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We must

Know
an object (system)
before we venture to
handle It.



Modeling and Identification
are tools In our efforts to
develop knowledge about an
object (system) :
two very vast and
well established fields



Modeling (physical systems)
 Natural laws
« Generic mathematical description

|dentification

 Determination of the values of parameters
In the generic model using measurements



Criterion

(Input/Output)
Signals

Fig. 1. The system identification problem.
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Fig. 2. The general setting for identification of Continuous Time Systems.



Two Approaches

* Indirect approach via Discrete-Time (DT)
models

First identify a DT model and convertto CT

e Direct approach through Continuous-Time
(CT) models

ldentify the CT model directly



Why CT models?

Laws of physical systems are in C

Therefore, CT models are native to CT
domain.

CT models provide good insight into the
system properties

Continuous-time models are useful In
applications such as fault diagnosis



CT models preserve available knowledge

G(s) =K /[(s+a)(s+b)(s+c)]

G,(z)=({,z " +b,z? +b,z7%)/1+a,z " +a,z° +a,27°)

DT approach ignores available
knowledge and assumes full
‘ignorance’



Discretization may render CT
models non-minimum phase

a
G(S) = zero order hold
s(s+a)

G,(2) = ) )
C(z-1)(z-D) B=1-¢® —aTe™
The zero of G, (2) o D—e
2, =—(B/A) - °
a=1

lies within the unit circle in the z-plane for Ts > 2

T, <05

moves far outside the unit circle for practically interesting values of



P

J1+ 0

Ts

Fig. 3.  Dependence of the zero Z, of GZ(Z) on the sampling time.



« Discretization gives rise to
undesirable sensitivity problems at
high sampling rates

* Increasing sampling rate ina DT
model does not lead to the original
CT model

» Discretization of a CT model gives a
unique DT model, but the reverse
action does not lead to its native CT
model



z-plane

o\ J@io

Fig. 4. The region of normal operation in the z-plane.



A black hole in the z-plane

e With increasing sampling
frequency the point (1,J0) in the
Z-plane tends to become a
black hole!
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Fig. 5. Approaches to Identification of Continuous Time Systems in the general setting.



Major problem with CT models: Derivative terms

Y(s)/U(s) =G(s) =b/(1+ as)
ady(t)/dt + y(t) = bu(t)

sampleatt, k=1 2,3, ...

av(k) + y(k) = bu(k)



[Transposed vector of measurements]
[Parameter vector]

=[A single measurement of the output]
Or

m,' 0=y,

[Matrix of measurements]
[Parameter vector]

=[Output measurement vector]
Or

MO =y



Major approaches
ady(t)/dt + y(t) = bu(t)

Modulating functions

a0, dt+ [0, Oy = b g, QU

tjocon (t)y(t)dt—atjod(i” y(t)dt =btjo¢n u(t)dt, n=1,2, ....

d



ty

-1,2, ..
t], n=
[on 0yt
jd¢”y(t)dt |
)

[a b]"

n=1,2,....
Tgp (t)u(t) dt



The Poisson moment functionals (PMF)

Modulating function:
Inverse Laplace transform of 1/(s+A)i+1.

M, {dy/dt{A f[(t —7) 1i1] exp[-A(t — 7)] g—ydf

[Mi{y(®)} =AMLy ()} - pi(t) y(0) Mi{u(t);]

Outputs at the various stages of a filter chain
with identical stages,
each with transfer function 1/(s+A)

Generation of equations:

*Vary i = 0,1,2 ... with fixed time horizon

*For fixed minimal i (1 on this case) vary time horizon
«Combination of the above



Integral Equation Approach

PMF transformation with A=0



-
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Fig. 6. The linear integrating filter



The Orthogonal Functions (OF) Approach

ady(t)/dt + y(t) = bu(t)
ay(t) — ay(0)s(t) + j y(z)dz =b j u(r)dr, 0<t<t,
y(t) = v,0,(t) + y,0,(t) u(t) = u,0, (t) +u,0,(t)

t t
Je.D)dr~ b+, (®)  [0,(r)dr = en0ia(t) + €50, (1)
0 0

{ Y(O)Sl -y, ug;+ u2621:| |:y1e11 + y2621:|

Y(O)Sz o y2 u1(912 T u2622 ylelZ + yzezz
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Fig. 7. The general framework for identification of continuous systems.



LD

= Modulating/ method functions l ¢ ¢
- 1-D
Wavelets HMF FMF
- 2-D
= Linear filters = State \VVariable Filter (S\VVF)

= Chain of integrators

= PMF - 1-D
- 2-D
= Spectral characterization of signals = GHOF

- PCBF = WF
= HF
=~ BPF
= HM
- FM

CBF: Jacobi, Chebyshev,
- Legendre, Laguerre,
Hermite etc.

Fig. 8. Several variants of the signal preprocessing operation RLD (PMF: Poisson Moment Functionals; GHOF:
General Hybrid Orthogonal Functions; PCBF: Piecewise Constant Basis Functions; CBF: Continuous Basis Functions;
WEF: Walsh Functions; HF: Haar Functions; BPF: Block Pulse Functions; HTM: Hartley Modulating Functions; FTM:
Fourier Modulating Functions).



Continuous
- Time Models |«
(CTM)

T.=0 T.=0
S Z Rip s
: Discrete Time S, Algebraic :
tommmeeee Models - Continuous -

(DTM) Form (ACF)
!
S, S,=Z S,
y y
Algebraic S, Algebraic :
Gamma Form »  Simulation  f--------- ’
(AGF) Form (ASF)

Fig. 9.  Reduction of the calculus of continuous time systems into algebra



Secondary Stage

* Apply the standard methods such as
Instrumental Variables, etc. to estimate the
parameters from the system of equations
generated by the Primary Stage



* indirect approach: 2 stages: 1. DT model
for the original CT system using well-
established DT methods and 2. DT model
IS transformed into CT form

e direct approach: CT model is obtained
straightaway using well-known CT
methods. Matlab CONTSID toolbox (which
can be freely downloaded at:
http://www.cran.uhp-nancy.fr)




Sampled

Physical/ Sampling /O signals CT methods
of I/O Direct
Real signals CT
CT System Model
DT .
methods . .
v :
.llIIIIIllllll’lllllllllllllllll: :
E DT E Transformation = -
. . into CT . .
: MOdeI : ?lllllll'

Indirect route via
DT methods



Problem statement

e SISO system
¥, (1) =G, (p)u(t)

B,(P)
A,(P)

B,(p)=b, +b’p+---+b’ p"
A(p)=ag+a p+---+a, p" +p"

G,(p)=




gy, (1) +ayyP () +---+ y{V (t) =bgu(t) + bPu® (t) +---+ bou™(t)

y(t) = G, (p)u(t) +V, (t)

o=[ac,..ash..b¢ ]

n

Z" =u(t,); y(tk)]::lzl



Assessment of identification

algorithms
e Success/failure

1-F S
7 N N

exp exp



Accuracy

Measures

1 I\Iexp
&5, = N_Z &, (1)

exp =1

Nexp

oy, = Nl > (&, ()-5, )2

exp 1=1

€3, (I) = %\/i(ym (tk) - 9u,i (tk))2

=1



Frequency response

 Measures
1 & 2\
fe = 22 (G(@) ~Gy(@))
exp 1=l j=1

1 I\Iexp N

E(;: N ZZ(%((O])_%(@]))Z

exp 1=1 J=1



Parameters

e Parameter error

N\

6 —0

o)

S =

" Nexp i i °
NMSE(@ )=~ 3| % =0°(1)
77N 9]

exp 1=1



Rao-Garnier test system (Ljung
1993)

 The system




Step response of RGTS
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u(t)=sin(t)+sin(1.9t)+sin(2.1t)+sin(18t)+sin(22)
The observation time is set to T=75s. Because of
the two sampling periods, the input signal has
1500 or 7500 samples.
PRBS of maximum length. The characteristics of
the signal, whose amplitude switches between -1
and +1, are the following: the number of stages of
the shift register is set to ns=10, the clock period
IS set to np=10, which makes a number of points
N=7161 for a sampling period setting of 10ms.
With ns=9 and np=3 we have N=1533 for a
sampling period setting of 50ms.



Types of noise

* The following types of measurement noise
v(tk) are considered

e (a) DT white noise : v(tk)= e(tk)
(b) DT colored noise (ARMA process
noise)

0.22360™-0.1630q
1-1.8906q™ +0.9512q

V(tk) — 2 e(tk)



Stmulation conditions 51D toolbox methods CONTSID toolbox methods Bode plot
Ts input noise name | criterion V4 N4SID OF PEM [VFMF [VLIF IVGPMF COE SRIVC
| ] )1 4| ) S 1]
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50ms | multi-sine | noise-free | triald SE |.Ge2 2.1e-2 1.2e-4 7 8e-3 2:9 1.7 23 2.4 7.9e-1
M 18 [00 94 92 100 100 100 100 [00
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il ine 0dR triald 9R 2.3e+1 |.Te+1 l.1let1 2et1 .- 1 Je-1 3.5e-1 3.1e-1 Ae-2 il
: s i S ; I-HJ:I
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i
g O50e+5 | 332645 | 43845 | L66e+6 3.94e+3 | 1.13eH4 1.3e+3 0.38et2 | 8.48eL3
(i‘ii

Table 1. Monte Carlo simulation results when 1 = 50 ms



Simulation conditions SID toolbox methods CONTSID toolbox methods Bode plot
T input noise name criterion 4 N4SID OB PEM IVEMF IVLIF IVGPMF COE SRIVC
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Table 2. Monte Carlo simulation results when 7, = 10 ms




Simulation conditions Prefiltering Decimation Bode plot
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Table 3. Monte Carlo simulation results obtained in the case of D'I" methods from pre-filtered and decimated data (‘The criteria presented
in this table for the DT methods have been computed from the CT version of the estimated DT models)
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Table 4
Nonte Carlo

simulation results for the fourth-order svstermn inn case of trial22
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* INITIALISATION ASPECTS FOR
SUBSPACE AND OUTPUT-ERROR
IDENTIFICATION METHODS

- Lennart Ljung




*This paper is inspired by a recent contribution by Rao and
Garnier about identification of continuous time models.

*They show examples where methods that directly estimate
continuous time models, based on smoothed differentiated
iInput-output data outperform methods that are based on
discrete time model estimation.

*The reasons for that situation are investigated in this
contribution. It turns out that the key problem is that ARX-type
models are very biased for the example in that study,
which leads to problems for initializations for output error
models both based on ARX/IV technigues and on subspace
(CVA estimation techniques).

*The remedy is to decrease the ARX-bias via low pass data
filtering, which in turn also explains why the direct
continuous-time estimation techniques (with inherent data
smoothing) do not suffer from this problem.



A recent paper,

[5](G.P. Rao and H. Garnier. Numerical illustration of the rel- evance of direct continuous-time
model identification. In Proc. 15th IFAC Triennal World Congress, Barcelona, July 2002.)

shows comparisons between two ways of estimating
continuous time models:

1. Directly fitting smoothed derivative
approximations of in- put and outputs to continuous-
time models, e.g. [1], [9]

2. Estimating discrete time models from the data,
which are then transformed to continuous time.

The results show, for the chosen example, that
approach (1) is much better than approach (2).



 This Is intriguing, since theoretically
the route via discrete time models
cannot be inferior to direct fitting.

* In this paper we confirm that the
selected system in [5] indeed gives
severe problems for the basic discrete
time identification techniques,
Including both prediction-error, output
error and subspace
(CVA/MOESP/N4SID) techniques.



e It also turns out that the remedy is to
move the focus in the model fit to lower
frequencies by proper pre-filtering.
Since pre-filtering 1s Inherent In the
direct continuous-time techniques this
also explains why such initialization
problems do not occur for those (CT)
techniques



« The fact the subspace/CVA estimate iIs
so bad for this particular system
should deserve an analysis of its own,
since CVA Is known to be very
reliable in general. The basic reason in
this particular case is probably that
only 5 sinusoids are exciting the
system, so the higher order ARX-
models employed by CVA/subspace are
not reliable



« The true continuous system has only one
zero. If we know that for afact, this
obviously has great importance for the
model accuracy at high frequencies.

« However, this is a difficult constraint to
handle in the sampled models. To use it, we
could fit directly a continuous time model.




The system used by [5] deserves special attention
by people who develop discrete-time identification
methods.

Techniques such as CVA/subspace methods and
prediction error methods may give quite bad results
If not proper data prefiltering is applied.

We have found that ARX-models are very bias-
sensitive to the system (especially with sinusoidal
Inputs). ----- the bias is substantial, despite the
good signal to noise ratio. Even though the bad
conditioning of the regression matrix is part of the
reason for the bias, it Is not a question of numerical
errors.

This means that typical initialization routines based
on ARX models will have problems. One should

discuss various remedies, in addition to pre-filtering,
for this initialization problem.



e This talk i1s based on the paper

o Identification of Continuous-Time
Systems, G.P. Rao and
H.Unbehauen, IET Control Theory &
Applications journal (formerly known
as IEE Proceedings Control theory &
Applications) Vol.153, Issue 2, (March

2006)



Recent letter from the Managing
Editor

e (This paper) was among the top 20 most
downloaded IET Control Theory &
Applications papers by the users of the
IEEE Xplore database in 2008.

* Your paper is ranked No. 14 from the
hundreds of papers that the journal has
published since its launch in 1980,
receiving 197 full text downloads last year.




* On behalf of the journal’s Editor-in-chief, Prof.
Brett Ninness, | would like to congratulate you
on the publication of a paper that is clearly of
significant interest to the community. | am
pleased that IET Control theory & Applications
journal has been able to position your paper in a
way that has made it visible to the community,
and very much hope that you will continue to
contribute to the journal in the future.

e Bestregards
Lee Baldwin
Managing editor, IET Control Theory& Applications



Conclusions

This lecture has been limited to linear time invariant
systems although there are significant results in
time varying and nonlinear systems included in the
paper.

The direct approach to CT model identification is
found to be more dependable. This is not surprising
to me because this is a direct route.

| will not be surprised likewise if a ‘direct DT
approach’ performs better in the cases where the
model is native to the DT domain. But such
situations need to be seen.

| hope that more methods will be added in the future
to CONTSID toolbox to give a better choice.



Future

 Identification will be a perennial activity

e Tools need to be researched for
enhancement and wider applicability.

e Distributed parameter systems, nonlinear
systems need to be considered for
iInclusion.



|dentification=effort to gain
knowledge

 New results must therefore be welcome
setting aside commercial and group
professional interests.

| hope that future will be based on fairness
of assessment and free exchange of ideas
for the benefit of all in the scientific
community.
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