected by means of the convolution integral, (2.3.35),

Ryy(7) =/0 g(Ru(t —tHdt' . (5.5.3)

These relations have been developed for stochastic signals in Sect. 2.3, but are also
valid for periodic signals. In order to determine the frequency response, one could
determine the impulse response g(z’) from (5.5.3) and then calculate the Fourier
transform of the impulse response to determine the frequency response G (iw). How-
ever, due to some special features of the correlation function, a direct determination
of the amplitude and phase of the frequency response can be derived as is shown in
the following. For a sinusoidal test signal

u(t) = ug sin wpt 554
with the frequency
2 (5.5.5)
wy = — , S.
0 R
the ACF is given as (2.3.31)
2u3 2 2

Ru(7) = TOO | sin(wot + &) sin(wo(r + 1) + @)dr = u_20 coswpT . (5.5.6)

The CCEF of the test signal (5.5.4) and the test signals response

y(1) = uo|G(iwo)| sin(wor — p(wo)) (5.5.7)
yield with (5.5.3)
2u2 7
Ry(r) = |G (iwg)| —=2 / sinwg(t — 1) sin(a)ot — <p(a)0))dt
Te Jo (5.5.8)

u2
= |G(ia)0)|70 cos(a)ot — (p(a)o)) .

Due to the periodicity of the CCF, one can confine the integration to half a period.
By considering (5.5.6), one obtains

(5.5.9)

Ruy(f) = |G(lw0)|Ruu(f _ (/)((00)) .
Wo

If the ACF and CCF are graphed over time, see Fig. 5.6, then the amplitude of the
frequency response is always the ratio of the CCF at the point t to the ACF at the
point T — @(wg)/we (Welfonder, 1966),

@(@0)
Ruy(T) — Ruy,max — Ruy( (200] )
Ruu (1— — %) Ruu (0) Ruu (0)

|G (iwo)| = (5.5.10)
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Fig. 5.6. ACF and CCF for sinusoidal input signal

The phase can be determined from the time lag At of the two correlation functions
@(wo) = —woAt . (5.5.11)

At can best be determined from the zero crossings of the two functions. Amplitude
and phase can thus be determined from four discrete points of the two correlation
functions only. However, for averaging, one can process more points of the periodic
correlation functions as necessary.

The application of the method is not limited to sinusoidal signals. One can em-
ploy any arbitrary periodic signal since the higher harmonics of the test signal do
not influence the result as long as the input and output are correlated with sinusoidal
reference signals (Welfonder, 1966).

If stochastic disturbances n(¢) are superimposed onto the output, then one will
use larger measurement periods for the determination of the CCF according to
(5.5.2). The influence of stochastic signals on the determination of the ACF is cov-
ered in Chap. 6. It will be shown there that the error vanishes if the stochastic distur-
bance 7(¢) is not correlated with the test signal u(¢) and either (1) = 0 or n(r) = 0.
This is also valid for arbitrary periodic signals as long as their frequency is different
from the measurement frequency wy.

Example 5.2 (Determination of the Frequency Response Using Correlation Func-
tions).

An example of the determination of the frequency response function using cor-
relation functions, again applied to the Three-Mass Oscillator, is shown in Fig. 5.7.
Here, noise has been added to the output signal with 0,,, = 4rad/s. As can clearly
be seen from the input signal and the output signal graphed in Fig. 5.7, the direct de-
termination of the frequency response is impossible due to the noise superimposed
onto the systems measured output. Thus, the ACF and CCF of the input and output
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Fig. 5.7. Frequency response measurement with correlation functions for a noisy output signal
of the Three-Mass Oscillator

have to be determined. As can be seen from the bottom diagram in Fig. 5.7, the CCF
shows a smooth course and is obviously not much affected by the noise. The zero

crossings and the maximum amplitude of the CCF can easily be determined.
The amplitude of the ACF can be read out at the time difference t

0

as Ry (0) = 0.1152Nm? (note the scaling of the ACF with a factor of 20 in
Fig. 5.7), the maximum amplitude of the CCF is given as max(Ruy (7)) = Ruy,max =
3.217Nmrad/s. Thus, the gain is given as
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Ruy,max 1.99 Nm% %ﬂ
- 5 = 24.49 ——. (5.5.12)
Ruw(0)  0.081Nm Nm

|G(iw0)|w=2.8947rad/s =

The phase can be determined by two subsequent zero crossings of the input and the
output signal. The auto-correlation function has a zero crossing at t = 0.053 s and
the cross-correlation function has its corresponding zero crossing at 7 = 0.542 s.
The phase is thus given as

rad
i - rad/s = —Atw = (0.542s — 0.0535) 2.8947 —
¢(iw)|p=2.8047 d/s Tw = ( S s) s (5.5.13)

= —1.41rad = —81.1°.

One can see that the amplitude matches relatively well with the value derived by the
direct evaluation, see Example 5.1.

5.5.2 Measurement with Orthogonal Correlation

The following section will cover the most important frequency response measure-
ment technique for linear systems that allow the injection of special test signals and
offline identification.

The Principle

The characteristics of the frequency response for a certain frequency wg can be de-
termined from two points of the CCF of the test signal and the system output. Real
and imaginary part can both be estimated from the CCF, (5.5.8),

|G (iwo)| cos(a)ot — (p(a)o)) = Ruzz(r) . (5.5.14)
up

2

For t = 0, one obtains the real part of the frequency response as

Ry (0)

2

Re{G(iwg)} = |G(iwp)| cos(p(wp)) = (5.5.15)

and for t = Tp/4 = /2w or wot = 7/2, the imaginary part of the frequency
response can be determined as

Im{G(iwo)} = |G (iwp)| sin(p(wo)) = (5.5.16)

Thus, one has to determine the CCF merely for two points and not its entire course
as a function of 7. The CCF for r = 0 can according to (5.5.2) be calculated by
multiplying the test signal with the system output as
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Fig. 5.8. Setup for the orthogonal correlation
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Ruy(0) = 2Re{G(iwp)} = —— / y(t) sin wot dt (5.5.17)

2 I’lTp 0

and the CCF for ¢ = Tp/4 can similarly be determined by a multiplication of the
phase shifted test signal with the output as

Tp M2 Uo nTp
Ruy(T) = TOIIH{G(M)O)} = _E/o y(t) cos wot dt , (5.5.18)

where the phase shift by 7/2 transforms the sine into a cosine of the same frequency.
The multiplied signals are subsequently integrated over n full periods.

This measurement principle exploits the orthogonality relations of the trigono-
metric functions. Signal components which are (integer multiple) harmonics of the
fundamental frequency wg as well as signal components which have the same fun-
damental frequency wyg, but are orthogonal to sin wg? or cos wet do not contribute to
the identification of the real and imaginary part respectively.

Figure 5.8 shows the corresponding experimental setup (Schifer and Feissel,
1955; Balchen, 1962; Elsden and Ley, 1969). Before starting the integration, one
must wait for transient effects to have settled. In contrast to the technique presented
in the preceding section, the orthogonal correlation allows to directly display the real
and imaginary part immediately after each integration over n periods.

Despite the fact that the relations for the real and imaginary part have already
been shown in (5.5.15) and (5.5.16), the relations will be derived from scratch again
in the following. This time the CCFs will be considered as they are shown in Fig. 5.8.

At the output of the integrators, the following values can be tapped according to
(5.5.17) and (5.5.18)

1 nTp

Ry (0) = Ug sin wotyo sin(wot + @)dt

nTp Jo

1 »Te o
= —Up)o / (sin wot cos @ + cos wyt sin ) sin wot dt
I’lTp 0

(5.5.19)

Application of the orthogonality relation then yields
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1 nTp nTp
Ryy(0) = —upyo (/ sin? wot cos edt + / sin wg! cOS Wyt sin (pdt)
0 0

l’lTp
=0
2 2 2
Yo u() . MO . u()
o 2 059 |G (iwp)]| cos @ 5 e{G(iwo)} 5
(5.5.20)
Similarly, one obtains for Ryy(7p/4)
Tp 1 e
Ruy(Z) = Ug cos wot yo sin(wet + ¢)dt
ieJo , (5.5.21)
= Im{Giwn)} 3 -

Amplitude and phase of the frequency response can then be determined by the rela-
tions

(Gliwo)| = y/Re{Giewo)} + Im*{G(ievo)} (5.522)
Im{G (iwo)}
Re{G(iwo)}

This measurement principle has found widespread distribution and is also part of
commercially available frequency responses measurement systems (Seifert, 1962;
Elsden and Ley, 1969). Due to its easy application, it is not only used in the presence
of large disturbances, but often also in the case of little or no disturbances. Frequency
response measurement systems that are based on this working principle are termed
correlation frequency response analyzers. The competing measurement principle is
the sweep frequency response analysis, which is based on a sweep sine generator and
a spectrum analyzer carrying out an FFT, see Sect. 5.4.

¢(wp) = arctan (5.5.23)

Example 5.3 (Orthogonal Correlation).

The orthogonal correlation has been applied to the Three-Mass-Oscillator and
the measured frequency response has been compared with the theoretically derived
frequency response, see Fig. 5.9. Experiment and theory match very well. O

Stochastic signals and periodic signals with @ # wq do not influence the result
in the case of infinite measurement time as was the case for the technique presented
in the preceding section. However, in practical applications, the measurement time
is always limited and in many cases quite short. Due to this, attention will be paid to
the resulting errors in the case of a finite measurement time 7 7p in the next section.

Influence of Noise

The disturbances y,(¢), which are superimposed onto the response y,(¢) (see Fig. 1.5)
cause the following error in the determination of the real and imaginary part of the
frequency response according to (5.5.17) and (5.5.18)
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Fig. 5.9. Frequency response measurement of the Three-Mass Oscillator by means of the
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nTp
ARe{G(iwp)} = / v,(t) sin wotdt (5.5.24)
0

uonTp

AIm{G(iwo)} = —

nTp
/ v,(t) cos wptdt . (5.5.25)
uonTp Jo

The magnitude of the resulting error in the frequency response is then given as
|AG(iwp)|* = ARe*{G(iwo)} + AIm*{G (iwp)} - (5.5.26)

Now, the influence of a stochastic noise n(¢), a periodic disturbance p(¢), and a drift
d(t) will be investigated.

For a stationary stochastic disturbance n(t), the expected value of the squared
error of the real part is given as

4 nTp nTp
E{ARe*(w,)} = —ZWE%/ n(t") sina)o(t’)dt’/ n(t") sinwo(t")dt"”
0” 0
= 0n2T2 / / E{n(t")n(t")} sinwot’ sin wot”dt'dt” .
(5.5.27)
With
Run(7) = Run(t’ —1") = E{n(t)n (")} (5.5.28)

and the substitution T = ¢’ — ¢” follows

4 nTe T sinwgt
E{ARe? = Run 1— — dr .
{ARe*(wp)} u%nTp/O (r)(( nTP)cosa)or+ wonTp) T
(5.5.29)

The derivation is shown in (Eykhoff, 1974) and (Papoulis and Pillai, 2002). For
E{AIm?(wp)}, one can derive a similar equation with a minus sign in front of the
last addend. Plugging these terms into (5.5.26) yields

) ) 8 nTp |‘L’|
E{|AG(1a)0)| } Ry (t)| 1 — — | coswytdr
0 nTp

u%nTp

4 nTp
= 2 / nn(f)( | | ) —lwordr .
ughTe Jntp

One has to take into account that E{ARe(wo) Alm(wg)} = 0 (Sins, 1967; Eykhoft,
1974). If n(t) is a white noise with the power spectral density Sp and thus

(5.5.30)

Run(t) = Soé(7) , (5.5.31)
then (5.5.30) simplifies to

4So
udnTp

E{|AG(iwp)|*} = (5.5.32)
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The standard deviation of the relative frequency response error is then given as

_ [ f1AGGe0)?) _ 25,
oG = E{ o } (5.5.33)

|G (iwo)|uoy/nTo

Now, it is assumed that n(¢) is a colored noise that has been derived by filtering
the white noise v(¢) with the power spectral density S,o. The filter can e.g. be a first
order low-pass filter with the corner frequency wc = 1/ T¢,

n(iow) 1

G,(iw) = = . 5.5.34
vio) =00 T TTieTe (5.5.34)
The ACF is then given as
Run(z) = 220 (5.5.35)
m(7) = e . 5.
27c

and Ryn(t) & O for |tmax| < kTc where e.g. k > 3. Then, from (5.5.30) follows for
large measurement times n7p >> |Tmax|

4
u%n Tp

E{|AG(iw)|*} ~ Son(wo) - (5.5.36)

Therefore, for a colored noise n(¢) with the power spectral density Sy, (w) for large
measurement periods follows

2 \% Snn (U)O)

™ GlwoluoViTs 4230
with
Sn(@) = |Gy (i0)[*Syo (5.5.38)
and with (5.5.34)
wo
oG v YN e (5.5.39)

G (iwo)luo \/ o\Z 1Y
(&) )
wc n

The factor Q is shown in Fig. 5.11. For a given colored noise created by a filter
with the corner frequency wc, the absolute frequency response error is largest for the
measurement frequency wg = wc. The error diminishes proportionally to the square
root of the number of full periods measured.

Example 5.4 (Disturbance Rejection of the Orthogonal Correlation).

The good rejection of disturbances can be seen in Fig. 5.10. Here, noise has been
added to the output of the Three-Mass Oscillator. The topmost plot shows the noisy
measurement. The lower two plots illustrate that the frequency response despite the
large noise is still measured and that the first resonance can be detected relatively
precisely for @ < 20rad/s. O
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Fig. 5.11. Factor Q of the frequency response error caused by a stochastic disturbance with
corner frequency wc and measurement frequency wo (Balchen, 1962)
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Fig. 5.12. Factor P of the frequency response error caused by a periodic disturbance pg cos wt
with measurement frequency wg (Balchen, 1962)
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For a periodic disturbance p(t)
p(t) = pocoswt (5.5.40)

the error of the real and the imaginary part of the frequency response can be calcu-
lated according to (5.5.24) and (5.5.25). Calculating the integral yields

2
ARe(ﬁ) - @nn(l _ (3) )(1 —cosznﬁn) (5.5.41)
wo Ug wo @o
m()
N
m(ﬁ) - “o n. (5.5.42)
w

The magnitude of the relative frequency response error is then given as

(00 () )ons
. 2po|l — I—({1—-(— cos“ m—n
5 = |AG(iwo)| wo wo on)

. 2
|G (iwo)] u0|G(ia)o)|‘(l — (2) )
(O
(2) 1+ (3)2
Pov2 “o 20

wolGliwo)l | (3)2
wo

—

P

. w
sinwt—n
o

()

. w
sinwt—n
wo

for w # wy .

(5.5.43)

The approximation can be derived by taking the average of cos?(...) = 0.5. The
factor P which is decisive for the frequency dependency of the frequency response
error is graphed in Fig. 5.12, see (Balchen, 1962; Elsden and Ley, 1969). The factor
has zeros at w/wg = j/n with j = 0,2,3,4,5,.... Periodic disturbances which
have a frequency w that is an integer multiple of the measurement frequency wg do
not contribute to the error of the frequency response measurement. Periodic distur-
bances with any other frequency @ cause an error in the frequency response mea-
surement for finite measuring periods n7p, which are proportional to the factor P.
The most severe error is caused by disturbances whose frequency w is quite close to
measuring frequency wyq. If one interprets P(w/wy) as a filter, then the “pass-band”
gets smaller as the measuring time increases. For n — oo, the identified frequency
response can only be falsified by periodic disturbances with the very same frequency
o as the measuring frequency. The envelope of P(w/wy) is given as
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® 2
1+ (—
w poﬁ (wo) 1
Sl — = —_ 5.5.44
G(wo)m wlGGwl |~ ()’ 55.44)
wo

nmw
For w/wo # j/n the error diminishes proportionally to the number of full periods
n, which is faster than for stochastic disturbances.

Finally, the influence of very low frequent disturbances shall be investigated.
Over the measurement period, these can be seen approximately as a non-periodic
disturbance d(t). From (5.5.24), (5.5.25), and (5.5.26) follows

86 = s [ " e ar [ " e ar
u%nzTPZ 0 0

2 . .
= u%n—szsz(_lw)dT(lw) (5545)

2
= ——|dr(iw)|?

with dr(iw) being the Fourier transform of the disturbance of length T = nTp. For
a drift

d(t) = at (5.5.46)
of duration T = nTp follows
nTp ) 2
dr(iw) = / ate 0l dr = —LGi (5.5.47)
0 Wy

and the frequency response error becomes

V2a
UpWo '

|[AG(iw)| = (5.5.48)
The error in the frequency response caused by a drift does not diminish as the mea-
surement time increases and is proportional to the drift factor a. Thus, one has to
employ special means to suppress the disturbance of low frequent disturbances. One
example is to filter the signal by means of a high-pass filter with the transfer function

TDS

Gup(s) = T 75

(5.5.49)

where the time constants have to be adapted to the measurement frequency wy.
Another remedy is to approximate the drift-wise disturbance by a polynomial

d(t) = ag + ait +at® + ... (5.5.50)

and subsequently eliminate d(¢) by subtraction of the polynomial drift model from
the measured signal. A method for drift elimination that is based on this approach
has been presented by Liewers (1964).
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5.6 Summary

The direct methods for the determination of the frequency response allow a point-
wise determination of the frequency response with little effort and quite good re-
sults as long as the disturbances acting on the process are small. It is however time-
consuming for processes with slow dynamics as the transitional phases between the
measurements cannot be exploited. For linear processes with larger disturbances, the
frequency response measurement with correlation functions has proven to be a pow-
erful tool. The therefrom derived method of orthogonal correlation is employed in
many commercial frequency response measurement devices and software tools.

Due to its long measuring time, it is mainly used for processes with small set-
tling times. A reduction of the total time can be achieved if the frequency response
for small frequencies is determined by means of the Fourier analysis of recorded step
responses as was shown in Chap. 4 and only the frequency response for the higher
frequencies is determined by means of correlation methods. Thus, one can combine
non-periodic and periodic test signals into “advantageous” test signal sequences (Is-
ermann, 1971).

Problems

5.1. Frequency Response Measurement with Monofrequent Signals
What are the advantages and disadvantages of determining the frequency response
with monofrequent signals as illustrated in this chapter?

5.2. Rectangular Wave Test Signal
How can the frequency response be determined with rectangular waves?

5.3. Orthogonal Correlation
Derive a method to employ the orthogonal correlation method with rectangular waves
as an input.

5.4. Orthogonal Correlation

How does the frequency response measurement error decay in the presence of
stochastic or periodic disturbances as the number of measurement periods increases?
By which factor must the measurement time be increased to reduce the influence of
these disturbances by half.
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Part 1l

IDENTIFICATION OF NON-PARAMETRIC MODELS WITH
CORRELATION ANALYSIS — CONTINUOUS AND DISCRETE
TIME



6

Correlation Analysis with Continuous Time Models

The correlation methods for single periodic test signals, which have been described
in Chap. 5 provide only one discrete point of the frequency response at each mea-
surement with one measurement frequency. At the start of each experiment, one must
wait for the decay of the transients. Due to these circumstances, the methods are not
suitable for online identification in real time. Thus, it is interesting to employ test
signals which have a broad frequency spectrum and thus excite more frequencies at
once as did the non-periodic deterministic test signals. This requirement is fulfilled
by the properties of stochastic signals and the therefrom derived pseudo-stochastic
signals. The stochastic signals can be generated artificially or one can use the signals
which appear during normal operation of the plant, if they are suitable. By the corre-
lation of the test signal and the output signal, the response evoked by the test signal
is weighted differently than the noise. This results in an automatic separation of the
wanted signal from the noise and thus a suppression of the noise.

This chapter covers correlation methods for the identification of non-periodic
models for continuous-time signals. Since nowadays, the correlation functions are
typically evaluated by digital computers, the use of correlation functions will also
be presented in Chap. 7 for the discrete-time case. Section 6.1 covers the estimation
of correlation functions in finite time and formulates conditions for the convergence
of the estimate. Next, the identification of processes which are excited by stochastic
signals by means of the ACF and CCF will be presented in Sect. 6.2. The correlation
analysis with binary test signals, especially with pseudo-random binary signals and
generalized random binary signals, is covered in Sect. 6.3. Issues of the identification
by the aid of the correlation analysis in closed-loop are discussed in Sect. 6.4.

6.1 Estimation of Correlation Functions

In this section, the estimation of the CCF and the ACF of stationary stochastic signals
for limited measurement periods is covered.

R. Isermann, M. Miinchhof, Identification of Dynamic Systems,
DOI 10.1007/978-3-540-78879-9 6, © Springer-Verlag Berlin Heidelberg 2011
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&‘l’ T_I: x(t-7)
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7 time delay; 7 measurement time

Fig. 6.1. Block diagram for the estimation of the cross-correlation function

6.1.1 Cross-Correlation Function

The cross-correlation function (CCF) (Hénsler, 2001; Papoulis, 1962) in the case of
two continuous-time stationary random signals x (¢) and y(¢) is according to (2.3.14)
defined as

T
N Y -2
Ry(r) = E{x(t)y(t + r)} = Tlgnoo T /_1 x(@)y(t + v)de
. 2 (6.1.1)
= i ! /7 — dr
= Jim - i x(t —1)y()
and
1 r%
Ry (7) = E{y(t)x(t + r)} = Th_r)noo T / , y(@)x (@ + v)dt
’ = (6.1.2)
N Y
= Th_)moo T /—2 y(t —1)x(t)dt
Therefore,
Ry (1) = —Ry(7) . (6.1.3)

In most applications however, the measurement period is quite limited and only of
the (short) finite duration 7. Thus, the influence of the measurement period 7" on the
estimation of the correlation function must be taken into account and will now be
investigated.

It is assumed that the signals x(¢) and y(¢) are known in the time interval 0 <
t < T + 7 and that E{x(¢)} = 0 and E{y(¢)} = 0. (The case of a time interval
0 <t < T is covered in Chap. 7). The CCF can then be estimated by

. 1 (T
Ryy (1) = ?/ x(t)y(t 4+ t)dt
0 (6.1.4)

1 T
= 7/0 x(t —1)y(t)dr .

Figure 6.1 shows the block diagram of this estimator. First, one signal must be de-
layed by the time 7 and then the two signals must be multiplied with each other.
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Finally, the mean of the product has to be determined. The expected value of this
estimation is given as

. 1 (T
E(Ry(0) = 7 /0 B{x(0)y(t + 1)}dr

LT (6.1.5)
= ?/0 Ry (7)dt = Ry (7).
Thus, the estimate is unbiased. The variance of this estimate is given as
A A~ 2 A
var Ryy (1) = E{ny(r) — ny(‘lf)} = E{Rfy(f)} — Rfy(f)
(6.1.6)

T T
= %fo /0 (x@)y@ + )x()y (" +7))de'dr — Rfy(r) )

Under the assumption that x(¢) and y(¢) are normally distributed, one obtains

. 1 T ,T
var Ryy (1) = 73 /0 /(; (Rux(t" — 1) Ryy (1" — 1)
4+ Ry(t' —t + T)Ryx(t' —t —7))dt’dr .

6.1.7)

By substituting ¢’ — ¢ = &, and dt’ = d¢ and exchanging the order of the inte-
grals (Bendat and Piersol, 2010), it follows that

T
k(= 1 [ (1 - @)(RM(QRW(&)

T T
Ryy(€ + D) Ryx(§ = 1))dE = 0F, .
If the correlation functions are absolutely integrable, which necessitates E{x ()} = 0
or E{y(?)} = 0, it follows that

(6.1.8)

lim var Ry (7) =0, (6.1.9)
T—00

which means that (6.1.4) is consistent in the mean square.
For T > 7, the variance of the estimate is given as

. 1 (7
R0~ 1 [ (Ra@R(©) + Ryl + R~ 1)
- (6.1.10)

1 T
=7 /_T(Rxx(é)Ryy(E) + Ryy (T + &) Ryy(t — £))dE .

The variance of the estimate of the CCF is only determined by the stochastic nature
of the two signals. In a finite time horizon T, it is not possible to determine the
stochastic correlation between two random signals without a certain uncertainty. This
is termed the intrinsic statistic uncertainty (Eykhoff, 1964).

If one can assume Ryy(7) ~ O for large t and additionally 7" >> 7, then (6.1.10)
can be simplified as
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. 2 (T
var Ry (1) ~ 7/0 Ry (§)Ryy(£)dE . (6.1.11)

Often, one must use correlation functions because one signal is disturbed by a
stochastic disturbance n(t), as e.g.

() = yo(t) +n() . (6.1.12)

This additive noise n(¢) shall be zero-mean, E{n(¢)} = 0, and statistically inde-
pendent from the useful signals yo(z) and x(¢). Then, it holds for the correlation
functions

Ryy(§) = Rypyo(§) + Rn(§) (6.1.13)
Ryy(§) = Ry, (§) . (6.1.14)

According to (6.1.5) follows that the estimation is unbiased, i.e.
E{Ryy(1)} = Ry, (1) . (6.1.15)

The variance of the estimate, (6.1.8) is augmented by another term as

R 1 (T
Var(ny(T))n = T /_T(l - %)Rxx(g)Rnn(g)dg = OI%Z (6116)
with
Jim var(Ryy (7)), =0, (6.1.17)

such that the estimate is still consistent in the mean square. The influence of the dis-
turbance is eliminated as the measurement period 7 is increased, so that the variance
of the estimate of the CCF decays inversely proportional to the measurement time 7.
If the disturbance is superimposed onto the other signal x (¢),

x(t) = xo(t) + n(t) (6.1.18)

one can derive analogous results, which means that with respect to the convergence
it does not matter which signal is disturbed. Now, it is assumed that both signals are
similarly disturbed, i.e.

() = yo(t) +n1(t) (6.1.19)
x(t) = xo(t) + na(t) . (6.1.20)

With E{n(¢)} = 0 and E{n(¢)} = 0 follows that

Ryy(g) = Ryoyo(g) + Royn, (§) (6.1.21)
R (8) = Ryyxo(§) + Rupn,y (8) . (6.1.22)

and, if the two disturbances are statistically independent from the respective useful
signals, then
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ny(i:) = Rxoyo(g) + Rn1n2 (%‘) . (6.1.23)

The estimation of the CCF is in this case only unbiased if 7 (¢) and n,(¢) are uncor-
related. Under this prerequisite, the additional term for (6.1.16) is given as

T
(@), = 5 [ (1 '5')( 50 6 Ruyny (6)

-T
+ R}’O}’O (é)annz (%-) + RH]H] (S)annz (S))dé .

(6.1.24)

For T — o0, this variance also approaches zero. However, for finite 7', its magnitude
is larger than for the case of only one disturbance acting on the system.

Theorem 6.1 (Convergence of the Cross Correlation Function).
For the estimation of the cross-correlation function of two stationary stochastic
signals according to (6.1.5), errors are caused by

e the intrinsic statistical uncertainty according to (6.1.8)
e the uncertainty due to disturbances n(t) according to (6.1.16)

The estimate of the CCF for a finite time horizon T is unbiased, if the disturbance
n(t) is statistically independent from the respective wanted signal xy(t) and yo(t)

and E{n(t)} = 0. For the variance of the estimate in the presence of a disturbance
n(t) follows, see (6.1.8) and (6.1.16),

var Ry (t) = 0%, + 03, . (6.1.25)

If both signals are affected by disturbances, then the estimate is only unbiased if both
disturbances are uncorrelated with each other. O

6.1.2 Auto-Correlation Function

As an estimate for the auto-correlation function (ACF) of a continuous-time station-
ary random signal x(z), which exists in the time interval 0 < ¢ < T + 7, it is
suggested to use

. 1 (T
Ry (1) = ?/ x(@®)x(t + v)dr . (6.1.26)
0
The expected value of this estimate is
E{Ru(7)} = Ru(1) . (6.1.27)

The estimate thus is unbiased. For a normally distributed signal x(¢) follows from
(6.1.8) that

var Ry (1) = E{(Rax (1) — Ry (1))

_ _/ ( |€§-|) x(i;) + R (§ + 1) R (€ — ‘L'))d{: = 012Q1 .
(6.1.28)
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If the ACF is absolutely integrable, then

lim var Ry (1) =0, (6.1.29)
T—o00

which means that (6.1.26) is consistent in the mean square. The variance og; is
caused by the intrinsic uncertainty.
For T > t, it follows that
. 1 (T
var Ry (1) ~ T / (fo(g) 4+ R (& + 1) R (& — r))dé . (6.1.30)

-T

Under the assumption of large measurement times 7', the following special cases can
be discussed:

1. t=0: r
var Ry (0) 2 / R2 (§)dt . (6.1.31)
T J-r

2. 7 large and thus Ry(7) &~ 0: Due to R2 (§) > Ry (& + 1) R (§ — 7) it follows
that

T
var R (0) ~ % / R2 (£§)dk . (6.1.32)
-T

The variance for large 7 is thus only half as large as for 7 = 0.
If the signal x(¢) is disturbed by n(¢), such that

x(t) = xo(t) +n(t) , (6.1.33)
then the ACF is given as
Ryx(1) = Rypxo(7) + Run(7) (6.1.34)

provided that the useful signal x¢(¢) and the noise n(¢) are uncorrelated and further-
more E{n(¢)} = 0. The auto-correlation function of the disturbed signal is thus the
sum of the two auto-correlation functions for the noise free signal x (¢) and the noise

n(t).
6.2 Correlation Analysis of Dynamic Processes with Stationary

Stochastic Signals

6.2.1 Determination of Impulse Response by Deconvolution

According to (5.5.3) or (2.3.35) respectively, the auto-correlation function and the
cross-correlation function are linked by the convolution integral, i.e.

Ryy(7) =/0 gt Ry (t —1tHdt, 6.2.1)
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where g(¢) is the impulse response of the process with input u(¢) and output y(¢).
As estimates of the correlation functions for a finite time horizon 7', one uses

T
Ru(r) = % /0 u(t — t)u(r)de 6.2.2)

T
Ruy(7) = % /0 u(t — 1)y (t)d (6.2.3)

according to (6.1.4) and (6.1.26). The required impulse response g(¢’) can be deter-
mined by de-convolution of (6.2.1). First however, the equation must be discretized
with the sample time Ty as

M
Ruy(wTo) ~ To Y g(uTo) Ruu((v — i) To) - (6.2.4)
n=0
To determine the impulse response for k = 0,..., N, one must formulate N + 1

equations of the form (6.2.4). This is covered in Sect. 7.2.1. The direct convolution
of the input u(¢) and the output y(¢) is used by Sage and Melsa (1971). While this
will result in the inversion of a lower triangular matrix, it is not advisable to do so as
the calculation of the correlation functions beforehand will reduce the influence of
noise already.

Since the correlation functions are estimated according to (6.1.26) and (6.1.5) and
thus are only approximately known for finite measurement times 7', the estimated
impulse response will be counterfeit to some degree.

As had been shown in Sect. 6.1, the ACF and the CCF are estimated bias-free
for stationary signals u(¢) and y(¢) in the absence of noise. More important for the
application however is the case of a disturbed output y(¢), (6.1.12) through (6.1.15),
which will be reviewed in the following.

For a stochastically disturbed output

(&) = yult) +n(1) . (6.2.5)

follows according to (6.1.12) and (6.1.14)

E{Ruy (1)} = RY, (1) + E{ARy (1)} (6.2.6)
with
1 T
Ry (v) = T /0 B{u(t — t)y(1)}dt (6.2.7)
1 T
E{ARy (1)} = ?/0 E{u(t — 1)n(t)}dt = Ry (1) . (6.2.8)

If the input and the disturbance are uncorrelated, then it follows

E{u(t — )n(t)} = E{u(t — 1)}E{n(1)} . (6.2.9)
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so that if either E{u(¢)} = 0 or E{n(¢)} = 0, then
E{ARy (1)} =0. (6.2.10)

The CCF according to (6.2.6) is henceforth unbiased even for estimation over a finite
time horizon 7'. The variances of the estimated correlation functions can be deter-
mined as follows: Due to the stochastic nature of the input signal, the ACF has an
intrinsic statistical uncertainty according to (6.1.28)

. 1 (T
var{ Ru (1)} = — / T(l - @)(Riu(s) + Rua(€ + 0) Rua(E — D))dE . (6.2.11)
The CCF also has an intrinsic statistical uncertainty, which can be determined from
(6.1.8) as

T
vl @) = 7 [ (1= 5 (Ru@ Ry @ R 6+ R -0 62.12)

and an additional uncertainty if a noise n(¢) is superimposed onto the output, see
(6.1.16),

5 LT &1

var(Ro(@), = 7 [ (175 ) Ra@Ru(6105 62.13)
T J_r T

All these variances vanish for 7 — oo, if the individual correlation functions respec-

tively their products are absolutely integrable, which means that at least E{u(¢)} = 0.

Then, all correlation function estimates are consistent in the mean square.

Theorem 6.2 (Convergence of the Correlation Functions for a Linear Process).

The auto-correlation function Ry, (t) and the cross-correlation function Ry (T)
for a linear process with the impulse response g(t) are estimated consistently in the
mean square according to (6.2.2) and (6.2.3) under the following conditions:

o The useful signals u(t) and y,(t) are stationary
o E{u(®)} =0
e The disturbance n(t) is stationary and uncorrelated with u(t)
O

As has been shown in Sect. 6.1, the above theorem also holds true if the input
u(t) is disturbed by n(¢) or if both the input u(¢) and the output y(¢) are disturbed
by n1(¢) and n,(t) respectively, where n1(¢) and n,(¢) may not be correlated. If
the theorem is valid for a given application, then the impulse response can also be
estimated consistently in the mean square according to (6.2.4), see Sect. 7.2.1 An
example for the assessment of the resulting error in the estimation of the frequency
response is shown in the following section (Sect. 6.2.2).
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6.2.2 White Noise as Input Signal
Ideal White Noise
If the input signal is a white noise, then its ACF is given as
Ry (1) = Sy (1) (6.2.14)

and from (6.2.1) with the masking property of the §-function

Ruy(1) = Swo /oo g(t8(x —t)dt' = Sy g(x) . (6.2.15)
0

The required impulse response is thus proportional to the CCF as

g(r) = LRuy(r) (6.2.16)
SuO

and the de-convolution of the correlation functions is hence unnecessary. This ideal-

ized white noise with constant, frequency independent power spectral density Sy is

however not realizable. Therefore, this investigation shall thus be carried out again

using broadband noise which has an approximately constant power spectral density

in the interesting frequency range.

Broad-Band Noise

A broadband noise can be generated hypothetically by filtering a white noise. It then
has the power spectral density

Su(®) = |Gr(iw)|*Suo - (6.2.17)

For a filter of first order with the corner frequency we = 1/ T¢, one obtains by using
(2.3.22) and the tables for Fourier transform of simple linear dynamic systems

1 [ .
Ru(7) = e / |GE(iw)|? Swe'®! dw
—0o0

1 [ Swo
== ———>— coswrdw (6.2.18)
wJo 1+T¢w?

_ —aoclt|
= —duowce .
2

The shape of the ACF and the corresponding power spectral density Sy, is shown
in Fig. 6.2. For a sufficiently large bandwidth, i.e. corner frequency wc, the ACF
approaches the shape of a §-function, so that the conditions for the application of
(6.2.16) are approximately staisfied.

The error which stems from the limited bandwidth of the excitation and the sub-
sequently “wrong” application of (6.2.16) has been investigated e.g. by Hughes and
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Fig. 6.2. Power spectral density and auto-correlation function of a broadband noise of first
order

Norton (1962) and Cummins (1964). For this investigation, the ACF according to
(6.2.18) has been approximated by a triangular pulse of width 7c = 1/wc. The
largest error of the impulse response estimate turns up at T = 0 and amounts to

Ag(0) 1 §(0)

A . (6.2.19)
g0)  3awc g(0)
For a filter of first order with the time constant 77, one gets
Ag(0 1
g0 (6.2.20)

g(0) 3T

If one chooses wc = 5/ Ty, then one gets for Ag(0)/g(0) ~ 0.07. The error which
is caused by the finite bandwidth of the test signal gets smaller as the bandwidth is
increased. However, the error which is caused by the disturbances gets larger. Thus,
the bandwidth wc = 1/ T¢ may not be chosen to large.

6.2.3 Error Estimation

For the case of a white noise, the variance of the estimated impulse response g(7), a
non-parametric process model, shall be calculated.

The intrinsic statistical uncertainty of the CCF causes according to (6.2.12),
(6.2.14), and (6.2.16) for large measurement periods 7' > t a variance of the im-
pulse response which is given as

0;1 =varg(tr) = E{Agz(r)}

1 T
~ 7 /_ (Ru(© Ry (€) + Ryl + Ry (= D)

1 T
= W(Ryy(o) + Suw /_T gt + &gz —S)dé) .

For 7 = 0 and processes without a direct feedthrough (i.e. g(0) = 0) or for large ©
with g(t) ~ 0 follows
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1
2 o2
Og1 & Suon Ry (0) = Suzo V2(1) = 2T oy . (6.2.22)
Ryy(0) is in this case given as
o
Ryy(7) = / g(t")Ryy(t +t")dr", (6.2.23)
0

which follows from (2.3.14) in analogy to (2.3.35). With (6.2.15), one obtains

Ryy(7) = Sw /000 g(g(x +t"ar’ (6.2.24)
and o
Ryy(0) = Syo /0 g2(thdt’ . (6.2.25)
Finally,
ol ~ % /0 ” g2(t)dr’ (6.2.26)

follows. The variance of the impulse response estimate caused by the variance from
the intrinsic uncertainty of the CCF is thus independent from the amplitude of the
test signal and depends only on the measurement time 7" and the quadratic area of
the impulse response.

The uncertainty caused by the noise n(¢) follows from (6.2.13) for large mea-
surement times as

1 T
0;2 = var(g (r)) o7 / Ruu(§) Run(§)dE
u()

(6.2.27)
= o Rul0) = 0 = 07
SaT SaT ST
If n(¢) is a white noise with power spectral density Ny, then
No 1
2
(o (6.2.28)
82~ SuO T

The variance gets smaller as the signal-to-noise ratio onz /Suo or No/ Sy decreases
and as the measurement period 7" increases. The variance of the impulse response
estimate is then given as

2

oy = 0 L+ Gg 2. (6.2.29)

To get a better insight for the magnitude of the two components contributing to
the variance of the impulse response estimation error, the terms shall be calculated
for a first order system with the transfer function

yés) K

Glo) = u(s) 1+ Tis

(6.2.30)
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Table 6.1. Standard deviations of the impulse response, identifying a first order system with
the CCF and white noise excitation as a function of the measurement time

= 50 250 1000
o 0.100 0.044 0.022
o 0.063 0.028 0.014
= 0.118 0.052 0.026

and the impulse response
K _t
gt)y=—-e I, (6.2.31)
Ty
which will be excited by a white noise with power spectral density Syo. The intrinsic
statistical uncertainty of the CCF contributes as

2 L[, 2
oL~ — g*(thadt' = , (6.2.32)
gt /0 2T, T
and the uncertainty due to the disturbance n(¢) contributes as
2
2 Oy
~ 6.2.33
Og SuT ( )

If the variances are normalized with respect to gn.x = £(0) = K/Tj, then one
obtains for the standard deviations of the relative impulse response error

T
%l L (6.2.34)
gmax 2T

JT T
Ie2 L | (6.2.35)

g max B K \/SuO ?

Consequently, if the input to the system is now a discrete binary noise with the am-
plitude a and a small cycle time A and thus with the power spectral density

Sw ~ a’h , (6.2.36)

see Sect. 6.3, it follows that

ng_IO'n T1T1
gmax Ka VAT

For K = 1, 0,/a = 0.2, A/T; = 0.2, one obtains the standard deviations of the
impulse response estimate listed in Table 6.1.

This example illustrates that the contributions from the intrinsic statistical uncer-
tainty of the CCF and the uncertainty caused by the disturbance are roughly of the
same magnitude. Only for very unfavorable (small) signal-to-noise ratios oy /o, does
the latter dominate. In Chap. 7 an example for an application of the identification
with correlation functions (de-convolution) will be shown.

(6.2.37)
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Fig. 6.3. Discrete random binary signal (DRBS)

6.2.4 Real Natural Noise as Input Signal

For some applications, it may be necessary to determine the dynamic behavior of
a process without disrupting its operation by injecting artificial test signals. Then,
one can only try to use the disturbances which appear during normal operation of
the plant as test signals. This natural input signal must however fulfill the following
properties:

e Stationarity
The bandwidth must exceed the highest interesting frequency of the process
The power spectral density must be larger than the disturbances acting on the
output of the process to avoid extremely long measurement times
It may not be correlated with other disturbances
No closed-loop control, also no manual control

However, the requirements can only be satisfied in few rare cases. Thus, it is in
general advisable to inject an artificial test signal. One can try to work with very
small amplitudes as not to unnecessarily disturb the process.

6.3 Correlation Analysis of Dynamic Processes with Binary
Stochastic Signals

The detailed discussion of deterministic non-periodic and periodic test signals has
shown that for given constraints on the amplitude of the test signal, square signals,
i.e. binary signals, have delivered the largest amplitude density (or oscillation ampli-
tudes) and thus utilized the given amplitude range in the best way.

Continuous-Time Random Binary Signals (RBS)

A binary stochastic signal, which is also termed random binary signal (RBS) is char-
acterized by the following two properties: First, the signal u(¢) has two states, +a
and —a, and second, the change from one state to the other can occur at any arbitrary
time. Compared to other random signals with a continuous amplitude distribution,
these signals have the following advantages:
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Fig. 6.4. Auto correlation function of a ran- Fig. 6.5. Auto correlation function of a dis-
dom binary signal (RBS) crete random binary signal (DRBS)

Simple generation
Simple calculation of the cross-correlation function as the output of the system
under investigation must only be multiplied with +a or —a respectively

e Largest amplitude density under constraints on the signal amplitude

While the first two points do not have much weight given the nowadays typically
available computational possibilities, the third point still represents a strong argu-
ment for the use of binary test signals.
The ACF of an RBS can be determined as follows (Solodownikow, 1964): The
probability of n sign changes in a given period of time At is Poisson-distributed with
(nA)"

P(n) = ————e ML 63.1)
n!

where p is the average number of sign changes over a given period of time.

The product u(t)u(t + ) of an RBS signal assumes the values +a? or —a
depending on whether both values u(¢) and u (¢ + t) have the same sign or opposite
signs. Consequently, the expected value E{u(¢)u(t + 7)} is +a? for t = 0. For
T > 0, the product becomes —a? if, compared to T = 0, a total of 1,3,... (ie.
an odd number) of sign changes took place. On the contrary, the product is +a? if
0,2,4,... (i.e. an even number) of sign changes took place. Since the sign changes
are random, one obtains with At = |z],

E{u(tu(t + 1)} =a*(P(0)+ PQ2)+...) —a*(P(1) + PB3) +...)

2
= g2eHT (1 _ % + (“2? + ) (6.3.2)

2

= g2e 2Kl
The shape of the ACF for an RBS is shown in Fig. 6.4. Basically, it has the same
shape as a broadband noise of first oder. The ACFs are identical for
Su
a2 = 0wWC wc

> and pu = - (6.3.3)

which means that u, i.e. the average number of sign changes in a given time period,
is equal to half the corner frequency.
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Discrete Random Binary Signals

Due to its easy generation by means of shift registers and digital computers, the
discrete random binary signal (DRBS) is much more widespread used in practice.
Here, the sign changes take place at discrete points in time kA with k = 1,2,3,...
where A is the length of the time interval and is also termed cycle time, see Fig. 6.3.

The ACF,
T

Ry (7)) = Tlinoo /;T u(t)u(t — r)de , (6.3.4)

of the DRBS can be calculated as follows. For t = 0, there will only be positive
products and the integral thus covers the area 24T, so that R,,(0) = a?. For small
shifts in time || < A, there will also be negative products so that Ry, (t) < a?. The
areas that have to be counted negatively under the integration are proportional to t.
For |t| > A, there are as many positive as negative products, such that R,, = 0.
Thus, in total,

21 1d
Ru(2) = {“ (1 z ) for [z] <4 (6.3.5)
Ofor|t| > A.

The power spectral density of a DRBS follows from the Fourier transform ac-
cording to (2.3.17) as the Fourier transform of a triangular pulse of the width 24, see

4.2.4), as
: AN 2
(%

2
The discrete-time power spectral density is given as

o0
Sw@ =Y Ru(@)z™" = Ru(0) = S%() = a® for 0 < |0 < % . (637)

T=—00

The ACF of a discrete random binary signal is shown in Fig. 6.5
If one equates the magnitude of this power spectral density for ® = w¢ with the
power spectral density of the band limited noise, Sy, (wc) = Suo/2, (6.2.18),

Sw = a®Aand A ~ 20 (6.3.8)
wc
follows. Thus, band limited noise and a DRBS have approximately the same power
spectral density for w < wc.
As the cycle time gets smaller, the ACF approaches a small impulse with the area
a®). If A is small compared to the total time constant of the subsequent plant, then
one can approximate the triangular ACF by a §-function with the same area, i.e.

Ru(7) = a?Aé(1) , (6.3.9)

and the power spectral density becomes
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Swo &~ a’h . (6.3.10)

The estimation of the impulse response can be performed according to Sect. 6.2.1 in
analogy to the determination of the impulse response by white noise excitation. In
this case

g(t) = —Ry(r) fort > A
“;’\ ’ 63.11)

For = = 0, one has to use twice the value of the CCF, since in this case only one
half of the triangular ACF (r < 0) is in effect. For this simplified evaluation, the
error estimation as presented in Sect. 6.2.3 remains valid. For a given amplitude a,
the cycle time A may not be chosen too small, because otherwise the variance of the
estimate of the impulse response might grow too large.

All of the above considerations are only valid for infinite measurement times. For
finite measurement times, the correlation function and power spectral density has to
be calculated for each experiment individually.

The use of a discrete random binary signal has the big advantage that the ampli-
tude a and cycle time A can better be matched with the process under investigation
than the parameters of a stochastic signal with a continuous amplitude distribution.
However, the intrinsic uncertainty in the determination of the ACF and CCEF is still
cumbersome. Furthermore, the experiments cannot be reproduced due to the stochas-
tic nature of the test signal. These disadvantages can however be eliminated by the
use of periodic binary test signals, which have almost the same ACF as the DRBS.

Pseudo-Random Binary Signals (PRBS) for Continuous-Time

Periodic binary signals can for example be generated by clipping N samples from a
discrete random binary signal and repeating it one or multiple times. The problematic
aspects of this admittedly simple approach are manifold: First of all, the random
sequence cannot be parameterized easily. Secondly, the properties shown in (6.3.5)
and (6.3.6) are only valid for sequences of infinite length. For sequences of finite
length, the ACF and the power spectral density must be determined for each sequence
individually.

Due to these impracticalities, one prefers periodic binary sequences, which have
almost the same ACF as a stochastic DRBS. They are typically generated by means
of shift registers with n stages whose outputs are fed back. For a shift register with n
stages, the binary information O or 1 is passed on to the next stage as the clock input is
activated. The shift register is augmented with a feedback to allow the generation of
periodic sequences with a length N > n. Typically, two or more stages are fed-back
to an XOR gate, see Fig. 6.6.

The XOR gate is a non-equal element, which outputs a zero if both input gates
have equal states (i.e. 0/0 or 1/1) and outputs a one, if both input gates have unequal
states (i.e. 0/1 or 1/0). If one excludes the case that all states of the shift register
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Fig. 6.6. Pseudo random binary signal generator
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Fig. 6.7. Pseudo random binary signal generated by a shift register with 4 stages and N = 15

Table 6.2. Feed-back structures of shift registers for PRBS signals of maximum possible
length N

No. of Stages Feedback Law Length
2 1 XOR 2 3
3 1 XOR3 or 2XOR3 7
4 1 XOR4 or 3XOR4 15
5 2XORS5 or 3XORS 31
6 1 XOR6 or 5XOR6 63
7 1 XOR7 or 3XOR7 or 4XOR7 or 6 XOR7 127
8 1 XOR 2 XOR 7 XOR 8 255
9 4XOR9 or 5XOR9 511
10 3XOR 10 or 7XOR 10 1023
11 2XOR 11 or 9XOR 11 2047

Remark: “XOR” denotes the XOR gate, “or” denotes different possible feedback laws result-
ing in the same maximum possible sample length
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Fig. 6.8. Auto correlation function of a pseudo-random binary signal for continuous time

are zero, then one obtains a periodic signal for any arbitrary initialization of the shift
register. Since for a shift register with n stages, the maximum number of different
states is 2" and since the case of zeros in all states is excluded, the maximum possible
length of the signal (maximum period) sequence generated by the shift register is

N=2"-1, (6.3.12)

because after each clock pulse, there will be a new composition of the states of the
shift register. A signal sequence with the maximum possible sequence length can
however only be obtained for certain feedback set-ups (Chow and Davies, 1964;
Davies, 1970), see Table 6.2. If one maps the output 0 to —a and the output 1 to
+a, then one obtains the desired pseudo-random binary signal. Figure 6.7 shows the
signal generated by a shift register with 4 stages.

In the following, the properties of a continuous-time PRBS random signal will be
investigated (Davies, 1970). The clock time or cycle time is denoted with A. Due to
its periodicity, the PRBS becomes a deterministic signal. It is reproducible and can
be tuned to suit individual processes. Since the ACF for this signal is exactly known,
there will be no intrinsic statistical uncertainty in the determination of the ACF and
CCF. The discrete ACF of a PRBS signal is given as

a’fort =0

3.1
—4 for A < [t| < (N —1)A (6:3.13)

Ru(7) = {
Due to the uneven number N, there is an offset of —a?/N which can be neglected
for large N. Reconsidering the calculation of the ACF of a DRBS, one obtains for
the continuous-time ACF

1
Ruu(7) =a2(l—m(1 +N))for0< lt] <A . (6.3.14)

Thus, the signal has the same triangular shape of the ACF as the DRBS. This ex-
plains the denomination as pseudo-random. By the periodicity, the ACF however
also becomes periodic, see Fig. 6.8,
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1 —uvNA
a? 1—(1+—)w)for|r—ka|§A
Ru(7) = N A (6.3.15)

—“N for (A + VNA) < |t < (N = DA + vNA .

If one looks at the distribution of the amplitudes, one can note the following:

e A PRBS signal contains (N + 1)/2 times the amplitude +a and (N —1)/2 times
the amplitude —a. The mean is thus given as
*) =2 (6.3.16)
u = —. 3.
N
e If one regards the PRBS signal as a concatenation of square pulses of amplitude
+a and —a respectively, then the frequencies of occurrence for the individual
pulse lengths are given as

=
t

impulses of length A
impulses of length 24
impulses of length 31 (@ > 1

a={: . 6.3.17)

2
-

00| = [ =N =
+N
—

N‘

1 impulse of length (n — 1)A o=l
1 impulse of length nA -

The number of pulses with amplitude 4+-a and —a is always equal except that there is
only one pulse of length (n — 1)A for the amplitude +a and one pulse of length nA
for the amplitude —a.

The power spectral density does not have a continuous spectrum, but rather dis-
crete spectral lines because of the periodicity. These discrete spectral lines can be
calculated from the Fourier transform of the ACF as

S (@) = / - Ru(r)e @%dr . (6.3.18)

The ACF will first be developed into a Fourier series (Davies, 1970)

o
Ru(r) = ) cpe™@r (6.3.19)

V=—00

with the Fourier coefficients

Tp
1 1= _
cy(ivwg) = — Ry (r)e M@0ty
Tp -
. (6.3.20)
2 2

= — Ruu(t) cosvwgtdr .
Tp Jo
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Using (6.3.13) and (6.3.14) yields

A

cy(ivawg) = Tip | az( — %(%)) cos vawgtdt

2 (% &2
+ — ——cosvwotdr

Tp Ji N

2
_ 2 (L sinvwgA — Nif(:— NE (cos v — 1)
(6.3.21)

T NA
N +1
Nvwy
2a%(N + 1)
= W(l — COS U(,()())L)
2(N + 1)( ua)ok)

N2 vwoA
2

The Fourier coefficients are thus real-valued and the Fourier series for the ACF

sin va)o)\)

sin vawgA +
Nvawg

is given as
va)()/l

o0 2
N 4+ 1) (sin
Ruu(f) = Z (N2 )( va)o)L ) COSVwoT .

v=—00 2

(6.3.22)

Inserting the above term in (6.3.18) yields
sin ”"’0’1

Suu(wo) 2(N+ 1) Z ( vwo)t ) S(w_va)

V=—00

(6.3.23)

with 2
(_N D sw) (6.3.24)

SULI (0)

The form factor in (6.3.23) has been denoted as Q and is given as

a? 1/ sin 220t a? 1 /sin L7\?

I . 2 =—(14— N 6.3.25
Q(veo) N(+N)(%) N(+N)( e ) (6:3:23)
.. The resulting dis-

has been graphed in Fig. 6.9 for different values v = 0, 1,2
crete spectrum has the following properties:

e The spectral lines have the distance Aw = wp = 2n/N A
The lines diminish as the frequency increases with zeros at vwy = 27j/A with

j=12,...
The bandwidth of the signal can be defined by taking the first zero (Fig. 6.10)

into account as
2
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Fig. 6.9. Factor Q of the discrete power spectral density of a PRBS with period length 7p =
NAforN =15

e The cut-off frequency is with Sy,(w.) = Sy,/2 in accordance to (6.3.8) defined

. 2.77
won T (6.3.27)

e For v & N/3, the factor Q(vwy) has decreased by a factor of 3 dB compared to
0 (0). Which means that one can assume a constant power spectral density up to

the frequency
(432} 21
W34 = 3 = 3
Figure 6.10 shows the factor Q of the discrete power spectral density for changes
in the cycle time A. Figure 6.10a shows Q for the original PRBS with a cycle time

A1 and Tp = NiA;. Now the cycle time is increased under different assumptions:

(6.3.28)
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e Cycle time A is increased while the period time 7p remains constant. Figure 6.10b
shows Q for the case A = 241, i.e.

a? 2 sinkawoAy \ >
=2—(1+—=—)l—] . 6.3.29
Q(ve) Nl( * Nl)( kworq ) ( )

— The distance of the spectral lines Aw = 27/ Tp remains the same

— The first zero is located at @ = 2w /A, = 7/Ayq, i.e. is reached at lower
frequencies

— There are less, but higher spectral lines (The total power remains approxi-
mately constant)

e The cycle time A is increased at a constant cycle length N: Figure 6.10c shows

for A = A
a? 1 sinm% 2
2

— The distance of the spectral lines Aw = 27 /2NiAy = 7/ N1\ gets smaller

— The first zero is located at @ = 2n /A, = m/Ayq, i.e. is reached at lower
frequencies

— There are more, but equally high spectral lines

This parameter study illustrates in both cases that a stronger excitation of the
lower frequent dynamics can be obtained by increasing the cycle time A. For a large
period time Tp with respect to the transient time and thus foraA < N and alarge N,
the ACF of the PRBS approaches the ACF of the DRBS (6.3.5), where also the DC
value —a?/N gets negligibly small. Then the impulse response can be determined
according to the simplifications derived for the DRBS. If in addition the cycle time
A is small compared to the total time constant of the process, then

Puu(7) ~ a?A8(1) (6.3.31)

with the power spectral density
Swo ~ a’) (6.3.32)
g(r) = %Ruy(r) ; (6.3.33)

and the evaluation can be carried out in analogy to the case with a white noise input
driving the system, see (6.2.16). The de-convolution with discrete-time signals is
covered in Sect. 7.2.1.

For this case, the error estimation for a disturbance n(¢) can be carried out ac-
cording to Sect. 6.2.3. One has to bear in mind however that due to its deterministic
nature, the CCF does not have an intrinsic uncertainty (6.1.8) and thus the term oy,
(6.2.32) gets zero.

For the choice of the free parameters a, A, and N of a PRBS, the following rules
of thumb can be helpful:
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e The amplitude a shall always be chosen as large as possible so that the corruption
of the output signal by a given disturbance n(¢) gets as small as possible. One
however has to take the process limits for the input u(¢) and output y(¢) into
account

e The cycle time A should be chosen as large as possible, so that for a given ampli-
tude a the power spectral density Sy, (w) gets as large as possible. If the impulse
response is determined by the simplified approach in (6.2.16), then the evalua-
tion becomes erroneous and an error according to (6.2.20) is introduced. Thus
the cut-off frequency of the test signal w. = 1/A may not be too small and con-
sequently A may not be chosen too large. It is thus suggested to chose A < T;/5
where 7; denotes the smallest interesting time constant of the process

e The period time 7p = N A may not be smaller than the transient time Tys of the
system under investigation so that there is no overlap of the impulse responses.
A guiding value is Tp ~ 1.57%s.

The number M of the periods of the PRBS signal is determined by the total
required measurement time 7 = M Tp = M N A which for given signal parameters
a, A and, N depends mainly on the signal-to-noise ratio, see Sect. 6.2.3.

For a discrete-time PRBS, the choice of the cycle time A is coupled to the choice
of the sample time Ty as A can only be an integer multiple of the sample time, i.e.

A=pTowithp=12,.... (6.3.34)

For 1 = 1 and large N, the properties of the discrete-time PRBS approach those
of a discrete white noise. If one increases A by a choice of © = 2,3,..., then the
excitation of the lower frequencies is increased for both N = const as well as Tp =
const. Pintelon and Schoukens (2001) pointed out that a PRBS signal is not ideally
suited for the determination of the frequency response function as it never has a
period length of 2", which would be ideally suited for the Fast Fourier Transform. A
further side-note should be made on the applicability of PRBS signals for non-linear
systems. A PRBS signal can in general not be used to detect non-linearities at the
input, i.e. is unsuitable for e.g. a Hammerstein model, see Chap. 18.

A different way of generating RBS signals is described by Ljung (1999) as fol-
lows: A zero-mean white noise Gaussian signal is first filtered by a form filter to
generate a test signal with the appropriate frequency content and then, just the sign
of resulting signal is retained and scaled accordingly to the requirements on the test
signal amplitude. This non-linear operation however changes the frequency content,
so that the spectrum of the resulting RBS signal must be analyzed to ensure the suit-
ability of the signal.

Generalized Random Binary Signals (GRBS) for Discrete Time

The generalized random binary signal (GRBS) (Tulleken, 1990) is a generalized
form of the random binary signal. For a discrete random binary signal, one assumes
that the change of the amplitude is random, i.e. at each time step k the probability
that the signal keeps the same amplitude is 50% as is the probability that the signal
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Fig. 6.11. Comparison of the frequency spectra of an PRBS signal (u7p = 1s,a = 1,
N = 15) and a GRBS signal (Tgp = 0.1s, p ~ 0.9) (Zimmerschied, 2002)

changes its amplitude. For such a signal, it is not very likely that a signal level is held
for a long time.

Therefore, the generalized random binary signal introduces a different value for
the probability of a change and the probability that the signal value is held respec-
tively. In the following, the probability that the signal value is held is denoted as p,
such that

Puk) =u(k—1) =p (6.3.35)
P(u(k) Zuk—1)=(1-p). (6.3.36)
The expected impulse length is then given as
> T,
E{Tp} = > (kTo)p* (1 - p) = _Op . (6.3.37)
k=1

One can see that longer impulse lengths appear more often if p is increased. An
important difference to the PRBS signal is however that also an impulse of length
Ty can always appear. For a PRBS, the minimum impulse length was given by u7j.
The auto-correlation function of a GRBS of infinite length is given as

Ru(x) = a?2p -1, (6.3.38)
The power spectral density is then given as

(1-p)*To

Suu =
1 —2BcoswTy + B2

withf =2p—1. (6.3.39)
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Fig. 6.12. Amplitude-modulated pseudo-random binary signal (APRBS)

A comparison between the frequency spectra of a PRBS signal and a GRBS signal
is shown in Fig. 6.11. One can see that the excitation using the GRBS signal covers
a wider frequency range than the PRBS signal, which has zeros in the frequency
spectrum at comparably low frequencies due to its periodicity (Zimmerschied, 2002).

Amplitude-modulated PRBS and GRBS

For the identification of non-linear systems, the PRBS (see Sect. 6.3) and GRBS
(see Sect. 6.3) are not well suited as they do only have two different values of
u(k) and hence do not excite non-linear systems over their full input range u(k) €
(Umin - - - Umax)- Therefore, one must use test signals that do not only vary the fre-
quency of the excitation, but also the amplitude. This means that now there are much
more design parameters that have to be taken into account, such as (Doyle et al,
2002):

* *

length of the input sequence N

range of input amplitudes u(k) € (X, ... un..)

distribution of input amplitudes u (k)

frequency spectrum or shape of the resulting signal respectively

As a basis for the development of non-linear excitation signals, one can use the
PRBS signal or GRBS signal. They have proven well in many applications and their
properties are well known. A simple and straightforward extension to the design of
input sequences suitable for non-linear systems is as follows:

One uses the PRBS or GRBS signal to determine the length of each impulse. The
length of each impulse is then taken from a set of predefined amplitudes. Here, one
can either split the input range from vy, to Unmax equidistantly and use each of these
amplitude levels exactly one time. An alternative is to use a random number gener-
ator to randomly chose values of u (k) from the interval u;, to ©p,y. Although the
distribution of amplitudes and frequencies of the resulting test signal is not equally
distributed over the entire operating range, this does not present a severe drawback
for sufficiently long test signal sequences, see Fig. 6.12.
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Fig. 6.13. Block diagram for the correlation analysis in closed-loop

The auto-correlation functions of an APRBS or AGRBS signal are very similar to
the auto-correlation functions of the PRBS and GRBS signal. According to (Pearson,
1999), the auto-correlation function of an AGRBS is given as

Ru(t) = p*> +a%p(x). (6.3.40)

Here u is the mean and o2 the variance of the signal. The second term correlates
to the auto-correlation function of the GRBS signal, compare (6.3.38) (Zimmer-
schied, 2002). An example of an amplitude modulated pseudo-random binary signal
is shown in Fig. 6.12.

6.4 Correlation Analysis in Closed-Loop

If a disturbed process Gp as shown in Fig. 6.13 is operated in closed loop, then the
input u(¢) to the process is correlated with the disturbance 7 (¢) by means of the feed-
back loop and the controller Gc¢. In this case, it is typically impossible to determine
the dynamic behavior of the process from the cross-correlation function R,y (7). This
is independent of the location where the test signal is injected into the control loop.
If one nevertheless tries to identify a model in the previously described way, one will
typically have non-zero values for negative times in the impulse response (Godman
and Reswick, 1956; Rodder, 1973, 1974).

The dynamic behavior of the process can be identified, if its input and output are
correlated with an external test signal, e.g. w(¢). Then, one obtains

Ryu(7) = E{w(t — r)uo(t)} + E{w(t — r)un(t)} , (6.4.1)
S ————
=0

where u(¢) denotes the part of u(¢) that can be attributed to w(¢) and u,(¢) denotes
the part evoked by the reaction of the controller to n(¢). Since the disturbance is not
correlated with the set-point, one obtains
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Ryy(t) = E{w(t — 1) yo(t)} + E{w(t — T)n(1)} . (6.4.2)
=0

From Ry,(7) one obtains the impulse response g,(t) and, by application of the
Fourier transformation, the transfer function

u(s) ~ Ge

Guw = = s
w(s) 1+ GeGp

(6.4.3)

and in analogy, one obtains the impulse response g,y (7) from the correlation func-
tion R,y (7) and from there

GcGp
Gy = ——— . 6.4.4
Y 1+ GcGp ( )
From these two equations, one can determine Gp by
G
Gp = —2 . (6.4.5)
"7 G

If the process however is undisturbed between u(¢) and y(¢), it can identified
error-free if the test signal is injected in an appropriate place into the control loop
(Rodder, 1974).

6.5 Summary

The correlation analysis with stochastic or pseudo-stochastic test signals allows the
estimation of non-parametric models for linear processes. They can be used for on-
line identification in real-time and deliver the impulse response of the process if the
process is driven by a colored or white input signal. For a white noise input sig-
nal, the impulse response is directly proportional to the cross-correlation function.
Since the cross-correlation of stationary signals automatically separates the wanted
signal from the noise, one can apply these methods even in the presence of large
disturbances and unfavorable signal-to-noise ratios. The only requirement is that a
sufficiently long measurement time is allowed. While the use of real natural noise as
a test signal is possible under certain conditions, it is seldom advisable to do so. In
practice, it is in general better to use an artificial test signal. Pseudo-random binary
signals (PRBS) have found wide-spread use, since they can easily be generated, have
an easy to determine and favorable auto-correlation function, and allow to identify
impulse responses directly. In addition to pseudo-random binary signals, also gen-
eralized binary random signals have been introduced in this chapter. They have a
wider frequency range that is excited compared to the pseudo-random binary sig-
nals, which have zeros in the amplitude spectrum at comparably low frequencies.
For the excitation of non-linear systems, binary signals are not well suited if also
the non-linearities shall be identified, because a binary signal does not cover the full
input range ¥ € (Umin, Ymax)-
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Problems

6.1. Auto-Correlation Function
Describe the shape of the auto-correlation function of a white noise and a broadband
noise of first order with the corner frequency fc = 1 Hz.

6.2. Cross-Correlation Function

Determine the cross-correlation function of input and output for a first order process
with the transfer function G(s) = K/(1 + Ts) with K = 1 and T = 0.2 s and the
input signals from Problem 6.1

6.3. Discrete Random Binary Signal
Determine the auto-correlation function of a discrete random binary signal with a =
2Vand A = 2s.

6.4. Correlation Analysis

Describe, how one could measure the frequency response of a process Gp if the
control loop may not be opened, i.e. the system must always be operated in closed-
loop. However, it is possible to choose the setpoint w(t) freely and to measure the
actuated variable u(¢) as well as the (disturbed) output y(¢). Software is available
to determine correlation functions and to calculate the Fourier transform. Describe
the overall approach, which correlation functions have to be determined and how the
frequency response in continuous-time can be determined.

6.5. Discrete Random Binary Signal and Pseudo-Random Binary Signal
Discuss the differences between a discrete random binary signal and a pseudo-
random binary signal under the following aspects: Reproducible generation, mean,
auto-correlation function, power spectral density, and periodicity.
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7

Correlation Analysis with Discrete Time Models

Based on the fundamentals of the correlation analysis as outlined in Chap. 6 for
the continuous-time case, the discrete-time case will now be examined more closely
in this chapter. This case is required for the implementation on digital computers.
The difference in the treatment of continuous-time and discrete-time signals is rather
small as it only affects the calculation of the correlation functions, where basically
the continuous-time integration must be replaced by the summation of discrete val-
ues. In Sect. 7.1, the estimation of the correlation function is treated again. This time
however, it is closely analyzed for the case of signal samples of finite length and the
subsequently appearing intrinsic estimation uncertainty. Also, a fast implementation
of the calculation of the correlation function is presented in this section. An attrac-
tive feature for online applications is to estimate the correlation functions recursively.
Section 7.2 covers the correlation analysis of sampled linear dynamic systems in the
discrete-time case. Binary test signals, which are well suited as test signals for the
de-convolution have already been treated in the preceding chapter in Sect. 6.3 and
will only shortly be discussed.

7.1 Estimation of the Correlation Function

7.1.1 Auto-Correlation Function

The auto-correlation function of a discrete-time stationary stochastic process x (k)
with the discrete-time k = t/Typ = 0,1,2,... and Ty being the sample time, is
according to (2.4.3) given as

N
Ra(r) = E{x(k)x(k + 1)} = Nli_r)noo% S xtoxk + 1) . (7.1.1)
k=1

In this simple case, it has been assumed that the measurement period is infinitely
long. Recorded signals however, are always of limited length. It is henceforth in-
teresting to determine the possible accuracy of the estimate of the auto-correlation

R. Isermann, M. Miinchhof, Identification of Dynamic Systems,
DOI 10.1007/978-3-540-78879-9 7, © Springer-Verlag Berlin Heidelberg 2011
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function of a signal x (k) of an individual sample function {x (k)} based on a series of
datapoints of finite length N and constant sample time Ty. From (7.1.1), the estimate
can first be written as

N-1
N 1
Ru(t) ~ RN(1) = — k)x(k . 7.1.2
() = RE(0) = = 3 x(k)x(k + 1) (7.1.2)
k=0
If x (k) has however only been sampled in the finite interval 0 < k < N — 1, then
N—1—|7|
Y x(ox(k +z]). for0 < [r| < N —1 (7.1.3)
k=0

A 1
Rxx ('L') = N

since x(k) = O0fork <Oandk > N —lorx(k + |t]) fork > N —1—|7|
respectively. In this case, only N — |z| product terms exist. Thus, one could use the
alternative estimate
N—-1—|t|
> x(oxk +z)). for0O< | <N -1,  (7.14)
k=0

R (1) =
XX( ) N _ |T|
where one divides by the effective number of terms N — |z|.
Now, the question arises, which of the two estimates is more favorable. For this
investigation, it will be assumed that E{x(k)} = 0. The expected values of the two
estimates can then be determined for the interval 0 < |7| < N — 1

N-1

Izl N—-1-z|

E{x(k)x(k + |T|)} = N Z Rxx(f)
k=0 (7.1.5)

z| =

E{Iéxx(‘[)} =
k

Il
— o

T

11— =L
N

Il
/N

)Rxx(r) — Ru(t) + (1)

and .
E{R;X(r)} = R(7) . (7.1.6)

It can be seen from (7.1.2) that the estimate has a systematic error b(7) (bias) for a
finite sample length N, which however vanishes for N — oo and |t| < N,

Jim E{R(7)} = Ry(7) for [t] < N . (7.1.7)
—>00

Hence, the estimate is consistent. (7.1.4) however is also unbiased for finite measure-
ment periods N.

For a signal with Gaussian distribution, the variance of the estimate (7.1.2) fol-
lows from the variance of the cross-correlation function, which is covered in the
following section, as

. a . D 2
Nh_r)noo var Ry (7) = Nh—r>nooE{(RXX (r) — RXX(‘L')) }

N-1 (7.1.8)
= lim > (RA() + Ra(v + D)Ru(v — 1)) .

N —o0

v=—(N-1)
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This represents the intrinsic uncertainty of the estimated auto-correlation func-
tion, see Chap. 6. If the auto-correlation function is finite and E{x (k)} = 0, then the
variance diminishes as N — oo. The estimation of the ACF according to (7.1.2) is
thus consistent in the mean square. From (7.1.8), one can derive the following special
cases for large N:

o 7=0:
2 N—-1
. 2 )
(@~ Y RL(E). (7.1.9)
E=—(N-1)
If x (k) is a white noise, then
var Ry (0) ~ —R2 (0) = (X2(k)). (7.1.10)
e Large t: It holds that
R2 (V) > Ry (v + 7) Ry (v — 7) since Ry () ~ 0 . (7.1.11)
Thus, one obtains
1 N-1
Rex(7) ~ — R (v) . 7.1.12
varRa() ~ ) RL() (7.1.12)
v=—(N-1)

From (7.1.10) and (7.1.11), it can furthermore be shown that
var ﬁxx(O) A 2var ﬁxx(t) . (7.1.13)

The variance for large 7 is thus only half as big as the one for 7 = 0.
For the biased estimate, (7.1.2) one has to replace the term N by N — |z] in
(7.1.9) and thus it follows for finite N that

var R, (1) = Var(Iéxx(t)). (7.1.14)

N
— Il
The unbiased estimate therefore always delivers estimates with a larger variance for
|| > 0. For |[t| — N, the variance approaches infinity. Thus, one typically uses
the biased estimate in (7.1.2). Table 7.1 summarizes the main features of the two
estimates.
Since E{x(k)} = 0 has been assumed, all equations can similarly be applied
to the estimation of the auto-covariance function Cy(t). For additionally superim-
posed disturbances n(t), the considerations from Sect. 6.1 are equally applicable.

7.1.2 Cross-Correlation Function

The cross-correlation function of two discrete-time stationary processes is according
to (2.4.4) given as
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Table 7.1. Properties of the estimates of the auto-correlation function

Estimate Bias for Finite N Variance for Finite N Bias for N — oo
Rex(2) ~H R (1) var(Ryx (7)) 0
R, (v) 0 N%It\ var(Rux(7)) 0
| Nl
Ry(t) = E{x(k)y(k + 1)} = ngnoo v kX(:) x(k)y(k + 1) =E{x(k —t)y(k)} .
(7.1.15)
As an estimate for the cross-correlation,
) 1=
Ry(t) ~ RN (1) = Nkzox(k)y(k—i—r) (7.1.16)

will be introduced according to (7.1.2). For —(N — 1) <t < (N — 1) follows

N—-1-t
% Z x(k)ytk +t)for0 <t <N —1
Ryy(7) = | =0 (7.1.17)
N Z x(k)ytk+t)for —(N—-1)<1t<0
k=—1

since y(k) = 0and x(k) = 0fork < 0and k > N — 1. The expected value of this
estimate is given as

E{Ry (1)} = (1 - |Ni|)ny(f) , (7.1.18)

compare (7.1.5).
For finite measurement times /N, the estimate is thus biased, the bias vanishes
only for N — oo,

Jim E{Ry (1)} = Ry(7) . (7.1.19)

If one would divide by N — |t| instead of N in (7.1.17), then the cross-correlation
function estimate would also be bias-free for finite measurement periods, but the
variance would increase as was the case for the auto-correlation function.

Now, the variance of (7.1.17) will be determined. The first calculation of the
variance (but for the auto-correlation function) can already be found in (Bartlett,
1946).

According to the definition of the cross-correlation function,

var Ry (v) = E{(Ryy (1) — Ryy(1))?} = E{(Ryy(1)*} = RZ,(x) . (7.1.20)

where the result in (7.1.19) has been exploited. Furthermore, one can rewrite the
expected value of the estimate as
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= (N-1)
o EN-1-k

(V1) 1) ©

Fig. 7.1. Summation area of (7.1.25)

N—-1N-—-
E{(Ry(1))*} = ZZ {x()y(k + o)x(K")y(K' + 1)} . (7.1.21)

To simplify the notation, the boundaries of (7.1.15) will be used instead of those in
(7.1.17). Tt is now assumed that both x (k) and y(k) have a Gaussian distribution.
In this case, (7.1.21) contains four random variables z1, zZ», Z3, and z4, for which,
according to Bendat and Piersol (2010), one can write

E{z1.22.23.24} = B{z1.22}E{z3. 24} + E{z1.23}E{22. 24}

o (7.1.22)
—E{z1.24}E{22.23} — 2212273 24 -
If E{x(k)} = 0 or E{y(k)} = 0, then

E{x(k)y(k + t)x(k")y (k" + 1)}
= R}(1) + Ru(K' — k) Ryy (k" — k) + Ryy(k' =k + 1) Ry (K' —k — 1) .

(7.1.23)
Thus, by inserting (7.1.23) into (7.1.21) follows that
—1N— 1(
var Ryy (1) = — Z > (Rexk’ = k) Ryy (k' — k)
N k=0 k'=0 (7.1.24)

+ Ry (k' —k + 1) Ry (k' — k — z)) .

Now, k' — k = &, which leads to

N-— —
var Ryy (1) = Z Z Ra(§)Ryy(§) + Ry (§ + D) Rx(§ — 1)) . (7.1.25)

The addend shall be denoted with F(£). Its summation area is shown in Fig. 7.1.
After exchanging the order of the sums, one obtains
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—1N-1-k N-1 N—-1-§&
Z Y FE) = ZF@)ZH Z F(S)Zl
k=0 §=—k E=—(N— k=—¢
Right Triangle Left Triangle
N— 0 (7.1.26)
Z (N-OFE+ Y. (N+EHFE)
=0 E=—(N-1)
N—
= Z N — [EDF(§) .
—(N—

With these considerations, (7.1.25) can be written as

N-1
var Iéxy(f) = % Z (1 - %)(RXX(s)Ryy(g) + ny(é + T)RyX(éf - T))

§=—(N-1

(7.1.27)
and finally
N-1

. 5 .1

Nh—r>noo var Ry (1) = Nlinoo N Z (Rxx(%_) Ryy(§) + Ryy(§ + D) Ryx(§ — T)) .
E=—(N-1

(7.1.28)

This variance is only determined by the stochastic nature of the two random signals.
It expresses the intrinsic uncertainty of the CCF, see Sect. 6.1. For N — oo, the
variance becomes zero if the correlation functions are finite and either E{x(k)} = 0
or E{y(k)} = 0. Henceforth, the estimation of the correlation function according
to (7.1.19) is consistent in the mean square for Gaussian distributed signals. In the
case of additionally superimposed disturbances, the considerations in Sect. 6.1 can
be applied accordingly.

7.1.3 Fast Calculation of the Correlation Functions

As the correlation functions often have to be calculated for large numbers of data
points N, computationally efficient algorithms shall now be discussed. An algorithm
which is based on the Fast Fourier Transform (Sect. 3.1.3) shall be outlined (Kam-
meyer and Kroschel, 2009). This algorithm makes use of the fact that the biased
estimate of the correlation function,

N—-1—|7|
Ru(7) = ~ > x(k)x(k +t]). for0O < |t <N -1, (7.1.29)
k=0

which was presented in (7.1.4), can be expressed as a convolution in the time domain
and hence a multiplication in the frequency domain.
The signal x (k) is augmented with zeros to bring it to the total length L as
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_fx(k)for0<k <N -1
xL(k)_%OforN—l<k§L—l (7.1.30)
The estimate of the auto-correlation function can be rewritten as
N—1—|| I L—1—|t|
Res(r) = — l;) x(k)x(k + |7l) = + I;) xr(k)xp (k + |t]) . (7.1.31)

Due to the symmetry of the auto-correlation function, only the values for t > 0 must
be determined, since Ry (—7) = Ry (7). Hence, it can be assumed in the following
that 7 > 0 and therefore, the absolute value operator can be disposed.

L—1—7
A 1
Rz = D xelk)xek +1)
k=0
(7.1.32)

1 L—-1 1 L—-1
N ‘;XL(V —)xp(v) = N U;XL(—(I —v)xL(v) .

Since xz (—(t —v)) = 0 for —(t — v) < 0 and hence v < , the index can also start
from v = 0 instead of v = 7. The addends in the range 0 < v < t are zero, because
xz,(—(t — v)) = 0 in this interval and therefore, these addends do not contribute to
the sum.

L—

> 2 (= )az ()
V=0 (7.1.33)

—_

N 1
Rxx(f)|r20 = N

%xL (—k) # x1, (k)

for 0 < |t|] < N — 1, which represents the convolution of the signals xy (k) and
x1,(—k). This convolution can in the frequency domain be determined as a simple
multiplication. Therefore, a solution to calculate the correlation function is to first
transform the series x7 (k) and xy (—k) into the frequency domain, then multiply
the two Fourier transforms and finally bring this product back into the time domain.
Although this may look like a cumbersome and slow process at first, this approach
greatly benefits from the many efficient implementations of the Fast Fourier Trans-
form, see Chap. 3.

While the extension of the signals with zeros at first seemed arbitrarily, its reason
will become clear by looking at Fig. 7.2 and noting that the discrete pair of Fourier
transforms will be used to calculate the correlation function.

Figure 7.2a shows the normal calculation of the correlation function. The se-
quence and its time-shifted time counterpart are multiplied in the interval T < k <
N — 1. Here, two problems of using the Fourier transform to compute the convolu-
tion of the two sequences immediately become apparent, see also Fig. 7.2b: First, the
summation index for the convolution always runs from 0 to N — 1, if the sequence
has N elements. Secondly, the discrete Fourier transform causes a periodic repeti-
tion of the signal, i.e. x(k +iN) = x(k) #O0fori =...,-3,-2,—1,1,2,3,....
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While the original data points have been marked as black circles in Fig. 7.2b, one
can also see white circles that symbolize this periodic repetition. A remedy to avoid
the adverse effects of this periodic repetition is to introduce additional zeros into the
signal, see Fig. 7.2c. The summation is now carried out over L > N + t,x elements,
where the additionally introduced zero elements lead to a suppression of the adverse
effects of the repetition of the signal outside the measurement interval.

To summarize the above statement: If the FFT is used to determine the frequency
domain representations of the signal x (k), the signal will be repeated periodically
outside the measurement interval and furthermore, the summation is always carried
out over the full N respectively L elements. By introducing additional zeros and
bringing the signal to any length

L>N+maxt, (7.1.34)

an error by this cyclical repetition introduced by the Fourier transform of the discrete-
time signals can be avoided. L can be chosen arbitrarily large and can conveniently
be chosen as a power of 2 or 4 to apply computationally efficient realizations of the
Fast Fourier Transform. Note also that all results for t > N — 1 must be disposed as
they are invalid.

Now, the auto-correlation function can be calculated as

Ry (1) = % DFT~"{DFT{x; (~k)} DFT{x. (k)}}

%DFT_I{’ DFT{x, ()} [}

(7.1.35)

Hence, the calculation of the auto-correlation function can be formulated as a
problem in the frequency domain (Kammeyer and Kroschel, 2009; Press et al, 2007).
Further tricks can be employed to speed up the calculation of the correlation function
by applying the Fourier transform repeatedly to smaller blocks of data (Rader, 1970).

In the following, the calculation will be developed for the cross-correlation of
two signals x (k) and y(k) as the auto-correlation is automatically included in this
more general case. In this setting, one is interested in providing an estimate

N—1—|7|

Ry = Y xyk+le) = pu (R en® (1136
k=0

for 0 < |t| < N —1 of the cross-correlation function for x (k) and y (k). A reflection
in the time domain results also in a reflection in the frequency domain

x1(—k) o— xp (—iw) . (7.1.37)

Typically, the length N of the dataset is much larger than the maximum value of
T that is of interest. This can be exploited to speed up the calculation of the corre-
lation function. The same technique is also used for the fast convolution. The time
sequences x (k) and y (k) are split up into sequences
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_fx(m+iM)for0O<n<M-1,i=0,12,...

= N0forM <n <2M —1 (7.1.38)
and

yi:y(n‘i‘l.M)fOI‘OS}’lEZM—l,i:(),l’z,__', (7.1.39)

where M = max |7| and a total of I blocks have been formed. It is now assumed
that the last block has been padded with zeros to the length 2M . Furthermore t > 0
from now on.

Then (7.1.36) can be rewritten

. 1 N—1—|7|

Ry == > xk)yk+c))
k=0

N—1—|t|
> x(yk +|z))

k=0

1

=LY itk + o)
=? k=0 (7.1.40)
- >~ DFT~{DFT{x; (—k)} DFT{y; (k)}}

DFT{x; (~k)} DFT{y; (k)} Wxk

0
I1-1

I
|

U
1]
3

i=0

DFT{x;(—k)} DFT{y; (k)}} )

For the de-convolution, only values of Ryy(7) for T > 0 are of interest. If one also
wants to obtain values of R,y (7) for t < 0 one can either exploit the fact that
Ryy(—=7) = Ry (r) and Ry (7) for ¢ > 0 can be determined with the algorithm
that was just presented. Fransaer and Fransaer (1991) presented a method, which is
based on a change of the vectors x; (k) by x;1 (k).

As was already discussed above, it may at first not seem likely that this approach
is computationally more efficient than the direct evaluation of the convolution sum.
A short look at the numerical expense may however give an idea, why the method is
more efficient.

Provided that the convolution of a series with N elements shall be determined in
the range 0 < v < M — 1, the direct evaluation will require additions and multiplica-
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tions in an amount of the order of N M multiplications and NM additions, provided
that M < N. By using the FFT and the segmentation as described above, the effort
can be brought down to the order of N log, M for both additions and multiplications.
Obviously, for large values of M, the saving can become quite tremendous.

7.1.4 Recursive Correlation

The correlation functions can also be determined recursively. This will now be ex-
plained for the cross-correlation function as the transfer to the auto-correlation func-
tion is again straightforward. For the time-step k — 1, the non-recursive estimation is

given as (7.1.16)
k—1

N 1
Ry(t.k—1) = zgx(l—f)y(l). (7.1.41)
For the time k, the estimate can then be written as

k

N 1

Ryy(t. k) = ] E x(l =7)y()
1=0

k—1
1 (7.1.42)
= ——| D> xU-0y@+xk —)yk) | .
k+1 =
kRyy(z,k—1)
Thus,
A A 1 N
Ry (1. k) = Ryy(t, k) + i1 (x(k —1)y(k) — Ry(t. k — 1))
New Oold Correction New Old - (7.1.43)
Estimate  Estimate Factor Product Estimate
If the last addend is interpreted as an error or innovation
e(k) = x(k —0)y(k) — Ryy(z,k — 1), (7.1.44)
then one can also write
Ryy(1,k) = Ryy(t,k — 1) + y(k)e(k) . (7.1.45)
The correction factor is given as
yk) = (7.1.46)

k+1

and weights the new contribution with less weight as the measurement period k
increases, which is in line with the normal averaging, where all terms 0 < / < k
have the same weight.

If the correction factor is fixed to a certain k;, then all new contributions are
weighted with the same weight y (k). The recursive estimation algorithm then cor-
responds to a discrete low-pass filter. With these modifications, it is also possible to
analyze slowly time-varying processes.



190 7 Correlation Analysis with Discrete Time Models
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Fig. 7.3. Values of the correlation functions needed for de-convolution

7.2 Correlation Analysis of Linear Dynamic Systems

By means of the correlation functions, an easy to apply identification technique for
the time-domain can be derived, which is termed de-convolution and will be devel-
oped in the following.

7.2.1 Determination of Impulse Response by De-Convolution

If a linear, stable, and time-invariant process is excited by a stationary colored
stochastic input signal u(k), then the output y(k) will also be a stationary stochas-
tic signal once the transients have vanished. Therefore, one can estimate the auto-
correlation function Ry, () and the cross-correlation function Iéuy (7).

It is for now assumed that both E{u(k)} = 0 and E{y(k)} = 0. Then, both
correlation functions are linked by the convolution sum (2.4.12)

Ruy(t) =) Rulr —v)g(v) (72.1)

v=0

where g (k) denotes the discrete-time impulse response. It is now assumed that both
Ry (7) and Ryy(7) have been determined for different 7, as e.g. shown in Fig. 7.3.

Now, the impulse response g(v) shall be determined. According to (7.2.1), one
obtains for each 7 an equation with a different number of elements. In order to de-
termine the individual values of the impulse response, g(0), g(1), up to g(I), these
individual equations will be written as a system of / + 1 equations as

Ruy(_P + l) Ruu(_P + l) s Ruu(_P)
Ruyt_l) Ruui_l) s Ruu(_.1 - l) g(O)
Ry (0) A Rw() ... Rw(=0) :
Ruy(l) Ry (1) s R(1=1) g()
Ruy.(M) Ruu.(M) Ruu(M _l) f
kuy Iéuu

(7.2.2)
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The largest negative time shift of Ry, (7) is Tmin = — P and the largest positive
time shift is 7, = M. The system of equations then consists of P — [ + M + 1
equations. If one chooses M = P + 21, then there are / + 1 equations such that éuu
becomes a square matrix and it follows that

A

g~ R'R, . (7.2.3)

If one chooses P = [ in addition, then for positive and negative values t of the ACF
R, the same number of elements is used (a symmetric ACF, since 7,y = —P = —I
and Ty = M = [). Considering the impulse response g(v) only up to the finite
value v = [, instead of v — o0 causes a round-off error. The estimate in (7.2.3)
typically gets more accurate as / increases. .

A condition for the existence of the inverse of R, in (7.2.3) is that

det Ry #0, (7.2.4)

which means that the system of equations may not contain linearly dependent rows
or columns. At least one value of R,,(t) must change from one line to the next,
which is guaranteed if the process is driven by a dynamically exciting input u (k).

As can be seen from Fig. 7.3, not all available values of Ryy(7) and Ry, (7) are
employed to determine g(v). If one wants to use also the other values of the cor-
relation functions, which are different from zero and thus employ more available
information about the process, then one can shift P further to the left and M further
to the right. One now obtains (P + M + 1) > [ + 1 equations to determine the
[ + 1 unknown values of g(v). By means of the pseudo inverse, one can determine a
typically more accurate estimate of g as

g = (R™Ru)"'RLR,, . (7.2.5)

The estimation of the impulse response can drastically be simplified by exciting the
process using a white noise with the auto-correlation function

Ru(7) = 028(1) = Ru(0)5(7) (7.2.6)
with
8(t) = égz ;8 . (7.2.7)
Then follows from (7.2.1) that
Ruy(7) = Ruy(0)g(7) (7.2.8)
and thus . A
g(1r) = mRuy(r) ) (7.2.9)

The impulse response is in this case proportional to the cross-correlation function.
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Fig. 7.4. Detail of the excitation of the Three-Mass Oscillator with a PRBS signal. The ex-
citation has the parameters: u = 50, n = 11, Tp = 0.003s and hence a period time of
Tp = 307.55s

Example 7.1 (De-Convolution Applied to the Three-Mass Oscillator).

In the following example, the Three-Mass Oscillator is excited with a PRBS sig-
nal. To avoid the negative side effects of the break-away torque due to adhesive and
Coulomb friction, the oscillator is operated around a certain mean rotational velocity.
This can be interpreted as the operating point, around which the system is linearized.
Figure 7.4 shows the PRBS signal u(¢) that has been used for the excitation of the
system as well as the rotational velocity of the third mass, ws(¢). The PRBS gen-
erator had a cycle time of A = 0.15s. The measurements have been sampled at
To = 0.003 s, therefore the output of the PRBS is always held for . = 50 samples.

The ACF and CCF for a PRBS excitation are shown in Fig. 7.5. One can see that
the calculated ACF converges to the exact course after f = 80 s and that the CCF then
approximates the direct measured impulse response according to (7.2.9). Despite the
good results, it should be kept in mind that the ACF of a PRBS satisfies (6.3.15)
only for full periods. Also, in Fig. 7.6, the de-convolution is calculated based on the



7.2 Correlation Analysis of Linear Dynamic Systems 193

<10 s
1
) — Estimated :
E ------ Directly Measured| g
=~ 05t Yy¥—YY"—"—"F"F7"—""""-7%F L
g
Z
= (I Saaiiihh At i & IR
< %=
-0.1 -0.5
0 1 2 0 1 2
<20 s
1
- — Estimated
oo 3 «==== Directly Measured
= S 054N T
= £
& &
- = (1X e S
< %=
-0.1 -0.5
0 1 2 0 1 2
1<30's
1
- — Estimated
N'g g ----- Directly Me‘asured
= £
& &
o )
< %=
-0.1 -0.5
0 1 2 0 1 2
1<80's
0.1 ; ; 1
3 3 - — Estimated
oy = | & | Directly Measured
= e
& =
s z
< g
< %=
-0.1 -0.5
0 1 2 0 1 2
7[s] 7[s]

Fig. 7.5. Estimated ACF and CCF for the signals in Fig. 7.4 for measurement intervals 0 <
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response
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matrix inversion of Ry,(7) governed by (7.2.5). Here, one can see that the estimate
of the impulse response converges to the true impulse response much earlier, a good
match is already obtained for ¢t = 20s. O

7.2.2 Influence of Stochastic Disturbances

Now, the influence of stochastic disturbances in the output signal on the determi-
nation of the cross-correlation function Ryy(7) shall be determined. For this exami-
nation, it is again assumed that the exact output signal y, (k) shall be affected by a
superimposed stochastic disturbance n(k), such that

y(k) = yu(k) + n(k) (7.2.10)

and the input signal u(k) and its auto-correlation function R, (7) shall be known
exactly. Then, the cross-correlation follows from

N-1
Iéuy(r) = % Z u(w)y(v+r1). (7.2.11)
v=0
With (7.2.10), the error is given as
| Nl
ARy (1) = ;) uWn(v + 1) . (7.2.12)

If the disturbance n (k) is not correlated with the input signal and either E{n(k)} = 0
or E{u(k)} = 0, then follows

N—

E{ARy(7)} = Z {u(k)}E{n(k + v)} = E{u(k)}E{n(k)} = 0. (7.2.13)

The variance of the error is given as

R ) 1 N—-1N-1
E{(ARuy(r)) } = %Z Z u()u(Hn + t)n(' + 1)
Y (7.2.14)

1=N
Z uu(v/ - V)Rnn(vl - U)

if u(k) and y (k) are statistically independent. If the input is a white noise with the
auto-correlation function according to (7.2.6), then (7.2.14) can be simplified to

E{(8 Ry ()} = 1 RO Run(0) = - Suo 7206) (7.2.15)

The standard deviation of the impulse response estimation error,
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1 N
Ag(t) = ——ARy(7), (7.2.16)
Squ

is then given as

Jelago) = 20 Vi2®) 1 o 1
= JE{Ag? (1)) = SN = e TR e T (7.2.17)

The standard deviation of the impulse response is proportional to the noise-to-signal
ratio 0, /0, and inversely proportional to the square root of the measurement time N .

Thus, in the presence of disturbances n(k), it follows from (7.2.13) and (7.2.17)
that

E{g(1)} = go(7) (7.2.18)
and
Nlim varg(t) =0. (7.2.19)

The impulse response according to (7.2.9) is determined consistent in the mean
square. A corresponding examination of the convergence can also be carried out
for the more general estimation given in (7.2.3) and (7.2.5). Under the prerequisite
that the estimates of the correlation functions are both consistent, then

A

Nh_r)nooE{g}% lim E{R R, }

~ lim B{RG') lim E{Ru} = Ry Ruy (7.2.20)

N —o0

~ 8o -

Since also the variances of the correlation function estimates go to 0 as N — oo
(as shown in Sect. 7.1), it follows (disregarding the effects of the truncation of the
impulse response):

Theorem 7.1 (Convergence of the Impulse Response Estimate Based on Corre-
lation Functions).

The impulse response g(k) of a linear time-invariant process can be estimated
consistent in the mean square by de-convolution according to (7.2.3), (7.2.5), or
(7.2.9) under the following necessary conditions:

The signals u(k) and y,(k) are stationary

E{u(k)} =0 .

The input signal is persistently exciting so that det Ry, # 0
The disturbance n(k) is stationary and uncorrelated with u (k)

O

If the auto-correlation function is known exactly, as e.g. for a PRBS, then the
intrinsic uncertainty of the ACF according to (7.1.8) will vanish. Furthermore, from
(7.1.28) and (7.2.13) follows that E{u(k)} may be non-zero if E{y(k)} = 0 and
E{n(k)} = 0.
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Fig. 7.7. Discrete random binary signal (DRBS)

This can also be illustrated with the following reflection. If the input or output
has a non-zero mean, then it follows

u(k) = U(k) — Uoo (7.2.21)
y(k) = Y(k) — Yoo (7.2.22)

with Upp = U(k) and Yoo = Y (k) and after plugging the large signals values into
(7.2.11) follows

N-1

. 1
Ry(0) = 5 > (UWY( + 1)) = Uno Yoo - (7.2.23)
v=0

Thus, the mean values of U(k) and Y (k) have to be determined separately during the
measurement and their product must be subtracted. If however Uyg = 0 or Yoo = 0
and E{n(k)} = 0, then one does not have to carry out this separate averaging since
in this case (7.2.23) and (7.2.13) yield the same results. However, due to the finite
word length and the resulting computational errors, it is usually recommended to
program the deviation from the signal due to (7.2.21) and (7.2.22) and determine
the operating point Uyo and Yy separately, if Upg and Yy are constant during the
dynamic measurement.

7.3 Binary Test Signals for Discrete Time

The identification of linear processes for sampled signals via correlation functions
is preferably performed with binary test signals. A discrete binary random signal
(DRBS) is generated by random changes of the binary values at discrete-time instants
kTy, see Fig. 7.7.
The discrete-time auto-correlation function of such a discrete random binary sig-
nal is given as
a’fort =0

Ry(7) = Oforz £0 (7.3.1)
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Fig. 7.9. Auto correlation function of a pseudo-random binary signal for discrete time

see Fig. 7.7. For T # 0, positive and negative values appear equally often, hence
the auto-correlation function becomes zero, see Fig. 7.8. The power spectral density
follows as

o
Sw@® = Y Ru(0)z™ = Ru(0) = (@) = a® for 0 < |o] < % . (13.2)

T=—00

The discrete random binary signal hence has the same auto-correlation function and
power spectral density as a discrete white noise with an arbitrary amplitude density.

(7.3.1) and (7.3.2) are only valid for infinitely long measurement times. For finite
measurement times, the auto-correlation and the power spectral density can deviate
drastically from the values in (7.3.1) and (7.3.2) and hence have to be determined
individually for each measurement. Due to this, one typically prefers periodic binary
signals, which are deterministic signals, but have almost the same auto-correlation
function already for finite measurement times as the stochastic signals have for t —
oo. The auto-correlation function for the discrete pseudo-random binary signal is
shown in Fig. 7.9. Such a signal is generated from a shift register as was presented
in Sect. 6.3, see (Chow and Davies, 1964; Pittermann and Schweizer, 1966; Davies,
1970).
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7.4 Summary

Correlation functions are defined for an infinitely long measurement interval. In prac-
tice, however, the measurement interval is always confined to a maximum of N data
points. Two estimates for the discrete-time auto-correlation function have been pre-
sented that individually cope with the finite measurement time for sampled data. One
estimate is bias-free, whereas the other one has a smaller variance. The advantages
and disadvantages of the two estimates have been discussed. The results have then
been generalized to include the cross-correlation as well. An approach for the fast
calculation of the correlation functions has been presented that interprets the calcu-
lation of the correlation function as a convolution of the two signals. The convolution
is then carried out in the frequency domain. By means of the discrete Fourier trans-
form, the two signals are transformed into the frequency domain, then multiplied
with each other and then transformed back into the time domain. This method can
reduce the computational effort for large data sets and a large number of different
time lags to be calculated. By dividing the time sequence into smaller blocks that
can be processed separately, the calculation of the correlation function can be accel-
erated even more. Also, a recursive formulation of the correlation function estimation
is presented. The estimates of the correlation function can then be used to determine
the impulse response of a system by means of the de-convolution.

The presented correlation analysis with stochastic as well as pseudo-stochastic
signals is well suited for the identification of non-parametric models of linearizable
processes with discrete-time signals. The method can be implemented easily on dig-
ital signal processors or micro-controllers. In its recursive form, it is also well suited
for online application in real-time.

Problems

7.1. Estimation of the Correlation Functions

Describe the two ways to estimate the auto-correlation function for finite time mea-
surements and discuss their bias and variance in dependence of the measurement
time.

7.2. Fast Calculation of Correlation Functions
Program the fast calculation of the correlation functions using the built-in Fourier
transform routines of a mathematical software package.

7.3. De-Convolution I
How can you determine the impulse response of a linear system by means of the
de-convolution. How does the problem simplify for a white noise input signal.

7.4. De-Convolution II

Given is the process

_y(@ 05771
T u(z)  1-05z71

G(2)
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As input signal u (k) use a PRBS signal with N = 4 and the initial values (1,0, 0, 1).
The following questions can either be answered by manual calculation or by use of
a mathematical program.

a) Determine the values of y(k) fork = 1,2,...,25.

b) Determine the auto-correlation and cross-correlation functions.

¢) Determine the impulse response by de-convolution.
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IDENTIFICATION WITH PARAMETRIC MODELS — DISCRETE
TIME SIGNALS



8

Least Squares Parameter Estimation for Static Processes

This chapter lays the foundation of the least squares parameter estimation, which
allows to determine model parameters from (noisy) measurements. The fundamental
method described in this chapter for static non-linear systems will be applied to linear
dynamic discrete-time systems in Chap. 9. In Chap. 9, also a recursive formulation
will be presented. This allows to identify processes in real time. Several modifica-
tions to this basic approach for linear dynamic processes will then be presented in
Chap. 10. The method of least squares will also be applied to linear dynamic contin-
uous time processes in Chap. 15. Furthermore, the method will be employed for the
identification of processes from frequency response data (Chap. 14), for processes in
closed-loop (Chap. 13), for non-linear systems (Chap. 18), and for MIMO systems
(Chap. 17).

8.1 Introduction

The fundamental task of the parameter estimation can be formulated as follows:
Given is a real process with the parameters

05 = (610 620 - .. Omo) (8.1.1)

and the output y, (k). It is assumed that this process follows physical laws with the
parameters 6, like a planetary system, where only outputs can be observed,

yulk) = f(6o) . (8.1.2)

The output can however not be measured directly. One can only measure yp(k) which
is the true process output falsified by a superimposed disturbance n(k), see Fig. 8.1.
Furthermore, a model of the process shall be known

ywm = f(0). (8.1.3)

where

R. Isermann, M. Miinchhof, Identification of Dynamic Systems,
DOI 10.1007/978-3-540-78879-9 8, © Springer-Verlag Berlin Heidelberg 2011
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n(k)

Process

Optimizer

Fig. 8.1. Schematic diagram of the general arrangement for the method of least squares

0T = (6162 ...6m) (8.1.4)

are the unknown model parameters. The task now is to find the model parameters 6
that result in a model which best fits with N observations yp(k).

This task has first been solved by Gauss in the year 1795 (at the age of 18 years).
Gauss later published the papers Theoria combinatoris observationum erroribus min-
imis obnoxiae I and II in the years 1821 and 1823, where he motivated and formally
derived the method of least squares. In this original problem formulation, the para-
meters 6; were the orbit parameters of planets, the model y)s = f(0 were Kepler’s
laws of planetary motion, the model output y,s were the coordinates of planets at
different times and the measurements yp their observed, i.e. “measured” positions.

There, the best fit had been defined by first introducing the observation error

e(k) = yp(k) — ym(k) (8.1.5)
and determining the minimum of the sum of the squared errors,

N
V=e2(1)+ 2@ +...+(N) = Y (e(k)”. (8.1.6)
k=1

The arrangement can be seen in Fig. 8.1.

There are several reasons which promote the choice of a quadratic cost function.
First of all, it is easier to minimize than many other cost functions, as e.g. the absolute
error |e(k)|. The main reason is however that for a normally distributed noise, it
yields asymptotically the best unbiased estimates in terms of the parameter error
variance , as will be shown later in Sect. 8.5.

The quadratic criterion however overemphasizes the effect of single, large out-
liers compared to small, but steadily occurring errors due to model impurities. There-
fore, other criteria have been promoted as well as e.g. the least absolute value cost
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n(k)

u(k) |

Process

Optimizer

Fig. 8.2. Schematic diagram of the general arrangement for parameter estimation of a process
with measured input and output signals with the method of least squares

function or a mixed linear/quadratic cost function, see Sect. 19.1 and (e.g. Pintelon
and Schoukens, 2001).

The above formulated problem is the starting point for this chapter as well as for
the following chapters on parameter estimation. The method of least squares will be
introduced in this chapter for the simple case of static processes now with measur-
able input and output signals, see Fig. 8.2. This is made in an easy to understand
tutorial style, beginning with scalar calculations and then transferring the procedure
to vectorial notation. Two different derivations will be presented. One is based on
the differential calculus and the other on a geometrical interpretation. In other con-
texts, the method of least squares is one of several regression methods. The following
chapters will deal with the more difficult case of dynamic processes as well as re-
cursive formulations of the parameter estimation problem, modifications for special
applications, and, finally, computationally efficient methods.

8.2 Linear Static Processes

The static behavior of a simple linear process shall be given
y=Ku. (8.2.1)

In general, it must be assumed that at least the sampled output y,(k) of the pro-
cess (so-called wanted or useful signal) is affected by disturbances n(k), so that the
measured output is given as

yep(k) = yu(k) +n(k) , (8.2.2)

where n (k) is a discrete-time stationary random signal with E{n(k)} = 0. Then, the
disturbed process is given as
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n(k)

k k
u(k) . (k)

Process

K M

Model

Fig. 8.3. Linear static process with one parameter, arrangement of process and model for
calculation of error e (k)

yp(k) = Ku(k) + n(k) , (8.2.3)

see the topmost part of Fig. 8.3. The task is now to determine the parameter K
from N measurements given as pairs of u(k) and yp(k) as (u(1), yp(1)) up to
u(N), yp(N)).
Since the structure of the process is known, one can now place a model of the
form
ym(k) = K (k) (8.2.4)

in parallel to the process (see Fig. 8.3), so that the error between the process and the
model is given as the difference between the corresponding output signals, i.e.

e(k) = yp(k) — ym(k) . (8.2.5)
With (8.1.5) and (8.2.4), one obtains

Error  Observation Model Prediction *

For the method of least squares, the cost function

N

N
V=3 ek =Y (vek) — Knu(k))® (8.2.7)
k=1

k=1

has to be minimized for the parameter Ky,. To find the minimum, one first determines
the first derivative with regard to the model parameter Ky

dv

N
Tl l;(yp(k) — Knu(k))u(k) . (8.2.8)

The first derivative of (8.2.7) with respect to Ky is set to zero to find the optimum
value of Ky that minimizes (8.2.7). This optimal choice shall be denoted as the
parameter estimate K, i.e.
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dv

N
Tl P —2g<yp<k> — Ru(k))u(k) = 0. (8.2.9)

This equation can be solved to provide an estimate for the model coefficient as

N
Z ye(k)u(k)
K = N (8.2.10)
Z 2(k)
and, after multiplying 1/N into the numerator and denominator,
. Ry(0
K = A“y( ) . (8.2.11)
Ry, (0)

The best estimate K is thus the ratio of the estimates of the cross-correlation function
and the auto-correlation function for t = 0. A condition for the existence of the
estimate is that

N
> uP(k) # 0or Ry(0) #0. (8.2.12)

k=1

This equation demands that the input signal u (k) must be non-zero or to rephrase
it: The input signal u (k) must “excite” the process with its parameter K. K is also
termed the regression coefficient, since in mathematical settings, the parameter esti-
mation problem is also known under the name regression problem.

In the following, the convergence of the estimation shall be investigated. For a
review of the definition of notions for the convergence, see also App. A. Considering
(8.2.2) and (8.2.10), the expected value of K is given as

=z

N
3 yeku(k) 3 (vak) + n())u(k)

k=1 k=1
=E

N N
> utk) Z u? (k)
k=1 k=1

1 al -
= N—<Z yulk)u(k) + Z {n(kyu(k) ) :
Dk T

k=1

E{K} =E

(8.2.13)

if the input signal u (k) is uncorrelated with the noise 7 (k) and thus

E{u(k)n(k)} = E{u(k)}E{n(k)} (8.2.14)
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and E{n(k)} = 0 and/or E{u(k)} = 0. The estimate according to (8.2.10) is thus
bias-free.

Given (8.2.2), (8.2.10), and (8.2.13), the variance of the parameter estimate K
can be calculated as

N 2
o =E{(K - K)*} = ;E{ (Z n(k)u(k)) } . (8.2.15)

N 2
(Z Mz(k)) k=1

k=1

If n(k) and u (k) are uncorrelated, then

N N N N
ESY nlouk)- ) n(k’)u(k’)} =Y ) Rulk—K)Rulk—k)= 0.

k=1 k'=1 k=1k'=1
(8.2.16)
This equation can be simplified if either n (k) or u(k) is a white noise.
In the first case, it is assumed that n(k) is a white noise. In this case
Ron (1) = 028(1) = n2(k)8(t) (8.2.17)
N
Q = NRw(0) n?(k) = n>(k) Y _ u?(k) (8.2.18)
k=1
2
» _ n2(k)

K=" (8.2.19)

> uP(k)

k=1

If the other case is investigated, i.e. if u(k) is a white-noise, identical results can be
obtained. The standard deviation of the estimated parameter is thus given as

- n2(k) 1 on) 1
ok = E{(K — K)*} = uz_(k)\/_ﬁ = (E)J_ﬁ , (8.2.20)

if u(k) and/or n(k) is a white noise. The standard deviation thus gets smaller as
the signal-to-noise ratio (0,,/0,) gets better (i.e. bigger) and is furthermore inversely
proportional to the square root of the number of measured data points N. The true
but unknown process parameter shall be denoted as K in the following. Since both

E{K} = Ko (8.2.21)

and
N—>1 [e¢) {( 0) } ( )

are fulfilled, the the estimation in (8.2.13) is consistent in the mean square (App. A).
Now, the vectorial notation will be introduced for this parameter estimation problem.
Upon introduction of the vectors
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u(1) ye(1) e(l)
u(2) yp(2) e(2)
u= . » yp = . , e = . , (8.2.23)
u(N) yp(N) e(N)
the equation for the error can be written as
e =yp—uk, (8.2.24)
and the cost function is given as
V =e"e = (yp —uK)"(yp — ukK) . (8.2.25)
Taking the first derivative of the cost function yields
dv  de’ + de
— = —. 8.2.26
ak a7 K (8.2.26
The derivatives can be determined as
de ade _ (8.2.27)
— =—unand — = —u . 2.
dK dK
Equating the first derivative (8.2.26) to zero and considering (8.2.27) yields
dv
hadl = 2u"(yp—uK)=0. (8.2.28)
dK [g—g
The solution is given as
WuK =u"yp & K = (u” )_1uTyp ) (8.2.29)

This solution is identical to (8.2.10).
If one wants to work with the large signal quantities U(k) and Y (k), then one
obtains

Yp(k) — Yoo = K(U(k) — Ugo) + n(k) (8.2.30)
Ym(k) — Yoo = KM(U(k) - Uoo) . (8.2.31)

The error is then given as
e(k) = Ye(k) — Ym(k) = ye(k) — ym(k) = yp(k) — Km(U(k) — Ugo) (8.2.32)

and is identical to (8.2.5).

The DC quantity Y cancels out and thus does not have to be known exactly (or
can be chosen arbitrarily). The DC value Upy must however be known exactly. This
will lead to
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y Fig. 8.4. Parameter estimation for a non-
linear (polynomial) static process

Theorem 8.1 (Convergence of the Parameter Estimation of a Linear Static Pro-
cess).

The parameter K of a linear static process is estimated consistently in the mean
square by the methods of least squares if the following necessary conditions are
satisfied:

o The input signal u(k) = U(k) — Uy is exactly measurable and Uy is known

exactly.
N

. Z u?(k) # 0, i.e. the process is sufficiently excited
k=1
The disturbance n(k) is stationary and thus E{n(k)} = const
The input signal u(k) is uncorrelated with the disturbance n (k)
Either E{n(k)} = 0 or E{u(k)} =0

8.3 Non-Linear Static Processes

Now, a static process shall be considered, where the output depends non-linearly on
the input quantity U(k), but linearly on the process parameters K;

q
Yu(k) = Ko+ U(K) K1 + U2 (k) Ko +...+ U (K)Kg = Ko+ Y UK, , (83.1)

v=1

see Fig. 8.4. This process is called to be linear in parameters.
It is again assumed that U(k) shall be known exactly. If the measured output
signal is affected by random disturbances n(k), then the output is given as

Y(k) = Yo(k) + n(k) . (8.3.2)

The following matrices and vectors shall be agreed upon,
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1 U(1) U%(1) ... U4(1)
1 UQ) U%Q2) ... U(2)

3

1 UN) U(N) ... U4(N)

as well as
Yp(1) e(1) n(1) Ko
Yp(2) e(2) n() K
y= : €= : n= : o= .|
Yo(N) e(V) n(N) X,

where at this point, the notation is changed to the well-established notation for the
regression problem, with ¥ being the data matrix, 6 the parameter vector, and y the
output vector. The process equation is then given as

y=W¥0y+n, (8.3.3)

where 6 denotes the true (but unknown) parameters and the model equation can be
written as
y=vo, (8.3.4)

where y shall denote the model output from now on. Process and model are once
again placed in parallel so that the error between process and model amounts to

e=y—Vo. (8.3.5)
The cost function is then given as
V=ele=(y"—0"¢")(y —vo
A A (836)
=y y—0Vy—ywve+0vve

and
V=yTy—0"0"y - (¢Ty) 0 +0Tw g . (8.3.7)

With the calculus for vectors and matrices, see App. A.3, the derivative of the above
term with respect to the parameter vector # can be determined as

d

@(ﬂTlIITy) =vuTy (8.3.8)
S(w)e) =wy (8.3.9)
%(OTWTWG) =20"vo (8.3.10)
and thus av
TR 20y + 20w = 20T (y —w0). (8.3.11)
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From the optimality condition

dv

!
— =0, 8.3.12
0, (8.3.12)

follows the estimation as . )
0=w'w) vly. (8.3.13)

For the existence of the solution, ¥ T¥ may not be singular, thus the condition for a
sufficient excitation of the process is given as

det(¥'W) #0. (8.3.14)
The expected value of this estimation is given as
E{0} =0 +E{w"w)'¥ ) =9, (8.3.15)

if the elements from ¥ and n, i.e. input and noise, are not correlated and E{n(k)} =
0. @ thus is a bias-free estimate. The variance can be determined similarly to the
approach presented in Chap. 9, see also (Ljung, 1999).

Theorem 8.2 (Convergence of the Parameter Estimation of a Non-Linear Static
Process). The parameters 0 of a non-linear static process according to (8.3.1) are
estimated consistently in the mean square by the method of least squares, (8.3.13), if
the following necessary conditions are satisfied:

The input signal U(k) is exactly measurable

det(WTW) £ 0

The disturbance n(k) is stationary and zero-mean, i.e. E{n(k)} = 0
The input signal U(k) is uncorrelated with the disturbance n(k)

8.4 Geometrical Interpretation

The method of least squares can also be interpreted geometrically (Himmelblau,
1970; van der Waerden, 1969; Bjorck, 1996; Golub and van Loan, 1996; Ljung,
1999; Verhaegen and Verdult, 2007) by means of the orthogonality relation. In this
section, the problem is thus revisited under geometrical aspects.
The error e has been defined as the difference between the model output y and
the process output y, .
e=y—y=y-—-Vo. (8.4.1)

The cost function then is given as
V=e'e. (8.4.2)

The vector product e Te can be rewritten as the squared Euclidian distance, therefore
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Fig. 8.5. Geometric interpretation of the
method of least squares

V=eTe=|el3. (8.4.3)

To find the optimal parameter set, the minimum Euclidian distance must be deter-
mined, i.e.
min el = min |y — 5[l = min ||y — #8], . (8.4.4)
0 0 0

The Euclidian distance of e becomes the smallest, if the vector e is orthogonal
to the plane spanned by the regressors ¥; and ¥,, which are the columns of the data
matrix ¥. This is obvious from the geometric point-of-view, but can also be proven
mathematically. As was already shown before, the optimality criterion

Wi Lo (8.4.5)
do (o5 o
requires that A
w(y—wh)=0. (8.4.6)

As (8.4.6) can be rewritten in terms of the error e, one can see that
vT(y—wh)=v"e=0. (8.4.7)

To satisfy (8.4.7), the orthogonality relation demands that the error e must be or-
thogonal to the regressors, i.e. the columns of ¥.

This shall now be illustrated for an experiment with three measurements, see
Fig. 8.5: These three measurements are made at different times k = 1,2,3 as

(W1 (1), Y2 (1), y (1)), (¥1(2), ¥2(2). y(2)) and (1 (3), ¥2(3). y(3)) or in vector ma-

trix notation,
V1(1) ¥a(1)
V=1 v1(2) ¥2(2) (83.4.8)
V1(3) ¥2(3)
and
V1
y=\»y»]. (8.4.9)
)3

The model output y is now given as
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b1 Vi (1) Va2 (1)

P2 =0 | V12 | +02 | ¥22) | . (8.4.10)
V3 ¥1(3) ¥2(3)

y ¥ 2

Hence, one now tries to represent the vector y of the measurements by the vector
y of the model output. The model output y is given as a linear combination of the
column vectors ¥, and ¥, of ¥. This means that the vector y must be projected
onto the plane spanned by the vector ¥; and .

The error e between the model output y and the process output y has the small-
est norm, which can be seen as the shortest length, if it stands orthogonally on the
plane spanned by ¥; and ¥,. This is what the orthogonality relation states. This or-
thogonality relation will be revisited in Chap. 16 for the derivation of the subspace
methods and Chap. 22 in the derivation of numerically better suited methods for the
parameter estimation by the method of least squares. Numerically improved meth-
ods typically avoid the direct inversion as used e.g. in (8.2.10) and (8.3.13), but rather
construct an orthonormal basis of ¥ . The Q R-decomposition, described in Chap. 22,
also presents an attractive way of solving the method of least squares by decompos-
ing the cost function V', which is written as the squared 2-norm. Such a derivation is
also shown by Verhaegen and Verdult (2007).

For linear static processes according to Sect. 8.2, the output signal y and the
error e have been linearly dependent on the input signal u and the single parameter
K. The non-linear static processes that have been treated in depth in Sect. 8.3 also
had a linear dependency between y and the parameters 6 as well as e and 6, but
have been non-linear in ¥. The parameter estimation that has been described in this
chapter is thus also suited for non-linear processes as long as the error e is linear
in the parameters @, i.e. the error e depends linearly on the parameters 6 to be
estimated.

Although this seems quite confining at first, the limitation is rather small for
many practical applications. One can often apply transformations to come up with a
problem that is linear in its parameters. For example,

Yo (k) = Kie K2V®
can be transformed into
lOg Yu(k) = log Kl — KzU(k) s

which is linear in its parameters. Another often needed case is the estimation of
amplitude and phase of an oscillation

Yu(k) = asin(wkTy + ¢) .
To identify a and ¢, one can use

Yu(k) = becos(wU(k)) + csin(wU(k)) with U(k) = kTy ,
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where the equation is linear in the parameters b and c. From there, one can obtain
estimates of ¢ and a by

a = \/b* + ¢? and ¢ = arctan

N S

Such non-linear expressions, which can be transformed so that they become linear in
parameters, are called intrinsically linear (Astrém and Eykhoff, 1971).

Furthermore, many functions can sufficiently precisely be approximated by poly-
nomials of low order (e.g. 2 or 3) as

Yu(k) = f(U(k)) ~ Ko + K1U(k) + KU (k) . (8.4.11)

One can also use piecewise linear approximations, splines and many other ap-
proaches.

8.5 Maximum Likelihood and the Cramér-Rao Bound

Initially in this chapter, it has been claimed that the least squares cost function is
a natural cost function to choose in the case of disturbances at the output which
follow a Gaussian distribution in their probability density function. In the following,
a proof of this claim will be presented and also the quality of the estimator will be
investigated. The question here is what is the best estimate that one can obtain.

Before however the estimation quality is discussed, the terms likelihood shall be
introduced and the maximum likelihood estimator shall be derived.

The maximum likelihood estimate is based on the conditional probability of the
measurement. This function is given as

py(ylu. ) (8.5.1)

and is termed likelihood function. One can clearly see that the probability that a
certain series of values y is measured (“observed”) depends on the input # and the
parameters 6 that are to be estimated. The input # is now neglected in the argument
to come to a more compact notation. .

The idea is now to select the parameter estimate # such that it maximizes the
likelihood function as estimates for the true parameters @, hence

Py(y10)]y_s — max . (8.5.2)

Thus, those parameters are taken as the estimates, which make the measurement most
likely to occur. The maximum can be determined by the classical way in calculus, i.e.
by taking the first derivative with respect to the unknown parameters € and equate it
to zero, 1.e.

Ipy(y10)

1
=0. 8.5.3
|, (8.5.3)
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This technique shall now be applied to the estimation of a static non-linearity.
The measured output is given as

y =W +n. (8.5.4)

Each noise sample n (k) is Gaussian distributed with the probability density function

1 k) —w)?
p(n(k)) = —exp(_(n(z)—zm) s
2702 %

where i = 0 because the noise was assumed to be zero-mean. For white noise, the
individual elements are uncorrelated, the probability density function for the entire
noise sequence n with N samples is therefore given as the product of the individual
probability density functions of each sample,

(8.5.5)

N-1

! (1K)’ U e

p(n) = eXP(— = e 2" = " (8.5.6)
kl:[() 27[(7n2 207 (Zﬂ)%vdetl

which is an N -dimensional Gaussian distribution with X being the covariance ma-
trix. For uncorrelated elements, Y = onzl where I is the identity matrix and
det ¥ = No2.

Now, the probability density function of the measurements y with y = ¥0 + n
and hence n = y — ¥4 is given as

1
p(yl0) = —F(y —v0)(y — w)) . (8.5.7)

1
2n)> VNo, CXP(

For this function, the maximum must now be determined. A rather common approach
in the calculation of maximum likelihood estimates involving Gaussian distributions
is to take the logarithm first as p(x) and log p(x) have their maximum at the same
value of x, but the resulting terms are much easier to work with. Hence,

dlog f(y|0)

1 A AN
5 —((r-wd)"(y-wd)) =0. (8.5.8)

A 2
0=6 20y

Solving this equation for 0 leads to
6= w) uTy, (8.5.9)

which is identical to (8.3.13). Hence the least squares estimator and the maximum
likelihood estimator yield identical solutions.

Now, the quality of the estimate shall be discussed. The question is whether there
exists a lower bound on the variance of the estimate. If this is the case, then the
estimator that delivers estimates with the minimum attainable variance would be the
best estimator that is available. This measure of quality will be called efficiency of an
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estimator (see App. A), and a lower bound on the minimum attainable variance will
be derived as the Cramér-Rao bound.

For the derivation of this bound, an arbitrary bias-free estimate 6 shall be con-
sidered, hence E{é |0} = 0. With this prerequisite, one can now try to determine the
variance of the estimate E{(6 — 66)2}.

The following derivation of the Cramér-Rao bound has been described by Hénsler
(2001) and is in more depth presented there. The idea behind the derivation is that
for a bias-free estimate, the expected value of E{é — 0} is zero, i.e.

oo

E{§ -0} = / (0 —0)py(y]6)dy . (8.5.10)
—00

One can take the derivative with respect to the parameter vector # and then one

obtains

o 3 .
/_ @((0 —0)py(y|0)dy> —0. (8.5.11)

With the Cauchy-Schwartz inequality (E{xy})? < E{x2}E{y?}, one can state a
lower bound for the variance of the estimate as

1

8 2
{(30 logpy(ylé')) }

-1

: |
E| g7 0 2 010)]

A detailed derivation can also be found in (e.g. Raol et al, 2004).

An estimator is termed efficient if it attains this lower bound of the variance. The
term BLUE stands for best linear unbiased estimator and hence denotes the estimator
that attains the minimal variance of all unbiased estimators. According to the Gauss-
Markov theorem, the least squares estimator is the best linear unbiased estimator,
it will in the following be shown that this estimator also reaches the Cramér-Rao
bound in the case of Gaussian distributed noise n(k) respectively errors e(k). The
Cramér-Rao bound is not always attainable, because it is too conservative as pointed
out by Pintelon and Schoukens (2001). Relaxed bounds exist, but are very difficult
to calculate and are hence seldom used.

The Cramér-Rao bound can now also be applied to the least squares estimator,
which in this case is equivalent to the maximum likelihood estimator. The minimum
attainable variance is hence given as

E{( —0)*} > (8.5.12)

or

E{(f —0)*) > (8.5.13)

E{( —6)*} > —— - = o2E{(¥ w)71} . (8.5.14)

log py(y10)

802
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If the error e(k) / noise n(k) is Gaussian distributed, then the estimator attains the
Cramér-Rao bound and hence the minimum variance of all estimators. The denomi-
nator is termed Fisher information matrix (Fisher, 1922, 1950). An extension of the
Cramér-Rao bound to biased estimates is discussed in (van den Bos, 2007).

8.6 Constraints

Constraints are additional conditions that the solution must satisfy. One can discern
equality and inequality constraints. Linear inequality constraints require the para-
meters to satisfy the set of inequalities

A6 <b, (8.6.1)

whereas equality constraints require that the parameters satisfy a set of equations
given as
Co=d. (8.6.2)

The inclusion of equality constraints shall be introduced first as it can easily be
solved directly (e.g. Bjorck, 1996). It is required that C has linearly independent
rows so that the system of equations in (8.6.2) is consistent. Then, one can first solve
the unrestricted problem of least squares as usual as

6= w) wTy. (8.6.3)

Then, the solution to the restricted problem, 6 can be determined as

-1

6=0-(w)'c(c@w)'cT) (ch-a), (8.6.4)

see e.g. (Doyle et al, 2002).

Inequality constraints can in theory be solved with active set methods, although
in numerical implementations prefer alternatives, such as interior point methods (No-
cedal and Wright, 2006). The basic idea is that inequality constraints can either be
inactive, then they do not need to be regarded as part of the solution of the optimiza-
tion problem. Or, if they are active, then they can be treated as equality constraints
as the design variable is fixed to the boundary of the feasible space. Active in this
context means a constraint that actively constrains the solution, whereas inactive con-
straints are currently not influencing the solution. The critical part in this algorithm
is the determination of the active set, which can be of exponential complexity. The
recursive method of least squares (RLS) also allows the inclusion of constraints in a
very elegant way, see Sect. 9.6.1.

8.7 Summary

In this chapter, the method of least squares was derived for linear and non-linear
processes. It is well suited for static processes described by linear and non-linear
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algebraic equations. Important for the direct, i.e. non-iterative solution is the con-
dition that the error between the process output and the model output is linear in
the parameters. However, also many functions which are at first non-linear in para-
meters can either be transformed so that they become linear in parameters or can be
approximated by polynomials or piecewise linear models.

With the Gauss-Markov theorem, it can be shown that for these applications, the
method of least squares provides the best linear unbiased estimate. It has further-
more been shown that the method of least squares for Gaussian noise at the output
is equivalent to the maximum likelihood estimator and that the variance of the esti-
mate asymptotically attains the Cramér-Rao bound, which is a lower bound for the
variance of an estimate. This makes it an asymptotically efficient estimator.

Problems

8.1. Non-Linear Static SISO Process
The process shall be modeled with a non-linear static model of second order,

y(k) = Ko + Kqu(k) + Kou?(k)

The parameter K is zero, so it does not have to be considered in the following. De-
termine the parameters K; and K, based on the measured data points

Data point k 1 2 3 4 5

Input signal u -1.5 05 4.5 7 8
Output signal y 5.5 1.5 35 45 85

using the method of least squares.

8.2. Non-Linear Static MISO Process
A MISO process is described by a non-linear second order model

y(k) = Ko — Kyui(k)uz (k) + Koui(k)

The process shall be identified by the method of least aquares. Set up the data matrix
¥, data vector y, and the parameter vector #. Given the measurements

Data point k 1 2 3 4 5
Input signal u; -1 -05 0 1 2
Input signal u, 2 2 2 2 2
Output signal y 35 1.875 0 -45 -10

determine the parameters K; and K, under the assumption that Ko = 0.

8.3. Non-Linear Static SISO Process
A static non-linear process with the structure
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y(k) = Vau(k) + (b + Du?(k)

shall be identified for the measurements

Data point k 1 2 3 4 5

Input signal u 0.5 1 1.5 2 2.5
Output signal y =~ 2.2247  5.7321 11.1213 18.4495  27.7386

Set up the data matrix ¥, data vector y and the parameter vector #. Then, deter-
mine the parameters a and b.

8.4. Sinusoidal Oscillation
In the following, the methods of least square shall be utilized to determine the phase
¢ and amplitude A of an oscillation with known frequency wy, i.e.

y(1) = Asin(wot + ¢)

The signal has been sampled with the sample time 7y = 0.1s. The frequency of the
oscillation is known to be wy = 10rad/sec. The following measurements have been
determined:

Data point k 0 1 2 3 4
Output signal y(k)  0.52 191 1.54  -024 -1.80

Determine the parameters A and ¢.

8.5. Consistent Estimate and BLUE
What is a consistent estimate? What does the term BLUE stand for?

8.6. Bias
What is a bias? How is it defined mathematically?
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9

Least Squares Parameter Estimation for Dynamic
Processes

The application of the method of least squares to static models has been described in
the previous chapter and is well known to scientists for a long time already. The ap-
plication of the method of least squares to the identification of dynamic processes has
been tackled with much later in time. First works on the parameter estimation of AR
models have been reported in the analysis of time series of economic data (Koop-
mans, 1937; Mann and Wald, 1943) and for the difference equations of linear dy-
namic processes (Kalman, 1958; Durbin, 1960; Levin, 1960; Lee, 1964).

The application of the method of least squares to dynamic processes is dealt with
in this chapter for the discrete-time case and later in Chap. 15 for the continuous-
time case, as well. In the chapter at hand, first the original non-recursive setting is
derived, then the recursive form is presented in detail. Also, the weighted method
of least squares is presented and the highly important case of least squares with
exponential forgetting.

In order not to conceal the train of thoughts for the application of the method
of least squares to dynamic systems, only one mathematical solution of the problem
will be presented. In Chap. 22, different ways of solving the least squares problem
are presented and compared in terms of accuracy and speed. Modifications to the
method of least squares, which e.g. allow better estimation results for noise acting
on the input and other cases can be found in Chap. 10.

9.1 Non-Recursive Method of Least Squares (LS)

In the following, the classical method of least squares for discrete-time linear pro-
cesses will be derived.
9.1.1 Fundamental Equations

The transfer function of a discrete-time linear process is given as

y(@)  bo+biz 4.+ buz™  BzTY)
u(z) l+aiz7l+...+auz™ Aiz7hH

Gz H= 9.1.1)

R. Isermann, M. Miinchhof, Identification of Dynamic Systems,
DOI 10.1007/978-3-540-78879-9 9, © Springer-Verlag Berlin Heidelberg 2011
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n

u -l W y
B(z) ,
! -d
A(ZVI) z
Process

Fig. 9.1. Block diagram for the non-recursive parameter estimation according to the method
of least squares

with

u(k) = U(k) — Uno ©.1.2)
y(k) =Y(k) — Yoo
as deviations of the signals from the steady-state values Upg and Yy, see also
(2.2.19). The parameter by will be disregarded in the following as biproper systems,
i.e. systems that can directly follow a step input, are hardly ever encountered in nature
and the dimensionality of the subsequent parameter estimation problem is reduced
by one dimension by neglecting bg. The process (9.1.1) will now be extended by
introducing a dead time Ty with integer values d = Ty/ Ty = 0, 1,.... It is further
assumed that the model order and dead time are known exactly. If this is not the case,
one can apply the methods described in Chap. 23 to determine an appropriate model
order and dead time.
The transfer function is then given as

_n@ _BETYH g bz 4 bez™

G = = =
p(2) u(z) A(z7h l+aiz7V+...+amz™

9.1.3)

The measurable signal y(k) is assumed to be a superposition of the real process
output y, (k) (useful signal) and a stochastic disturbance n (k) as

y(k) = yu(k) +n(k) , 9.1.4)

see Fig. 9.1

Now, the task is to determine the unknown parameters a; and b; of the process
transfer function (9.1.3) from N pairs of the input signal u(k) and the measured
output y (k). First, some assumptions have to be made:

e The process is for k < 0 in its steady state
e The model order m and dead time d are known exactly (see Chap. 23 on how to
determine the model order m and dead time d if they are not known a priori)
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The input u (k) and its DC value Uy are known exactly
The disturbance n (k) must be stationary with E{n(k)} = 0
The DC value Y9 must be known exactly and must belong to Ugg

(9.1.3) will be transformed to the time domain, resulting in the difference equa-
tion

ywk)+aryk—)+...+amy(k—m) = byutk—d —-1)+...+bpulk—d —m) .
9.1.5)

Now, the measured values y (k) are used instead of the model output y,(k) and fur-

thermore the estimated parameters are plugged into the equation, leading to

yk)+aitk—=Dyk—1)+... +amk —1)y(k —m)

R A 9.1.6)
bk —Dutk —d —1) — ... — by(k — Du(k —d —m) = e(k) .

The equation error e(k) (residual) is introduced which is caused by the use of the
measured values y (k) instead of the “true” output y,(k) and the use of parameter
estimates instead of the “true” parameters. Figure 9.1 shows the overall setup. Ac-
cording to Chap. 1 (see Fig. 1.8), this setup is called the generalized equation error.
This error definition is linear in parameters, which is a requirement for the applica-
tion of direct methods of parameter estimation. As was already stated in Sect. 1.3,
direct methods allow the determination of the parameter estimates in one pass.

(9.1.6) can be interpreted as the prediction y (k|k—1) of the output signal y (k) for
one time step ahead into the future (one-step prediction) based on the measurements
that have been available up to the time step k — 1. In this context, (9.1.6) can be
written as

Yklk—1) =—a1(k = Dytk = 1) — ... —adm(k — 1)y(k —m)
+bitk—Dutk—d —1)+...— bk = Du(k —d —m) (9.1.7)
=y (k)b (k —1)
with the data vector
vik)=(—yk =1 ... —y(k —m)jutk —=d —1) ... u(k —d —m)) (9.1.8)
and the parameter vector
0T(k) = (a1 ... aml|by ... bw) - (9.1.9)

As one can see, (9.1.7) corresponds to the regression model in the non-linear static
case, (8.3.3). The equation error in (9.1.6) can thus be interpreted as

eky = yk) —  yklk-1)
Equation New One Step Prediction . 9.1.10)
Error Observation of the Model

Now, the input and output are sampled for the data pointsk = 0,1,2,...,m+d+N.
For the time step k = m + d, the data vector ¥ (9.1.8) can be filled up for the first
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time. For the time stepsk =m+d,m+d +1,...,m+d + N,asystemof N + 1
equations of the form

y(k) = ¥ (k)0 (k — 1) + e(k) 9.1.11)

can be set up. In order to determine the 2m parameters, one needs at least 2m equa-
tions, thus N > 2m — 1. In order to suppress the influence of the disturbance n(k),
one will typically use much more equations, so that N > 2m — 1.

These N + 1 equations can be written in matrix form as

ym+d+N)=Wm+d+N)dm+d+N—1)+e(m+d+N) 9.1.12)
with
yim+d+N)=(ym+d)ym+d+1)...y(m+d+N)) (9.1.13)

and the data matrix

Y(m+d+N)=
—ym+d—-1) ... —y(d) uim—1) ... u(0)

—y(m +d) o= yd+1) u(m) Lou(l) (9.1.14)

—ym+d+N-1)...—y(d+N)um+N—-1)...u(N)
For the minimization of the cost function

m+d+N
V=e"m+d+Nem+d+N)y= > k) (9.1.15)
k=m-+d

with
e'm+d+N)=(e(m+d)e(m+d+1)...e(m+d+N)), (9.1.16)

one must in analogy to Sect. 8.3 determine the first derivative of the cost function,
see (8.3.11), and equate it to zero,

dv
6 lo—¢

=20T(y-wé)=0. 9.1.17)

For the time step k = m + d + N, the solution of the over-determined system of
equations is given as
0=(wTw) vy, (9.1.18)

compare (8.3.13). With the abbreviation
p=(@ww)", (9.1.19)

the equation is given as
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6 =PuTy. (9.1.20)

To calculate the parameter estimate [ , one must thus invert the matrix
¥T¥ = P! see next page (9.1.21)
and multiply it with the vector
¥ Ty see next page , (9.1.22)

see e.g. (Astrém and Eykhoff, 1971).

The matrix ¥ has the dimension (N + 1) x2m and thus grows quite large for large
measurement periods. The matrix ¥ TW¥ is for stationary input and output signals
symmetric and has independent of the measurement period the dimension 2m x 2m.
In order for the inverse to exist, the matrix ¥ "% must have the (full) rank 2m or

det(¥TW) = det(P7') #£0. (9.1.23)

This necessary condition means among others that the process under investigation
must be excited sufficiently by the input signal, see Sect. 9.1.4. According to (9.1.17),
the second derivative is given as

dv

— =o'y, 9.1.24
dodeT ( )

In order for the cost function to be (locally) minimal at the optimum determined
from (9.1.17) and for  to have a unique solution, the matrix ¥ T¥ must be positive
definite, i.e.

det¥™w > 0. (9.1.25)

If both ¥Tw and ¥T y are divided by N, then the individual elements of the
matrix and the vector are correlation functions with different starting and ending
points as (9.1.21) and (9.1.22) show. For large N however, one can neglect these
different starting and ending times and build a “correlation matrix”

(N + 1) ety =
Ryy(0) Ryy(1) ... Ry(m—1)|  —Ruy(d) ... —Ry(d +m—1)
Ryy(1) Ryy(0) ... Ryy(m —2)| —Ry(d —1) ... —=Ryy(d +m —2)
Ry(0) |—Ru(d —m+1)...  —Ry(d)
Ruu(o) s Ruu(m - 1)
Run(0)

(9.1.26)

and a “correlation vector”
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ptu=y
(w—p—ypnps { -

N+P+u
pruw=y
a-p-pans -
N+p+u
pru=y
(€T16) (w—paepa 7 - =dq,
N+P+u
pruw=y
C-peepe =
N+p+u
prw=y
a-paepe -
N+p+u
0=y
M <
N
T—w=y
(¢ +uw—ynnn
T—N+uw
1—w=y T—w=y
a+w—ypapn @ <
- 1—-N+u I-N+u
(Iecre) = =1 =7
(p—pna " —w+ p—ypnepd T - M <
N+P N+P N+P
T—pru=y T—ptu=y T—ptu=y T—pHu=y
Cruw—p—ypnp< K a+p-prd T —|ctu—pims T a+pdpe
T—N+p+u T—N+p+u T—N+p+u T—N+p+u
[—ptu=y [—ptu=y [—ptu=y [—ptu=y
(+w—p-ypnnc (p—pnns T —|aru—ypipe T . <
I-N+p+u I-N+p+u I-N+p+u I-N+p+uw

= i/
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_Igyy(l)
—Ryy(2)

(N+1D) Ty = —Ryy(m) ) 9.1.27)
Ruy(d + 1)

ﬁuy(d + m)

The method of least squares can thus for the dynamic case also be expressed by
correlation functions. If one determines € according to

-1
b = (LWW) LwTy , (9.1.28)
N +1 N +1
then the elements of the matrix and the vector will approach constant values of the
correlation function in case of convergence. Thus, the entries of the matrix and the
vector are very well suited as non-parametric and easy to interpret intermediate re-
sults to check the progress of the parameter estimation.
One should keep in mind that only the following correlation functions are em-
ployed,

Ryy(0), Ryy(1), ..., Ryy(m —1)
Rua(0), Ruw(1), ..., Ruu(m — 1)
Ruy(d), Ruy(d +1),..., Ryy(d +m—1) .

Thus, always m values will be used for the calculation of the correlation functions.
If the correlation functions are also considerably different from zero for other time
shifts t,i.e. t < Oandt > m—1lort < d and t > d + m — 1 respectively,
the technique does not employ the entire available information about the process
dynamics. This topic will again be discussed in Sect. 9.3.

In order to calculate the estimates for the parameters, one has the following op-
tions:

e Setup ¥ and y. Calculate ¥ and ¥Ty. Then solve the parameter estimation
problem using (9.1.18)

e Determine the elements of ¥ TW and ¥ Ty in form of the sums given by (9.1.21),
(9.1.22). Then use (9.1.18)

e Determine the elements of (N + 1)"'%T¥ and (N 4 1)~'¥Ty in the form of
the correlation functions according to (9.1.26), (9.1.27). Then use (9.1.28)

9.1.2 Convergence

In order to examine the convergence, the expected values and the convergence of
the parameter estimates will be analyzed for the case assumed in (9.1.4), where the
output has been affected by a stochastic noise n (k).



230 9 Least Squares Parameter Estimation for Dynamic Processes

For the expected value of the estimate, one obtains by inserting (9.1.12) into
(9.1.18) under the assumption that the estimated parameters 6 of the model (9.1.12)
already agree with the true process parameters 6,

E{é} = E{(WTW)il'I’T'I’OO + (WTW)fllllTe} =0y + E{(WTUII)fll]ITe} ’
(9.1.29)

where
b=E{(w'w) 've} (9.1.30)

is a bias. The afore mentioned assumption that b = 0, is satisfied, if the bias van-
ishes. This leads to

Theorem 9.1 (First Property of the Bias-Free Parameter Estimation).

If the parameters of the dynamic process governed by (9.1.5) are estimated bias-
free by the method of least squares, then ™ and e are uncorrelated and furthermore
E{e} = 0. Then

b =E{(¥ W) "W |E{e} =0 (9.1.31)

for an arbitrary, also finite measurement time N . O

This means that according to (9.1.27),

_Iéye(l)

_Iéye(m)

—1 T _
(N +1)"'E{¥Tel = E =N

=0. (9.1.32)

—Rue(d +m)

For § = 6, the input signal u (k) is not correlated with the error signal e(k), so that
Rye(t) = 0. (9.1.32) will be revisited later, see (9.1.54).

It will now be investigated, which conditions must be fulfilled so that a bias-
free parameter estimate can be obtained. For this investigation, it is assumed that the
signals are stationary processes, so that the estimates of the correlation functions are
consistent and furthermore

th E{R\uu(r)} = Ruu(r)
Nli_l)nooE{Iéyy(f)} = Ryy(7)
NninooE{zéuy(f)} = Ry (1) .

From the theorem of Slutsky, see App. A.1, it follows with (9.1.28) for the conver-
gence of the parameters in probability

. 1 -1 1
plim 0 = (plim —wTw) (plim —IIITy) . (9.1.33)
N—o0 N—ooo N +1 Nooo N +1
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This includes

. 1 -1 1
lim E{f} = ( lim E{—WTW}) ( lim E{—WTy}) . (9.1.34)
N—o0 N—o0 N +1 N—>o0 N +1

This means that the terms in brackets each individually converge to steady values
and are then statistically independent. Now (9.1.34) is separated for the useful signal
and the disturbance. With (9.1.4), (9.1.8) becomes

VT = (—yulk = 1) .. —yuk —m)[utk —d —1) ... u(k —d —m))
+ (—n(k —=1) ... —n(k —m)|0 ... 0)

=¥, (k) + v, (k)
(9.1.35)
and consequently
vi=yl+wul. (9.1.36)
Furthermore, according to (9.1.4)
y(k) = yulk) +n(k) = ¥y (k)80 + n(k) . 9.1.37)
where the 6 are the true process parameters and thus
y=¥,00+n= (!P—!Pn)00+n. (9.1.38)
If (9.1.38) is inserted into (9.1.34)
A 1 -1
lim E{§} = ( lim E{ lIITlII})
N—>o0 N—o0 N +1
1 1 9.1.39
lim By —— ¢ (¥ —¥,)0 + ——¥"n ( )
N—o00 N +1 N +1
=00+5b,
where
1 -1
lim b = ( lim E{ﬁxﬂl]/})
N—o0 N—>o0 + (9.1.40)

1 1
lim E vy — vy, 0,
N—o00 N =+ 1 N + 1

represents an asymptotic bias. As an abbreviation, a “correlation matrix” is intro-
duced as

. 1
RIN+1)=——w'y 9.1.41
(N+1 N1 ( )
1
R = lim E vyl (9.1.42)
N—o0 N +1
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and it follows on the basis of (9.1.26) and (9.1.27)

lim b =
N—>oo
_Iéyn(l) aljéyn(o) +...+ amjéyn(l — m)
R tim Bl | =Bam) | | aaRum =D +... +anRw(© |\~
0 0
0 0
(9.1.43)

where iéun(l’) = 0, i.e. it is assumed that input signal u(k) and the noise n(k) are
uncorrelated. For the CCF, one obtains with y (k) = yu(k) + n(k)

E{Rn(0)} = {N+12y<k)n(k+z)}

N

] Zn(k)n(k + 1)

k=0

Z yalk)n(k + r)} +E{ ir

o

=0

= Rnn (T) s
(9.1.44)

and thus

Run(1) + a1 Ron(0) + ... + @ Run(1 — m)

lim b = _R—l lim E Iénn(m) + alﬁnn(m - 1) +...+ amﬁnn(o)

0
0
(9.1.45)
The bias vanishes if for N — oo,
m
> ajRu(t—j)=0forl <t <mandao =1. (9.1.46)

j=0
This is the Yule-Walker equation of the auto-regressive signal process (2.4.17)

nk)+antk —1)+... +apnk —m) = v(k)

, 14
Az Hn(z) = v(2) ©-147
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M . 1
Cr Az
! s
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Fig. 9.2. Required structure of a process for the bias-free parameter estimation with the method
of least squares, v is a white noise

where v(k) is a statistically independent Gaussian random signal with (v,0,) =
(0, 1). (9.1.47) means that the noise n (k) must be generated from white noise v (k)
by a filter with the transfer function 1/A4(z ') so that a bias-free estimate can be
obtained with b = 0. Therefore,

n(z) 1
G()=—F=—, 9.1.48
v(2) '@ A ( )
see Fig. 9.2. The output is then given as
() = 7() + 2u(z) 9.1.49)
y@) = v S 1.
and the error signal as
R R . A B
e(z) = —Bu(z) + Ay(z) = —Bu(z) + ZV(Z) + Azu(z) (9.1.50)
If the process and model parameters match exactly, i.e. 0 = 0por A = Aand
B = B respectively and thus the bias b vanishes, then
e(z) =v(z2). 9.1.51)

Theorem 9.2 (Conditions for a Consistent Parameter Estimation).

The parameters of a dynamic process governed by (9.1.5) are estimated consis-
tent (asymptotically bias-free) by the method of least squares, if the error e(k) is
uncorrelated, that is if
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Ree(t) = 025(¢) with 8(x) = (1);3: i 8 9.152)

is valid and e (k) is furthermore zero-mean, i.e.
Efle(k)} =0. (9.1.53)
O

An annotation to the above theorem: If the conditions of the above theorem are sat-
isfied, then the parameter estimates are also bias-free for finite measurement times
N.

From (9.1.32) follows for a bias-free estimate in finite measurement time N

1 m+d+N
R = 5 2 e®yk=7)
k=m+d
| meden (9.1.54)
= etk +7)y(k)=0fort=1,2,....m
N+‘k3;d( )y (k)

For e(k), one obtains by considering (9.1.4), (9.1.7), (9.1.10), (9.1.35), and 6 = 0o

e(k) = y(k) = ¢ (k)8o = yu(k) + n(k) — ¥, (k)8o — ¥, (k)8

9.1.55
— n(k) — ¥7 ()60 G159

and
Y. (k)= (—ntk=1) ... —n(k —m)[0...0). (9.1.56)

The equation error then only depends on n (k).
If one introduces (9.1.4) into (9.1.54) and bears in mind that upon convergence
with § = 6, the wanted signal y, (k) does not correlate with e(k), then follows

m+d+N
E{Iéye(t)} =E{—— Z e(kyntk —1)p = Rpe(z) fort =1,2,...,m .

N+1 k=m+d

(9.1.57)
If the disturbance n (k) can be governed by an auto-regressive signal process accord-
ing to (9.1.47), then it follows from multiplication of this equation with n(k — t) and
determination of the expected value

Ru(t) +a1Rn(t—1)+ ... +amRum(t —m) = Rye(7) . (9.1.58)
According to the Yule-Walker equation and for t > 0, the term R,.(7) vanishes,
Ru(t)+ a1 Rn(z—1D+...+amRu(t—m) =0 (9.1.59)

with
Ry(r)=0fort=1,2,...,m, (9.1.60)
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and thus, according to (9.1.32) and (9.1.57), the bias b vanishes, i.e. b = 0.

The theorems that have been presented in this chapter so far are valid assuming
a special form filter for the noise acting on the systems output, (9.1.48). Then, the
parameter estimates are also unbiased for finite measurement periods.

The necessary form filter

Diz™") 1
Cz™)  Az™)
is quite particular. For dynamic systems of an order greater than 1, the numerator of

the disturbance transfer function D(z~!) is typically not equal to 1, but rather has
the form

Gz = 9.1.61)

Dz Y =do+diz7 +daz 2+ ... . 9.1.62)

Therefore, the parameter estimation will typically yield biased results for dynamic
processes affected by disturbances. As (9.1.40) shows, the bias grows larger as the
amplitude of the disturbance n(k) increases compared to the wanted signal. The
model structure as depicted in Fig. 9.2 is termed ARX (Ljung, 1999).

If the conditions in Theorem 9.2 cannot be satisfied, biased parameter estimates
will result. The magnitude of the bias is given by the results from (9.1.43) and the
annotations to Theorem 9.2 as

E{b(N + 1)} = —E{R™"(N + 1)}
Iénn(l) + alﬁnn(o) +...+ aménn(l - m)

Ron(m) + a1 Ron(m — 1) + ... + @y Ron(0) (9.1.63)
5 .

0
For the special case of the noise n(k) being a white noise, this equation can be

simplified using .
E{Rnn(0)} = Ryn(0) = E{n(k)} =07 . (9.1.64)

resulting in

E{b(N + 1)} = —E{R™'(N + 1)} “T’" o>
(9.1.65)

0
= -E{R7'(N + 1)}((1, 3)006.3 :

Further studies on the bias can be found e.g. in (Sagara et al, 1979).
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9.1.3 Covariance of the Parameter Estimates and Model Uncertainty

Considering (9.1.29) and assuming b = 00, the covariance matrix of the parameter
estimates is given as

cov Al =E{(0 —00)( — )"}
= B{("w) "' Te) (W) ' Te)) (9.1.66)
= E{(WT'I’)_I‘I’TeeTW(WTW)_l} )

One has to consider that (¥ ) )T = (WTw)~!, since (W W) is a symmetric
matrix. If ¥ and e are statistically independent, then

covA =E{(¥ W)W |E{ee" |E{w (¥ W) !} (9.1.67)
and if furthermore e is uncorrelated,
Elee™} =021 . (9.1.68)

Under these conditions and satisfying the requirements of Theorem 9.2, i.e. for a
bias-free parameter estimate, the covariance matrix becomes

cov A0 = oZE{(¥'¥)""} = 62E{P}

1 1 .
2 —1,7,T —1 2 —1
= o2B{(N + 1) oo = E{R™'(N +1)}.
oE{(N + 1) )}NJrl OeNJrl{ (N + 1}
(9.1.69)
For N — o0, one obtains
02
lim covAf = R™! lim —— =0. (9.1.70)
N—oo N—ooco N + 1

The parameter estimates are thus consistent in the mean square if Theorem 9.2 is
satisfied.

In general, oez is unknown. It can be estimated bias-free by (Stuart et al, 1987;
Kendall and Stuart, 1977b,a; Johnston and DiNardo, 1997; Mendel, 1973; Eykhoff,
1974)

1

. — d d+ N 171
N+1—2me m+d+Nem+d+N), 9 )

02 ~62(m+d+N)=
where .
e=y—Vo. 9.1.72)

Thus, one cannot only determine the parameter estimates according to (9.1.18)
or (9.1.28), but at the same time also estimates for the variances and covariances
employing (9.1.69) and (9.1.71).

Besides expressions for the covariance of the parameter estimates, it is also in-
teresting to find metrics for the model uncertainty. There is no unique way to do so.
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Hence, in the following, some methods that are presented in literature are summa-
rized, providing a tool-set to judge the model uncertainty.

The first approach is based on the covariance matrix of the parameter estimates.
It is assumed that the parameter error 0 — 0, is Gaussian distributed around zero with
the covariance matrix Pg. Then, each single parameter error is Gaussian distributed
with the probability distribution function

p(Op) = 9.1.73)

1 O — Oo 1
——exp|l ——— ,
\/27'[])0,](]( 2PG,kk
where ék is the estimate of the k" parameter, 6o,k the true parameter and Py i the
corresponding element on the diagonal of Pg. One can use this equation to determine

the probability that the estimate ék is more than a distance @ away from the true value
B0.x by evaluating the integral

N a 1 X
P10k — 6okl >a)=1— _— exp(— )dx , 9.1.74)
—a /27 Py ki 2Py kk

see also (Ljung, 1999; Box et al, 2008) for a similar derivation.

Next, a confidence interval for the parameter vector shall be determined. Here,
the x? distribution will be used. The sum of k independent Gaussian distributed
random variables has a y? distribution with k degrees of freedom. Consequently, the
quantity

N 2
=Y (O —b0k)” 9.1.75)

P
% 0.kk

is y? distributed with d = dim @ degrees of freedom. Confidence intervals which
state that r does not exceed ry.x With a certain probability can be taken from any
table for the y? distribution as found in textbooks on statistics and can be used to
calculate confidence ellipsoids, see also (Ljung, 1999).

By means of the rules of error propagation, one can now deduce the uncertainty
of the resulting model as well. The model, which shall be denoted as M in the fol-
lowing, is basically a non-linear function of the estimated parameters, i.e.

M= f(@8). (9.1.76)

Then, the covariance can be transformed as
Y| Y py (10
e ol =——=

a0
see e.g. (Vuerinckx et al, 2001). Consequently, the covariance of the output of a
system with the model y = ¥# is given as

T
cov f(é) = ( o—é) 9.1.77)

covy = ¥ cov AGUT (9.1.78)
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The above derivations are all based on the assumptions that the estimated para-
meters are random variables with Gaussian distribution and are estimated bias-free.
As this does not have to be the case, especially for finite, short sample lengths N,
alternatives will be mentioned in the following.

An extension of the confidence intervals to the case of finite sample lengths has
been described in (Campi and Weyer, 2002; Weyer and Campi, 2002).

For the location of poles and zeros in transfer functions, it is suggested to deter-
mine the confidence regions by perturbing each estimated zero and pole respectively
and check whether the resulting model still represents the system with a sufficient
fidelity, (Vuerinckx et al, 2001). It has been shown that the shape of the confidence
intervals can differ drastically from the typically assumed ellipsoids, see also (Pin-
telon and Schoukens, 2001). The uncertainty ellipsoids have also been discussed in
(Gevers, 2005) and (Bombois et al, 2005), where it has been pointed out that the cal-
culation of uncertainty ellipsoids in the frequency domain is often based on wrong
assumptions about the underlying distribution as the uncertainty is analyzed at each
point separately. A survey on further methods to determine the model quality can be
found in (Ninness and Goodwin, 1995).

Example 9.1 (First Order System for LS Parameter Estimation).

The method of least squares for dynamic systems shall now be illustrated for two
examples. First, a simple difference equation of first order will be analyzed, then the
Three-Mass Oscillator will be treated.

The simple difference equation of first order is given as

yu(k) + ayyu(k — 1) = byu(k — 1) (9.1.79)
y(k) = yu(k) +n(k) . (9.1.80)

This difference equation e.g. represents a first order continuous-time systems with a
ZOH (Zero Order Hold). As a process model for the parameter estimation, one will
use in analogy to (9.1.6) the model

y(k) 4+ arytk — 1) — btk — 1) = e(k) . 9.1.81)

A total of N + 1 values of u(k) and y (k) will be measured,

-y(0) u(0)
=y(1) u(l)
v = : (9.1.82)
—y(N = Du(N = 1)
and
y(1)
y(2)
y= . (9.1.83)

y(N)
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Then,
N+ D) oy = ( ﬁzy(o) _ﬁuy(o)) 9.1.84
( + ) _Ruy(o) Ruu(o) ( )
N+1) oy = (_Ifyy(l)) ) 9.1.85
(N +1 Y= 2R, 0) ( )

The inverse is then given as

N+ D) ) ! = ! (
(N + D) Ruu(0) Ryy (0) — (Ruy(0))

and the parameter estimates finally become

Ruu(0) Ruy(0)
Ruy(0) Ryy(0)

) (9.1.86)

(ql) _ ! (—éuu(O)éyy(l) + 1§uy<0)1§uy(1>) ,
by Rus(0) Ry (0) — (Ruy (0))* \ = Ruy (0 Ry (1) + Ryy(O)Ruy(l)(9 L)

If the requirements in Theorem 9.2 are not satisfied, then the resulting bias can ac-
cording to (9.1.45) be estimated as

b = —E{(N + 1)('I’T'F)_1}E(Iénn(1) + &lﬁnn(o))

0
_ 1 (_@UU(O)@nn(l) + aléuu(on%m(m)
R\uu (0)§yy (0) - (I,éuy (0))2 _Ruy (O)Rnn(l) + &IRUY (O)Rn“ (O) .
(9.1.88)

This expression becomes much easier to read if for both u (k) and n(k), one assumes
a white noise such that R,y (0) = g(0) = 0. Then

Run(©) _ _ n%() _ !
Ry (©) 2 (k) |4 20

E{Ad} = —a; (9.1.89)

E{Ab;} =0. (9.1.90)

The bias of @; gets larger as the noise amplitude increases. The parameter lgl is in
this example estimated bias-free.
The covariance matrix of the parameter error is according to (9.1.69) given as

(Adl) _ ol (ﬁuu(O) Iéuy(O)) !
cov ~ =E{— — — 51 5 N R
Ab, Ruu(0) Ry (0) — (Ruy (0)) \ Ruy(0) Ryy(0) J§ N +1
(9.1.91)
If u(k) is a white noise, then the variances can be obtained as
2(k 1
varag, = &80 L (9.1.92)
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and _
- 2(k 1
varap = 80 L (9.1.93)
u2(k) N +1
If furthermore n(k) is a white noise, then one obtains for the bias-free estimation
0 = 0, after squaring (9.1.55)

2
. an2k) 1
var Ady = (1 +a1)_%—N I (9.1.94)
n2(k) 1

var Aby = (1 4 d?)

u2_(k)N—+1 . (9.1.95)

The standard deviation of the parameter estimates thus diminishes proportionally to
the square root of the measurement time. An interesting aspect is the fact that

var(Aby)  y2(k) _ y2(k) . n2(k)

var(Adi)  u2(k) B u2(k)  u?(k)

(9.1.96)

The variance of the parameter 51 gets smaller in relation to the variance of the pa-
rameter @, the smaller n(k) and the smaller y,(k), i.e. as the input signal u(k) has a
higher-frequent content. O

Example 9.2 (First Order System in Continuous Time for LS Estimation).
Now, a first order system with the transfer function

(9.1.97)

will be studied. The system parameters have been chosen as K = 2 and T3 = 0.5 s.

As the parameter estimation has so far only been introduced for discrete-time dy-
namic systems, the system must first be subjected to the z-transform. For the treat-
ment of continuous-time systems, the reader is referred to Chap. 15. The discrete-
time model is given as

biz7! 0.097547~1
Gz = = 9.1.98
(™) l+a,2-1  1-0.9512z-1 ©.1.98)

with the coefficients being given as

T
by = K(l - e‘T*?) — 0.09754 (9.1.99)

and
T

a; = —e Tt = 0.9512 (9.1.100)

for a sample time of Ty = 0.025s.
The matrix ¥ is set up according to (9.1.82) and the vector y analog to (9.1.83).
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Table 9.1. Parameter estimation results for the first order process

on a by K v AR[%] ATi[%] Remark
~ —0.9510 0.09802 2 0.4975 ~0 —0.50
0.0002  —0.9500 0.09807 1.9617 0.4875 —1.92 —2.51 see Fig. 9.3
0.002  —0.9411 0.09851 1.6735 0.4121 —1632 —17.59
0.02  —0.8607 0.10241 0.7354 0.1667 —63.23 —66.66  see Fig. 9.4
02  —0.4652 0.12148 0.2272 0.0327 —88.64 —93.47
2.0  —0.0828 0.1399 0.1525 0.0100 —92.37 —97.99  seeFig.9.5

A white noise has been generated and has been superimposed onto the output.
Three different noise levels have been added to the output and the results have been
graphed in Figs. 9.3 through 9.5. The first case, depicted in Fig. 9.3, represents a very
small noise level (o, = 0.0002). One can see that the parameter estimates match
very well with the theoretical values that have been marked by the dash-dotted lines.
Moderate noise (0, = 0.02) has been added in Fig. 9.4 and one can already witness
a bias in the parameter estimates. Finally, Fig. 9.5 illustrates the effect of even larger
noise (o, = 2). Despite the long time-base, the parameter estimates do not converge
to the real values, but rather settle to the biased values. The diagrams have been
generated with the DSFI algorithm, see Chap. 22, which is numerically more robust.
The results however are comparable to those that would have been obtained with the
direct calculation of the pseudo-inverse of the matrix ¥.

When using the method of least squares to determine a discrete-time model of
a physical process, which is governed by ODEs, one has to convert the parameters
of the discrete-time model back to the parameters of the corresponding model in
continuous-time to obtain physical parameters such as e.g. inductances, spring con-
stants, and such. The two physical parameters of the first order system are given

as 5
1
= 9.1.101
1+a; ( )
and
Ty
T, = — . (9.1.102)
ln—al

The estimated results, the errors and such are tabulated in Table 9.1. One can see
that the bias of the estimated system parameters can become quite large, rendering
the estimated parameter values useless. As can be seen, the bias mainly affects the
parameter estimate d;, while the estimate 151 still converges to the true value (see
Example 9.1). Regarding the noise, one should however keep in mind that the noise
levels chosen for the illustration of the bias are really large. Secondly, in many cases
one can resort to other methods, which are better suited for noisy signals, such as
e.g. the orthogonal correlation, see Sect. 5.5.2.

Example 9.3 (Discrete Time Model of the Three-Mass Oscillator). To apply the
method of least squares to a real process, another example will now be presented. The
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Fig. 9.3. Parameter estimation for a first order system. True parameter values (dash-dotted
line), oy = 0.0002, 0, /5y = 0.0004
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u(?) [-]

Y0l-]
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b [-]
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Fig. 9.4. Parameter estimation for a first order system. True parameter values (dash-dotted
line), oy = 0.02, oy /0y = 0.04
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Fig. 9.5. Parameter estimation for a first order system.
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Three-Mass Oscillator will be covered now. In this chapter, a discrete-time model
will be identified, an estimation of the physical parameters of a continuous-time
model will be presented in Chap. 15.

The continuous-time transfer function from the torque of the motor to the po-
sition of the last mass is given as a state space model with six states. In transfer
function notation, the system has six poles, thus the discrete-time transfer function
will theoretically also be of order six and is thus given as

b1z 7V 4 baz7? + b3z 3 4 baz ™t + bsz 70 4+ bez 0

G(iz™hH =
@) l+a1z7V+arz24+asz 3 +agz7* +asz™> +agz™°

. (9.1.103)

The setup of the matrix ¥, see (9.1.82), and the vector y, see (9.1.83), is shown here
to clarify the case of a higher order system. ¥ is written as

—y(5) —y@4) ... =y u(d) ... u()
—y(6) —y() ... =y u®6) ... u(l)

(N —=1) —y(N =2) ... —y(N = 6)|u(N = 1) ... u(N — 6)

(9.1.104)
and y as
y(6)
y(7)
y = . (9.1.105)
y(N)
The parameter vector 6 then consists of the elements
07 = (a(1) a(2) ...a(6)|b(1) ... b(6)) . (9.1.106)

The process has been excited with a PRBS signal (see Sect. 6.3). The process in-
put is the torque of the motor M) acting on the first mass. The output is the rotational
speed of the third mass, w3 = ¢3, as shown in Fig. 9.6. The parameters can reliably
be estimated in 20 seconds of the excitation as can be witnessed in Fig. 9.7. An im-
portant issue in the estimation of discrete-time models is the sample rate. The data for
the Three-Mass Oscillator have been sampled with a sample time of 7o = 0.003s.
This sample rate was too high to obtain reasonable results, thus the data have been
downsampled by a factor of N = 16, leading to Ty = 48 ms. Section 23.2 discusses
the optimal choice of the sample rate.

In order to judge the quality of the estimated model, the frequency response of
the discrete-time model has been graphed against the frequency response determined
by direct measurement with the orthogonal correlation (see Sect. 5.5.2). This com-
parison in Fig. 9.8 demonstrates the good fidelity of the estimated model. O
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M,[Nm]

w, [rad/s]

10 i i
0 5 10 15
t[s]

Fig. 9.6. Input and output signals for the parameter estimation of a discrete-time model of the
Three-Mass Oscillator

9.1.4 Parameter Identifiability

Before applying any parameter identification method, one has to check the identi-
fiability of the parameters. Identifiability in general relates to the issue whether the
true system can be described by means of a model that is identified using a certain
identification method. This property hence depends on the

e System S

e Experimental setup X
e Model structure M

e Identification method I

Many different definitions have been introduced. In (Bellmann and Astrém, 1970),
identifiability is defined to be satisfied if the identification criterion, i.e. the cost func-
tion, has an unambiguous minimum. In most cases however, identifiability is linked
to the consistency of the estimation. For a parametric system model, the model pa-
rameters @ are identifiable, if their estimates é(N ) converge to the true values 6
for N — oo. The convergence criterion is however chosen differently by different
authors. Astrdm and Bohlin (1965) as well as Tse and Anton (1972) tested for con-
vergence in probability, (Staley and Yue, 1970) used the convergence in the mean
square. In the lines of Staley and Yue (1970) and Young (1984), the following con-
cepts shall be used.
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Fig. 9.7. Parameter estimation for a discrete-time model of the Three-Mass Oscillator, param-

eter estimates in dependence of time
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Fig. 9.8. Calculation of the frequency response based on the parameter estimation for a
discrete-time model of the Three-Mass Oscillator, comparison with direct measurement of

the frequency responses
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Definition of Parameter Identifiability

The parameter vector 6 of a model is identifiable, if the estimated values é converge
to the true parameters ¢ in the mean square. This means that

Jim_ E{0(N)} = 6,
lim cov Aé(N) =0
N—o0

and hence requires an estimator that is consistent in the mean square.

In the following, the conditions that have to be fulfilled by the system S, the
experiment X, the model structure M, and the identification method I to guarantee
parameter identifiability shall be analyzed and shall be tested for the method of least
squares.

It is first assumed that the model structure M and the system structure S agree and
that the model structure has been chosen such that Theorem 9.2 is fulfilled, i.e. that
a consistent estimate can be obtained. Now, it shall be analyzed, which additional
requirements have to be fulfilled by the system S and the experiment X.

To be able to obtain the parameter estimates @ according to (9.1.18), one must
ensure that det(¢T¥) # 0, (9.1.23), and (9.1.25) to ensure that the cost function
reaches its global minimum and hence 6 becomes the optimal parameter set. Both
conditions are satisfied if

det¥™Ww =detP ! >0. (9.1.107)
With the correlation matrix, one can write
1 N
det NWT!F =detR(N)>0. (9.1.108)

With (9.1.70), also cov A@ will convergence to zero as N — 00, so that the estimate
is consistent in the mean square. The correlation matrix is now divided and analyzed

in its limit N — oo,
Ry R12)
R = 9.1.109
(R21 R>» ( )

such that e.g.

Ruu(o) Ruu(l) s Ruu(m - 1)
Ruu(_l) Ruu(o) s Ruu(m - 2)
Ry = . . , (9.1.110)
Ruu(_m + 1) Ruu(_m + 2) cee Ruu(o)
or due to the symmetry of Ry,
Ruu(o) Ruu(l) s Ruu(m - 1)
Ru(1) Ru(0) co. Rpwim=2)
Ry = ) ) . (9.1.111)

Ru(m—1) Ru(m—2) ... Ru(0)
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For the determinant in (9.1.108) with the decomposition in (9.1.109), one can
now write (Young, 1984)

IR| = |Rii| |R» — Ry R Ry, (9.1.112)

or
IR| = |Rx| |Ri1 — Ri2RY,' Ry | . (9.1.113)

Necessary conditions are hence that
det Ry > 0 (9.1.114)

and
detRy; > 0. (9.1.115)

These conditions lead to requirements on both the input signal and the system as will
be discussed in the following. One can in this context discern structural identifiabil-
ity, which means that the system is in general identifiable and identifiability, which
means that the chosen input allows indeed to identify the system.

Conditions on the Input Signal

In order to satisfy the condition in (9.1.114), one must check that (9.1.110) fulfills the
requisite that its determinant is greater than zero. According to the Sylvester criterion
for positive definite matrices, one must ensure that all northeastern sub-determinants
are also positive, i.e.

detR; >O0fori =1,2,...,m. (9.1.116)

This means that

det Ry = Ry (0) > 0

RUU (0) Ruu (1)

Ruu(_l) Ruu(o) >0

detRz = ‘

and finally
detRy > 0. (9.1.117)

Here, Ry, > 0 does only depend on the input signal u(k), hence (9.1.114) can
always be fulfilled by an appropriate choice of u (k).

Theorem 9.3 (Condition for Persistent Excitation).
A necessary condition for the parameter estimation by means of the method of
least squares is that the input signal u(k) = U(k) — U fulfills the conditions

m+d+N—1
U= lim — Z U(k) (9.1.118)
k=m+d
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and
Ru() = Nlim (Utk) = U)(U(k +7)—0) (9.1.119)
—00
exist and that the matrix Ry is positive definite. O

These conditions have been stated by Astrom and Bohlin (1965) for the maxi-
mum likelihood method and have been termed persistently exciting of order m. One
will note that the condition (9.1.114) is the same as for the correlation analysis,
(7.2.4) with the only difference being the order of the persistent excitation. Some
examples of persistently exciting input signals are

Ry (0) > Ryy(1) > ... > Ry, (m), a moving average signal process of order m
Ry (0) # 0, Ryu(1) = ... = Ry (m) = 0, white noise for m — oo

Ruw(0) =a?fort =0,NA,2NA,..., Ry(t) = —a?/N for A(1 +vN) < 7 <
AN —1+vN), v=0,1,2,..., PRBS with amplitude a, cycle time A = T,
and period length N, persistently exciting of order m if N = m + 1

The condition stated in Theorem 9.3 can easily be examined by evaluating the auto-
correlation function of deterministic or stochastic signals.

The conditions for a persistent excitation of order m can also be interpreted in the
frequency domain. From the Fourier analysis, one knows that a necessary condition
for the existence of the power spectral density of a signal process in discrete-time,

o0 o0
Se(@) = Y Ru(n)e™@T0" = Ryy(0) +2 ) Ru(n)coswTon . (9.1.120)

n=-—oo n=1

in the range 0 < @ < /Ty is that the auto-correlation function R, () > 0 for all .
Then, the signal is persistently exciting of arbitrary order. Therefore, if S (w) > 0
for all w, then the signal is persistently exciting of any order (Astrém and Eykhoff,
1971). Persistent excitation of finite order means that S (w) = 0 for certain frequen-
cies (as e.g. the Fourier transform of pulses, Sect. 4.2, or of the PRBS, Sect. 6.3).
Ljung (1999) requires that for the identification of a transfer function of order m,
the signal should be persistently exciting of order 2m. It is hence sufficient to use m

sinusoids, see also Chap. 4 for multi-sine signals.

Conditions on the Process
In order to satisfy (9.1.115), one must ensure
det Ry = Ryy(0) >0

det Ry = ’ szy((_of) gz% = R2,(0) — Ryy(1) > 0

and finally
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detR;; > 0. (9.1.121)

While (9.1.117) had to be satisfied by choosing an appropriate input signal, the con-
dition in (9.1.121) depends on the system. If Ry, is positive definite, then it follows:

Theorem 9.4 (Condition on the Process).
A necessary condition for the parameter estimation by means of the method of
least squares is that for the output y(k) = Y (k) — Y with

m+d+N
Y = lim —— Y(k 9.1.122
k=m+d
and
m+d+N
R = 1li -Y — 1.
w(®) = lim Y (Y =Y)(Y(k+1)-7) (9.1.123)
k=m+d
the matrix
Ry = (Rl'j = Ry, (i —j)) i,j=1,...,m (9.1.124)
is positive definite. ]

In order to satisfy these requirements, one must ensure the following:

The system must be stable. All poles of A(z) must lie within the unit circle.

Not all coefficients b;, i = 1,2,...,m may be zero. To ensure that for a per-
sistently exciting input of order m, the output signal is persistently excited of the
same order m and hence the matrix Ry is positive definite, one must ensure that

e A(z) and B(z) may not have common roots.

This also means that the correct order m of the model must be chosen. If the
order of the system model is chosen too high, then poles and zeros can cancel. The
above results can be combined as follows (Tse and Anton, 1972):

o If the minimal dimension m is known, then stability, controllability, and observ-
ability also ensure identifiability.

If the conditions in Theorem 9.3 and 9.4 are satisfied and hence (9.1.114) and
(9.1.115) and satisfied, it is still not sure that (9.1.108) is satisfied since according to
(9.1.112) and (9.1.113), also the right factors must be positive definite. This shall be
illustrated by an example.

Example 9.4 (Parameter Identifiability for a Harmonic Excitation).
A linear, discrete-time process shall be excited by a sinusoidal excitation

u(kTy) = ugsinw1kTy .

It shall now be investigated up to which order m, the parameters of the processes
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bo+b1z7 4+ ...+ bpz ™

1+aiz7t+...+apz™

e
l+aiz7t+...+auz™

are identifiable if the transients in the output have settled. In both cases, the output
will be given as

Gpa =

y(kTo) = yo sin(w1kTo + ¢)
with different yo and ¢. The correlation functions are given as

2
u
Ry (7)) = Eocosa)ero

2
Ryy(7) = 70 coswitTp .

First process A (bg # 0) will be examined. One has to set up the matrices

Ruw(0) ... Ry(m)

Ry = : :
Ry (m) ... Ru(0)
and
Ry(0) ... Ry(m—1)
Ry = : :
Ry(m—1)... Ry(0)

For the process order m = 1,

det R 22

2
R2,(0) — R%,(1) = %(1 — cos? w; To)

2
u
70sin2a)1T0 > 0ifw Ty # 0, 7,27, ...

22
2
det R > 0 according to (9.1.112) .

detR; = Ryy(O) = >0

The process is hence identifiable.
Now the case of a process order m = 2 is investigated,

det Ry = R3,(0) + 2R3, (1) Rua(2) — RE, (2) Rua (0) — 2R3, (1) Ruu (0)

uz\?
= (70) (1 —cos* w Ty — sin* w; Ty — 2 cos® w1 Ty sin® w; Tp)
=0

Y%
2
det R = 0 according to (9.1.113) .

detRy; = R, (0) — R} (1) =

y SiIl2 w1 T() >0
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The process is in this case not identifiable.
Now, process B (by = 0) will be examined. The matrices

Rw(©0) ... Ru(m—1)
Ry = : :
Ruu(m - 1) N Ruu(O)
and
Ry(0) ... Ryy(m—1)
Ry = ; :
Ry(m—1)... Ry(0)
have to be analyzed. For m = 1, the analysis yields
u?
det Ry, = Ry (0) = 70 >0
_ _ %
det Ry = Ryy(0) = > >0

detR > 0.

The process is identifiable. For m = 2,

2
det Ry, = R2,(0) — R2,(1) = % sin Ty > 0
2
det Ry, = R2,(0) — R2,(1) = %0 sin2 i To > 0if w1 Tp # 0, 7,27, . .. .

However, even though R, and R, are positive definite, R is not, as can be shown
by e.g. choosing ¢ = 7/2 and then evaluating the determinants.

This example shown that for by, the conditions in (9.1.114) and (9.1.115) already
suffice to ensure that det R > 0, but not for by # 0. (The conditions that have been
stated in (Astrdm and Bohlin, 1965) only cover the case by # 0). The common
result is that with a single sinusoidal oscillation, one can only identify a process of a
maximum order of 1. One should note however that for process A, one can identify
three parameters by, b1, a; and for process B the two parameters by, ay. O

All important conditions for the method of least squares can now be summarized
in the following theorem.

Theorem 9.5 (Conditions for a Consistent Parameter Estimation by the Method
of Least Squares).

The parameters of a linear, time-invariant difference equation can be estimated
consistent in the mean square by the method of least squares if the following neces-
sary conditions are satisfied:

o Order m and dead time d are known.
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e The input signal u(k) = U(k) — Uyg must be exactly measurable and the DC
value Uyo must be known.

o The matrix

R=—uw
N +1
must be positive definite. This requires that
—  The input signal u(k) must be persistently exciting of at least order m, see
Theorem 9.3.
— The process must be stable, controllable and observable, see Theorem 9.4.

e The stochastic disturbance n(k) which is superimposed onto the output signal
y(k) = Y (k) — Yoo must be stationary. The DC value Yoo must be known exactly
and must correspond to Uyy.

e The error e(k) may not be correlated and E{e(k)} = 0.

O
From this conditions follows for § = 0.
DE{n(k)} = 0 (which follows from (9.1.47), (9.1.51) and Theorem 9.5)
(9.1.125)
2)Rye(t) = 0 (which follows from (9.1.55)) . (9.1.126)

These equations can be used in addition to validate the parameter estimates. Exten-
sions of the above notions to non-linear systems are e.g. shown in (van Doren et al,
2009).

9.1.5 Unknown DC Values

As for process parameter estimation the variations of u (k) and y (k) of the measured
signals U(k) and Y (k) have to be used, the DC (direct current or steady-state) values
Upo and Yy either have also to be estimated or have to be removed. The following
methods are available for dealing with unknown DC values Uy and Y.

Differencing

The easiest way to obtain the variations without knowing the DC values is just to
take the differences

Uk) — Utk — 1) = u(k) —u(k — 1) = Au(k)

9.1.127
Y(k) — Y(k — 1) = y(k) — y(k — 1) = Ay(k) . O-1127)

Instead of u(z) and y(z), the signals Au(z) = u(z)(1 —z7') and Ay(z) =
¥(z)(1 — z71) are then used for the parameter estimation. As this special high-pass
filtering is applied to both the process input and output, the process parameters can
be estimated in the same way as in the case of measuring u(k) and y(k). In the
parameter estimation algorithms u(k) and y (k) have to be replaced by Au(k) and
Ay (k). However, the signal-to-noise ratio may become worse. If the DC values are
required explicitly, other methods have to be used.
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Averaging

The DC values can be estimated simply by averaging from steady-state measurement

1 N—-1
Yoo = + ];) Y (k) (9.1.128)

before starting the dynamic excitation. The recursive version of this is
A A 1 A
Yoo = Yook — 1) + E(Y(k) — Yoo(k — 1)) . (9.1.129)

For slowly time varying DC values, recursive averaging with exponential forgetting
leads to A .
Yoo = AYoo(k — 1) + (1 —A)Y (k) (9.1.130)

with A < 1. A similar argument applies for Upg. The variations u(k) and y(k) can
be determined by

u(k) = U(k) — Uoo (9.1.131)
y(k) =Y(k) — Yoo . (9.1.132)
Implicit Estimation of a Constant

The estimation of the DC values Uy and Yy can also be included into the parameter
estimation problem. Substituting (9.1.132) and (9.1.131) into (9.1.5) results in

Yk)y=—a1Yk—-1)—...—a, Yk —m)+bUk —d—1) 9.1.133)
+...+byUk —d —m)+C, o
where
C=(04+a1+...4am)Yoo— (b1 + ...+ bm)Uyo . (9.1.134)

Extending the parameter vector ] by including the element C and the data vector
¥ T(k) by adding the number 1, the measured Y (k) and U(k) can directly be used for
the estimation and C can also be estimated. Then, for one given DC value the other
can be calculated, using (9.1.134). For closed-loop identification, it is convenient to
use

Yoo = W(k) . (9.1.135)

Explicit Estimation of a Constant

The parameters d; and 5,- for the dynamic behavior and the DC constant C can
also be estimated separately. First the dynamic parameters are estimated using the
differencing method above. Then with
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Lk)y=Yk)+aY(k—1)+ ...+ anY(k —m)

—biUtk —d —1)—...—buUtk —d —m) ©-1.136)
the equation error becomes
e(k)=Lk)-C (9.1.137)
and, after applying the LS method,
m+d+N
C N)= —— L) . 1.1
(m+d+N)= 5 > Lk (9.1.138)
k=m+d

For large N, one obtains

C~ (1 + Zai)?oo — (Z&)Uoo . (9.1.139)

i=1 i=1

If the Yoo is of interest and Uoo is known it can be calculated from (9.1. 139) using
the estimate C. In this case 6 and C are only coupled in one direction, as 6 does
not depend on C.A disadvantage can be the worse noise-to-signal ratio caused by
the differencing. The final selection of the DC method depends on the particular
application.

9.2 Spectral Analysis with Periodic Parametric Signal Models

Many problems associated with the determination of the Fourier transformation (see
Sect. 3.1) would vanish if the course of the transformed signal would also be known
outside the measurement interval. For this reason, Burg (1968) was looking for tech-
niques to predict the unknown signal course from the measured data points without
making any a priori assumptions about the signal course. This estimation of the val-
ues with maximum uncertainty concerning the signal course led to the term maximum
entropy and to a substantially improved spectral estimation.

9.2.1 Parametric Signal Models in the Time Domain

A method to obtain the phase and angle of oscillations with known frequency is
suggested by Heij et al (2007) as follows: In the least squares setting (see Chap. 8),
the data matrix is set up as

cosw; Sinw; ... cosw, Sinwy,
cos2w; sin2wp ... cos2w, sin2wy,
v = ) ) ) ) 9.2.1)

cos Nw; sin Nwp ... cos Nw, sin Nw,

and the output vector chosen as the signal x (k) to be analyzed, i.e.
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y'=(x(1)x(2)...x(N)). (9.2.2)
The vector of estimated parameters then has the form
0" = (by é1 ... by én) (9.2.3)
The phase and amplitude of the oscillation
yi(k) = a; sin(wik + ¢;) (9.2.4)
can then be estimated as
a; = \/b? + ¢? (9.2.5)
and R
. bi
¢; = arctan — . (9.2.6)
Ci

Nice features of the estimation technique are the fact that neither the omission of
relevant frequencies nor the inclusion of irrelevant frequencies influences the result
of the parameter estimation.

9.2.2 Parametric Signal Models in the Frequency Domain

The periodic signal is treated as if it was generated by a fictitious form filter F(z) or
F (iw) respectively. The form filter is driven by a §- impulse 5(k) (2.4.10) to generate
a steady state oscillation y (k). The aim now is to match the frequency response of
the form filter F(z) with the amplitude spectrum of the measured signal y(z). This
is equivalent to match the power spectral densities,

Sy(2) = [F(2)|%Ss5(z) = [F(2)I? . 9.2.7)

In general, a parametric signal model can have three different profile structures
as has been discussed in Sect. 2.4. For the moving average model, which would be

Fua(@) = Bo+ Bzt + ...+ Buz ™, (9.2.8)

the signal spectrum is approximated by a polynomial of the (limited) order m and
would in general be more appropriate for the approximation of smooth spectra. On
the contrary, this model is extremely unsuited for the modeling of oscillations, which
manifest themselves as distinct peaks in the frequency spectrum.

This leads to the auto-regressive model as the next possible candidate structure.
The purely auto-regressive model, given as

Bo
14+aiz7t+...+opz™

Far(z) = : (9.2.9)
is able to approximate the sharp spectral lines of periodic signals according to the
poles of the denominator polynomial. This makes it an appealing choice for the es-
timation of the spectra of harmonic oscillations (Tong, 1975, 1977; Pandit and Wu,
1983).
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The third possible setup is the combined auto-regressive moving average model
given by

Bo + /31Z71 + ...+ Buz™

l4+aiz7V 4+ ... +apz™

which combines the possibilities of both the AR and the MA model. The biggest dis-
advantage is the increase in the number of parameters, which doubles compared to
the AR and the MA model respectively. This can also lead to convergence prob-
lems. More complex and more special estimators have been described in litera-
ture (Makhoul, 1975, 1976).
Coming back to (9.2.7), one obtains for the power spectral density of the AR-

model,

i

n

‘1 + Z ayz”’
v=0

Estimation of the coefficients bg and a; from the measured signal y (k) leads to a
parametric, auto-regressive model in the frequency domain for the power spectral
density Sy, (iw), characterized by its n + 1 parameters, with 7 typically being in the
range 4...30. This technique, where the maximum entropy for the power spectral
density Syy(iw) is determined for a pure AR filter, has e.g. been described by Edward
and Fitelson (1973) as well as Ulrych and Bishop (1975).

Farma(z) = , (9.2.10)

Syy(z) = F(2) F*(z)Ss5(z) = 9.2.11)

5 -

9.2.3 Determination of the Coefficients
In order to suppress stochastic disturbances, the maximum entropy spectral estima-

tion will also employ correlation functions instead of the measured signal y(¢). The
measured signal shall for now be composed of a number of damped oscillations as

y(t) = Zyme Usin(wy 4 @) - 9.2.12)

Its auto-correlation function is then given as

m2
Ry (1) =E{y(1)y(t + 1)} = Z % T COsw,T . (9.2.13)

As is discussed in Sect. 5.5, the ACF Ryy(7) of a periodic signal y(¢) is periodic in 7.
Taking the above considerations into account, one can surely approximate the ACF
by a form filter as well, i.e.

Ry (z) = F(2)é(z) . (9.2.14)

By the calculation of the ACF, the phase information gets lost and the amplitude is
changed by a constant factor
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1
Ry = Eyg,, : (9.2.15)

To capture m frequencies in the model of the ACF, the model must have an order
of 2m. As one is only interested in the stationary steady-state oscillations, one can
use exclusively an AR model which for a signal of order 2m is given as

Run(7) = Ryy (1) +a1 Ryy(t— 1)+ a2 Ryy (1 —=2) +. . .+ a2 Ryy (t—2m) , (9.2.16)
where also an additive, zero-mean, uncorrelated disturbance n(¢) has been taken into

account with its ACF
no fort =0

Run(7) = 0 else (9.2.17)
For different time lags t, a system of equations can be constructed as
Ry (0) Ry (1) ... Ry,(@2m) 1 no
Ryy:(l) Ryy:(O) Ryy(2r:n -1 oz:l _ 0 C 0218)
Ry(@m) Ry@m—1) ... Ry(0) o 0

where the fact has been exploited that the ACF is axis-symmetric, i.e. Ry, (k) =
Ryy(—k). The coefficient ng with

Run(0) = no = B{n®(k)} = B{(v(k) - 5(6))’} 9.2.19)

is a measure for the mean square model error with y (k) being the model prediction
for y (k).

To set up this system of equations, estimates of the ACF Ryy(7) have to be sup-
plied for t = 0,...,2m from the measured signal sequence y(k) at the time steps
k =0,..., N — 1. They are determined according to (7.1.4) given as

N—1—|7|

Ry (1) = Vo > y@y@+thforo<|t]<N—1.  (9.2.20)
v=0

The system of equations in (9.2.18) can efficiently be solved by the Burg algo-
rithm (Press et al, 2007). The frequencies of the significant discrete oscillations in
¥(t) can then be determined by a pole decomposition of the denominator polynomial
of the AR signal model,

m
(1t ariz a4 amz ) = [+ anz ™ +anz?) .
v=1
(9.2.21)

From a corresponding table for the z-transform (Isermann, 1991), one can obtain
for each conjugate complex pair of poles the angular frequency wy of the appropriate
sinusoidal oscillation in y(¢) as
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1 _
g = Foarccos(2 Ll ) . (9.2.22)

oy

Thus, one can determine all significant oscillation frequencies of the signal y(¢).

9.2.4 Estimation of the Amplitudes

The amplitudes ygx of each contributing oscillation could theoretically be deter-
mined from the AR signal model. Unfortunately, this proves to be a very inaccurate
method as the result depends on the denominator coefficients a and the constant nu-
merator coefficient by. The slightest errors in the estimation of the coefficients could
result in large errors for the amplitude estimate. To avoid these undesired effects, a
second estimation is carried out to determine the amplitudes (Neumann and Janik,
1990; Neumann, 1991).
The damping term in the ACF of a periodic oscillation,

m 2
Ry (t) =E{y()y(t + 1)} = Z % T coswy, T (9.2.23)

can be neglected for small damping values. In this case, one obtains

m )2
Ry (t) =E{y()y(t + 1)} = Z% CoS Wy T , (9.2.24)

which has been used widespread in Chap. 5. Provided that the frequencies of the
oscillations contributing to y(¢) are known from the antecedent estimation problem,
one can now set up a second system of equations to determine the amplitudes of the
ACEF, i.e. the values of Ry as

Ry (1) cos(w1Tp) cos(waTy) ... cos(wmTh) Ry
Ryy(2) COS(a)12T()) COS(a)zzTo) . COS(a)szo) Ry
Ryy(m) cos(wymTy) cos(wamTy) ... cos(wy,mTy) Rom

The signal amplitudes can finally be determined from the amplitudes of the ACF by

Yov = V2Rov . (9.2.26)

Thus, a parametric model representation for the power spectral density Sy, of the
measured signal y(kTp) was found, representing the spectrum by a parametric AR
model respectively by frequencies of significant sinusoidal components. The order
m has to be selected or searched for (Isermann, 2005, 2006).
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9.3 Parameter Estimation with Non-Parametric Intermediate Model

If the structure of the process model is not known a priori, it can be useful to first
identify a non-parametric model and then determine a parametric model based on the
previously identified intermediate model. In the first step, no assumptions about the
model structure have to be made. The determination of an appropriate model order
and dead time then takes place during the second step of the identification. Since the
non-parametric model already condenses the measured data, much less data have to
be operated upon in the second step. The non-parametric model also allows to already
make statements about the quality of the identification results. In the following, two
different approaches shall be presented.

9.3.1 Response to Non-Periodic Excitation and Method of Least Squares

For good signal-to-noise ratios, one can identify a process by first recording several
responses to the same deterministic input signal and then determine the average of
these signals to eliminate the influence of stochastic disturbances. The input signals
must excite the interesting process dynamics, but apart from that can have any arbi-
trary form. One often prefers steps and ramps or rectangular and trapezoidal pulses
respectively.

Now, the deterministic input signal u; (k) and the corresponding output y; (k)
shall be considered. Here, u; (k) and y; (k) are once again small signal values. If
the identical input signal u; (k) is applied M times, then the average of the system
response is given as

1 M
Ty =25 v k). 9.3.1)
j=1

If the output from the process y; (k) is superpositioned with a stochastic noise n(k),

yj(k) = yuj(k) +nj;k), (9.3.2)

the expected value is given as

E{7(k) } = yu(k) + E{7(k) } . (9.3.3)

The expected value of the averaged output signal hence is identical with the useful
signal if E{ (k) } = 0. For the parameter estimation, now y(k) = y(k) will be
written. A parametric model in the form of a difference equation is assumed as

y(k) =—ary(k —=1) —azy(k =2) —... —amy(k —m)

9.3.4)
+hiulk —d — 1)+ bou(k —d —2) + ... + bpu(k —d —m) .

(9.3.4) can now be written in vector form for the interval 1 < k </ as
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y(@)
y(2)
y3 | =
y()
ai
0 0 0 u(—=d) ... 0 a2
—y(1) 0 0 u(l—d) ... 0
@)  —y() ... 0 u@—d) ... 0 an |
: z z z s b
—y(l =1 =y =-2)...=y(l—-—m)lu(l—d —1) ... u(l —d —m)
bm
9.3.5)
which can then be written as
y =R0 . (9.3.6)
Introducing the error e as
e=y—R0 9.3.7)
and using a quadratic cost function V' as
V=ele (9.3.8)
will lead to the parameter estimates as
6 = (R"™R)"'R"y . (9.3.9)

The parameter estimates are consistent in the mean square, since for the limiting
value of the error, one obtains

A/Ili_r)nooE{e(k)} ity = Mli_r)nooE{ n(k) +aatk —1) + ...+ amitk —m) } =0,
(9.3.10)
if E{ (k) } = 0 and hence
. A T T =1 5T _
Jim E{) 60} = lim E{(R"R)"'R"e} =0 9.3.11)
, A . T : —1 -1
Jim E{(0 —80)(6 —00)"} = lim E{(R"R)"'R™e"eR(R"R)"'}
=0. 9.3.12)

[ must be chosen such that the entire transient is covered. A lower bound is given
by the number of parameters to be estimated as [ > 2m, an upper bound by the
condition

det(RTR) #0. (9.3.13)

The matrix RTR becomes approximately singular if / is chosen too large and too
many datapoints stem from the steady state. Then, the individual rows are roughly
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linearly dependent. The difference of this method compared to the normal method
of least squares is that the datapoints are first averaged which reduces the influence
of disturbances and at the same time avoids the bias problem for correlated error
signals.

9.3.2 Correlation Analysis and Method of Least Squares (COR-LS)

If a stochastic or pseudo-stochastic signal is used as an input, then the auto-correlation
function of the input is given as

. .
Ru(r) = lim_ N1 ];u(k — Du(k) (9.3.14)

and the cross-correlation between the input and the output as

N
Ry(r) = lim ; utk —7)yk) . (9.3.15)

N—)ooN—i—lkZO

The correlation functions can also be determined recursively as

Ruy(t,k) = Ryy(t,k — 1) + (u(k — 1)y(k) — Ruy(r.k — 1)) . (9.3.16)

1
k+1
The process model is once again given by the difference equation

yk) = —ary(k =1) —azy(k —=2) —... —amy(k —m)

9.3.17)
bk —d —1) + boutk —d —2) + ... + bpu(k —d —m) .

Upon multiplying with u(k — ) and calculation of the expected values, one obtains

Ruy(t) = —a1Ryy(t — 1) —asRyy(t —2) — ... —am Ryy(t —m)
+biRw(t—d —=1)+byRy(t—d —=2)+ ... + bpRu(t —d —m) .
(9.3.18)

This relation is the basis for the following identification technique (Isermann and
Baur, 1974). A similar method has been presented by Scheuer (1973). (9.3.18) does
also result, if only a finite number N of measurements is used as a basis for the
determination of the correlation functions. In this case, the correlation functions shall
be replaced by their estimates

N

A 1

Ryy(r) = NI Y utk—1)yk) . (9.3.19)
k=0

The values of the cross-correlation function that are used for the parameter estimation

shall be Ryy(7) # 0 in the interval —P < v < M and Ryy(r) ~ 0for t < —P and

T > M, see Fig. 9.9.
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Fig. 9.9. Correlation function values employed for parameter estimation (colored noise input)

Then, one obtains the system of equations given as

Ruy(—P +m)
Ruy(_l)
Ryy(0)
Ruy(l)
Ryy(M)
—Ruyy(—P +m+1) ... —Ruy(—P) |Ru(—P+m—d—1)...
: : : al
—Ruy(-2) .. —Ryy(=1—m) Ruw(—=2—4d) . :
= —Ryy(—1) ... —Ryy(—m) Ry (—d —1) am ,
—Ruy(0) . —Ry(1—m) Ruu(—d) by
—Ruy(M - ... —Ruy(M —m)|  Rw(M —d—1)
(9.3.20)
which can then be written as
R, = S0, 9.3.21)

and application of the method of least squares leads to the parameter estimates
6 =(STS)'STR,, . (9.3.22)

Example 9.5 (Parameter Estimation by Means of the COR-LS Method).



266 9 Least Squares Parameter Estimation for Dynamic Processes

The parameters of the discrete-time transfer function of the Three-Mass Oscilla-
tor shall be estimated by means of the COR-LS method. Hence, first the correlation
function estimates ﬁuu(r) and ﬁuy(r) have been determined, see Fig. 9.10. Here, the
input u(k) was a PRBS signal, hence the auto-correlation function in the evaluated
interval shows a close resemblance to the auto-correlation function of a white noise.
The input u (k) and output y (k) = w3 (k) have already been shown in Fig. 9.6.

Once again, the parameters of a transfer function of order m = 6 between the
input and the output shall be determined. The setup of the matrix ¥ and the vector
¥, see (9.3.20), is as follows (with P = 0 according to the PRBS input),

—Ry(5) ... —Ry(©0) | Ru(®) ... Ra(0)
v —Ry(6) ... —Ry(1) Ruw(6) ... Ru(1)
—Ryy(M —1) ... =Ryy(M — 6)|Rye(M — 1) ... Ryy(M —6)
(9.3.23)
and y as
Ruy(6)
Ryy(7)
y=| " (9.3.24)
Ruy(M)
The parameter vector @ is constructed as
0T= (611 Clz...[ldbl b2b6) (9325)

In order to judge the quality of the estimated model, the frequency response of the
estimated discrete-time model has been shown together with the frequency response
determined by the orthogonal correlation (see Sect. 5.5.2) in Fig. 9.11. One can see
the good fidelity of the estimated model. O

The convergence of the estimate shall now be investigated. From Chap. 7, it is
known that the estimates of the correlation function converge for N — oo as

Jim E{Ru(7)} = Ruuo(7) (9.3.26)
Jim E{Ruy (1)} = Ruyo(7) (9.3.27)

if E{n(k)} = 0 and E{u(k — 7)n(k)} = 0. Hence the estimates which were deter-
mined over a finite time horizon will converge towards the true values of the corre-
lation functions and thus, it follows that

lim E{e} =0 (9.3.28)
N—o0
provided that the model matches in structure and model order with the process. Then,

it can be shown that this method provides estimates that are consistent in the mean
square. The technique can either be applied recursively or non-recursively.
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Fig. 9.10. Parameter estimation using COR-LS for a discrete-time model of the Three-Mass
Oscillator, correlation functions. Values in gray-shaded area used for the parameter estimation

Non-Recursive Method (COR-LS)

For the non-recursive method, the following steps need to be taken:

1. u(k) and y(k) are stored .
2. Ru(7) and R,y (7) are determined according to (9.3.19), @ is determined accord-
ing to (9.3.22)

Recursive Method (RCOR-LS)

The recursive method requires the following steps to be taken:

1. Ruy(t,k) and if necessary Ry.(7,k) are determined recursively according to
(9.3.16) at each time step k

2. 6 is determined according to (9.3.22) either after every time step or in larger
intervals

The method of correlation analysis and least squares differs in the following as-
pects from the normal method of least squares:

1. Instead of the N x 2m matrix ¥, one processes the matrix S of size P + M —
m + 1) x 2m which normally has a smaller size. The matrices ¥ T¥ and STS
however both have the same dimension 2m x 2m

2. The COR-LS method uses P + M + 1 values of the CCF, the normal LS method
only 2m — 1. If P and M are chosen accordingly, one can consider more values
of the CCF
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Fig. 9.11. Calculated frequency response based on the parameter estimation using COR-LS
for a discrete-time model of the Three-Mass Oscillator. Comparison with directly measured

frequency response
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3. One obtains consistent parameter estimates for arbitrary stationary disturbances

In (9.3.18), which was the basis for the formulation of the parameter estimation
problem, only the small signal quantities had been evaluated. For large signal quan-
tities U(k) and Y (k), it can first be shown that the results are independent of Yy
if
If however, the DC values are unknown, one can use the techniques that had been
outlined in Sect. 9.1.5. For the implicit estimation of a constant, one has to calculate
the estimates of the correlation functions as follows

Ruu(7) = N1 Z Utk — 1)U(k) (9.3.29)

Ryy(t) = N1 Z Utk — )Y (k) . (9.3.30)

The matrix S is augmented with a column of 1 as

1
Ry=|sS|: |6*. (9.3.31)
1

N — —
S*
Then, the new parameter vector 6 * contains as the last element the constant C as
described in Sect. 9.1.5.

9.4 Recursive Methods of Least Squares (RLS)

The method of least squares as presented until now assumed that all parameters had
first been stored and had then been processed in one pass (batch processing). This
also means that the parameter estimates are only available after the end of the mea-
surement. The non-recursive method of least squares is hence more suitable for off-
line identification.

If the process however shall be identified online and in real-time, then new pa-
rameter estimates should be available during the measurement, e.g. after each sam-
ple step. If one would apply the non-recursive method of least squares, which was
already introduced, one would augment the data matrix ¥ with one row after each
sample step and would then process all available data (even from the previous sample
steps). Such an approach would require a lot of computations and is hence inappro-
priate. Recursive methods reduce the computational effort and provide an update of
the parameter estimates after each sample step. Previous measurements do not have
to be stored. With appropriate modifications that will be presented later in this chap-
ter, it is also possible to identify time varying processes.



270 9 Least Squares Parameter Estimation for Dynamic Processes

The recursive method of least squares was also described by Gauss (1809), see
(Genin, 1968). First applications of this technique to dynamic systems have been
presented by Lee (1964) and Albert and Sittler (1965). In Sect. 9.4.1, the fundamental
equations will be derived. Then, the recursive parameter estimation is extended to
stochastic signals in Sect. 9.4.2. Methods for the treatment of unknown DC values are
presented in Sect. 9.4.3. The convergence is analyzed in a later chapter (Sect. 12.4).

9.4.1 Fundamental Equations

The parameter estimate of the non-recursive method of least squares for the sample
step k is given as

0 (k) = P(k)¥" (k) y (k) (9.4.1)
with
P(k) = (W ()W (k)" (9.4.2)
y(1)
y(2)
y(k) = : (9.4.3)
y(k)
¥
v Q)
v (k) = : (9.4.4)
¥I(k)
and
vl = (—y(k— 1) —yk-2)... —y(k—m)‘u(k—d -1 ...utk—-d —m)) .
(9.4.5)

Accordingly, the parameter estimate for the sample step k + 1 is given as
0k+1)=Pk+D¥ "k + D)yk +1). (9.4.6)

This equation can be split up as

; _ wk) \'( yk
”“*”‘P“+”(W&+n)(ym+n) ©47)
=Pk +D)(Wk)yk)+¢¥"(k+ Dyk +1)).
Based on (9.4.1), one can substitute ¥ (k) y (k) = P! (k)é(k) and obtains
Ok +1)=0(k)+ (P(k+ )P~ (k) —I)8 (k) + P(k + Dy (k + Dy(k +1).

(9.4.8)
According to (9.4.2),
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Tk N[ vk )
P("“)‘((Wml)) (w/ﬂ(k+1))) , ©0.49)

=(P' 0+ ¥+ D)y (k+ 1)

and hence
Plk)y=P  k+1)—yk+DyTk+1). (9.4.10)
Together with (9.4.8), one then obtains
6k +1) = 0 (k) + Pk +Dy(k+1)
New Parameter Old Parameter Correction
Estimate Estimate Vector
. 9.4.11)
(y(k +1) vk + l)0(k))
New Predicted Measurement based .

Measurement  on Last Parameter Estimate

In this way, a recursive formulation of the estimation problem has been found. Ac-
cording to (9.1.7), the term

vk + DO k) = p(k + 1]k) (9.4.12)

can be interpreted as a one-step prediction of the model with the parameters and the
measurements up to sample step k. The factor in brackets in (9.4.11) is according to
(9.1.10) the equation error

(v +1)— 9Tk +1DKk) = ek + 1), (9.4.13)
so that (9.4.11) can finally be written as
6k +1)=0(k)+ Pk +D)yk + De(k + 1) . (9.4.14)

One has to determine P (k 4 1) according to (9.4.9) respectively P~ (k + 1) accord-

ing to (9.4.10) recursively. This requires one matrix inversion per update step. The

inversion of the matrix can be avoided by exploiting the matrix inversion theorem

presented in App. A.4. Then, instead of (9.4.9), one can write
Pk+1)=Pk)—Pk)¥Yk+1)

T 17 (9.4.15)
W'k +DPE)Y(k+1)+1) ¢ (k+1)P(k).

Since the term in brackets is a scalar quantity only, one does not have to invert a full
matrix any longer. Upon multiplication with ¥ (k + 1), one obtains

1
YTk +DPkR)Y*k +1)+1

which combined with (9.4.11) yields the recursive method of least squares as

Pk +Dyk+1) = Py +1), (9.4.16)

Ok +1)=0(k) + y()(y(k + 1) — ¢ (k + 16 (k)) . (9.4.17)
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The correction vector y (k) is given as

1

vk =PEFDYETD = D Povk + D+ 1

P)yyk +1).

(9.4.18)
From (9.4.15) follows

Pk+1)=(I-y(k)y"(k+1)P(k). (9.4.19)

The recursive method of least squares is hence given by the three equations above,
which have to be evaluated in the sequence (9.4.18), (9.4.17), (9.4.19), see also
(Goodwin and Sin, 1984). The matrix P (k + 1) is a scaled estimate of the covariance
matrix of the estimation error, since according to (9.1.69)

E{P(k + 1)} = % cov Al (k + 1) (9.4.20)

€

holds true for bias-free estimates.

In order to start the recursive method of least squares, initial values for é(k)
and P (k) must be known. For an appropriate choice of these values, the following
methods have proven successful (Klinger, 1968):

e Start with non-recursive method of least squares: One uses the non-recursive
method of least squares on at least 2m equations, e.g. from k = d + 1 up to
k = d + 2m = k' and then uses the values 8 (k') and P (k') as initial values for
the recursive method of least squares which will start at time step k = k.

o Use of a priori estimates: If one knows a priori approximate values of the para-
meters, their covariance gnd the variance of the equation error, then these values
can be used to initialize 6 (0) and P (0), see (9.4.20).

o Assumption of appropriate initial values: The easiest solution however is to as-
sume appropriate initial values for ] (0) and P (0) (Lee, 1964).

An appropriate choice of P (0) can be derived as follows: From (9.4.10) follows
Pl'k+ 1) =P 'k)+9¥k+ Dy (k+1)
P7I() =P7HO) +y ()Y (1)
P =PI +y)¥'(2)
=P O) +y MY D)+ ¥y Q)

P (k) =P 10) + T (k)W (k). (9.4.21)

If one chooses
P(0) =al (9.4.22)

with a large value o, then one obtains
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1
lim P71(0)=—-1=0 (9.4.23)
o

a—>00

and (9.4.21) matches with (9.4.2), which was how P (k) was defined for the non-
recursive case.

With large values of «, P (0) has a negligibly small influence on the recursively
calculated P (k). Furthermore, it follows from (9.4.11) that

0(1) =6(0) + Py ()(y(1) — ¥ (1)8(0))
= PO)(¥(y() + (~¥ (¥ () + P (1))
with (9.4.21) follows

6(1) = P()(¥()y(1) + P71(0)6(0)) (9.4.24)

and correspondingly

02 = PQ)(¥)y(2) + P~ (1HB())
=Py +¥y1) + P ©0)00),

so that one finally obtains
0(k) = P(k)(¥(k)y (k) + P71 (0)8(0)) . (9.4.25)

Because of (9.4.23), (9.4.25) will for large « and arbitrary é (0) match with the non-
recursive estimation in (9.4.1). The choice of large values of « can be interpreted
such that at the beginning, a large variance of the error of the estimates 6 (0) is
assumed, (9.4.20). To start the recursive method, one can thus choose P (0) according
to (9.4.22) and an arbitrary 0 (0) or for reasons of simplicity é 0)=0.

Now, it has to be investigated how large o should at least be chosen. From
(9.4.18), one can see that P(0) = ol has no substantial influence on the correc-
tion vector y (0) (Isermann, 1974), if

Y (HPO)Y () =y (DY) > 1, (9.4.26)

because in this case

. . -1 -1
Jim y(0) = lim PO (HPOYD) " =y OwMn) ™.
(9.4.27)
If the process has been in its steady state for k < 0, i.e. u(k) = 0 and y(k) = 0
before the test signals started at k = 0, then it follows fore.g. d = 0,

¥ (1) =(0...0[u(0) ...) (9.4.28)
and from (9.4.26) follows au?(0) > 1 or

1

Ol>>u2—(0).

(9.4.29)
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If the process was not in its steady state, so one can derive the relation

1
o> (9.4.30)

m—1 m—1
Y YAk + Y u(k)
k=0 k=0

for the correct choice of «. One can see that o depends on the square of the signal
changes. The larger the signal changes, the smaller o can be chosen. For u(0) = 1,
a value of ¢ = 10 is sufficient (Lee, 1964). Baur (1976) has shown by means of
simulation that for @ = 10 or @ = 10°, only small differences appear for sufficiently
long measurement times. In practice, one will choose values of « in the range o =
100, ..., 10000.

Example 9.6 (Recursive Identification of a First Order Difference Equation with 2
Parameters).

The same process that was already used in Example 9.2 shall be used again. The
process is governed by

Yuk) +aryu(k = 1) = biu(k — 1)
y(k) = yu(k) +n(k) .

The process model according to (9.1.6) is given as
y(k) + a1y (k= 1) = byu(k — 1) = e(k)

or .

y(k) =¥ (k)8 (k — 1) + e(k)
with

vik) = (—y(k =D uk—1))

Bk —1) = (a1t —1) btk —1))" .

The estimation will now be programmed in the following form

1. The new data u(k), y (k) are measured at time step k
_ I _ ar(k —1)
2. e(k) = y(k) — (—y(k — 1) u(k 1))(b1(k B 1))
3. The new parameter estimates are then given as
&1(/6)) (&1(k—1)) 371(16—1))
N = = A k
(bl(k) hk—1) Tk —1))¢®

N ——— —
from step 7

4. The data y(k) and u(k) are plugged into ¥ T (k + 1) = (—y (k) u(k))
_ ([ pulk) pra(k) —y(k)
> PO vkl = (pﬂ(k) Pzz(k))( u(k) )
from step 8
_ (—Pn(k)y(k) +p12(k)u(k)) _ (il) —;
—pa(k)y(k) + pa(k)u(k) iz
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6.9k + 1) PU K+ 1) = (=) u0) (1) = —iay ) + i) = J
from step 5

; (m)) =;(i1)
\nat)) = 7\ iy

8. Now, one can determine P (k + 1)

Pk +1) = 2 (P(o) — y (kW (k + D P ()
1
= (P —y() (PUOY®K +1)T)
from step 5

= (PH) — y®)i")

_ 1 puk) = yiir pra(k) — y1iz
A\ p21(k) = yait pa(k) — y2iz

9. For the next time step (k + 1) is now replaced by k and one starts over with step
1.

For starting at time kK = 0, one chooses

6(0) = (8) and P (0) = (g 2)

where « is a large number. O

The recursive method of least squares can now be represented as a block diagram,
see Fig. 9.12.
In order to develop the block diagram, (9.4.17) will be rewritten as

0k+1)=0(k)+ A0k +1)
Ab(k+1) = p()(yk + 1) — 9Tk + 1)8(k)) = p(k)e(k + 1) .

This yields a closed loop with the controlled quantity A (k +1), the setpoint w = 0,
the integral-acting discrete-time “controller”

é(z) _ 1
Ab(iz)y 1-2z71

and the manipulated variable 6 (k). The “plant” consists of the process model and the
correction vector y. Since the model as well as the factor y are adjusted according
to the signals u (k) and y(k), the “plant” shows a time-variant behavior. This con-
sideration was used by Becker (1990) to design improved recursive algorithms with
“better control behavior”.

The underlying idea is that one replaces the integral-acting discrete-time “‘con-
troller” by other control algorithms leading to the RLS-IF (Recursive Least Squares
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u(ket1) » Process
Pl
ModeAl
' (k+1) B(k)
ABGk+1)  B(k+1) 6k

”Controller*

Fig. 9.12. Block diagram of the recursive parameter estimation by the method of least squares

with Improved Feedback). The requirement of bias-free estimates then correlates
to the requirement that the control shows no steady-state error. An analysis fur-
ther shows that the controller matrix only contains elements on the diagonal, which
means that each parameter can be controlled by a SISO controller, thus simplify-
ing the controller design enormously. Furthermore, one can use methods such as
a “disturbance feedforward control”. If one knows, how the estimated parameters
change in dependence of measured signals (e.g. operating-point dependent changes,
temperature-dependent changes), then one can use this knowledge to speed up the
parameter adaptation by feedforward control. By using higher order polynomials for
the controller transfer function, it was for example possible to avoid a lag error on
the parameter estimates for monotonous/non-monotonous parameter changes. As a
controller architecture, the transfer function

a

L
R =1 e op

(9.4.31)
was suggested, i.e. one additional pole and zero were introduced. The tuning of the
parameters of the controller however depends strongly on the process to be identified
and hence no general tuning rules can be presented here.

9.4.2 Recursive Parameter Estimation for Stochastic Signals

The method of least squares can also be used for the parameter estimation of stochas-
tic signal models. As a model, a stationary auto-regressive moving-average (ARMA)
process is chosen, i.e.

yk)y+eaytk—1)+...+c,y(k—p)

9.4.32
=vk) +divik—1) +...+dpv(k—p). ( )
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r Fig. 9.13. Auto-regressive moving-
L’ D(z) | —y(z)> average (ARMA) stochastic signal model
(White Clzy
Noise)

see Fig. 9.13. Here, y (k) is a measurable signal and v(k) a virtual white noise with
E{v(k)} = 0 and variance o2. According to (9.1.7), one can write

y(k) = ¥ (k) (k — 1) + v(k) (9.4.33)

with
v (k)= (—ytk—=1) ... —y(k = p)lv(k = 1) ... v(k — p)) (9.4.34)

and
0T(k) = (c1...cpldr ... dp) (9.4.35)
If the values v(k — 1), ..., v(k — p) would be known, one could use the recur-

sive method of least squares as it was applied to the estimation of dynamic process
models, since v(k) can be interpreted as an equation error and per definition is sta-
tistically independent.

Now, the time after the measurement of y (k) will be discussed. At this point in
time, y(k — 1),...,y(k — p) are known. If one assumes that the estimates ¥ (k —
1),...,0(k— p) and 0 (k — 1) are known, then one can estimate the latest input D (k)
by using (9.4.33) (Panuska, 1969)

bk) = y(k)— ¢ (k)0 (k — 1) (9.4.36)
with
Vi) = (—yk=1) ... —yk—p)|ptk—1) ... Dk — p)) . (9.4.37)
Then, also
Pk +1)=(—yk)...—y(k—p+D[pk) ... 0k —p+ 1)) (9.4.38)

is available, so that now the recursive estimation algorithm in (9.4.17) through
(9.4.19) can be used to estimate 0 (k + 1) if yT(k + 1) is replaced by ¥T(k + 1).
Then, D(k + 1) and 6 (k + 2) can be estimated and so on. For the initialization, one
uses A

D(0) = y(0), 0(0)=0, P(0)=al (9.4.39)

with « being appropriately large. Since v(k) is statistically independent and also
v(k) and ll;T(k) are uncorrelated, one will according to Theorems 9.1 and 9.2 and
(9.1.70) obtain estimates that are consistent in the mean square.

Additional requirements for parameter identifiability are given as follows:
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1. The poles of C(z) = 0 must be asymptotically stable, i.e. inside the unit circle
to ensure that (9.4.32) is stationary and that the correlation functions in R con-
verge towards fixed values. This corresponds to the requirement of stability of
the dynamic process that is excited by the input u (k).

2. The zeros D(z) = 0 must lie inside the unit circle as well to ensure that the
estimate of the white noise according to (9.4.36) or

_ Ciz™
D(z™)

D(2) y(2)

does not diverge.

The variance of v(k) can be estimated according to (9.1.71) by

k
1
62(k) = ———— Y 0%(k) (9.4.40)
k+1-2p =
or in the recursive form
62(k +1) = 62(k) + m(fzz(k + 1) —62(k)) . (9.4.41)

In general, the estimates of a stochastic signal process converge significantly slower
than those of a dynamic process, since the input signal v (k) is unknown and must be
estimated as well.

9.4.3 Unknown DC values

If the DC values Uyg and Yo are unknown, one can use in principle the same meth-
ods that were introduced in Sect. 9.1.5. These techniques must only be reformulated
for the recursive application.

Averaging
The recursive equation for providing an estimate of the average is given as

N N 1 N

Yoo(k) = Yook — 1) + z(Y(k) — Yook — 1)) . 9.4.42)
For slowly time-varying DC values, one should use an averaging with exponential

forgetting, . .
Yoo(k) = AYoo(k — 1) + (1 = V)Y (k) (9.4.43)

with A < 1 (Isermann, 1987).

Differencing

The differencing is done as described in (9.1.127).
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Implicit Estimation of a Constant

Also for the recursive estimation, one can determine a constant by extending the
parameter vector é by including the element C and extending the data vector ¥ T (k)
by adding the number 1. The measured Y (k) and U(k) can directly be used for the
estimation and C can also be estimated.

Explicit Estimation of a Constant

For the explicit estimation of a constant, one must use a recursive estimation for 1%0
similarly to (9.4.42) or (9.4.43).

9.5 Method of weighted least squares (WLS)

9.5.1 Markov Estimation

For the method of least squares presented so far, all values e(k) of the equation error
have been weighted with the same weight. In the following, the weighting for the
individual values of e (k) shall be chosen differently to obtain a more general method
of least squares. The cost function (9.1.15) is then given as

V=w(m+d)e*(m+d)+wm+d+De*(m+d+1)+...

) 9.5.1)
+wm+d+ N)e(m+d + N)

or in a more general form
V=e"We, (9.5.2)

where W must be a symmetric positive-definite matrix, since only the symmetric
part of W contributes to V' and only a positive definite matrix ensures the existence
of a unique solution. For the weighting as in (9.5.1), the matrix W is a diagonal
matrix,

w(m +d) 0 0
0 wm+d+1) ... 0
W = ) . . (9.5.3)
6 O w(m+'d+N)

Analog to (9.1.18) and starting with (9.5.2), one obtains the non-recursive parameter
estimation by means of the weighted least squares as

b= w'ww) Ty . (9.5.4)

The conditions for a consistent estimation are the same as those stated in Theo-
rem 9.5. For the covariance of the estimate, one obtains in analogy

covAl = E{(¢"WW) "W WE{ee" | WE{Ww (¥ ' WW¥) '} . (9.5.5)
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If the weighting matrix W is chosen as

W= (E{eeT})_l : (9.5.6)
then (9.5.5), reduces to
cov Abyy = (lIIT(E{eeT})_IW)_l : (9.5.7)
and therefore
cov Afyy < cov Al (9.5.8)

which means that the choice of (9.5.6) as the weighting matrix yields parameter esti-
mates with the smallest possible variance (Deutsch, 1965; Eykhoff, 1974). Estimates
with minimum variance are also termed Markov estimates. One should however note
here that the covariance matrix of the equation error is in general not known a priori.
If the error e is uncorrelated, then its covariance matrix is a diagonal matrix and from
(9.5.4) and (9.5.6) yield the estimate with minimum variance as

0= w) Ty, (9.5.9)

which is the method of least squares.
The recursive method of weighted least squares can be derived as follows: Ac-
cording to (9.4.2), one introduces

Pw(k) = ("YW (k)¥ (k)™ (9.5.10)
with the symbols
Wy = W (k)W (k) and yw(k) = W (k)y (k) , 9.5.11)
one obtains

Y (k) = ¥ (k)w(k)

Pw(k) = (¢ (k)ww(k)) ™" . (9.5.12)
Then, the estimates at the time k and k + 1 are given as
8(k) = Pw (k)W (k) yw(k) 95.13)
0k + 1) = Pyw(k + D¥"(k + Dyw(k + 1)
_ k) \'( ywk)
= Pw(k+1)(wT(k+l)) (yw(k+1)) (9.5.14)

= Pw(k + D (k) yw(k) + ¥ (k + Dyw(k + 1)) .

The further calculations can be carried out in analogy to (9.4.8 ff). One obtains the
following equations for the estimation by the method of the recursive weighted least
squares as
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Ok +1) = 0(k) + yw(k) (yw(k + 1) — ¥y (k + 1)8 (k) 9.5.15)
1
ywlk +1) = TR T DPa @I T Pywk)¥(k +1)  (9.5.16)

Py(k +1) = (I — yw(k) ¥y (k + 1)) Pw(k) . (9.5.17)
If one assumes a diagonal matrix as a weighting matrix
w@ 0 ... 0

0 wl)... 0
W (k) = . .

; (9.5.18)
0 0 ...w(k)
then according to (9.5.11), one obtains

Y (k) = ¥ (K)w(k) and yw(k) = y(k)yw(k) , (9.5.19)

and by using (9.5.15) through (9.5.17), one finally obtains

Ok +1)=0(k) + y (k) (y(k + 1) — ¥ (k + DO (k) 0520
1

k)= Pw()y(k+1) (9.5.21

P YTk + D) Pw(k)Y(k + 1) + —w(k1+1) w(k) Y ( ) ( )

Pwk +1) = (I —y(k)y"(k + 1)) Pw(k) . (9.5.22)

Compared with the standard recursive least squares formulation, the calculation
of the correction vector y changes, as in the denominator, the term 1 is replaced by
1/w(k 4 1). This means that also the values of Pw(k + 1) change.

9.6 Recursive Parameter Estimation with Exponential Forgetting

If the recursive estimation algorithms should be able to follow slowly time-varying
process parameters, more recent measurements must be weighted more strongly
than old measurements. Therefore the estimation algorithms should have a fading
memory. This can be incorporated into the least squares method by time-depending
weighting of the squared errors, as was introduced in the previous section.

By choice of

w(k) = AmHd+N)—k _ 3N~k o ) < 9.6.1)

the errors e(k) are weighted as shown in Table 9.2 for N’ = 50. The weighting then
increases exponentially to 1 for time step N’. Hence, one talks about the exponential
forgetting memory and A is termed forgetting factor.

The weighting matrix (9.5.3) for the non-recursive estimation is then given as
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Table 9.2. Weighting factors due to (9.6.1) for N/ = 50

k 1 10 20 30 40 47 48 49 50
A =0.99 0.61 0.67 0.73 0.82 0.90 0.97 0.98 0.99 1
A =0.95 0.08 0.13 0.21 035 0.60 085 090 0.95 1
AN
AN—l
W(m+d+n)= 2 . (9.6.2)
A

1

Upon the arrival of a new measurement, the weighting matrix is updated as

Wk +1) = (”gT(k) (1’) . (9.6.3)

Therefore, the parameter estimates are now updated as

0k +1) = Pw(k + 1)(¢T‘(”k(12 1))(AVI(;T(k) (1)) (y(JI;(Z{i-)l))

= Pw(k + hH(A¥ ()W (k)y (k) + ¥ (k + Dy(k + 1))
= Pw(k + )(APw(k) 10 (k) + ¥ (k + D)y(k + 1)),

(9.6.4)

see also (9.5.4) and (9.5.13). Furthermore,

_ wk)y \ (AW(k)O v (k)
PW(k+1)_((1ﬁT(k+l))( 07 1)(¢T(k+1)))

= (ATER)W (k)W (k) + ¥ (k + DY (k + 1))
= (APw) "+ Y ()P Tk + 1)

(9.6.5)

Therefore,
Pylk+1) = AP (k) + vk + DY (k +1). (9.6.6)

Then follows according to (9.4.8) from (9.6.4)

Ok +1) =0(k) + (APw(k + 1) Py (k) — 1) (k)

9.6.7)
4 Pw(k + Dk + Dyl + 1)

and, after inserting (9.6.5),

Ok +1) = 0(k) + Pw(k + DYk +1) (ytk + 1) — 9Tk + DO (K)) . (9.6.8)
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Application of the matrix inversion lemma similarly to (9.4.15) then yields
1
Pyw(k +1) = Xpw(k)

-1
TPk + 1)(~/ﬂ(k FOLPWEI + 1) + 1) YT+ )5 Puh)
(9.6.9)

and

Pw()y(k +1)

Pwlk+ Dy k+ 1) = S Peyk + 1) 1 2

= pw(k). (9.6.10)

Finally, the recursive estimation algorithms are now given as

Ok +1) = 0(k) + ywk)(y(k + 1) — ¢ (k + 18 (k)) (9.6.11)

1
yw(k) = STk T )Py Pk T DA Pw(k)y(k + 1) (9.6.12)
Py(k +1)= (I —ywk)¥ " (k + 1))Pw(k)% (9.6.13)

and will be evaluated in the order (9.6.12), (9.6.11), and finally (9.6.13).

The effect of A on the parameter estimates can easily be seen from (9.6.6) and
(9.6.8). P! (k) is for A = 1 proportional to the covariance matrix of the parameter
estimates. Pv_f (k + 1) now is constructed in such a way that the new measured data
¥ (k + )Y T(k + 1) are weighted with 1, the old data Py, (k) are however weighted
with the smaller weight A < 1. This is tantamount to increasing the covariance
values of the last step or equivalently increasing the uncertainty of the old parameter
estimates.

The choice of A presents a compromise between better suppression of distur-
bances (A — 1) or a better tracking of time-varying systems (A < 1). In practical
applications, values between 0.9 < A < 0.995 have been proven well. The detailed
choice of A either as a constant or as a time-varying parameter is discussed in detail
in Chap. 12.

9.6.1 Constraints and the Recursive Method of Least Squares

The recursive method of least squares allows to incorporate constraints in a very ele-
gant way (Goodwin and Sin, 1984), which will shortly be outlined in the following.
Equality constraints should be taken care of a priori by transforming the set of para-
meters accordingly. Inequality constraints, e.g. bounds for the individual parameters
to ensure stability etc., can be incorporated in the following way:

After each iteration of the RLS algorithm, check whether the estimated para-
meters @, lie in the feasible area, i.e. are within the set of admissible values, which
shall be denoted as €. If so, proceed with the next iteration as usual. If not, the new
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parameter vector is projected onto the boundary of € and then proceed with the next
step.

The projection onto the boundary of € has to be done such that the value of
the cost function remains as small as possible under the constraint. This is done as
follows, (Goodwin and Sin, 1984):

1. Transform the parameter vector to a new coordinate basis by

1 A

[N

p=P (9.6.14)
2. Orthogonally project p onto the boundary of the transformed feasible area €
3. Back transform the result to obtain 6’

9.6.2 Tikhonov Regularization

The Tikhonov regularization (Tikhonov and Arsenin, 1977; Tikhonov, 1995) adds a
penalty term to the quadratic cost function as

N
V(0) =) e*(k.0)+y2(0). (9.6.15)
k=1

In this equation, y > 0 is a scalar parameter that determines the degree of regu-
larization and £2(#) is the regularization term that depends on the parameters to be
estimated. Often, £2(8) is calculated by means of the weighted vector 2-norm of the
parameters as

20)=0"K6 (9.6.16)

For this choice, the problem of least squares can still be solved directly as
0= +yK) oy, 9.6.17)

One can choose the matrix K as the identity matrix, which will cause unnecessary
parameters to go to zero. In the more general case, one can choose £2(0) = (0 —
00)T(6 — 0p) to draw the parameters towards 6. This is also known under the term
ridge regression (Hoerl and Kennard, 1970a,b).

9.7 Summary

The method of least squares is very suitable for the identification of linear dynamic
discrete-time processes and for non-linear (static) processes which are linear in the
parameters. It has been shown in this chapter that the estimation is then based on
the generalized equation error. However, the disturbance must be generated by a
very special filter from white noise, in order to obtain unbiased estimates. For more
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general disturbances, the method of least squares will result in biased parameter es-
timates. The next chapter will show further strategies to avoid this bias or limit its
impact on the estimates.

Besides process models, also the estimation of signal model parameters in the
time and frequency domain has been discussed. Here, the estimation of the spectral
density by means of parametric signal models has been treated. The biggest advan-
tage is the elimination of the leakage effect as it is no longer assumed that the signal is
periodically repeated outside the measurement interval. Several different techniques
have been presented. The first is based on the formulation of a pure LS parameter
estimation problem in the time domain. Another approach tries to match the power
spectral densities of the measured signal and a colored noise, which is realized from
white noise by means of a form filter.

Furthermore, conditions have been provided which allow to judge whether the
parameters are identifiable. In particular, it has been found that the input must be per-
sistently exciting of a certain order. Tests to find out whether an input is persistently
exciting or not have been formulated along with examples for often applicable per-
sistently exciting inputs. The method of least squares has also been formulated in a
recursive form, which allows a computationally efficient online parameter estimation
in real-time. By introducing the method of weighted least squares and subsequently
the exponential forgetting, it is also possible to identify time-varying processes.

The use of an intermediate non-parametric model has allowed to obtain unbiased
estimates and also allowed to condense the experimental data before the parameter
estimation takes place.

Also in this chapter, the inclusion of constraints has been discussed and the
Tikhonov regularization, which is also termed ridge regression, had been introduced
to “pull” unused parameters towards zero.

Problems

9.1. Discrete-Time Process 1
Given is the discrete-time process

0.5z7!
(1—0.5z71)(1—0.1z71)

G(z) =

Determine the step response for u(k) = o (k).
Determine the response for the input signal u(k) = sinzk/5.
Given is a simplified model of the process as

blZ_l

Ol = et

Determine the parameters @1 and by by the method of least squares for the step input
and the sinusoidal input.
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9.2. Discrete-Time Moving Average Process
Given is the second order process

y(k) = bou(k) + byu(k —1)

and the following measurements

Datapointk 0 1 2 3 45 6 7 8 9 10
Inputu(k) 0 1 -1 1 1 1 -1 -1 0 0 0
Output y(k) 0 1.1 -02 0.1 09 1 0.1 —-1.1 —-0.8 —-0.1 O

Estimate the parameters by and b, by means of the method of least squares.
Determine the disturbance n(k), its mean and variance.

9.3. Discrete-Time Process 2
The PRBS signal with

utky=1,-1,1,1,1,-1,-1,1,-1,1,1, 1, 1, -1, ...

which is periodic with N = 7 is used as an input signal for the process

0.7z71
6@ =105
Determine the output y(k), the auto-correlation function R,,(7) and the cross-
correlation function Ry (7).
Use Ryu(7) as an input for the process and compare it with Ry, (7) as calculated be-
fore.
Estimate the impulse response of the system and compare it with Ryy (7).
Estimate the parameters by and b1 by the method of least squares.

9.4. Discrete-Time Process 3
Given is the process

yk)+arytk—1) =bjuk—1).

State the equation of recursive least squares. What changes if the process has a dead
time with d = 2?

9.5. Discrete-Time Process 4

A process of first order shall be identified by the method of least squares. The process
cannot respond directly to a step. For the identification N = 18 pairs of input-/output
data have been recorded.

Draw the block diagram for the calculation of the input error, output error, and equa-
tion error between process and model. Which setup must be chosen to ensure that
the error is linear in the parameters?

What is the non-recursive estimation equation for the method of least squares if 6 is
the parameter vector, ¥ the data matrix and y the output vector? What dimension do
the individual vectors and matrices have?
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As an input signal, a PRBS signal of amplitude 1 is used. One obtains the following
data for the auto-correlation and cross-correlation:

Ry (0) = —0.0662 Ryy(1) = 0.4666
Ryy(0) = 0.278  Ryy(1) =0.112

Determine the parameters a; and b; of the model.

9.6. Bias-free Estimation

What are the conditions for a bias-free estimation of the parameters of a first order
model by means of the method of least squares? Which estimates show a bias for
white noise as a disturbance n(k)?

9.7. DC Value
Compare the advantages and disadvantages of the different methods of working with
large signal values U(k) and Y (k).

9.8. Exponential Forgetting
What happens for the method of least squares with exponential forgetting (A < 1) if
the input signal does not change?

9.9. Sinusoidal Excitation
If a process is excited with a single sinusoidal oscillation, what is the maximum
model order that can be handled?

9.10. Stochastic Disturbances
According to which relation diminishes the error of the parameter estimates as a
function of the measurement time if stochastic disturbances are acting on the process.
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10

Modifications of the Least Squares Parameter Estimation

In order to obtain bias-free estimates of linear dynamic processes by the method of
least squares, the error signal e(k) may not be correlated. This requirement is only
satisfied if the disturbance n (k) that is acting on the system is a colored noise that
is generated from a white noise v (k) filtered by a form filter with the transfer func-
tion 1/A(z™1). Since this prerequisite is hardly ever met in practice, the method of
least squares typically works on a correlated error signal and hence yields biased
estimates. The bias can be so high for larger noise levels that the results are unus-
able. To avoid this problem, in the following, methods are presented which yield
bias-free estimates for larger classes of dynamic processes. Furthermore, methods
of stochastic approximation are introduced, namely the Robbins-Monro algorithm,
the Kiefer-Wolfowitz algorithm, the least mean squares and the normalized least
mean squares algorithms, all of which allow to approximate the solution of the Least
Squares method with much less computational effort.

10.1 Method of Generalized Least Squares (GLS)

In the following, methods are introduced, which give greater flexibility to the noise
model by introducing additional degrees of freedom into the transfer function of the
form filter. The most flexible model is the Box-Jenkins model, which allows to freely
parameterize numerator and denominator (Ljung, 1999) of the noise. However, more
degrees of freedom also raise the question on how these additional parameters can
be identified. Therefore, limiting the degrees of freedom can be attractive and/or
necessary to e.g. be able to use a direct least squares parameter estimation method.

10.1.1 Non-Recursive Method of Generalized Least Squares (GLS)

The fundamental idea behind the method of generalized least squares is that the error
signal in the model for the normal method of least squares

Az MYy (@) — Bz MYz u(z) = e(z) (10.1.1)

R. Isermann, M. Miinchhof, Identification of Dynamic Systems,
DOI 10.1007/978-3-540-78879-9 10, © Springer-Verlag Berlin Heidelberg 2011
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with the uncorrelated error signal e(k) is being replaced by a correlated signal, i.e. a
colored noise & (k), which is generated by means of a form filter

1
£(z) = me'(z) . (10.1.2)

where ¢’(z) is uncorrelated. £ (k) is assumed to be an auto regressive signal process.
Since the filter polynomial F(z~!) is unknown, Clarke (1967) proposed the follow-
ing iterative procedure:

Step 1

The method of least squares is applied to the measurements in the interval m + d <
k <m + d + N based on the model

Az Yy(z) = Bz Hz7%u(z) = £(2) , (10.1.3)

where the estimates ; are biased and £(z) is a correlated signal.

Step 2

The error signal £ (k) is determined for the estimated parameters 0, according to
(10.1.3). Using the AR model

E)y =yi(k) f + €' (k) (10.1.4)

yields
wg(k) =(—tk—1)—E(k —2) ... —§(k —v)) (10.1.5)
ff=(h Lo /o). (10.1.6)

The order v has to be assumed appropriately, e.g. v = m. Then, the parameters are
estimated according to the method of least squares as

A

f=(g"5)"5", (10.1.7)

where & is made up of the row vectors of w; (k).

Step 3
The measured input and output signal u (k) and y (k) are processed by the filter
Ge(zH) = F(iz™Y, (10.1.8)

so that
1(2) = Gp(z 7 Yu(z) and 5(z) = Gr(z " Hy(2) . (10.1.9)
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Fig. 10.1. Block diagram for the method of generalized least squares (GLS)

Step 4

The method of least squares is now applied to the filtered signals # and y, i.e. to the
model
AN - B Hz k) = §@2) (10.1.10)

see Fig. 10.1. One obtains the parameters 0>.

Step 5

Steps 2 through 4 are repeated until ] i does not change significantly from one itera-
tion to the next.

In order to obtain bias-free parameter estimates, the error signal &' (k) must be
uncorrelated. This is the case, if £ (z~!) matches with F(z~') according to (10.1.2).
The method of generalized least squares provides bias-free estimates of the noise
generating form filter of the form

n(z) D™ 1
T w(z)  CiETYH)  A@EHFEYH

what can be proven by inserting (10.1.2) into (10.1.3) and v(z) = €’(z). If this form
of the noise filter does not apply to the disturbance, then the method of generalized
least squares provides biased estimates or does not converge at all.

A simple form of the GLS method has been suggested by Steiglitz and McBride
(1965): In the i ™ iteration, it is suggested to set ﬁj(z_l) = /f(j_l)(z_l). This how-
ever leads to a very specific filter G, (z7!).

(10.1.11)
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Stoica and Soderstrom (1977) proposed a further GLS method which replaced
&(k) in (10.1.3) by a moving-average process,

£(z) = Hz™He'(z) . (10.1.12)

see also (Isermann, 1974). This method however is similar to the ELS method,
Sect. 10.2, which does not require an iterative approach. Compared to the normal
method of least squares, the method of generalized least squares requires a much
larger effort, but as a remuneration for that also delivers a model of the noise gener-
ating signal process.

10.1.2 Recursive Method of Generalized Least Squares (RGLS)

In a similar manner to the method of least squares, one can also derive a recursive
formulation for the method of generalized least squares. Only the resulting set of
equations shall be presented here, the derivation is e.g. presented by Hastings-James
and Sage (1969). The recursive equations are given as

Ok +1)=0(k)+ (¥ "k + DPE)F K+ 1)+ 1)
Py (k + 1)(Fk + 1) — ¢ (k + 1)8 (k) (10.1.13)
Pk +1)= i’(k)(l — 9Tk + )Pk + 1) P k)

(B k+ DPE)F Kk + 1) + 1)‘1) (10.1.14)
Fl+1) = F)+ @Ik + D@k + 1)+ 1)

QU ek + D(E(Kk + 1) —yi(k + 1) f (k) (10.1.15)
Ok+1)= Q(k)(l — ¥k + Dye(k +1)Q (k)

(WEk + DOR) ek + 1) + 1)‘1) : (10.1.16)

The elements of 1} are the filtered signals from (10.1.10). The initial values of P (0)
and Q(0) are chosen as diagonal matrices with large elements according to (9.4.22).
o may however not be chosen too large as the estimate may diverge in this case. As
initial values for the parameters, one can choose 6 (0) = 0.

An exponential weighting of the past data with A can be achieved by replacing
the terms

(¥ (k + )P (k)P (k + 1) + A) in (10.1.13) and (10.1.14) (10.1.17)
Pk +1)= %P(k)(i —..)in(10.1.14) (10.1.18)

and also the respective terms in (10.1.15) and (10.1.16). This exponential weighting
can also lead to better convergence if the first 100 to 200 values are weighted with
A = 0.99 (Isermann and Baur, 1973). The initial values then have less influence on
the results in subsequent recursions.
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10.2 Method of Extended Least Squares (ELS)
If instead of the LS method
A MYy@) - B 27 u(z) = &(z) (10.2.1)
with a correlated error signal £(z) the ARMAX model
Az () — Bz Hz %u(z) = D(z7He (z) (10.2.2)

with a correlated signal £(z) = D(z7!)e’(z) is used, the recursive methods for
dynamic processes and for stochastic signals can be combined to form the extended
least squares method (Young, 1968; Panuska, 1969). Based on

y(k) = ¢ (k) (k — 1) + e(k) (10.2.3)
the following extended vectors are introduced:
vik)=(—ytk=1) ...—yk —m)utk —d = 1) ...
u(k—d—m)\ﬁ(k—l) .. D(k—p)) (10.2.4)
0" = (a1 ... am|b1 ... bwldy ... dp) - (10.2.5)

Herewith, as in the case of the ARMA signal process (9.4.35), the virtual and hence
unknown white noise v(k) is taken as an estimate k = e’(k), which can be deter-
mined recursively by

by = y(k)— ¢ (k)d(k — 1) . (10.2.6)
Then, the recursive version is applied, i.e.
Ok +1)=0(k) +y(k)(y(k + 1) =¥ (k + 1) (k) , (10.2.7)

and the equations corresponding to (9.4.17) through (9.4.19). Instead of (10.2.6),
also

b(k) = y(k) =¥ (k)0 (k) (102.8)
can be used. This implies that
H()—L—l (10.2.9)
Y= Dk 2 =

must be positive real. A

The signal values ¥ (k) = e(k) in ¥ T(k 4+ 1) are calculated recursively. Therefore
the roots of D(z) = 0 must lie within the unit circle of the z-plane. The parameter
estimation is unbiased and consistent in the mean square if the convergence condi-
tions of the LS method are transferred to the model equation (10.2.3). That means
that (10.2.2) has to be valid.

The noise form filter now is given as
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see also Fig. 10.2. Although the fixed denominator polynomial limits the general
applicability, there are still enough degrees of freedom by the variable order of the
numerator polynomial to be able to approximate a given disturbance n (k) precisely
enough. The parameters of D(z~') converge slower than those of the process. The
method however requires little additional effort and has proven itself in many appli-
cations.

10.3 Method of Bias Correction (CLS)

The methods presented so far tried to avoid biased estimates by making special as-
sumptions about the signal process for the disturbance and hence could accommo-
date a correlated error e(k) in the original underlying model of the method of least
squares. A different solution to this problem is to determine the resulting bias and
then use this result to correct the biased estimates of the method of least squares.
This however requires that the bias can be determined with reasonable effort, which
is only possible in very special cases, first and foremost for white noise as a distur-
bance. An overview over the different methods is given by Stoica and Soéderstrom
(1982). Basis can be a model of the form

-1
igliz_du(z) +n(z2) . (10.3.1)

y(2) =

where the disturbance n(k) is assumed to be a white noise with E{n(k)} = 0 and
variance 02. Then, the bias is according to (9.1.65) given as

0

——

S

E{b(N + 1)} = —E{R™'(N + 1)} ((I) 0) 8007 (10.3.2)

where 6 denotes the exact parameters. This bias is now used to correct the parameter
estimates 6 g, compare (9.1.39),
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Ocrs(N +1) =05(N +1)—b(N + 1)
A 1
=R 'N-1)——¥T(N +Dy(N +1 10.3.3
(N =Dy ¥V + Dy 41D (1033)
+ RN + 1)Sbcrs(N + 1)o?
and from there

fcs(N +1) = (R(N —1) — Sof)_lﬁWT(N +Dy(N +1). (10.3.4)

The variance anz follows for a known system model from (10.3.1) and with

_ Bz _4
n(z) = y(@) - A u(z) (10.3.5)
or, based on the the difference equation,
n(k) = y(k) = " (k)0 (k) — ¥ (k)S 8 (k) (10.3.6)
as
2 _ 2 _ 1 T
oZ(N + 1) = E{n*(k)} = 1" (N + Dn(N +1). (10.3.7)

(10.3.4) and (10.3.7) can be used iteratively. A different way for the calculation of
o2 is given by Stoica and Soderstrom (1982). There, it has also been shown that
the estimates are not better than those for the method of instrumental variables. A
method for the partial correction of a bias for colored errors e(k) is presented by
Kumar and Moore (1979).

10.4 Method of Total Least Squares (TLS)

The method of least squares uses a model of the form
y—e=W%0 (104.1)
and determines the parameters from
0 = argmin ||e |3 . (10.4.2)

Here, it was assumed that only the output was disturbed by noise and hence only the
distance between the model output y,s and the measurements y had to be minimized,
see Fig. 10.3.

For the method of fotal least squares as proposed by Golub and Reinsch (1970)
and Golub and van Loan (1980), the model is now given as

y+e=W+F)b, (10.4.3)
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Fig. 10.3. Calculation of the error between measurement and model for the one dimensional
case y = 01x for the normal method of least squares and the method of total least squares

i.e. one now assumes an error not only in the measurements in the output vector y,
but also in the measurement contained in the data matrix ¥. The above model can
be rewritten as

(@+gﬂ)(_§1)=o. (10.4.4)

The method of total least squares will in the following be introduced in two ways:
First, a more practical way will be presented and then, the correct mathematical
derivation will be outlined.

The matrix C of the disturbed measurements in (10.4.4) will have the dimensions
N x (m + 1) with N > m + 1 and for disturbed measurements will have full
rank m + 1. In order to determine the m parameters of the model, the rank must be
reduced to m. For rank m, one column of the m 4 1 columns is linearly depend on
the other columns and hence the system of equations can be solved unambiguously
for the vector of parameter estimates €. This rank defect can be realized by utilizing
the singular value decomposition. One carries out a singular value decomposition
and then removes the smallest eigenvalue. This procedure will in the following be
motivated from a mathematical point of view as well.

The underlying goal in the method of total least squares is to minimize the entries
of the augmented error matrix A = (F, e). This minimization is done in the sense
of the Frobenius norm, which is given as

M N
1A =>">" A . (10.4.5)

i=1j=1

where i and j are the row and column index of A respectively. For real-valued
measurements and in a non-mathematical way, this norm can be interpreted as the
extension of the Euclidian vector norm to a matrix by taking the vector norm not
only of the output error vector e, but also of all columns of the data error matrix F.
With the Frobenius norm, the parameter estimates are then given as

6 = arg min ||A||12: . (10.4.6)
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In order to solve the problem of total least squares, one will make use of the
fact that the Frobenius norm of a matrix does not change under multiplication with a
orthonormal matrix U (that satisfies U™! = UT),

IUA| = ||A|f . (10.4.7)

This fact will now be exploited in the development of the method of total least
squares. One tries to minimize the augmented error matrix A, or equivalently, find a
matrix C of rank m that best approximates the matrix C,

lalz =1C ~Cl . (10.4.8)
The matrix C can without a loss of generality be written as
c=uxv"' (10.4.9)
where
Y = diag(ol oy ... 0,,+1) witho; >0, > ... > Op41 , (10.4.10)

which merely represents the Singular Value Decomposition (SVD) of €. The matri-
ces U and V are orthonormal. The matrix C can be written as

C=UsV U 'CV") ' =UCV =58 (10.4.11)
with an arbitrary matrix S. Then, the cost function can be rewritten as
IC—-ClZ= UV —USV"IE =% -S|}, (10.4.12)

since U and V are orthonormal. Because the matrix X is a diagonal matrix, it is
obvious that the matrix S should also be diagonal. All non-diagonal elements of S
must be zero to ensure that the cost function indeed reaches a minimum. The matrix
S will now be written as

S = diag(s1 2 ... s,,_H) , (10.4.13)

and the cost function becomes

m+1
V=[2-SI2=> (0i—s)". (10.4.14)
i=1

As the matrix C should be of rank m, the matrix § can have at least m non-zero
entries s; on the diagonal and must have one element with s; = 0. In the interest
of minimizing the cost function, one should choose s; = o; fori = 1,...,n and
Sn+1 = 0. The cost function then becomes

V=|X-SI=07,. (10.4.15)
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The matrix C is hence given as

C = U diag(o1 02 ... 0, 0)VT . (10.4.16)

Now that the rank n approximation C has been determined, one can solve (10.4.4),

which is repeated here as
é(_”l) —0. (10.4.17)

This is equal to determining the null space of C, defined as
Cx=0. (10.4.18)

The SVD delivers an orthonormal basis for the null space, therefore the solution
to the above equation can easily be given. The columns of the matrix V' that are
associated with singular values being zero form an orthonormal basis for the null
space of the matrix C. As the last singular value of the matrix C has been set to
zero, the last column of V forms the orthonormal basis of the null space of C, hence

0\ (N2
(_1) =ax = a(sz) . (10.4.19)

1

From the requirement «V>, = —1, one can fix « as « = —V,," and hence the

parameter estimates can be determined as
0=—V,'Viy. (10.4.20)

For the derivation of this solution, see also (Goedecke, 1987; Zimmerschied, 2008).
This approach is also termed errors-in-variables and orthogonal regression. A de-
tailed survey of the method of total least squares can be found in the monograph
by van Huffel and Vandewalle (1991) or the survey by Markovsky and van Huffel
(2007).

If errors have different variance, then one can resort to the problem of generalized
total least squares (GTLS), which allows to incorporate the variance of the different
columns of ¥. In this case, one introduces a scaling matrix G into the problem, so
that the cost function

V =|AG|? (10.4.21)

is minimized, where G = diag(1/01,1/02,...,1/0,+1) and o; is the error standard
deviation of the corresponding regressor or output respectively.

By an appropriate scaling, one can also deal with correlation between the differ-
ent columns of A. The covariance matrix C of the error of A must be known up to a
scaling factor. The scaling matrix can then be chosen as

G = R;', (10.4.22)

where Rc is given such that C = RRc.
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Fig. 10.4. Block diagram of the method of instrumental variables (IV)

It is pointed out by Markovsky and van Huffel (2007) and Soderstrom (2007)
that the method of total least squares may in its native form not be well suited for the
identification of dynamic systems since the elements of ¥ and y are often coupled
and especially since ¥ is often a Hankel matrix. Here, the STLS (structured total
least squares) method can be of better suitability (Markovsky et al, 2005).

The method of total least squares closely relates to the principal component ana-
lysis (PCA) which is used in statistics to find correlation in data sets and to reduce
the dimensionality of data sets. The PCA determines and keeps those subspaces of
measured data that have the largest variance, see e.g. the book by Jolliffe (2002).
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10.5 Instrumental Variables Method (1V)

10.5.1 Non-Recursive Method of Instrumental Variables (1V)

A direct method to avoid the problem of biased estimates is the introduction of the
so-called Instrumental Variables. This method goes back to Reiersgl (1941), Durbin
(1954), and Kendall and Stuart (1961). It is also based on the model equation of the
equation error as

e=y—-Vo . (10.5.1)

This equation is now multiplied on both sides with the transpose of an instrumental
variable matrix W as

Whle =wTy —wTlwg . (10.5.2)
If the elements of W, the so-called instrumental variables are chosen such that
plim WTe =0 (10.5.3)
N—o0
plim WT¥ positive definite , (10.5.4)
N—o0

then it follows from (10.5.2)
plim WTwo = plim W'y (10.5.5)

N—o0 N—>o00

and the estimation equation is given as
o6=wrw)"'wTy. (10.5.6)

According to Theorem 9.2, this equation yields asymptotic bias-free (consistent) es-
timates if in addition
plime =0. (10.5.7)
N—o0
The main problem now is to find appropriate instrumental variables. (10.5.3 ) and
(10.5.4) suggest to choose the instrumental variables w; (k) so that they are as much
as possible

e uncorrelated with the disturbance n (k)
e correlated with the useful signals u (k) and y, (k)

In the matched case with = 6, e(k) depends only on n(k) so that (10.5.3) is
satisfied and with the useful signals in W, also WT¥ will be positive definite, see
Sect. 9.1.4.

The input signal was chosen as instrumental variables by Joseph et al (1961), i.e.

wl = (u(k—l—S) u(k—m—(?)‘u(k—d—l) u(k—d—m)) ,
(10.5.8)
because these instrumental variables are easy to obtain and are correlated with ¥.
One can choose § such that the elements of the covariance matrix Ry, (7) are max-
imal.
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A stronger correlation between W and ¥ can be obtained if W contains the
undisturbed signals of ¥. One therefore has to estimate the undisturbed output sig-
nals i (k) = yu(k). Then, one can set up the instrumental variable matrix as

w' = (—htk—1) ... —h(k —m)|utk —d = 1) ... u(k —d —m)) . (10.5.9)

This was proposed by Wong and Polak (1967) and Young (1970). The estimates of
the undisturbed output can be obtained by means of the known input signals and the
estimated parameters according to (9.1.18) as

hk) = Pu(k) = ¥ (k)0 (k) . (10.5.10)

This can be considered as an auxiliary model, providing auxiliary parameters 6,
with the goal to reconstruct the useful output y,(k), see Fig. 10.4. The matrix of
instrumental variables is then given as

—hm+d+1) ... —hd) um—1) ... u(0)

—h(m +d) . —h(d+1) u(m) .ou(l)
W = . . . .

—hm+d+N+1)...-h(d + N)jum+ N —1) ... u(N)
(10.5.11)
For the non-recursive application of this method, one uses the following approach
(Young, 1970):

1. In the first iteration, one uses the instrumental variables from (10.5.8) or one
uses the normal method of least squares according to (9.1.18)

2. From the parameter estimates 61, the improved instrumental variables are deter-
mined according to (10.5.10) and estimates of the new parameter vector 0, are
obtained

3. Step 2 is repeated until the estimated parameters do not change significantly
from iteration to iteration

In general, a few iterations are already sufficient to obtain suitable estimates.
Furthermore, experience has shown that the instrumental variables do not have to
match the undisturbed signals very precisely. The start with the normal method of
least squares has proven very useful (Baur, 1976).

The covariance of the parameter estimates is in analogy to (9.1.69) given as

covAl =E{(0—00)(0—07)) = E{(W o) ' WTee™W (W W)™} | (105.12)

In this equation, W and e are statistically independent, but this is not true for ¥ and
e, since e is correlated. Therefore, this equation cannot be simplified immediately.
If the parameters of the auxiliary model converge (10.5.10) to the true process
parameters,
plim 6, = plim 6 = 6 , (10.5.13)

N—o00 N—>oo

one can assume that for large N
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1

— T ~x — T . .
TR A R (10.5.14)
Then, it follows from (10.5.12),
covAd ~ E{(WTW) " W E{ee EIW (WTW) ! (105.15)

One can show by the appropriate manipulations of the above equation that the co-
variance diminishes with 1/+/N + 1, if e(k) is stationary.
So far, only the small signal behavior of the input and output, i.e.

u(k) = U(k) = Upo. y(k)=Y(k)— Yoo,

was considered. Here, Yy is typically unknown. If however E{U(k)} = 0, then Yo
has no influence, if the output of the auxiliary model is also governed by E{A(k)} =
0, since in (10.5.6), the values of y (k) are not correlated with the 4 (k).

Theorem 10.1 (Conditions for a Consistent Parameter Estimation by the Method
of Instrumental Variables).

The parameters 0 can be estimated consistently in the mean square, if the fol-
lowing conditions are satisfied:

1. m and d are known exactly

2. u(k) = U(k) — Uy is known exactly

3. e(k) is not correlated with the instrumental variables w™ (k)
4. E{e(k)} =0

From this follows that

1. E{u(k — t)n(k)} = O0for|t| >0

2. Yy must not be known if E{u(k)} = 0 and E{h(k)} = 0 with h(k) = 0
according to (10.5.9)

3. Ifeither E{n(k)} = 0 and E{u(k)} = const. or E{u(k)} = 0 and E{n(k)} =0

A big advantage of the method of instrumental variables is that no special assump-
tions must be made about the noise and its form filter. The noise n(k) can be an
arbitrary stationary colored noise, i.e. it can be described by

_ D™

Cz™)
Then the polynomials D(z ') and C(z~') can, if they have stable roots, be arbitrary
and independent of A(z~!) and B(z~!). The IV method per se does not provide a
model of the noise. This can however be derived as is described in the next section. A
detailed analysis of IV methods is given by Soderstrom and Stoica (1983). Although
proposed for frequency domain identification, the following idea can also be applied
in the time domain: In the case of multiple measurements, Pintelon and Schoukens
(2001) propose to use measurements from a different experiment as instrumental
variables as these are strongly correlated with the measurements and practically un-
correlated with the noise. The instrumental variable approach can also be combined
with weighting of the estimation equations (Stoica and Jansson, 2000).

n(z)

v(z) . (10.5.16)



10.5 Instrumental Variables Method (IV) 305

10.5.2 Recursive Method of Instrumental Variables (RIV)

According to the recursive method of least squares, one can also provide recursive
equations for the method of instrumental variables (Wong and Polak, 1967; Young,
1968):

Ok +1)=0(k)+ y(k)(y(k + 1) — ¢ (k + )b (k)) (10.5.17)
1
y (k) = T DPOTE T T CPw(k +1) (10.5.18)
Pk +1)= (I -—y(k)y"(k + 1))P(k) (10.5.19)
Here,
P(k) = (WT (k)W (k)™ (10.5.20)

wT (k) and h(k) see (10.5.9) and (10.5.10) .

A block diagram of this method is shown in Fig. 10.4.

To avoid a strong correlation between the instrumentals 4 (k) and the current
error signal e(k), it is suggested by Wong and Polak (1967) to introduce a dead
time g between the estimated parameters and the parameter set used for the auxiliary
model, where ¢ should be chosen such that e(k + ¢) is independent of e (k).

Young (1970) furthermore used a discrete-time low-pass filter so that

ax(k) = (1 = B)buux(k — 1) + BO(k —q) . (10.5.21)

In this case, the choice of g is less critical and the parameter estimates are smoothed,
such that fast parameter changes of the auxiliary model are avoided. 8 should be
chosen as 0.01 < 8 < 0.1 (Baur, 1976).

As initial values, one chooses in analogy to the normal method of least squares
the matrix P(0) = af as a diagonal matrix with large elements and the parameter
vector # = 0. In the starting phase, one might also want to supervise the convergence
of the auxiliary model. It has been proven useful to employ the recursive method of
least squares in the starting phase of the algorithm (Baur, 1976).

Since one does not automatically obtain a model of the disturbance, one can
proceed as follows (Young, 1970):

1. First, the noise n(k) is determined as
n(k) = y(k) — yu(k) = y(k) — h(k) .

where y (k) is the measured process output and /(k) the output of the auxiliary
model.

2. Then one uses a suitable parameter estimation technique to determine the para-
meters of an ARMA signal process given by

_ D™

C(z™h)
One can employ e.g. the recursive method of least squares as described in
Sect. 9.4.

n(z)

v(z) .
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10.6 Method of Stochastic Approximation (STA)

The methods of stochastic approximation are recursive parameter estimation tech-
niques, which are computationally less demanding than the recursive method of
least squares. The minimum of the cost function is determined by a gradient-based
method, which can be applied to both deterministic and stochastic models.

The method of stochastic approximation goes back to work by Robbins and
Monro (1951), Kiefer and Wolfowitz (1952), Blum (1954), and Dvoretzky (1956). A
survey of the methods can be found in (Sakrison, 1966; Albert and Gardner, 1967,
Sage and Melsa, 1971) and recently e.g. in (Kushner and Yin, 2003).

10.6.1 Robbins-Monro Algorithm

As an introductory example for the gradient based methods, the one-dimensional
case, i.e. the estimation of a single parameter, is presented. This parameter 6 satisfies
the equation

g0) =go ., (10.6.1)

where g(0) must be exactly measurable and g¢ must be a known constant. Then, the
unknown parameter 6, i.e. the root of (10.6.1), can be determined iteratively by the
gradient as

0k +1)=0(k)— Q(k)(g(@(k)) — go) . (10.6.2)

Here, the weighting factors o(k) must be chosen appropriately to ensure convergence
of the algorithm. If g(6(k)) — go = 0, then 6(k + 1) is the exact solution.
Now, it is assumed that g(6) cannot be measured and that one can only measure
the disturbed quantity
f@,n)=g) +n, (10.6.3)

where 7 is a stochastic quantity with E{n} = 0 and finite variance. Then, also f(8,n)
is a stochastic quantity and (10.6.2) cannot be used to determine 6 as g(6) is not
known. Since

E{f(6,n)} = g(0), (10.6.4)

one would expect that the algorithm in (10.6.2) after replacing g(8) by f(6,n) and
becoming a stochastic algorithm

8k + 1) = A(k) — o(k)(f(A(k), n(k)) — go) (10.6.5)

would still converge towards the true value 6y after a sufficient number of iterations.
This algorithm is termed Robbins-Monro algorithm.

The new value of the parameter estimate is then obtained by subtracting of the er-
ror as determined by the disturbed equation (10.6.1) from the old parameter estimate
weighted with a correction factor o(k)

e(k) = F(b(k),nk)) — go . (10.6.6)
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Theorem 10.2 (Robbins-Monro Algorithm). The Robins-Monro algorithm con-
verges in the mean squared error sense

A 2
lim E{(0(k) — 6 =0
Pl {( (k) = 6o) }
under the following conditions:

1. (10.6.1) has a unique solution
2. The stochastic quantities f (k) must have an equal probability density function
and must be statistically independent

o0 oo
301 = = 2
Jim o(k) =0, ) " ok) =00, 3 0*(k) < 00

k=1 k=1
0
The proof is presented e.g. in (Sakrison, 1966). Some weighting factors o(k) which

satisfy the above stated conditions are

o(k) =

o
B+k

The choice of « and f is arbitrary. If « is sufficiently large, one can expect a good
convergence for large k.

or o(k) = % . (10.6.7)

10.6.2 Kiefer-Wolfowitz Algorithm

A second stochastic approximation algorithm can be stated, if a parameter 6 has to
be determined such that a function g(8) reaches an extremal point, i.e.

d
—g@)=0 10.6.8
AL, ( )
is satisfied. The deterministic, gradient-based algorithm is in this case given as
d
0k +1)=06(k)— Q(k)@g(G) . (10.6.9)

If g(0) cannot be measured exactly and the only possible measurement is governed
by (10.6.3), then one can derive in analogy to (10.6.5) the following stochastic algo-
rithm

Ok +1) = 0(k) — Q(k)%f(é(k),n(k)) , (10.6.10)

which is termed the Kiefer-Wolfowitz algorithm.

If the function f(6(k),n(k)) is not differentiable everywhere or if the determi-
nation of the derivative is too difficult, one can resort to replacing the first derivative
by the difference quotient and one obtains

o(k)
200(k)

Ok +1) = O(k) - (f(B) + AO(Kk).n(k)) = f(B(K) — AOGK),n(K))) -

(10.6.11)
This leads directly to
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Theorem 10.3 (Kiefer-Wolfowitz Algorithm). The Kiefer-Wolfowitz algorithm con-
verges in the mean squared error under the following conditions:

1. g(0) has a single extremal point
2. The stochastic quantities f (k) must have an equal probability density function
and must be statistically independent

o0
3. lim AB(k) =0, lim o(k) =0, K)AO(K) < o,
Jim AG(k) =0, lim o(k) =0, Y o(k)A6(k) < o0

k=1
® 0 olk) )\
Z(Ae(k)) =

k=1

O

In order to simultaneously estimate more than one parameter of the scalar func-
tion g(6), one can replace the scalar quantity 6 in (10.6.5) and (10.6.10) by a param-
eter vector 6.

The method of the stochastic approximation shall now be applied to the estima-
tion of the parameters of a difference equation according to (9.1.5) or (9.1.7) respec-
tively. For this, one is interested in determining the minimum of the cost function

Vik) = e(k) . (10.6.12)

For determining the minimum, which is not known a priori, one will now employ the
Kiefer-Wolfowitz algorithm. The following relations are in line with Sect. 9.4. The
error for a given sample can be determined as

ek +1)=yk+1)—y Tk +1Ok). (10.6.13)

compare (9.4.13). Then, the derivative of the cost function in (10.6.12) becomes

Wk +1 N
% = 2¢(k + 1)(y(k +1)— WT(k + 1)0(k)) . (10.6.14)
Then (10.6.10) is given as
0k+1) = 0 (k) + 20k + Dy (k + 1)
New Parameter Old Parameter Correction
Estimate Estimate Vector
o (10.6.15)
(yk+1) - vk + 16 (k)
New Predicted Measurement based .
Measurement on Last Parameter Estimate
It is often suggested to choose the weighting factor as
20k + 1) P 1 ithe >0 (10.6.16)
= ——— withk . .6.
@ k+ 1«

This stochastic algorithm matches with the algorithm of recursive least squares in
(9.4.11) up to the correction vector, which is defined differently. The difference is
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p(k) Fig. 10.5. Suggested time behavior of
4 o(k) for the stochastic approximation

N PR ok

Qf—

v

that the recursive method of least squares determines the update as a function of the
variance of the data. In the vectorial case, one will use the scalar correction factor
20(k 4 1) for the stochastic approximation and the parameter error covariance matrix
P (k + 1) in the case of the recursive least squares, which weights the latest equation
error based on the current accuracy of the parameter estimates. Hence, the method
of stochastic approximation can be interpreted as a strongly simplified version of the
recursive method of least squares.

According to Theorem 10.3 and (10.6.12), e?(k) must be statistically indepen-
dent for a consistent estimation. Since this can in most applications not be guaran-
teed, one will typically not obtain bias-free estimates. Saridis and Stein (1968) show
that the bias can be corrected if the statistic properties of the measured signals are
known exactly. One can use the method of stochastic approximation also for the
estimation of non-parametric models (Saridis and Stein, 1968; Isermann and Baur,
1973).

It should also be mentioned that the convergence can be improved by certain
modifications of the calculation of the weighting factor o(k). If the factor is chosen
according to the suggestion in (10.6.16), then it becomes very large at the start of
the algorithm, meaning that the error e(k) is emphasized too strongly. A choice of
o(k) according to Fig. 10.5 leads to a damped change of the parameter estimates and
leads to better convergence as was shown by Isermann and Baur (1973). The method
of stochastic approximation is only used in very limited areas of application as the
convergence is unreliable and also the higher computational effort for the recursive
method of least squares can in most cases easily be handled nowadays.

Example 10.1 (Identification of a First Order Process with the Kiefer-Wolfowitz Al-
gorithm and the Normalized Least Mean Squares).

Example 9.2 shall now be used for a comparison of the RLS method and the
Kiefer-Wolfowitz (termed KW from now on) method. One can see a comparison
of the convergence of the parameter estimates in Fig. 10.6 and can see that the RLS
method converges much faster. Figure 10.7 shows how the methods converge towards
the optimal parameter set, One can see that the choice of the (in this case constant)
factor ¢ has tremendous influence on the convergence behavior and speed. The el-
lipsoids are contours of the cost function V, i.e. the sum of squared errors > e2 (k).
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Fig. 10.6. Parameter estimation for a first order system comparing the method of recursive
least squares with the Kiefer-Wolfowitz algorithm with o = 0.2

In this example, also the results of the normalized least mean squares (NLMS) have
been shown. The algorithm will be discussed in the next section.

Example 10.2 (Identification of the Three-Mass Oscillator by Means of the Kiefer-
Wolfowitz Algorithm).

The Kiefer-Wolfowitz algorithm has now been applied to the three-mass oscilla-
tor, where the system was excited with a PRBS signal (see Sect. 6.3). The measure-
ments were the same as in Fig. 9.6 to be able to compare the results of the different
methods.

As can be seen from Fig. 10.8, the parameters need a long time to converge,
compare this with the time of 15 seconds that the parameter estimates needed to
settle in case of the RLS method, as could be witnessed in Fig. 9.7. An important
issue for convergence is the factor o(k) which was chosen according to the approach
presented in Fig. 10.5. The value of o(k) as a function of time has been graphed in
Fig. 10.10. Even at the end of the experiment, the frequency response does not match
totally with the theoretical model, see Fig. 10.9. During the experiments, it has been
shown also that the factor o(k) which on the one hand is critical for convergence, is
difficult to choose on the other hand. O

10.7 (Normalized) Least Mean Squares (NLMS)

Similar to the update equation of the Kiefer-Wolfowitz algorithm (10.6.15), one can
write
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10.7 (Normalized) Least Mean Squares (NLMS)
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Fig. 10.7. Convergence by the RLS method, the KW method with different constant ¢ and the
NLMS method and cost function contours, # (0) = 0. Note that superior performance of the
method of recursive least squares as shown by the thick line.
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Fig. 10.8. Parameter estimation by means of the Kiefer-Wolfowitz gradient method for a
discrete-time model of the Three-Mass Oscillator, parameter estimates
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Fig. 10.9. Parameter estimation by means of the Kiefer-Wolfowitz gradient method for a
discrete-time model of the Three-Mass Oscillator, comparison of frequency responses
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Fig. 10.10. Factor o(k) for the Kiefer-Wolfowitz gradient method for Fig. 10.8

0k+1) = 0(k) + By (k+1)
New Parameter Old Parameter Correction
Estimate Estimate Vector
N (10.7.1)
(y(k +1) - ¥T(k + 1)0(k))
New Predicted Measurement based ,
Measurement on Last Parameter Estimate

where the weighting factor for the correction vector has been written as 8(k + 1).
This yields the least mean squares algorithm (Haykin and Widrow, 2003). Here, S is
interpreted as a learning rate. While for the Kiefer-Wolfowitz algorithm, the factor
o(k + 1) was steered by the number of time steps k only, the learning rate § will
now be expressed as a function of the measured data.

In the noise free case, the algorithm should converge to the true values in one
sample step. Therefore, with the parameter update 6 (k + 1), the model output should
match with the measurement, i.e.

yk+1) =y Tk + DK +1). (10.7.2)
Combining (10.7.1) and (10.7.2) yields the ideal step size as

yk+1) = "0+ (6K + By (k + Dk + 1) — 9"k + 1)é(k)))
1

b= a i ek

(10.7.3)

Hence, the learning rate should be in the interval
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1
YTk + DYk +1)°
The big disadvantage of the least mean squares algorithm is the fact that the actual

fault reduction varies from step to step. Hence the algorithm is normalized and one
uses the update equation

0<p< (10.7.4)

B . R
T DG kT DOE D =Tk +DIG).
(10.7.5)

see (Brown and Harris, 1994). The algorithm was also presented in Example 10.1 in
Fig. 10.7. One can see that the convergence has not improved much compared to the
KW algorithm. A further problem can be that one divides by ¥ T(k + Dy (k + 1),
which can become zero. Goodwin and Sin (1984) present two remedial actions: The
first idea is to augment the vector by ¥ (k) by the constant “1” as the last element.
This would at the same time allow to estimate an operation point dependent DC
value. The other idea is to divide by the factor ¥ T(k + )¢ (k + 1) + ¢, where ¢ is
a constant with ¢ > 0.

Ok +1)=0(k) +

10.8 Summary

Modifications to and alternative solutions of the method of least squares have been
presented in this chapter. The modifications to the classical method of least squares
had the goal to avoid the bias that exists if the method of least squares is applied to
identify linear dynamic discrete-time systems with considerable noise at the output.
Different assumptions about the noise signal model have been mad