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Abstract: System identification is a well-established field. It is concerned with the determination
of particular models for systems that are intended for a certain purpose such as control. Although
dynamical systems encountered in the physical world are native to the continuous-time domain,
system identification has been based largely on discrete-time models for a long time in the past,
ignoring certain merits of the native continuous-time models. Continuous-time-model-based
system identification techniques were initiated in the middle of the last century, but were over-
shadowed by the overwhelming developments in discrete-time methods for some time. This was
due mainly to the ‘go completely digital’ trend that was spurred by parallel developments in
digital computers. The field of identification has now matured and several of the methods are
now incorporated in the continuous time system identification (CONTSID) toolbox for use with
Matlab. The paper presents a perspective of these techniques in a unified framework.

1 Introduction

It is essential to know and understand an object before we
venture to handle it. An object formally referred to as a
system is known through modelling and identification and
can be understood by analysis. Modelling and identification
techniques help develop knowledge about a system. They
are prerequisites to many practices in engineering and tech-
nology and are especially important in the field of automatic
control. Modelling by itself is a vast area rich in a host of
well-established methods, which are based on a variety of
principles. Among them, modelling of physical systems
on the basis of physical principles is widely practiced.
Application of the physical laws occurring in physical
system phenomena provides a generic mathematical
description, the key parameters in which are to be deter-
mined through the process of identification and system
parameter estimation. The field of system identification
grew both in size and diversity over the last several
decades and it was surveyed at different stages. Astrom
and Eykhoff [1] surveyed the field in 1971 with focus on
discrete-time (DT) models that were predominant at that
time and the subject is presented comprehensively in text
books [2, 3]. The first significant survey of the field with
focus on continuous-time approaches by Young [4]
appeared in 1981. Subsequently, Unbehauen and Rao
tracked further rapid developments in the field [5–8].
Several books [9–11] have been dedicated to the subject
of identification of CT systems. There are books [12–14]
dealing with the application of orthogonal functions to
identification of CT systems.

The system identification problem, characterised by
Zadeh [15] in terms of three entities: a class of models, a
class of input signals and a criterion, is depicted in Fig. 1.
System identification will be successful and the results
useful if the problem is well posed in terms of these entities.
The class of models should be appropriate and the set of
signals should be illuminative enough to reveal important
system characteristics, that have the property of persistent
excitation relative to the model class. A classification of
the main methods into output error (OE), equation error
(EE), prediction error (PE) methods etc. is according to
the error minimisation criteria. Continuous-time models
call for special (and additional) signal processing consider-
ations as will be outlined in this paper. The general setting
of the CT-based identification methods is shown in Fig. 2.
As the distinction between CT and DT comes through para-
metric models, our focus here will be on such models.

At the outset, we briefly discuss the general premises of
the two main approaches to identification of continuous-
time systems:

(a) The indirect approach which involves identification of
a discrete-time (DT) model in an ‘all-digital setting’ and
transformation into continuous-time (CT) form.
(b) The direct approach in which the CT model is identified
straightaway.

In the present digital age that stretches over nearly half a
century into the past, there has been a tremendous surge
of digital methods that swept across all fields of science
and technology in general and the field of systems and
control in particular. Surprisingly, the systems and control
community was not swept off its feet from the CT base in
the identification of CT systems, although the indirect
approach with its ‘go completely digital’ attitude had domi-
nated for some time. There are a number of advantages in
describing real systems by CT models and disadvantages
in discretisation of CT systems as follows:

(i) CT models provide a good insight into the system
properties: Despite great inroads made by digital computers
and the enormous spread of DT-based methods, CT will
remain as the natural basis of our understanding of the
physical world because physical laws (Newton’s,
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Faraday’s etc.) are in CT with no chances of their being
rewritten in DT. Also in the human-made field of econ-
omics, models carry time-derivative related parameters
which are basically in continuous time. The decline of ana-
logue computers and the rise of digital computers spawned a
great amount of literature in DT-based modelling, identifi-
cation and control. Nevertheless, these developments
failed to shake the faith of many traditional control engin-
eers in CT approaches. Most of the practical control
systems still rely on the ubiquitous, three-term pro-
portional-integral-derivative (PID) controller with its pre-
dominant CT lineage. Its design is usually based on
traditional CT concepts and implementation follows an
‘artificial’ process of discretisation. CT models are very
helpful in the process of fault diagnosis by virtue of their
transparency.
(ii) CT models preserve partial knowledge: The process of
discretisation itself is associated with some undesirable con-
sequences. In general, a strictly proper CT rational transfer
function G(s) with n poles, transformed into G(z) in the z-
plane remains rational and possesses generically n2 1
zeros which cannot be expressed in closed form in terms
of the s-plane parameters and the sampling time TS.

For example, even if G(s) ¼ K/[(sþ a)(sþ b)(sþ c)]
has no finite zeros and has just K as the single unknown
parameter in the numerator, its DT version takes
the form Gz(z) ¼ (b1z

21
þ b2z

22
þ b3z

23)/(1þ a1z
21

þ

a2z
22

þ a3z
23), in which, in the event of identification,

three ‘unknown’ parameters b1, b2 and b3 are to be esti-
mated. Thus, CT models preserve partial knowledge, if
any, of the system parameters and efforts may be limited
to the determination of the unknowns only, but such
‘knowledge’ is inseparably mixed with the unknowns and
lost in the process of discretisation, thereby forcing the
effort of identification in DT to assume full ‘ignorance’ of
all the parameters.
(iii) Discretisation may render CT models nonminimum
phase: In general, if G(s) has m zeros and n poles, n . m,
the corresponding Gz(z) has a total of n2 1 zeros zzi, of
which, as the sampling time TS goes to zero, m approach
to zzi ¼ 1 as exp(sTS) and the remaining n2m2 1 zeros
approach those of the polynomial

Bn�mðzÞ ¼
Xn�m

i¼1

bn�m
i zn�m�i

where

bn�m
k ¼

Xk
l¼1

ð�1Þk�lln�m
n� mþ 1

k � l

� �
;

k ¼ 1; 2; . . . ; ðn� mÞ;

and, for n2m . 2, lie on or outside the unit circle in the
z-plane.

Consider, for example, the CT-model

GðsÞ ¼
a

sðsþ aÞ

then it is easily found that the corresponding pulse transfer
function involving a zero-order hold is given by

GzðzÞ ¼
Azþ B

Cðz� 1Þðz� DÞ

where A ¼ e2aT
þ aT2 1, B ¼ 12 e2aT 2aTe2aT, C ¼ a

and D ¼ e2aT. The zero of Gz(z), zz1 ¼ 2(B/A). In the
case of a ¼ 1, it follows that zz1 lies within the unit circle
in the z-plane for TS . 2, but moves outside it when
TS , 2. For the practically interesting values, in this case
of TS , 0.5, the zero zz1 moves far outside as shown in
Fig. 3. Thus, discretisation may turn a healthy native CT
model into a problematic one with non-minimum phase
properties. A more detailed discussion of this aspect is
available in [11].
(iv) Discretisation gives rise to undesirable sensitivity
problems at high sampling rates: The z-plane is a transform-
ation of the s-plane through the transcendental relation
z ¼ esTS. The jv-axis of the s-plane maps onto the unit
circle in the z-plane with the left and right halves of the
s-plane about its jv-axis transformed, respectively, into
the inside and outside of the unit circle in the z-plane. In
practice, the sampling frequency must be higher than the
bandwidth of the system. One ‘rule of thumb’ is to select
TS such that lmTS � 0.5, where lm is the magnitude of
the largest eigenvalue of the system. In practice, it is
desirable to make the sampling interval much smaller
than the value specified by this rule. The result of such a
choice is to force all poles to lie in a small lens-shaped
region in the z-plane as shown in Fig. 4.

Fig. 2 General setting for identification of continuous-time
systems

Fig. 1 System identification problem
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The topographical features of the z-plane are invariant
with the sampling interval TS. As TS ! 0, the z-plane does
not tend to become the s-plane. As z ¼ esTS, in the limit all
the s-plane is mapped onto the ‘black hole’ (1, j0) in the
z-plane. The results of DT methods do not converge in
the limit to those corresponding to the original CT model.
The return from the conventional discrete-time (DT) model
to the original CT model is not possible without assumptions
on the information between the sampling intervals.
There are unconventional discrete-time (UDT) methods

for discretising of CT models. The differential equation
representing the model of a continuous-time system can
be discretised to obtain descriptions in the d-domain
which has different variants depending on the choice of
approximation.
Table 1 shows some possibilities in which each form of d

is related to the conventional discrete-time operator q21

defined by x(tk21) ¼ q21x(tk), where TS ¼ tk2 tk21 is the
sampling time.
The UDT models obtained through the d-operator con-

verge to their original CT models as the sampling time
approaches zero, which is not the case with the usual DT
models. This can be seen with reference to Fig. 4. As the
d-operator is related to z as d ¼ (z2 1)/TS, the origin of
the z-plane is shifted to the point (1, j0) and a zooming
effect is introduced in direct proportion to the sampling
frequency to alleviate the clustering problem. In the limit
as TS approaches zero, the d-plane approaches the s-plane.
This is true also in the case of the more general g-operator
[71, 72]. Discretisation in the delta domain, as an alternative

to the conventional shift operator domain, avoids undue
sensitivity at high sampling rates [16] and can be applied
to identification, estimation and control [17].

The basic problem lies in the very nature of the rela-
tionship between s- and z-domains. The genes of the
s- and z-planes are basically different, derivative and shift
operations, respectively. Rapid sampling, well above the
Nyquist rate, is assumed to ensure a sound return into the
CT domain or the s-plane, without concern for the associated
sensitivity problems. Practically speaking, the parameters
clustered near (1, j0) cause several problems, particularly
in finite word length representations. Thus conventional
DT models are not in harmony with their descriptions in
CT; in the limit of reduced sampling period, they do not con-
verge to the results corresponding to the original CT model.
The return from the conventional DT model to the original
CT model is not easy. The resurgence of CT-based identifi-
cation (and control) techniques during the last three decades
may be attributed to those factors. Without relying any
longer on analogue computers, the present techniques
exploit the power of the digital tools. In all these techniques
the models remain in their original CT form, or are discre-
tised (unconventionally) to retain the same set of parameters
as their CT progenitors.

2 Problem of derivatives in CT model
identification

We will consider first linear time-invariant asymptotically
stable dynamical systems with input u(t) and output y(t).
The input-output description of such a SISO system, in
terms of its unknown transfer function G(s), is

Y ðsÞ ¼ GðsÞU ðsÞ þ N ðsÞ ð1Þ

A stochastic additive signal n(t) has to be considered
together with y(t) to represent reality. In the case of a
multi-input multi-output (MIMO) system, we represent
the signals as u(t), y(t) and n(t) by vectors of appropriate
dimensions and G(s) as the transfer function matrix.

For models which are linear in their parameters, a generic
equation of the form:

½transposed vector of measurements�½parameter vector�

¼ ½single measurement of output�

is first developed. Using this equation, and measurements at
several instants of time, a set of equations is developed and
cast in the form:

½matrix of measurements�½parameter vector�

¼ ½output measurement vector�

The main difficulty in handling CT models is due to the pre-
sence of the derivative operator(s) dk/dtkf.g associated with
the input and output signals. As a simple illustration of this

Table 1: Unconventional DT (UDT) operator d based
on different approximations and its relation to the
conventional backward shift operator

d Approximation of the

derivative operator

1 (12 q21)/(q21TS) forward differences based

2 (2/TS)(1þ q21)/(12 q21) trapezoidal

3 (12 q21)/TS backward differences based

Fig. 3 Dependence of the zero zz1 of Gz(z) on the sampling time

s-plane
jw

s

z-plane

-0.5 (1, j0)

Fig. 4 Region of normal operation in z-plane
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stage, let us consider a first-order transfer function model of
the SISO system

Y ðsÞ=U ðsÞ ¼ GðsÞ ¼ b=ð1þ asÞ ð2aÞ

which corresponds to the differential equation

a dyðtÞ=dt þ yðtÞ ¼ buðtÞ ð2bÞ

By making observations at tk, k ¼ 1, 2, 3, . . . , a system of
equations is generated as follows: av(k)þ y(k) ¼ bu(k). In
this, v(k) is not available and any attempt at directly realis-
ing it either by numerical computation or signal processing
through a differentiator will result in accentuation of noise.
This difficulty is to be removed by preprocessing the signals
in such a way that the undesirable derivative operations are
favourably realised. Alternatively, the discretisation of the
CT model is to be made in terms of an unconventional
discrete time (UDT) operator that is in harmony with its
CT counterpart, in the sense that the DT model converges
to the original CT version as the sampling interval
approaches zero. The various approaches reported in the lit-
erature may be classified with reference to the use of the
ingredients in the general setting, in which the model
class is denoted as CT/UDT for the reasons given in the
preceding text:
(i) approaches using DT signals to identify a DT model
which is then converted into native CT form,
(ii) approaches using CT signals to directly identify a
native CT model, and
(iii) approaches using DT signals giving rise to a UDT
model which converges to its native CT.

3 Major approaches to handle signal
derivatives in the direct identification
of native CT models

Let us consider the model described by (2b) in which
v(k) ¼ dy/dt should be taken into account without perform-
ing direct differentiation; some measure of v(k) should be
used instead.

3.1 Modulating functions approach

Let the input-output data be available over an interval [0, t0].
Over this interval consider a set of known modulating
functions:

fwnðtÞg; n ¼ 1; 2; . . . ; t [ ½0; t0�;

wnð0Þ ¼ wnðt0Þ ¼ dwn=dtj0

¼ dwn=dtjt0 ¼ 0; n ¼ 1; 2; . . .

for which derivatives are known up to an adequate degree. In
the case of the first-order model of this example the first
derivative will suffice. Multiply the differential equation
(2b) throughout by wn(t) and integrate over [0, t0] to obtain

a

ðt0
0

wnðtÞ
dy

dt
dt þ

ðt0
0

wnðtÞyðtÞdt ¼ b

ðt0
0

wnðtÞuðtÞdt

Integrating the first term by parts and using the terminal
conditions,ðt0

0

wnðtÞyðtÞdt � a

ðt0
0

dwn

dt
yðtÞdt ¼ b

ðt0
0

wnðtÞuðtÞdt;

n ¼ 1; 2; . . .

The signal-related terms in this equation are computable,

albeit offline. The generic transposed vector of measurement
in this case is given asðt0

0

dwn

dt
yðtÞdt

ðt0
0

wnðtÞyðtÞdt

� �
; n ¼ 1; 2; . . .

the ‘parameter vector’ by [a b]T and the generic ‘output
measurement’ is

Ð
0

t0 wn(t)u(t)dt, n ¼ 1, 2, 3, . . . .
The modulating function method was first proposed by

Shinbrot in 1957 [18]. It is of considerable interest in the
identification of nonlinear and time-varying systems and
has been used in many applications [19–23]. It may be
regarded as the forerunner of many of the techniques that
were developed in the subsequent period.

3.2 Poisson moment functional (PMF) approach

The Poisson moment functional (PMF) method [24–47],
which is outlined in the following, is one in which the result
of computation in the modulating function method becomes
a measurement if values of wn(t) are chosen as those arising
out of the impulse response functions of the various stages
of a filter chain having identical elements, each having
transfer function of the form 1/(sþ l). The following trans-
formation of a signal ẏ(t) about t ¼ t gives its PMFs as
follows:

Mi{dy=dt} W

ðt
0

½ðt � tÞi=i!� exp½�lðt � tÞ�
dy

dt
dt

The PMFs of the derivatives of the process signals y(t) and
u(t) can be expressed as linearly weighted sums of the
PMFs of these signals themselves. In this case, the trans-
posed generic vector of measurements is given as

½Mi{yðtÞ} �liM{yðtÞ}� piðtÞyð0Þ Mi{uðtÞ}�

and the generic ‘output measurement’ is Mify(t)g. In
this vector, pi (t) is the inverse Laplace transform of
1/(sþ l)iþ1.

A set of equations may be developed either by taking
PMF transformation at the minimal level of i and varying
time t or by PMF transformation at a fixed time t at different
levels of i or a combination of both. It is the former strategy
that is usually preferred for its simplicity and possibility for
online implementation. Higher-order derivative terms of the
process signals give rise to their initial values in the
measurement vector. As these are unknown, they should
be separated and included in the parameter vector as
additional unknowns to be estimated together with the
usual system parameters. When coupled with a simulation
stage, the combined algorithm becomes one of joint state
and parameter estimation that is of considerable import-
ance. If l is chosen to be very large relative to the time con-
stants of the system under identification, and if the PMF
transformation is taken about a large time t, the effect of
the initial conditions becomes insignificant. Consequently,
the terms associated with them can be dropped from the
measurement vector. The resulting algorithm estimates
only the usual system parameters. However, this estimation
would be at the cost of excessive passage of noise through
the measurements into the estimates. The book by Saha and
Rao [9] is devoted to the PMF method and its many aspects.
The basic PMF method was implemented in a micro-
processor [34]. Further developments [37–47] include
studies on the design of the Poisson filter. The Poisson
filter element in its originally proposed form with transfer
function 1/(sþ l) is not normal; its gain at zero frequency
depends on l and the resulting PMFs are termed as ordinary
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PMFs (OPMF). With l in the numerator it is rendered
normal and gives rise to normal PMFs (NPMF). A par-
ameter b that is different from l in the numerator provides
an additional degree of freedom in the filter design and gives
rise to the so-called generalised PMFs (GPMF). The resulting
parameter estimation algorithms are general and flexible in
that the Poisson filter may be chosen to meet the needs of
the situation. The parameter estimation algorithms are realised
in recursive least squares form that is convenient for online
applications. Bias-compensation devices have been proposed
for the PMF-based least-squares algorithms and they are
applied to both open-loop and closed-loop systems. The algor-
ithms have been applied in state space and the related sub-
space methods that were originally proposed in DT have
been extended to CT. The PMF method has been successfully
used in practical applications [43, 47].

3.3 Integral equation approach

PMF transformation with l ¼ 0 is of particular significance.
This leads to the so-called integral equation approach.
Repeated integration performed on the original differential
equation removes all the derivative terms and paves a
way to successful application of parameter estimation algor-
ithms. Diamessis [48–50] was one of the earliest to report
on the integration-based approach. The need to realise the
integral operation on process signals spurred considerable
research and gave rise to a number of useful methods.
The integral operation using a numerical integration formula

has been automatically realised by means of a digital filter on
sampled process signals [51–61]. Bias compensation features
and special problems have also been studied. A typical linear
integration filter (a transversal filter) extensively applied is
shown in Fig. 5. This is a digital-signal-processing module in
which q21 denotes a shift operator and fpig a set of weights
specified by the chosen integration formula.

3.4 Orthogonal functions (OF) approach

An interesting way to realise the integrals in the ‘integral
equation approach’ is by representing the process signals in
a series of orthogonal functions fui(t), i ¼ 1, 2, . . . , 1g

over the interval [0, t0]. For the sake of simplicity of illus-
tration, let us consider the first two components of the expan-
sion in the case of all the signals involved in the example:

yðtÞ ’ y1u1ðtÞ þ y2u2ðtÞ

uðtÞ ’ u1u1ðtÞ þ u2u2ðtÞ

and insert them in the corresponding integral equation of the
system described by (2a)

ayðtÞ � ayð0ÞsðtÞ þ

ðt
0

yðtÞdt ¼ b

ðt
0

uðtÞdt; 0 � t � t0

in which s(t) denotes a unit step function at t ¼ 0, having

s1 and s2 as its spectral components of u1(t) and u2(t).
Further let ðt

0

u1ðtÞdt ’ e11u1ðtÞ þ e12u2ðtÞðt
0

u2ðtÞdt ’ e21u1ðtÞ þ e22u2ðtÞ

This integral equation is transformed into algebraic form in
which the ‘measurement matrix’ becomes

yð0Þs1 � y1 u1e11 þ u2e21
yð0Þs2 � y2 u1e12 þ u2e22

� �
and the output measurement vector takes the form

y1e11 þ y2e21
y1e12 þ y2e22

� �
The integral equation approach has been hosted by a wide
range of systems of orthogonal functions. These include the
systems of piecewise-constant functions [10, 12] such as
Walsh, Haar and block pulse functions (BPF) and the systems
of continuous functions such as Fourier, Chebyshev, Jacobi,
Laguerre, Legendre, Hermite polynomials [13]. The class of
general hybrid orthogonal functions (GHOF) proposed by
Patra and Rao [14] capture the features of continuity of the
continuous systems and of discontinuities of the piecewise-
constant systems. The GHOF are capable of efficiently
representing a wide range of signals encountered in practice,
including those occurring in switched systems. In [14] an
extensive list of bibliography on the subject of orthogonal
functions is given. The list is mapped onto different fields
of applications in systems and control in separate tabular
summaries.

Among the systems of orthogonal functions, the BPF are
of particular importance by virtue of their simplicity and
fundamental nature. Initially for some time, the set of
BPF was erroneously held in suspicion of being incomplete,
until Rao and Srinivasan [62] definitively established their
completeness. This seems to have spurred considerable
activity [63–68] in the use of BPF in identification of CT
systems. The OF approach was inspired by a paper by
Corrington [69] in which Walsh functions have been used
in the solution of differential and integral equations. Chen
and Hsiao [70] and Rao and Sivakumar [71] independently
came up with a method using Walsh functions that is
directly addressed to the problem of identification of CT
systems. The operational matrix for approximating the
integral operation was introduced which reduces models
of continuous-time dynamical systems into a computa-
tionally convenient form. Rao and Tzafestas [72] surveyed
the developments in the use of orthogonal functions during
1975–1985.

4 Unified framework for identification of
CT systems

CT model identification is represented in two stages, the
first involving a linear dynamic operation (RLD):

4.1 Preparatory stage

The need to generate the time-derivative terms in CT
models is eliminated by a class of signal-processing
techniques denoted by the operation RLD in this stage.
Figure 6 shows the family tree of the various methods
denoted by the class RLD. The state variable filter (SVF)Fig. 5 Linear integrating filter
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may be regarded also as the forerunner of all the linear
filters used in this connection apart from the connections
illustrated here among all the variants of the operation
RLD. By applying RLD to the input and output data, the
system of equations for parameter estimation is generated
from the model equation using operational matrices in a
matrix-algebraic framework that was developed during the
1970s and 1980s.
The various possibilities for different methods of discre-

tisation of CT models and the relations among them,
together with their relationship with signal preprocessing
RLD, are given in [73, 74]. From the resulting system of
equations, the parameters can be estimated either by an
en-bloc computation or by a recursive algorithm. In particu-
lar, the BPF method and the PMF method lend themselves
to recursive estimation. The d-operator, as it is known,
refers only to the version based on the backward-shift
operator. In its more general form it is referred to as the
g-operator. The g form refers to this case. The case of
least-squares parameter estimation of continuous-time
ARX models from discrete-time data using the d-operator
has been studied in [75].

4.2 Estimation stage

After the preparatory stage, we now enter the estimation
stage. In the estimation stage, standard procedures are
applied as in the case of identification of discrete-time
systems. The standard methodology used in DT-based
methods is applicable here by virtue of the discrete nature
of the entities involved here. The discrete entities arise out
of the operations in the preparatory stage on continuous-
time models and the related signals. Referring to the
schemes of Figs. 7 and 8, we will discuss the various
approaches in this stage.

The model of the actual SISO system is considered in the
form:

Y ðsÞ ¼GMðsÞU ðsÞþN ðsÞ ¼GMðsÞU ðsÞþHðsÞW ðsÞ ð2cÞ

in which the second term on the right-hand side (RHS)
of (2c) accounts for the combined effects of n(t) ¼
L21

fN(s)g, stochastic disturbances, unmodelled dynamics
(due to model simplification) and possibly of unknown
initial conditions. This term is generally referred to as the
noise model and w(t) denotes white noise. The rational
model transfer function GM(s) ¼ B(s)/A(s) contains the
parameters to be estimated. The stochastic part of the
model is described by the rational transfer function H(s).
Table 2 summarises the different choices of H(s) which
give rise to different model structures.

Consider the set of measurements sampled at equal inter-
vals of length TS being represented by the measurement
vector:

yðN Þ ¼ ½uðkÞ; yðkÞ; k ¼ 1; . . . ;N � ð3Þ

Given y(N ) and some prior knowledge of the dynamics of
the system, the identification problem is to obtain GM(s)
in terms of its parameters which best describe the dynamics
of the system in some sense by minimising a chosen norm
of the modelling error. Let GM(s, u) denote an estimate of
the transfer function, where u [ R

n is the parameter
vector. In terms of GM(s, u), the input-output description
becomes

yðtÞ ¼ L�1
fGMðs; uÞU ðsÞ þ Hðs; uÞW ðsÞg ð4Þ

The focus of our attention in the present treatment is on
the first term in (4). The treatment is also applicable to
the second term in (4). A most general parametric form of

Fig. 7 Output error scheme

Fig. 6 Several manifestations of RLD

MMF ¼ method ofmultiple filters; PMF ¼ Poisson moment functionals;
GHOF ¼ general hybrid orthogonal functions; PCBF ¼ piecewise
constant basis functions; CBF ¼ continuous basis functions;
WF ¼ Walsh functions; HF ¼ Haar functions; BPF ¼ block pulse
functions; HMF ¼ Hartley modulating functions; FMF ¼ Fourier
modulating functions

Fig. 8 Equation error scheme(s)
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description for (4) is the polynomial black-box model:

Aðd; uÞyðkÞ ¼
Bðd; uÞ

Eðd; uÞ
uðkÞ þ

Cðd; uÞ

Dðd; uÞ
wðkÞ ð5Þ

that is the CT counterpart of the DT Box-Jenkins version
[10]. In this, d denotes a DT approximation to the CT differ-
entiation operator d/dt and not the usual backward-shift
operator. u(k) and y(k) are the samples of input and output
signals, respectively, and w(k) is a sequence of independent
and uniformly distributed zero-mean random variables.
A(d, u), B(d, u), C(d, u), D(d, u) and E(d, u) are poly-
nomials in d whose coefficients are arranged to form the
parameter vector u. Specific cases of these polynomials
lead to particular models such as autoregressive (AR),
moving average (MA), autoregressive and moving
average (ARMA) and so on. In particular, to characterise
stationary stochastic processes, the following ARMA
model is considered:

Aðd; uÞyðkÞ ¼ Cðd; uÞwðkÞ ð6Þ

where A(d, u) ¼ dnA þ a1d
nA21

þ . . .þ anA and C(d, u) ¼
c0d

nC þ c1d
nC21

þ . . .þ cnC, with coefficients which appear
in the AR and MA portions, respectively, of the model. In
the present context, the terms AR, MA and ARMA refer
to the CT context. The ARMA model (6) is commonly
used in spectral estimation and time-series analysis. In
system identification, where the goal is to characterise the
dynamic input-output relation of the underlying process,
the following ARX model has to be applied:

Aðd; uÞyðkÞ ¼ Bðd; uÞuðkÞ þ wðkÞ ð7Þ

where A(d, u) ¼ dnþ a1d
n21

þ . . .þ an and B(d, u) ¼
b1d

n21
þ b2d

n22
þ . . .þ bn. Here the MA part is formed

from the usually known process input signal. Without
resorting to creating a new name, we refer to

Gðd; uÞ ¼
Bðd; uÞ

Aðd; uÞ
ð8Þ

as ‘deterministic ARMA’. This is nonlinear in the par-
ameters. With this model structure, the model output error
(OE) in sampled form is

1OEðkÞ ¼ yðkÞ �
Bðd; uÞ

Aðd; uÞ
uðkÞ ð9Þ

A parameter estimation criterion is to minimise, for
example, the error function

JOEðkÞ ¼
XN
k¼1

12OEðkÞ ð10Þ

with respect to u. As the output error of (9) is nonlinear in
parameters, this is a case of nonlinear optimisation. In an

attempt to simplify the situation, most of the identification
approaches resort to the equation error (EE):

1EEðkÞ ¼ Aðd; uÞyðkÞ � Bðd; uÞuðkÞ ð11aÞ

or the generalised equation error (GEE)

1GEEðkÞ ¼
Aðd; uÞ

Cðd; uÞ
yðkÞ �

Bðd; uÞ

Cðd; uÞ
uðkÞ ð11bÞ

and as a criterion to minimise

JEEðkÞ ¼
XN
k¼1

1EEðkÞ
2

ð12Þ

where 1/E(d) is a linear-dynamic operator belonging to the
class RLD, of adequate order for the removal of the need for
direct differentiation of process data [10]. These operators
also serve the purpose of prefilters used for removing
unimportant frequencies from the process data. As (11) is
linear-in-parameters, parameter estimation is simplified to
linear direct or recursive least-squares (RLS) estimation.
However, EE minimisation has its disadvantages, as will
be discussed as follows:

4.2.1 Biased estimation: The parameter estimates will be
biased when the EE is not white [76]. Variants of the ordinary
least-squares (LS) algorithm such as ‘generalised least-
squares’ and ‘instrumental variables’ [3] are applied to
remove the bias. These and other ‘bias compensating least-
squares’ methods [59, 61] required additional computational
effort for bias compenstion. These approaches assume that
the measurements are actually generated by an ARMA
model. Some methods assume that the measurement noise
is Gaussian. However, the performance of some of these
may not be satisfactory when there is a significant modelling
error, as this component of error may not be Gaussian.

4.2.2 Reducible models (for MIMO systems):
Consider a vi-input vo-output system described by the
transfer function matrix (TFM):

Gðd; uÞ ¼

G11ðd; uÞ G12ðd; uÞ . . . G1viðd; uÞ
G21ðd; uÞ G22ðd; uÞ . . . G2viðd; uÞ

..

. ..
. . .

. ..
.

Gvo1ðd; uÞ Gvo2ðd; uÞ . . . Gvovðd; uÞ

2
664

3
775
ð13Þ

where

Gijðd; uÞ ¼
Bijðd; uÞ

Aijðd; uÞ

EE formulation necessitates a canonical form having a least
common denominator (CD) of all the elements of the TFM.
The CD considerably inflates the unknown parameter
vector. To reduce this inflation partially, the TFM is decom-
posed into multiple-input/single-output (MISO) submodels
with several CDs limited only to the rows of the TFM.
In this way, a two-stage algorithm was proposed in [77]
for DT model identification, and its CT version in [78].
A Gauss-Seidel-type iterative algorithm that does not
require a CD was later suggested in [79].

4.2.3 Distribution of estimation errors: Modelling of
physical processes is usually associated with a certain
amount of undermodelling. This coupled with noise in the
measurements, results in biased estimates. Although it is
easy to eliminate bias due to measurement noise, the bias
resulting from undermodelling can be asymptotically

Table 2: Different approaches to parameter estimation

Model structure Name H(s)

I (ARX) least squares (LS),

instrumental variable (IV)

1/A(s)

II (ARMAX) extended matrix model–I C(s)/A(s)

III (ARARX) extended matrix model–II 1/[A(s)D(s)]

IV (ARARMAX) general 1/[A(s)D(s)]
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eliminated only by a structured noise model under certain
assumptions. It can be distributed over a range of frequen-
cies by careful design of the identification experiment
[80], so that such undermodelling is not harmful in the
context of the final application of the resulting model.
With ARMA modelling, the problem of experiment
design for a prescribed distribution of bias over a range of
frequencies is not simple and straightforward.
Using Parseval’s theorem, the frequency-domain descrip-

tion of the GEE criterion (12), in the limit as TS ! 0, is

JGEEðvÞ ¼

ð1
0

Aðjv; uÞ

EðjvÞ
U ðjvÞ

����
����2 G0ðjvÞ �

Bðjv; uÞ

Aðjv; uÞ

����
����2dv

ð14Þ

where U(jv) is the Fourier transform of the input signal and
G0 denotes the true system. The first term on the right-hand
side of (14) can be considered as a weighting function that
manipulates the second term (bias) over a range of frequen-
cies. With the chosen ARMA model structure, it is clear that
this weighting function is a function of the yet unknown
A(d, u), which renders online experiment design as impos-
sible. Offline design, however, is shown to be possible by
Bapat [37].

5 Models for linear estimation (moving
average forms)

G(d, u) is linear in the parameters, if second- and higher-
order derivatives of G(d, u), with respect to u, vanish for
all u, and linearity of a parametrisation is different from
the linearity of the model in terms of its input-output
behaviour. Even nonlinear models can be linearly
parametrised. One situation in which the ARX model of
(7) is linearised (with respect to u) is when its
denominator A(d, u) is fixed as some appropriate A(d)
which leads to the description

Gðd; uÞ ¼
Xn�1

i¼1

bid
n�i

AðdÞ
¼ uTbdðdÞ ð15Þ

in which u ¼ [b1 b2 . . . bn]
T and

bdðdÞ ¼
1

AðdÞ
½dn�1 dn�2 � � � d0�T

A linear-in-parameters model is therefore obtained as

yðkÞ ¼
Bðd; uÞ

AðdÞ
uðkÞ ð16Þ

whereby EE ¼ OE and estimation (minimisation) is linear.
This leads to an advantageous situation with the following
possibilities:

Robust estimation: In the limit as N ! 1, the LS estimate
û in the presence of zero-mean disturbances tends to û�,
where û� is the limiting estimate in the absence
of disturbances. In particular, if the disturbance term is
Gaussian and there is no modelling error, the LS estimate
û is asymptotically normal with mean û� and a covariance
proportional to the variance of the disturbance. This holds
good even for coloured disturbances uncorrelated with the
input. This implies that the LS estimation is robust to
zero-mean disturbances. Note that the estimates will still
be ‘biased’ due to the inherent undermodelling.

Irreducible model estimation: With MIMO TFM models,
because the denominators do not include unknown

parameters, the CD formulation does not inflate the par-
ameter vector.

Simplified error distribution problem: The weighting func-
tion in (14) now equals

AðjvÞ

EðjvÞ
U ðjvÞ

����
����2

The absence of the unknown u in this weighting function
permits online experiment design for a prescribed bias
distribution.

Gray-box modelling: The fixed denominator polynomial
A(d) in the linear-in-parameters model (15) serves as an
additional design variable allowing for effective incorpor-
ation of prior knowledge of the process dynamics. By an
intelligent choice of this polynomial, even complex
systems can be estimated significantly accurately with a
smaller number of parameters.

These are the advantages of linear-in-parameters models
in system identification. In these models the output is
expressed as a linear combination of certain MA com-
ponents of the input. This leads to the ‘generalised
moving average model’ (GMAM) formulation as

yðkÞ ¼
Xn
i¼1

uiFiðdÞuðkÞ ð17Þ

in which model, the moving-average components of the
inputs are formed as the responses of a set of known
filters fFi(d)g to u(k). These filters form the basis

bFðdÞ ¼ ½F1ðdÞ F2ðdÞ � � � FnðdÞ�
T

ð18Þ

of the GMAM structure

Gðd; uÞ ¼
Xn
i¼1

uiFiðdÞ ð19Þ

With such a parametrisation, the model output error

1OEðkÞ ¼ yðkÞ �
Xn
i¼1

uiFiðdÞuðkÞ

is linear in the set of parameters fuig, and, consequently, the
minimisation problem of the output error criterion (10) is
linear.

Such models evolve very naturally from truncated power-
series expansions of the rational transfer function. For
example, in the DT case, the system transfer function may
be written as

G0ðzÞ ¼
X1
i¼1

hiz
�i ð20Þ

where fhig is the impulse response sequence. This is
approximated as

Gðz; uÞ ¼ uTbq1ðz
�1Þ ð21Þ

where u ¼ [u1 u2 . . . un]
T and bq1(z

21) ¼ [z21 z22 . . . z2n]T.
The quality of this approximation depends on the rate of
convergence of the impulse-response sequence. The poles
of G0(z) close to the unit circle in the z-domain slow
down the rate of convergence. Consequently, a high
model order is required for a given tolerance. For these
reasons, in rapidly sampled CT systems the rate of
convergence of the approximation will be very slow,
and in the limit as TS ! 0, the DT poles approach unity
and, consequently, the approximation fails to converge.
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Furthermore, even in the case of convergent approxi-
mations, high model order is required, as the memory of
the basis (shift operator) is very short (unity). Hence,
model representations having better convergence properties
and less sensitivity to sampling rate will be preferable.
In the CT case, the transfer function G(s) may be

expanded about s ! 1, as a complex power series in s21 as

G0ðsÞ ¼
X1
i¼1

hiðs
�1Þ

i
ð22Þ

leading to the form

Gðs; uÞ ¼ uTbs1ðs
�1Þ ð23Þ

where u ¼ [h1 h2 . . . hn]
T and bs1(s

21) ¼ [s21 s22 . . . s2n]T.
It is well known that hi are the CT Markov parameters of
G0(s) which are defined as

hi ¼
di�1

dti�1
g0ðtÞ

����
t¼0

ð24Þ

where g0(t) is the impulse response of G0(s).
Considering a similar expansion of G0(s) about s ¼ 0, we

have models parametrised in terms of normalised time
moments of the impulse response g0(t) of G0(s), i.e.

Gðs; uÞ ¼ uTbsðsÞ ð25Þ

where u ¼ [m1 m2
. . . mn]

T and bs(s) ¼ [s s2 . . . sn]T and

mi ¼
ð�1Þi

i!

ð1
0

tig0ðtÞdt ð26Þ

are the normalised time moments.
Other basis functions are also possible. Well known

among these are Laguerre and Kautz filters. Laguerre
filters imply a basis,

bLAGðsÞ ¼
1

sþ l

1

sþ l

s� l

sþ l

� �
. . .

1

sþ l

s� l

sþ l

� �n�1
" #T

ð27Þ

with l . 0, and Kautz filters imply

bKAUTZðsÞ ¼ ½c1ðsÞ c2ðsÞ � � � cnðsÞ�
T

ð28Þ

where

c2k�1ðs; b; cÞ ¼
s

s2 þ bsþ c

s2 � sbþ c

s2 þ sbþ c

� �k�1

and

c2kðs; b; cÞ ¼
1

s2 þ bsþ c

s2 � bsþ c

s2 þ bsþ c

� �k�1

with b . 0, c . 0 and k ¼ 1, 2, . . . . These bases have been
discussed in greater detail in [81]. The role played by the
basis in continuous- and discrete-system modelling is
discussed in [82].

5.1 Markov parameter models

In CT situations, the practical use of Markov parameters is
rare. This is because of the natural but difficult-to-compute
form (24) in which Markov parameters are defined for CT
systems. The work of Dhawan et al. [83] is the first
attempt at the use of MP models for SISO CT model identi-
fication. The MP model (23) is transformed into an integral

equation in which the integrals are realised using block-
pulse functions [12], thereby avoiding the derivative route
to the realisation of Markov parameters. However, trunca-
tion of the MP model as in (23) often leads to poor approxi-
mation, due to which the estimation may fail to converge. A
simple generalisation of the original MP model to ensure
convergent approximations may be found in [83]. Further
generalisation of the basis leading to flexible and well-
behaved approximations was suggested in [84–87].

Estimation of moving-average models: Consider a vi-input,
vo-output MIMO system having a transfer matrix G0(s) and
an input-output relationship

YðsÞ ¼ G0ðsÞUðsÞ þ NðsÞ ð29Þ

where Y(s) [ R
vo, U(s) [ R

vi and N(s) [ R
vo are the

Laplace transformed signal vectors. CT Markov parameters
of this system are defined as the coefficients of the power
series:

G0ðsÞ ¼
X1
l¼1

Hls
�1 ð30Þ

where fHig is the matrix of Markov parameter sequence
(MPS), and denote

Hl ¼

hl;11 hl;12 . . . hl;1vi
hl;21 hl;22 . . . hl;2vi
..
. ..

. . .
. ..

.

hl;vo1 hl;vo2 . . . hl;vovi

2
664

3
775

In terms of the MPS,

yðtÞ ¼
X1
l¼1

Hlu
lðtÞ þ nðtÞ ð31Þ

where ul(t) is the lth integral of u(t). Assuming absolute
convergence of the MPS and thus uniform convergence of
partial sums, a truncated MP model is obtained as

yðtÞ ¼
Xn
l¼1

Hlu
lðtÞ þ eðtÞ ð32Þ

where e(t) includes the truncation (of the MPS) error and
the contribution of unknown initial conditions in addition
to the usual noise term n(t). This model is valid only
when the power-series expansion of G0(s) is absolutely con-
vergent. Note that, when the system is represented in the
sampled domain as G0(s21), the resulting DT MPS is the
impulse-response sequence of the system. For asymptoti-
cally stable systems, the DT MPS is absolutely convergent,
but, when represented in CT domain, even stable systems
may have diverging MP sequences. To ensure absolute
convergence and to increase the rate of convergence of
the approximation, a more general version of Markov
parameters, known as Markov-Poisson parameters, were
suggested by Subrahmanyam and Rao [84]. In terms of
these parameters, G0(s) is expanded as

G0ðsÞ ¼
X1
l¼1

H̄l

b

sþ l

� �l

UðsÞ ð33Þ

The matrix of Markov-Poisson parameters fH̄lg is related to
the matrix of Markov parameters fulg as

H�
l ¼

1

bl

Xl
l¼1

l�1Cl�1l
l�1Hl; l ¼ 1; . . . ;b . 1 ð34Þ
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Thus, the model is

YðsÞ ¼
Xn
l¼1

H̄l

b

sþ l

� �l

UðsÞ þ EðsÞ ð35Þ

implying the basis

bPFðsÞ ¼
b

sþ l

b

sþ l

� �2

� � �
b

sþ l

� �n
� �T

ð36Þ

The elements of bPF(s) are the well-known Poisson filters
[9] of increasing order, in which l and b are tunable par-
ameters. This generalisation improves the low-frequency
predictive ability of the model. The choice of the filter
parameter l has to be made according to the a priori
knowledge of the poles of the system. In general, a l . 0
is well suited for overdamped systems with poles not very
close to the imaginary axis of the s-plane. On the other
hand, a l , 0 with a large b is appropriate when the
poles (complex) of the system are arbitrarily close to the
imaginary axis.
Parameter estimation may now be carried out by decom-

posing the problem into vo MISO subproblems and consid-
ering one subproblem at a time or in parallel. In the sequel,
one such MISO problem is considered and the subscript i,
that denotes the row index, is dropped mainly for notational
simplicity. Further, only nj parameters are considered for
the jth element of the MISO problem. Approximating the
derivative operator by d in the parameter estimation
equation we obtain

~yðkÞ ¼ wTðkÞu ð37Þ

where

wðkÞ ¼ ½wT
1 ðkÞ w2TðkÞ � � � wT

vi
ðkÞ�T

wT
j ðkÞ ¼ ½F1ðdÞujðkÞ F2ðdÞujðkÞ � � � FnjðdÞujðkÞ�

T;

j ¼ 1; . . . ; vi;

u ¼ ½�h1;1; . . . �hn1;1j � � � j
�h1;vi ; . . . ;

�hnvi;vi �
T

and

FlðdÞ ¼
b

dþ l

� �l

Next, we define the cost function as

J ðuÞ ¼ ½u� ûð0Þ�TPð0Þ�1

� ½u� ûð0Þ� þ
XN
k¼1

½yðkÞ � wTðkÞuðkÞ�2 ð38Þ

The LS estimate that minimises J(u) is

ûðN Þ ¼ Pð0Þ�1
þ
XN
k¼1

wðkÞwTðkÞ

" #�1

� Pð0Þ�1ûð0Þ þ
XN
k¼1

wðkÞyðkÞ

" #
ð39Þ

provided the inverse exists. This estimate may be calculated
using the conventional recursive least-squares algorithm.

Irreducible ARMA model realisation: Given the estimates
of H̄l, l ¼ 1, . . . , n, the first step towards realisation of an
irreducible ARMA TFM model is to examine the columns
or rows of the Hankel matrix H(p, q) formed from the

estimates as

Hðp; qÞ ¼

H̄1 H̄2 . . . H̄q

H̄2 H̄3 . . . H̄qþ1

..

. ..
. . .

. ..
.

H̄p H̄pþ1 . . . H̄pþq�1

2
664

3
775 ð40Þ

for predecessor independence [88, 89]. In view of the MISO
decomposition,

H̄l ¼ ½�hl;1; �hl;2; . . . ; �hl;vi � ð41Þ

Interchanging columns, equation (32) may be written as

Hðp; qÞ ¼ ½H1 H2 � � � Hvi � ð42Þ

where Hj, j ¼ 1, 2, . . . , vi are the p � q Hankel matrices of
the SISO elements of the MISO submodel. Thus, the
problem of structural identification of the MISO model is
also decomposed into equivalent problems of finding ranks
of Hankel matrices of individual elements over a row.
Singular-value decomposition may be used for this purpose.

According to the ‘partial realisation theory’ [90, 91],
given a finite sequence of Markov parameters, it is possible
to find a finite-dimensional realisation whose first few
Markov parameters are correspondingly equal to the given
finite sequence of Markov parameters. Accordingly, given
a finite Markov-Poisson parameter sequence, irreducible
TFM models can be derived solving the following equations
together with (31):

hl;ij ¼ bl;ij �
Xl�1

r¼0

hr;ijal�r;ij; l ¼ 1; 2; . . . ; nij

hlþnij;ij ¼ �
Xnij
r¼1

hnijþl�r;ijar;ij; l ¼ 1; 2; . . .

where the ijth element of the TFM is considered to be of the
form

GijðsÞ ¼
b1;ijs

nij�1 þ � � � þ bnij;ij

snij þ a1;ijs
nij�1 þ � � � þ anij;ij

Supposing the system is of this ARMA form, some insight
may be given regarding the nature of the MPS:

(i) The MPS is convergent when all the poles of all the
elements of the TFM are inside the unit circle centred at
the origin of the s-plane. Equivalently, the Markov-
Poisson parameter sequence (MPPS) is convergent when
all the poles of all the elements of the TFM are inside the
circle of radius b centred at (2l, 0) of the pole-zero plot.
This circle may be termed as the zone of convergence of
the sequence.
(ii) The MPS (or MPPS) is finite if and only if all the poles
of all the elements of the TFM lie at the origin of the zone of
convergence.

Finitisation of MPS: The usual infinite-length MPS is finite
(with length maxi,jfnijg when no common denominator (CD)
is assumed, or maxjfnjg when column-wise CD is assumed)
only when the poles of each subsystem of the TFM lie at the
origin of the convergence zone. For a known system, all
poles can be placed at the centre by state feedback. Then
such a modified system will have a finite MPS. In the identi-
fication problem, as such state feedback cannot be intro-
duced, because the system itself is unknown, it is possible
to introduce the effect of pole-placement on the input-
output measurement data by some iterative pole-placement
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algorithm. For the sake of simplicity, the SISO case is
considered in the following.
Consider the state equation of G0(s) in its controllability

canonical form:

ẋðtÞ ¼ Ax þ bu

where

A ¼

0 1 0 � � � 0

0 0 1 � � � 0
..
. ..

. ..
. . .

. ..
.

�an �an�1 �an�1 � � � 1

2
664

3
775 and b ¼

0

0
..
.

1

2
664

3
775

The matrix A can be written as

A ¼ A0 � bkT

where

A0 ¼

0 1 0 � � � 0

0 0 1 � � � 0
..
. ..

. ..
. . .

. ..
.

0 0 0 � � � 1

2
664

3
775 and kT

¼ ½an; an�1; . . . ; a1�

Hence, we have the state equation as

ẋðtÞ ¼ A0xðtÞ þ b�uðtÞ

where ū(t) ¼ u(t)2 kTx(t) is the filtered input signal. This
fictitious system described by the signal pair ū(t) and x(t)
has a finite MPS, as the eigenvalues of A0 are all at zeros.
Hence, by transforming the original system into that
described by the preceding text, the approximation error
due to truncation of the MPS can be made to vanish. This
is equivalent to placing the poles of the system at the
origin of the convergence zone. Based on this, a time-
recursive and iterative algorithm was initially proposed in
[84] and extended to MIMO systems [86].

5.2 Time moment models

Like Markov parameters, time moments also play an import-
ant role in the field of reduced-order modelling. Despite the
wealth of other mathematically sound methods available
for reduced-order modelling, the moment matching method
is still considered as the simplest and is widely used. In the
field of system identification, an approach for multivariable
system identification has been proposed in [85].

Estimation of moving-average models: The TFM in (29)
may be written in terms of the time moments, which are
related to the impulse response as

G0ðsÞ ¼

ð1
0

G0ðtÞe�stdt ¼
X1
l¼0

Mls
l ð43Þ

where

Ml ¼
ð�1Þl

l!

ð1
0

tlG0ðtÞdt; l ¼ 1; 2; . . . ð44Þ

are the normal time moments of the impulse response, and
define

Hl ¼

ml;11 ml;12 � � � ml;1vi

ml;21 ml;22 � � � ml;2vi

..

. ..
. . .

. ..
.

ml;vo1 ml;vo2 � � � ml;vovi

2
6664

3
7775

In terms of the time moment sequence (TMS) Ml, the

system input-output relation according to (29) becomes

yðtÞ ¼
Xn
l¼0

Mlu
ðlÞðtÞ þ nðtÞ ð45Þ

where u(l )(t) is the lth derivative of u(t). Assuming absolute
convergence of TMS and thus uniform convergence of
partial sums, similar to the case of MP modelling (32),
the truncated TM model is

yðtÞ ¼
Xn
l¼0

Mlu
ðlÞðtÞ þ eðtÞ ð46Þ

To validate the use of this model, even for systems with
diverging TMS, additional exponential scaling of the
series will be necessary to ensure convergence.

To avoid the direct use of derivatives, (46) is operated
on both sides by a (nþ 1)th-order Poisson filter operator
bnþ1/(sþ l)nþ1 [9]. Denoting

Fl;nþ1ðsÞ ¼ bnþ1 sl

ðsþ lÞnþ1
; l ¼ 0; 1; . . . ; n

the time moment (TM) model is

F0;nþ1ðsÞYðsÞ ¼
Xn
l¼0

MlFl;nþ1ðsÞUðsÞ þ EðsÞ ð47Þ

For the ith row of (34) (dropping the subscript i in all
relevant symbols), taking into account nj time moments
of the jth MISO subsystem, and letting n ¼ maxjfnjg,
the parameter estimation equation in discrete-time is
obtained as

~y�ðkÞ ¼ wTðkÞu ð48Þ

where

wðkÞ ¼ ½wT
1 ðkÞ wT

2 ðkÞ � � � wu
vi
ðkÞ�T; ð49Þ

wT
j ðkÞ ¼ ½F0;nþ1ðdÞujðkÞ F1;nþ1ðdÞujðkÞ

� � � Fnj;nþ1ðdÞujðkÞ�;

j ¼ 1; . . . ; vi

and

u ¼ ½m0;1; . . . ;mn1;1j � � � jm0;vi ; . . . ;mnvi ;vi
�
T

Parameter estimation may now be carried out with the usual
least-squares algorithm.

Irreducible ARMA model realisation: Given the estimates
of Ml, l ¼ 1, . . . , n, an irreducible ARMA TFM model
can be realised in a manner similar to the case of Markov
parameter models. Let

AijðsÞ ¼ 1þ a1;ijsþ � � � þ anij;ijs
nij ;

BijðsÞ ¼ b0;ij þ b1;ijsþ � � � þ bnij�1;ijs
nij�1

and

Ml ¼ fml;ij; i ¼ 1; . . . ; vo; j ¼ 1; . . . ; vig

Given the estimates of ul, l ¼ 1, . . . , n, the TFM elements
can be obtained by solving the following equations:

ml;ij ¼ bl;ij �
Xl�1

r¼0

mr;ijal�r;ij; l ¼ 0; . . . ; nij � 1
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and

mlþnij;ij ¼ �
Xnij
r¼1

mnijþ1�r;ijal;ij; l ¼ 1; 2; . . .

Supposing the system is of this ARMA form, the following
remarks are in order:

(i) The TMS is convergent if all the poles of all the
elements of the TFM are outside the unit circle centred at
the origin of the s-plane. This circle is the zone of the con-
vergence of the sequence.
(ii) The TMS is finite if and only if all the elements of
the TFM are denominator free (i.e. have denominator as 1).

For this special case, an iterative algorithm was proposed
[85] that finitises the sequence so as to eliminate the
truncation error.

Finitisation of TMS: The TMS is finite when all the subsys-
tems of the TFM are denominator free, in which case the
length of the TMS is maxjfnjg and modelling will not
involve unmodelled dynamics. This situation can be met
by adding fictitious zeros to each subsystem, to cancel
their respective denominators. In an identification exper-
iment, this is achievable for ARMA systems as illustrated
for the SISO case as follows:

Y ðsÞ ¼
BðsÞ

AðsÞ
U ðsÞ

If the denominator A(s) is known, we can write

Y ðsÞ ¼
BðsÞ

AðsÞ
U ðsÞ ¼

Xn�1

i¼1

bis
i �U ðsÞ

where

�U ðsÞ ¼
1

AðsÞ
U ðsÞ

Thus the model between Ū(s) and Y(s) has a finite TMS and,
therefore, by estimating the denominators and then cancel-
ling them, in an iterative way, it is possible to finitise the
TMS, so that the truncation error is removed iteratively.
Such an iterative algorithm with detailed analysis was
presented in [85].

Choice of parametric form: In reality, modelling error is
inevitable and the performance (namely, predictive
ability) of the estimated models depends on the choice of
model structure and the prior knowledge embedded into
the chosen model structures, for a given model order.
In the generalised moving average model (GMAM) struc-
ture, the following variants are considered for CT system
modelling:

(i) Motivated by Markov-Poisson parameter models, a
Poisson filter chain:

bPFðsÞ ¼
b

sþ l

b

sþ l

� �2

. . .
b

sþ l

� �n
� �T

ð50Þ

(ii) Motivated by TM models, with a state-variable filter
(SVF),

bSVFðsÞ ¼
1

EðsÞ

s

EðsÞ
. . .

sn�1

EðsÞ

� �T
ð51Þ

where 1/E(s) is an nth order stable filter may be considered

to filter the input-output data. A typical choice is an nth
order Poisson filter.

The following issues are now studied via numerical
examples:

(a) Predictive ability: The two choices bPF(d) and bSVF(d)
are related through a linear nonsingular transformation
(for l=0), e.g. for n ¼ 4 and b ¼ 1,

bSVFðsÞ ¼

0 0 0 1

0 0 1 �l

0 2 �2l l2

1 �3l 3l2 l3

2
664

3
775bPFðsÞ ð52Þ

Hence, for a given model order, models based on these two
sets will have the same predictive ability.
(b) The numerical behaviour of the estimation algorithm is
dictated in the LS algorithm by the condition number of the
matrix

R ¼
XN
k¼1

wðkÞwTðkÞ ð53Þ

It has been shown in [84] that use of bPF(d) results in high
condition numbers of this matrix (53), as these functions are
overlapping and nonorthogonal. On the other hand, the
second set bSVF(d) is near-orthogonal [81], which improves
the condition number.
(c) Numerical conditioning may be improved if an intelli-
gently chosen linear transformation of these sets of basis
functions is made before parameter estimation commences.
When such transformation results in an orthogonal set, the
numerical properties of the algorithm will be significantly
improved. A popular orthogonal basis is in terms of
Laguerre filters:

bLAGðsÞ

¼
1

sþ l

1

sþ l

s� l

sþ l

� �
. . .

1

sþ l

s� l

sþ l

� �n�1
� �T

ð54Þ

The required linear transformations are for (n ¼ 4 and
b ¼ 1)

bLAGðsÞ ¼

1 0 0 0

1 �2l 0 0

1 �4l 4l2 0

1 �6l 12l2 �8l3

2
6664

3
7775bPFðsÞ ð55Þ

and

bLAGðsÞ ¼

1 3l2 3l 1

�l3 �l2 l 1

l3 �l2 l 0

1 3l2 3l 1

2
6664

3
7775bSVFðsÞ ð56Þ

Several of the time-domain methods of identification are
provided in the recently developed continuous-time
system identification (CONTSID) Matlab toolbox [92],
which has been used to compare all implemented methods
in a simulation context and on real data [93].

5.3 Linear filters approach [10]

5.3.1 Basic idea: The earliest use of linear filters in an
attempt to avert the derivative measurement problem was
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in [94]. The method of multiple filters (MMF) using sets of
first-order elements in a filter complex [95–98] and the
PMF method are two different manifestations of the same
mathematical operation to avoid direct time derivatives
of process signals in identification of continuous-time
models. The PMF formulation, however, made a systematic
methodology possible with an extension to distributed
parameter systems. This approach is appropriate for the
generation of the filtered time derivatives required for the
identification of continuous-time models and is known
also as state-variable-filter (SVF) method [4]. Similar to
the PMF approach in which the input and output signals
u(t) and y(t), respectively, of the system to be identified
are processed through two identical pre-filter chains,
each element of which has transfer function of the form
b/(sþ l), we consider filter banks each consisting of
q ¼ nþmþ 1 lowpass filters described by the transfer
functions 1/Hi(s), Hi(s) with i ¼ 1, 2, . . . , q being any
Hurwitz polynomials of degree at least equal to n, the
order of the system to be identified, and is the degree of
its numerator. The coefficients of Hi(s) should be selected
such that the dynamics of 1/Hi(s) are approximately at
least ten times faster than the dynamics of the system to
be identified. The linear filter set-up is arranged as in
Fig. 9, where the coefficients am and bn of the rational
system transfer function

GðsÞ ¼

Xm

n¼0
bns

nXn

m¼0
amsm

¼
BðsÞ

AðsÞ
; a0 ¼ 1 ð57Þ

are to be identified. The filtered input and output signals are
given in the frequency domain by

U�
i ðsÞ ¼ H�1

i ðsÞU ðsÞ and Y �
i ðsÞ ¼ H�1

i ðsÞ
BðsÞ

AðsÞ
U ðsÞ

and, from these two conditions, it follows directly that

U�
i ðsÞBðsÞ ¼ Y �

i ðsÞAðsÞ ð58Þ

The inverse Laplace-transformation of (58) provides
the ODE

Xm
n¼0

bn
dnu�i ðtÞ

dtn
¼
Xn
m¼1

am
dmy�i ðtÞ

dtm
þ y�i ðtÞ ð59Þ

If the filtered signals u�i (t) and y�i (t) as well as their
derivatives are known (measurable), then (59) represents
an algebraic equation with the unknown system parameters
am and bn. From the specific structure of the linear filters,
the signals u�i (t), y

�
i (t) and their derivatives can be obtained

directly. For q unknown system parameters, q different filter
pairs 1/Hi(s) are necessary to obtain the following

equations:

bm
dmu�1
dtm

þ � � � þ b0u
�
1 ¼ an

dny�1
dtn

þ � � � þ a1
dy�1
dt

þ y�1

..

.

bm
dmu�q

dtm
þ � � � þ b0u

�
q ¼ an

dny�q

dtn
þ � � � þ a1

dy�q

dt
þ y�q

or, in matrix notation,

y�ðtÞ ¼ MðtÞu ð60Þ

with the (q � q) data (or measurement) matrix

MðtÞ ¼

�
dy�1
dt

� � � �
dny�1
dtn

u�1
du�1
dt

� � �
dmu�1
dt

..

. ..
. ..

. ..
.

�
dy�q

dt
� � � �

dny�q

dtn �
�
�
�
�
�
�
�

u�q
du�q

dt
� � �

dmu�q

dt

2
6666664

3
7777775
ð61aÞ

the parameter vector

u ¼ a1 a2 � � � an

�
� b0 � � � bm

h iT
ð61bÞ

and the output data (or measurement) vector of the filtered
signals

y�ðtÞ ¼ ½y�1ðtÞ y�2ðtÞ � � � y�qðtÞ�
T

From (60) follows the solution for the parameter vector to
be identified as

u ¼ M�1ðtÞ y�ðtÞ ð62Þ

5.3.2 Reduction of the number of filter pairs: Only
one filter pair is necessary, if at q different time instants
tk ¼ kTS, with TS being the sampling period, q pairs of fil-
tered data fu�(tk), y

�(tk)g and their derivatives are used for
the data matrix

MðtkÞ ¼

�
dy�

dt

����
t¼k�qþ1

� � � �
dny�

dtn

����
t¼k�qþ1

..

. ..
.

dy�

dt

����
t¼k

� � � �
dny�

dtn

����
t¼k �

�
�
�
�
�
�
�
2
66666664

u�jt¼k�qþ1 � � �
dmu�

dtm

����
t¼k�qþ1

..

. ..
.

u�jt¼k � � �
dmu�

dt

����
t¼k

3
7777775 ð63aÞ

and the output data vector of filtered signals

y�ðtkÞ ¼ ½y�ðtk�qþ1Þ � � � y�ðtkÞ�
T

ð63bÞ

Then (60) becomes

y�ðtkÞ ¼ MðtkÞu ð64Þ

and the solution for the parameter vector is given by

u ¼ uðtkÞ ¼ M�1ðtkÞ y�ðtkÞ ð65Þ
Fig. 9 Model of the actual system
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i.e. for tk � qTS the parameter vector u can be computed at
each sampling time. The approximation will be good for
small TS , p/(5vn), where vn is the limit frequency of
the corresponding signal.

5.3.3 Solution based on LS approach: The case of a
stochastically disturbed process output signal is considered.
This leads in a statistical sense to a prediction error between
the filtered output signal y�(tk) and its predicted estimate of
the form

1ðtkÞ ¼ y�ðtkÞ � mTðtkÞûðtk�1Þ ð66Þ

where mT(tk) is given by the last line vector of (63a). For q
different time instants (k ¼ 1, . . . , q), instead of (66) the
associated vector form follows

1ðtkÞ ¼ y�ðtkÞ � MTðtkÞû ðtk�1Þ ð67Þ

where y�(tk), MT(tk) and û(tk21) come from (63b), (63a) and
(61b), respectively, and

1ðtkÞ ¼ ½1ðtk�qþ1Þ � � � 1ðtkÞ�
T

ð68Þ

As (67) is linear in the parameter vector û(tk), the least-
squares (LS) criterion

J ½ûðtkÞ� ¼ min
1

2
1TðtkÞ1ðtkÞ

� �
ð69Þ

provides either the well-known direct solution

ðûk�1Þ ¼ ½MTðtkÞMðtkÞ�
�1MTðtkÞy

�ðtkÞ ð70Þ

or the recursive solution

û ðtkÞ ¼ û ðtk�1Þ þ qðtkÞ½y
�ðtkÞ � mTðtkÞû ðtk�1Þ� ð71aÞ

qðtkÞ ¼ Pðtk�1ÞmðtkÞ½1þ mTðtkÞPðtk�1ÞmðtkÞ�
�1

ð71bÞ

PðtkÞ ¼ Pðtk�1Þ � qðtkÞm
TðtkÞPðtk�1Þ ð71cÞ

where, in addition, initial values for û and its covariance
matrix P have to be selected, which, however, can be
done relatively arbitrarily.
It should be mentioned that the principle of the linear-

filter approach or state-variable-filter (SVF) method has
been applied very successfully in recursive form for the
identification of continuous-time models and self-tuning
controllers during many years, not only in combination
with the LS method but also with other approaches
[99–105], such as, for example, stochastic approximation
(SA), refined-instrumental-variable (RIV) method, or
iterative maximum-likelihood (ML) method. Details of
parameter choice, digital realisation and convergence con-
ditions are discussed in [100]. The basic idea of linear
filters is also included in those approaches where the
filters had been replaced by an algebraic reformulation
of transfer function models [105]. Among the methods
using linear filters, which are also referred to as ‘pre-
filters’ in linear CT model identification, the SRIVC
[102] is optimal in the statistical sense that it iteratively
optimises the filter parameters and yields estimates that
are consistent and asymptotically efficient (minimum var-
iance). It also provides an estimate of the covariance
matrix associated with the parameter estimates, thereby
providing standard error bounds on the parameters. An
SRIVC algorithm is available in both the CAPTAIN and
CONTSID Toolboxes for Matlab, both of which can be
downloaded from the web: (http://www.es.lancs.ac.uk/

cres/captain/) and (http://www.cran.uhpnancy.fr/contsid/).
In Section 10 we will see the results of application of
certain methods in the latter Toolbox, in a comparative
investigation in which the SRVIC method shows the
best in performance.

6 System identification by SRAM approach

A classical technique for identification of linear time-
invariant as well as time-varying CT systems is given by
the system-reference-adaptive-model (SRAM) approach.
The basic idea of this approach will be shown by the
following simple example:

6.1 Introductory example

Let us assume the gain factor K of a real system (plant) with
pure proportional behaviour to be unknown. In the undis-
turbed case the identification can be performed easily by
arranging an adaptive model in parallel with the real
system and applying the same input u(t). The output y(t)
of the real system and the model yM(t) are compared such
that the model error

e�ðtÞ ¼ yðtÞ � yMðtÞ ¼ KuðtÞ � K̂ðtÞuðtÞ ð72Þ

is obtained, where K̂(t) is the gain factor of the model
which has to be adapted through some criterion such that
limt!1 K̂(t) ¼ K. Here K is assumed to be constant, but
in general it also can be a time-varying parameter.
Selecting the minimisation criterion

J ½K̂ðtÞ� ¼
1

2
e�2ðtÞ ¼

1

2
½K � K̂ðtÞ�2u2ðtÞ ¼

!
min ð73Þ

and applying the gradient method approach [106]

dK̂

dt
¼ �a

@J

@K̂
¼ ae�ðt; K̂ÞuðtÞ ð74Þ

finally yields the adaptation law

K̂ðtÞ ¼ K̂ð0Þ þ a

ðt
0

e�ðt; K̂ÞuðtÞdt ð75Þ

Substituting (72) into (74) gives

dK̂

dt
¼ �a½K̂ðtÞ � K�u2ðtÞ ð76Þ

and introducing the parameter error K̃(t) ¼ K̂(t)2 K, with
K ¼ constant, leads to

d ~K

dt
¼ �a ~KðtÞu2ðtÞ ð77Þ

The solution of the nonlinear DE (77) is given by

~KðtÞ ¼ ~Kð0Þe
�a
Ð t

0
u2ðtÞdt

ð78aÞ

or

K̂ðtÞ ¼ K þ ½K̂ð0Þ � K�e
�a
Ð t

0
u2ðtÞdt

ð78bÞ

The error K̃(t) decreases, but convergence of the identified
parameter K̂(t) to the real parameter K is only achieved if

lim
t!1

~KðtÞ ¼ 0 or lim
t!1

ðt
0

u2ðtÞdt ! 1 ð79Þ

To guarantee convergence according to (79) the persistency
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of excitation conditionðtþDt

t

u2ðtÞdt . 0 ð80Þ

must be fulfilled in each time interval t � t � tþ Dt.
The stability of the solution (78a) can be investigated by

introducing the following Lyapunov function and its time
derivative, respectively,

V ½ ~KðtÞ� ¼ V ½ ~Kð0Þ� � a

ðt
0

½e�ðt; ~KÞ�2dt ð81Þ

dV ð ~KÞ

dt
¼ �ae�2ðt; ~KÞ ð82Þ

with the conditions (i) V positive-definite and (ii) V̇ negative-
definite. Both of these conditions are fulfilled for

ðaÞ V ½ ~Kð0Þ� . a

ðt
0

e�2ðt; ~KÞdt )

ðt
0

e�2dt , 1

) e� is bounded

(b) V [K̃(t) ¼ 0] ¼ 0,

(c) V̇ [K̃(t)] , 0, K̃=0,

(d) V̇ [K̃(t) ¼ 0] ¼ 0

Thus asymptotic stability is also guaranteed under persistent
excitation.
Let us now consider the ‘case of an additional

disturbance’ n(t) acting onto the undisturbed system
output signal yd(t). In this case, the error becomes

e�ðtÞ ¼ ½yðtÞ þ nðtÞ� � yM ðtÞ ð83Þ

and from (74) and (83) it follows that

d ~K

dt
¼ �a ~KðtÞu2ðtÞ þ anðtÞuðtÞ ð84Þ

If the undisturbed case is asymptotically stable, i.e. limt!1

K̃(t) ¼ 0, then a bounded disturbance n(t) generates a
bounded K̃(t), because, even for a sufficiently large S/N
ratio, K̃(t) can only converge near to zero. For example
let u(t) ¼ 1, and, for the moment, n(t) ¼ 0. Then a large
value of a provides fast convergence for the solution

~KðtÞ ¼ ~Kð0Þe�at ð85Þ

as seen from (78a). However, for n(t)=0, the following
nonhomogeneous ODE is obtained from (84):

d ~K

dt
¼ �a ~KðtÞ þ anðtÞ ð86Þ

It is easy to see from the corresponding solution

~KðtÞ ¼ ~Kð0Þe�at þ a

ðt
0

e�aðt�tÞnðtÞdt ð87Þ

that the smaller a the less effect has n(t). This leads to the con-
tradiction that a large value of a provides fast convergence
but low noise immunity, thus a compromise must be made.
Finally, we consider the ‘time-varying case’ with the gain

factor K ¼ K(t)=constant. Here, it follows from (77) that

d ~K

dt
¼ �a ~KðtÞu2ðtÞ �

dK

dt
ð88Þ

For the special case of u(t) ¼ 1 and a drifting gain factor,

where dK/dt ¼ b ¼ constant, it follows from (88) that

d ~K

dt
¼ �a ~KðtÞ � b

with the solution

~KðtÞ ¼ ~Kð0Þ þ
b

a

� �
e�a t �

b

a
ð89Þ

From (89) it can be seen that better tracking of the time-
varying gain factor K(t) can be achieved by a large value
of a. After this simple introductory example, let us now
consider the general case of parameter estimation by the
SRAM approach.

6.2 Parallel SRAM approach via gradient methods

In this Section the slowly time-varying parameters of a
linear plant, described by the transfer function G(s) will
be identified through adaptation of the parameter vector
uM of a corresponding parallel model given by the transfer
function

GMðs; uMÞ ¼
YMðs; uMÞ

U ðsÞ
¼

Xm

j¼0
bMj s

jXn

i¼0
aMi si

¼
BMðs; bMÞ

AMðs; aMÞ
ð90Þ

where

uM ¼ ½ aM0 � � � aMn
j

j
bM0 � � � bMm �

T

¼ ½ aT
M

j

j
bT
M �

T
ð91Þ

usually will be normalised by setting aMn ¼ 1. With the
error criterion

J ðuMÞ ¼
1

2
e�2ðt; uMÞ ¼

1

2
½yðtÞ � yMðt; uMÞ�

2 ¼
!
min ð92Þ

and application of the gradient method, as defined in (75),
follows the identified model parameter vector

uMðtÞ ¼ uMð0Þ þ a

ðt
0

e�ðt; uMÞ
@

@uM
yMðt; uMÞdt ð93Þ

Defining the vector of sensitivity functions

vðt; uMÞ ¼
@

@uM
yMðt; uMÞ ð94Þ

we obtain, for slowly varying parameters in the frequency
domain,

@

@uM
YMðs; uMÞ ¼

@

@uM
GMðs; uMÞU ðsÞ ð95Þ

with the vector of sensitivity filter transfer functions

@

@uM
GMðs; uMÞ ¼

@GM

@uM1

� � �
@GM

@uMq

� �T
;

q ¼ nþ mþ 1 ð96Þ

Substituting (90) into (96) finally provides the separated
sensitivity transfer functions

@

@aM

GMðs; uMÞ ¼ �GMðs; uMÞ
1

AMðs; aMÞ
dn�1ðsÞ ð97Þ
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and

@

@bM

GMðs; uMÞ ¼
1

AMðs; aMÞ
dmðsÞ ð98Þ

respectively, where

dn ¼ ½ 1 s s2 � � � sn �
T;

n [ ðm; n� 1Þ and aMn ¼ 1 ð99Þ

The filters according to (97) and (98) allow us to generate
the sensitivity functions needed for the final realisation
of the adaptation law (93). The block diagram of this
approach is given in Fig. 10.
The following simple example shows the application of

this identification method. Let us assume the model transfer
function

GMðs; uMÞ ¼
bM0 þ bM1s

aM0 þ s
¼

BMðs; bMÞ

AMðs; aMÞ

where uM ¼ [aM0 bM0 bM1]
T. From (97) and (98), the

sensitivity functions are as follows:

@GM

@aM0

¼ �GMðs; uMÞ
1

AMðs; aM0Þ
¼ �

bM0 þ bM1s

ðaM0 þ sÞ2

@GM

@bM0

¼
1

AMðs; aM0Þ
¼

1

aM0 þ s

@GM

@bM1

¼
s

AMðs; aM0Þ
¼

s

aM0 þ s

Using these sensitivity functions, the adaptation law (93)
can be easily realised.
It should be mentioned that the parallel SRAM approach

can be simplified considerably by applying either a series
(reciprocal) model or a series-parallel model approach
[106]. The investigation of stability for the general parallel
SRAM approach using the gradient method would be
similar to that described in Section 6.1. However, it is

easy to understand that the convergence and stability analy-
sis, and especially the selection of an appropriate Lyapunov
function, will become more difficult if the structure of the
system to be identified is more complicated than in the
cases discussed in Sections 6.1 and 6.2. Hence, it seems
reasonable to introduce model-based identification
approaches which directly rely on stability theory, as
discussed in the following Section.

6.3 Realising the SRAM approach by Lyapunov
design

The starting point for the derivation of the adaptation law in
this method is not a definite cost function, but an error
differential equation of the overall system for identification.
The adaptation law is to be designed so that the overall
system attains a globally asymptotically stable steady
state. The application of the direct method of Lyapunov
will at first be demonstrated with the aid of a first-order
system.

6.3.1 Introductory example [10]: The system to be
identified is given by

_yðtÞ þ ayðtÞ ¼ KuðtÞ ð100Þ

with the unknown and eventually slowly time-varying
parameters a and K. A parallel model is selected by

_yMðtÞ þ aMðtÞyMðtÞ ¼ KMðtÞuðtÞ ð101Þ

With the model error e�(t) ¼ y(t)2 yM(t), the error differ-
ential equation may be directly written as

_e�ðtÞ þ ae�ðtÞ ¼ ½K � KMðtÞ�uðtÞ � ½a� aMðtÞ�yMðtÞ ð102Þ

which for K̃(t) ¼ K2 KM(t) ¼ 0, ã(t) ¼ a2 aM(t) ¼ 0 and
a . 0 has the trajectory limt!1 e�(t) ¼ 0 as a stable equili-
brium position. K̃ and ã are the parameter errors, which
should vanish fully in the adapted state. The adjustment
must now be designed so that the above trajectory

Fig. 10 General realisation of parallel SRAM approach by sensitivity filters for SISO system
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(e�(t) ¼ 0, K̃ ¼ 0, ã ¼ 0) is globally asymptotically stable
in the steady state. A possible Lyapunov function, see e.g.
[107], has the quadratic form

V ðe�; ~K; ~aÞ ¼
1

2
e�2ðtÞ þ

1

2a
~K
2
ðtÞ þ

1

2b
~a2ðtÞ ð103Þ

whose time derivative after inserting ė�(t) from (102) is
given by

_V ðe�; ~K; ~a; tÞ ¼ �ae�2ðtÞ þ ~KðtÞ uðtÞe�ðtÞ þ
1

a

_~KðtÞ

� �

� ~aðtÞ yMðtÞe
�ðtÞ �

1

b
_~aðtÞ

� �
ð104Þ

The first term on the RHS of (104) is negative-definite for
a stable dynamical system. V̇ is then certainly negative-
definite, if

uðtÞe�ðtÞ þ
1

a

_~KðtÞ ¼ 0 ð105Þ

and

yMðtÞe
�ðtÞ �

1

b
_~aðtÞ ¼ 0 ð106Þ

With K̇̃ ¼ 2K̇M and ȧ̃ ¼ 2ȧM, (105) and (106) through
integration directly provide the adaptation relations

KMðtÞ ¼ KMð0Þ þ a

ðt
0

uðtÞeðtÞdt ð107Þ

and

aMðtÞ ¼ aMð0Þ � b

ðt
0

yMðtÞeðtÞdt ð108Þ

The adaptation law is globally asymptotically stable for
a . 0 and b . 0.

6.3.2 General design method for series-parallel
model approach: For identification of systems of higher
order the series-parallel SRAM approach in state-space
representation seems to be advantageous [108]. The
series-parallel SRAM approach is realised by a combination
of two partial models, one arranged in series and the other
parallel to the system to be identified, as shown in Fig. 11
for a SISO system. The system to be identified is described
by the state-space representation

ẋðtÞ ¼ AxðtÞ þ buðtÞ ð109Þ

where matrix A and vector b are unknown, and x(t) is mea-
surable. In both partial models which are of the same order
as the system to be identified, the free selectable system
matrix D is fixed and has stable eigenvalues. In the series
model, the matrix AM and, in the parallel model, the
vector bM, respectively, contain the parameters to be
adapted such that the state error vector

eðtÞ ¼ xSMðtÞ � xPMðtÞ ð110Þ

vanishes asymptotically. From Fig. 11, it follows that in the
frequency domain directly

LfeðtÞg¼EðsÞ¼
n
½I�ðsI�DÞ

�1
ðAM�DÞ�

�ðsI�AÞ�1b�ðsI�DÞ
�1bM

o
U ðsÞ ð111Þ

From this equation we obtain for E(s) ¼ 0 the steady-state
(adapted) case:
(i) bM ¼ b and (ii) AM ¼ A.

It is easy to show that the block diagram structure of Fig. 11
can also be transformed to that presented in Fig. 12, and is
thus described by the state space representation

ẋMðtÞ ¼ DxMðtÞ þ bMðtÞuðtÞ þ ½AMðtÞ � D�xðtÞ ð112Þ

which, with the state error vector e(t) ¼ x(t)2 xM(t), can also
be represented by

ẋMðtÞ ¼ AMðtÞxðtÞ þ bMðtÞuðtÞ � DeðtÞ ð113Þ

Subtracting (113) from (109) and considering the state
error vector according to (110) and the parameter errors
Ã(t) ¼ A 2 AM(t) and b̃(t) ¼ b 2 bM(t), finally the error
vector differential equation follows as

ėðtÞ ¼ DeðtÞ þ ~AðtÞxðtÞ þ ~bðtÞuðtÞ ð114Þ

If the steady state (e ¼ 0, Ã ¼ 0, b̃ ¼ 0) of the overall
system should be globally asymptotically stable, then a
possible Lyapunov function is to be found, which guarantees
stability in the whole space spanned by the elements of e, Ã
and b̃. In view of this we take here the quadratic form

V ðe; ~A; ~b; tÞ ¼
1

2
trð ~A

T
P�1
A

~AÞ þ
1

2
~b
T
P�1
b

~b þ
1

2
eTPe ð115Þ

with positive definite symmetric weighting matrices PA, Pb

and P. The time derivative of this relation is given by

_V ðe; ~A; ~b; tÞ ¼ trð ~A
T
P�1
A

_~AÞ þ ~b
T
P�1
b

_~b þ
1

2
_eTPe þ

1

2
eTP_e

ð116Þ

With (114) and the derivatives Ã
˙ (t) ¼ 2ȦM(t) and b̃

˙(t) ¼

2b̃
˙
M(t), it follows that after some simplifications from (116),

_V ðe; Ã; b̃; tÞ ¼ tr½Ã
T
ðPexT � P�1

A ȦMÞ� þ b̃
T
ðPeu� P�1

b bMÞ

þ
1

2
eTðDTP þ PDÞe ð117Þ

The derivative is negative-definite if on the RHS of (117) the
third term is negative-definite and the first and the second
terms vanish, i.e. we should have

DTP þ PD ¼ �Q ð118Þ
Fig. 11 Series-parallel SRAM approach for SISO system in
state-space representation
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for an arbitrary symmetric and positive-definite matrix Q and
further

PexT � P�1
A ȦM ¼ 0 ð119Þ

Peu� P�1
A ḃM ¼ 0 ð120Þ

If P is a solution of the matrix Lyapunov equation (118), then
from (119) and (120) through integration we directly obtain
the adaptation laws for the model parameters as

AMðtÞ ¼ AMð0Þ þ PAP

ðt
0

eðtÞxTðtÞdt ð121aÞ

and

bMðtÞ ¼ bMð0Þ þ PbP

ðt
0

eðtÞuðtÞdt ð121bÞ

Fig. 12 shows the corresponding block diagram for this
identification method for which stability is well guaranteed.
Considering special canonical forms, the adaptation law
can be further simplified [10]. It should be mentioned that
a stable SRAM approach for system identification can
also be obtained by application of the concept of hyper-
stability [106].

7 Parameter identification of linear CT models
in frequency domain

In many practical situations, parameter estimation in the
frequency domain is of considerable interest. Information
on the system behaviour under the influence of periodic
test signals is the main input to the related algorithms.
Identification in frequency domain will be discussed in
this Section with reference to continuous-time linear
systems in the environment shown in Fig. 13, where u(t)
and y(t), are measurable input and output signals respect-
ively, and the output signal is corrupted by the coloured
unmeasurable noise signal n(t). The system is represented

by the frequency-response characteristic (Nyquist plot or
its equivalent Bode plot):

G0ðjvÞ ¼
Y ðjvÞ

U ðjvÞ
¼ R0ðvÞ þ jI0ðvÞ ð122Þ

This information may be available at discrete frequency
values v ¼ vi, distributed, for example, logarithmically
over the frequency range of interest vmin � v � vmax,
from computation or by measurement. U(jv) and Y(jv)
are the Fourier transforms of u(t) and y(t), respectively.
Measurements of G0(jvi) for discrete values of vi covering
the whole frequency range can be obtained either

(a) from a discrete set of measured input-output spectra
U(vi) and Y(vi), for i ¼ 0, 1, 2, . . . , N, or

(b) from direct excitation by periodic test signals, or
indirectly from arbitrary time-domain measurements of
u(t) and y(t), which, by Fourier transformation [10],
convert the information into frequency domain, i.e.

G0ðjviÞ ’
y0 � ð1=viTSÞ

XL

n¼0
pve

�jðvinTS�p=2Þ

u0 � ð1=viT
0
SÞ
XM

m¼0
qme

�jðvimT
0
S
�p=2Þ

ð123Þ

where p0 ¼ y12 y0, pn ¼ yn212 2ynþ ynþ1, n ¼ 1, 2, . . . ,
L, q0 ¼ u12 u0 and qn ¼ um212 2umþ umþ1, m ¼ 1,
2, . . . , M. The input and output signals are sampled as u0,

Fig. 12 Block diagram for identification of linear SISO system by series-parallel SRAM using Liapunov’s stability theory

Fig. 13 Identification environment
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u1, . . . , uMþ1 and y0, y1, . . . , uLþ1 in equal time intervals of
T0
S and TS, respectively.

Let us assume that the system is modelled by

YMðsÞ ¼ GMðs; uÞU ðsÞ þ Gnðs; uÞW ðsÞ ð124Þ

as shown in Fig. 14, where the transfer function Gn(s, u)
is identical to H(s), in (2c), and represents the model
for the stochastic component with coloured noise n(t),
w(t) is normally distributed zero-mean white noise, and
the deterministic model part is described by the rational
transfer function

GMðs; uÞ ¼
YSðsÞ

U ðsÞ
¼

b0 þ b1sþ � � � þ bns
n

a0 þ a1sþ � � � þ ansn
¼

Bðs; uÞ

Aðs; uÞ
ð125Þ

The parameter vector is organised as

u ¼ ½b0 b1 � � � bn
..
.

a0 a1 � � � an�
T

ð126Þ

The problem of identification consists in estimating the
vector u of the real parameters ai and bi (i ¼ 0, 1, . . . , n).
Usually, the Laplace transform of the output error [10], in
the more general form compared to Fig. 7,

E�ðs; uÞ ¼ G�1
n ðs; uÞ Y ðsÞ � YSðs; uÞ½ � ð127Þ

as defined in Fig. 15, is introduced for this purpose. The best
approximation for G0(jv) by the ‘model’ GM(jv, u) is then
obtained by minimising the quadratic cost function of the
model output error e�(t, u), i.e.

J ðuÞ ¼ e�Te� ð128Þ

where e� ¼ [e�(0) e�(1) � � � e�(L)]T, whose elements are
Lþ1 samples in equidistant intervals TS of e�(kTS,
u) ¼ e�(k, u). The estimated parameter vector is finally
computed from

ûL ¼ argmin
u

XL
k¼0

e�2ðk; uÞ

" #
ð129Þ

or, using Parseval’s theorem in the frequency domain,

ûL ¼ argmin
u

1

2p

ð1
�1

jE�ðjv; uÞj2dv

� �
ð130Þ

where the Fourier transform of e�(t, u) follows from (127),
for s ¼ jv, as

E�ðjv; uÞ ¼

ð1
�1

e�ðt; uÞe�jv tdt

¼ G�1
n ðjv; uÞ½Y ðjvÞ � YSðjv; uÞ� ð131aÞ

or using (125)

E�ðjv;uÞ ¼ G�1
n ðjv;uÞ½Y ðjvÞ �GMðjv;uÞU ðjvÞ� ð131bÞ

For the real signal e�(k, u), which has been introduced here,
for the numerical treatment, the following Parseval’s
formula also holds directly:XL

k¼0

e�2ðk; uÞ ¼
1

N

XN
i¼1

E�2ðjvi; uÞ ð132Þ

Introducing (132) into (129) and replacing E�(jvi, u) by
(131b), for discrete frequencies v ¼ vi logarithmically dis-
tributed over the whole frequency range 0 , v , 1, leads to

ûL ¼ argmin
u

�
1

N

XN
i¼1

1

jGnðjvi; uÞj
2

� jY ðjviÞ � GMðjvi; uÞU ðjviÞj
2

�
ð133Þ

By introducing (122) in (133), we obtain

ûL ¼ argmin
u

1

N

XN
i¼1

jU ðjviÞj
2

jGnðjvi; uÞj
2
jG0ðjviÞ � GMðjvi; uÞj

2

" #

ð134Þ

If the Gn(jv) for the stochastic component in (124) is inde-
pendent of u, then the parameter estimation by (133) will
be consistent. This is usually the case if Gn(jv) is given
and fixed [109], but very often the parameters of the noise
model are unknown and, therefore, have to be included in
the unknown parameter vector u to be estimated.

It has been shown [10] that (134) leads to a nonlinear
least-squares problem. Often Newton-Gauss algorithms
have been used to minimise (134) [110], where the conver-
gence region of the Newton-Gauss algorithm can be
enlarged by using a Levenberg-Marquardt version [111].
Many techniques have been suggested in a linear least-
squares framework to tackle the aforementioned nonlinear
least-squares problem. Surveys dealing with this problem
are given, for example, in [10, 110, 112].

An alternative to the least-squares estimation according
to (134) provides the maximum likelihood (ML) estimation
method [2, 110, 113]. For this method, the negative logar-
ithm of the likelihood function becomes

LLðuÞ ¼
XN
k¼1

(
log jGnðjvi; u)j

2 þ
1

s2
e�

jU ðjviÞj
2

jGnðjvi; uÞj
2
jG0ðjviÞ

� GMðjvi; uÞj
2

)
þ N logs2

e� ð135Þ

where se�
2 is the variance of e� according to Fig. 15 being

white Gaussian noise with zero mean. The estimate of the
parameter vector is then given by

ûL ¼ argmin
u

LLðuÞ ð136aÞ

or minimising (136a) with respect to se�
2 provides

ûL ¼ argmin
u

N log J ðuÞ þ
XN
i¼1

log jGnðjvi; uÞj
2

" #
ð136bÞ

Fig. 14 Model of actual system

Fig. 15 Definition of general form of output error e�(t)
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where

J ðuÞ ¼
1

N

XN
i¼1

jU ðjviÞj
2

jGnðjvi; uÞj
2
jG0ðjviÞ � GMðjvi; uÞj

2 ð137Þ

An estimate of se�
2 can be obtained from [10] as

ŝ2
e� ¼

2

N
J ðûN Þ ð138Þ

Compared to (134) the ML estimator according to (136b)
includes the extra term

XN
i¼1

log jGnðjvi; uÞj
2 ð139Þ

which is not essential if the noise model is given or
known, as it is often assumed. It can be shown easily that
ûN ¼ ûL(N ) according to how (136b) converges to its true
value as N ! 1. However, for finite N the ML estimate
ûL(N) is finite-sample biased.
Owing to its numerical treatment the ML-method is one

of the most efficient identification methods. The solution
of (136b) is obtained by numerical optimisation. Several
approaches have been proposed for the optimisation
problem, using the first and second derivative of J(u), i.e.
Ju and Juu, with respect to u. For example, in the case of
the Newton-Raphson algorithm, the iterative solution for a
new estimate is given by [109]

ûN ðnþ 1Þ ¼ ûN ðnÞ � bfJuu½ûN ðnÞ�g
�1Ju½ûN ðnÞ� ð140Þ

where b is a constant factor. The numerical effort is justi-
fied, as, at the same time, the variance of the parameter esti-
mation, for example for the parameter ui,

ŝ2
ui
¼ ŝ2

e� ½Juu�
�1
ii ð141Þ

can be obtained using (138) and the Hessian matrix Juu.
Up to this point we assumed the ‘true’ input u(t) to be mea-

surable (observable). This, however, can result in a biased
parameter estimation when the real measured input um(t) is
corrupted by a noise signal n2(t), as shown in Fig. 16. This
assumption can be circumvented by applying the errors-in-
variable (EV) model structure [3, 114], or the instrumental
variable (IV) method [2, 10]. In the frequency-domain
identification, this EV method was extensively applied, e.g.
[109]. It has been shown that estimators based on this model
structure are consistent when the ‘true’ spectral density
matrix of the I/O noise is known a priori [114]. In [115], a
logarithmic LS estimator was analysed and shown that,
even when the variances of the measured data are
unknown, this estimator remains ‘practically’ consistent.
This EV method is also appropriate for the identification

of a system in a feedback loop. It has been shown [116] that
this problem can be solved by the EV method if the covari-
ance matrices of the noise signals, n1(t) and n2(t), are known
a priori or can be replaced by their sample covariance
matrices, calculated from a small number of independent

repeated experiments. The estimates thus obtained are still
strongly consistent for a large enough set of data points in
each experiment.

In practice, identification of a continuous-time linear
dynamic SISO-system usually starts with a discrete set of
measurements of the input and output signals, sampled at
equal time intervals, as already mentioned in the preceding
text. It is well known that the discrete measurements do not
contain all the information about the continuous-time
signals unless additional assumptions are made. In [117],
two very important assumptions have been considered: (i)
the zero-order hold (ZOH) assumption and (ii) the band
limited (BL) assumption. In case (i), it is assumed that the
excitation signal u(k) remains constant during the sampling
interval TS. In case (ii), it is assumed that the sampled
signals, u(k) and y(k), each have limited bandwidth.
Both assumptions lead to an exact description of the
continuous-time system. However, it should be noted that
the obtained models are only valid, if their signals obey
the corresponding assumptions. In [117], it is shown that
discrete-time modelling based in ZOH excitations should
be used with care. On the other hand, the BL assumption
offers specific advantages in many applications, especially
when applying periodic excitation signals.

Usually, for system identification in time domain, large
data sets are required. The record length is given by

Tm ¼ LTS ð142Þ

where L is the number of data points, and TS is the sampling
time. The sampling frequency vS should be selected accord-
ing to Shannon’s sampling theorem

vS ¼
2p

TS
� 2vmax ð143Þ

where vmax is the frequency of the band-limited input or
output signal above which the signal spectrum vanishes.
The lowest frequency of interest vmin determines the
minimal record length

Tm .
2p

vmin

ð144Þ

From (142)–(144), it is clear that, for the minimum number
of data points in the time domain,

L � 2vmax=vmin ð145Þ

So if the frequency range of interest vmin � v � vmax

covers, for example, 3 decades, it is necessary that
L ¼ 2000 data points.

The large data sets, usually necessary in time domain, can
be replaced for identification in frequency domain by a con-
siderably reduced set of approximately logarithmically dis-
tributed frequency points vi covering the frequency range of
interest [117, 118]. Decimating data of higher frequencies
involves averaging over neighbouring frequencies, and it
also helps in reducing high-frequency noise. This can be
done if especially periodic excitation signals are employed.

Periodic input signals for system identification offer many
advantages, compared to random and transient ones. These
signals have discrete power spectra, and, consequently, it is
possible to select only those frequencies vi of the outgoing
signal y(t) that have been injected, and discard others due
to noise. Thus a considerable improvement of the signal-to-
noise ratio of the measurements is possible.

As the frequency response data, such as Fourier coeffi-
cients at different frequencies vi, may be obtained from
different experiments, an experimental simplification isFig. 16 Errors-in-variable model structure
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possible by combining data from different experiments,
which is not so easily possible in time-domain identification.
Besides other periodic test signals, the multi-sine test

signals [117, 119] turn out to be the most flexible, providing
optimal properties. These are band-limited signals consist-
ing of an arbitrary sum of harmonically related sinusoidal
terms

uðtÞ ¼
XF
k¼1

Ak sinðmkv0t þ wkÞ;mk [ ½1; 2; . . .� ð146Þ

where v0 is the basic angular frequency, Ak are the ampli-
tudes and wk the phases. The main advantage of such test
signals is that their total spectral power can be concentrated
within a specific frequency range. However, their spectral
power can be completely arbitrary, because mk can be any
integer. In addition, the amplitudes and phases must be
carefully selected to minimise the crest factor CF:

CF ¼
peak valuejuðtÞjmax

effective value uðtÞrms

ð147Þ

of the signal u(t). The motivation for minimising CF is to
maximise the input-power subject avoiding input actuator
saturation. There are several methods for minimising the
value of CF. A small value of CF indicates a small noise-
to-signal ratio of the measurements. Finally it should also
be mentioned that, unlike in time-domain identification,
no initial state estimation, but only steady-state conditions
are necessary, if frequency-domain estimation is applied
in combination with periodic excitation [110].
Besides the parameter estimation problem, there exists

the problem of determining the order n of the model transfer
function in (125). A number of methods developed and
successfully applied for time-domain identification can
also be applied for order determination in frequency-
domain identification as well [110].
There exists a problem with the parameter estimation of

high-order systems based on (134) or (136b), numerical
problems in calculating the coefficients ai and bi in (125)
may occur. This numerical ill-conditioning problem can,
however, be solved in the frequency domain through the
use of orthogonal polynomials. These polynomials have to
be orthogonal on the discrete set of measured frequency
points and depend on the available measurements [120].
There exist two MATLAB toolboxes [121, 122], which

now offer a reliable set of routines for all identification
steps in the frequency domain.

8 Subspace identification or CT state-space
models

8.1 State-space CT model identification problem

To give a better insight, we will discuss, in the following,
the deterministic case for the sake of simplicity. Let us
assume that N measurements of the I/O vectors u(t) [ R

r

and y(t) [ R
m are given. The identification problem then

consists in estimating the order n of the state vector
x(t) [ R

n and the elements of the matrices A, B, C and D
of the state-space representation:

ẋðtÞ ¼ AxðtÞ þ BuðtÞ ð148Þ

yðtÞ ¼ CxðtÞ þ DuðtÞ ð149Þ

with corresponding dimensions.

8.1.1 Subspace model identification (SMI) rep-
resentation: By introducing up to i2 1 derivatives of

u(t) and y(t) for i . n at N different time instants,
t ¼ ft1, t2, . . . , tNg, not necessarily equidistant, but i and
N sufficiently large, the state-space representation according
to (148) and (149) can be transformed to the matrix
equation, denoted also as the data equation,

Yi ¼ T1;iX þ T2;iUi ð150Þ

which is the basis of the SMI approach, where

X ¼ ½xðt1Þ xðt2Þ � � � xðtN Þ� ð151Þ

Ui ¼

uðt1Þ � � � uðtN Þ

u̇ðt1Þ u̇ðtN Þ

..

. ..
.

uðt1Þ
ði�1Þ

uðtN Þ
ði�1Þ

2
666664

3
777775 ð152Þ

ð�Þ
r

¼̂dr=dtrð�Þ;Yi identical in structure to Ui but u(t)
replaced by y(t),

T1;i¼

C

CA

..

.

CAi�1

2
66664

3
77775 [ R

mi�n
ð153Þ

T2;i¼

D O � � � O

CB D O

..

. ..
. ..

.

CAi�2B CAi�3B � � � CB D

2
66664

3
77775[ R

mi�ri
ð154Þ

T1,i and T2,i are denoted as extended (i . n) observability
and extended controllability matrices, respectively. As the
derivatives of u(t) and y(t) in the data matrices Ui and Yi

are not directly measurable, they must be replaced either
by approximations, or new signals have to be generated
by introducing a signal-preprocessing operator RLD, as
shown in Fig. 6. (There are several manifestations of RLD

(MMF: method of multiple filters; PMF: Poisson moment
functionals; GHOF: general hybrid orthogonal functions;
PCBF: piecewise-constant basis functions; CBF: con-
tinuous basis functions; WF: Walsh functions; HF: Haar
functions; BPF: block-pulse functions; HMF: Hartley mod-
ulating functions; FMF: Fourier modulating functions).)

The latter can be obtained for the SMI approach by
several methods. In [123] linear filters are used to obtain
a CT data equation. A similar approach was applied in
[124]. A Laguerre filter approach was introduced in
[125–127] and a distribution-theoretic approach was pro-
posed to describe derivatives in the stochastically disturbed
case. The approach described in [44] makes use of Poisson
moment functional (PMF) filtering. SMI methods had been
originally proposed for discrete-time (DT) systems [128–
132], and their extension to CT systems was first mentioned
in [123] and subsequently refined in several contributions,
as for example [44, 124–127, 133, 134]. The basic idea
behind SMI algorithms is that they are able to retrieve
system-related matrices Â, B̂, Ĉ and D̂ as subspaces of
projected data matrices [132].

8.1.2 Different families of SMI implementations:
There are three different possibilities for SMI
implementations:

(a) multivariable-output-error state-space (MOESP)
approach [135],
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(b) numerical algorithms for subspace state-space systems
identification (N4SID) [136], and
(c) canonical variate analysis (CVA) [129].

Without going into detail, it should be mentioned that all
three types of algorithms differ much concerning their com-
putational requirements. Although the CVA approach has a
significant lower number of floating point operations, the
total CPU time is much higher than for the other two.
Also a combination of the MOESP and N4SID algorithms
is possible and provides a number of advantages [126].
The basic idea of the SMI technique will be outlined in
the following Section using the N4SID combined with the
PMF-filtering approach for realising the aforementioned
signal-preprocessing operator RLD.

8.2 N4SID-PMF approach

8.2.1 PMF signal preprocessing: As already mentioned
in Section 3, the ith PMF transform of a signal x(t) at time
instant t is given generally by the ith Poisson moment func-
tional (PMF):

MifxðtÞg ¼

ðt
0

xðtÞpiðt � tÞdt; i ¼ 0; 1; 2; . . . ð155Þ

where

piðtÞ ¼
ti

i!
e�lt ¼ L�1 1

ðsþ lÞiþ1

� �
ð156Þ

is the Poisson impulse response function, and l21 . 0 is the
time constant of the corresponding lowpass filter. If x(t) is
the input of a cascaded chain of (nþ 1) identical lowpass
filters, each described by 1/(sþ l), then all Mifx(t)g are
directly measurable at time t from the n output stages of
these filters, which all together form the Poisson filter
chain. Notice that the PMFs of derivatives of x(t) can be
expressed as linear combinations of those of the original
function itself. When neglecting all initial conditions of
x(t) and its derivatives after some time t, then, for
example, for i ¼ 2, we have the following:

M2fxðtÞg

M2f_xðtÞg
M2f€xðtÞg

2
4

3
5 ¼

1 0 0

�l 1 0

l2 �2l 1

2
4

3
5 M2fxðtÞg

M1fxðtÞg

M0fxðtÞg

2
4

3
5 ð157Þ

This result can be generalised by

viðtÞ ¼ DiðtÞv
�
i ðtÞ ð158Þ

where

viðtÞ ¼ ½MifxðtÞg Mif_xðtÞg � � � Mifx
ðiÞðtÞg�T

v�i ðtÞ ¼ ½MifxðtÞg Mi�1fxðtÞg � � � M0fxðtÞg�
T

Di ¼ DiðlÞ [ R
ðiþ1Þ�ðiþ1Þ

The state-space representation of the PMF-filter chain
follows directly from (155), (156) and (158) as

v̇�i ðtÞ ¼

�l 1 � � � 0

0 �l . .
. ..

.

..

. . .
.

1

0 � � � 0 �l

2
66664

3
77775v�i þ

0

..

.

0

1

2
6664

3
7775xðtÞ ð159Þ

To estimate the derivatives in the matrices Ui and Yi, we
apply the PMF transformation (155) element-wise to the

matrix (150) as follows:

MifYig ¼ T1;iMifXg þ T2;iMifUig ð160aÞ

or

Y�
i ¼ T1;iMifXg þ T2;iU

�
i ð160bÞ

where now the ‘filtered’ I/O matrices Ui
� and Yi

� are
known, as they are only dependent on the filtered I/O
signals. The equivalence of (160b) and (150) is only
given if the corresponding matrices have the same rank.
Furthermore, for numerical treatment (159), and thus
(160b), have to be discretised using a ZOH on the input.
Moreover, to avoid problems with nonzero initial conditions
[44], Ui

� and Yi
� have to be reduced by eliminating their

first m columns.

8.2.2 Estimation of the extended observability
matrix T1i: If the filtered matrices Ui

� and Yi
� are dis-

cretised, reduced and then denoted as Ui
�� and Yi

��,
respectively, and arranged in the following form, then a
QR-factorisation can be performed:

U��
i

Y��
i

� �
¼

R11 0

R21 R22

� �
Q1

Q2

� �
ð161Þ

Under the condition of persistently exciting input signals

EfUi UT
i g . 0 ð162Þ

the initial state is zero and i is chosen larger than the system
order (i . n), the column space of R22 equals that of T1,i

[135]. The computation of R22 via its singular value
decomposition (SVD) is as follows:

R22 ¼ USVT ¼ ½Un
j

j U0 �
Sn 0

0 S0

� �
½Vn V0 �

T
ð163Þ

and provides an approximation of the order n of the system
by the number n̂ of nonzero singular values of S:

n̂ ¼ rank S ð164Þ

and the first n̂ left singular vectors of U, gathered in Un,
determine the column space as an approximation of the
extended observability matrix (153):

T̂1;i ¼ US1=2 ð165Þ

8.2.3 Estimation of the state model matrices A and
C: If we take U1 as the upper (i2 1) m rows of Un and U2

the lower (i2 1) m rows of Un, then the approximations of
A and C are as follows:

Â ¼ Uy

1U2 ð166Þ

with the pseudo-inverse U1
† ¼ U1

T(U1 U1
T)21, and

Ĉ ¼ the upper m rows of Un ð167Þ

8.2.4 Estimation of the state model matrices B and
D: With the estimated matrices Â and Ĉ, the matrices B̂ and
Ĉ included in T2,i can be computed in the deterministic case
uniquely. In the ‘filtered’ data equation (160b) the term T1,i

can be removed by left multiplication with its orthogonal
being of full rank and satisfying

(i) T?
1;iT1;i ¼ 0;T?

1;i [ R
ðmi�nÞ�mi and

(ii) T?
1;i ¼ I� TT

1;iðT1;iT
T
1;iÞ

�1T1;i
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This leads to

T?
1;iY

�
i ¼ T?

1;i T2;iU
�
i ð168Þ

For easy extraction of the desired matrices B and C, (168) is
postmultiplied by the pseudo-inverse Ui

�†, from its right-
hand side,

T?
1;iY

�
i U�y

i ¼ T?
1;iT2;i ð169Þ

and for simpler notation the left-hand side is denoted by the
matrix

K ¼ ½K1 K2 � � � Ki�

and T1,i
? is replaced by

L ¼ ½L1 L2 � � � Li�

Thus, (169) can be rewritten as

K1

K2

..

.

Ki

2
6664

3
7775 ¼

L1 L2 � � � Li�1 Li

L2 L3 � � � Li 0

..

.

Li 0 � � � 0 0

2
6664

3
7775 Im 0

0 T1;i

� �
D
B

� �

ð170Þ

which represents an overdetermined system of linear
equations that can be solved for B̂ and D̂ using, for
example, the LS approach. The numerical application and
the limits of this algorithm are discussed in detail in [44].
It should be mentioned that the method described here is
directly applicable also for the case of an additional white
zero-mean perturbation, with variance s2 acting on the
output signal. Further cases, where (i) the output is dis-
turbed by a coloured noise signal, or (ii) additionally to
(i) the state equation has an additive white noise term, or
(iii) additionally to (ii) also the input is disturbed by a
measurement noise (including the closed-loop identification
problem), are discussed in [123, 124].
Summarising it can be stated that the SMI approach

differs significantly from the previously discussed identifi-
cation methods. For example, no explicit cost function has
to be minimised. The order determination directly obtained
from the measured data is performed very simply.
Furthermore, the SVD algorithm allows a numerically
stable solution, based mainly on geometrical properties
of signal spaces. In particular, the identification of MIMO
systems can easily be handled by the SMI approach.

9 Identification of nonlinear CT systems

Nonlinear CT models frequently arise if a real system is
derived from first principles, such as the laws of physics
or chemistry. If the resulting model is structurally known,
but contains unknown parameters, it is denoted by a
‘grey-box’ model. The importance of estimating the para-
meters for such models is stressed by many authors, as for
example [137] and [138]. Contrary to linear models, non-
linear models in the time-domain can only be discretised
approximately, therefore one of the most natural choices
is a continuous-discrete model, i.e. a model with continu-
ous-time dynamics and a discrete-time measurement
equation. Other approaches in the frequency domain aim
at, for example, transforming the nonlinear differential
equation into an algebraic equation which can be linear or
nonlinear in the parameters to be estimated and solved by
different methods. Figure 17 gives a survey about the major
structure of nonlinear CT models available for the solution

of the identification problem. This structure can be cate-
gorised into the three major groups of (i) nonparametric
models, (ii) parametric models and (iii) semiparametric
models [139]. In addition, the dynamic behaviour of a
nonlinear system can be described by a linear multimodel
[140], consisting of different linear models for different
operating points covering the entire range of operation.
In special cases, even nonlinear multimodels are rec-
ommended [141]. However, this category of multimodels
will, as well as the semiparametric artificial neural
network models [142] and fuzzy models [143], not be
discussed here.

9.1 Nonparametric nonlinear models

This class of models includes the functional series
approaches and the generalised-frequency-response-
function (GFRF) method.

9.1.1 Functional series models: These models had
been already discussed in detail in a former survey paper
[144]. The Volterra series is an intuitively satisfying
description for nonlinear systems, which generalises the
concept of the I/O representation of a linear system in the
form of a convolution integral,

yðtÞ ¼

ðt
0

g1ðt1Þuðt � t1Þdt1

Fig. 17 Major structure of nonlinear continuous-time models
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to the representation of nonlinear systems

yðtÞ ¼
X1
i¼1

yiðtÞ

¼
X1
i¼1

ðt
0

ðt
0

. . .

ðt
0

giðt1; t2; . . . ; tiÞ

�
Yi
j¼1

fuðt � tjÞdtjg ð171Þ

where gi(t1, . . . , ti) is an impulse response or weighting func-
tion or the Volterra kernel of ith degree. The aim of identifi-
cation is to obtain (nonparametric) values for the Volterra
kernels gi over the desired time range by, for example,
numerical deconvolution of (171). Besides the classical
phase-plane description, the nonparametric system descrip-
tion in the form of this Volterra series model was one of
the earliest approximation of nonlinear systems introduced
for the first time in 1958 by Wiener [145]. The model (171)
can be extended to the stochastically disturbed case. Wiener
introduced, for the case of white-noise input, a similar nth-
order functional, however the kernels of this Wiener series
model are not equal to the Volterra kernels [144].
Many different methods of calculating the Volterra and

Wiener kernels have been proposed. However, the exces-
sive computations associated with both models, due to the
large number of parameters to be estimated in the second-
and higher-order kernels, have resulted in very few appli-
cations of these techniques. Even though some minor
improvements have been proposed [146, 147] for the
numerical treatment during the last few years, this model-
ling framework has not become very popular.

9.1.2 Frequency-domain models: If a nonlinear stable
system in the neighbourhood of an equilibrium point is
described by a truncated Volterra series as in (171) with a
finite summation, i.e. 1 is replaced by N, where N
denotes the degree of the nonlinearity, and transformed to
the frequency domain by Fourier transformation, then the
output can be expressed as

Y ðjvÞ ¼
XN
i¼1

YiðjvÞ 8v ð172Þ

where

Yið jvÞ ¼
1=

ffiffi
i

p

ð2pÞi�1

ð
v1þv2þ���þvi¼v

Gið jv1; . . . ; jviÞ

�
Yi
m¼1

U ð jvmÞdsv

ð173Þ

where Yi(jv) and U(jv) represent the Fourier transforms
of yi(t) and u(t), the integral expression denotes the
integration over the i-dimensional hyperplane v and
Gi(jvi, . . . , jv2) is defined as the ith-order GFRF [148]. It
should be mentioned that the nonlinear frequency-domain
outputs Yi(jv) depend on the association of variables of
each degree of the system nonlinearities, which induces
mixing and intermodulation effects of the input frequencies
to produce outputs at new frequency models [149]. GFRFs
can be obtained, for example, by fitting a nonlinear
ARMAX model (NARMAX) to the system and then
mapping this model into the frequency domain. In [148] a
new algorithm for solving this problem is proposed which
produces unbiased estimation for a stochastically disturbed

system. The nonlinear model can be constructed sequen-
tially by building in the linear model forms, followed by
the quadratic terms and so on. At each stage, the signifi-
cance of each candidate model term is tested and only
relevant model terms are included, thus a nonlinear differ-
ential equation model can be obtained component-wise.

9.2 Parametric nonlinear models

This class of models can be categorised into general and
special models.

9.2.1 General parametric nonlinear models: In this
category we will discuss deterministic as well as stochastic
approaches and methods based on the (generalised)
equation error.

(a) Deterministic approaches: Three different types will be
presented in the following.

(i) Nonlinear optimisation techniques: The identification
problem can be formulated as a minimisation of an error cri-
terion based, for example, on the error between the model and
the measured output data of the system to be identified. This
leads usually to a nonlinear parametric optimisation problem,
that must be solved iteratively. Different optimisation
methods can be applied [150, 151]. If the nonlinearity is not
known, the nonlinear function can be approximated by a poly-
nomial whose coefficients are also parameters to be identified.
(ii) Nonlinear SRAM-approach: In [152] a specific system
identification method is applied, for joint state and par-
ameter estimation of nonlinear CT systems based on the
parameter adjustment of a simulator model with the same
dynamic structure as the plant. The identification is per-
formed online. The parameter adjustment is of SRAM
type and based on extremum searching of a multimodel
nonlinear function using the Newton’s searching method.
Only the deterministic case is considered.
(iii) Polynomial approach: In [153] a series of piecewise
multiple general orthogonal polynomials (PMGOP) is intro-
duced for the parameter identification of a specific class
of nonlinear CT systems. A recursive implementation of
the method is possible. In [154] a nonlinear CT model is
identified from process data through normal form theory.
The model structure, in general, contains a low-order-
polynomial vector-field characteristic of the particular
system. Parameters for this structure are found through a
nonlinear LS algorithm.

(b) Stochastic approaches: Let us assume a nonlinear sto-
chastically disturbed time-varying system to be described
by the state-space equation

ẋðtÞ ¼ f ½xðtÞ; uðtÞ;ûðtÞ� þ vðtÞ ð174Þ

and its measurement equation, at discrete time instants tk,

yðtkÞ ¼ h½xðtsÞ; uðtkÞ; uðtkÞ� þ wðtkÞ ð175Þ

where v(t) and w(t) are white noise signals, then the aim of the
stochastic approaches for system identification from sampled
I/O data consists in finding a continuous-discrete model
description in the form of a continuous-time state equation

_̂xðtÞ ¼ f̂ ½x̂ðtÞ; uðtÞ;ûðtÞ� ð176Þ

and a discrete-time output equation

ŷðtkþ1Þ ¼ h½x̂ðt�kþ1Þ; uðtkþ1Þ; uðtkÞ� ð177Þ

where the superscript ‘–’ indicates the time instant just
before a measurement is taken. Generally, both the structure
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and the parameter vector u(t) have to be determined. Once
the structure is determined, parameter estimation algorithms
can be used to find the unknown values of the system para-
meters from measurements of the I/O signals. Often it is
desired that these parameters are estimated recursively in
real time during normal operation of the system. This
occurs, for example, if the parameters are time-varying
and need to be monitored online. A general approach that
subsumes a variety of recursive parameter estimation algori-
thms is the recursive prediction error method [155]. This
method, which is applicable to a wide class of models,
starts from formulating a predictor for a given model.
This predictor is then adjusted such that with the prediction
error

eðtkþ1Þ ¼ yðtkþ1Þ � ŷðtkþ1Þ ð178Þ

a quadratic cost function

J ðtkþ1; uÞ ¼ Ef1
2

eTðtkþ1; uÞWðtkþ1Þeðtkþ1; uÞg ð179Þ

is minimised, where W represents a sequence of weighting
matrices. There are several algorithms to solve this
problem.
Quite commonly, a gradient-based approach is used to

adjust the parameter estimates. This requires the gradient
of the cost functional, and, consequently, the gradient of
the prediction error, and also the gradient of the prediction
error covariance matrix, although the latter is often
neglected. These gradients can be obtained from a so-
called sensitivity model. However, the derivation of such
a sensitivity model is extremely complicated even for the
simplest nonlinear filter, the extended Kalman filter
(EKF). This complication arises because the filter gain
depends on the system parameters. For linear systems,
this problem can be alleviated by using an innovations
model. The innovations model corresponds to the stationary
Kalman filter with a constant gain. This filter gain can then
be independently parameterised and estimated [155].
From a theoretical point of view, this constant-gain
assumption is only justifiable for linear systems.
Nevertheless, it has also been applied to nonlinear
systems. In [156], sensitivity models for four popular
continuous-discrete approximate nonlinear filters are
developed. The derivation of these sensitivity models is
based on a reformulation of the higher-order filters reported
in [157] and makes heavy use of matrix differential
calculus. With the sensitivity models of these filters, a
general adaptive filtering algorithm has been developed.
Practical applications showed that already the simplest
adaptive filter, the adaptive extended Kalman filter, gave
sufficient results and it was found unnecessary to use
higher-order filters. The potential of this method has also
been shown for failure detection and is due to its fast and
accurate convergence rate.

(c) Methods based on (generalised) equation error (EE/
GEE): The following considerations refer to identification
methods based on the minimisation of EE/GEE as defined
in Fig. 8. Various approaches belong to this general category:

(i) Integration methods: Into this group fits the newly
introduced ‘reinitialised partial moments function’
approach, which has been applied to some nonlinear
systems and especially to bilinear ones [158]. The I/O
data are sampled and at any sampling step reinitialised
partial moments are used. The method is based on the
minimisation of a quadratic cost function of the equation
error over a fixed observation interval. The original
iterative offline Marquardt algorithm is transformed to a

recursive version, under the assumption that the next
estimate of the actual parameter vector is located in the
near neighbourhood of the estimate of the previous
sampling step.
(ii) Delayed state-variable (SV) filters:The basic idea of this
approach was originally proposed in [159]. However, its
implementation was limited, due to the deficiency of the
selected delay filters, therefore a new method [160] has
been proposed for identifying nonlinear CT systems from
sampled data records, based on special SV filters and
coupled with an orthogonal LS estimation. The main idea
consits in the special choice of delay or transportation lag
filters. The result of passing a signal through a nonlinear
function and then passing this result through a transportation
lag filter is exactly the same when the nonlinear function
and the transportation lag filter are changed. Application
of Butterworth filter group delays equalised with two
second-order all-pass filters provides a good approxi-
mation to the transportation lag device. The delay-filtered
input as well as output signals and their associated higher-
order derivatives can be used for identification of the
unknown system parameters using an orthogonal LS esti-
mator. For better determining the cutoff frequency of the
filters a RBF network model is proposed in [161], and its
structure is properly obtained by applying a genetic
algorithm.
(iii) Block-pulse functions: In [162] an interesting approxi-
mation algorithm for parameter identification of systems
governed by nonlinear differential equations, by means of
a block-pulse operator (BPO) is described. The basic idea
of this BPO method is to convert the problem of parameter
identification in the original function space into an
equivalent approximate identification problem in the
image space of the BPO, where the algortithm for
solving the approximation problem may be simplified
considerably.
(iv) Modulating functions (MF): As already mentioned in
Section 3.1, the idea of the MF approach is to convert a
differential equation involving I/O signals on a specified
time interval into a sequence of algebraic equations. The
idea was motivated by Laplace and Fourier transformation.
This method offers two distinct advantages for linear as well
as nonlinear CT systems over other identification methods:
first, they allow for arbitrary initial conditions and, sec-
ondly, avoid approximation of time derivatives from noisy
signals. For the identification of nonlinear CT systems
two types of MFs have been proposed: Fourier MFs [21,
22, 163–167] and Hartley MFs [6–8, 168–175].

Both these classes of MFs are especially appropriate for
the identification of integrable and convolvable types of
nonlinear CT systems. Integrable nonlinear CT systems
are described by models of the type

Xn1
i¼0

Xn2
j¼0

aij
di

dti
f fj½uðtÞ; yðtÞ�g ¼ 0 ð180Þ

where fj(u, y) denotes a known differentiable function of u
and y. Any of the coefficients aij may be set to unity for
normalisation. In the absence of structural information
regarding fj, these can, for example, be chosen as multi-
nomials in u and y. Several physical systems fall into
this category. One example is the celebrated forced van
der Pol’s oscillator. As this category of models is directly
integrable, all the methods of parameter estimation for
linear systems can be used, albeit with the additional
computation of fj.
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A further generalisation of this is given for convolvable
nonlinear CT systems by the model

Xn1
i¼0

Xn1
j¼0

Xn1
k¼0

aijkgk ½uðtÞ; yðtÞ�
di

dti
ffj½uðtÞ; yðtÞ�g ¼ 0 ð181Þ

Here, gk(u, y) is another known function of u and y. By
using identities related to multiple derivatives of functions
of u and y, many of the possible nonlinear terms involving
these functions and their derivatives can be expressed in this
form. This is the most general form of nonlinear differential
equations that has till now been used for parameter esti-
mation. Only the methods employing Fourier and Hartley
modulating functions have been successful in solving this
problem without the need to estimate unknown initial
conditions [166, 168].
Thus, the initial step in identifying a nonlinear CT system

is to rearrange a model in the form of (180) or (181), which
can describe a large number of physical systems. Then it is
possible to specify a cost function J(u)�0 using the FMF or
HMF method for a given I/O-data set over the observation
time interval [0, T ], and minimising J(u) will lead to a one-
shot or a newly developed batch scheme recursive LS
estimation [21, 22, 173, 175]of the parameter vector û .
The basic procedure in the case of HMFs is the introduction
of the modulating function

fmðtÞ ¼
Xn
i¼0

ð�1Þi
n

i

� �
casðnþ m� iÞv0t; 0 , t � T

ð182Þ

where cas(vt) ¼ cos(vt)þ sin(vt), m ¼ 0,+1, . . . is
referred to as the modulating frequency index, v0 ¼ 2p/T
which plays the role of a resolving frequency, and fm(t)
is a member of the family of an nth-order HMF if fm(t)
is sufficiently smooth, and the two-point boundary
conditions given by

fðlÞ
m ðtÞ exists for all l ¼ 0; 1; . . . ; n� 1 and

fðlÞ
m ðtÞ ¼ 0 for t ¼ 0 and t ¼ T

(
ð183Þ

are satisfied for each m, where fm
(l )(t) is the lth derivative of

a member of a family of MF ffm(t)g and n describes the
highest derivative of the system under consideration. This
modulating function is closely related to the FMF.
Compared to the very efficient FMF method, the HMF
method still has the important additional advantages that
the HMFs are real-valued and the Hartley spectra can be
computed efficiently with the help of fast algorithms for
the Hartley integral transformation. This new methodology
is applicable to a large class of nonlinear continuous-time
systems by defining a set of HMFs for characterising the
continuous process signals. The Hartley transform (HT) of
a continuous signal j(t) is defined by

HjðvÞ ¼

ð1
�1

jðtÞ casðvtÞdt

¼

ð1
�1

jðtÞ cosðvtÞdt þ

ð1
�1

jðtÞ sinðvtÞdt

¼ Hjeven ðvÞ þ Hjodd ðvÞ ð184Þ

where cas(vt) ¼ cos(vt)þ sin(vt) ¼
ffiffiffi
2

p
sin(vtþ p/

4), Hjeven
(v) and Hjodd

(v) are the even and odd
parts of the HT of a signal j(t), respectively.
The relationship between the even and odd parts

of the HT can be expressed as

HjevenðvÞ

Hjodd ðvÞ

� �
¼

1

2

1 1

1 �1

� �
HjðvÞ

Hjð�vÞ

� �
or

HjðvÞ

Hjð�vÞ

� �
¼

1 1

1 �1

� �
HjevenðvÞ

Hjodd ðvÞ

� �
ð185Þ

The inverse HT is given by

jðtÞ ¼
1

2p

ð1
�1

HjðvÞ casðvtÞdv ð186Þ

In general, modulation of a simple function or
signal j(t) consists in multiplying by a HMF
fm(t) and integrating over [0, T], i.e.

Ð
0
T

j(t)fm(t)dt; and this manipulation has coined
the name Hartley spectrum of a function or
signal j(t). Thus, the mth HMF spectral com-
ponent H̄j(mv0) of a simple function or signal
j(t) is defined by

�Hjðmv0Þ ¼

ðT
0

jðtÞfmðtÞdt

¼
Xn
j¼0

ð�1Þi
n

i

� �ðT
0

jðtÞ cas½ðnþ m� iÞv0t�dt

¼
Xn
j¼0

ð�1Þi
n

i

� �
Hj½ðnþ m� iÞv0�ð187Þ

If j(v)(t), v¼ 1, 2, . . . , n is the nth derivative of
j(t), then its corresponding Hartley modulated
spectrum is given by

�H
ðnÞ

j ðmv0Þ ¼
Xn
i¼0

ð�1Þi
n

i

� �
ðnþ m� iÞnvn

0 cas
0 np

2

	 

� Hj½ð�1Þnðnþ m� iÞv0� ð188Þ

where cas0(np/2)¼ cos(np/2)2 sin(np/2),
H̄j
(n)(mv0) is the mth HMF spectral component

of the nth derivative of j(t), and Hj(mv0) is the
Hartley transform of j(t). The Hartley spectrum
of the nth derivative of the signal j(n)(t), n¼ 1,
2, . . . , n can be computed analytically by repeat-
edly applying integration by parts until all the
derivatives of the signal shift to a known value
of fm(t). Similar rules as in (187) and (188) can
be established for products of functions and
their derivatives, as for example j1(t)j2

(n)(t)
[168]; then the spectrum for such a product is
given by

�H
0;n

j1;j2
ðmv0Þ ¼ Ej1ðmv0Þ � �H

ðnÞ

j2
ðmv0Þ

þ Oj1ðmv0Þ � �H
ðnÞ

j2
ðmv0Þ

¼ Hj1ðmv0Þ � �H
ðnÞ

j2
ðmv0Þ ð189Þ
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where

Ej1ðmv0Þ ¼
1

2
½Hj1ðmv0Þ þ Hj1ð�mv0Þ� and

Oj1ðmv0Þ ¼
1

2
½Hj1ðmv0Þ � Hj1ð�mv0Þ�

are the even and odd parts of Hj1
(mv0), respect-

ively, and the operator� symbol represents the
two convolutions in short form for simplicity.
For demonstration of the method, let us consider the

following continuous-time nonlinear dynamic system with
integrable and convolvable terms given by

€yðtÞ ¼ �d1 _yðtÞ � d2yðtÞ � d3y
2ðtÞ_yðtÞ

þ d4yðtÞuðtÞ þ d5uðtÞ_yðtÞ þ d6uðtÞ ð190Þ

where di, i ¼ 1, 2, . . . , 6 are the parameters. Equation (190)
contains integrable (the 3rd term) and convolvable (the 4th
and 5th term of the right-hand side) nonlinear differential
terms. The problem is to identify the parameters di based
on the I/O-data records over a finite interval T ¼ NTS.
Modulating (190) leads to the HMF model of the nonlinear
system

�H
ð2Þ

y ðmv0Þ ¼ � d1 �H
ð1Þ

y ðmv0Þ � d2 �Hyðmv0Þ � d3
1

2
�H
ð1Þ

y3
ðmv0Þ

þ d4Hyðmv0Þ � �Huðmv0Þ þ d5Huðmv0Þ

� �H
ð1Þ

y ðmv0Þ þ d6 �Huðmv0Þ ð191Þ

which is linear in the parameters. Letting z(mv0) ¼
H̄y
(2)(mv0), assuming an equation error 1(mv0) and

rearranging the terms of (191), it can be rewritten as a
regression equation in the ‘frequency’ domain

zðmv0Þ ¼ wTðmv0Þuþ 1ðmv0Þ ð192Þ

with

wTðmv0Þ ¼ ½� �H
ð1Þ

y ðmv0Þ � �Hyðmv0Þ �
1

3
�H
ð1Þ

y3 ðmv0ÞHyðmv0Þ

� �Huðmv0ÞHuðmv0Þ� �H
ð1Þ

y ðmv0Þ �Huðmv0Þ�

and

uT ¼ ½d1 d2 d3 d4 d5 d6�

Let a sequence of observations be made for m ¼ 0, +1, . . . ,
+M, then (2Mþ 1) regression equations can be represented
as a vector equation and minimising a frequency-weighted
cost function with respect to the unknown parameter vector
u leads to the frequency-weighted-least-squares (FWLS)
estimate. Introducing the RMS normalised error

Duk k ¼
1

nu

Xnu
i¼1

½ðûi � uitrueÞ=uitrue�
2

( )1=2

ð193Þ

where nu is the number of estimated parameters and taking
M ¼ 12, N ¼ 1025, T ¼ 0.16 s and u(t) ¼ 0.25(cos 0.4ptþ
sin 0.2pt), then, even for a superimposed output noise with
NSR ¼ 60%, the value of the RMS is below 0.1, which
shows the robustness of this approach, which had been con-
siderably improved in [169–175] in comparison to the early
investigations in [168] by computational changes.

9.2.2 Special parametric nonlinear models: Under
this category of models we will briefly discuss block-
oriented nonlinear models and bilinear models.

(a) Block-oriented models: These models are characterised
by a blockwise separation into linear dynamic and nonlinear
static partial systems [176]. Mainly three basic stuctures,
presented in Fig. 18, are of interest:

(i) Hammerstein models,
(ii) Wiener models, and
(iii) Wiener-Hammerstein models.

These models may include a manifold of disturbances of
deterministic or stochastic type, which are not shown in
Fig. 18.

Even though these models have been applied widely in
the identification of DT systems the corresponding model-
ling techniques have not become very popular for CT
systems. There are only a few identification approaches
dealing with CT types of Hammerstein [171] and Wiener
systems [177]. In the first case, the HMF approach has
been applied and, in the second case, the resulting identifi-
cation problem is a nonparametric one, i.e. the impulse
response of the linear subsystem is recovered by a corre-
lation method, while the nonlinear characteristic is esti-
mated through nonparametric kernel regression.

(b) Bilinear model structure: In the past years, much
attention has been focused to the identification of bilinear
systems using DT approaches. Compared to these efforts,
there has been relatively less work done for the parameter
identification of CT bilinear model structures, using data
records of I/O signals. A time-invariant bilinear SISO
system can be represented in the state space form as

_xðtÞ ¼ AxðtÞ þ buðtÞ þ NxðtÞuðtÞ ð194Þ

yðtÞ ¼ cTxðtÞ þ 1ðtÞ ð195Þ

which, by replacing the state variables xi(t) by their
corresponding I/O signals, can easily be written in a
I/O-differential standard form, which allows directly the
application of the HMF method for identifying the
system parameters involved in A, B, cT and N [172, 175].
Another approach based on an integration method is
described in [158].

9.3 Signal-dependent parameter (SDP) models

Very often in engineering practice it is not completely clear
whether the dynamic behaviour of a technical system is

Fig. 18 Schemes of undisturbed simple block-oriented CT
models

a Hammerstein
b Wiener
c Wiener-Hammerstein
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actually nonlinear or can also be described by a linear
model with signal dependent parameters. Such a depen-
dence on external (measurable) signals, characterised by
the signal vector s(t), can occur, for example, at set-point
changes, load changes, changes of raw materials or new
initial conditions etc. of the plant. The continuous-time
plant model can be described by the time-variable para-
meter (TVP) structure

yðtÞ ¼ ŷ½sðtÞ� þ nðtÞ

where

ŷ½sðtÞ� ¼ �
Xn
i¼1

ai sðtÞ½ �
di

dti
yðtÞ þ

Xn
j¼0

bj sðtÞ½ �
dj

dt j
uðtÞ

and the noise signal is assumed to be obtained by filtering a
(0, s0)-distributed white noise signal 1(t) by the filter trans-
fer function 1/

P
i¼1
n ai(s)s

i. If s(t) actually constitutes a
stochastic variable, then the system is truly nonlinear and
likely to exhibit severe nonlinear behaviour, which cannot
be approximated in a simple TVP manner [102]. Then a
more powerful SDP modelling method must be applied
[178] involving the nonparametric identification of the
signal dependency using recursive methods of TVP esti-
mation which allow for rapid parametric change. These
methods are based on fixed-interval-smoothing (FIS) algor-
ithms which provide the signal dependencies in graphical
form. Parametrisation of these graphs can be obtained
finally by curve filtering based on LS methods or using
neural or neurofuzzy networks. The identified structural
form of the model can be converted into a nonlinear sto-
chastic state-space form. The final constant parameter esti-
mation is obtained by applying LS or ML methods and
prediction error decomposition leading finally to a parame-
trically efficient nonlinear model representation.
Finally, it should be mentioned that much work has still

to be invested into the enlargement of the existing toolboxes
for the identification of nonlinear systems [179].

10 A comparative study of DT and CT methods

Several studies assessed a number of CT methods [180–
182], [184–186]. In the recent years, two fundamentally
different time-domain approaches to the problem of obtain-
ing a CT model of a naturally CT system from its sampled
input/output data are compared:

(i) indirect approach: this involves two stages. At first a
DT model for the original CT system is obtained by apply-
ing the well-established DT methods and the DT model is
then transformed into CT form;
(ii) direct approach: in this approach a CT model is
obtained straightaway using well-known CT methods

The results of extensive comparative studies [180, 181] using
the SID and CONTSID toolboxes are now available on a
system where the following transfer function has been
simulated with a pseudorandom-binary signal (PRBS) as
input u(t):

G0ðsÞ ¼
1600� 6400s

1600þ 416sþ 408s2 þ 5s3 þ s4
ð196Þ

Two types of input signals are considered: a PRBS of
maximum length, respecting the zero-order hold assumption
and multisine signals, respecting the bandlimited assumption.
These signals are generated to excite the system in its
bandwidth.

Multisine: The input signal is chosen as the sum of five
sinusoidal signals

uðtÞ ¼ sinðtÞ þ sinð1:9tÞ þ sinð2:1tÞ þ sinð18tÞ þ sinð22tÞ

The observation time is set to T ¼ 75 s. Owing to the two
sampling periods, the input signal has 1500 or 7500
samples.

PRBS of maximum length: The characteristics of the signal,
whose amplitude switches between 21 and þ1, are the
following: the number of stages of the shift register is set
to ns ¼ 10, the clock period is set to np ¼ 10, which
makes a number of points N ¼ 7161 for a sampling
period setting of 10 ms. With ns ¼ 9 and np ¼ 3, we have
N ¼ 1533 for a sampling period setting of 50 ms.

10.1 Types of measurement noise

The data generating system is given by the following
relations:

yuðtÞ ¼ G0ð pÞuðtÞ

yðtkÞ ¼ yuðtkÞ þ vðtkÞ

The following types of measurement noise v(tk) are
considered:

(a) DT white noise

vðtkÞ ¼ eðtkÞ

(b) DT coloured noise (ARMA process noise)

vðtkÞ ¼
0:2236q�1 � 0:1630q�2

1� 1:8906q�1 þ 0:9512q�2
eðtkÞ

where q21 is the backward shift operator, and e(tk) is a zero-
mean independent identically distributed (IID) Gaussian
sequence. The variance se

2 of e(tk) is adjusted to obtain a
desired signal-to-noise ratio (SNR ¼ 10 or 0 dB).
The SNR is defined as

SNR ¼ 10 log
Pyu

Pv

where Pv represents the average power of the zero-mean
additive noise on the system output (e.g. the variance),
while Pyu

denotes the average power of the noise-free
output fluctuations.

Two sets of input-output data are gathered, one with
sampling time Ts ¼ 50 ms and another with Ts ¼ 10 ms.
The latter sampling rate is rapid relative to the critical fre-
quencies of the simulated system. In a practical identifi-
cation scenario in which the critical frequencies of the
system are not usually well known, the tendency to
sample input output data at a high rate is natural in the inter-
est of preserving the signal content.

10.2 Identification techniques

The CT model identification is carried out with the help of
the following techniques provided in the CONTSID toolbox:

(a) generalised Poisson moment functionals (GPMF),
(b) Fourier modulating functions (FMF), and
(c) linear integrating filter (LIF).

The DT model identification was carried out with the help
of the SID toolbox using IV4, N4SID, OE and PEM
methods. The number of experiment Nexp is set to 200 in
each trial which involves noisy data. The results are
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Table 3: Summary of results of Monte Carlo simulation

Simulation conditions SID toolbox methods

Ts Input Noise Criterion IV4 N4SID OE PEM

10 ms PRBS White 10 dB h
i

33 63 92 92
MSE 7.7 1.0 � 101 1.4 7.7
sSE 2.4 6.3 2.6 2.6
EĜi

5.60 � 104 4.21 � 104 1.64 � 104 4.31 � 104

Ef̂i
1.88 � 107 1.80 � 107 3.55 � 106 1.77 � 107

Multisine White 10 dB 8&9 h
i

13 52 97 99
MSE 1.3 � 102 3.1 � 103 1.7 � 101 6.9 � 104

sSE 1.3 � 102 1.3 � 104 4.7 � 101 9.7 � 105

EĜi
3.98 � 105 4.38 � 105 1.76 � 105 3.56 � 105

Ef̂i
2.10 � 106 6.69 � 105 2.22 � 106 7.42 � 106

White 0 dB h
i

16 60 98 99
MSE 1.7 � 102 1.1 � 103 1.4 � 109 1.2 � 105

sSE 9.7 � 101 2.0 � 103 2.010 1.7 � 106

EĜi
4.28 � 105 6.28 � 105 3.75 � 105 3.85 � 105

Ef̂i
1.89 � 107 1.16 � 106 1.47 � 107 9.60 � 106

Coloured 10 dB h
i

20 80 100 100
MSE 9.0 � 101 1.2 � 102 2.9 5.4 � 102

sSE 1.6 � 101 2.2 � 101 2.2 � 101 7.5 � 103

EĜi
2.72 � 105 2.93 � 105 7.75 � 104 1.21 � 105

Ef̂i
5.37 � 106 1.96 � 106 6.92 � 105 6.95 � 105

Coloured 10 dB h
i

29 81 98 99
MSE 1.1 � 102 1.2 � 102 6.5 1.4 � 101

sSE 8.3 � 101 1.5 � 101 2.9 � 101 3.7 � 101

EĜi
3.27 � 105 3.17 � 105 1.01 � 105 1.96 � 105

Ef̂i
5.39 � 106 3.40 � 106 8.40 � 105 1.55 � 106

50 ms PRBS White 10 dB h
i

48 100 94 92
MSE 2.6 � 101 5.8 2.4 1.1 � 101

sSE 2.8 � 101 1.2 � 101 4.8 8.1
EĜi

2.09 � 104 2.95 � 103 2.67 � 103 1.15 � 104

Ef̂i
1.64 � 107 2.22 � 105 3.64 � 106 1.19 � 107

Multisine White 10 dB h
i

49 69 97 99
MSE 4.8 � 101 1.0 � 101 2.5 6.4 � 101

sSE 2.3 � 101 1.7 � 101 1.1 � 101 6.2 � 101

EĜi
6.69 � 104 2.79 � 104 1.16 � 104 6.16 � 104

Ef̂i
9.50 � 105 3.32 � 105 4.38 � 105 1.66 � 106

Simulation conditions CONTSID toolbox methods
Ts Input Noise IVFMF IVLIF IVGPMF COE SRIVC

10 ms PRBS White 10 dB 100 100 100 100 100
1.7 � 1021 4.7 � 1022 3.0 � 1023 8.4 � 1024 8.4 � 1024

1.0 � 1021 1.6 � 1022 2.0 � 1023 4.5 � 1024 4.5 � 1024

5.61 � 102 3.78 � 102 12.1 2.41 2.41
1.82 � 105 1.70 � 104 2.89 � 102 56.6 � 101 56.6

Multisine White 10 dB 8&9 100 100 100 100 100
1.9 � 1021 1.2 � 1021 1.4 � 1021 1.3 � 1021 6.3 � 1022

8.3 � 1022 3.9 � 1022 3.8 � 1022 3.7 � 1022 1.3 � 1022

29.3 12.3 7.99 7.37 13.1
6.23 � 102 2.65 � 102 1.70 � 102 1.64 � 102 3.01 � 102

White 0 dB 100 100 100 100 100
1.0 2.1 4.2 � 1021 3.4 � 1021 2.7 � 1021

5.5 � 1021 3.5 2.0 � 1021 1.6 � 1021 1.3 � 1021

2.92 � 102 9.96 � 102 90.9 72.6 77.1
6.36 � 103 8.58 � 103 2.09 � 103 1.79 � 103 1.84 � 103

Coloured 10 dB 100 100 100 100 100
3.3 � 1021 2.9 � 1021 3.2 � 1021 2.1 � 1021 1.7 � 1021

2.5 � 1021 1.8 � 1021 2.3 � 1021 1.1 � 1021 1.2 � 1021

41.4 66.6 61.2 21.0 30.4
9.46 � 102 7.81 � 102 7.77 � 102 4.36 � 102 6.86 � 102

Coloured 10 dB 93 92 96 100 100
1.5 � 101 1.2 � 101 6.0 1.9 1.5
9.9 � 101 2.7 � 101 2.2 � 101 6.2 1.4

2.49 � 103 4.65 � 103 1.68 � 103 5.76 � 102 5.67 � 102

2.81 � 104 8.00 � 104 1.53 � 104 1.48 � 104 1.04 � 104

50 ms PRBS White 10 dB 100 100 100 100 100
4.4 1.0 4.5 � 1022 8.4 � 1023 8.4 � 1023

1.6 2.1 � 1021 2.3 � 1022 4.8 � 1023 4.8 � 1023

4.10 � 103 7.92 � 102 80.0 14.8 14.8
9.63 � 105 3.38 � 105 2.20 � 103 3.93 � 102 3.93 � 102

Multisine White 10 dB 100 100 100 100 100
2.5 2.2 2.2 2.5 9.1 � 1021

5.9 � 1021 7.5 � 1021 3.5 � 1021 3.1 � 1021 6.4 � 1022

1.49 � 102 3.55 � 102 52.1 � 101 40.7 2.34 � 102

3.94 � 103 1.13 � 104 1.34 � 103 9.38 � 102 8.48 � 103
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Fig. 19 Continued
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summarised in Table 3 where hi ¼ percentage of successful
runs (i.e. where the identified model is stable):

MSE ¼
1

Nexp

XNexp

i¼1

SEðiÞ; SE ¼
1

N

XN
k¼1

12ðtkÞ;

1ðtkÞ ¼ yuðtkÞ � ŷuðtkÞ;

s2
SE ¼

1

Nexp

XNexp

i¼1

ðSEðiÞ �MSEÞ2;

E
Ĝi

¼
1

Nexp

XNexp

i¼1

XNv

k¼1

ðG0ðvkÞ � GiðvkÞÞ
2;

E
f̂i
¼

1

Nexp

XNexp

i¼1

XNv

k¼1

ðf0ðvkÞ � fiðvkÞÞ
2

Fig. 19 shows the Bode plots of the identified models.

10.3 Salient observations

(i) The stability rate SR shows that the direct methods are
highly reliable, as all the estimated models are stable. On
the other hand, the indirect methods result in a high percen-
tage of models that are unstable, as is evident from the per-
formance of IV4 and N4SID algorithms, and the situation is
aggravated by rapidly sampled data. Even if the estimated
DT model is stable, it has a higher AMSE value, i.e. the esti-
mated model differs significantly from the actual system.
(ii) All the three CT methods in the direct approach
required the same computational effort as the IV4 algorithm
of the indirect approach. In the other cases of indirect
estimation the computational time is 3–5 times higher.
(iii) Even in experiments using normally sampled data and
additive noise, it is clear that the stable estimated DT
models deviate considerably from the actual system.
(iv) The methods of the indirect approach were improved
when the data were decimated and prefiltered. However,
the direct methods showed still better performance.

truetrue

true true
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Fig. 19 Bode plots of identified models
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(v) In the multisine input case the performance of the indir-
ect methods improves only when the number of sinusoidal
components increases, this is understandable because of
the larger number of parameters of the DT model in the
indirect approach.

For many people working in the field of system identifi-
cation, the choice between the direct and indirect
approaches may seem trivial, but this study clearly shows
that this is not so; the direct approach outperforms the indir-
ect one in many respects. While those who work mainly
with DT methods seem to be of the conviction that the indir-
ect approach cannot be inferior to the direct one, a follow-
up investigation [183] confirmed the results of [180] in a
discussion of the initialisation aspects of the indirect
methods which are related to the poor performance of the
indirect methods.

11 Conclusion

This paper has attempted to provide a continuous-time per-
spective of the problem of system identification. The focus
is particularly on lumped linear and nonlinear models and
on those developments that followed earlier surveys by
other authors, especially for linear [184] and nonlinear
[144] CT models and by the present authors themselves
[5–8]. The various CT approaches have been outlined in
a unified framework and the significance of the CT
models of physical systems has been discussed, in
general, and with respect to control engineering appli-
cations, in particular. A generalised framework for linear
estimation that is based on Markov parameters and time
moments has been presented. Recent developments in
identification of nonlinear systems are also surveyed. It is
hoped that these will soon be included in the respective
toolboxes.
A summary of the results of the identification experiment

with a simulated model using some DT and CT methods is
presented. These results suggest that the DT model esti-
mation may be adequate in some situations, but, in
general, if the conditions of the identification experiment
are not adequately in favour of DT methods, the results
may not be reliable in the sense that the resultant models
may be unstable, or even if they are stable they may not
be accurate. Rapid sampling, which is natural for several
reasons, accentuates these phenomena. Estimation of CT
models is free from all these problems and it assures
stable and more accurate models, particularly with rapidly
sampled data. The CT and DT methods must therefore be
integrated, complementing each other to provide a wider
set of comprehensive tools with greater choice of options
to the system identification community, to assure depend-
able methods and acceptable results in a wide variety of cir-
cumstances. It is time now to take appropriate steps towards
integration of the DT identification tools [180] with those of
CT identification [185, 186] leading to a comprehensive
tool kit for identification of lumped linear and nonlinear
systems. It will be even more desirable to include the
various methods for distributed parameter systems to
render the toolbox truly comprehensive, and the authors
hope that this will take place in the future.
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155 Ljung, L., and Söderström, T.: ‘Theory and practice of recusive
identification’ (MIT Press, Cambridge, MA, 1983)

156 Bohn, C., and Unbehauen, H.: ‘Sensitivity models for nonlinear
filters with application to recursive parameter estimation for

nonlinear state-space models’, IEE Proc., Control Theory Appl.,
2001, 148, (2), pp. 137–145

157 Bohn, C., and Unbehauen, H.: ‘The application of matrix
differential calculus for derivation of simplified expressions in
approximate nonlinear filter algorithms’, Automatica, 2000, 36,
pp. 1553–1560

158 Coirault, P., Trigeassou, J.C., Gaubert, J.P., and Champenois, Q.:
‘Parameter identification of an induction machine for diagnosis’.
Proc. IFAC-Safe Process ’97, Kingston upon Hull, UK, 1997,
pp. 276–281

159 Kohr, R.H.: ‘A method for determination of a differential equation
model for simple nonlinear systems’, IEEE Trans. Electron.
Comput., 1963, 12, pp. 394–400

160 Tsang, K.M., and Billings, S.A.: ‘Identification of continuous
time nonlinear systems using delayed state variable filters’,
Int. J. Control, 1994, 60, (2), pp. 159–180

161 Hachimo, T., Karube, I., Minari, Y., and Takata, H.: ‘Continuous-
time identification of nonlinear systems using radial basis function
network model and genetic algorithm’. Proc. 12th IFAC Symp.
Syst. Identification Parameter Estimation, Santa Barbara, CA,
USA, 2000, paper 141

162 Wang, S.: ‘Block pulse operator method for parameter identification
problems in non-linear continuous systems’, Int. J. Syst. Sci., 1991,
22, (12), pp. 2441–2455

163 Pearson, A.E., and Lee, F.C.: ‘On the identification of polynomial
input-output differential systems’, IEEE Trans. Autom. Control,
1985, 30, (8), pp. 778–782

164 Pearson, A.E., and Lee, F.C.: ‘Parameter identification of linear
differential systems via Fourier based modulating functions’,
Control-Theory Adv. Technol. (C-TAT), 1985, 1, pp. 239–266

165 Pearson, A.E.: ‘Least squares parameter identification of nonlinear
differential input-output models’. Proc. 27th IEEE Conf. Decis.
Control (CDC), Austin, USA, 1988, pp. 1831–1835

166 Pearson, A.E.: ‘Explicit parameter identification for a class of
nonlinear input/output differential operator models’. Proc. 31st
IEEE Conf. Decis. Control (CDC), Tuscon, USA, 1992,
pp. 3656–3660

167 Pearson, A.E., Shen, Y., and Pan, J.Q.: ‘Discrete frequency formats
for linear differntial system identification’. Proc. 12th IFAC World
Congress, Sydney, Australia, 1993, VII, pp. 143–148

168 Patra, A., and Unbehauen, H.: ‘Identification of a class of nonlinear
continuous-time systems using Hartley modulating functions’,
Int. J. Control, 1995, 62, (6), pp. 1431–1451

169 Daniel-Berhe, S., and Unbehauen, H.: ‘Parameter estimation of
nonlinear continuous-time systems using Hartley modulating
functions’. Proc. IEE UKACC Int. Conf. Control, Exeter, UK,
1996, pp. 228–233

170 Daniel-Berhe, S., and Unbehauen, H.: ‘Physical parameter
estimation of the nonlinear dynamics of a single link robotic
manipulator with flexible joint using the HMF-method’. Proc. of
16th Am. Contr. Conf. (ACC), Albuquerque, NM, USA, 1997,
pp. 1504–1508

171 Daniel-Berhe, S., and Unbehauen, H.: ‘Identification of nonlinear
continuous-time Hammerstein model via HMF-method’. Proc. of
36th IEEE Conf. Decis. Control (CDC), San Diego, CA, USA,
1997, pp. 2990–2995

172 Daniel-Berhe, S., and Unbehauen, H.: ‘Bilinear continuous-time
systems identification via Hartley-based modulating functions’,
Automatica, 1998, 34, (4), pp. 499–503

173 Daniel-Berhe, S., and Unbehauen, H.: ‘State space identification
of bilinear continuous-time canonical systems via batch
scheme Hartley modulating functions approach’. Proc. 37th Int.
Conf. Decis. Control (CDC), Tampa, FL, USA, 1998,
pp. 4482–4487

174 Daniel-Berhe, S., and Unbehauen, H.: ‘Physical parameters estimation
of the nonlinear continuous-time dynamics of a DC motor using
HMF-method’, J. Franklin Inst., 1999, 336, pp. 481–501

175 Daniel-Berhe, S.: ‘Parameter identification of nonlinear continuous-
time systems using the Hartley modulating functions method’
(Cuvillier-Verlag, Göttingen, 1999)

176 Haber, R., and Keviczky, L.: ‘Nonlinear system identification-input-
output modelling approach. Vol. 1 & 2’ (Kluwer, Dordrecht, The
Netherlands, 1999)

177 Greblicki, W.: ‘Continuous-time Wiener system identification’,
IEEE Trans. Autom. Control, 1998, 43, (10), pp. 1488–1492

178 Young, P.C., McKenna, P., and Bruun, J.: ‘Identification of non-
linear stochastic systems by state dependent parameter estimation’,
Int. J. Control, 2001, 74, pp. 1837–1857

179 N.N.: ‘Identification of nonlinear systems toolbox for use with
MATLAB’. Scientific Computers GmbH, 562064 Aachen,
Germany, Franzstr. 107

180 Rao, G.P., and Garnier, H.: ‘Numerical illustrations of the relevance
of direct continuous-time model identification’. 15th Triennial IFAC

IEE Proc.-Control Theory Appl., Vol. 153, No. 2, March 2006 219



World Congress, Barcelona, Spain, 2002, CD-Rom publication
(paper 2456)

181 Garnier, H., Mensler, M., and Richard, A.: ‘Continuous-time model
identification from sampled data. Implementation issues and
performance evaluation’, Int. J. Control, 2003, 76, (13),
pp. 1337–1357

182 Rao, G.P., and Garnier, H.: ‘Identification of continuous-time
systems: direct or indirect?’. Proc. 15th Int. Conf. Systeme
Science, Wroclaw, Poland, 2004, I, pp. 66–86

183 Ljung, L.: ‘Initialisation aspects for subspace and output-error
identification methods’. Proc. European Control Conf., Cambridge,
2003, CD-Rom publication

184 Homssi, L., Titli, A., and Despujols, A.: ‘Continuous-time process
identification: comparison of eight methods and practical aspects’.
Proc. 9th IFAC-Symp. Syst. Identification Parameter Estimation,
Budapest, Hungary, 1991, 2, pp. 1634–1642

185 Garnier, H., and Mensler, M.: ‘Comparison of sixteen continuous-
time system identification methods with the CONTSID toolbox’.
Proc. European Control Conf. ECC’99, Karlsruhe, Germany, paper
no. dm 3-6, 1999

186 Garnier, H., and Mensler, M.: ‘The CONTSID toolbox: a matlab
toolbox for continuous-time system identification’. Proc. 12th
IFAC-Symp. Syst. Identification Parameter Estimation, Santa
Barbara, CA, USA, 2000, pp. 851–856

IEE Proc.-Control Theory Appl., Vol. 153, No. 2, March 2006220




