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Foreword

It is a great pleasure and honor to write the forward for this book, representing
the culmination of Shimon Whiteson’s Ph.D. thesis research at The University of
Texas at Austin. When I arrived at UT Austin in the fall for 2002, Shimon was one
of the first students to walk into my office and we began doing research together
almost immediately. Our research helped form the nucleus of my research group,
the Learning Agents Research Group, and Shimon became my first Ph.D. graduate
in the spring of 2007.

Shimon was an ideal first student for a new assistant professor. He has a strong
sense of what he wants to learn, and is never satisfied with a partial answer to any
question. Most importantly for this book, he is self-assured and is willing to take
risks in order to achieve meaningful results.

After several initial contributions that built upon my own past research, Shimon
set off on his own towards his most important technical contribution so far, namely
the development of a novel algorithm, NEAT+Q, capable of evolving neural network
function approximators for reinforcement learning agents. The technical details of
NEAT+Q are well-presented in the book, so suffice it to say here that his work on
adaptive representations for reinforcement learning takes a substantial step towards
addressing one of the key current issues in the field of machine learning, namely
how to select the underlying representation that an agent uses when learning.

Perhaps more importantly, Shimon’s work actively brings researchers in tempo-
ral difference learning and evolutionary computation — two largely disjoint com-
munities that focus on similar problems — closer together by being recognized
and respected in both communities. This cross-disciplinary aspect of his work was
the biggest risk involved, especially for a Ph.D. student who has an eye towards
academia. There was a chance that the research would not be accepted by anybody.
Instead, he was able to achieve recognition in both areas.

By way of the research presented in this book, Shimon has established himself as
one the pre-eminent worldwide experts on machine learning for sequential decision
making tasks. A particular strength of the research is its detailed empirical analysis
of both the capabilities and the limitations of all variants of his proposed algorithms.
In addition, Shimon’s clear writing style, full explanation of background material,
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and detailed survey of related work make his book useful beyond its own research
contributions.

In short, for both newcomers to the field and for practitioners looking for nuanced
detail, this book has plenty to offer!

Austin, TX, Peter Stone, Associate Professor
December 2009 University of Texas at Austin



Preface

This book presents the main results of the research I conducted as a Ph.D. stu-
dent at The University of Texas at Austin, primarily between 2004 and 2007. The
primary contributions are new algorithms for reinforcement learning, a form of ma-
chine learning in which an autonomous agent seeks an effective control policy for
tackling a sequential decision task. Unlike in supervised learning, the agent never
sees examples of correct or incorrect behavior but receives only a reward signal as
feedback. One limitation of current methods is that they typically require a human
to manually design a representation for the solution (e.g. the internal structure of
a neural network). Since poor design choices can lead to grossly suboptimal poli-
cies, agents that automatically adapt their own representations have the potential to
dramatically improve performance. This book introduces two novel approaches for
automatically discovering high-performing representations.

The first approach synthesizes temporal difference methods, the traditional ap-
proach to reinforcement learning, with evolutionary methods, which can learn rep-
resentations for a broad class of optimization problems. This synthesis is accom-
plished via 1) on-line evolutionary computation, which customizes evolutionary
methods to the on-line nature of most reinforcement learning problems, and 2)
evolutionary function approximation, which evolves representations for the value
function approximators that are critical to the temporal difference approach.

The second approach, called adaptive tile coding, automatically learns represen-
tations based on tile codings, which form piecewise-constant approximations of
value functions. It begins with coarse representations and gradually refines them
during learning, analyzing the current policy and value function to deduce the best
refinements.

This book also introduces a novel method for devising input representations. In
particular, it presents a way to find a minimal set of features sufficient to describe
the agent’s current state, a challenge known as the feature selection problem. The
technique, called Feature Selective NEAT is an extension to NEAT, a method for
evolving neural networks used throughout this work. While NEAT evolves both the
topology and weights of a neural network, FS-NEAT goes one step further by learn-
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ing the network’s inputs too. Using evolution, it automatically and simultaneously
determines the network’s inputs, topology, and weights.

In addition to introducing these new methods, this book presents extensive em-
pirical results in multiple domains demonstrating that these techniques can substan-
tially improve performance over methods with manual representations.

The research presented in this book would not have been possible without the
critical contributions of many collaborators. These include Peter Stone, my Ph.D.
advisor; Risto Miikkulainen, a member of my thesis committee; and my colleagues
Nate Kohl, Ken Stanley, and Matt Taylor. In addition, this research was supported
in part by grants from IBM, NASA, NSF, and DARPA and by an IBM Ph.D. Fel-
lowship.

Amsterdam, The Netherlands Shimon Whiteson, Assistant Professor
February 2010 University of Amsterdam
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Chapter 1
Introduction

The goal of reinforcement learning (149) is to enable autonomous agents to learn
effective control policies for challenging tasks. Rather than relying on directions
from a human expert, a reinforcement learning agent uses its experience interacting
with the world to infer a strategy for solving the given problem. Unlike supervised
learning methods (96), reinforcement learning methods do not need access to exam-
ples of correct or incorrect behavior. Instead, the agent needs only a reward signal
to quantify the immediate effects of its actions and it can learn a control policy to
maximize the reward it accrues in the long term.

The agent’s control policy is a function mapping each state the agent may expe-
rience to the action it should take in that state. Ideally, an autonomous agent would
discover this policy without any human assistance, merely by learning from experi-
ence. In practice, however, current methods require substantial input from a human
designer in order to perform well. The designer typically must select an appropriate
learning algorithm, set parameters for that algorithm, and specify a representation
for the agent’s policy. This representation typically consists of the following parts:

1. the state representation, which could consist of low-level sensory data or high-
level salient features extracted from that data,

2. the internal representation, which specifies a set of parameters and the way the
policy is computed from those parameters, and

3. the action representation, which could consist of low-level actuator settings or
high-level operations that require many steps to complete.

The bulk of this book focuses on automating the design of the second of these
parts, the internal representation. Hence, the central question this book addresses
is: given adequate representations for states and actions, how can a reinforcement
learning agent automatically discover an internal representation for a control policy
that maps those states to actions? This chapter discusses the motivation for address-
ing this question, outlines the approach taken, and briefly overviews the contents
of the following chapters. Throughout the remainder of this book, “representation”
refers to the agent’s internal representation, unless otherwise specified.

S. Whiteson: Adaptive Representations for Reinforcement Learning, SCI 291, pp. 1–5.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010



2 1 Introduction

1.1 Motivation

Intelligent systems are adaptive by nature; hence, machine learning methods are
critical to the progress of artificial intelligence. Many practical methods have been
developed for supervised learning, where the agent learns from examples of correct
and incorrect behavior, and have been successfully applied to a range of real-world
problems, from spam filtering (7) to credit card fraud detection (34).

However, there are many important problems (e.g., robot control, game playing,
and system optimization) to which supervised learning methods may not be appli-
cable because no human expert is available to provide correctly labeled training
examples or because doing so is infeasibly expensive. However, an agent can still
learn to solve such problems if the human designer can describe its goal or, more
generally, quantify a reward function. The challenge of reinforcement learning is to
devise algorithms that enable an agent, while interacting with its environment, to
find an effective control policy given feedback only from this reward function.

Many methods already exist for solving reinforcement learning problems. How-
ever, such methods often do not perform well in domains that are highly stochas-
tic and/or have large or continuous state spaces. As a result, there have been
relatively few successful real-world applications of reinforcement learning, e.g.
(151; 38; 104).

A chief limitation of current methods is their reliance on human expertise to de-
sign critical aspects of the agent’s solution. Though no labeled training examples
are provided, the human designer still must determine which learning algorithm to
use, how to set its parameters, and how to represent the agent’s solution. For rein-
forcement learning methods to become more practical, they must perform well even
when the expertise necessary to perform such design steps is not available. Hence,
the development of new methods that automate this design process is a critical goal.

This book takes a step in that direction by introducing methods that enable a re-
inforcement learning agent to automatically discover effective internal representa-
tions. It also presents empirical results verifying that these methods can substantially
improve performance over manually designed representations in several reinforce-
ment learning tasks.

1.2 Approach

This book presents two fundamentally different approaches to devising adaptive
representations for reinforcement learning. The first approach synthesizes temporal
difference methods, the traditional approach to reinforcement learning, with evolu-
tionary methods, which can learn representations for a broad class of optimization
problems. The first step towards this synthesis is on-line evolutionary computation,
a method which borrows exploratory mechanisms traditionally used in temporal dif-
ference methods and uses them to help evolutionary methods cope better with the
on-line nature of most reinforcement learning problems.

Customizing evolutionary methods for on-line problems paves the way for
evolutionary function approximation, the second step in synthesizing these
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two approaches. Evolutionary function approximation fully integrates temporal dif-
ference and evolutionary methods by evolving representations, not for policies, but
for the value function approximators central to the temporal difference approach.
Each member of the population, rather than remaining fixed during its lifetime,
learns via temporal difference methods. Hence, this approach evolves agents that
are better able to learn.

The resulting method is an improvement over traditional temporal difference
methods because it automates the design of value function approximator representa-
tions. It is also an improvement over the traditional evolutionary approach because
it 1) uses temporal difference methods to exploit the specific structure of the rein-
forcement learning problem and 2) enables powerful syngeries between evolution
and learning, such as the Baldwin Effect. Furthermore, when combined with on-line
evolutionary computation, this method can excel at on-line tasks.

This book also presents a variation of evolutionary function approximation de-
signed to be more sample-efficient, i.e., to minimize the number of interactions
with the real world required to learn a good policy. By saving experience gath-
ered from previous generations, sample-efficient evolutionary function approxi-
mation can train each new generation off-line using only computation time: no
additional sample episodes are needed. The resulting function approximators can
then be evaluated and selectively reproduced in many fewer episodes.

In principle, evolutionary function approximation is applicable to any type of
representation that can be evolved, though this book studies only its application to
neural networks. By contrast, adaptive tile coding, the second approach to devising
adaptive representations for reinforcement learning, is specific to one type of repre-
sentation: tile coding. Tile coding is a simple, linear representation that has enjoyed
considerable empirical success (144; 140). It works by dividing the state space into
disjoint tiles which are used to learn a piecewise-constant value function approxi-
mation. However, it requires a human designer to correctly select the width of each
tile in each dimension.

Adaptive tile coding automates this design process by starting with large tiles
and making them smaller during learning by splitting existing tiles in two. Unlike
neural networks, which tend to operate like “black boxes,” tile codings are typi-
cally much easier to interpret: changes to the representation (e.g., splitting tiles in
two) have consequences that are largely predictable. Hence, an agent, by analyzing
its own behavior, can reason about how to improve its tile coding representation
without the need for expensive evolution. In addition to automatically finding good
representations, this approach gradually reduces the function approximator’s level
of generalization over time, a factor known to critically affect performance in tile
coding (126).

Both evolutionary function approximation and adaptive tile coding focus on au-
tomating the design of the agent’s internal representation. However, this book also
presents a novel method for devising state representations. In particular, it presents
a way to find a minimal set of features sufficient to describe the agent’s current
state, a challenge known as the feature selection problem (24). The technique, called
Feature Selective NEAT (FS-NEAT) is an extension to NEAT (137), a method for
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evolving neural networks used throughout this book. While NEAT evolves both the
topology and weights of a neural network, FS-NEAT goes one step further by learn-
ing the network’s inputs too. Using evolution, it automatically and simultaneously
determines the network’s inputs, topology, and weights.

1.3 Overview

The remainder of this book is organized as follows. Chapter 2 provides a brief intro-
duction to reinforcement learning. It describes the standard reinforcement learning
framework and describes the two main approaches to solving reinforcement learn-
ing problems, temporal difference methods and policy search methods and details
the specific base learning algorithms used throughout this book.

Chapter 3 introduces on-line evolutionary computation, which customizes evo-
lutionary methods to the on-line nature of many reinforcement learning problems
This chapter introduces three variations of on-line evolutionary computation and
presents detailed empirical results comparing these variations to the original off-
line approach in two reinforcement learning tasks: the mountain car and server job
scheduling domains.

Chapter 4 describes evolutionary function approximation, which harnesses the
representation-learning power of evolutionary methods to improve temporal differ-
ence function approximators. This chapter presents detailed empirical results in the
mountain car and scheduling domains comparing this approach to 1) evolutionary
methods in the absence of temporal difference methods and 2) temporal difference
learning alone with a range of manually designed function approximators. It also
compares the best results to other learning and non-learning approaches to these
domains, compares Darwinian and Lamarckian implementations of evolutionary
function approximation, and presents some additional tests that offer insight into
why certain methods outperform others in these domains and what factors can make
neural network function approximation difficult in practice.

Chapter 5 presents sample-efficient evolutionary function approximation and
compares its performance to the original evolutionary function approximation
method in a variation of the server job scheduling task that is designed to be de-
terministic, the case where sample-efficient learning is most critical.

Chapter 6 introduces Feature Selective NEAT (FS-NEAT) and evaluates it in
RARS, a challenging automobile racing task. This chapter presents experiments
comparing FS-NEAT to the original NEAT method in terms of performance as well
as the size and number of inputs of the evolved networks. These experiments are re-
peated across a range of increasingly difficult feature selection problems by varying
the number of irrelevant and redundant features available to the agent.

Chapter 7 describes two variations of adaptive tile coding which use different
criteria for determining which tiles to split, one based on expected changes to the
value function and the other based on expected changes to the policy. This chap-
ter presents experiments comparing both versions of adaptive tile coding to various
manually designed tile codings in both the mountain car and puddle world domains.
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It also examines qualitative properties of the final learned policies and value func-
tions to better understand why the methods perform as they do.

Chapter 8 surveys a broad range of previous research that is related in terms
of both methods and goals to the work presented in this book. It discusses other
methods for optimizing representations in supervised learning, reinforcement learn-
ing, and evolutionary computation. It also overviews other research about combin-
ing evolution and learning with applications to both supervised and reinforcement
learning tasks. Furthermore, it surveys previous work on balancing exploration and
exploitation, in the context of k-armed bandit problems, associative search, and re-
inforcement learning. Finally, this chapter discusses previous work on feature selec-
tion, surveying both filter and wrapper methods and discussing their relationship to
FS-NEAT.

Chapter 9 enumerates the primary conclusions of this book, mentions some neg-
ative results obtained in the course of this research, addresses some of the broader
implications of the book, and outlines ideas for future work.



Chapter 2
Reinforcement Learning

Reinforcement learning (67; 149) is a type of machine learning (96) in which an
agent seeks an effective policy for solving a sequential decision task. Such a pol-
icy dictates how the agent should behave in each state it may encounter. Unlike
supervised learning, the agent never sees examples of correct or incorrect behavior
but instead receives only a numerical reward signal. The agent’s actions affect not
only the immediate reward it receives but also the next state it experiences and, con-
sequently, future opportunities for reward. Hence, a reinforcement learning agent
seeks a policy that maximizes, not the immediate reward signal, but the total reward
accrued over the long term.

Reinforcement learning is an important tool in many scenarios that require adap-
tive agents (e.g., robot control, game playing, and system optimization). Often, the
human designer does not know how an agent should behave and so cannot gen-
erate the examples necessary for supervised learning. However, if he or she can
describe the agent’s goal or, more generally, quantify the costs and benefits of dif-
ferent outcomes, then the agent can autonomously discover an effective policy via
reinforcement learning. In other words, if the designer provides the reinforcement,
the agent can learn to maximize it.

This chapter provides a brief introduction to reinforcement learning. First, it de-
scribes the standard reinforcement learning framework. Next, it describes two main
approaches to solving reinforcement learning problems, temporal difference (147)
and policy search methods, and details the specific base learning algorithms used
throughout this book.

2.1 Reinforcement Learning Framework

The standard reinforcement learning framework, depicted in Figure 2.1, consists of
an agent repeatedly interacting with its environment at discrete intervals (67; 149).
At each timestep t, the agent perceives the environment’s current state, st ∈ S, where
S is the set of all possible states, and selects an action at ∈ A, where A is the set of
all possible actions. The environment responds with a reward signal rt+1 ∈ℜ and a

S. Whiteson: Adaptive Representations for Reinforcement Learning, SCI 291, pp. 7–15.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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Agent Environment

actions

states,rewards

Fig. 2.1 The reinforcement learning framework, in which an agent takes a series of actions,
each of which generates a reward and a new state

new state st+1. Often we assume the state space is factored, in which case each state
is a vector of n state features: si = 〈x1,x2, ...,xn〉 ∈ℜn.

We also typically assume that the environment satisfies the Markov property,
which holds when the probability that the agent perceives a given state and reward
depends only on the previous state and action. In other words, the Markov property
is satisfied if the following equation always holds:

Pr{st+1 =s′,rt+1 =r |st ,at ,rt ,st−1,at−1, ...,r1,s0,a0}=Pr{st+1 =s′,rt+1 =r |st ,at}

A reinforcement learning task that satisfies the Markov property is called a Markov
decision process (MDP) (21) and can be described as a four-tuple 〈S,A,T,R〉. As
before, S is the set of all states and A is the set of all actions. T : S×A×S �→ [0,1]
specifies the probability of transitioning to any state,

T (s,a,s′) = Pr{st+1 = s′ |st = s,at = a}

and R : S×A×S �→ℜ specifies the expected immediate reward,

R(s,a,s′) = E{rt+1 |st = s,at = a,st+1 = s′}

The goal of the agent is to maximize the long-term discounted reward it will accrue
in the future, which at time t is ∑∞

k=0 γkrt+k+1 where γ ∈ [0,1] is a discount parame-
ter. To maximize this quantity, the agent must learn a policy π : S �→A. π(s) specifies
the action the agent takes in state s. Every policy has an associated state value func-
tion V π : S �→ℜ which specifies the expected long-term discounted reward the agent
will receive starting in state s and following policy π thereafter:

V π(s) = E{
∞

∑
k=0

γkrt+k+1 |π ,st = s}
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Every policy also has an action value function Qπ : S×A �→ℜ, which specifies the
expected long-term discounted reward the agent will receive if it takes action a in
state s and follows policy π thereafter:

Qπ(s,a) = E{
∞

∑
k=0

γkrt+k+1 |π ,st = s,at = a}

For every MDP there exists an optimal value function V ∗ such that V ∗(s) =
maxπV π(s), an optimal action value function, Q∗ such that Q∗(s,a)= maxπ Qπ(s,a),
and at least one optimal policy π∗ such that:

π∗(s) = argmaxaQ∗(s,a) = argmaxa ∑
s′

T (s,a,s′)[R(s,a,s′)+ γV ∗(s′)]

The goal of a reinforcement learning agent is to find or approximate π∗. When T
and R are unknown, the agent can learn only by interacting with the environment
and observing state transitions and rewards. The rest of this section introduces two
major approaches for doing so.

2.2 Temporal Difference Methods

Value and functions are important, not just for measuring the worth of a given policy,
but for discovering good policies. In fact, many reinforcement learning algorithms
do not directly search for policies at all but instead strive to find the optimal value
function.

If S is finite and the agent has a model of its environment, (i.e., if T and R are
known), then the optimal value function can be computed using dynamic program-
ming (20). Dynamic programming works by exploiting the close relationship be-
tween consecutive states, as expressed in the Bellman optimality equation:

V ∗(s) = maxa ∑
s′

T (s,a,s′)[R(s,a,s′)+ γV ∗(s′)]

This relationship means that an estimate of the value of any given state can be con-
structed based on estimates of the states that might occur next. This bootstrapping
process is the central premise of dynamic programming and can be achieved by
turning the Bellman optimality equation into an update rule. For example, value it-
eration (114) is a dynamic programming method that begins with an arbitrary value
function V 0 and applies the following update rule for each s ∈ S:

V k+1(s) = maxa ∑
s′

T (s,a,s′)[R(s,a,s′)+ γV k(s′)]

Value iteration and other dynamic programming methods are guaranteed to converge
to the optimal value function when S is finite. However, their practical usefulness is
limited by the assumption that a model is available.
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In reinforcement learning, an agent interacts with an environment for which nei-
ther T nor R are known. As a result, dynamic programming methods are not directly
applicable for two reasons. First, the value iteration update cannot be computed.
Second, it is no longer sufficient to learn V ∗ since computing π∗ from it requires
knowing T and R. However, if the agent can learn Q∗, it can derive π∗ from it with-
out knowing T and R. Fortunately, Q∗ can be learned without a model by using
temporal difference methods (147), which synthesize dynamic programming with
Monte Carlo methods. Each time an agent in state st takes an action at , the reward
rt+1 it receives and the state st+1 to which it transitions can be used to estimate the
role of T and R in the update. For example, Q-learning (158), a popular temporal
difference method, employs the following update rule:

Q(st ,at)← (1−α)Q(st ,at)+ α[rt+1 + γmaxaQ(st+1,a)]

where α ∈ [0,1] is a learning rate parameter. The update rule moves the old esti-
mate Q(st ,at) closer to an estimated target rt+1 + γmaxaQ(st+1,a) by an amount
controlled by α .

Since T and R are unknown, temporal difference methods cannot simply iterate
over S and A to perform updates. Instead, the agent can only perform updates based
on transitions and rewards it observes while interacting with its environment. Like
value iteration, Q-learning converges to the optimal value function when S is finite
but only if the agent explores its environment in a manner that guarantees it visits ev-
ery state infinitely often. Hence, temporal difference methods are typically coupled
with exploration mechanisms which ensure that the agent, rather than always behav-
ing greedily with respect to its current value function, sometimes tries alternative
actions. The simplest exploration mechanism is called ε-greedy exploration (158),
whereby at each timestep the agent takes a random action with probability ε and the
greedy action otherwise.

In simple reinforcement learning tasks, the value function can be represented in
a table, with one entry for each state-action pair. However, for most real-world tasks
this approach is infeasible because |S| grows exponentially with respect to the num-
ber of state features, a problem Bellman dubbed the “curse of dimensionality” (20).
Hence, the agent may be unable to even store such a table, much less learn correct
values for each entry in reasonable time. Moreover, many problems have continuous
state features, in which case S is not finite and a table-based approach is impossible
even in principle.

In such cases, temporal difference methods rely on function approximation. In
this approach, the value function is not represented exactly but instead approximated
via a parameterized function. Typically, those parameters are incrementally adjusted
via supervised learning methods to make the function’s output more closely match
estimated targets generated from the agent’s experience. Many different methods of
function approximation have been used successfully, including tile coding, radial
basis functions, and neural networks (149).



2.3 Policy Search Methods 11

Algorithm 1 Q-LEARN(S,A,σ ,c,α,γ,λ ,εtd ,e)
1: // S: set of all states, A: set of all actions, σ : standard deviation of initial weights
2: // c: output scale, α: learning rate, γ: discount factor, λ : eligibility decay rate
3: // εtd: exploration rate, e: total number of episodes
4:
5: N← INIT-NET(S,A,σ ) // make a new network N with random weights
6: for i← 1 to e do
7: s,s′ ← null, INIT-STATE(S) // environment picks episode’s initial state
8: repeat
9: Q[]← c×EVAL-NET(N,s′) // compute value estimates for current state

10: with-prob(εtd) a′ ← RANDOM(A) // select random exploratory action
11: else a′ ← argmax jQ[ j] // or select greedy action
12: if s 
= null then
13: BACKPROP(N,s,a,(r + γmax jQ[ j])/c,α,γ ,λ ) // adjust weights toward target
14: s,a← s′,a′
15: r,s′ ← TAKE-ACTION(a′) // take action and transition to new state
16: until TERMINAL-STATE?(s)

Algorithm 1 describes the Q-learning algorithm when a neural network is used
for function approximation. The inputs to the network describe the agent’s current
state; the outputs, one for each action, represent the agent’s current estimate of the
value of the associated state-action pairs. The initial weights of the network are
drawn from a Gaussian distribution with mean 0.0 and standard deviation σ (line 5).
The EVAL-NET function (line 9) returns the activation on the network’s outputs after
the given inputs are fed to the network and propagated forward. Since the network
uses a sigmoid activation function, these values will all be in [0,1] and hence are
rescaled according to a parameter c. At each step, the weights of the neural network
are adjusted (line 13) such that its output better matches the current value estimate
for the state-action pair. The adjustments are made via the BACKPROP function,
which implements the standard backpropagation algorithm (121) with the addition
of accumulating eligibility traces controlled by λ (147). The agent uses ε-greedy
selection (lines 10–11) and interacts with the environment via the TAKE-ACTION

function (line 15), which returns a reward and a new state.
By addressing large and continuous state spaces, function approximation can

greatly extend the applicability of temporal difference methods. However, using
function approximators successfully in practice requires making crucial represen-
tational decisions, e.g., choosing the number of hidden units and initial weights of a
neural network. Much of this book focuses on simplifying these decisions via meth-
ods that automatically discover effective function approximator representations (see
Chapters 4, 5, and 7).

2.3 Policy Search Methods

Dynamic programming and temporal difference methods rely heavily on the no-
tion of value functions for solving reinforcement learning problems. By contrast,
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policy search methods do not use value functions at all. Instead, they use opti-
mization techniques (e.g., gradient methods (145; 105; 71) or evolutionary meth-
ods (101; 172; 137)) to directly search the space of policies for one that accrues
maximal reward. To assess the performance of each candidate policy, the agent
typically employs the policy for one or more episodes and sums the total reward
received.

Among the most successful approaches to policy search is neuroevolution (172),
which uses evolutionary computation (52) to optimize a population of neural net-
works. In a typical neuroevolutionary system, the weights of a neural network are
strung together to form an individual genome. A population of such genomes is
then evolved by evaluating each one and selectively reproducing the fittest individ-
uals through crossover and mutation. Most neuroevolutionary systems require the
designer to manually determine the network’s representation (i.e., how many hid-
den nodes there are and how they are connected).

However, some neuroevolutionary methods can automatically evolve represen-
tations along with network weights. In particular, NeuroEvolution of Augment-
ing Topologies (NEAT) (137) combines the usual search for network weights with
evolution of the network structure.1 It has amassed numerous empirical successes
on difficult reinforcement learning tasks like non-Markovian double pole balanc-
ing (137), game playing (139), robot control (138; 150), and data filtering in high
energy physics (1; 166). In reinforcement learning tasks, the networks that NEAT
evolves have a similar configuration to those used by Q-learning in Algorithm 1:
there is one input for each state feature, one output for each action, and the agent
takes the action whose corresponding output has the highest activation. However,
since the network represents a policy, not a value function, the activations on the
output nodes do not represent value estimates. In fact, the outputs can have arbitrary
activations so long as the most desirable action has the largest activation.

Algorithm 2 contains a high-level description of the NEAT algorithm applied to
an episodic reinforcement learning problem. NEAT begins by creating a population
of random networks (line 4). In each generation, NEAT repeatedly iterates over the
current population (lines 6–7). During each step of a given episode, the agent takes
whatever action corresponds to the output with the highest activation (lines 10–12).
NEAT maintains a running total of the reward accrued by the network during its
evaluation (line 13). Each generation ends after e episodes, at which point each net-
work’s average fitness is N. f itness/N.episodes. In stochastic domains, e typically
must be much larger than |P| to ensure accurate fitness estimates for each network.
NEAT creates a new population by repeatedly calling the BREED-NET function (line
18), which performs crossover on two highly fit parents. The new resulting network
can then undergo mutations that add nodes or links to its structure (lines 19–20).
The remainder of this section provides an overview of the reproductive process that
occurs in lines 17–20. Stanley and Miikkulainen (137) present a full description.

Unlike other systems that evolve network topologies and weights (57; 172) NEAT
begins with a uniform population of simple networks with no hidden nodes and

1 Parts of the following description were adapted from the original NEAT paper (137).
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Algorithm 2 NEAT(S,A, p,mn,ml,g,e)
1: // S: set of all states, A: set of all actions, p: population size, mn: node mutation rate
2: // ml: link mutation rate, g: number of generations, e: episodes per generation
3:
4: P[]← INIT-POPULATION(S,A, p) // create new population P with random networks
5: for i← 1 to g do
6: for j← 1 to e do
7: N,s,s′ ← P[ j % p], null, INIT-STATE(S) // select next network
8: repeat
9: Q[]← EVAL-NET(N,s′) // evaluate selected network on current state

10: a′ ← argmaxiQ[i] // select action with highest activation
11: s,a← s′,a′
12: r,s′ ← TAKE-ACTION(a′) // take action and transition to new state
13: N. f itness← N. f itness+ r // update total reward accrued by N
14: until TERMINAL-STATE?(s)
15: N.episodes← N.episodes+1 // update total number of episodes for N
16: P′[]← new array of size p // new array will store next generation
17: for j← 1 to p do
18: P′[ j]← BREED-NET(P[]) // make a new network based on fit parents in P
19: with-probability mn: ADD-NODE-MUTATION(P′[ j]) // add node to new network
20: with-probability ml : ADD-LINK-MUTATION(P′[ j]) // add link to new network
21: P[]← P′[]

inputs connected directly to outputs. New structure is introduced incrementally via
two special mutation operators. Figure 2.2 depicts these operators, which add new
hidden nodes and links to the network. Only the structural mutations that yield per-
formance advantages tend to survive evolution’s selective pressure. In this way,
NEAT tends to search through a minimal number of weight dimensions and find
an appropriate complexity level for the problem.

Inputs

Nodes
Hidden

Outputs

Mutation

Add Node

Inputs

Nodes
Hidden

Outputs

Mutation

Add Link

(a) A mutation operator for adding new nodes (b) A mutation operator for adding new links

Fig. 2.2 Examples of NEAT’s mutation operators for adding structure to networks. In (a), a
hidden node is added by splitting a link in two. In (b), a link, shown with a thicker black line,
is added to connect two nodes.

Evolving network structure requires a flexible genetic encoding. Each genome in
NEAT includes a list of connection genes, each of which refers to two node genes be-
ing connected. Each connection gene specifies the in-node, the out-node, the weight
of the connection, whether or not the connection gene is expressed (an enable bit),
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and an innovation number, which allows NEAT to find corresponding genes during
crossover.

In order to perform crossover, the system must be able to tell which genes match
up between any individuals in the population. For this purpose, NEAT keeps track of
the historical origin of every gene. Whenever a new gene appears (through structural
mutation), a global innovation number is incremented and assigned to that gene.
The innovation numbers thus represent a chronology of every gene in the system.
Whenever these genomes cross over, innovation numbers on inherited genes are pre-
served. Thus, the historical origin of every gene in the system is known throughout
evolution.

Through innovation numbers, the system knows exactly which genes match up
with which. Genes that do not match are either disjoint or excess, depending on
whether they occur within or outside the range of the other parent’s innovation
numbers. When crossing over, the genes in both genomes with the same innova-
tion numbers are lined up. Genes that do not match are inherited from the more fit
parent, or if they are equally fit, from both parents randomly. Historical markings
allow NEAT to perform crossover without expensive topological analysis. Genomes
of different organizations and sizes stay compatible throughout evolution, and the
problem of matching different topologies (118) is essentially avoided.

In most cases, adding new structure to a network initially reduces its fitness. How-
ever, NEAT speciates the population, so that individuals compete primarily within
their own species rather than with the population at large. Hence, topological in-
novations are protected and have time to optimize their structure before competing
with other niches in the population.

Historical markings make it possible for the system to divide the population into
species based on topological similarity. The distance δ between two network en-
codings is a simple linear combination of the number of excess (E) and disjoint (D)
genes, as well as the average weight differences of matching genes (W ):

δ =
c1E
N

+
c2D
N

+ c3 ·W

The coefficients c1, c2, and c3 adjust the importance of the three factors, and the
factor N, the number of genes in the larger genome, normalizes for genome size.
Genomes are tested one at a time; if a genome’s distance to a randomly chosen
member of the species is less than δt , a compatibility threshold, it is placed into this
species. Each genome is placed into the first species where this condition is satisfied,
so that no genome is in more than one species. The reproduction mechanism for
NEAT is explicit fitness sharing (52), where organisms in the same species must
share the fitness of their niche, preventing any one species from taking over the
population.

Evolutionary methods such as NEAT assess the value of entire policies, rather
than reasoning about the value of particular state-action pairs. The holistic nature of
this approach is sometimes criticized. For example, Sutton and Barto write:
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Evolutionary methods do not use the fact that the policy they are searching for is a
function from states to actions; they do not notice which states an individual passes
through during its lifetime, or which actions it selects. In some cases this information
can be misleading (e.g., when states are misperceived) but more often it should enable
more efficient search (149, p. 9).

In some contexts, these facts put evolutionary methods at a theoretical disadvantage.
For example, in some circumstances dynamic programming methods are guaranteed
to find an optimal policy in time polynomial in the number of states and actions (85).
By contrast, evolutionary methods, in the worst case, must iterate over an exponen-
tial number of candidate policies before finding the best one.

However, in practice, evolutionary methods have proven quite effective and at
least sometimes outperform temporal difference methods (137; 165). There are
many possible explanations for these results, such as the ability of such methods
to cope with non-Markovian environments or the fact that policies are sometimes
simpler to represent than value functions. But perhaps most critical is the ability
of methods like NEAT to automatically discover effective representations. Much of
this book focuses on new ways of harnessing this ability, by altering evolutionary
methods to make them more suitable for reinforcement learning (Chapter 3), syn-
thesizing them with temporal difference methods so as to evolve representations for
value functions (Chapters 4 and 5), or extending them to automatically select useful
state features (Chapter 6).



Chapter 3
On-Line Evolutionary Computation

Sutton and Barto’s criticism of evolutionary methods rests on the fact that such
methods do not exploit the specific structure of the reinforcement learning prob-
lem. Instead, they just treat it like any other optimization problem, using total re-
ward accrued as a fitness function. Much of this book focuses on eliminating this
shortcoming by customizing such techniques to the unique characteristics of the
reinforcement learning problem. As a result, the representation-learning power of
methods like NEAT can be harnessed without sacrificing the advantages of other
reinforcement learning approaches, such as temporal difference methods. The heart
of this customization is presented in Chapter 4, which describes how to synthesize
evolutionary and temporal difference methods so as to evolve representations for
value functions.

Before doing so, however, this chapter describes how to customize evolution-
ary methods to the on-line nature of many reinforcement learning problems. While
methods like NEAT have excelled on many challenging reinforcement learning
problems, their empirical success is largely restricted to off-line scenarios, in which
the agent learns, not in the real-world, but in a “safe” environment like a simulator.
This chapter introduces methods that make it possible to harness the representation-
learning capacity of methods like NEAT in on-line scenarios, where an agent inter-
acts with the real world and adjusts its policy as it goes.

In off-line scenarios, an agent’s only goal is to learn a good policy as quickly as
possible. It does not care how much reward it accrues while it is learning because
those rewards are only hypothetical and do not correspond to real-world costs. If the
agent tries disastrous policies, only computation time is lost. At any point during
learning, the performance of an off-line agent is simply the quality of the best policy
it has found so far.

Unfortunately, many reinforcement learning problems cannot be solved off-line
because no simulator is available. Sometimes the dynamics of the task are unknown,
e.g., when a robot explores an unfamiliar environment or a chess player plays a
new opponent. Other times, the dynamics of the task are too complex to accurately
simulate, e.g., user behavior on a large computer network or the noise in a robot’s
sensors and actuators.

S. Whiteson: Adaptive Representations for Reinforcement Learning, SCI 291, pp. 17–30.
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In such domains, the agent has no choice but to learn on-line. In an on-line learn-
ing scenario, it is not enough for an agent to learn a good policy quickly. It must
also maximize the reward it accrues while it is learning because those rewards cor-
respond to real-world costs. For example, if a robot learning on-line tries a policy
that causes it to drive off a cliff, then the negative reward the agent receives is not
hypothetical; it corresponds to the very real cost of fixing or replacing the robot.1

To measure the performance of an on-line agent it is essential to consider the
quality of the policy currently in use, which may be different from the best pol-
icy discovered so far. Since the agent is interacting with the real-world, it must be
“charged” for each policy or action it tries. In the context of evolutionary methods,
this means examining the average performance of the entire population, not just the
generation champion. The goal of the agent is to maximize the total reward accrued
during learning, i.e., the area under a typical learning curve.

To excel in on-line scenarios, a learning algorithm must effectively balance two
competing objectives. The first objective is exploration, in which the agent tries
alternatives to its current best policy in the hopes of improving it. The second ob-
jective is exploitation, in which the agent follows the current best policy in order to
maximize the reward it receives.

Exploitation is important because, in practice, on-line learning problems have a
finite horizon, which means reward can be accrued for only a limited time and learn-
ing must occur during that same time. For example, an autonomous robot gathering
rocks on Mars can accrue reward only until its parts wear out. If the agent simply
explores, it may discover a great policy, i.e., how to find the best rocks. However,
unless a similar robot will be deployed in the same region in the future, this policy
is not useful after the robot stops working. Hence, the agent must exploit in order to
maximize the reward accrued before time expires.

Evolutionary methods already strive to balance exploration and exploitation. In
fact, Holland (62) argues that the reproduction mechanism encourages exploration,
since crossover and mutation result in novel genomes, but also encourages exploita-
tion, since each new generation is based on the fittest members of the last one.
However, reproduction allows evolutionary methods to balance exploration and ex-
ploitation only across generations, not within them. Once the members of each gen-
eration have been determined, they all typically receive the same evaluation time.

This approach makes sense in deterministic domains, where each member of the
population can be accurately evaluated in a single episode. However, most real-
world domains are stochastic, in which case fitness evaluations must be averaged
over many episodes. In these domains, giving the same evaluation time to each

1 The term on-line learning is sometimes used in a very different way: to refer to non-
stationary learning problems where the agent’s environment is changing in ways that alter
the optimal policy. In such problems, the agent must continually adapt to perform well.
The problems of non-stationary learning and on-line learning (as the term is used here)
are orthogonal. A learning scenario can be stationary but on-line, as when an agent trains
in a static but real-world environment. A learning scenario can also be non-stationary but
off-line, as when an agent trains on a simulator that is being continually refined. This book
does not address non-stationary learning problems.
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member of the population can be grossly suboptimal because, within a generation, it
is purely exploratory. Instead, an on-line evolutionary algorithm should exploit the
information gained earlier in the generation to systematically give more evaluations
to the most promising individuals and avoid re-evaluating the weakest ones. Doing
so allows evolutionary methods to increase the reward accrued during learning.

This chapter presents a novel approach, called on-line evolutionary computation
(161; 162), which strives to achieve this balance. Instead of giving each individual
the same number of episodes, on-line evolutionary computation exploits the infor-
mation gained from early episodes to favor the most promising candidate policies
and thereby boost the reward accrued during learning. This method works by bor-
rowing action selection mechanisms traditionally used in temporal difference meth-
ods and applying them in evolutionary computation. TD methods naturally excel in
on-line scenarios because they use action selection mechanisms to control how of-
ten the agent exploits (by behaving greedily with respect to current value estimates)
and how often it explores (by trying alternative actions). This chapter describes ways
to borrow the selection mechanisms used by TD methods to choose individual ac-
tions and use them in evolution to choose policies for evaluation. This approach
enables evolution to excel on-line by balancing exploration and exploitation within
and across generations.

In a sense, the problem faced by evolutionary methods is the opposite of that
faced by TD methods. Within each generation, evolutionary methods naturally ex-
plore, by evaluating each member of the population equally, and so need a way to
force more exploitation. By contrast, TD methods naturally exploit, by following
the greedy policy, and so need a way to force more exploration. However, the goal
is the same: a proper balance between the two extremes.

To apply TD action selection mechanisms in evolutionary computation, we must
modify the level at which selection is performed. Evolutionary algorithms cannot
perform selection at the level of individual actions because, lacking value functions,
they have no notion of the value of individual actions. However, they can perform
selection at the level of episodes, in which entire policies are assessed holistically.
The same selection mechanisms used to choose individual actions in TD methods
can be used to select policies for evaluation, allowing evolution to excel on-line by
balancing exploration and exploitation within and across generations.

This chapter investigates three methods based on this approach. The first, based
on ε-greedy selection (158), switches probabilistically between searching for better
policies and re-evaluating the best known policy. The second, based on softmax
selection (149), distributes evaluations in proportion to each individual’s estimated
fitness. The third, based on interval estimation (66), computes confidence intervals
for the fitness of each policy and always evaluates the policy with the highest upper
bound.

These methods were evaluated by implementing them in NEAT and testing their
performance in two domains: 1) mountain car, a canonical reinforcement learning
benchmark task, and 2) server job scheduling, a large stochastic reinforcement learn-
ing task from the field of autonomic computing (69). The results demonstrate that
these techniques can substantially improve the on-line performance of evolutionary
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methods and that softmax selection and interval estimation are more effective than
the simple ε-greedy approach. As a result, the ability of NEAT to discover effec-
tive representations can be harnessed, not just in off-line scenarios, but in on-line
scenarios too.

3.1 ε -Greedy Evolution

When ε-greedy selection is used in TD methods, a single parameter ε controls what
fraction of the time the agent deviates from greedy behavior. Each time the agent
selects an action, it chooses probabilistically between exploration and exploitation.
With probability ε , it explores by selecting randomly from the available actions.
With probability 1− ε , it exploits by selecting the greedy action.

In evolutionary computation, this same mechanism can be used at the beginning
of each episode to select a policy for evaluation. With probability ε , the algorithm
selects a policy randomly. With probability 1−ε , the algorithm exploits by selecting
the best policy discovered so far in the current generation. The score of each policy
is just the average reward per episode it has received so far. Each time a policy is
selected for evaluation, the total reward it receives is incorporated into that average,
which can cause it to gain or lose the rank of best policy.

To apply ε-greedy selection to NEAT, we need only alter the way networks are
selected for evaluation. Instead of iterating through the population repeatedly until
e episodes are complete (lines 6–7 in Algorithm 2), NEAT selects for evaluation, at
the beginning of each episode, the policy returned by the ε-greedy selection function
described in Algorithm 3. This function returns a policy p which is either selected
randomly or which maximizes f (p), the fitness of p averaged over all the episodes
for which it has been previously evaluated.

Algorithm 3 ε -GREEDY SELECTION(P,ε)
1: // P: population, ε: NEAT’s exploration rate
2:
3: with-prob(ε) return RANDOM(P) // select random member of population
4: else return argmaxp∈P f (p) // or select current generation champion

Using ε-greedy selection in evolutionary computation allows it to thrive in on-
line scenarios by balancing exploration and exploitation. For the most part, this
method does not alter evolution’s search but simply interleaves it with exploitative
episodes that increase average reward during learning. The next section describes
how softmax selection can be applied to evolution to create a more nuanced balance
between exploration and exploitation.
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3.2 Softmax Evolution

When softmax selection is used in TD methods, an action’s probability of selection
is a function of its estimated value. In addition to ensuring that the greedy action
is chosen most often, this technique focuses exploration on the most promising al-
ternatives. There are many ways to implement softmax selection but one popular
method relies on a Boltzmann distribution (149), in which case an agent in state s
chooses an action a with probability

eQ(s,a)/τ

∑a′∈A eQ(s,a′)/τ (3.1)

where τ ∈ [0,∞] is a parameter controlling the degree to which actions with higher
values are favored in selection. The higher the value of τ , the more equiprobable the
actions are.

As with ε-greedy selection, we can use softmax selection in evolution to select
policies for evaluation. At the beginning of each generation, each individual is eval-
uated for one episode, to initialize its fitness. Then, the remaining e− |P| episodes
are allocated according to a Boltzmann distribution. Before each episode, a policy
p ∈ P is selected with probability

e f (p)/τ

∑p′∈P e f (p′)/τ (3.2)

where f (p) is the fitness of policy p, averaged over all the episodes for which it has
been previously evaluated. In NEAT, softmax selection is applied in the same way
as ε-greedy selection, except that the policy selected for evaluation is that returned
by the softmax selection function described in Algorithm 4, where e(p) is the total
number of episodes for which a policy p has been evaluated so far.

Algorithm 4 SOFTMAX SELECTION(P,τ)
1: // P: population, τ: softmax temperature
2:
3: if ∃ p ∈ P | e(p) = 0 then
4: return p // give each policy one evaluation first
5: else
6: total← ∑p∈P e f (p)/τ // compute denominator in Boltzmann expression
7: for all p ∈ P do
8: with-prob( e f (p)/τ

total ) return p // decide whether to select p

9: else total← total−e f (p)/τ // if not, adjust denominator

Softmax selection provides a more nuanced balance between exploration and
exploitation than ε-greedy because it focuses its exploration on the most promis-
ing alternatives to the current best policy. Softmax selection can quickly abandon
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poorly performing policies and prevent them from reducing the reward accrued dur-
ing learning.

3.3 Interval Estimation Evolution

An important disadvantage of both ε-greedy and softmax selection is that they do
not consider the uncertainty of the estimates on which they base their selections. One
approach that addresses this shortcoming is interval estimation (66). When used in
TD methods, interval estimation computes a (100−α)% confidence interval for the
value of each available action. The agent always takes the action with the highest
upper bound on this interval. This strategy favors actions with high estimated value
and also focuses exploration on the most promising but uncertain actions. The α
parameter controls the balance between exploration and exploitation, with smaller
values generating greater exploration.

The same strategy can be employed within evolution to select policies for eval-
uation. At the beginning of each generation, each individual is evaluated for one
episode, to initialize its fitness. Then, the remaining e− |P| episodes are allocated
to the policy that currently has the highest upper bound on its confidence interval.
In NEAT, interval estimation is applied just as in ε-greedy and softmax selection,
except that the policy selected for evaluation is that returned by the interval estima-
tion function described in Algorithm 5, where [0,z(x)] is an interval within which
the area under the standard normal curve is x. f (p), σ(p) and e(p) are the fitness,
standard deviation, and number of episodes, respectively, for policy p.

Algorithm 5 INTERVAL ESTIMATION(P,α)
1: // P: population, α: uncertainty in confidence interval
2:
3: if ∃ p ∈ P | e(p) = 0 then
4: return p
5: else
6: return argmaxp∈P[ f (p)+ z( 100−α

200 ) σ(p)√
e(p)

]

3.4 Testbed Domains

The methods described above were tested in two different reinforcement learn-
ing domains. The first domain, mountain car, is a standard reinforcement learning
benchmark task. The second domain, server job scheduling, is a large, stochastic
domain from the field of autonomic computing.
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3.4.1 Mountain Car

In the mountain car task (28), depicted in Figure 3.1, an agent strives to drive a car
to the top of a steep mountain. The car cannot simply accelerate forward because its
engine is not powerful enough to overcome gravity. Instead, the agent must learn to
drive backwards up the hill behind it, thus building up sufficient inertia to ascend to
the goal before running out of speed.
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Fig. 3.1 The mountain car task, in which an underpowered car strives to reach the top of a
mountain

The agent’s state at timestep t consists of its current position pt and its current
velocity vt . It receives a reward of −1 at each time step until reaching the goal, at
which point the episode terminates. The agent’s three available actions correspond to
the throttle settings 1, 0, and−1. The following equations control the car’s movement:

pt+1 = boundp(pt + vt+1)

vt+1 = boundv(vt + 0.001at−0.0025cos(3pt))

where at is the action the agent takes at timestep t, boundp enforces−1.2≤ pt+1 ≤
0.5, and boundv enforces −0.07 ≤ vt+1 ≤ 0.07. In each episode, the agent begins
in a state chosen randomly from these ranges. To prevent episodes from running
indefinitely, each episode is terminated after 2,500 steps if the agent still has not
reached the goal.

To represent the agent’s current state to the network, each state feature is divided
into ten regions. One input was associated with each region (for a total of twenty
inputs) and was set to one if the agent’s current state fell in that region and to zero
otherwise. Hence, only two inputs were activated for any given state. The agent’s
state could be represented more compactly, using one real-valued input for position
and another for velocity. However, informal experiments found that this representa-
tion did not perform as well. The networks have three outputs, each corresponding
to one of the actions available to the agent.
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3.4.2 Server Job Scheduling

While the mountain car task is a useful benchmark, it is a very simple domain. To
assess whether on-line evolutionary computation can scale to a much more complex
problem, a challenging reinforcement learning task called server job scheduling was
used. This domain is drawn from the burgeoning field of autonomic computing (69).
The goal of autonomic computing is to develop computer systems that automati-
cally configure themselves, optimize their own behavior, and diagnose and repair
their own failures. The demand for such features is growing rapidly, since computer
systems are becoming so complex that maintaining them with human support staff
is increasingly infeasible.

The vision of autonomic computing poses new challenges to many areas of
computer science, including architecture, operating systems, security, and human-
computer interfaces. However, the burden on artificial intelligence is especially
great, since intelligence is a prerequisite for self-managing systems. In particular,
machine learning will likely play a primary role, since computer systems must be
adaptive if they are to perform well autonomously. There are many ways to apply
supervised methods to autonomic systems, e.g., for intrusion detection (46), spam
filtering (39), or system configuration (169). However, there are also many tasks
where no human expert is available and reinforcement learning is applicable, e.g
network routing (27), job scheduling (160), and cache allocation (53).

One such task is server job scheduling, in which a server, such as a website’s
application server or database, must determine in what order to process the jobs
currently waiting in its queue. Its goal is to maximize the aggregate utility of all
the jobs it processes. A utility function (not to be confused with a TD value func-
tion) for each job type maps the job’s completion time to the utility derived by the
user (157). The problem of server job scheduling becomes challenging when these
utility functions are nonlinear and/or the server must process multiple types of jobs.
Since selecting a particular job for processing necessarily delays the completion of
all other jobs in the queue, the scheduler must weigh difficult trade-offs to maxi-
mize aggregate utility. Also, this domain is challenging because it is large (the size
of both the state and action spaces grow in direct proportion to the size of the queue)
and probabilistic (the server does not know what type of job will arrive next).

The server job scheduling task is quite different from traditional scheduling tasks
(173; 174). In the latter case, there are typically multiple resources available and
each job has a partially ordered list of resource requirements. Server job scheduling
is simpler because there is only one resource (the server) and all jobs are indepen-
dent of each other. However, it is more complex in that performance is measured via
arbitrary utility functions, whereas traditional scheduling tasks aim solely to mini-
mize completion times.

Our experiments were conducted in a Java-based simulator. The simulation be-
gins with 100 jobs preloaded into the server’s queue and ends when the queue be-
comes empty. During each timestep, the server removes one job from its queue and
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completes it. During each of the first 100 timesteps, a new job of a randomly selected
type is added to the end of the queue. Hence, the agent must make decisions about
which job to process next even as new jobs are arriving. Since one job is processed
at each timestep, each episode lasts 200 timesteps. For each job that completes,
the scheduling agent receives an immediate reward determined by that job’s utility
function.

Four different job types were used in our experiments. Hence, the task can gen-
erate 4200 unique episodes. Utility functions for the four job types are shown in
Figure 3.2. Users who create jobs of type #1 or #2 do not care about their jobs’
completion times so long as they are less than 100 timesteps. Beyond that, they get
increasingly unhappy. The rate of this change differs between the two types and
switches at timestep 150. Users who create jobs of type #3 or #4 want their jobs
completed as quickly as possible. However, once the job becomes 100 timesteps
old, it is too late to be useful and they become indifferent to it. As with the first two
job types, the slopes for job types #3 and #4 differ from each other and switch, this
time at timestep 50. Note that all these utilities are negative functions of completion
time. Hence, the scheduling agent strives to bring aggregate utility as close to zero
as possible.
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Fig. 3.2 The four utility functions used in the server job scheduling task

A primary obstacle to applying reinforcement learning methods to this domain is
the size of the state and action spaces. A complete state description includes the type
and age of each job in the queue. The scheduler’s actions consist of selecting jobs
for processing; hence a complete action space includes every job in the queue. These
spaces were discretized to make them more manageable. The range of job ages from
0 to 200 is divided into four sections and the scheduler is told, at each timestep, how
many jobs in the queue of each type fall in each range, resulting in 16 state features.
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The action space is similarly discretized. Instead of selecting a particular job for
processing, the scheduler specifies what type of job it wants to process and which
of the four age ranges that job should lie in, resulting in 16 distinct actions. The
server processes the youngest job in the queue that matches the type and age range
specified by the action.

These discretizations mean the agent has less information about the contents of
the job queue. However, its state is still sufficiently detailed to allow effective learn-
ing. Although the utility functions can change dramatically within each age range,
their slopes do not change. It is the slope of the utility function, not the utility func-
tion itself, which determines how much utility is lost by delaying a given job.

The server job scheduling domain is a perfect example of a reinforcement learn-
ing task that needs to be solved on-line. Though a simulator is used for the purpose
of experimental research, creating an accurate simulator in the real world would not
be practical. Such a simulator would have to precisely model the server’s internal
workings and the behavior of all the system’s users, including how that behavior
changes in response to different scheduling policies. Hence, good policies can prob-
ably only be learned on-line, by trying them out on real servers. In such scenarios,
maximizing on-line performance is critical, since lost reward corresponds to delays
for real users.

3.5 Results

As a baseline of comparison, we applied the original, off-line version of NEAT to
both the mountain car and server job scheduling domains and averaged its perfor-
mance over 25 runs. The population size |P| was 100 and the number of episodes
per generation e was 10,000. Hence, each member of the population was evaluated
for 100 episodes. Table 3.1 provides more details on the NEAT parameters used in
our experiments. Next, we applied the ε-greedy, softmax, and interval estimation
versions of NEAT to both domains using the same parameter settings. Each of these
on-line methods has associated with it one additional parameter which controls the
balance between exploration and exploitation. For each method, we experimented
informally with approximately ten different settings of these parameters to find ones
that worked well in the two tasks. Finally, we averaged the performance of each
method over 25 runs using the best known parameter settings.

Those settings were as follows. For ε-greedy, ε was set to 0.25. This value is
larger than is typically used in TD methods but makes intuitive sense, since explo-
ration in NEAT is safer than in TD methods. After all, even when NEAT explores,
the policies it selects are not drawn randomly from policy space. On the contrary,
they are the children of the previous generation’s fittest parents. For softmax, the
appropriate value of τ depends on the range of fitness scores, which differs dra-
matically between the two domains. Hence, different values were required for the
two domains: we set τ to 50 in mountain car and 500 in server job scheduling. For
interval estimation, α was set to 20, resulting in 80% confidence intervals.
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Table 3.1 The NEAT parameters used in the experiments described in this chapter. Stanley
and Miikkulainen (137) describe the semantics of these parameters in detail.

Parameter Value Parameter Value Parameter Value
weight-mut-power 0.5 recur-prop 0.0 disjoint-coeff (c1) 1.0
excess-coeff (c2) 1.0 mutdiff-coeff (c3) 2.0 compat-threshold 3.0
age-significance 1.0 survival-thresh 0.2 mutate-only-prob 0.25

mutate-link-weights-prob 0.9 mutate-add-node-prob (mn) 0.02 mutate-add-link-prob (ml) 0.1
interspecies-mate-rate 0.01 mate-multipoint-prob 0.6 mate-multipoint-avg-prob 0.4
mate-singlepoint-prob 0.0 mate-only-prob 0.2 recur-only-prob 0.0

pop-size (p) 100 dropoff-age 100 newlink-tries 50
babies-stolen 0 num-compat-mod 0.3 num-species-target 6

Figure 3.3 summarizes the results of these experiments by plotting a uniform
moving average over the last 1,000 episodes of the total reward accrued per episode
for each method. We plot average reward because it is an on-line metric: it measures
the amount of reward the agent accrues while it is learning. The best policies dis-
covered by evolution, i.e. the generation champions, perform substantially higher
than this average. However, using their performance as an evaluation metric would
ignore the on-line cost that was incurred by evaluating the rest of population and
receiving less reward per episode. Figure 3.5 plots, for the same experiments, the
total cumulative reward accrued by each method over the entire run. In both graphs,
error bars indicate 95% confidence intervals and Student’s t-tests confirm, with 95%
confidence, the statistical significance of the performance difference between each
pair of methods except between softmax and interval estimation.
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Fig. 3.3 The uniform moving average reward accrued by off-line NEAT, compared to three
versions of on-line NEAT in the mountain car and server job scheduling domains. In both
domains, all rewards are negative so the agents strive to get average reward as close to zero
as possible.
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Fig. 3.5 The cumulative reward accrued by off-line NEAT, compared to three versions of
on-line NEAT in the mountain car and server job scheduling domains. In both domains,
all rewards are negative so the agents strive to keep cumulative reward as close to zero as
possible.

3.6 Discussion

The results shown in Figure 3.3 clearly demonstrate that selection mechanisms
borrowed from TD methods can dramatically improve the on-line performance of
evolutionary computation. All three on-line methods substantially outperform the
off-line version of NEAT. In addition, the more nuanced strategies of softmax and
interval estimation fare better than ε-greedy. This result is not surprising since the
ε-greedy approach simply interleaves the search for better policies with exploita-
tive episodes that employ the best known policy. Softmax selection and interval
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estimation, by contrast, concentrate exploration on the most promising alternatives.
Hence, they spend fewer episodes on the weakest individuals and achieve better
performance as a result.

For the on-line methods, particularly interval estimation, evolution consists of a
series of 10,000-episode intervals. These intervals are especially evident in
Figure 3.4, which shows a close-up of the early part of learning. Each of these
intervals corresponds to one generation. The performance improvements within
each generation reflect the on-line methods’ ability to exploit the information
gleaned from earlier episodes. As the generation progresses, these methods become
better informed about which individuals to favor when exploiting and average re-
ward increases as a result.

While these intervals reveal an important feature of the on-line methods’ behav-
ior, they can make it difficult to compare performance. For example, in the mountain
car domain, interval estimation begins each generation with a lot of exploration and,
consequently, relatively poor performance. However, that exploration quickly pays
off and its average performance rises slightly above that of softmax. Which of these
two methods is receiving more reward overall? It is difficult to tell from plots of av-
erage reward. However, plots of cumulative reward, shown in Figure 3.5, are more
revealing in this respect. Not surprisingly, the off-line version of NEAT accumulates
much less reward than the on-line methods and ε-greedy accumulates less reward
than the other on-line approaches. These graphs also show that, in mountain car, in-
terval estimation’s exploration early in each generation pays off, as it earns at least
as much reward overall as softmax.

Together, these results demonstrate that borrowing selection mechanisms from
TD methods can greatly improve the on-line performance of evolutionary computa-
tion. However, they do not address how on-line evolution affects the quality of the
best policies discovered. Does excelling at on-line metrics necessarily hurt perfor-
mance on off-line metrics? To answer this question, we selected the best policies
discovered by each method (i.e. the final generation champions) and evaluated them
each for 1,000 additional episodes.

In mountain car, using on-line evolution has no noticeable effect: the best poli-
cies of off-line and all three versions of on-line NEAT receive an average score of
approximately −52, which matches the best results achieved in previous research
on this domain (129; 144). While the mountain car domain is simple enough that all
the methods find approximately optimal policies, the same is not true in scheduling,
where ε-greedy performs substantially worse. Its best policies receive an average
score of approximately−11,100, whereas off-line and the other two versions of on-
line NEAT all receive an average score of approximately −10,100. This result is
not surprising: since ε-greedy evolution spends most of its episodes re-evaluating
the best policy, its fitness estimates for the rest of the population are less accurate.
By focusing exploration on the most promising individuals, softmax and interval
estimation offer the best of both worlds: they excel at the on-line metrics without
sacrificing the quality of the best policies discovered.



30 3 On-Line Evolutionary Computation

Overall, these results verify the efficacy of these methods of on-line evolution. It
is less clear, however, which strategy is most useful. Softmax clearly outperforms ε-
greedy but may be more difficult to use in practice because the τ parameter is harder
to tune, as evidenced by the need to assign it different values in the two domains.
As Sutton and Barto write:

Most people find it easier to set the ε parameter with confidence; setting τ requires
knowledge of the likely action values and of powers of e (149, pages 27-30).

In this light, interval estimation may be the best choice. Our experiments show that
it performs as well or better than softmax and anecdotal evidence suggests that the
α parameter is not overly troublesome to tune.



Chapter 4
Evolutionary Function Approximation

The methods presented in Chapter 3 allow the representation-learning capacity of
evolutionary algorithms like NEAT to be harnessed in both off-line and on-line sce-
narios. However, that capacity is still limited in scope to policy search methods.
Hence, Sutton and Barto’s criticism (that policy search methods, unlike temporal
difference methods, do not exploit the specific structure of the reinforcement learn-
ing problem) still applies. To address this problem, we need methods that can opti-
mize representations, not just for policies, but value function approximators trained
with temporal difference methods.

At present, temporal difference methods typically require a human designer to
manually design an appropriate representation for the function approximator. Poor
design choices can result in estimates that diverge from the optimal value function
(13) and agents that perform poorly. Even for methods with guaranteed convergence
(14; 76), achieving high performance in practice requires finding an appropriate rep-
resentation for the function approximator. As Lagoudakis and Parr observe:

The crucial factor for a successful approximate algorithm is the choice of the paramet-
ric approximation architecture(s) and the choice of the projection (parameter adjust-
ment) method (76, p. 1111).

Nonetheless, representational choices are typically made manually, based only on
the designer’s intuition.

This chapter introduces evolutionary function approximation (161), a new ap-
proach to TD function approximation which harnesses the representation-learning
power of evolutionary methods. This approach synthesizes evolutionary and TD
methods into a single method that automatically selects function approximator rep-
resentations that enable efficient individual learning. When evolutionary methods
are applied to reinforcement learning problems, they typically evolve a popula-
tion of action selectors, each of which remains fixed during its fitness evaluation.
The central insight behind evolutionary function approximation is that, if evolu-
tion is directed to evolve value functions instead, then those value functions can be
updated, using TD methods, during each fitness evaluation. In this way, the sys-
tem can evolve function approximators that are better able to learn via TD. This

S. Whiteson: Adaptive Representations for Reinforcement Learning, SCI 291, pp. 31–46.
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biologically intuitive combination has been applied to computational systems in the
past (61; 2; 25; 50; 56; 106) but never, to our knowledge, to aid the discovery of
good temporal difference function approximators.

This approach requires only 1) an evolutionary algorithm capable of optimizing
representations from a class of functions and 2) a TD method that uses elements of
that class for function approximation. This book focuses on performing evolution-
ary function approximation with neural networks. There are several reasons for this
choice. First, they have great experimental value. Nonlinear function approximators
are often the most challenging to use; hence, success for evolutionary function ap-
proximation with neural networks is good reason to hope for success with linear
methods too. Second, neural networks have great potential for function approxima-
tion, since they can represent value functions linear methods cannot (given the same
basis functions). Finally, employing neural networks is feasible because they have
previously succeeded as TD function approximators (38; 151) and sophisticated
methods for optimizing their representations (57; 137) already exist.

In addition to automating the search for effective representations, evolutionary
function approximation can enable synergistic effects between evolution and learn-
ing. How these effects occur depends on which of two possible approaches is em-
ployed. The first possibility is a Lamarckian approach, in which the changes made
by TD during a given generation are written back into the original genomes, which
are then used to breed a new population. The second possibility is a Darwinian
implementation, in which the changes made by TD are discarded and the new pop-
ulation is bred from the original genomes, as they were at birth.

It has long since been determined that biological systems are Darwinian, not
Lamarckian. However, it remains unclear which approach is better computationally,
despite substantial research (110; 168; 171). The potential advantage of Lamarck-
ian evolution is obvious: it prevents each generation from having to repeat the same
learning. However, Darwinian evolution can be advantageous because it enables
each generation to reproduce the genomes that led to success in the previous gen-
eration, rather than relying on altered versions that may not thrive under continued
alteration. Furthermore, in a Darwinian system, the learning conducted by previous
generations can be indirectly recorded in a population’s genomes via a phenomenon
called the Baldwin Effect (15), which has been demonstrated in evolutionary compu-
tation (61; 2; 25; 9). The Baldwin Effect occurs in two stages. In the first stage, the
learning performed by individuals during their lifetimes speeds evolution, because
each individual does not have to be exactly right at birth; it need only be in the right
neighborhood and learning can adjust it accordingly. In the second stage, those be-
haviors that were previously learned during individuals’ lifetimes become known at
birth. This stage occurs because individuals that possess adaptive behaviors at birth
have higher overall fitness and are favored by evolution.

Hence, synergistic effects between evolution and learning are possible regardless
of which implementation is used. In Section 4.2.4, we compare the two approaches
empirically. The following section details NEAT+Q, the implementation of evolu-
tionary function approximation used in our experiments.
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4.1 NEAT+Q

All that is required to make NEAT optimize value functions instead of action se-
lectors is a reinterpretation of its output values. The structure of neural network
action selectors (one input for each state feature and one output for each action)
is already identical to that of Q-learning function approximators. Therefore, if the
weights of the networks NEAT evolves are updated during their fitness evaluations
using Q-learning and backpropagation, they will effectively evolve value functions
instead of action selectors. Hence, the outputs are no longer arbitrary values; they
represent the long-term discounted values of the associated state-action pairs and
are used, not just to select the most desirable action, but to update the estimates of
other state-action pairs.

Algorithm 6 summarizes the resulting NEAT+Q method. Note that this algo-
rithm is identical to Algorithm 2, except for the delineated section containing lines
13–16. Each time the agent takes an action, the network is backpropagated towards

Algorithm 6 NEAT+Q(S,A,c, p,mn,ml,g,e,α,γ,λ ,εtd )
1: // S: set of all states, A: set of all actions, c: output scale, p: population size
2: // mn: node mutation rate, ml: link mutation rate, g: number of generations
3: // e: number of episodes per generation, α: learning rate, γ: discount factor
4: // λ : eligibility decay rate, εtd: exploration rate
5:
6: P[]← INIT-POPULATION(S,A, p) // create new population P with random networks
7: for i← 1 to g do
8: for j← 1 to e do
9: N,s,s′ ← P[ j % p], null, INIT-STATE(S) // select next network

10: repeat
11: Q[]← c× EVAL-NET(N,s′) // compute value estimates for current state
12:
13: with-prob(εtd) a′ ← RANDOM(A) // select random exploratory action
14: else a′ ← argmaxkQ[k] // or select greedy action
15: if s 
= null then
16: BACKPROP(N,s,a,(r + γmaxkQ[k])/c,α,γ ,λ ) // adjust weights
17:
18: s,a← s′,a′
19: r,s′ ← TAKE-ACTION(a′) // take action and transition to new state
20: N. f itness← N. f itness+ r // update total reward accrued by N
21: until TERMINAL-STATE?(s)
22: N.episodes← N.episodes+1 // update total number of episodes for N
23: P′[]← new array of size p // new array will store next generation
24: for j← 1 to p do
25: P′[ j]← BREED-NET(P[]) // make a new network based on fit parents in P
26: with-probability mn: ADD-NODE-MUTATION(P′[ j]) // add node to new network
27: with-probability ml : ADD-LINK-MUTATION(P′[ j]) // add link to new network
28: P[]← P′[]
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Q-learning targets (line 16) and ε-greedy selection occurs just as in Algorithm 1
(lines 13–14). If α and εtd are set to zero, this method degenerates to regular NEAT.

NEAT+Q combines the power of TD methods with the ability of NEAT to learn
effective representations. Traditional neural network function approximators put all
their eggs in one basket by relying on a single manually designed network to repre-
sent the value function. NEAT+Q, by contrast, explores the space of such networks
to increase the chance of finding a representation that will perform well.

In NEAT+Q, the weight changes caused by backpropagation accumulate in the
current population’s networks throughout each generation. When a network is se-
lected for an episode, its weights begin exactly as they were at the end of its last
episode. In the Lamarckian approach, those changes are copied back into the net-
works’ genomes and inherited by their offspring. In the Darwinian approach, those
changes are discarded at the end of each generation.

4.2 Results

We conducted a series of experiments in the mountain car and server job scheduling
domains (described in Section 3.4) to empirically evaluate the methods presented in
this chapter. Section 4.2.1 compares manual and evolutionary function approxima-
tors. Section 4.2.2 tests evolutionary function approximation combined with on-line
evolutionary computation. Section 4.2.3 compares these novel approaches to pre-
vious learning and non-learning methods. Section 4.2.4 compares Darwinian and
Lamarckian versions of evolutionary function approximation. Finally, Section 4.2.5
presents some additional tests that measure the effect of continual learning on func-
tion approximators. The results offer insight into why certain methods outperform
others in these domains and what factors can make neural network function approx-
imation difficult in practice.

Each of the graphs presented in these sections include error bars indicating 95%
confidence intervals. In addition, to assess statistical significance, we conducted
Student’s t-tests on each pair of methods evaluated. The results of these tests are
summarized in Appendix A.

4.2.1 Comparing Manual and Evolutionary Function
Approximation

For an initial baseline, we used the same off-line NEAT results presented in
Section 3.5. Next, we performed 25 runs in each domain using NEAT+Q, with
the same parameter settings. The eligibility decay rate λ was 0.0. and the learn-
ing rate α was set to 0.1 and annealed linearly for each member of the population
until reaching zero after 100 episodes.1 In scheduling, γ was 0.95 and εtd was 0.05.
Those values of γ and εtd work well in mountain car too, though in the experiments

1 Other values of λ were tested in the context of NEAT+Q but had little effect on
performance.
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presented here they were set to 1.0 and 0.0 respectively, since Sutton (144) found
that discounting and exploration are unnecessary in mountain car. The output scale
c was set to −100 in mountain car and −1000 in scheduling.

We tested both Darwinian and Lamarckian NEAT+Q in this manner. Both per-
form well, though which is preferable appears to be domain dependent. For sim-
plicity, in this section and those that follow, we present results only for Darwinian
NEAT+Q. In Section 4.2.4 we present a comparison of the two approaches.

To test Q-learning without NEAT, we tried 24 different configurations in each
domain. These configurations correspond to every possible combination of the fol-
lowing parameter settings. The networks had feed-forward topologies with 0, 4, or 8
hidden nodes. The learning rate α was either 0.01 or 0.001. The annealing schedules
for α were linear, decaying to zero after either 100,000 or 250,000 episodes. The
eligibility decay rate λ was either 0.0 or 0.6. The other parameters, γ and ε , were set
just as with NEAT+Q, and the standard deviation of initial weights σ was 0.1. Each
of these 24 configurations was evaluated for 5 runs. In addition, we experimented
informally with higher and lower values of α , higher values of γ , slower linear an-
nealing, exponential annealing, and no annealing at all, though none performed as
well as the results presented here.

In these experiments, each run used a different set of initial weights. Hence,
the resulting performance of each configuration, by averaging over different ini-
tial weight settings, does not account for the possibility that some weight settings
perform consistently better than others. To address this, for each domain, we took
the best performing configuration2 and randomly selected five fixed initial weight
settings. For each setting, we conducted 5 additional runs. Finally, we took the set-
ting with the highest performance and conducted an additional 20 runs, for a total of
25. For simplicity, the graphs that follow show only this Q-learning result: the best
configuration with the best initial weight setting.

Figure 4.1 shows the results of these experiments. For each method, the corre-
sponding line in the graph represents a uniform moving average over the aggregate
reward received in the past 1,000 episodes, averaged over all 25 runs. Using average
performance, as we do throughout this book, is somewhat unorthodox for evolution-
ary methods, which are more commonly evaluated on the performance of the gen-
eration champion. There are two reasons why we adopt average performance. First,
it creates a consistent metric for all the methods tested, including the TD methods
that do not use evolutionary computation and hence have no generation champions.
Second, it is an on-line metric because it incorporates all the reward the learning
system accrues. Plotting only generation champions is an implicitly off-line metric
because it does not penalize methods that discover good policies but fail to accrue
much reward while learning. Hence, average reward is a better metric for evaluating
on-line evolutionary computation, as we do in Section 4.2.2.

To make a larger number of runs computationally feasible, both NEAT and
NEAT+Q were run for only 100 generations. In the scheduling domain, neither

2 Mountain car parameters were: 4 hidden nodes, α = 0.001, annealed to zero at episode
100,000, λ = 0.0. Server job scheduling parameters were: 4 hidden nodes, α = 0.01, an-
nealed to zero at episode 100,000, λ = 0.6.
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Fig. 4.1 A comparison of the performance of NEAT, NEAT+Q, and Q-learning with the best
of 24 different manually designed neural network function approximators in the mountain car
and server job scheduling domains.

method has completely plateaued by this point. However, a handful of trials con-
ducted for 200 generations verified that only very small additional improvements
are made after 100 generations, without a qualitative effect on the results.

Note that the progress of NEAT+Q consists of a series of 10,000-episode inter-
vals. Each of these intervals corresponds to one generation and the changes within
them are due to learning via Q-learning and backpropagation. Although each in-
dividual learns for only 100 episodes on average, NEAT’s system of randomly se-
lecting individuals for evaluation causes that learning to be spread across the entire
generation: each individual changes gradually during the generation as it is repeat-
edly evaluated. The result is a series of intra-generational learning curves within the
larger learning curve.

For the particular problems we tested and network configurations we tried, evo-
lutionary function approximation significantly improves performance over manu-
ally designed networks. In the scheduling domain, Q-learning learns much more
rapidly in the very early part of learning. In both domains, however, Q-learning soon
plateaus while NEAT and NEAT+Q continue to improve. Of course, after 100,000
episodes, Q-learning’s learning rate α has annealed to zero and no additional learn-
ing is possible. However, its performance plateaus well before α reaches zero and,
in our experiments, running Q-learning with slower annealing or no annealing at all
consistently led to inferior and unstable performance.

Nonetheless, the possibility remains that additional engineering of the network
structure, the feature set, or the learning parameters would significantly improve
Q-learning’s performance. In particular, when Q-learning is started with one of the
best networks discovered by NEAT+Q and the learning rate is annealed aggres-
sively, Q-learning matches NEAT+Q’s performance without directly using evolu-
tionary computation. However, it is unlikely that a manual search, no matter how
extensive, would discover these successful topologies, which contain irregular and
partially connected hidden layers. Figure 4.2 shows examples of typical networks
evolved by NEAT+Q.
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Fig. 4.2 Typical examples of the topologies of the best networks evolved by NEAT+Q in
both the mountain car and scheduling domains. Input nodes are on the bottom, hidden nodes
in the middle, and output nodes on top. In addition to the links shown, each input node is
directly connected to each output node. Note that two output nodes can be directly connected,
in which case the activation of one node serves not only as an output of the network, but as
an input to the other node.

NEAT+Q also significantly outperforms regular NEAT in both domains. In the
mountain car domain, NEAT+Q learns faster, achieving better performance in ear-
lier generations, though both plateau at approximately the same level. In the server
job scheduling domain, NEAT+Q learns more rapidly and also converges to sig-
nificantly higher performance. This result highlights the value of TD methods on
challenging reinforcement learning problems. Even when NEAT is employed to find
effective representations, the best performance is achieved only when TD methods
are used to estimate a value function. Hence, the relatively poor performance of
Q-learning is not due to some weakness in the TD methodology but merely to the
failure to find a good representation.

Furthermore, in the scheduling domain, the advantage of NEAT+Q over NEAT
is not directly explained just by the learning that occurs via backpropagation within
each generation. After 300,000 episodes, NEAT+Q clearly performs better even at
the beginning of each generation, before such learning has occurred. Just as pre-
dicted by the Baldwin Effect, evolution proceeds more quickly in NEAT+Q because
the weight changes made by backpropagation, in addition to improving that indi-
vidual’s performance, alter selective pressures and more rapidly guide evolution to
useful regions of the search space.

4.2.2 Combining On-Line Evolution with Evolutionary Function
Approximation

Sections 3.5 and 4.2.1 verify that both on-line evolutionary computation and evo-
lutionary function approximation can significantly boost performance in reinforce-
ment learning tasks. This section presents experiments that assess how well these
two ideas work together.
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Fig. 4.3 The performance of combining evolutionary function approximation with on-line
evolutionary computation compared to using each individually in the mountain car and server
job scheduling domains

Figure 4.3 presents the results of combining NEAT+Q with softmax evolutionary
computation, averaged over 25 runs, and compares it to using each of these meth-
ods individually, i.e., using off-line NEAT+Q (as done in Section 4.2.1) and using
softmax evolutionary computation with regular NEAT. For simplicity, we do not
present results for ε-greedy or interval estimation NEAT+Q since softmax NEAT+Q
performed the best in Section 3.5.

In both domains, softmax NEAT+Q performs significantly better than off-line
NEAT+Q. Hence, just like regular evolutionary computation, evolutionary function
approximation performs better when supplemented with selection techniques tra-
ditionally used in TD methods. Surprisingly, in the mountain car domain, softmax
NEAT+Q performs only as well softmax NEAT. We attribute these results to a ceil-
ing effect, i.e., the mountain car domain is easy enough that, given an appropriate
selection mechanism, NEAT is able to learn quite rapidly, even without the help of
Q-learning. In the server job scheduling domain, softmax NEAT+Q does perform
better than softmax NEAT, though the difference is rather modest. Hence, in both
domains, the most critical factor to boosting the performance of evolutionary com-
putation is the use of an appropriate selection mechanism.

4.2.3 Comparing to Other Approaches

The experiments presented thus far verify that the novel methods presented in this
chapter can improve performance over the constituent techniques upon which they
are built. This section presents experiments that compare the performance of the
highest performing novel method, softmax NEAT+Q, to previous approaches. In the
mountain car domain, we compare to previous results that use TD methods with a lin-
ear function approximator (144). In the server job scheduling domain, we compare to
a random scheduler, two non-learning schedulers from previous research (95; 160),
and an analytical solution computed using integer linear programming.
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In the mountain car domain, the results presented above make clear that softmax
NEAT+Q can rapidly learn a good policy. However, since these results use an on-
line metric, performance is averaged over all members of the population. Hence,
they do not reveal how close the best learned policies are to optimal. To assess the
best policies, we selected the generation champion from the final generation of each
softmax NEAT+Q run and evaluated it for an additional 1,000 episodes. Then we
compared the results to the performance of a learner using Sarsa, a TD method simi-
lar to Q-learning (149), with tile coding, a popular linear function approximator (4),
using a setup that matches that of Sutton (144) as closely as possible. We found their
performance to be nearly identical: softmax NEAT+Q received an average score of
−52.75 while the Sarsa tile coding learner received−52.02. We believe this perfor-
mance is approximately optimal, as it matches the best results published by other
researchers, e.g. (129).

This result does not imply that neural networks are the function approximator
of choice for the mountain car domain. On the contrary, Sutton’s tile coding con-
verges in many fewer episodes. Nonetheless, these results demonstrate that evo-
lutionary function approximation and on-line evolution make it feasible to find
approximately optimal policies using neural networks, something that some pre-
vious approaches (28; 115), using manually designed networks, were unable to do.

Since the mountain car domain has only two state features, it is possible to visual-
ize the value function. Figure 4.4 compares the value functions learned by softmax
NEAT+Q to that of Sarsa with tile coding. For clarity, the graphs plot estimated
steps to the goal. Since the agent receives a reward of −1 for each timestep until
reaching the goal, this quantity is equivalent to −maxa(Q(s,a)). Surprisingly, the
two value functions bear little resemblance to one another. While they share some
very general characteristics, they differ markedly in both shape and scale. Hence,
these graphs highlight a fact that has been noted before (151): that TD methods can
learn excellent policies even if they estimate the value function only very grossly. So
long as the value function assigns the highest value to the correct action, the agent
will perform well.
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softmax NEAT+Q and Sarsa using tile coding
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In the server job scheduling domain, finding alternative approaches for compari-
son is less straightforward. Substantial research about job scheduling already exists
but most of the methods involved are not applicable here because they do not allow
jobs to be associated with arbitrary utility functions. For example, Liu and Lay-
land (86) present methods for job scheduling in a real-time environment, in which
a hard deadline is associated with each job. McWherter et al. (94) present methods
for scheduling jobs with different priority classes. However, unlike the utility func-
tions shown in Section 3.4.2, the relative importance of a job type does not change
as a function of time. McGovern et al. (91) use reinforcement learning for CPU
instruction scheduling but aim only to minimize completion time.

One method that can be adapted to the server job scheduling task is the gener-
alized cμ rule (95), in which the server always processes at time t the oldest job
of that type k which maximizes C′k(ok)/pk, where C′k is the derivative of the cost
function for job type k, ok is the age of the oldest job of type k and pk is the av-
erage processing time for jobs of type k. Since in our simulation all jobs require
unit time to process and the cost function is just the additive inverse of the utility
function, this algorithm is equivalent to processing the oldest job of that type k that
maximizes−U ′k(ok), where U ′k is the derivative of the utility function for job type k.
The generalized cμ rule has been proven approximately optimal given convex cost
functions (95). Since the utility functions, and hence the cost functions, are both
convex and concave in our simulation, there is no theoretical guarantee about its
performance in the server job scheduling domain. To see how well it performs in
practice, we implemented it in our simulator and ran it for 1,000 episodes, obtaining
an average score of −10,891.

Another scheduling algorithm applicable to this domain is the insertion sched-
uler, which performed the best in a previous study of a very similar domain (160).
The insertion scheduler uses a simple, fast heuristic: it always selects for processing
the job at the head of the queue but it keeps the queue ordered in a way it hopes will
maximize aggregate utility. For any given ordering of a set of J jobs, the aggregate
utility is:

∑
i∈J

Ui(ai + pi)

where Ui(·), ai, and pi are the utility function, current age, and position in the queue,
respectively, of job i. Since there are |J|! ways to order the queue, it is clearly in-
feasible to try them all. Instead, the insertion scheduler uses the following simple,
fast heuristic: every time a new job is created, the insertion scheduler tries inserting
it into each position in the queue, settling on whichever position yields the highest
aggregate utility. Hence, by bootstrapping off the previous ordering, the insertion
scheduler must consider only |J] orderings. We implemented the insertion sched-
uler in our simulator and ran it for 1,000 episodes, obtaining an average score of
−13,607.

Neither the cμ rule nor the insertion scheduler perform as well as softmax
NEAT+Q, whose final generation champions received an average score of −9,723
over 1,000 episodes. Softmax NEAT+Q performed better despite the fact that the
alternatives rely on much greater a priori knowledge about the dynamics of the
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system. Both alternatives require the scheduler to have a predictive model of the
system, since their calculations depend on knowledge of the utility functions and
the amount of time each job takes to complete. By contrast, softmax NEAT+Q, like
many reinforcement learning algorithms, assumes such information is hidden and
discovers a good policy from experience, just by observing state transitions and
rewards.

If, in addition to assuming the scheduler has a model of the system, we make
the unrealistic assumption that unlimited computation is available to the scheduler,
then we can obtain an informative upper bound on performance. At each time step
of the simulation, we can compute the optimal action analytically by treating the
scheduling problem as an integer linear program. For each job i ∈ J and for each
position j in which it could be placed, the linear program contains a variable xi j ∈
{0,1}. Associated with each variable is a weight wi j = Ui(ai + j), which represents
the reward the scheduler will receive when job i completes given that it currently
resides in position j. Since the scheduler’s goal is to maximize aggregate utility,
the linear program must maximize ∑i ∑ j wi jxi j. In addition to the constraint that
∀i j : xi j ∈ {0,1}, the program is also constrained such that each job is in exactly one
position: ∀i : ∑ j xi j = 1 and that each position holds exactly one job: ∀ j : ∑i xi j = 1.

A solution to the resulting integer linear program is an ordering that will maxi-
mize the aggregate utility of the jobs currently in the queue. If the scheduler always
processes the job in the first position of this ordering, it will behave optimally as-
suming no more jobs arrive. Since new jobs are constantly arriving, the linear pro-
gram must be re-solved anew at each time step. The resulting behavior may still be
suboptimal since the decision about which job to process is made without reason-
ing about what types of jobs are likely to arrive later. Nonetheless, this analytical
solution represents an approximate upper bound on performance in this domain.

Using the CPLEX software package, we implemented a scheduler based on the
linear program described above and tested in our simulator for 1,000 episodes, ob-
taining an average score of −7,819. Not surprisingly, this performance is superior
to that of softmax NEAT+Q, though it takes, on average, 741 times as long to run.
The computational requirements of this solution are not likely to scale well either,
since the number of variables in the linear program grows quadratically with respect
to the size of the queue.

Figure 4.5 summarizes the performance of the alternative scheduling methods
described in this section and compares them to softmax NEAT+Q. It also includes,
as a lower bound on performance, a random scheduler, which received an average
score of−15,502 over 1,000 episodes. A Student’s t-test verified that the difference
in performance between each pair of methods is statistically significant with 95%
confidence. Softmax NEAT+Q performs the best except for the linear programming
approach, which is computationally expensive and relies on a model of the system.
Prior to learning, softmax NEAT+Q performs similarly to the random scheduler.
The difference in performance between the best learned policies and the linear pro-
gramming upper bound is 75% better than that of the baseline random scheduler and
38% better than that of the next best method, the cμ scheduler.
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Fig. 4.5 A comparison of the performance of softmax NEAT+Q and several alternative meth-
ods in the server job scheduling domain

4.2.4 Comparing Darwinian and Lamarckian Approaches

As described in the beginning of this chapter, evolutionary function approxima-
tion can be implemented in either a Darwinian or Lamarckian fashion. The results
presented so far all use the Darwinian implementation of NEAT+Q. However, it
is not clear that this approach is superior even though it more closely matches bi-
ological systems. In this section, we compare the two approaches empirically in
both the mountain car and server job scheduling domains. Many other empirical
comparisons of Darwinian and Lamarckian systems have been conducted previ-
ously (168; 171; 110) but ours is novel in that individual learning is based on a
TD function approximator. In other words, these experiments address the question:
when trying to approximate a TD value function, is a Darwinian or Lamarckian
approach superior?

Figure 4.6 compares the performance of Darwinian and Lamarckian NEAT+Q
in both the mountain car and server job scheduling domains. In both cases, we use
off-line NEAT+Q, as the on-line versions tend to mute the differences between the
two implementations. Though both implementations perform well in both domains,
Lamarckian NEAT+Q does better in mountain car but worse in server job schedul-
ing. Hence, the relative performance of these two approaches seems to depend crit-
ically on the dynamics of the domain to which they are applied. In the following
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Fig. 4.6 A comparison of Darwinian and Lamarckian NEAT+Q in the mountain car and
server job scheduling domains

section, we present some additional results that elucidate which factors affect their
performance.

4.2.5 Continual Learning Tests

In this section, we assess the performance of the best networks discovered by
NEAT+Q when evaluated for many additional episodes. We compare two scenarios,
one where the learning rate is annealed to zero after 100 episodes, just as in training,
and one where it is not annealed at all. Comparing performance in these two scenarios
allows us to assess the effect of continual learning on the evolved networks.

We hypothesized that NEAT+Q’s best networks would perform well under con-
tinual learning in the mountain car domain but not in server job scheduling. This
hypothesis was motivated by the results of early experiments with NEAT+Q. Origi-
nally, we did not anneal α at all. This setup worked fine in the mountain car domain
but in scheduling it worked only with off-line NEAT+Q; on-line NEAT+Q actually
performed worse than off-line NEAT+Q! Annealing NEAT+Q’s learning rate elimi-
nated the problem, as the experiments in Section 4.2.2 verify. If finding weights that
remain stable under continual learning is more difficult in scheduling than in moun-
tain car, it could explain this phenomenon, since ε-greedy and softmax selection,
by giving many more episodes of learning to certain networks, could cause those
networks to become unstable and perform poorly.

To test the best networks without continual learning, we selected the final genera-
tion champion from each run of off-line Darwinian NEAT+Q and evaluated it for an
additional 5,000 episodes, i.e., 50 times as many episodes as it saw in training. Dur-
ing these additional episodes, the learning rate was annealed to zero by episode 100,
just as in training. To test the best networks with continual learning, we repeated this
experiment but did not anneal the learning rate at all. To prevent any unnecessary
discrepancies between training and testing, we repeated the original NEAT+Q runs
with annealing turned off and used the resulting final generation champions.
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Fig. 4.7 A comparison of the performance of the best networks evolved by NEAT+Q when
tested, with and without annealing, for an additional 5,000 episodes

Figure 4.7 shows the results of these tests. In the mountain car domain, per-
formance remains relatively stable regardless of whether the networks continue to
learn. The networks tested without annealing show more fluctuation but maintain
performance similar to those that were annealed. However, in the scheduling do-
main, the networks subjected to continual learning rapidly plummet in performance
whereas those that are annealed continue to perform as they did in training. These re-
sults directly confirm our hypothesis that evolutionary computation can find weights
that perform well under continual learning in mountain car but not in scheduling,
which explains why on-line NEAT+Q does not require an annealed learning rate in
mountain car but does in scheduling.

These tests also shed light on the comparison between Darwinian and Lamarck-
ian NEAT+Q presented in Section 4.2.4. A surprising feature of the Darwinian ap-
proach is that it is insensitive to the issue of continual learning. Since weight changes
do not affect offspring, evolution need only find weights that remain suitable during
one individual’s lifetime. By contrast, in the Lamarckian approach, weight changes
accumulate from generation to generation. Hence, the TD updates that helped in
early episodes can hurt later on. In this light it makes perfect sense that Lamarck-
ian NEAT+Q performs better in mountain car than in scheduling, where continual
learning is problematic.

These results suggest that the problem of stability under continual learning can
greatly exacerbate the difficulty of performing neural network function approxi-
mation in practice. This issue is not specific to NEAT+Q, since Q-learning with
manually designed networks achieved decent performance only when the learning
rate was properly annealed. Darwinian NEAT+Q is a novel way of coping with this
problem, since it obviates the need for long-term stability. In on-line evolutionary
computation annealing may still be necessary but it is less critical to set the rate
of decay precisely. When learning ends, it prevents only a given individual from
continuing to improve. The system as a whole can still progress, as evolution exerts
selective pressure and learning begins anew in the next generation.
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4.3 Discussion

The results in the mountain car domain presented in this chapter demonstrate that
NEAT+Q can successfully train neural network function approximators in a do-
main which is notoriously problematic for them. However, NEAT+Q requires many
more episodes to find good solutions (by several orders of magnitude) than tile
coding does in the same domain. This contrast highlights an important drawback
of NEAT+Q: since each candidate network must be trained long enough to let
Q-learning work, it has very high sample complexity. However, in the next chap-
ter, we introduce an enhancement to NEAT+Q that dramatically reduces its sample
complexity.

It is not surprising that NEAT+Q takes longer to learn than tile coding because it
is actually solving a more challenging problem. Tile coding, like other linear func-
tion approximators, requires the human designer to engineer a state representation in
which the optimal value function is linear with respect to those state features (or can
be reasonably approximated as such). For example, when tile coding was applied
to the mountain car domain, the two state features were tiled conjunctively (144).
By contrast, nonlinear function approximators like neural networks can take a sim-
pler state representation and learn the important nonlinear relationships. Note that
the state representation used by NEAT+Q, while discretized, does not include any
conjunctive features of the original two state features. The important conjunctive
features are represented by hidden nodes that are evolved automatically by NEAT.

Conjunctively tiling all state features is feasible in mountain car but quickly be-
comes impractical in domains with more state features. For example, doing so in
the scheduling domain would require 16 tile codings, one for each action. In addi-
tion, each tile coding would have multiple 16-dimensional tilings. If 10 tilings were
used and each state feature were discretized into 10 buckets, the resulting function
approximator would have 16×10×1016 cells. Conjunctively tiling only some state
features is feasible only with a large amount of domain expertise. Hence, methods
like NEAT+Q that automatically learn nonlinear representations promise to be of
great practical importance.

The results in the scheduling domain demonstrate that the proposed methods
scale to a much larger, probabilistic domain and can learn schedulers that outper-
form existing non-learning approaches. The difference in performance between the
best learned policies and the linear programming upper bound is 75% better than
that of the baseline random scheduler and 38% better than that of the next best
method, the cμ scheduler. However, the results also demonstrate that non-learning
methods can do quite well in this domain. If so, is it worth the trouble of learn-
ing? We believe so. In a real system, the utility functions that the learner maximizes
would likely be drawn directly from Service Level Agreements (SLAs), which are
legally binding contracts governing how much clients pay their service providers as
a function of the quality of service they receive (157). Hence, even small improve-
ments in system performance can significantly affect the service provider’s bottom
line. Substantial improvements like those demonstrated in our results, if replicated
in real systems, could be very valuable indeed.
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Overall, the main limitation of the results presented in this chapter is that they ap-
ply only to neural networks. In particular, the analysis about the effects of continual
learning (Section 4.2.5) may not generalize to other types of function approximation
that are not as prone to instability or divergence if over-trained. While evolutionary
methods could in principle be combined with any kind of function approximation, in
practice it is likely to work well only with very concise representations. Methods like
tile coding, which use many more weights, would result in very large genomes and
hence be difficult for evolutionary computation to optimize. However, as Chapter 7
will demonstrate, other strategies which do not rely on evolutionary computation
can effectively optimize such representations.



Chapter 5
Sample-Efficient Evolutionary Function
Approximation

As mentioned in Section 4.3, evolutionary function approximation suffers from one
important disadvantage: high sample complexity. Each candidate representation in
the population must be evaluated for many episodes before TD updates have a sig-
nificant effect. High sample complexity is undesirable because sample episodes are
typically the scarcest resource: each new episode may incur substantial real-world
costs whereas additional memory and CPU cycles are relatively inexpensive.

This chapter presents an enhancement to evolutionary function approximation
designed to make it dramatically more sample-efficient. This enhancement relies on
TD methods that are off-policy, i.e., that can estimate the optimal value function
regardless of what policy the agent is following. By storing experience from the
previous generation, sample-efficient evolutionary function approximation can train
each new generation off-line using only computation time: no additional sample
episodes are needed. The resulting function approximators can then be evaluated
and selectively reproduced in many fewer episodes.

We implemented this enhancement in NEAT and tested the resulting sample-
efficient NEAT+Q algorithm in a deterministic variant of server job scheduling. The
results demonstrate that sample-efficient NEAT+Q can learn better policies than
NEAT or Q-learning alone and can do so in many fewer episodes than the original
NEAT+Q approach.

5.1 Sample-Efficient NEAT+Q

For both NEAT and NEAT+Q, the number of episodes per generation e must be
much greater than the population size |P| in domains that are highly stochastic. Such
domains have noisy fitness functions and hence each network’s performance must
be averaged over many episodes. For NEAT+Q, however, there is a second reason to
set e high, which applies even if the domain is deterministic: Q-learning needs time
to learn. In most domains, TD updates will not have substantial impact in a single
episode. Consequently, the original NEAT+Q method is likely to offer a practical

S. Whiteson: Adaptive Representations for Reinforcement Learning, SCI 291, pp. 47–52.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010



48 5 Sample-Efficient Evolutionary Function Approximation

advantage over regular NEAT only in highly stochastic domains, where e must be
set high anyway. Otherwise, even if NEAT+Q ultimately discovers better policies,
it will take many more episodes to do so. Figure 5.1 illustrates this problem.

Fig. 5.1 A comparison of the number of episodes necessary for evaluation and learning in
both NEAT and NEAT+Q. No learning occurs in regular NEAT and evaluations can occur in a
single episode in deterministic domains (bottom left) but require many episodes in stochastic
domains (top left). NEAT+Q requires many episodes to train each network but in stochastic
domains, those episodes were already necessary for evaluation (top right). Hence, the prob-
lematic case for NEAT+Q occurs in deterministic domains, where many more episodes are
required for learning than would have been for evaluation (bottom right).

This section presents sample-efficient NEAT+Q (163), a variation designed to
remedy this shortcoming. By training networks on saved experience, Q-learning
can have a substantial impact even when e = |P|. As a result, NEAT+Q can improve
performance even in completely deterministic domains. Sample-efficient NEAT+Q
works by exploiting the off-policy nature of Q-learning. Because Q-learning’s up-
date rule is independent of the policy the agent is following, one network can be
updated while another is controlling the agent. Furthermore, a network can be up-
dated based on data saved from previous sample episodes, regardless of what policy
was used during those episodes. Consequently, it is not necessary to use different
episodes to train each network. On the contrary, by saving data from the episodes
used by the previous generation, each network in the population can be pre-trained,
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using computation time but no additional sample episodes. If the fitness function is
not too noisy then, once trained, the resulting function approximators can be evalu-
ated by NEAT+Q using only |P| episodes.

To achieve this sample-efficiency, NEAT+Q records all the transition samples,
of the form (s,a,r,s′), from the episodes used to evaluate the previous generation.
Then, at the beginning of each generation (i.e., after line 7 in Algorithm 6), it calls
the PRE-TRAIN function described in Algorithm 7. In the first generation no samples
have been collected (|T |= 0) and no pre-training occurs.

Algorithm 7 PRE-TRAIN(P,T,c,α,γ,λ )
1: // P: population, T : sample transitions, c: output scale, α: learning rate
2: // γ: discount factor, λ : eligibility decay rate
3:
4: for i← 1 to |P| do
5: for j← 1 to |T | do
6: Q[]← EVAL-NET(P[i],T[ j].s′)
7: BACKPROP(P[i],T[ j].s,T [ j].a,T [ j].r + γmaxkQ[k]/c,α,γ ,λ )

Because it saves sample episodes for reuse, sample-efficient NEAT+Q bears a
close resemblance to experience replay methods for reinforcement learning (84).
In particular, it is similar to Neural Fitted Q Iteration (119), which uses data from
saved episodes to train neural network TD function approximators. The primary
difference is that these methods do not learn representations because they use saved
experience to train only one function approximator. By contrast, sample-efficient
NEAT+Q uses saved experience to train an entire population of function approxi-
mators with heterogeneous representations and then subjects them to evolutionary
selection.

If computational resources are plentiful, there are many ways to extend the pre-
training phase. For example, episodes could be saved from all previous generations
instead of just the last one and/or each network could be trained repeatedly on each
sample instead of just once. To make our experiments more feasible, we do not
evaluate these alternatives in this chapter. However, the experiments presented be-
low suggest that additional pre-training does not improve performance.

Assuming e is reduced to |P|, this algorithm will have much higher amortized
computational complexity per episode than the original NEAT+Q method, since
each network must be trained before evaluations can begin. However, it will have
much lower sample complexity since each generation requires many fewer episodes.
This trade-off is likely to be advantageous in practice, since sample experience is
typically a much scarcer resource than computation time.

5.2 Results

In this chapter, we consider a deterministic variation of the server job scheduling
task that was introduced in Section 3.4.2. At the beginning of each learning run,
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we randomly select the sequence of 200 jobs that the agent will process in each
episode. Hence, within each run, every episode uses the same sequence of jobs,
though that sequence differs for each run. Making the task deterministic allows us
to evaluate sample-efficient NEAT+Q in the scenario for which it was designed.
In the stochastic version of the task, the fitness function is very noisy and each
network must be evaluated for approximately 100 episodes to get an accurate fitness
estimate, giving the original NEAT+Q method enough time to significantly improve
performance. In the deterministic version, each network can be accurately evaluated
in a single episode and hence NEAT+Q will significantly improve performance only
if it is made sample-efficient.

Figure 5.2 shows the performance of NEAT and NEAT+Q in the deterministic
scheduling task, with |P|= e = 50. The graph shows uniform moving average score
per episode averaged over the past 100 episodes. The performance advantage of
NEAT+Q that was shown in Section 4.2.1 disappears because Q-learning does not
have a significant effect in one episode.
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Fig. 5.2 A comparison of the performance of NEAT with both regular and sample-efficient
versions of NEAT+Q in the deterministic server job scheduling task

Nonetheless, NEAT+Q can substantially improve performance even in the deter-
ministic version of the task if it is made sample-efficient. Figure 5.2 also shows the
performance of sample-efficient NEAT+Q. By pre-training with saved episodes, this
method substantially outperforms regular NEAT and the original NEAT+Q method.
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Obtaining this performance improvement requires additional computation time (pre-
training requires 10,000 neural network updates for each member of the population)
but the result is a dramatic drop in sample complexity. By saving episodes, NEAT+Q
can outperform NEAT even when the number of episodes per generation is reduced
by two orders of magnitude. A Student’s t-test confirmed that the performance dif-
ference between sample-efficient NEAT+Q and both regular NEAT+Q and NEAT
is statistically significant with 95% confidence.

In these experiments, sample-efficient NEAT+Q saves transitions from all the
episodes used to evaluate the previous generation. Hence, each network is pre-
trained with 50 sample episodes. Would performance improve more if additional
episodes were saved? Could the same performance be achieved with less compu-
tation time if fewer episodes were saved? To address these questions, we ran addi-
tional trials of sample-efficient NEAT+Q, pre-training on 5, 10, 25, or 100 episodes
instead of 50. Figure 5.3 summarizes the results of these experiments by compar-
ing the average performance of each method after 30,000 episodes. Surprisingly,
pre-training with as few as 5 saved episodes (1,000 updates per network) still yields
a substantial performance advantage. Furthermore, pre-training with 100 episodes
(20,000 updates per network) does not improve performance. A Student’s t-test
demonstrated that, while the differences between each sample-efficient version of
NEAT+Q and both regular NEAT+Q and NEAT are significant, the differences
among them are not significant.

Fig. 5.3 A comparison of the performance of NEAT, NEAT+Q and sample-efficient
NEAT+Q with different numbers of saved episodes. Each bar represents the average score
after 30,000 episodes and hence is comparable to the right edge of Figure 5.2.
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5.3 Discussion

Together, these results clearly demonstrate that sample-efficient evolutionary func-
tion approximation can substantially improve performance. Furthermore, it can do
so without using more sample episodes than a traditional evolutionary approach.
The price for this sample efficiency is increased computational complexity. In prac-
tice, this trade-off is likely to be beneficial, since sample experience is typically
a much scarcer resource. Even when computational resources are limited, this ap-
proach can be useful, as our results demonstrate that even a modest amount of pre-
training can significantly improve performance.



Chapter 6
Automatic Feature Selection for Reinforcement
Learning

Chapters 3, 4, and 5 introduced methods for automatically optimizing representa-
tions for reinforcement learning tasks. However, those methods focus only on the
agent’s internal representation of its solution, i.e., the structure of the mapping from
states to actions or from state-action pairs to value estimates. Hence, they still re-
quire a human to manually design an input representation, i.e., to find a minimal set
of features sufficient to describe the agent’s current state, a challenge known as the
feature selection problem. This chapter presents an extension to NEAT designed to
automate feature selection in reinforcement learning problems. This extension en-
ables agents to automatically evolve effective representations for their inputs as well
as their internal workings.

In many real world tasks, the set of potential inputs that can be fed to the agent
is quite large. Feature selection is the process of determining which subset of these
inputs should be included to generate the best performance. Doing so correctly can
be critical to success. If any important features are excluded, it may be impossible
to find an optimal policy. On the other hand, including superfluous inputs can also
impede learning. Since each input adds at least one dimension to the search space,
even a few extraneous features can be detrimental. However, the consequences of
sub-optimal feature selection are not limited just to the learner’s performance. If
adding inputs costs money (e.g. putting more sensors on a robot), then pruning out
unnecessary features can be vital.

Feature selection can often be performed by a human with the appropriate do-
main expertise. However, in some domains, no one has the requisite knowledge and,
even when experts do exist, employing them can be expensive and time consuming.
In such domains, automatic feature selection is necessary. Blum and Langley (24)
divide feature selection techniques into two categories: filters and wrappers. Fil-
ters (26; 70) analyze the value of a feature set without regard to the learning al-
gorithm that will use those features. Instead, they rely on labeled data. The data is
analyzed to determine which features are most useful in distinguishing between the
category labels. This approach has been successful but works only in supervised
learning tasks. In reinforcement learning scenarios, when no labeled data is avail-
able, filtering techniques are not applicable.
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By contrast, wrappers (103; 108) test a feature set by applying it to the given
learning algorithm and observing its performance. Labeled examples are not neces-
sary so this approach can be used in reinforcement learning tasks as well. However,
it requires a meta-learner to search through the space of feature sets; evaluating any
point in that space requires an entire machine learning run of its own. For most
real-world problems, this approach is computationally infeasible.

This chapter presents Feature Selective NeuroEvolution of Augmenting Topolo-
gies (FS-NEAT) (164), a new learning method that avoids such limitations by in-
corporating the feature selection problem into the learning task. FS-NEAT searches
for good feature sets at the same time as it trains networks that receive those fea-
tures as input. Hence, it does not depend on human expertise, labeled data sets, or
meta-learning.

FS-NEAT is based on NEAT, which evolves both the topology and weights of
a neural network. FS-NEAT goes one step further than regular NEAT by learning
the network’s inputs too. Using evolution, it automatically and simultaneously de-
termines the network’s inputs, topology, and weights. Harvey et al. (59) also used
neuroevolution to find useful subsets of available features though, unlike FS-NEAT,
their system still requires a human to specify the size of that subset in advance.

A critical feature of NEAT is that it begins with networks of minimal topology
(i.e., with no hidden nodes and all inputs connected directly to the outputs). As evo-
lution proceeds, NEAT adds links and hidden nodes through mutation. Since only
those additions that improve performance are likely to be retained, it tends to find
small networks without superfluous structure. Starting minimally also helps NEAT
learn more quickly. When networks in its population are small, it is optimizing over
a lower-dimensional search space; it jumps to a larger space only when performance
in the smaller one stagnates.

FS-NEAT further exploits this same premise. It begins with a population of net-
works that are even smaller than in regular NEAT. These networks contain no con-
nections at all, not even those connecting inputs to outputs, save those added by an
initial mutation step. Hence, they are little more than pools of inputs and outputs.
Evolution then proceeds as in regular NEAT, with hidden nodes and links added
through mutation. Feature selection occurs implicitly as only those links emerging
from useful inputs will tend to survive.

In addition to introducing this novel method, this chapter presents experiments
comparing FS-NEAT to regular NEAT in a challenging reinforcement learning do-
main: an autonomous car racing simulation called RARS (154). The results of these
experiments confirm that when some of the available inputs are redundant or irrel-
evant, FS-NEAT can learn better and faster than regular NEAT. In addition, these
results demonstrate that the networks FS-NEAT evolves are smaller and require
fewer inputs.

6.1 FS-NEAT

NEAT’s initial networks are small but not as small as possible. The structure of the
initial networks, in which each input is connected directly to each output, reflects



6.1 FS-NEAT 55

an assumption that all the available inputs are useful and should be connected to the
rest of the network. In domains where the input set has been selected by a human
expert, this assumption is reasonable. However, in many domains no such expert
is available and the input set may contain many redundant or irrelevant features.
In such cases, the initial connections used in regular NEAT can significantly harm
performance by unnecessarily increasing the size of the search space.

FS-NEAT is an extension of NEAT that attempts to solve this problem by starting
even more minimally: with networks having almost no links at all. As in regular
NEAT, hidden nodes and links are added through mutation and only those additions
that aid performance are likely to survive. Hence, FS-NEAT begins in even lower
dimensional spaces than regular NEAT and feature selection occurs implicitly: only
those links emerging from useful inputs will tend to survive.

Exactly how should we initialize the population in order to implement this idea?
The most minimal initial topology possible would contain no hidden nodes or links
at all. However, such networks would not generate any output. Obviously, spending
a generation to evaluate a population of such networks would be wasteful. There-
fore, for each network in the initial population, FS-NEAT randomly selects an input
and an output and adds a link connecting them. Figure 6.1 compares the initial
network topologies of regular NEAT and FS-NEAT. After the initial population is
generated, FS-NEAT behaves exactly like regular NEAT.

In most tasks, FS-NEAT’s initial networks will lack the structure necessary to
perform well. However, some will likely connect a relevant input to an output in
a useful way and hence outperform their peers. Such early distinctions provide an
initial gradient to the evolutionary search. Complexification then drives that search
towards networks that use the most appropriate inputs, topology and weights.

Inputs

Outputs

Regular NEAT FS−NEAT

Fig. 6.1 Examples of initial network topologies for both regular NEAT and FS-NEAT. In
regular NEAT, networks in the initial population have all inputs connected directly to all
outputs. In FS-NEAT, those networks have one link connecting a randomly selected input
and output.
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Since FS-NEAT incorporates the feature selection problem into the learning task
itself, it avoids the need for expensive meta-learners used by wrappers. In addition,
since it does not rely on labeled data like filters do, it can be applied to reinforcement
learning problems. The next section describes one such application.

6.2 Testbed Domain

The experiments presented in this chapter were conducted in the Robot Auto Rac-
ing Simulator (RARS) (154). This domain was selected because of NEAT’s previous
success evolving controllers for it (136) and because the available inputs (described
below) pose a natural feature selection challenge. FS-NEAT could in principle be
applied to many other domains, including the mountain car and server job schedul-
ing tasks employed in previous chapters, if irrelevant and redundant features were
added. Such experiments are left for future work.

RARS is a Java-based program that uses a two-dimensional model to simulate
cars racing around a track. The simulation is quite realistic and takes into account
effects such as skidding and traction. In addition, RARS models the noise that occurs
in real-world effectors. For example, the coefficient of friction is stochastic such that
the effect of trying to accelerate is not entirely predictable. The goal in this domain
is to develop a controller that can race an automobile around the track as quickly as
possible without damaging it.

The RARS simulator offers a plethora of raw data about the car’s immediate envi-
ronment. This data was consolidated into a rangefinder system, shown in Figure 6.2,
that projects rays at different angles relative to the car’s current heading. These rays
measure the distance from the car to the edge of the road, which allows the agent to
estimate its position in the road and perceive upcoming curves. This sensor system
creates a very typical feature selection problem. How many rangefinders does the
controller need in order to drive the car most effectively? If too few are included, the

Fig. 6.2 The range finder sensor system in RARS. A set of rays (seven in this case) are
projected at different angles to allow the agent to estimate its position in the road and perceive
upcoming curves.
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networks NEAT evolves will not have enough information to master the task. If too
many are included, NEAT will be forced to search in an unnecessarily large search
space, which may substantially reduce its performance.

To test the ability of FS-NEAT to automatically address this problem, the net-
works are provided with a set of 80 rangefinders (evenly distributed across the 180
degree range in front of the car), which we expect to be more than necessary. In
addition, another 80 irrelevant inputs are included, each of which supplies random
numbers drawn uniformly from the range [0,1]. The number of irrelevant and re-
dundant features was selected to ensure a challenging feature selection problem. In
Section 6.3, we examine the relative performance of FS-NEAT and NEAT as the
number of irrelevant and redundant features varies.

Finally, there is one input specifying the vehicle’s current velocity and one bias
unit, for a total of 162 inputs. If FS-NEAT can automatically discover a useful subset
of these inputs, it should outperform regular NEAT, which is forced to use all 162.

In addition to these inputs, the networks have two outputs: one specifying the
agent’s desired speed and the other specifying the agent’s desired heading. In our
experiments, a trial consists of 2000 timesteps on a standard RARS track called
“clkwis,” shown in Figure 6.3. This track was selected because it is small enough to
allow efficient evaluations but still captures a wide range of driving challenges (i.e.
straight sections, turns, and an S-shaped curve). During each timestep, input from
the environment is fed into the network controlling the car. The network is then
activated once and the values of the outputs are used to adjust the vehicle’s heading

Fig. 6.3 The “clkwis” track used in the FS-NEAT experiments. It captures a wide range of
driving challenges (i.e. straight sections, turns, and an S-shaped curve).
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and speed. At the end of each trial a score is computed as S = 2d− b, where d
is the distance traveled and b is a damage penalty computed internally by RARS
as a function of the time the vehicle spends off the track. Since the simulation is
noisy, each fitness evaluation in NEAT consists of 10 trials; the agent’s fitness is the
average of the scores received in these trials. Table 6.1 provides more details on the
NEAT parameters used in these experiments, which were selected to match those
used in previous research about applying NEAT to RARS (136).

Table 6.1 The NEAT parameters used in the experiments described in this chapter. Stanley
and Miikkulainen (137) describe the semantics of these parameters in detail.

Parameter Value Parameter Value Parameter Value
weight-mut-power 0.5 recur-prop 0.0 disjoint-coeff (c1) 1.0
excess-coeff (c2) 1.0 mutdiff-coeff (c3) 2.0 compat-threshold 3.0
age-significance 1.0 survival-thresh 0.2 mutate-only-prob 0.25

mutate-link-weights-prob 0.9 mutate-add-node-prob (mn) 0.02 mutate-add-link-prob (ml) 0.1
interspecies-mate-rate 0.05 mate-multipoint-prob 0.6 mate-multipoint-avg-prob 0.4
mate-singlepoint-prob 0.0 mate-only-prob 0.2 recur-only-prob 0.0

pop-size (p) 100 dropoff-age 1000 newlink-tries 50
babies-stolen 0 num-compat-mod 0.3 num-species-target 6

6.3 Results

Using this setup, we performed experiments comparing regular NEAT to FS-NEAT.
For each method, we conducted 10 runs, each of which ran for 200 generations.
The results are summarized in Figure 6.4. Each line in the graph represents the
score received by the best network from each generation, averaged over all 10 runs.
The graph demonstrates that when some of the available inputs are redundant or
irrelevant, FS-NEAT can learn better networks and learn them faster than regular
NEAT. In this graph and all those presented below, a Student’s t-test verified, with
95% confidence, the statistical significance of the difference between FS-NEAT and
regular NEAT.

Figure 6.5 shows, for the same experiments, how many inputs have at least one
connection emerging from them in the best network of each generation. Regular
NEAT always uses all 162 inputs but FS-NEAT finds better networks that use only
a small fraction of them. In fact, when FS-NEAT’s performance begins to plateau
around generation 65, its performance is already 17.5% better than regular NEAT
ever achieves, at which point its best network has on average only 10% as many
connected inputs. FS-NEAT’s performance continues to creep up slowly after gener-
ation 65, improving another 4.6% by generation 200, at which point its best network
has on average 22.9% as many inputs as regular NEAT.

Figure 6.6 shows, for the same experiments, the size of the best network from
each generation, where size is simply the total number of nodes (only connected
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Fig. 6.4 A comparison of the performance of regular NEAT and FS-NEAT in the RARS
domain with 162 available inputs, 80 of which are irrelevant to the task. Each line in the graph
represents the score received by the best network from each generation, averaged over all 10
runs. By learning appropriate feature sets, FS-NEAT learns significantly better networks and
learns them faster than regular NEAT.

inputs are counted) plus the total number of links. This graph demonstrates that FS-
NEAT evolves substantially smaller networks than regular NEAT does. When FS-
NEAT’s performance begins to plateau around generation 65, its best network is on
average only 9.7% as large as regular NEAT’s. When the runs complete at generation
200, FS-NEAT’s best network is on average only 18.5% as large as regular NEAT’s.

In these experiments, FS-NEAT found high performing networks that use only
16 inputs, which implies that the feature set we supplied to the learners, with 80
rangefinders, was much larger than needed. How would the performance of FS-
NEAT relative to regular NEAT change if the initial feature set were closer to ideal?
How many redundant and irrelevant features must be present before FS-NEAT pro-
vides a significant advantage? Does FS-NEAT’s performance improvement continue
to increase as the feature set gets larger? To address these questions, we conducted
several additional experiments with feature sets of different sizes. These experi-
ments use the setup described above but instead of 80 rangefinders they include 5,
20, 40, or 160 rangefinders. In each case, the rangefinders are matched with an equal
number of irrelevant inputs. Adding the velocity and bias inputs yields initial feature
sets of size 12, 42, 82, and 322. For each size and for each method, we conducted
10 runs, each of which ran for 200 generations.
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Fig. 6.5 A comparison of the number of inputs used by regular NEAT and FS-NEAT in the
RARS domain with 162 available inputs. Each line in the graph represents the number of in-
puts with at least one connection emerging from them in the best network of each generation.
Regular NEAT always uses all 162 inputs but FS-NEAT evolves better networks that uses
significantly fewer of them.

Figure 6.7 summarizes the results of these experiments by showing, for each
method and feature set size, the performance of the best network in the entire
run, averaged over all ten runs. Even when the initial feature set contains only 12
inputs, FS-NEAT still performs better. As the size of the feature set grows, the per-
formance of regular NEAT deteriorates. By contrast, the performance of FS-NEAT
remains nearly constant even as the feature selection task it faces becomes ever more
difficult.

Figure 6.8 compares the number of connected inputs in the best network in the
entire run, averaged over all ten runs. Regular NEAT always uses all available inputs
while FS-NEAT learns to use much smaller subsets. Even as the size of the feature
set grows, the number of inputs used by FS-NEAT’s best networks stays nearly
constant. Similarly, Figure 6.9 compares the sizes of these same networks. The size
of regular NEAT’s best networks increases linearly with respect to the number of
available features, whereas FS-NEAT’s best networks stay nearly constant in size.
Therefore, FS-NEAT consistently uses features sets with many fewer extraneous
inputs than regular NEAT and, in so doing, finds better solutions faster.
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Fig. 6.6 A comparison of the size of the networks evolved by regular NEAT and FS-NEAT
in the RARS domain with 162 available inputs. Each line in the graph represents the number
of nodes (only connected inputs are counted) plus the number of links in the best network of
each generation. FS-NEAT evolves significantly smaller networks than regular NEAT does.

6.4 Discussion

The empirical results presented in this chapter demonstrate that when some of the
available inputs are redundant or irrelevant, FS-NEAT can learn better networks and
learn them faster than regular NEAT. In addition, the networks it learns are smaller
and use fewer inputs. These results are consistent across feature sets of different
sizes.

One interesting question raised by these results is why the size and number of
inputs used by FS-NEAT do not plateau. For example, Figure 6.4 shows that per-
formance improvements mostly level off by generation 65. However, Figures 6.5
and 6.6 show that the size and number of inputs used by FS-NEAT’s best networks
continue to grow linearly through generation 200. Should we not expect them to
plateau also once the “right” size has been found? Counterintuitively, the answer
is no. The goal of both NEAT and FS-NEAT is to determine the right complexity
to solve a given task. Hence, when performance at a certain complexity plateaus,
these algorithms proceed to explore at higher complexities. In these experiments,
that exploration pays few dividends after generation 65.

Nonetheless, even given such exploration, we would still expect to see size
plateau if there were a strong selective pressure against larger networks since none
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Fig. 6.7 A comparison of the performance of regular NEAT and FS-NEAT across feature
sets of different sizes. Each line in the graph represents the score received by the best network
in the entire run, averaged over all 10 runs. The performance of regular NEAT gets signifi-
cantly worse as the feature set gets larger whereas the performance of FS-NEAT stays nearly
constant.

of these networks would likely become generation champions. The fact that they
do implies that FS-NEAT is not completely intolerant of redundant and irrelevant
inputs. This behavior makes sense because the presence of such inputs may not be
harmful if, for example, NEAT can learn to set the weights emerging from them
close to zero. In this respect, FS-NEAT behaves exactly as we would wish: it selects
against large networks only when their size presents a significant disadvantage to
the learner.

In evolutionary search, it is critical that the fitness of the initial population have
some variance: unless some individuals are more promising than others, progress
is unlikely. This issue is of particular concern in FS-NEAT since its initial popula-
tion consists of degenerate networks that are almost completely disconnected. While
the experiments presented in this chapter verify that FS-NEAT consistently finds an
initial gradient for learning, those experiments tested only one population size: 100.
We wondered if the relative performance of FS-NEAT would deteriorate for smaller
populations since the probability of finding an initial promising network would de-
crease. However, this problem does not occur in the RARS domain. In fact, informal
experiments with different population sizes indicate that both regular NEAT and FS-
NEAT perform robustly with populations as small as 25 and that FS-NEAT retains



6.4 Discussion 63

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350

C
on

ne
ct

ed
 In

pu
ts

Number of Available Inputs

Connected Inputs of Best Net Per Run

FS-NEAT
Regular NEAT

Fig. 6.8 A comparison of the number of connected inputs in regular NEAT and FS-NEAT
across feature sets of different sizes. Each line in the graph represents the number of inputs
with at least one connection in the best network of the entire run, averaged over all 10 runs.
Regular NEAT always uses all available inputs while FS-NEAT learns to use significantly
smaller subsets.

its substantial advantage over regular NEAT. Hence, at least in RARS, FS-NEAT’s
smaller initial networks seem more likely to point evolution in the right direction.

In other settings, however, the lack of initial gradient may be a serious problem.
For example, when FS-NEAT is combined with NEAT+Q, to evolve both input and
internal representations of neural network function approximators, performance is
poor, perhaps for this reason (see Section 9.2.1 for a discussion of this negative
result). Nonetheless, FS-NEAT has also been successfully applied in a domain very
different from RARS, namely distributed instruction placement in compilers (37).
Hence, the initial gradient required for FS-NEAT to succeed is not unique to the
RARS domain.

The most revealing test of FS-NEAT’s robustness is how its performance changes
when the size of the initial feature set increases. As this set gets larger, feature
selection becomes more important, as confirmed by the decline of regular NEAT’s
performance in Figure 6.7. FS-NEAT’s performance, by contrast, does not decline at
all. Most strikingly, the size and number of inputs used by FS-NEAT’s best networks
remains approximately constant across different feature set sizes, whereas regular
NEAT’s networks grow ever larger. Together, these results suggest that the efficacy
of FS-NEAT scales well to large feature selection problems.
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Fig. 6.9 A comparison of network size in regular NEAT and FS-NEAT across feature sets of
different sizes. Each line in the graph represents the size of the best network of the entire run,
averaged over all 10 runs. Regular NEAT’s best networks increase in size significantly as the
number of available features grows, whereas FS-NEAT’s best networks stay nearly constant
in size.



Chapter 7
Adaptive Tile Coding

Chapters 4 and 5 demonstrate how an agent can automatically adapt the represen-
tation of neural network function approximators. This chapter extends that work by
introducing adaptive methods for a different type of function approximator, namely
tile coding. Extending adaptive methods beyond neural networks is important be-
cause, while neural networks are a powerful representation, they are not a panacea.
On the contrary, they have some significant drawbacks. Perhaps chief among these
is their inscrutability. Even when neural networks perform well, their inner workings
are typically difficult or impossible for a human to understand.

This “black box” quality means that the cause of poor performance is often diffi-
cult to diagnose. Hence, it is not feasible for the agent to reason about the inadaque-
cies of its representation and how best to remedy them. Instead, it can only search
for a good representation, which is why Chapter 4 focuses on an evolutionary ap-
proach to finding good representations. While Chapter 5 demonstrates that such an
approach can be made sample-efficient, testing each candidate representation re-
mains expensive.

By contrast, the behavior of linear representations such as tile codings are typi-
cally much easier to interpret. Unlike neural networks, the effects of any particular
weight are contained in a particular region of the state space. Furthermore, changes
to the representation (e.g., splitting tiles in two) have consequences that are largely
predictable. Hence, an agent, by analyzing its own behavior, can reason about how to
improve its representation without requiring expensive search. This chapter presents
adaptive tile coding, a novel method for doing so.

Tile coding, which forms a piecewise-constant approximation of the value func-
tion, requires a human designer to choose the size of each tile in each dimension of
the state space. Adaptive tile coding automates this process by starting with large
tiles and making them smaller during learning by splitting existing tiles in two. Be-
ginning with simple representations and refining them over time is a strategy that
has proven effective for NEAT and NEAT+Q, as well as other function approx-
imators (36; 102). In addition to automatically finding good representations, this
approach gradually reduces the function approximator’s level of generalization over
time, a factor known to critically affect performance in tile coding (126).

S. Whiteson: Adaptive Representations for Reinforcement Learning, SCI 291, pp. 65–76.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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To succeed, adaptive tile coding must make smart decisions about which tiles
to split and along which dimension. This chapter compares two different criteria
for prioritizing potential splits. The value criterion estimates how much the value
function will change if a particular split occurs. By contrast, the policy criterion
estimates how much the policy will change if a given split occurs.

Empirical results in two benchmark reinforcement learning tasks demonstrate
that the policy criterion is more effective than the value criterion. The results also
verify that adaptive tile coding can automatically discover representations that yield
approximately optimal policies and that the adaptive approach’s speed of learning
is competitive with the best fixed tile-coding representations.

7.1 Background

This section briefly describes tile coding representations and how they are used
to approximate value functions. For simplicity, this chapter focuses on MDPs that
are continuous but deterministic, though in principle the methods presented could
be extended to stochastic domains. Hence, the transition dynamics are described by
T : S×A→ S such that an agent in state s∈ S that takes action a∈A will transition to
state T (s,a). As in previous work on adaptive function approximation (36; 55; 102),
we also assume the agent has a model of its environment (i.e., T and R are known).
Hence, the agent need only learn V ∗, not Q∗.

7.1.1 Tile Coding

In tile coding (4), a piecewise-constant approximation of the optimal value function
is represented by a set of exhaustive partitions of the state space called tilings. Typi-
cally, the tilings are all partitioned in the same way but are slightly offset from each
other. Each element of a tiling, called a tile, is a binary feature activated if and only
if the given state falls in the region delineated by that tile. Figure 7.1 illustrates a
tile-coding scheme with two tilings.

The value function that the tile coding represents is determined by a set of
weights, one for each tile, such that

V (s) =
n

∑
i=1

bi(s)wi

where n is the total number of tiles, bi(s) is the value (0 or 1) of the ith tile given
state s, and wi is the weight of that tile. In practice, it is not necessary to sum over all
n tiles since only one tile in each tiling is activated for a given state. Given m tilings,
we can simply compute the indices of the m active tiles and sum their associated
weights.

Given a model of the MDP as described above, we can update the value estimate
of a given state s by computing ΔV (s) using dynamic programming:

ΔV (s) = maxa[R(s,a)+ γV(T (s,a))]−V (s)
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Fig. 7.1 An example of tile coding with two tilings. Thicker lines indicate which tiles are
activated for the given state s.

and adjusting each weight so as to reduce ΔV (s):

wi← wi +
α
m

bi(s)ΔV (s)

where α is a learning rate parameter. As before, it is not necessary to update all n
weights, only the m weights associated with tiles activated by state s. Algorithm 8
shows a simple way to learn an approximation of the optimal value function using

Algorithm 8 TILE-CODING(S,A,T,R,α,γ,m,n)
1: for i← 1 to m do
2: Initialize tiling i with n/m tiles
3: for j← 1 to n/m do
4: Initialize tile j with zero weight
5: repeat
6: s← random state from S
7: ΔV(s)←maxa[R(s,a)+ γV (T (s,a))]−V (s)
8: for i← 1 to m do
9: w← weight of ACTIVE-TILE(s)

10: w← w+ α
m ΔV (s)

11: until time expires
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tile coding. The function ACTIVE-TILE returns the tile in the given tiling activated
by the given state. If only one tiling is used, then there is a trade-off between speed
and precision of learning. Smaller tiles yield more precise value estimates but take
longer to learn since those estimates generalize less broadly. Multiple tilings can
avoid this trade-off, since more tilings improve resolution without reducing capacity
for generalization.

7.2 Method

Tile coding is a simple, computationally efficient method for approximating value
functions that has proven effective (144; 140). However, it has two important
limitations.

The first limitation is that it requires a human designer to correctly select the
width of each tile in each dimension. While in principle tiles can be of any size and
shape, they are typically axis-aligned rectangles whose widths are uniform within
a given dimension. Selecting these widths appropriately can mean the difference
between fast, effective learning and catastrophically poor performance. If the tiles
are too large, value updates will generalize across regions in S with disparate val-
ues, resulting in poor approximations. If the tiles are too small, value updates will
generalize very little and learning may be infeasibly slow.

The second limitation is that the degree of generalization is fixed throughout the
learning process. The use of multiple tilings makes it possible to increase resolu-
tion without compromising generalization, but the degree of generalization never
changes. This limitation is important because recent research demonstrates that
the best performance is possible only if generalization is gradually reduced over
time (126). Intuitively, broad generalization at the beginning allows the agent to
rapidly learn a rough approximation; less generalization at the end allows the agent
to learn a more nuanced approximation.

This section presents adaptive tile coding, a novel function approximation method
that addresses both of these limitations. The method begins with simple represen-
tations and refines them over time, a strategy that has proven effective for NEAT
and NEAT+Q, as well as well as piecewise-linear representations based on kd-
trees (102), and uniform grid discretizations (36). Adaptive tile coding begins with
a few large tiles, and gradually adds tiles during learning by splitting existing tiles.
While there are infinitely many ways to split a given tile, for the sake of computa-
tional feasibility, our method considers only splits that divide tiles in half evenly.
Figure 7.2 depicts this process for a domain with two state features.

By analyzing the current value function and policy, the agent can make smart
choices about when and where to split tiles, as detailed below. In so doing, it can
automatically discover an effective representation that devotes more resolution to
critical regions of S, without the aid of a human designer. Furthermore, learning
with a coarse representation first provides a natural and automatic way to reduce
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Fig. 7.2 An example of how tiles might be split over time using adaptive tile coding

generalization over time. As a result, multiple tilings are no longer necessary: a
single, adaptive tiling can provide the broad generalization needed early in learning
and the high resolution needed later on. The remainder of this section addresses two
critical issues: when and where to split tiles.

7.2.1 When to Split

Correctly deciding when to split a tile can be critical to performance. Splitting a
tile too soon will slow learning since generalization will be prematurely reduced.
Splitting a tile too late will also slow learning, as updates will be wasted on a repre-
sentation with insufficient resolution to further improve value estimates. Intuitively,
the agent should learn as much as possible with a given representation before refin-
ing it. Hence, it needs a way to determine when learning has plateaued.

One way to do so is by tracking Bellman error (i.e., ΔV ). As long as V is im-
proving, |ΔV | will tend to decrease over time. However, this quantity is extremely
noisy, since updates to different tiles may differ greatly in magnitude and updates to
different states within a single tile can move the value estimates in different direc-
tions. Hence, a good rule for deciding when to split should consider Bellman error
but be robust to its short-term fluctuations.

We use the following heuristic. For each tile, the agent tracks the lowest |ΔV |
occurring in updates to that tile. It also maintains a global counter u, the number of
updates occurring since the updated tile had a new lowest |ΔV | (each update either
increments u or resets it to 0). When u exceeds a threshold parameter p, the agent
decides that learning has plateaued and selects a tile to split. In other words, a split
occurs after p consecutive updates fail to produce a new tile-specific lowest |ΔV |.1
Hence, the agent makes a global decision about when learning has finished, since
|ΔV | may temporarily plateau in a given tile simply because the effects of updates
to other tiles have not yet propagated back to it.

1 There are many other ways to determine when learning has plateaued. For example, in
informal experiments, we applied linear regression to a window of recent |ΔV | values.
Learning was deemed plateaued when the slope of the resulting line dropped below a
small threshold. However, this approach proved inferior in practice to the one described
above, primarily because performance was highly sensitive to the size of the window.
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7.2.2 Where to Split

Once the agent decides that learning has plateaued, it must decide which tile to
split and along which dimension.2 This section presents two different approaches,
one based on expected changes to the value function and the other on expected
changes to the policy. Both require the agent to maintain sub-tiles, which estimate,
for each potential split, what weights the resulting tiles would have. Since each state
is described by k state features, each tile has 2k sub-tiles.

When a new tile is created, its sub-tile weights are initialized to zero. When the
agent updates state s, it also updates the k sub-tiles that are activated by s, using the
same rule as for regular weights, except that the update is computed by subtracting
the relevant sub-tile weight (rather than the old value estimate) from the target value:

Δwd(s) = maxa[R(s,a)+ γV(T (s,a))]−wd(s)

where wd(s) is the weight of the sub-tile resulting from a split along dimension
d activated by state s. Algorithm 9 describes the resulting method, with regular
weight updates in lines 8–9 and sub-tile weight updates in lines 10–13. In line 19,
the agent selects a split according to one of the criteria detailed in the remainder of
this section.

Algorithm 9 ADAPTIVE-TILE-CODING(S,A,T,R,k,α,γ,n, p)
1: u← 0
2: Initialize one tiling with n tiles
3: for i← 1 to n do
4: Initialize ith tile and 2k sub-tile weights to zero
5: repeat
6: s← random state from S
7: ΔV(s)←maxa[R(s,a)+ γV (T (s,a))]−V (s)
8: w← weight of tile activated by s
9: w← w+αΔV (s)

10: for d← 1 to k do
11: wd ← weight of sub-tile w.r.t split along d activated by s
12: Δwd = maxa[R(s,a)+ γV (T (s,a))]−wd
13: wd ← wd +αΔwd
14: if |ΔV |< lowest Bellman error on tile activated by s then
15: u← 0
16: else
17: u← u+1
18: if u > p then
19: Perform split that maximizes value or policy criterion
20: u← 0
21: until time expires

2 The agent splits only one tile at a time. It could split multiple tiles but doing so would be
similar to simply reducing p.
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7.2.2.1 Value Criterion

Sub-tile weights estimate what values the tiles resulting from a potential split would
have. Thus, the difference in sub-tile weights indicates how drasticallyV will change
as a result of a given split. Consequently, the agent can maximally improveV by per-
forming the split that maximizes, over all tiles, the value of |wd,u−wd,l|, where wd,u

and wd,l are, respectively, the weights of the upper and lower sub-tiles of a potential
split d. Using this value criterion for selecting splits will cause the agent to devote
more resolution to regions of S where V changes rapidly (where generalization will
fail) and less resolution to regions where it is relatively constant (where generaliza-
tion is helpful).

7.2.2.2 Policy Criterion

The value criterion will split tiles so as to minimize error in V. However, doing so
will not necessarily yield maximal improvement in π . For example, there may be
regions of S where V ∗ changes significantly but π∗ is constant. Hence, the most
desirable splits are those that enable the agent to improve π , regardless of the effect
on V. To this end, the agent can estimate, for each potential split, how much π would
change if that split occurred.

When updating a state s, the agent iterates over the |A| possible successor states
to compute a new target value. For each dimension d along which each successor
state s′ could be split, the agent estimates whether π(s) would change if the tile
activated by s′ were split along d, by computing the expected change in V (s′) that
split would cause:

ΔVd(s′) = wd(s′)−V(s′)

s’1s
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19.2

13.416.1
s’

2
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Fig. 7.3 An agent updates state s, from which each action ai leads to successor state s′i. The
figure shows the tiles, including weights, that these successor states fall in and shows sub-tile
weights for the middle tile. Though π(s) = 2, a horizontal split to the middle tile would make
π(s) = 1 (since 19.2 > 17.6), incrementing cd for that split.
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If changing V (s′) by ΔVd(s′) would alter π(s), then the agent increments a counter
cd , which tracks changeable actions for potential split d in the tile activated by s′
(see Figure 7.3). Hence, the agent can maximize improvement to π by performing
the split that maximizes the value of cd over all tiles. Using this policy criterion, the
agent will focus splits on regions where more resolution will yield a refined policy.

7.3 Testbed Domains

In addition to the mountain car domain described in Section 3.4.1, we evaluate
adaptive tile coding in puddle world (144), another benchmark reinforcement learn-
ing domains whose continuous state features necessitate function approximation.
In puddle world, a simulated robot is placed in a random location within a two-
dimensional unit square, depicted in Figure 7.4. The robot must navigate this space
to reach a goal region which lies in the upper right corner of the square. To do so
efficiently, the robot must avoid two puddle regions, which it incurs negative reward
for passing through.

Goal

Puddle

0
0 1

1

Fig. 7.4 The puddle world domain, in which a robot must navigate a two-dimensional space
to reach a goal while avoiding two overlapping puddles

The agent’s state is described by two continuous state variables x and y, corre-
sponding to its position in the square. The agent has four actions available to it, each
of which moves the robot up, down, left, or right by 0.05, though the robot cannot
travel outside the square. Noise drawn from a Gaussian distribution with a mean of
0.0 and standard deviation of 0.01 is added to the distance covered by each action.
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The goal region consists of the set of states for which x + y > 1.9. Since we want
the robot to reach the goal as quickly as possibly, the agent incurs a reward of −1
for each time step. In addition, since we want the robot to avoid the puddles, an ad-
ditional negative reward occurs when the robot is in a puddle. The reward is −400
times the distance inside the puddle.

7.4 Results

To evaluate adaptive tile coding, we tested its performance in the mountain car and
puddle world domains. The value and policy criteria were tested separately, with
25 independent trials for each method in each domain. In each trial, the method
was evaluated during learning by using its current policy to control the agent in test
episodes. The agent took one action for each update that occurred (i.e., one iteration
of the repeat loop in Algorithms 8 and 9). Note that since the agent learns from a
model, these test episodes do not affect learning; their sole purpose is to evaluate
performance. The following parameter settings were used in all trials: α = 0.1, γ =
0.999, n = 4 (2x2 initial tilings), and p = 50.

Next, we tested 18 different fixed tile-coding representations, selected by choos-
ing three plausible values for the number of tilings m∈ {1,5,10} and six plau-
sible values for the number of tiles n such that the tiles per feature k

√
n/m ∈

{5,10,25,50,100,250}, where k = 2 is the number of state features in each domain.
We tested each combination of these two parameters with α = 0.1 and γ = 0.999
as before. We conducted 5 trials at each of the 18 parameter settings and found that
only six in mountain car and seven in puddle world were able to learn good policies
(i.e., average reward per episode >−100) in the time allotted.

Finally, we selected the three best performing fixed settings and conducted an
additional 25 trials. Figure 7.5 shows the results of these experiments by plotting,
for each domain, the uniform moving average reward accrued over the last 500

Fig. 7.5 Average reward per episode in both mountain car and puddle world of the
adaptive approach with value or policy criterion, compared to the best-performing fixed
representations.
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episodes for each adaptive approach and the best fixed approaches, averaged over
all 25 trials for each method.

7.5 Discussion

The variation in performance among the best fixed representations demonstrates that
the choice of representation is a crucial factor in both the speed and quality of learn-
ing. Without a priori knowledge about what representations are effective in each
task, both versions of the adaptive method consistently learn good policies, while
only a minority of the fixed representations do so. Furthermore, when the policy
criterion was used, the adaptive method learned approximately optimal policies in
both domains, at speeds that are competitive with the best fixed representations.

While there are fixed representations that learn good policies as fast or faster than
the adaptive approach (10x10 with 10 tilings in mountain car and 10x10 with 1 tiling
in puddle world), those representations do not go on to learn approximately optimal
policies as the adaptive approach does. Similarly, there are fixed representations
that learn approximately optimal policies faster than the adaptive approach (50x50
with 10 tilings in mountain car and 25x25 with 1 tiling in puddle world), but those
representations take significantly longer to learn good policies.

Furthermore, the fixed representations that learn good policies fastest are not
the same as those that learn approximately optimal policies and are different in
the two domains. By contrast, the adaptive method, with a single parameter setting,
rapidly learns approximately optimal policies in both domains. Overall, these results
confirm the efficacy of the adaptive method and suggest it is a promising approach
for improving function approximation when good representations are not known a
priori.

To better understand why the adaptive method works, we took the best represen-
tations learned with the policy criterion, reset all the weights to zero, and restarted
learning with splitting turned off. The restarted agents learned much more slowly
than the adaptive agents that began with coarse representations and bootstrapped
their way to good solutions. This result suggests that the adaptive approach learns
well, not just because it finds good representations, but also because it gradually
reduces generalization, confirming the conclusions of Sherstov and Stone (126).

The results also demonstrate that the policy criterion ultimately learns better poli-
cies than the value criterion. To understand why, we examined the structure of the
final representations learned with each approach, as depicted in Figure 7.6. In both
domains the value criterion devotes more resolution to regions where V changes
most rapidly, as can be seen by comparing the top row of Figure 7.6 with Figure 7.7,
which shows typical final value functions learned with the adaptive approach. In
mountain car, this region spirals outward from the center, as the agent oscillates
back and forth to build momentum. In puddle world, this region covers the puddles,
where reward penalties give V a sharp slope, and the area adjacent to the goal. How-
ever, those regions do not require fine resolution to represent approximately optimal
policies. On the contrary, Figure 7.8, which shows typical final policies learned with
the adaptive approach, reveals that π is relatively uniform in those regions.
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Fig. 7.6 Examples of final tile coding representations learned by the adaptive methods:
mountain car in the left column, puddle world in the right column value criterion in the top
row, and policy criterion in the bottom row.

Fig. 7.7 Examples of final value functions learned by adaptive tile coding in both the moun-
tain car (left) and puddle world (right) domains. For greater clarity, the z-axis shows the
additive inverse of the value function, i.e.,−V (s).
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By contrast, the policy criterion devotes more resolution to regions where the
policy is not uniform, as can be seen by comparing the bottom row of Figure 7.6
with Figure 7.8. In mountain car, the smallest tiles occur in the center and near each
corner, where π is less consistent. In puddle world, the least resolution is devoted to
the puddle, where the policy is mostly uniform, and more resolution to the right side,
where the “up” and “right” actions are intermingled. Hence, by striving to refine the
agent’s policy instead of just its value function, the policy criterion makes smarter
choices about which tiles to split and consequently learns better policies.

Overall, these results demonstrate that finding the right representation is critical
to the success of tile coding function approximators. They also demonstrate that
adaptive tile coding can automate this design process. Furthermore, the success of
this adaptive approach shows that, for representations like tile codings that are more
interpretable than neural networks, adaptive methods can excel without expensive
search. See Section 9.3.3 for a comparison of this approach to the search-based
methods described in earlier chapters.

Fig. 7.8 Examples of final policies learned by adaptive tile coding in both the mountain car
(left) and puddle world (right) domains



Chapter 8
Related Work

A broad range of previous research is related in terms of both methods and goals
to the techniques presented in this book. This chapter presents an overview of that
research and discusses the similarities and differences to this work.

Section 8.1 discusses methods for optimizing representations, which are related
to evolutionary function approximation (Chapters 4 and 5) and adaptive tile coding
(Chapter 7). Section 8.2 presents various approaches to combining evolution (or
other policy search methods) with learning, which is also related to evolutionary
function approximation. Section 8.3 reviews work addressing the trade-off between
exploration and exploitation, which is related to on-line evolutionary computation
(Chapter 3), and Section 8.4 reviews work on feature selection, which is related to
FS-NEAT (Chapter 6).

8.1 Optimizing Representations

This section reviews previous work on the problem of finding effective represen-
tations, which has been studied extensively in the contexts of supervised learning,
reinforcement learning, and evolutionary computation. It also discusses how these
methods relate to the representation-learning methods introduced in this book (in
Chapters 4, 5, and 7).

8.1.1 Supervised Learning

Unlike reinforcement learning, supervised learning (96). aims to approximate a
function given example input-output pairs. Such labeled training data can be statisti-
cally analyzed to deduce which representations might best approximate the function.

Perhaps the most well-known methods that employ this approach are the ID3
(116) and C4.5 (117) algorithms for learning decision trees. A decision tree repre-
sents a discrete-valued function such that each node corresponds to an input feature
and each branch emerging from that node corresponds to a value for that feature.

S. Whiteson: Adaptive Representations for Reinforcement Learning, SCI 291, pp. 77–94.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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The leaves of the tree are labeled with the output of the function given the input
represented by the path from the root to that leaf. The ID3 and C.45 algorithms per-
form a top-down greedy search for a decision tree whose structure is appropriate
for the given training data. At each step, the algorithm determines which feature to
test at the current node of the tree. It selects the feature that maximizes the infor-
mation gain, or decrease in entropy in the training set. Hence, statistical analysis of
the training set makes it possible to automatically find effective decision tree rep-
resentations for supervised learning, though the reliance on greedy search means it
converges only to a local optimum.

Methods that optimize representations for supervised learning also exist for neu-
ral networks. In particular, cascade-correlation networks (47) automatically learn
how many hidden nodes to use in feed-forward networks. Like NEAT and NEAT+Q,
they start with simple networks with no hidden nodes. If, after training with back-
propagation, the error is above some acceptable threshold, a hidden node is added,
with link weights from the inputs set to maximize the correlation between the hidden
node’s value and the network’s error. The network is then retrained, with these cor-
relation weights held fixed, and the process repeats, with a new hidden node added
at each step, until error drops below the threshold.

By contrast, the optimal brain damage approach (82) does not complexify simple
networks but rather simplifies complex ones. It does so by pruning the links that are
the least salient, where salience is defined as the magnitude of the change in error
that results from a small perturbation of the link’s weight.

Decision tree and cascade-correlation methods differ from those presented in this
book in that they assume the existence of a fixed set of labeled training data which
can be analyzed to deduce what representations will be effective. This book fo-
cuses on reinforcement learning, for which that assumption does not hold. The next
section reviews work on representation-learning methods designed to meet the par-
ticular challenges of reinforcement learning.

8.1.2 Reinforcement Learning

In reinforcement learning, no human expert is available to provide examples of what
action to take in certain states. Consequently, no labeled training data is available
and the agent must either search for a policy that maximizes a reward signal (as
in policy search methods) or learn a value function (as in dynamic programming
and temporal difference methods). Learning a value function involves computing
estimated labels (i.e., value estimates for states or state-action pairs) but those labels
are not fixed, since they are based on other value estimates that are also in flux.

These complications mean that representation-optimizing methods for super-
vised learning are not directly applicable to reinforcement learning problems. In
some cases, however, it may be possible to adapt those methods to reinforcement
learning. For example, Rivest and Precup (120) train cascade-correlation networks
as value function approximators using temporal difference methods. Since the train-
ing examples produced by temporal difference methods appear only in sequence and
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quickly become stale, Rivest and Precup use a novel caching system that in effect
creates a hybrid value function consisting of a table and a neural network.

This approach represents a promising way to marry the representation-optimizing
capacity of cascade-correlation networks and other supervised algorithms with the
power of temporal difference methods. However, it has some significant shortcom-
ings as well. First, their approach delays the exploitation of the agent’s experience,
since new samples are initially added only to the cache and only intermittently used
to update the network. Second, the reliance on a cache is likely to be infeasible in
larger domains. Since the cache merely records which states are visited and cannot
generalize value estimates, it may perform poorly in high-dimensional problems
like the scheduling task. Rivest and Precup evaluate their method in a Tic-Tac-Toe
domain with 39 states. By contrast, the scheduling domain has 10016 states. Third,
their approach evaluates representations based only on their ability to approximate
the value function. It does not directly favor representations that yield good policies,
as evolutionary function approximation and adaptive tile coding (with the policy cri-
terion) do. Relying solely on the value function as a guide to selecting policies and
their representations can be very risky in practice. See Section 9.3.2 for a detailed
discussion of this issue.

Beyond Rivest and Precup’s work, most efforts to learn representations in rein-
forcement learning focus on finding the right basis functions for linear value func-
tion approximators. Value functions are rarely linear with respect to the original state
features supplied to the agent. However, if the right basis functions can be found,
the value function can be accurately represented with a linear function approxima-
tor. The remainder of this section surveys methods that employ this approach.

Santamaria et al. (122) apply skewing functions to state-action pairs before feed-
ing them as inputs to a function approximator. These skewing functions make the
state-action spaces non-uniform and hence make it possible to give more resolution
to the most critical regions. Using various skewing functions, they demonstrate im-
provement in the performance of temporal difference methods. However, they do
not offer any automatic way of determining how a given space should be skewed.
Hence, a human designer still faces the burdensome task of manually choosing a
representation, though in some domains using skewing functions may facilitate this
process.

Smith (130) extends the work of Santamaria et al. by introducing a method that
uses self-organizing maps to automatically learn nonlinear skewing functions for the
state-action spaces of reinforcement learning agents. Self-organizing maps use un-
supervised learning methods to create spatially organized internal representations of
the inputs they receive. Hence, the system does not use any feedback on the perfor-
mance of different skewing functions to determine which one is most appropriate.
Instead it relies on the heuristic assumption that more resolution should be given to
regions of the space that are more frequently visited. While this heuristic is intuitive
and reasonable, it does not hold in general. For example, a reinforcement learning
agent designed to respond to rare emergencies may spend most of its life in safe
states where its actions have little consequence and only occasionally experience
crisis states where its choices are critical. Smith’s heuristic would incorrectly devote
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most of its resolution to representing the value function of the unimportant but fre-
quently visited states. This issue distinguishes Smith’s approach from the methods
presented in this book. Evolutionary function approximation, introduced in Chap-
ters 4 and 5, avoids this problem because it evaluates competing representations by
testing them in the actual task. It explicitly favors those representations that result
in higher performance, regardless of whether they obey a given heuristic. Similarly,
adaptive tile coding devotes more resolution to regions where the value function or
policy changes the most, independent of how frequently those regions are visited.

Mahadevan (87) advocates learning proto-value functions, derived from a global
state space analysis. Though labeled training data is unavailable, a reinforcement
learning domain nonetheless has structural properties than can be analyzed to de-
termine effective representations. In Mahadevan’s approach, the agent’s experience
is used to build a graph representing how states are connected in the domain. Next,
a spectral analysis of the graph Laplacian is performed. The resulting eigenfunc-
tions, or proto-value functions, are then used as basis functions for a linear func-
tion approximator trained with standard reinforcement learning methods. While
the original method is applicable only to domains with discrete state spaces, a
recent extension handles continuous domains as well (89; 88). In similar work,
Parr et al. (109) also propose methods for automatically finding basis functions for
linear function approximation, in this case by using Bellman error to automatically
selecting orthogonal basis functions.

The main drawback of the proto-value function approach is that it assumes the
agent has access to state transitions gathered on a random walk of the domain. These
transitions are necessary to build the state graph, but may not be feasible to obtain in
large or high-dimensional state spaces or domains where exploration is expensive.
This problem distinguishes Mahadevan’s approach from the adaptive methods pre-
sented in this book. While both evolutionary function approximation and adaptive
tile coding seek the best representation for each stage in the learning process, proto-
value functions are used to find the best final representation, once the structure of
the domain is known.

Munos and Moore (102) present an approach to learning variable resolution
function approximators based on kd-trees. Their approach is similar to adaptive tile
coding, in that they repeatedly subdivide the state space into smaller and smaller re-
gions. The primary difference is the use of piecewise-linear representations instead
of tile coding. As a result, computing V (s) once the right tile is located takes order
of k lnk time instead of constant time. They propose a splitting rule that is similar
to the value criterion used in adaptive tile coding. They also propose examining the
policy to determine where to split, though their approach, unlike the policy criterion
used in adaptive tile coding, does not reason about sub-tile weights and works well
only in conjunction with a criterion based on the value function. In addition, their
method does not reason about when to split tiles but instead runs dynamic program-
ming to convergence between each split, which may be computationally inefficient.
Their empirical evaluations measure final performance at each resolution but do not
consider, as we do in Chapter 7, the speed of learning as measured in number of
updates.
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G-learning (35) also uses a tree structure to grow a value function representation.
Like adaptive tile coding, it starts with a coarse representation and refines it during
learning by adding new partitions. Partitions are made based on the expected change
to the value function, similar to the value criterion used in adaptive tile coding.
However, the method does not select splits that maximize improvement to the policy,
as the policy criterion does.

Utile Suffix Memory (90) extends G-learning to automatically learn history-
based representations. The tree-based representation contains a history of recent
relevant observations. Statistical tests are used to determine whether a given obser-
vation is worth remembering, based on its capacity to distinguish among states with
different values. Unlike the methods presented in this book and the other methods
reviewed in this section, Utile Suffix Memory focuses on the problem of partial ob-
servability. In other words, the agent assumes that its state is not Markovian and that
some different states will yield the same immediate observation. Consequently, the
agent must remember some of its previous observations in order to disambiguate its
current state. Utile Suffix Memory strives to deduce which observations to remem-
ber. However, in so doing, it also allows generalization across states with similar
values, and hence takes a similar approach to adaptive tile coding.

Sherstov and Stone (126) present a tile-coding method with fixed tile sizes but
variable generalization. They use the Bellman error generated by temporal differ-
ence updates to assess the reliability of the function approximator in a given region
of the state or action space. This metric is used to automatically adjust the breadth
of generalization for a tile-coding function approximator. An advantage of this ap-
proach is that feedback arrives immediately, since Bellman error can be computed
after each update. A disadvantage is that the function approximator’s representation
is not selected based on its actual performance, which may correlate poorly with
Bellman error.

Chow and Tsitsiklis (36) show how to compute the tile width of a uniform
tiling necessary to learn an approximately optimal policy, though they make strong
assumptions (e.g., that the transition probabilities are Lipschitz continuous). Like
adaptive tile coding, they advocate beginning with coarse representations and refin-
ing them over time, though refinements always occur across the entire state space,
such that all regions always have the same size tiles.

Like adaptive tile coding, the Parti-game algorithm (98) repeatedly partitions the
state space to grow a representation suitable to the given task. However, this method
is not designed to tackle reinforcement learning tasks in general. On the contrary,
it applies only to tasks that consist of navigating some space to reach a goal region
whose location is known to the agent a priori. In addition, Parti-game assumes the
agent has access to a greedy local controller which allows it to travel from one tile to
another. Given these assumptions, standard shortest-path graph algorithms are used
to plan a path to the goal, with each step in the path executed by the greedy local
controller.
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8.1.3 Evolutionary Computation

Evolutionary methods, like other stochastic optimization techniques, search a space
of candidate solutions for one that maximizes some fitness function. Many such
methods evolve only the solution’s weights and require a human designer to specify
the solution’s representation. However, other methods can evolve the solution’s rep-
resentation as well. Unlike the representation-learningsupervised methods described
in Section 8.1.1, this approach does not require a set of labeled data to analyze. In-
stead, the space of candidate representations is searched, using the given fitness func-
tion as a guide. Though many types of representations have been evolved, this section
focuses on the evolution of neural networks, called neuroevolution (172), as it is most
related to this book.

Many neuroevolutionary methods, such as Symbiotic, Adaptive Neuro-Evolution
(SANE) (100) and Enforced Sub-Populations (ESP) (54), assume a fixed topol-
ogy and evolve only link weights. Neuroevolutionary methods that evolve network
topologies too are sometimes called Topology and Weight Evolving Neural Networks
(TWEANNs) (133).

Perhaps the simplest of these is the Structured Genetic Algorithm (sGA) (40),
in which one bit string represents each network’s connection matrix and another
bit string represents the weights of each link. These bit strings are then evolved
using standard genetic algorithms. Hence, sGA can automatically discover which
links are useful for the given task, at the same time that it evolves weights for those
links. However, the number of nodes in the network is not evolved but must be set
manually before evolution begins. Furthermore, the encoding scheme is not concise,
since much of the genome is wasted when networks are not fully connected. More
importantly, since the initial population consists of random bit strings, sGA does not
complexify. Instead of bootstrapping off solutions in lower-dimensional spaces the
way NEAT does, sGA must search the entire space of representations from scratch.
This difficulty is exacerbated by the fact that many genomes correspond to infeasible
networks, which lack even a single path from inputs to outputs.

To obtain a more concise representation than sGA, many approaches use graph-
based encoding, where each network’s topology and weights are captured in a
variable-length genome that enumerates the network’s nodes and describes their
connectivity. However, performing crossover on populations with heterogeneous
structure is notoriously problematic. Even if two parents have similar behavior and
performance, they may represent their solutions very differently, an issue known
as the competing conventions problem (167) and consequently crossover may have
catastrophic consequences.

Due to this difficulty, some representation-learning neuroevolutionary methods
simply omit crossover altogether and rely solely on mutation operators to search
the space of possible solutions. For example, GeNeralized Acquisition of Recurrent
Links (GNARL) (8) uses a graph-based encoding, with structural and weight muta-
tions as the only genetic operators. Unlike in NEAT, new nodes are added without
connecting then to the rest of the network. Separate mutations are required to add
new links connecting these additional nodes.
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Other neuroevolutionary methods preserve crossover and try to ensure that it oc-
curs in a constructive way. For example, Pujol and Poli (113) present an approach
based on Parallel Distributed Genetic Programming (PDGP) (111) which uses a
graph-based encoding to evolve neural network topologies. As in genetic program-
ming (74), entire subgraphs are swapped during crossover. The motivation for this
approach is the intuition that subgraphs represent important functional units. Hence,
preserving them reduces the chance that crossover will have catastrophic effects on
the offspring’s fitness.

Cellular encoding (57) is a neuroevolutionary method that takes a radically differ-
ent approach to learning representations. Instead of encoding each neural network
as a bit string or graph, it uses an indirect encoding. Unlike direct encodings, which
explicitly list each node and link in the network, indirect encodings merely specify
rules by which the network can be constructed. In the case of cellular encoding,
these rules are written in a graph transformational language called a grammar tree.
The transformations specified in the tree indicate how to grow the network via a
developmental process akin to organic cell division. An important advantage of cel-
lular encoding is that its genomes are very concise, since each transformation can be
reused many times during the construction of a network. Concise genomes result in
smaller spaces for evolution to search and therefore potentially better performance.
However, catastrophic crossover remains a problem, exacerbated by the inscrutabil-
ity of the genomes. Since the networks are not represented explicitly, it is difficult
to analyze their structure to identify subgraphs or other features that might facili-
tate smarter crossover. Empirical results have shown that NEAT can dramatically
outperform cellular encoding (137).

The NEAT method, overviewed in Section 2.3, is similar in some ways to other
neuroevolutionary methods. Like Pujol and Poli’s method, it uses a graph-based en-
coding. Like GNARL, it complexifies, starting with simple networks and adding
new structure via mutations. It is unique, however in its approach to crossover,
which relies on the notion of historical markings to identify which nodes and links
correspond between two parents. It is further distinguished by its reliance on speci-
ation to protect innovation by giving evolution a chance to optimize new structure
before subjecting it to full selective pressure. Most importantly, NEAT stands out
because of its impressive empirical record tackling challenging optimization tasks
such as non-Markovian double pole balancing (137), game playing (139), robot con-
trol (138; 150), and data filtering in high energy physics (1; 166).

All the methods described in this section are general purpose optimization tech-
niques. So long as a fitness function is supplied which can evaluate the quality of
a given neural network, these methods can evolve networks that strive to maximize
that fitness function. Hence, they are applicable to reinforcement learning tasks via
the policy search approach outlined in Section 2.3. Moriarty et al. (101) provide a
detailed survey of applications of evolutionary methods to reinforcement learning.
Evolutionary function approximation differs from these approaches in that it strives
to evolve value functions instead of policies and hence to synergistically combine
evolution and learning. Evolution and learning have been combined before (as the
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next section details) but never, to our knowledge, to aid the discovery of good tem-
poral difference function approximators.

8.2 Combining Evolution and Learning

This section reviews the substantial body of research that focuses on combinations
of evolution and learning and discusses its relationship to evolutionary function ap-
proximation (Chapters 4 and 5). Perhaps the earliest of these is the work of Hinton
and Nowlan (61), who demonstrate empirically that the Baldwin Effect can speed
evolution. To do so, they devise an artificial scenario in which neural networks with
a fixed number of binary connections receive positive fitness only if all their connec-
tion weights match an arbitrary pattern. For each connection, the genome can either
specify the corresponding weight or leave it open to learning. Learning occurs by
randomly altering unspecified weights to search for the combination that yields pos-
itive fitness. Though their approach is very simple and does not tackle reinforcement
learning problems or evolve representations, it is sufficient to demonstrate the po-
tential benefits of combining evolution and learning.

Since Hinton and Nowlan’s work, many other researchers have investigated such
combinations, in an effort to better understand the underlying population dynamics.
For example, French and Messinger (50) present experiments that further verify
the Baldwin Effect’s ability to speed evolution. Their work differs from Hinton and
Nowlan in that they study an artificial life domain wherein individuals control their
own reproduction. In addition, in their experiments, not all traits are equally difficult
to learn but rather vary over a range. Furthermore, their agents do not actually learn;
instead the effects of learning are merely simulated in order to study the Baldwin
Effect. Similarly, Arita and Suzuki (9) extend results demonstrating the benefits of
the Baldwin Effect to non-stationary multi-agent domains. Their work focuses on
the iterated prisoner’s dilemma, where each agent not only evolves but can learn
in response to the behavior of other agents in the population, against which it is
competing.

8.2.1 Applications to Supervised Learning

Most combinations of evolution and learning aim not to reveal evolution’s inner
workings but rather to improve its performance on challenging problems. Much of
this work focuses on supervised learning tasks, for which evolution can be combined
with any supervised learning technique in a straightforward manner. For example,
Boers et al. (25) introduce a method that evolves neural networks, each of which
is trained with a learning method based on backpropagation. Like NEAT+Q, their
method can automatically discover network topologies, though they are not evolved.
On the contrary, only the learning component can alter network topologies. It does
so by adding new nodes to those modules in the network deemed most “compu-
tationally deficient”. The computational deficiency of a module is defined as the
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magnitude of the weight changes that still occur (due to backpropagation) even af-
ter substantial training. Weight changes in each network are not written back to their
genomes. Hence, their system is Darwinian and exploits the Baldwin Effect. While
the Boers et al. method can automate the design of neural networks, it is applicable
only to supervised learning problems.

Giraud-Carrier (51) also combines evolution and learning for supervised tasks.
His system, called GA-RBF, evolves radial basis functions (RBFs) (30). Like
NEAT+Q and the Boers et al. method, GA-RBF strives to automatically find good
representations. In this case, however, the role of determining the right represen-
tation is shared by evolution and learning. Each genome specifies the number and
initial position of each RBF’s centroids. In the learning phase, the position of each
centroid is adjusted using an unsupervised clustering method and then the weights
of the resulting representation are learned in a supervised fashion. GA-RBF can be
implemented in either a Darwinian or Lamarckian way. However, since the RBF
weights are not encoded in the genome, only the clustering phase of the learn-
ing process can be preserved across generations. The weights must necessarily be
relearned each generation, in a Darwinian fashion. Because both evolution and
learning are involved in determining the representation, GA-RBF is an intriguing
approach. However, like the Boers et al. method, its use is restricted to supervised
learning problems.

Evolino (124) is a method that combines evolution of recurrent neural networks
(in which previously experienced outputs are fed back into the network) with learn-
ing on a linear output layer. Evolution occurs using Enforced Sub-Populations
(ESP) (54), which co-evolves populations of neurons that are combined to formed
complete networks. The weights of the linear output layer are learned via lin-
ear regression or quadratic programming. ESP is used to evolve Long-Short Term
Memory networks which are heavily recurrent and designed to tackle tasks that
require significant memory. As a result, Evolino excels at time series prediction
and other sequential learning tasks. However, unlike NEAT+Q, it does not evolve
representations.

Gruau and Whitley (56) present a combination of evolution and learning that
tackles supervised learning problems but does not use supervised learning methods.
Instead, it extends cellular encoding to incorporate unsupervised Hebbian learning
methods (60) that adjust network weights. Though this learning method does not
directly minimize network error in the supervised task, plasticity in the weights
nonetheless enables evolutionary speedup via the Baldwin effect. The addition of
learning to cellular encoding also creates a platform for comparing the performance
of Darwinian and Lamarckian evolution, as Gruau and Whitley do across multiple
supervised tasks. They find that the Lamarckian approach performs consistently bet-
ter. These results are consistent with those presented in Section 4.2.4 for the moun-
tain car domain, though they clash with those for the server job scheduling domain.
However, as demonstrated in Section 4.2.5, the poor performance of Lamarckian
evolution in the scheduling task stems from the instability of the networks under
continual learning. This instability is much less likely to occur in supervised tasks
with fixed targets, like those studied by Gruau and Whitley.
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8.2.2 Applications to Reinforcement Learning

Combining evolution and learning is less straightforward in reinforcement learn-
ing, since such tasks do not provide the target values required by supervised learn-
ing. Stanley et al. (134) circumvent this problem by using unsupervised learning.
Like Gruau and Whitley, they combine neuroevolution (a variation of NEAT, in this
case) with Hebbian update rules. The approach is tested in a simple robot control
task where the agent must remember early stimuli in order to excel. Since Hebbian
updates depend on previous stimuli, they serve as a type of memory. Hence, this
approach is an alternative to recurrent neural networks.

Other research focuses on ways to combine supervised learning with evolution in
a way that is applicable to reinforcement learning tasks. The main difficulty is deter-
mining what to use as target values for learning. One approach to this problem is to
train each member of the population to behave like its parents. McQuesten and Mi-
ikkulainen (93) present a neuroevolutionary technique based on this idea. Before its
fitness evaluation, each member of the population is trained, using backpropagation,
such that its outputs more closely match those of its parents on randomly selected
inputs. While McQuesten and Miikkulainen’s method does not evolve representa-
tions, it does provide a way to induce the Baldwin Effect in reinforcement learning
tasks. Like NEAT+Q, this approach is prone to overtraining, though for different
reasons. In NEAT+Q, TD updates can cause instability if networks are trained too
long, as discussed in Section 4.2.5. In cultural evolution, too much training will turn
offspring into copies of their parents, thus hindering evolutionary progress.

Another approach is to define a secondary supervised task that bears some re-
lationship to the primary reinforcement learning task. Since the secondary task
is supervised, target values are available for learning. Due to the relationship be-
tween the two tasks, such learning can improve performance on the primary task.
Nolfi et al. (106) present a neuroevolutionary system that uses this approach. Their
method adds extra outputs to the network that are designed to predict what inputs
will be presented next. When those inputs actually arrive, they serve as targets for
backpropagation, which adjusts the network’s weights starting from the added out-
puts. This technique allows a network to be adjusted during its lifetime using super-
vised methods but relies on the assumption that forcing it to learn to predict future
inputs will help it select appropriate values for the remaining outputs, which actu-
ally control the agent’s behavior. Another significant restriction is that the weights
connecting hidden nodes to the action outputs cannot be adjusted at all during each
fitness evaluation.

Yet another strategy is to evolve self-teaching agents, which can generate their
own target values for supervised learning. For example, Nolfi and Parisi (107)
evolve neural networks with two sets of outputs. The first set directly controls the
agent’s actions. The second set produces target values which are used to adjust, via
backpropagation, the weights that connect the inputs to the action outputs. Though
their approach does not evolve representations, it can induce the Baldwin Effect
and also create agents that cope better with non-stationary environments. Nolfi
and Parisi’s approach differs from evolutionary function approximation in that the
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former requires the agent to devise its own learning scenario, while the latter pro-
vides one based on temporal difference methods.

Ackley and Littman (2) investigate a similar approach. Using an artificial life
foraging scenario, they evolve a population of “action networks” that control agents
inhabiting the environment. The weights of the network are updated during each in-
dividual’s lifetime using a reinforcement learning algorithm called complementary
reinforcement backpropagation (CRBP) (3), an alternative to temporal difference
methods. The reward signal used by CRBP is derived from “evaluation networks”
that are simultaneously evolved. Like Nolfi and Parisi’s work, evolution controls the
learning process, though in this case learning is not supervised. Because it combines
evolution with reinforcement learning, Ackley and Littman’s approach is similar to
evolutionary function approximation. However, the neuroevolution technique they
employ does not optimize network topologies and CRBP does not learn a value
function.

Like Ackley and Littman, Sasaki and Tokoro (123) combine neuroevolution with
reinforcement learning. In the scenario they investigate, agents must choose whether
to eat the material they encounter, which may be food or poison. The agent’s ac-
tions affect the reward they receive but not their future state (i.e., what materials
they encounter next). Hence, temporal difference methods are not necessary and a
simplified reinforcement learning rule is used in its place. Sasaki and Tokoro also
compare the performance of Darwinian and Lamarckian implementations of their
system and find that Darwinian systems perform better. These results differ from
those of Gruau and Whitley (56) but the difference is not surprising, since Sasaki
and Tokoro’s experiments focus on non-stationary environments. When the envi-
ronment is in flux, the learning done by older generations may become obsolete.
Hence, Darwinian systems, which start learning anew each generation, can adapt
more rapidly to such changes. Sasaki and Tokoro’s system is similar to evolutionary
function approximation because it combines evolutionary methods with reinforce-
ment learning. However, it does not evolve representations and, since it does not
learn value functions, cannot master domains with delayed reward.

More closely related to evolutionary function approximation is reinforced ge-
netic programming (44), which combines genetic programming with reinforcement
learning. Unlike the work of Ackley and Littman or Sasaki and Tokoro, this system
uses temporal difference methods to implement individual learning. Like evolution-
ary function approximation, reinforced genetic programming can be implemented
in a Darwinian or Lamarckian fashion. The primary difference is the representation.
Like other genetic programming methods, reinforced genetic programming relies on
a tree-based representation. Each leaf of the tree corresponds to a region of the state
space and has associated with it an estimate of the value function for that region.
The advantage of this approach is that it harnesses existing genetic programming
techniques. The disadvantage is that each weight corresponds to another param-
eter that must be optimized, forcing evolution to search a very high-dimensional
space. Since the state space is divided into regions, the representation bears some
similarity to adaptive tile coding, though the reliance on evolution to optimize
that representation makes it more similar to evolutionary function approximation.
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However, Downing’s approach does not employ exploratory mechanisms when se-
lecting individuals for evaluation, and hence does not optimize on-line performance.

A different approach to combining evolution and learning is learning classifier
systems (LCS) (81). LCS methods evolve a population of rules for approximating
some function. In “Pittsburgh-style” classifiers (131), each member of the popula-
tion represents a candidate solution for the entire problem, i.e., an approximation
of the entire function. This approach is most analogous to that used throughout this
book, where each network in the population represents an entire policy (NEAT)
or an entire value function (NEAT+Q). More common, however, are “Michigan-
style” classifiers, for which the entire population represents one approximation of
the function. In this case, each member of the population (a rule), specifies the sub-
set of inputs for which it is applicable and approximates the function only for that
subset. LCS methods are often used to tackle supervised learning problems or con-
trol problems without delayed reward. However, it can be applied to reinforcement
learning tasks as well, particularly using XCS (32), a version of LCS which uses
updates based on temporal difference methods. More closely related to the work in
this book is NCS (31), a type of LCS which, like NEAT+Q uses neural networks.
However, these methods do not evolve representations as evolutionary function ap-
proximation does.

Also related is the work of Lanzi et al. (80), which combines XCS with tile-
coding: evolution optimizes the parameters of a population of tile-codings function
approximators, each of which covers a different region of the state space. The use
of evolution to optimize representations is similar to evolutionary function approxi-
mation. However, representing the function with an entire population and restricting
each member of the population to a portion of the state space makes the method of
Lanzi et al., like other Michigan-style classifiers, fundamentally distinct. The aim
of automatically designing each tile coding makes this approach similar to adaptive
tile coding, though it relies on evolution to do so. By contrast, adaptive tile coding
demonstrates that tile coding representations can be optimized without expensive
search.

Another important related method is VAPS (14). While it does not use evolu-
tionary computation, it does combine TD methods with policy search methods. It
provides a unified approach to reinforcement learning that uses gradient descent to
try to simultaneously maximize reward and minimize error on Bellman residuals. A
single parameter determines the relative weight of these goals. Because it integrates
policy search and TD methods, VAPS is in much the same spirit as evolutionary
function approximation. However, the resulting methods are quite different. While
VAPS provides several impressive convergence guarantees, it does not address the
question of how to represent the value function.

Other researchers have also sought to combine TD and policy search methods.
For example, Sutton et al. (145) use policy gradient methods to search policy space
but rely on TD methods to obtain an unbiased estimate of the gradient. Similarly, in
actor-critic methods (73), the actor optimizes a parameterized policy by following
a gradient informed by the critic’s estimate of the value function. Like VAPS, these
methods do not learn a representation for the value function.
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8.3 Balancing Exploration and Exploitation

The difficulty of balancing exploration and exploitation is one of the most thor-
oughly studied problems in artificial intelligence. This section overviews methods
for tackling this problem in k-armed bandit problems, associative search, and rein-
forcement learning. It also discusses their relationship to on-line evolutionary func-
tion approximation (Chapter 3).

8.3.1 k-Armed Bandit Problem

The simplest formulation of the exploration/exploitation problem is the k-armed
bandit problem (153; 19; 12), in which an agent must repeatedly choose which of k
arms of a slot machine, or “bandit”, to pull. After each pull, the agent receives some
reward, drawn from a probability distribution specific to that arm. Its goal is to
maximize the total reward it receives. To do so, it must balance exploration (pulling
different arms to learn more about their expected rewards) with exploitation (pulling
the greedy arm, i.e., the one with the highest estimate of expected reward).

The k-armed bandit problem is closely related to the reinforcement learning prob-
lem. In fact, it can be described as a reinforcement learning problem in which the
MDP contains only one state and each arm corresponds to an action, each of which
returns the agent to that state with probability one. Hence, the k-armed bandit prob-
lem is of great interest to the reinforcement learning community and many of the
approaches used to tackle it form the basis for exploratory mechanisms in reinforce-
ment learning.

Most of these approaches are action-value methods (152), in which the agent
maintains a running estimate of the expected reward for each arm. This estimate can
be computed by simply averaging the rewards the agent has received on each pre-
vious pull of the given arm. Rather than recomputing this average after each pull,
a more computationally efficient approach is to update the average incrementally.
In non-stationary domains, the true expected reward can change over time, render-
ing older data stale. In such cases, incremental updates can use a fixed step-size
parameter, causing the weight of older data to decay exponentially (22).

The simplest action-value method is ε-greedy selection (158), described in
Section 3.1, in which the agent pulls a random arm with probability ε and the greedy
arm with probability 1− ε . One shortcoming of this approach is that all non-greedy
arms are equally likely to be pulled, though some may have much higher estimated
reward. Softmax selection, described in Section 3.2, addresses this problem by mak-
ing each arm’s probability of selection a function of the current estimate of its ex-
pected reward. Neither ε-greedy nor softmax selection consider the uncertainty of
the agent’s estimate of each arm’s expected reward. Interval estimation (66), de-
scribed in Section 3.3, addresses this problem by computing confidence intervals
for each estimate and always selecting the arm whose interval has the highest upper
bound.

Other approaches to k-armed bandit problems beyond action-value methods
include reinforcement comparison (146). In this approach, each time the agent
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receives a reward, it is compared to a reference reward, which is the average of all
previously received rewards. This difference is used to update the agent’s preference
for that arm. Preferences are used to determine each arm’s probability of selection,
using a Boltzmann distribution. Another approach is pursuit methods (152), which
maintain both preferences and action-value estimates.

All of the approaches mentioned above are heuristic in nature. However, it is pos-
sible, at least in principle, for an agent to optimally balance exploration and exploita-
tion in the k-armed bandit problem. Using Bayes’ rule (17), the agent can compute
the total reward and probability of occurrence for each possible chain of events for
sequences of pulls of arbitrary length (20). However, this approach assumes that the
agent knows a priori the distribution of problem instances. In addition, it is compu-
tationally intractable, as it requires traversing a tree that grows exponentially with
respect to the length of the sequence of pulls.

8.3.2 Associative Search

Associative search (16; 11), also called the contextual bandit problem (78; 77) is an
extension of the k-armed bandit problem in which there are multiple k-armed bandit
problems. At each step, the agent faces one of these problems, randomly selected.
The agent also receives some additional information (equivalent to state features)
that allow it to identify which bandit problem it currently faces. Simple versions of
associative search are no more challenging than the original k-armed bandit prob-
lem, since the agent can simply solve each problem separately and index the solution
with the corresponding state information. However, if there are many states or the
state features are continuous, the agent may need to effectively generalize across
related states in order to perform well.

The associative search problem represents a partial step from k-armed bandit
problems to the full reinforcement learning task. The agent must reason about mul-
tiple states, but its goal is still to maximize immediate reward. It need not reason
about delayed reward because its actions have no effect on it. In other words, which
arm the agent pulls has no bearing on which bandit problem it faces at the next
step. The opposite is true in the full reinforcement problem, where the agent’s ac-
tion affects the state to which it transitions. Since some states can offer the agent
more reward than others, its action affects, not only its immediate reward, but its
opportunities for future reward.

8.3.3 Reinforcement Learning

The simplest approach to balancing exploration and exploitation in the full rein-
forcement learning problem is to borrow action-value methods from the k-armed
bandit problem. For example, ε-greedy selection, softmax selection, and interval
estimation can all be applied to reinforcement learning problems by simply replac-
ing estimates of expected immediate reward with estimates of long-term value, using
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Q or V . This approach ensures that, for each state the agent experiences, it will prop-
erly explore the actions available to it. However, it does not enable the agent to seek
states where greater exploration is needed, a complication that does not arise in the
k-armed bandit problem.

Recent approaches do address this issue, however. For example, Simsek and
Barto (127) present an approach wherein the agent behaves greedily with respect to
its current policy for a derived MDP, a solution to which describes the optimal way
to explore the original MDP. In addition, some model-based approaches such as pri-
oritized sweeping (97) and model-based interval estimation (142) employ optimistic
initialization (149) to encourage the agent to travel to states that have been visited
only infrequently. Some model-based methods such as E3 (68) and R-max (29) find
probably approximately optimal policies given only a polynomial number of sam-
ples. Recently, similar results have been obtained with a model-free method called
delayed Q-learning (141). As in k-armed bandit problems, Bayes-optimal strate-
gies for exploration can be computed (143; 45; 112). However, the same problems
of computational intractability persist, rendering this approach impractical even for
very small problems.

All of these methods differ from on-line evolutionary computation, introduced
in Chapter 3, in that they balance exploration and exploitation only at the level of
individual actions. This approach makes sense for standard methods where the agent
learns a single value function: each time the agent acts, it need only decide whether
to act greedily with respect to that value function or whether to explore. However, in
evolutionary methods, the agent has a population of policies and must reason about
balancing exploration and exploitation at that level.

In his classic work on evolutionary methods, Holland (62) argues that such meth-
ods already perform such a balance. The reproduction mechanism encourages ex-
ploration, since crossover and mutation result in novel genomes, but also encourages
exploitation, since each new generation is based on the fittest members of the last
one. However, reproduction allows evolutionary methods to balance exploration and
exploitation only across generations, not within them. Once the members of each
generation have been determined, they all typically receive the same evaluation
time. On-line evolutionary computation addresses this shortcoming by borrowing
standard action-value methods and using them to select polices for evaluation, thus
boosting the reward accrued during learning.

Because it allows members of the same population to receive different numbers of
evaluations, on-line evolutionary computation is also similar to previous work about
optimizing noisy fitness functions. For example, Stagge (132) introduces mecha-
nisms for deciding which individuals need more evaluations, assuming the noise is
Gaussian. Beielstein and Markon (18) use a similar approach to develop tests for
determining which individuals should survive. However, this area of research has a
significantly different focus, since the goal is to find the best individuals using the
fewest evaluations, not to maximize the reward accrued during those evaluations.

Action-value methods like ε-greedy have also been combined with evolutionary
methods in the context of learning classifier systems (79; 92; 170). However, such
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mechanisms are used to select among individual actions, not to allocate evaluations
among an entire population.

8.4 Feature Selection

This section reviews previous work on feature selection and compares it to Feature
Selective NEAT (Chapter 6). Feature selection (24; 58) is the process of determining
which subset of available inputs should be used by a machine learning algorithm.
In supervised learning, these inputs typically describe examples used for training or
testing. In reinforcement learning, they typically consist of state features, describ-
ing the agent’s current state in the world. Feature selection is typically distinguished
from feature construction (48; 156). In the former, we assume a set of adequate
features is available but that, due to the presence of many irrelevant or redundant
features, finding a minimal subset is necessary for effective learning. In the latter,
adequate features are not available a priori but must be constructed from a descrip-
tion of the task or from low-level primitives.

8.4.1 Filters

One class of feature selection methods is called filters (63). These methods perform
feature selection as a preprocessing step to some supervised learning algorithm,
“filtering” out irrelevant features. This filtering is accomplished by performing some
type of statistical analysis on the training data to determine which features will be
most useful to the machine learning algorithm.

One of the simplest approaches is to rank the features based on correlation crite-
ria (159) or mutual information between them and the target function (83; 41; 155).
This ranking is then used to select the top k features. However, determining the right
value for k can be difficult and it is often necessary to try multiple values and com-
pare the resulting performance. Another limitation of this approach is that does not
consider dependencies between the features.

The FOCUS algorithm (5) addresses this shortcoming by considering increas-
ingly large combinations of features. It starts by considering individual features,
then looks at pairs, triples, and so on until the class of each training example is dis-
ambiguated. Koller and Sahami (72) also consider dependencies between features
by employing Markov blankets. The Markov blanket of some feature xi is a set of
features not including xi that render xi unnecessary. If the Markov blanket of xi can
be found, then xi can be removed by the feature selection algorithm. Similarly, Singh
and Provan (128) filter features for a Bayesian network using information-theoretic
metrics. Principal components analysis (64), a statistical technique that constructs
orthogonal vectors from linear combinations of features in the original space, can
also be used for feature selection in machine learning (23).
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8.4.2 Wrappers

While filter methods have proven effective in supervised learning problems, they
are not applicable to reinforcement learning because of the absence of labeled train-
ing data. However, another class of methods, called wrappers (63), can, at least
in principle, be used to select features in reinforcement learning. Wrappers work
by searching the space of feature subsets for one that performs well in the machine
learning task. They are called “wrappers” because each candidate subset is evaluated
by running the given machine learning algorithm with that subset and measuring the
resulting performance. Hence, the learning algorithm is a subroutine around which
the feature selector is wrapped.

The primary advantage of wrappers compared to filters is that feature subsets
are directly evaluated according to the actual goal of feature selection: improving
the learner’s ultimate performance. Even when filters accurately identify critical
features, they do not consider the particular idiosyncrasies and inductive bias of
the learning method that will use those features (43). The primary disadvantage
of wrappers is their computational cost. Finding the right subset is NP-hard (6)
and each feature subset considered requires a completely new run of the learning
algorithm, though heuristic methods have been developed to try to minimize this
cost (33; 99).

In principle, wrappers could be used to select features in reinforcement learning.
Just as in supervised learning, each feature subset would be evaluated by running
the learning algorithm with that subset, though performance would be measured
by total reward accrued, rather than classification or regression error. However, this
approach is highly impractical. In supervised learning, evaluating a feature subset
requires only computational time. Since labeled data is typically a much scarcer re-
source, wrappers can be useful even if the computational cost is high. However, in
reinforcement learning, evaluating a feature subset requires not only computation
time but also new samples (i.e., interactions with the real world). Since samples are
usually the scarcest resource, any benefit obtained by applying wrappers in rein-
forcement learning is unlikely to justify its cost.

8.4.3 FS-NEAT

The FS-NEAT method, introduced in Chapter 6 does not fall cleanly into either the
filter or wrapper categories. It is similar to wrapper methods in that it searches for
the right feature subset and evaluates candidates based on their performance in the
ultimate task. However, it is practical for reinforcement learning precisely because it
does not wrap a feature selector around the base learning method. On the contrary, it
incorporates the search for a good feature subset into the search for a good network
topology and good weights, without any meta-learning.

By integrating these different aspects of the task, FS-NEAT bears some resem-
blance to embedded feature selection methods (24; 58). Embedded methods, such
as decision trees (116; 117), incorporate feature selection into the base learning
method. However, such methods are typically similar to filters in that they rely on
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statistical analysis of labeled data, though not as a preprocessing step. FS-NEAT, by
contrast, does not require labeled data at all. Hence, FS-NEAT represents a unique
approach to the problem of feature selection, one whose advantages are particularly
well suited to reinforcement learning tasks.

Recently, other feature selection methods customized to reinforcement learning
have been developed (42; 75). Like FS-NEAT, these methods are neither filters nor
wrappers. Instead, they are model-based methods that learn both the structure and
weights of dynamic Bayesian networks (DBNs) that describe the transition function
of the MDP. These DBNs can then be analyzed to infer what features are most useful
for representing the value function. While these approaches avoid the shortcomings
of both filters and wrappers, they have not so far proven successful on large tasks
such as RARS, on which FS-NEAT excels. One reason is that their computational
costs scale poorly with respect to the number of features available. Furthermore,
since they require a large amount of data to reliably select features, their useful-
ness is likely restricted to cases when features sets are transferred between related
tasks (75).



Chapter 9
Conclusion

This book presents a range of new methods for automating the design of effec-
tive representations for reinforcement learning. It also presents a body of empirical
evidence verifying the efficacy of these new methods. This chapter begins by sum-
marizing the conclusions that can be drawn from this evidence. Next, it discusses
some negative results obtained while developing these methods. Finally, it touches
on some broader implications, comparing results across chapters from a “big pic-
ture” perspective.

9.1 Primary Conclusions

First and foremost, this book demonstrates that reinforcement learning agents can
automatically discover effective representations. Both evolutionary function approx-
imation (Chapters 4 and 5) and adaptive tile coding (Chapter 7) enable such agents
to autonomously revise their own representations while they are learning, without
the aid of human expertise. Empirical results in multiple domains confirm the ben-
efit of these methods. Adaptive tile coding automatically discovers representations
that match the ultimate performance of the best manually designed representations
and learn nearly as quickly. Evolutionary function approximation discovers repre-
sentations that perform better than the best manually designed representations. This
enables the agent to learn an approximately optimal policy in mountain car, a noto-
riously difficult task for neural network function approximators. These performance
improvements carry over to server job scheduling, a much larger and more challeng-
ing reinforcement learning task.

Second, this book demonstrates that policy search and temporal difference meth-
ods can be combined synergistically. Rather than having to choose between alter-
natives with starkly different advantages and disadvantages, evolutionary function
approximation makes it possible to get the best of both worlds. This approach reaps
the representation-learning benefits of evolutionary methods like NEAT while si-
multaneously harnessing the power of temporal difference methods, which exploit
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the specific structure of the reinforcement learning problem. Furthermore, thanks to
the Baldwin Effect, powerful synergies result from combining evolution in learning,
yielding a system that is more than the sum of its parts.

Third, this book demonstrates that evolutionary methods can excel at on-line re-
inforcement learning tasks. Though such methods are typically reserved for off-line
tasks, on-line evolutionary computation (Chapter 3) demonstrates that their perfor-
mance can be modified to maximize the reward accrued during learning. These mod-
ifications result from another synergy between the temporal difference and policy
search communities: exploratory mechanisms, traditionally used in temporal differ-
ence methods to select individual actions, can be applied to evolutionary methods
to select policies for evaluation.

Fourth, this book demonstrates that feature selection can be automated in rein-
forcement learning. Traditional approaches to feature selection are largely inappli-
cable to reinforcement learning. Filters rely on labeled training data that is available
only in supervised learning. Wrappers are impractical since evaluating candidate
feature subsets requires new samples, not just additional computation time. How-
ever, FS-NEAT (Chapter 6) represents a new approach to feature selection, one that
is particularly suited to reinforcement learning problems. By starting with a popula-
tion of highly minimal networks, FS-NEAT incrementally evolves a suitable feature
set at the same time that it optimizes network topology and weights. The result is
a method that performs well even in the presence of large numbers of irrelevant or
redundant features.

9.2 Negative Results

The preceding chapters present methods that achieved empirical success in improv-
ing the performance of reinforcement learning agents. However, in the process of
developing these methods, other approaches were investigated that ultimately did
not succeed. This section briefly mentions the most significant of these negative
results.

9.2.1 Combining FS-NEAT with NEAT+Q

Perhaps most surprising was the poor performance that resulted from combining
FS-NEAT with NEAT+Q. Such a combination, called FS-NEAT+Q, is appealing
because it could allow a reinforcement learning agent to automatically and simul-
taneously optimize both the input and internal representations of a neural network
function approximator. Yet experiments in both RARS and server job scheduling
confirm that this approach performs poorly in practice. Exactly why FS-NEAT+Q
fails when both FS-NEAT and NEAT+Q succeed is difficult to deduce.

However, the answer may have something to do with the fitness landscapes of
degenerate networks. In early generations of FS-NEAT, every network in the pop-
ulation is degenerate, lacking even the basic connectivity necessary to represent a
good policy. Since all these networks will perform poorly, FS-NEAT can succeed
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only if those networks which perform least poorly guide evolution towards ones that
perform well. In other words, the fitness landscape around highly fit networks must
include a basin of attraction that contains such degenerate networks.

FS-NEAT’s empirical performance suggests that such basins do exist for net-
works that represent policies. Yet, in FS-NEAT+Q, networks represent value
functions instead. FS-NEAT+Q’s poor performance implies that degenerate value
function approximators do not guide evolution toward more fit approximators. Intu-
itively, this result makes sense since value functions, if updated with inadequately
approximated targets, can easily become unstable and divergent. If this problem
arises in all networks in early generations, then evolution has no guide with which
to find better representations.

9.2.2 Feature Selection in Adaptive Tile Coding

A second negative result is the performance of adaptive tile coding as a feature se-
lector. Just as NEAT becomes feature selective if the available inputs are not initially
connected to the network, adaptive tile coding should become feature selective if ini-
tial splits are not made in each dimension. In practice, all this requires is setting the
number of initial tiles n to a very low value (see Section 7.2).1 In principle, adap-
tive tile-coding should perform only splits that enable improvements to the value
function or policy. Hence, it should never split along dimensions corresponding to
irrelevant features, effectively selecting only the most useful features.

Yet in practice the data the learner uses to determine splits is quite noisy and
hence spurious splits are inevitable. Overall, most of the splits are helpful, which
allows it to automatically find effective representations, as described in Section 7.4.
However, when even a few irrelevant features are added to the domain, its per-
formance worsens dramatically. Examination of the learned representations reveals
that, though splits along the relevant dimensions are far more likely, enough splits
occur along irrelevant dimensions to incur the curse of dimensionality. Hence, un-
like FS-NEAT, its performance does not scale well when the challenges of feature
selection are increased.

9.2.3 Fitness Functions Based on Bellman Error

A third negative result is the performance of NEAT+Q with fitness functions based
on Bellman error. In all the experiments reported in this book, the fitness function
used by NEAT+Q is the average reward per episode the agent receives when con-
trolled by the given network. As a result, NEAT selects the networks that perform
best in the task, regardless of the accuracy of their value functions. That accuracy
could be directly rewarded, however, if the fitness function were the inverse of the
average magnitude of the Bellman error for each update.

1 In the experiments reported in Section 7.4, n was already set quite low, to 4, though it
could be set as low as 1.
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If successful, such an approach would dramatically reduce the sample complex-
ity of NEAT+Q. Even in sample-efficient NEAT+Q (Chapter 5), each network in
the population must be tested in the actual domain to measure the reward it accrues.
Saved experience can be used to train the networks, but not to test them, since that
experience gives no information about what rewards the agent would have received
if a different policy was used. By contrast, a fitness function based on Bellman error
can be computed solely from saved experience. In principle, interacting with the
actual domain would be necessary only initially, to build a repository of saved ex-
perience. In practice, occasionally gathering new experience is important, to ensure
that the distribution of visited states in the repository roughly matches that of the
agent’s current policy. Nonetheless, the number of samples required is likely to be a
small fraction of that needed by a fitness function based on reward.

However, experiments in both the mountain car and server job scheduling do-
mains showed dismal performance for NEAT+Q with a fitness function based on
Bellman error. To better understand why, we compared plots of average Bellman er-
ror during evolution for the two fitness functions. In both cases, Bellman error went
down over time, but always remained substantial. This comparison reveals an im-
portant shortcoming of Bellman error. If the learner’s Bellman error is consistently
zero, it must have an optimal policy. However, having low Bellman error does not
guarantee an approximately optimal policy. Rather, it seems that only a one-way
implication holds in practice: higher reward implies lower Bellman error but lower
Bellman error does not imply higher reward. Similar results have been obtained in
the past, e.g., the VAPS method (14) performs better using fitness functions that
consider reward instead of just Bellman error.

Hence, Bellman error alone is not a reliable basis for a fitness function and the
tantalizing reductions in sample complexity such a fitness function promises do not
appear achievable in practice. Moreover, this negative result hints at the difficulty of
relying solely on value functions to solve reinforcement learning problems, one of
the broader implications of this book discussed in detail below.

9.3 Broader Implications

This section discusses some of the broader implications of the results presented in
this book. By comparing results across chapters, it takes more of a “big picture”
perspective.

9.3.1 Stochastic vs. Deterministic Domains

Some of the methods presented in this book can be combined effectively. For ex-
ample, Section 4.2.2 shows performance gains when on-line evolution is combined
with evolutionary function approximation. Other combinations do not work well,
as with the case of FS-NEAT+Q mentioned above. Perhaps the most interesting
infeasible combination is that between on-line evolution and sample-efficient evo-
lutionary function approximation.
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The reason these approaches cannot be combined is that they are applicable to
different scenarios. On-line evolution is likely to be useful only in stochastic do-
mains because it assumes that e, the number of episodes per generation, is larger
than p, the population size. In deterministic domains, individuals can be accurately
evaluated in a single episode (e = p) so it is not possible to use previous evaluations
to better balance exploration and exploitation. In principle, the value of e could be
artificially inflated to allow for more exploitative episodes, though doing so would
slow evolution’s progress by lengthening each generation.2

By contrast, sample-efficient evolutionary function approximation is designed for
deterministic or nearly deterministic domains. Pre-training on saved experience is
possible in stochastic domains too but is unlikely to help. The evaluations necessary
for estimating the noisy fitness function will already supply sufficient experience
for learning. In such cases, pre-training may even be harmful since overtraining can
reduce performance, as shown in Section 5.2.

This contrast suggests that the stochasticity of a domain is a critical factor in
determining with which methods to tackle it. Evolutionary methods are sometimes
criticized as being slow, especially in stochastic domains. Many of its successes in
reinforcement learning have been in deterministic domains, e.g. (137), and recent
work demonstrates that the level of stochasticity can be a critical factor in its learn-
ing speed relative to temporal difference methods (165). On-line evolution gives
new hope that the performance of such methods in highly stochastic domains can
be improved. On the other hand, a deterministic domain need not be tackled with
evolution alone, as the sample-efficient version of evolutionary function approxi-
mation enables temporal difference learning to play an important role even when
evaluations are short.

9.3.2 The Value Function Gamble

Both dynamic programming and temporal difference methods employ a strategy
centered on the notion of value functions: finding the optimal value function and de-
riving the optimal policy from it. In small, discrete domains, this strategy is highly
effective since such methods are guaranteed to converge to the optimal value func-
tion and the corresponding greedy policy is by definition optimal. When a model
is known, the advantage of learning value functions is clear: dynamic programming
can find the optimal policy in polynomial time (85), whereas policy search methods
take exponential time in the worst case.

However, in domains that require function approximation, the benefits of a value
function are much more uncertain. Some methods, like Least Squares Policy Iter-
ation (76), guarantee convergence but assume the function approximator is linear.
Furthermore, the quality of the resulting approximation depends critically on select-
ing appropriate basis functions. For nonlinear function approximators like neural

2 Only ε-greedy evolution would be practical in this scenario. Softmax evolution would
waste time re-evaluating individuals known with certainty to be inferior to the current
champion. Interval estimation evolution would degenerate to ε-greedy evolution with
ε = 0.0, since each individual’s variance would be zero.
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networks, convergence guarantees do not exist. Even if a good value function ap-
proximation is found, the corresponding greedy policy may be arbitrarily subopti-
mal. In such cases, using temporal difference methods means blindly gambling that
the policy derived from the function approximator will perform well.

If it were necessary to choose between temporal difference and policy search
methods, this difficulty could be a strong argument in favor of policy search meth-
ods, which may be less prone to catastrophic failure in practice. Though they can
get trapped in local maxima, they at least directly strive to maximize reward. How-
ever, this book demonstrates that there does not have to be a trade-off between these
two approaches, since it is possible to exploit the power of value function methods
while still enjoying the safety of policy search. In this sense, evolutionary function
approximation is a hedge against the blind gamble of temporal difference methods:
the weights of individuals are adjusted using temporal difference methods but evo-
lution is the final arbiter and it favors good policies regardless of how well they
approximate the value function.

The price of such a hedge is increased sample complexity, since each candidate
solution must be evaluated in the actual domain. Eliminating such evaluations re-
quires resorting to a fitness function that examines only the value function and thus
abandoning the safety of a policy search method based on reward. The negative re-
sults mentioned in the previous section highlight the practical consequences of such
an approach.

This problem is exacerbated when trying to learn a representation. Nearly all of
the representation-learning methods described in Section 8.1.2 examine only the
value function when making representational choices. Hence, they “double down”
on the gamble of temporal difference methods. They gamble not only that improving
the weights of the function approximator will improve the policy, but that improv-
ing the representation of it will do so too. This approach contrasts with evolutionary
function approximation, where the search for good representations is guided by per-
formance in the domain.

Adaptive tile coding with the policy criterion shares this philosophy. Though it
does not use policy search, representational choices are made based on the expected
improvement to the policy, independent of how accurate the value function is. The
inferior performance of the value criterion mirrors the negative results described
above for NEAT+Q with a fitness function based on Bellman error. Though the value
criterion’s performance is not catastrophically poor, it is significantly worse than that
of the policy criterion, which does not blindly focus on the value function. Hence,
the results presented in this book, both for evolutionary function approximation and
for adaptive tile coding, suggest that, unless stronger assumptions (i.e., a small,
discrete state space or a linear function approximator) can be made, relying on the
value function alone to guide an agent’s policy is a dangerous proposition indeed.

9.3.3 The Role of Search in Adaptive Representations

Evolutionary function approximation and adaptive tile coding employ starkly
different strategies for discovering representations. While the former relies on
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optimization methods to search the space of representations, the latter analyzes
properties of the current representation to infer the best refinements. This contrast
arises from the inherent differences in the types of representations for which the
methods are designed.

Neural networks, even when they perform well, tend to operate like “black
boxes.” Since they are so concise, with the entire value function or policy deter-
mined by a small number of nodes and links, generalization is not controlled in
any way. Altering a single weight in the network can significantly change value
estimates across the entire state space. Consequently, it is difficult even for human
experts to examine a neural network and deduce why it works or to meaningfully de-
scribe the role each node or link plays in the agent’s value function. Similarly, when
a network does not perform well, it is hard to deduce what changes to the represen-
tation might improve its performance. Hence, the most feasible strategy for finding
good representations is to search for one, testing each candidate’s performance in
the actual domain, as NEAT+Q does.

By contrast, tile codings tend to be much more interpretable. Since generalization
is strictly controlled by tile boundaries, a weight change affects value estimates only
within a well-defined local region and, conversely, each value estimate is affected
by only a few weights. As a result, the effects of splitting tiles are predictable and
good representations can be found without search, as adaptive tile coding demon-
strates. Unsurprisingly, avoiding search can greatly speed learning. For example, in
the mountain car domain, adaptive tile coding requires two orders of magnitude less
time than NEAT+Q to learn a good policy.3

This comparison demonstrates that search is not the right tool for optimizing
representations for every reinforcement problem. However, it is far from a death
knell. Adaptive tile coding performs well in mountain car and puddle world but these
are simple domains with low dimensionality (only two state features). Scaling the
method to larger problems is not trivial, as its memory requirements grow rapidly.
Higher dimensional problems may strain computational resources too. The need to
maintain sub-tile weights means that the cost of each update grows linearly with
respect to the number of state features. By contrast, NEAT+Q excels not only at
mountain car but at server job scheduling, a task with a vastly larger state space.
To date, adaptive tile coding has not been tested in the server job scheduling task.
However, manually designed tile coding and radial basis function have been applied
to this task without success (Matthew Taylor, personal communication).

Hence, while adaptive tile coding may be useful for an important subset of rein-
forcement learning problems, there are likely to be many tasks whose vast complex-
ity can be feasibly tackled only with more concise representations. As long as such

3 The results presented in Section 7.4 show that adaptive tile coding with the policy criterion
learns a good policy after about 6×105 updates. By contrast, results in Section 4.2.2 show
that softmax NEAT+Q learns a good policy in about 1.2× 105 episodes, using on the
order of 107 updates. This comparison is not completely fair since adaptive tile coding
uses a model while NEAT+Q does not. However, the model may not speed learning since
adaptive tile coding randomly selects states to update instead of focusing updates on states
experienced via the current policy, as model-free methods naturally do.
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representations remain as inscrutable as neural networks, search methods will be a
powerful tool for optimizing them.

9.4 Future Work

The work presented in this book opens many avenues for additional research. This
section outlines a few possibilities.

9.4.1 Non-stationarity

In non-stationary domains, the environment can change in ways that alter the op-
timal policy. Since this phenomenon occurs in many real-world scenarios, it is im-
portant to develop methods that can handle it robustly. Temporal difference methods
can automatically adapt to non-stationary environments so long as they constantly
retain sufficient exploration. If the agent behaves completely greedily once learning
plateaus, it will not be able to adapt to environmental changes. By contrast, if it con-
tinues to explore, it will discover changes in the value of its available actions and
adjust its value function and policy accordingly.

However, traditional temporal difference approaches allow the agent to dynam-
ically adjust its value function but not the representation of that value function. If
the environment changes in ways that alter the optimal representation, then meth-
ods that automatically learn representations may perform better. By contrast, even
if they are effective at the original task, manually designed representations cannot
adapt to such changes. Hence, an important direction for future work is to test evolu-
tionary function approximation and adaptive tile coding in non-stationary domains
to assess their ability, not only to discover effective representations, but to adjust
them in the face of environmental changes.

9.4.2 Steady-State Evolutionary Computation

The NEAT algorithm is an example of generational evolutionary computation, in
which an entire population is is evaluated before any new individuals are bred. Evo-
lutionary function approximation might be improved by using a steady-state im-
plementation instead (49). Steady-state systems never replace an entire population
at once. Instead, the population changes incrementally after each fitness evalua-
tion, when one of the worst individuals is removed and replaced by a new offspring
whose parents are among the best. Hence, an individual that receives a high score
can more rapidly affect the search, since it immediately becomes a potential parent.
In a generational system, that individual cannot breed until the beginning of the fol-
lowing generation, which might be thousands of episodes later. Hence, steady-state
systems could help evolutionary function approximation perform better in on-line
and non-stationary environments by speeding the adoption of new improvements.
Fortunately, a steady-state version of NEAT already exists (135) so this extension is
quite feasible.
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9.4.3 Model-Based Reinforcement Learning

In model-based reinforcement learning (148; 97; 142; 42; 75; 68; 29), the agent does
not directly learn a value function from experience. Instead, it uses its experience to
learn an approximate model of its environment, i.e., the transition and reward func-
tions which define the underlying MDP. Given that model, it can compute a value
function, typically via dynamic programming. A critical advantage of the model-
based approach is its sample efficiency. Rather than using each sample for only one
update, samples are used to improve a model. Given that model, the agent can im-
prove its value function using only computational resources, not additional samples.

The ability to trade sample complexity for computational complexity makes
model-based reinforcement learning similar to the experience replay methods de-
scribed in Chapter 5 and used to make evolutionary function approximation more
sample-efficient. However, model-based methods have important advantages over
methods that merely store and reuse experience. They can be more concise, since
experience is typically integrated into a model with a fixed number of parameters.
By contrast, the space required by experience replay methods grows linearly with
respect to the number of samples gathered. Furthermore, model-based methods can
generalize. Rather than simply replaying old experience, the model can be used to
generate wholly new samples, e.g., as in the Dyna method (148), or perform the
Bellman updates required by dynamic programming.

However, current methods for learning models typically assume either a small,
discrete state space and use table-based representations or allow continuous state
spaces but assume deterministic transitions (10). There have been preliminary ef-
forts to learn models for domains that are both continuous and stochastic (65), but
this remains an open research area. The methods presented in this book could in-
teract in two ways with efforts to extend model-based methods to more realistic
domains.

First, learning a model requires solving a similar representation problem to that
addressed in this book. Just as model-free methods require a representation for the
policy π : S �→ A or the value function Q : S×A �→ℜ, model-based methods require
a representation for the transition function T : S×A× S �→ [0,1] and the reward
function R : S×A×S �→ℜ. Learning a model is in some ways harder than learning
a value function because learning T is not a supervised learning problem but rather
one of multivariate density estimation (125). Nonetheless, the methods presented in
this book may, with modification, be used to learn good representations for models.

Second, models can be used find adaptive representations more quickly and
safely. Just like experience replay, models could be used to train candidate repre-
sentations without gathering additional samples. Unlike experience replay, however,
models could also be used to evaluate candidate representations. Saved experience
gives no information about what would have happened if a different action had been
chosen. By contrast, models can be used to simulate entire episodes with a given
policy, allowing candidate representations to be both trained and evaluated with
minimal sample complexity.
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9.5 Final Remarks

This book addresses a chief limitation of current reinforcement learning methods:
their reliance on human expertise to design a representation for the agent’s solu-
tion. It introduces new methods that enable such agents to automatically discover
effective internal representations. Such methods are an integral component in the
development of reinforcement learning techniques that can perform well even in the
absence of human expertise. Hence, this book takes one step towards the dream of
fully autonomous learning agents and truly intelligent systems.



Appendix A
Statistical Significance

To assess the statistical significance of the results presented in Chapter 4, we per-
formed a series of Student’s t-tests on each pair of methods in each domain. For
each pair, we performed a t-test after every 100,000 episodes. Tables A.1 and A.2
summarize the results of these tests for the mountain car and server job scheduling
domains, respectively. In each table, the values in each cell indicate the range of
episodes for which performance differences were significant with 95% confidence.

Table A.1 A summary of the statistical significance of differences in average performance
between each pair of methods in mountain car. Values in each cell indicate the range of
episodes for which differences were significant with 95% confidence.

Episodes Q-Learning Off-Line ε-Greedy Softmax Off-Line Softmax Lamarckian
(x1000) NEAT NEAT NEAT NEAT+Q NEAT+Q NEAT+Q

Q-Learning
Off-Line 300 to
NEAT 1000

ε-Greedy 200 to 200 to
NEAT 1000 1000

Softmax 200 to 200 to 200 to
NEAT 1000 1000 1000

Off-Line 200 to 200 to 200 to 200 to
NEAT+Q 1000 500 1000 1000
Softmax 100 to 200 to 200 to 900 to 200 to
NEAT+Q 1000 1000 1000 1000 1000

Lamarckian 200 to 200 to 200 to 200 to 200 to 100 to
NEAT+Q 1000 1000 1000 1000 1000 1000
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Table A.2 A summary of the statistical significance of differences in average performance
between each pair of methods in server job scheduling. Values in each cell indicate the range
of episodes for which differences were significant with 95% confidence.

Episodes Q-Learning Off-Line ε-Greedy Softmax Off-Line Softmax Lamarckian
(x1000) NEAT NEAT NEAT NEAT+Q NEAT+Q NEAT+Q

Q-Learning
Off-Line 300 to
NEAT 1000

ε-Greedy 200 to 200 to
NEAT 1000 1000

Softmax 200 to 200 to not significant
NEAT 1000 1000 throughout

Off-Line 300 to 300 to 100 to 200 to
NEAT+Q 1000 500 1000 1000
Softmax 200 to 200 to 400 to 200 to 200 to
NEAT+Q 1000 1000 1000 1000 1000

Lamarckian 300 to 300 to 100 to 100 to 700 to 200 to
NEAT+Q 1000 1000 1000 1000 1000 1000
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