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Chapter 26

Balanced Realization

26.1 Introduction

One popular approach for obtaining a minimal realization is known as Balanced Realization. In this
approach, a new state-space description is obtained so that the reachability and observability gramians
are diagonalized. This defines a new set of invariant parameters known as Hankel singular values. This
approach plays a major role in model reduction which will be highlighted in this chapter.

26.2 Balanced Realization

Let us start with a system G with minimal realization

o~[213]

As we have seen in an earlier lecture, the controllability gramian P, and the observability gramian @
are obtained as solutions to the following Lyapunov equations

AP+ PA'+BB" = 0
AQ+QA+C'C = o0.

P and @ are symmetric and since the realization is minimal they are also positive definite. The
eigenvalues of the product of the controllability and observability gramians play an important role
in system theory and control. We define the Hankel singular values, ¢;, as the square roots of the
eigenvalues of PQ

o £ (N (PQ)).
We would like to obtain coordinate transformation, 7', that results in a realization for which the con-
trollability and observability gramians are equal and diagonal. The diagonal entries of the transformed
controllability and observability gramians will be the Hankel singular values. With the coordinate
transformation 7' the new system realization is given by
T'AT |T'B| [ A|B
CR Rl

G ~



and the Lyapunov equations in the new coordinates are given by

AT P Y +(T'PT" YA + BB =0

AT'QT) + (T'QT)A + C'C = 0.

Therefore the controllability and observability gramian in the new coordinate system are given by

P = T'PT!
Q = T'QT.
We are looking for a transformation 7" such that
o1
. A 02
P=0Q=x=
On
We have the relation
(T'PT Y\ T'QT) = 2,

T'PQT = ¥

(26.1)

Since Q = Q' and is positive definite, we can factor it as Q@ = R'R, where R is an invertible matrix.

We can write equation 26.1 as T-'PR'RT = Y2, which is equivalent to

(RT)"'RPR/(RT) = X%

(26.2)

Equation 26.2 means that RPR’ is similar to ¥2? and is positive definite. Therefore, there exists an

orthogonal transformation U, U'U = I, such that

RPR =UX?U'.

By setting (RT)"*UX2 = I, we arrive at a definition for T and T~! as

T = R'Us:
T°! = Y :IUR
With this transformation it follows that
P = (S3U'R)P(RUS™3)
= (STUNUSUNUSF)
= ¥,
and
Q = (R'US:)RRR'US?)

(S2U")(R''R'RR™Y)(US?)
= =

(26.3)



26.3 Model Reduction by Balanced Truncation

Suppose we start with a system
A| B
Ntaral

where A is asymptotically stable. Suppose T is the transformation that converts the above realization

to a balanced realization, with
A|B
G ~
Rarat

and P = Q = ¥ = diag(o1,09,...,0,). In many applications it may be beneficial to only consider
the subsystem of G that corresponds to the Hankel singular values that are larger than a certain small
constant. For that reason, suppose we partition ¥ as

(% 0
°=(7 =)

where Y5 contains the small Hankel singular values. We can partition the realization of G accordingly
as

1{111 1{112 1:31
G~ A21 A22 By
¢t Co | D

Recall that the following Lyapunov equations hold
AS+TA' + BB =0

AT +TA+C'C =0,

which can be expanded as

ATy ApD S AL DAL, BB, BB, 0
ATy A, Sy AL, Sy Ab, BB, B.By | 7
[ 1{1'1121 4'2122 } [ E11%11 E11‘}12 ] { C:'{C:H C:'{C:E } —o.
A’lel A,2222 22A21 221422 CéCl CéCQ
From the above two matrix equations we get the following set of equations
AT+ 5145, + BB, =0 (26.4)
ATy + 514 + BB, =0 (26.5)
Agy¥g + SgAby 4+ BBy =0 (26.6)

A+ 514 +CLC =0 (26.7)



Al S + 51 A+ CLCy =0 (26.8)

AloSy + Sy Agy 4+ CHCy = 0. (26.9)

From this decomposition we can extract two subsystems

All Bl 14122 B2
Gy ~ Gy ~ .
' { Ci | D ]7 : [ Cy | D ]

Theorem 26.1 G is an asymptotically stable system. If X1 and Yo do not have any common diagonal
elements then Gy and G2 are asymptotically stable.

Proof: Let us show that the subsystem
Gy ~ Ay | B
Cy | D

is asymptotically stable. Since flu satisfies the Lyapunov equation
AT+ 5145, + BB, =0

then it immediately follows that all the eigenvalues of Ay must be in the closed left half of the complex
plane; that is, Re)\i(flu) < 0. In order to show asymptotic stability we must show that Ay has no
purely imaginary eigenvalues.

Suppose jw is an eigenvalue of fin, and let v be an eigenvector associated with jw; (An —jwl)v =
0. Assume that the Kernel of (fin — jwl) is one-dimensional. The general case where there may be
several independent eigenvectors associated with jw can be handled by a slight modification of the
present argument.

Equation 26.7 can be written as

(A1y — jwI)'Si + (A — jwl) + C1CL =0
By multiplying the above equation by v on the right and v’ on the left we get
v'(fin —jwI)'Tiv +v' S (A1 — jwl)v + U'é’{élv =0
which implies that (Cyv) (Cv) = 0, and this in turn implies that
Civ=0. (26.10)
Again from equation 26.7 we get
(A1y — jwI)'S1v + 21 (A — jwl)v+ CCrv =0,

which implies that .
(A11 - ij)'Zlv =0. (2611)

Now we multiply equation 26.4 from the right by ¥;v and from the left by v'3; to get

V'S (A1 — jwl)S20 + 0" (A1 — jwl)'S1o 4+ 0'S B B0 = 0.



This implies that v’ B;)(B1Xv) = 0, and B X;v = 0. By multiplying equation 26.4 on the right by
Y1v we get

(12111 — ]CLJI)E%’U + El(All — jLLJI),El’U + BlﬁiElv =0

and hence .
(A1 — jwI)S2v = 0. (26.12)

Since that the kernel of (An — jwl) is one dimensional, and both v and £2v are eigenvectors, it follows
that Xv = 6%v, where & is one of the diagonal elements in ¥7.
Now multiply equation 26.5 on the left by v'¥; and equation 26.8 by v’ on the left we get

V'S AT, +0'S2AL, =0 (26.13)

and

V' Al Sy +0'S1 Ay = 0. (26.14)
From equations 26.13 and 26.14 we get that

—0' AL %2 4620 AL, =0,
which can be written as

(v Apy) [-52 + 6°1] = 0.

Since by assumption ¥3 and X? have no common eigenvalues, then 62 and X5 have no common
eignevalues, and hence As;v = 0. We have

(1411 —ij)v = 0
fizlv = 0,

fill A12 v - iw v

Ao As JLO T [0 ]
This statement implies that jw is an eigenvalue of A, which contradicts the assumption of the theorem
stating that G is asymptotically stable.

which can be written as





