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Definition

Abduction is a form of reasoning, sometimes described
as “deduction in reverse,” whereby given a rule that
“A follows from B” and the observed result of “A” we
infer the condition “B” of the rule. More generally,
given a theory, T, modeling a domain of interest and
an observation, “A,” we infer a hypothesis “B” such that
the observation follows deductively from T augmented
with “B.” We think of “B” as a possible explanation
for the observation according to the given theory that
contains our rule. This new information and its conse-
quences (or ramifications) according to the given theory
can be considered as the result of a (or part of a) learn-
ing process based on the given theory and driven by the
observations that are explained by abduction. Abduc-
tion can be combined with »induction in different ways
to enhance this learning process.

Motivation and Background

Abduction is, along with induction, a synthetic form
of reasoning whereby it generates, in its explanations,
new information not hitherto contained in the cur-
rent theory with which the reasoning is performed.
As such, it has a natural relation to learning, and in
particular to knowledge intensive learning, where the
new information generated aims to complete, at least
partially, the current knowledge (or model) of the prob-
lem domain as described in the given theory.

Early uses of abduction in the context of machine
learning concentrated on how abduction can be used
as a theory revision operator for identifying where
the current theory could be revised in order to
accommodate the new learning data. This includes
the work of Michalski (1993), Ourston and Mooney
(1994), and Ade, Malfait, and Raedt (1994). Another
early link of abduction to learning was given by
the »explanation based learning method (DeJong &
Mooney, 1986), where the abductive explanations of
the learning data (training examples) are generalized to
all cases.

Following this, it was realized (Flach & Kakas,
2000) that the role of abduction in learning could
be strengthened by linking it to induction, culmi-
nating in a hybrid integrated approach to learning
where abduction and induction are tightly integrated
to provide powerful learning frameworks such as the
ones of Progol 5.0 (Muggleton & Bryant, 2000) and
HAIL (Ray, Broda, & Russo, 2003). On the other
hand, from the point of view of abduction as “infer-
ence to the best explanation” (Josephson & Josephson,
1994) the link with induction provides a way to distin-
guish between different explanations and to select those
explanations that give a better inductive generalization
result.

A recent application of abduction, on its own or
in combination with induction, is in Systems Biol-
ogy where we try to model biological processes and
pathways at different levels. This challenging domain
provides an important development test-bed for these
methods of knowledge intensive learning (see e.g., King
et al.,, 2004; Papatheodorou, Kakas, & Sergot, 2005; Ray;,
Antoniades, Kakas, & Demetriades, 2006; Tamaddoni-
Nezhad, Kakas, Muggleton, & Pazos, 2004; Zupan et al.,
2003).
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Structure of the Learning Task

Abduction contributes to the learning task by first
explaining, and thus rationalizing, the training data
according to a given and current model of the domain
to be learned. These abductive explanations either form
on their own the result of learning or they feed into a
subsequent phase to generate the final result of learning.

Abduction as studied in the area of Artificial Intelli-
gence and the perspective of learning is mainly defined
in a logic-based approach (Other approaches to abduc-
tion include the set covering approach See, e.g., Reggia
(1983) or case-based explanation, e.g., Leake (1995).) as
follows.

Given a set of sentences T (a theory or model),
and a sentence O (observation), the abductive task is
the problem of finding a set of sentences H (abductive
explanation for O) such that:

1. TuH = O,
2. T U H is consistent,

where = denotes the deductive entailment relation of
the formal logic used in the representation of our theory
and consistency refers also to the corresponding notion
in this logic. The particular choice of this underlying
formal framework of logic is in general a matter that
depends on the problem or phenomena that we are try-
ing to model. In many cases, this is based on »first order
predicate calculus, as, for example, in the approach of
theory completion in Muggleton and Bryant (2000). But
other logics can be used, e.g., the nonmonotonic logics
of default logic or logic programming with negation as
failure when the modeling of our problem requires this
level of expressivity.

This basic formalization as it stands, does not fully
capture the explanatory nature of the abductive expla-
nation H in the sense that it necessarily conveys some
reason why the observations hold. It would, for exam-
ple, allow an observation O to be explained by itself or in
terms of some other observations rather than in terms
of some “deeper” reason for which the observation must
hold according to the theory T. Also, as the above
specification stands, the observation can be abductively
explained by generating in H some new (general) theory

completely unrelated to the given theory T. In this case,
H does not account for the observations O according to
the given theory T and in this sense it may not be con-
sidered as an explanation for O relative to T. For these
reasons, in order to specify a “level” at which the expla-
nations are required and to understand these relative to
the given general theory about the domain of interest,
the members of an explanation are normally restricted
to belong to a special preassigned, domain-specific class
of sentences called abducible.

Hence abduction, is typically applied on a model, T,
in which we can separate two disjoint sets of predicates:
the observable predicates and the abducible (or open)
predicates. The basic assumption then is that our model
T has reached a sufficient level of comprehension of the
domain such that all the incompleteness of the model
can be isolated (under some working hypotheses) in
its abducible predicates. The observable predicates are
assumed to be completely defined (in T) in terms of the
abducible predicates and other background auxiliary
predicates; any incompleteness in their representation
comes from the incompleteness in the abducible predi-
cates. In practice, the empirical observations that drive
the learning task are described using the observable
predicates. Observations are represented by formulae
that refer only to the observable predicates (and possi-
bly some background auxiliary predicates) typically by
ground atomic facts on these observable predicates. The
abducible predicates describe underlying (theoretical)
relations in our model that are not observable directly
but can, through the model T, bring about observable
information.

The assumptions on the abducible predicates used
for building up the explanations may be subject to
restrictions that are expressed through integrity con-
straints. These represent additional knowledge that we
have on our domain expressing general properties of the
domain that remain valid no matter how the theory is
to be extended in the process of abduction and associ-
ated learning. Therefore, in general, an abductive theory
is a triple, denoted by (T, A,IC), where T is the back-
ground theory, A is a set of abducible predicates, and
IC is a set of integrity constraints. Then, in the defini-
tion of an abductive explanation given above, one more
requirement is added:

3. T U H satisfies IC.
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The satisfaction of integrity constraints can be formally
understood in several ways (see Kakas, Kowalski, &
Toni, 1992 and references therein). Note that the
integrity constraints reduce the number of explanations
for a set of observations filtering out those explana-
tions that do not satisfy them. Based on this notion
of abductive explanation a credulous form of abduc-
tive entailment is defined. Given an abductive theory,
T = (T, A,IC), and an observation O then, O is abduc-
tively entailed by T, denoted by T =4 O, if there exists
an abductive explanation of O in T.

This notion of abductive entailment can then form
the basis of a coverage relation for learning in the face
of incomplete information.

Abduction allows us to reason in the face of incomplete
information. As such when we have learning problems
where the background data on the training examples
is incomplete the use of abduction can enhance the
learning capabilities.

Abductive concept learning (ACL) (Kakas & Riguzzi,
2000) is a learning framework that allows us to learn
from incomplete information and to later be able to clas-
sify new cases that again could be incompletely speci-
fied. Under ACL, we learn abductive theories, (T, A, IC)
with abduction playing a central role in the covering
relation of the learning problem. The abductive theories
learned in ACL contain both rules, in T, for the con-
cept(s) to be learned as well as general clauses acting as
integrity constraints in IC.

Practical problems that can be addressed with ACL:
(1) concept learning from incomplete background data
where some of the background predicates are incom-
pletely specified and (2) concept learning from incom-
plete background data together with given integrity
constraints that provide some information on the
incompleteness of the data. The treatment of incom-
pleteness through abduction is integrated within the
learning process. This allows the possibility of learning
more compact theories that can alleviate the problem
of over fitting due to the incompleteness in the data.
A specific subcase of these two problems and important
third application problem of ACL is that of (3) multi-
ple predicate learning, where each predicate is required
to be learned from the incomplete data for the other

predicates. Here the abductive reasoning can be used to
suitably connect and integrate the learning of the dif-
ferent predicates. This can help to overcome some of
the nonlocality difficulties of multiple predicate learn-
ing, such as order-dependence and global consistency
of the learned theory.

ACL is defined as an extension of »Inductive Logic
Programming (ILP) where both the background knowl-
edge and the learned theory are abductive theories. The
central formal definition of ACL is given as follows
where examples are atomic ground facts on the target
predicate(s) to be learned.

Definition 1 (Abductive Concept Learning)
Given

o A set of positive examples E*

o A set of negative examples E~

e An abductive theory T =(P,A,I) as background the-
ory

o An hypothesis space T = (P, I) consisting of a space
of possible programs P and a space of possible con-
straints L

Find

A set of rules P’ € P and a set of constraints I' € T such
that the new abductive theory T' = (P u P',A,1uI’)
satisfies the following conditions

o T'EAE*
o Ve €E, T #pe

where E* stands for the conjunction of all positive
examples.

An individual example e is said to be covered by a
theory T' if T =4 e. In effect, this definition replaces the
deductive entailment as the example coverage relation
in the ILP problem with abductive entailment to define
the ACL learning problem.

The fact that the conjunction of positive exam-
ples must be covered means that, for every positive
example, there must exist an abductive explanation and
the explanations for all the positive examples must be
consistent with each other. For negative examples, it is
required that no abductive explanation exists for any of
them. ACL can be illustrated as follows.
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Example 2 Suppose we want to learn the concept
father. Let the background theory be T = (P, A, @) where:
P = {parent(john, mary), male(john),
parent(david, steve),
parent(kathy, ellen), female(kathy) },
A = {male, female}.
Let the training examples be:
E* = {father(john, mary), father(david, steve) },
E~ = {father(kathy, ellen), father (john, steve) }.
In this case, a possible hypotheses T'=(P u P',A,T')
learned by ACL would consist of
P' = {father(X,Y) < parent(X,Y), male(X)},
I' = { < male(X), female(X)}.

This hypothesis satisfies the definition of ACL because:

1. T’ &4 father(john, mary), father(david, steve)
with A = {male(david)}.

2. T’ #4 father(kathy, ellen),
as the only possible explanation for this goal, namely
{male(kathy)} is made inconsistent by the learned
integrity constraint in I'.

3. T’ ¥4 father(john, steve),
as this has no possible abductive explanations.

Hence, despite the fact that the background theory
is incomplete (in its abducible predicates), ACL can find
an appropriate solution to the learning problem by suit-
ably extending the background theory with abducible
assumptions. Note that the learned theory without the
integrity constraint would not satisfy the definition of
ACL, because there would exist an abductive explana-
tion for the negative example father (kathy, ellen), namely
A~ = {male(kathy)}. This explanation is prohibited in
the complete theory by the learned constraint together
with the fact female(kathy).

The algorithm and learning system for ACL is based
on a decomposition of this problem into two sub-
problems: (1) learning the rules in P’ together with
appropriate explanations for the training examples and
(2) learning integrity constraints driven by the expla-
nations generated in the first part. This decomposition
allows ACL to be developed by combining the two IPL
settings of explanatory (predictive) learning and con-
firmatory (descriptive) learning. In fact, the first sub-
problem can be seen as a problem of learning from

entailment, while the second subproblem as a problem
of learning from interpretations.

The utility of abduction in learning can be enhanced
significantly when this is integrated with induction.
Several approaches for synthesizing abduction and
induction in learning have been developed, e.g., Ade
and Denecker (1995), Muggleton and Bryant (2000),
Yamamoto (1997), and Flach and Kakas (2000). These
approaches aim to develop techniques for knowledge
intensive learning with complex background theo-
ries. One problem to be faced by purely inductive
techniques, is that the training data on which the
inductive process operates, often contain gaps and
inconsistencies. The general idea is that abductive rea-
soning can feed information into the inductive pro-
cess by using the background theory for inserting new
hypotheses and removing inconsistent data. Stated dif-
ferently, abductive inference is used to complete the
training data with hypotheses about missing or incon-
sistent data that explain the example or training data,
using the background theory. This process gives alter-
native possibilities for assimilating and generalizing
this data.

Induction is a form of synthetic reasoning that typ-
ically generates knowledge in the form of new gen-
eral rules that can provide, either directly, or indirectly
through the current theory T that they extend, new
interrelationships between the predicates of our theory
that can include, unlike abduction, the observable
predicates and even in some cases new predicates.
The inductive hypothesis thus introduces new, hith-
erto unknown, links between the relations that we
are studying thus allowing new predictions on the
observable predicates that would not have been possi-
ble before from the original theory under any abductive
explanation.

An inductive hypothesis, H, extends, like in abduc-
tion, the existing theory T to a new theory T'=T' U H,
but now H provides new links between observables
and nonobservables that was missing or incomplete
in the original theory T. This is particularly evident
from the fact that induction can be performed even
with an empty given theory T, using just the set
of observations. The observations specify incomplete
(usually extensional) knowledge about the observable
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predicates, which we try to generalize into new knowl-
edge. In contrast, the generalizing effect of abduc-
tion, if at all present, is much more limited. With the
given current theory T, that abduction always needs to
refer to, we implicitly restrict the generalizing power
of abduction as we require that the basic model of our
domain remains that of T. Induction has a stronger
and genuinely new generalizing effect on the observ-
able predicates than abduction. While the purpose of
abduction is to extend the theory with an explanation
and then reason with it, thus enabling the generalizing
potential of the given theory T, in induction the pur-
pose is to extend the given theory to a new theory, which
can provide new possible observable consequences.
This complementarity of abduction and induc-
tion — abduction providing explanations from the the-
ory while induction generalizes to form new parts of
the theory - suggests a basis for their integration within
the context of theory formation and theory develop-
ment. A cycle of integration of abduction and induc-
tion (Flach & Kakas, 2000) emerges that is suitable for
the task of incremental modeling (Fig.1). Abduction
is used to transform (and in some sense normalize)
the observations to information on the abducible pred-
icates. Then, induction takes this as input and tries
to generalize this information to general rules for the
abducible predicates now treating these as observable
predicates for its own purposes. The cycle can then
be repeated by adding the learned information on the
abducibles back in the model as new partial information

Induction Abduction

Abduction. Figure 1. The cycle of abductive and induc-
tive knowledge development. The cycle is governed by
the “equation” T U H = O, where T is the current theory,
Othe observations triggering theory development,and H
the new knowledge generated. On the left-hand side we
have induction, its output feeding into the theory T for
later use by abduction on the right; the abductive output
in turn feeds into the observational data O’ for later use
by induction, and so on

on the incomplete abducible predicates. This will affect
the abductive explanations of new observations to be
used again in a subsequent phase of induction. Hence,
through this cycle of integration the abductive explana-
tions of the observations are added to the theory, not in
the (simple) form in which they have been generated,
butin a generalized form given by a process of induction
on these.

A simple example, adapted from Ray et al. (2003),
that illustrates this cycle of integration of abduction and
induction is as follows. Suppose that our current model,
T, contains the following rule and background facts:

sad(X) < tired(X), poor(X),
tired(oli), tired(ale), tired(kr),
academic(oli), academic(ale), academic(kr),

student(oli), lecturer(ale), lecturer(kr),

where the only observable predicate is sad/1.

Given the observations O = {sad(ale), sad(kr), not
sad(oli)} can we improve our model? The incomplete-
ness of our model resides in the predicate poor. This
is the only abducible predicate in our model. Using
abduction we can explain the observations O via the
explanation:

E = {poor(ale), poor(kr), not poor(oli)}.

Subsequently, treating this explanation as training data
for inductive generalization we can generalize this to get
the rule:

poor(X) < lecturer(X)

thus (partially) defining the abducible predicate poor
when we extend our theory with this rule.

This combination of abduction and induction has
recently been studied and deployed in several ways
within the context of ILP. In particular, inverse entail-
ment (Muggleton and Bryant, 2000) can be seen as a
particular case of integration of abductive inference for
constructing a “bottom” clause and inductive inference
to generalize it. This is realized in Progol 5.0 and applied
to several problems including the discovery of the
function of genes in a network of metabolic pathways
(King et al., 2004), and more recently to the study of
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inhibition in metabolic networks (Tamaddoni-Nezhad,
Chaleil, Kakas, & Muggleton, 2006; Tamaddoni-Nezhad
et al., 2004). In Moyle (2000), an ILP system called
ALECTO, integrates a phase of extraction-case abduc-
tion to transform each case of a training example to
an abductive hypothesis with a phase of induction that
generalizes these abductive hypotheses. It has been used
to learn robot navigation control programs by complet-
ing the specific domain knowledge required, within a
general theory of planning that the robot uses for its
navigation (Moyle, 2002).

The development of these initial frameworks that
realize the cycle of integration of abduction and induc-
tion prompted the study of the problem of completeness
for finding any hypotheses H that satisfies the basic
task of finding a consistent hypothesis H such that
T UH e O for a given theory T, and observations O.
Progol was found to be incomplete (Yamamoto, 1997)
and several new frameworks of integration of abduction
and induction have been proposed such as SOLDR (Ito
& Yamamoto, 1998), CF-induction (Inoue, 2001), and
HAIL (Ray et al., 2003). In particular, HAIL has demon-
strated that one of the main reasons for the incom-
pleteness of Progol is that in its cycle of integration of
abduction and induction, it uses a very restricted form
of abduction. Lifting some of these restrictions, through
the employment of methods from abductive logic pro-
gramming (Kakas et al., 1992), has allowed HAIL to
solve a wider class of problems. HAIL has been extended
to a framework, called XHAIL (Ray, 2009), for learn-
ing nonmonotonic ILP, allowing it to be applied to learn
Event Calculus theories for action description (Alra-
jeh, Ray, Russo, & Uchitel, 2009) and complex scientific
theories for systems biology (Ray & Bryant, 2008).

Applications of this integration of abduction and
induction and the cycle of knowledge development can
be found in the recent proceedings of the Abduction
and Induction in Artificial Intelligence workshops in
2007 (Flach & Kakas, 2009) and 2009 (Ray, Flach, &
Kakas, 2009).

Abduction has found a rich field of application in the
domain of systems biology and the declarative model-
ing of computational biology. In a project called, Robot
scientist (King et al., 2004), Progol 5.0 was used to

generate abductive hypotheses about the function of
genes. Similarly, learning the function of genes using
abduction has been studied in GenePath (Zupan et al.,
2003) where experimental genetic data is explained
in order to facilitate the analysis of genetic networks.
Also in Papatheodorou et al. (2005) abduction is used
to learn gene interactions and genetic pathways from
microarray experimental data. Abduction and its inte-
gration with induction has been used in the study
of inhibitory effect of toxins in metabolic networks
(Tamaddoni-Nezhad et al,, 2004, 2006) taking into
account also the temporal variation that the inhibitory
effect can have. Another bioinformatics application of
abduction (Ray et al., 2006) concerns the modeling of
human immunodeficiency virus (HIV) drug resistance
and using this in order to assist medical practition-
ers in the selection of antiretroviral drugs for patients
infected with HIV. Also, the recently developed frame-
works of XHAIL and CF-induction have been applied
to several problems in systems biology, see e.g., Ray
(2009), Ray and Bryant (2008), and Doncescu, Inoue,
and Yamamoto (2007), respectively.

Cross References
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Absolute Error Loss

» Mean Absolute Error

! Accuracy

Definition

Accuracy refers to a measure of the degree to which the
predictions of a »model match the reality being mod-
eled. The term accuracy is often applied in the context
of »classification models. In this context, accuracy =
P(A(X) = Y), where XY is a »joint distribution and the
classification model A is a function X — Y. Sometimes,
this quantity is expressed as a percentage rather than a
value between 0.0 and 1.0.

The accuracy of a model is often assessed or esti-
mated by applying it to test data for which the »labels
(Y values) are known. The accuracy of a classifier on
test data may be calculated as number of correctly clas-
sified objects/total number of objects. Alternatively, a
smoothing function may be applied, such as a »Laplace
estimate or an P m-estimate.
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ACO

Accuracy is directly related to »error rate, such that
accuracy = 1.0 — error rate (or when expressed as a per-
centage, accuracy = 100 — error rate).

Cross References
» Confusion Matrix
> Resubstitution Accuracy

" ACO

» Ant Colony Optimization

! Actions

In a »Markov decision process, actions are the avail-
able choices for the decision-maker at any given decision
epoch, in any given state.

" Active Learning

Davip COHN
Mountain View, CA, USA

Definition

The term Active Learning is generally used to refer
to a learning problem or system where the learner
has some role in determining on what data it will be
trained. This is in contrast to Passive Learning, where
the learner is simply presented with a Ptraining set
over which it has no control. Active learning is often
used in settings where obtaining »labeled data is expen-
sive or time-consuming; by sequentially identifying
which examples are most likely to be useful, an active
learner can sometimes achieve good performance,
using far less P>-training data than would otherwise be
required.

Structure of Learning System

In many machine learning problems, the training data
are treated as a fixed and given part of the prob-
lem definition. In practice, however, the training data

are often not fixed beforehand. Rather, the learner
has an opportunity to play a role in deciding what
data will be acquired for training. This process is usu-
ally referred to as “active learning,” recognizing that
the learner is an active participant in the training
process.

The typical goal in active learning is to select train-
ing examples that best enable the learner to minimize
its loss on future test cases. There are many theo-
retical and practical results demonstrating that, when
applied properly, active learning can greatly reduce the
number of training examples, and even the compu-
tational effort required for a learner to achieve good
generalization.

A toy example that is often used to illustrate the
utility of active learning is that of learning a thresh-
old function over a one-dimensional interval. Given
+/— labels for N points drawn uniformly over the inter-
val, the expected error between the true value of the
threshold and any learner’s best guess is bounded by
O(1/N). Given the opportunity to sequentially select
the position of points to be labeled, however, a learner
can pursue a binary search strategy, obtaining a best
guess that is within O(1/2") of the true threshold
value.

This toy example illustrates the sequential nature of
example selection that is a component of most (but not
all) active learning strategies: the learner makes use of
initial information to discard parts of the solution space,
and to focus future data acquisition on distinguishing
parts that are still viable.

Related Problems

The term “active learning” is usually applied in super-
vised learning settings, though there are many related
problems in other branches of machine learning and
beyond. The “exploration” component of the “explo-
ration/exploitation” strategy in reinforcement learning
is one such example. The learner must take actions
to gain information, and must decide what actions
will give him/her the information that will best min-
imize future loss. A number of fields of Operations
Research predate and parallel machine learning work
on active learning, including Decision Theory (North,
1968), Value of Information Computation, Bandit prob-
lems (Robbins, 1952), and Optimal Experiment Design
(Fedorov, 1972; Box & Draper, 1987).
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Active Learning Scenarios

When active learning is used for classification or regres-
sion, there are three common settings: constructive
active learning, pool-based active learning, and stream-
based active learning (also called selective sampling).

In constructive active learning, the learner is allowed
to propose arbitrary points in the input space as exam-
ples to be labeled. While this in theory gives the learner
the most power to explore, it is often not practical.
One obstacle is the observation that most learning sys-
tems train on only a reduced representation of the
instances they are presented with: text classifiers on bags
of words (rather than fully-structured text) and speech
recognizers on formants (rather than raw audio). While
a learning system may be able to identify what pat-
tern of formants would be most informative to label,
there is no reliable way to generate audio that a human
could recognize (and label) from the desired formants
alone.

Pool-based active learning (McCallum & Nigam, 1998)
is popular in domains such as text classification and
speech recognition where unlabeled data are plentiful
and cheap, but labels are expensive and slow to acquire.
In pool-based active learning, the learner may not pro-
pose arbitrary points to label, but instead has access to a
set of unlabeled examples, and is allowed to select which
of them to request labels for.

A special case of pool-based learning is transductive
active learning, where the test distribution is exactly the
set of unlabeled examples. The goal then is to sequen-
tially select and label a small number of examples that
will best allow predicting the labels of those points that
remain unlabeled.

A theme that is common to both constructive and
pool-based active learning is the principle of sequen-
tial experimentation. Information gained from early
queries allows the learner to focus its search on portions
of the domain that are most likely to give it additional
information on subsequent queries.

Stream-based active learning resembles pool-based
learning in many ways, except that the learner only has

access to the unlabeled instances as a stream; when an
instance arrives, the learner must decide whether to ask
for its label or let it go.

By virtue of the broad definition of active learning, there
is no real limit on the possible settings for framing it.
Angluin’s early work on learning regular sets (Angluin,
1987) employed a “counterexample” oracle: the learner
would propose a solution, and the oracle would either
declare it correct, or divulge a counterexample - an
instance on which the proposed and true solutions dis-
agreed. Jin and Si (2003) describe a Bayesian method
for selecting informative items to recommend when
learning a collaborative filtering model, and Steck and
Jaakkola (2002) describe a method best described as
unsupervised active learning to build Bayesian networks
in large domains.

While most active learning work assumes that the
cost of obtaining a label is independent of the instance
to be labeled, there are many scenarios where this is not
the case. A mobile robot taking surface measurements
must first travel to the point it wishes to sample, mak-
ing distant points more expensive than nearby ones.
In some cases, the cost of a query (e.g., the difficulty
of traveling to a remote point to sample it) may not
even be known until it is made, requiring the learner
to learn a model of that as well. In these situations,
the sequential nature of active learning is greatly accen-
tuated, and a learner faces the additional challenges
of planning under uncertainty (see “Greedy vs. Batch
Active Learning,” below).

Common Active Learning Strategies

1. Version space partitioning. The earliest practical
active learning work (Ruff & Dietterich, 1989;
Mitchell, 1982) explicitly relied on »version space
partitioning. These approaches tried to select
examples on which there was maximal disagree-
ment between hypotheses in the current version
space. When such examples were labeled, they
would invalidate as large a portion of the version
space as possible. A limitation of explicit version
space approaches is that, in underconstrained
domains, a learner may waste its effort differenti-
ating portions of the version space that have little
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effect on the classifier’s predictions, and thus on its
error.

Query by Committee (Seung, Opper, & Sompolin-
sky 1992). In query by committee, the experimenter
trains an ensemble of models, either by selecting
randomized starting points (e.g., in the case of a
neural network) or by bootstrapping the training
set. Candidate examples are scored based on dis-
agreement among the ensemble models - examples
with high disagreement indicate areas in the sam-
ple space that are underdetermined by the train-
ing data, and therefore potentially valuable to label.
Models in the ensemble may be looked at as sam-
ples from the version space; picking examples where
these models disagree is a way of splitting the ver-
sion space.

Uncertainty sampling (Lewis & Gail, 1994). Uncer-
tainty sampling is a heuristic form of statistical
active learning. Rather than sampling different
points in the version space by training multiple
learners, the learner itself maintains an explicit
model of uncertainty over its input space. It then
selects for labeling those examples on which it
is least confident. In classification and regres-
sion problems, uncertainty contributes directly to
expected loss (as the variance component of the
“error = bias + variance” decomposition), so that
gathering examples where the learner has greatest
uncertainty is often an effective loss-minimization
heuristic. This approach has also been found
effective for non-probabilistic models, by simply
selecting examples that lie near the current deci-
sion boundary. For some learners, such as support
vector machines, this heuristic can be shown to be
an approximate partitioning of the learner’s version
space (Tong & Koller, 2001).

Loss minimization (Cohn, Ghahramani, & Jordan,
1996). Uncertainty sampling can stumble when
parts of the learner’s domain are inherently noisy.
It may be that, regardless of the number of
samples labeled in some neighborhood, it will
remain impossible to accurately predict these. In
these cases, it would be desirable to not only
model the learner’s uncertainty over arbitrary
parts of its domain, but also to model what
effect labeling any future example is expected

to have on that uncertainty. For some learning
algorithms it is feasible to explicitly compute
such estimates (e.g., for locally-weighted regres-
sion and mixture models, these estimates may
be computed in closed form). It is, therefore,
practical to select examples that directly minimize
the expected loss to the learner, as discussed below
under “Statistical Active Learning”

Statistical Active Learning

Uncertainty sampling and direct loss minimization are
two examples of statistical active learning. Both rely on
the learner’s ability to statistically model its own uncer-
tainty. When learning with a statistical model, such as
a linear regressor or a mixture of Gaussians (Dasgupta,
1999), the objective is usually to find model parameters
that minimize some form of expected loss. When active
learning is applied to such models, it is natural to also
select training data so as to minimize that same objec-
tive. As statistical models usually give us estimates on
the probability of (as yet) unknown values, it is often
straightforward to turn this machinery upon itself to
assist in the active learning process (Cohn et al., 1996).
The process is usually as follows:

1. Begin by requesting labels for a small random sub-
sample of the examples xj,x,,K,x,x and fit our
model to the labeled data.

2. For any x in our domain, a statistical model lets us
estimate both the conditional expectation j(x) and
o;(x), the variance of that expectation. We estimate
our current loss by drawing a new random sample of
unlabeled data, and computing the averaged a)f(x).

3. We now consider a candidate point &, and ask what
reduction in loss we would obtain if we had labeled
it . If we knew its label with certainty, we could sim-
ply add the point to the training set, retrain, and
compute the new expected loss. While we do not
know the true 7, we could, in theory, compute the
new expected loss for every possible y and average
those losses, weighting them by our model’s esti-
mate of p(j|x). In practice, this is normally unfea-
sible; however, for some statistical models, such as
locally-weighted regression and mixtures of Gaus-
sians, we can compute the distribution of p(7|X) and
its effect on a}f(x) in closed form (Cohn et al., 1996).
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4. Given the ability to estimate the expected effect of
obtaining label j for candidate %, we repeat this
computation for a sample of Mcandidates, and then
request a label for the candidate with the largest
expected decrease in loss. We add the newly-labeled
example to our training set, retrain, and begin look-
ing at candidate points to add on the next iteration.

The Need for Reference Distributions

Step (2) above illustrates a complication that is unique to
active learning approaches. Traditional “passive” learn-
ing usually relies on the assumption that the distribu-
tion over which the learner will be tested is the same as
the one from which the training data were drawn. When
the learner is allowed to select its own training data, it
still needs some form of access to the distribution of data
on which it will be tested. A pool-based or stream-based
learner can use the pool or stream as a proxy for that dis-
tribution, but if the learner is allowed (or required) to
construct its own examples, it risks wasting all its effort
on resolving portions of the solution space that are of
no interest to the problem at hand.

A Detailed Example: Statistical Active
Learning with LOESS

LOESS (Cleveland, Devlin, & Gross, 1988) is a sim-
ple form of locally-weighted regression using a kernel
function. When asked to predict the unknown output
y corresponding to a given input x, LOESS computes a
»linear regression over known (x, y) pairs, in which it
gives pair (x;, y;) weight according to the proximity of x;
to x. We will write this weighting as a kernel function,
K(x;,x), or simplify it to k; when there is no chance of
confusion.

In the active learning setting, we will assume that
we have a large supply of unlabeled examples drawn
from the test distribution, along with labels for a small
number of them. We wish to label a small num-
ber more so as to minimize the mean squared error
(MSE) of our model. MSE can be decomposed into
two terms: squared »bias and variance. If we make the
(inaccurate but simplifying) assumption that LOESS
is approximately unbiased for the problem at hand,
minimizing MSE reduces to minimizing the variance of
our estimates.

Given n labeled pairs, and a prediction to make
for input x, LOESS computes the following covariance
statistics around x:

_ >ikixi ol = ki (xi - ,“x)z
Ux n*: X —n >
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Oxy =
n
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We can combine these to express the conditional
expectation of y (our estimate) and its variance as:
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Our proxy for model error is the variance of our pre-

diction, integrated over the test distribution (U?). Aswe

have assumed a pool-based setting in which V}s’/e have a
large number of unlabeled examples from that distribu-
tion, we can simply compute the above variance over a
sample from the pool, and use the resulting average as
our estimate.

To perform statistical active learning, we want to
compute how our estimated variance will change if
we add an (as yet unknown) label j for an arbitrary x.
We will write this new expected variance as (0 ) While
we do not know what value y will take, our model gives
us an estimated mean j(%) and variance 2 for the
value, as above. We can add this dlstrlbuted y value
to LOESS just as though it were a discrete one, and
compute the resulting expectation <6§> in closed form.

Defining k as K(%, x), we write:
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where the component expectations are computed as
follows:
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Greedy Versus Batch Active Learning
It is also worth pointing out that virtually all active
learning work relies on greedy strategies — the learner
estimates what single example best achieves its objec-
tive, requests that one, retrains, and repeats. In theory,
it is possible to plan some number of queries ahead,
asking what point is best to label now, given that N-1
more labeling opportunities remain. While such strate-
gies have been explored in Operations Research for very
small problem domains, their computational require-
ments make this approach unfeasible for problems of
the size typically encountered in machine learning.
There are cases where retraining the learner after
every new label would be prohibitively expensive, or
where access to labels is limited by the number of iter-
ations as well as by the total number of labels (e.g.,
for a finite number of clinical trials). In this case, the
learner may select a set of examples to be labeled on
each iteration. This batch approach, however, is only
useful if the learner is able to identify a set of exam-
ples whose expected contributions are non-redundant,
which substantially complicates the process.

Cross References
» Active Learning Theory

Recommended Reading

Angluin, D. (1987). Learning regular sets from queries and coun-
terexamples. Information and Computation, 75(2), 87-106.
Angluin, D. (1988). Queries and concept learning. Machine Learning,

2, 319-342.

Box, G. E. P,, & Draper, N. (1987). Empirical model-building and
response surfaces. New York: Wiley.

Cleveland, W., Devlin, S., & Gross, E. (1988). Regression by local
fitting. Journal of Econometrics, 37, 87-114.

Cohn, D., Atlas, L., & Ladner, R. (1990). Training connectionist
networks with queries and selective sampling. In D. Touretzky
(Ed.)., Advances in neural information processing systems. Mor-
gan Kaufmann.

Cohn, D., Ghahramani, Z., & Jordan, M. 1. (1996). Active
learning with statistical models. Journal of Artificial Intel-
ligence Research, 4, 129-145. http://citeseer.ist.psu.edu/
321503.html

Dasgupta, S. (1999). Learning mixtures of Gaussians. Foundations of
Computer Science, 634-644.

Fedorov, V. (1972). Theory of optimal experiments. New York:
Academic Press.

Kearns, M., Li, M., Pitt, L., & Valiant, L. (1987). On the learnabil-
ity of Boolean formulae, Proceedings of the 19th annual ACM
conference on theory of computing (pp. 285-295). New York:
ACM Press.

Lewis, D. D., & Gail, W. A. (1994). A sequential algorithm for training
text classifiers. Proceedings of the 17th annual international ACM
SIGIR conference (pp. 3-12). Dublin.

McCallum, A., & Nigam, K. (1998). Employing EM and pool-based
active learning for text classification. In Machine learning:
Proceedings of the fifteenth international conference (ICML98)
(pp. 359-367).

North, D. W. (1968). A tutorial introduction to decision theory. IEEE
Transactions Systems Science and Cybernetics, 4(3).

Pitt, L., & Valiant, L. G. (1988). Computational limitations on learn-
ing from examples. Journal of the ACM (JACM), 35(4), 965-984.

Robbins, H. (1952). Some aspects of the sequential design of exper-
iments. Bulletin of the American Mathematical Society, 55,
527-535.

Ruff, R., & Dietterich, T. (1989). What good are experiments? Pro-
ceedings of the sixth international workshop on machine learning.
Ithaca, NY.

Seung, H. S., Opper, M., & Sompolinsky, H. (1992). Query by
committee. In Proceedings of the fifth workshop on computa-
tional learning theory (pp. 287-294). San Mateo, CA: Morgan
Kaufmann.

Steck, H., & Jaakkola, T. (2002).
learning in large domains. In Proceeding of the con-
ference on uncertainty in AL http://citeseer.ist.psu.edu/

Unsupervised active

steckO2unsupervised.html

! Active Learning Theory

SANjoY DAasGuUPTA
University of California, San Diego, La Jolla, CA, USA

Definition

The term active learning applies to a wide range of situ-
ations in which a learner is able to exert some control
over its source of data. For instance, when fitting a
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regression function, the learner may itself supply a set
of data points at which to measure response values, in
the hope of reducing the variance of its estimate. Such
problems have been studied for many decades under the
rubric of experimental design (Chernoff, 1972; Fedorov,
1972). More recently, there has been substantial interest
within the machine learning community in the spe-
cific task of actively learning binary classifiers. This task
presents several fundamental statistical and algorithmic
challenges, and an understanding of its mathematical
underpinnings is only gradually emerging. This brief
survey will describe some of the progress that has been
made so far.

Learning from Labeled and Unlabeled Data
In the machine learning literature, the task of learning
a classifier has traditionally been studied in the frame-
work of supervised learning. This paradigm assumes that
there is a training set consisting of data points x (from
some set X') and their labels y (from some set )), and
the goal is to learn a function f : & — ) that will
accurately predict the labels of data points arising in the
future. Over the past 50 years, tremendous progress has
been made in resolving many of the basic questions sur-
rounding this model, such as “how many training points
are needed to learn an accurate classifier?”

Although this framework is now fairly well under-
stood, it is a poor fit for many modern learning tasks
because of its assumption that all training points auto-
matically come labeled. In practice, it is frequently the
case that the raw, abundant, easily obtained form of data
is unlabeled, whereas labels must be explicitly procured
and are expensive. In such situations, the reality is that
the learner starts with a large pool of unlabeled points
and must then strategically decide which ones it wants
labeled: how best to spend its limited budget.

Example: Speech recognition. When building a speech
recognizer, the unlabeled training data consists of raw
speech samples, which are very easy to collect: just walk
around with a microphone. For all practical purposes,
an unlimited quantity of such samples can be obtained.
On the other hand, the “label” for each speech sam-
ple is a segmentation into its constituent phonemes,
and producing even one such label requires substan-
tial human time and attention. Over the past decades,
research labs and the government have expended an

enormous amount of money, time, and effort on creat-
ing labeled datasets of English speech. This investment
has paid off, but our ambitions are inevitably moving
past what these datasets can provide: we would now like,
for instance, to create recognizers for other languages,
or for English in specific contexts. Is there some way to
avoid more painstaking years of data labeling, to some-
how leverage the easy availability of raw speech so as to
significantly reduce the number of labels needed? This
is the hope of active learning.

Some early results on active learning were in the
membership query model, where the data is assumed to
be separable (that is, some hypothesis h perfectly classi-
fies all points) and the learner is allowed to query the
label of any point in the input space X’ (rather than
being constrained to a prespecified unlabeled set), with
the goal of eventually returning the perfect hypothe-
sis h*. There is a significant body of beautiful theo-
retical work in this model (Angluin, 2001), but early
experiments ran into some telling difficulties. One study
(Baum & Lang, 1992) found that when training a neural
network for handwritten digit recognition, the queries
synthesized by the learner were such bizarre and unnat-
ural images that they were impossible for a human to
classify. In such contexts, the membership query model
is of limited practical value; nonetheless, many of the
insights obtained from this model carry over to other
settings (Hanneke, 2007a).

We will fix as our standard model one in which the
learner is given a source of unlabeled data, rather than
being able to generate these points himself. Each point
has an associated label, but the label is initially hidden,
and there is a cost for revealing it. The hope is that an
accurate classifier can be found by querying just a few
labels, much fewer than would be required by regular
supervised learning.

How can the learner decide which labels to probe?
One option is to select the query points at random, but
it is not hard to show that this yields the same label
complexity as supervised learning. A better idea is to
choose the query points adaptively: for instance, start
by querying some random data points to get a rough
sense of where the decision boundary lies, and then
gradually refine the estimate of the boundary by specif-
ically querying points in its immediate vicinity. In other
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words, ask for the labels of data points whose par-
ticular positioning makes them especially informative.
Such strategies certainly sound good, but can they be
fleshed out into practical algorithms? And if so, do these
algorithms work well in the sense of producing good
classifiers with fewer labels than would be required by
supervised learning?

On account of the enormous practical importance of
active learning, there are a wide range of algorithms and
techniques already available, most of which resemble
the aggressive, adaptive sampling strategy just outlined,
and many of which show promise in experimental stud-
ies. However, a big problem with this kind of sampling
is that very quickly the set of labeled points no longer
reflects the underlying data distribution. This makes
it hard to show that the classifiers learned have good
statistical properties (for instance, that they converge
to an optimal classifier in the limit of infinitely many
labels). This survey will only discuss methods that have
proofs of statistical well-foundedness, and whose label
complexity can be explicitly analyzed.

Motivating Examples

We will start by looking at a few examples that illustrate
the enormous potential of active learning and that also
make it clear why analyses of this new model require
concepts and intuitions that are fundamentally differ-
ent from those that have already been developed for
supervised learning.

Suppose the data lie on the real line, and the available
classifiers are simple thresholding functions, H# = {h,, :

weR}:
+1 ifx>w
h,(x) =
w(%) {—1 ifx<w
e O T
w

To make things precise, let us denote the (unknown)
underlying distribution on the data (X,Y) € R x
{+1,-1} by P, and let us suppose that we want a hypoth-
esis h € H whose error with respect to P, namely
errp(h) = P(h(X) # Y), is at most some . How many
labels do we need?

In supervised learning, such issues are well under-
stood. The standard machinery of sample complexity

(using VC theory) tells us that if the data are separa-
ble - that is, if they can be perfectly classified by some
hypothesis in H - then we need approximately 1/e ran-
dom labeled examples from IP, and it is enough to return
any classifier consistent with them.

Now suppose we instead draw 1/¢ unlabeled sam-
ples from P. If we lay these points down on the line,
their hidden labels are a sequence of —s followed by a
sequence of +s, and the goal is to discover the point
w at which the transition occurs. This can be accom-
plished with a simple binary search which asks for just
log 1/e labels: first ask for the label of the median point;
if it is +, move to the 25th percentile point, otherwise
move to the 75th percentile point; and so on. Thus, for
this hypothesis class, active learning gives an exponen-
tial improvement in the number of labels needed, from
1/e to just log1/e. For instance, if supervised learning
requires a million labels, active learning requires just
log 1,000,000 = 20, literally!

It is a tantalizing possibility that even for more
complicated hypothesis classes 7, a sort of general-
ized binary search is possible. A natural next step is to
consider linear separators in two dimensions.

Let H be the hypothesis class of linear separators in
R?, and suppose the data is distributed according to
some density supported on the perimeter of the unit
circle. It turns out that the positive results of the one-
dimensional case do not generalize: there are some tar-
get hypotheses in H for which Q(1/¢) labels are needed
to find a classifier with error rate less than ¢, no matter
what active learning scheme is used.

To see this, consider the following possible target
hypotheses (Fig. 1):

e hy: all points are positive.
e h; (1 < i< 1/e): all points are positive except for a
small slice B; of probability mass e.

The slices B; are explicitly chosen to be disjoint, with
the result that Q(1/¢) labels are needed to distinguish
between these hypotheses. For instance, suppose nature
chooses a target hypothesis at random from among the
h;,1 < i <1/e. Then, to identify this target with probabil-
ity at least 1/2, it is necessary to query points in at least
(about) half the B;s.
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circumference of a circle. Each B; is an arc of probability
mass ¢

Thus for these particular target hypotheses, active
learning offers little improvement in sample com-
plexity over regular supervised learning. What about
other target hypotheses in #, for instance those in
which the positive and negative regions are more
evenly balanced? It is quite easy (Dasgupta, 2005)
to devise an active learning scheme which asks for
O(min{1/i(h),1/e}) + O(log1/e) labels, where i(h) =
min{positive mass of h, negative mass of h}. Thus even
within this simple hypothesis class, the label complexity
can run anywhere from O(log1/e¢) to Q(1/€), depend-
ing on the specific target hypothesis!

In our two previous examples, the amount of unlabeled
data needed was O(1/e), exactly the usual sample com-
plexity of supervised learning. But it is sometimes help-
ful to have significantly more unlabeled data than this.
In Dasgupta (2005), a distribution P is described for
which if the amount of unlabeled data is small (below
any prespecified threshold), then the number of labels
needed to learn the target linear separator is Q(1/¢);
whereas if the amount of unlabeled data is much larger,
then only O(log 1/€) labels are needed. This is a situation
where most of the data distribution is fairly uninfor-
mative while a miniscule fraction is highly informative.
A lot of unlabeled data is needed in order to get even a
few of the informative points.

The Sample Complexity of Active Learning
We will think of the unlabeled points x;, . . ., x,, as being
drawn i.i.d. from an underlying distribution Px on X
(namely, the marginal of the distribution P on &' x V),
either all at once (a pool) or one at a time (a stream).
The learner is only allowed to query the labels of points
in the pool/stream; that is, it is restricted to “natu-
rally occurring” data points rather than synthetic ones
(Fig. 2). It returns a hypothesis & € H whose quality is
measured by its error rate, errp(h).

In regular supervised learning, it is well known that
if the VC dimension of H is d, then the number of labels
that will with high probability ensure errp(h) < € is
roughly O(d/e) if the data is separable and O(d/e?)
otherwise (Haussler, 1992); various logarithmic terms
are omitted here. For active learning, it is clear from
the examples above that the VC dimension alone does
not adequately characterize label complexity. Is there a
different combinatorial parameter that does?

For separable data, it is possible to give upper and lower
bounds on label complexity in terms of a special param-
eter known as the splitting index (Dasgupta, 2005). This
is merely an existence result: the algorithm needed to
realize the upper bound is intractable because it involves
explicitly maintaining an e-cover (a coarse approxima-
tion) of the hypothesis class, and the size of this cover
is in general exponential in the VC dimension. Nev-
ertheless, it does give us an idea of the kinds of label
complexity we can hope to achieve.

Example. Suppose the hypothesis class consists of inter-
vals on the real line: X = Rand H = {h, : a,b € R},
where h,,(x) = 1(a < x < b). Using the splitting
index, the label complexity of active learning is seen to
be @(min{1/Px([a,b]),1/e} + log1/e) when the target
hypothesis s h, ;, (Dasgupta, 2005). Here the © notation
is used to suppress logarithmic terms.

Example. Suppose X' = R and H consists of linear sep-
arators through the origin. If Py is the uniform distri-
bution on the unit sphere, the number of labels needed
to learn a hypothesis of error < ¢ is just ®(dlog1/e),
exponentially smaller than the O(d/e) label complex-
ity of supervised learning. If Px is not the uniform
distribution but is everywhere within a multiplicative
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Pool-based active learning

Get a set of unlabeled points UcX
Repeat until satisfied:

Pick some x€U to label
Return a hypothesis heH

Stream-based active learning

Repeat for t=0,12,...:
Choose a hypothesis heH
Receive an unlabeled point xeX
Decide whether to query its label

Active Learning Theory. Figure 2. Models of pool-and stream-based active learning. The data are draws from an under-

lying distribution Px, and hypotheses h are evaluated by errp(h). If we want to get this error below ¢, how many labels

are needed, as a function of ¢?

factor A > 1 of it, then the label complexity becomes
O((dlog1/e)log* 1), provided the amount of unlabeled
data is increased by a factor of A* (Dasgupta, 2005).

These results are very encouraging, but the question
of an efficient active learning algorithm remains open.
We now consider two approaches.

The label complexity results mentioned above are based
on querying maximally informative points. A less
aggressive strategy is to be mildly selective, to query all
points except those that are quite clearly uninformative.
This is the idea behind one of the earliest generic active
learning schemes (Cohn, Atlas, & Ladner, 1994). Data
points x3, X, . . . arrive in a stream, and for each one the
learner makes a spot decision about whether or not to
request a label. When x; arrives, the learner behaves as
follows.

e Determine whether both possible labelings, (x;, +)
and (x;, —), are consistent with the labeled examples
seen so far.

e If so, ask for the label y,. Otherwise set y; to be the
unique consistent label.

Fortunately, the check required for the first step can be
performed efficiently by making two calls to a super-
vised learner. Thus this is a very simple and elegant
active learning scheme, although as one might expect,
it is suboptimal in its label complexity (Balcan et al.,
2007). Interestingly, there is a parameter called the dis-
agreement coefficient that characterizes the label com-
plexity of this scheme and also of some other mildly
selective learners (Friedman, 2009; Hanneke, 2007b).
In practice, the biggest limitation of the algorithm
above is that it assumes the data are separable. Recent

results have shown how to remove this assumption
(Balcan, Beygelzimer, & Langford, 2006; Dasgupta et al.,
2007) and to accommodate classification loss functions
other than 0 —1loss (Beygelzimer et al., 2009). Variants
of the disagreement coefficient continue to character-
ize label complexity in the agnostic setting (Beygelzimer
et al.,, 2009; Dasgupta et al., 2007).

The query by committee algorithm (Seung, Opper, &
Sompolinsky, 1992) is based on a Bayesian view of active
learning. The learner starts with a prior distribution on
the hypothesis space, and is then exposed to a stream of
unlabeled data. Upon receiving x;, the learner performs
the following steps.

e Draw two hypotheses h, i’ at random from the pos-
terior over H.

o If h(x;) # h'(x:) then ask for the label of x; and
update the posterior accordingly.

This algorithm queries points that substantially shrink
the posterior, while at the same time taking account
of the data distribution. Various theoretical guaran-
tees have been shown for it (Freund, Seung, Shamir, &
Tishby, 1997); in particular, in the case of linear separa-
tors with a uniform data distribution, it achieves a label
complexity of O(dlog1/e), the best possible.

Sampling from the posterior over the hypothesis
class is, in general, computationally prohibitive. How-
ever, for linear separators with a uniform prior, it can be
implemented efficiently using random walks on convex
bodies (Gilad-Bachrach, Navot, & Tishby, 2005).



Adaboost

In this survey, I have touched mostly on active learning
results of the greatest generality, those that apply to arbi-
trary hypothesis classes. There is also a significant body
of more specialized results.

o Efficient active learning algorithms for specific
hypothesis classes.
This includes an online learning algorithm for lin-
ear separators that only queries some of the points
and yet achieves similar regret bounds to algo-
rithms that query all the points (Cesa-Bianchi,
Gentile, & Zaniboni, 2004). The label complexity of
this method is yet to be characterized.

o Algorithms and label bounds for linear separators
under the uniform data distribution.
This particular setting has been amenable to mathe-
matical analysis. For separable data, it turns out thata
variant of the perceptron algorithm achieves the opti-
mal O(dlog1/e) label complexity (Dasgupta, Kalai, &
Monteleoni,2005). Asimplealgorithmisalsoavailable
for the agnostic setting (Balcan et al., 2007).

Conclusion

The theoretical frontier of active learning is mostly an
unexplored wilderness. Except for a few specific cases,
we do not have a clear sense of how much active learning
can reduce label complexity: whether by just a constant
factor, or polynomially, or exponentially. The funda-
mental statistical and algorithmic challenges involved,
together with the huge practical importance of the field,
make active learning a particularly rewarding terrain for
investigation.
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Adaboost

Adaboost is an Pensemble learning technique, and the
most well-known of the »Boosting family of algo-
rithms. The algorithm trains models sequentially, with
a new model trained at each round. At the end of each
round, mis-classified examples are identified and have
their emphasis increased in a new training set which is
then fed back into the start of the next round, and a new
model is trained. The idea is that subsequent models




20

Adaptive Control Processes

should be able to compensate for errors made by earlier
models. See »ensemble learning for full details.

[ .
Adaptive Control Processes

»Bayesian Reinforcement Learning

! Adaptive Real-Time Dynamic
Programming

ANDREW G. BARTO
University of Massachusetts, Amherst, MA, USA

Synonyms
ARTDP

Definition

Adaptive Real-Time Dynamic Programming (ARTDP)
is an algorithm that allows an agent to improve its
behavior while interacting over time with an incom-
pletely known dynamic environment. It can also be
viewed as a heuristic search algorithm for finding short-
est paths in incompletely known stochastic domains.
ARTDP is based on »Dynamic Programming (DP),
but unlike conventional DP, which consists of off-line
algorithms, ARTDP is an on-line algorithm because it
uses agent behavior to guide its computation. ARTDP
is adaptive because it does not need a complete
and accurate model of the environment but learns a
model from data collected during agent-environment
interaction. When a good model is available, »Real-
Time Dynamic Programming (RTDP) is applica-
ble, which is ARTDP without the model-learning
component.

Motivation and Background

RTDP combines strengths of heuristic search and DP.
Like heuristic search - and unlike conventional DP - it
does not have to evaluate the entire state space in order

to produce an optimal solution. Like DP - and unlike
most heuristic search algorithms - it is applicable to
nondeterministic problems. Additionally, RTDP’s per-
formance as an »-anytime algorithm is better than con-
ventional DP and heuristic search algorithms. ARTDP
extends these strengths to problems for which a good
model is not initially available.

In artificial intelligence, control engineering, and
operations research, many problems require finding a
policy (or control rule) that determines how an agent
(or controller) should generate actions in response to
the states of its environment (the controlled system).
When a “cost” or a “reward” is associated with each
step of the agent’s behavior, policies can be compared
according to how much cost or reward they are expected
to accumulate over time.

The usual formulation for problems like this in the
discrete-time case is the »Markov Decision Process
(MDP). The objective is to find a policy that minimizes
(maximizes) a measure of the total cost (reward) over
time, assuming that the agent-environment interaction
can begin in any of the possible states. In other cases,
there is a designated set of “start states” that is much
smaller than the entire state set (e.g., the initial board
configuration in a board game). In these cases, any given
policy only has to be defined for the set of states that
can be reached from the starting states when the agent
is using that policy. The rest of the states will never arise
when that policy is being followed, so the policy does
not need to specify what the agent should do in those
states.

ARTDP and RTDP exploit situations where the set
of states reachable from the start states is a small subset
of the entire state space. They can dramatically reduce
the amount of computation needed to determine an
optimal policy for the relevant states as compared with
the amount of computation that a conventional DP
algorithm would require to determine an optimal policy
for all the states. These algorithms do this by focussing
computation around simulated behavioral experiences
(if there is a model available capable of simulating these
experiences), or around real behavioral experiences (if
no model is available).

RTDP and ARTDP were introduced by Barto,
Bradtke, and Singh (1995). The starting point was the
novel observation by Bradtke that Korf’s Learning
Real-Time A* heuristic search algorithm (Korf, 1990)
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is closely related to DP. RTDP generalizes Learning
Real-Time A* to stochastic problems. ARTDP is also
closely related to Sutton’s Dyna system (Sutton, 1990)
and Jalali and Ferguson’s (1989) Transient DP. Theoreti-
cal analysis relies on the theory of Asnychronous DP as
described by Bertsekas and Tsitsiklis (1989).

ARTDP and RTDP are »model-based reinforce-
ment learning algorithms, so called because they
take advantage of an environment model, unlike
»model-free reinforcement learning algorithms such as
»Q-Learning and »Sarsa.

Structure of Learning System

A basic step of many DP and RL algorithms is a backup
operation. This is an operation that updates a current
estimate of the cost of an MDP’s state. (We use the cost
formulation instead of reward to be consistent with the
original presentation of the algorithms. In the case of
rewards, this would be called the value of a state and
we would maximize instead of minimize.) Suppose X is
the set of MDP states. For each state x € X, f(x), the
cost of state x, gives a measure (which varies with dif-
ferent MDP formulations) of the total cost the agent is
expected to incur over the future if it starts in x. If f (x)
and fr,1(x), respectively, denote the estimate of f(x)
before and after a backup, a typical backup operation
applied to x looks like this:

fk+1(x) = mingea[c(a) + pry(ﬂ)fk(}’)])

yeX

where A is the set of possible agent actions, ¢,(a) is the
immediate cost the agent incurs for performing action
a in state x, and py, (a) is the probability that the envi-
ronment makes a transition from state x to state y as a
result of the agent’s action a. This backup operation is
associated with the DP algorithm known as »value iter-
ation. It is also the backup operation used by RTDP and
ARTDP.

Conventional DP algorithms consist of successive
“sweeps” of the state set. Each sweep consists of applying
a backup operation to each state. Sweeps continue until
the algorithm converges to a solution. Asynchronous
DP, which underlies RTDP and ARTDP, does not use
systematic sweeps. States can be chosen in any way
whatsoever, and as long as backups continue to be

applied to all states (and some other conditions are sat-
isfied), the algorithm will converge. RTDP is an instance
of asynchronous DP in which the states chosen for
backups are determined by the agent’s behavior.

The backup operation above is model-based because
it uses known rewards and transition probabilities, and
the values of all the states appear on the right-hand-side
of the equation. In contrast, a sample backup uses the
value of just one sample successor state. RTDP and
ARTDP are like RL algorithms in that they rely on
real or simulated behavioral experience, but unlike
many (but not all) RL algorithms, they use full backups
like DP.

A conventional DP algorithm typically executes oft-line.
When applied to finding an optimal policy for an MDP,
this means that the DP algorithm executes to com-
pletion before its result (an optimal policy) is used to
control the agent’s behavior. The sweeps of DP sequen-
tially “visit” the states of the MDP, performing a backup
operation on each state. But it is important not to con-
fuse these visits with the behaving agent’s visits to states:
the agent is not yet behaving while the off-line DP com-
putation is being done. Hence, the agent’s behavior has
no influence on the DP computation. The same is true
for off-line asynchronous DP.

RTDP is an on-line, or “real-time,” algorithm. It is
an asynchronous DP computation that executes con-
currently with the agent’s behavior so that the agent’s
behavior can influence the DP computation. Further,
the concurrently executing DP computation can influ-
ence the agent’s behavior. The agent’s visits to states
directs the “visits” to states made by the concurrent
asynchronous DP computation. At the same time, the
action performed by the agent is the action specified by
the policy corresponding to the latest results of the DP
computation: it is the “greedy” action with respect to the
current estimate of the cost function.

Specify
/ actions
Asynchronous \
Dynamic Programming Behaving Agent
Computation
Specify states -1
to backup

In the simplest version of RTDP, when a state is vis-
ited by the agent, the DP computation performs the
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model-based backup operation given above on that
same state. In general, for each step of the agent’s behav-
ior, RTDP can apply the backup operation to each of an
arbitrary set of states, provided that the agent’s current
state is included. For example, at each step of behavior,
a limited-horizon look-ahead search can be conducted
from the agent’s current state, with the backup opera-
tion applied to each of the states generated in the search.
Essentially, RTDP is an asynchronous DP computation
with the computational effort focused along simulated
or actual behavioral trajectories.

ARTDP is the same as RTDP except that (1) an
environment model is updated using any on-line
model-learning, or system identification, method, (2)
the current environment model is used in performing
the RTDP backup operations, and (3) the agent has
to perform exploratory actions occasionally instead of
always greedy actions as in RTDP. This last step is essen-
tial to ensure that the environment model eventually
converges to the correct model. If the state and action
sets are finite, the simplest way to learn a model is to
keep counts of the number of times each transition
occurs for each action and convert these frequencies
to probabilities, thus forming the maximum-likelihood
model.

When RTDP and ARTDP are applied to stochastic opti-
mal path problems, one can prove that under certain
conditions they converge to optimal policies without
the need to apply backup operations to all the states.
Indeed, is some problems, only a small fraction of the
states need to be visited. A stochastic optimal path prob-
lem is an MDP with a nonempty set of start states and a
nonempty set of goal states. Each transition until a goal
state is reached has a nonnegative immediate cost, and
once the agent reaches a goal state, it stays there and
thereafter incurs zero cost. Each episode of agent expe-
rience begins with a start state. An optimal policy is one
that minimizes the cost of every state, i.e., minimizes
f(x) for all states x. Under some relatively mild condi-
tions, every optimal policy is guaranteed to eventually
reach a goal state.

A state x is relevant if a start state s and an opti-
mal policy exist such that x can be reached from s

when the agent uses that policy. If we could somehow
know which states are relevant, we could restrict DP to
just these states and obtain an optimal policy. But this
is not possible because knowing which states are rele-
vant requires knowledge of optimal policies, which is
what one is seeking. However, under certain conditions,
without requiring repeated visits to all the irrelevant
states, RTDP produces a policy that is optimal for all
the relevant states. The conditions are that (1) the ini-
tial cost of every goal state is zero, (2) there exists at
least one policy that guarantees that a goal state will be
reached with probability one from any start state, (3) all
immediate costs for transitions from non-goal states are
strictly positive, and (4) none of the initial costs are
larger than the actual costs. This result is proved in Barto
etal. (1995) by combining aspects of Korf’s (1990) proof
for LRTA* with results for asynchronous DP.

A number of special cases and extensions of RTDP have
been developed that improve performance over the
basic version. Some examples are as follows. Bonnet and
Geflner’s (2003) Labeled RTDP labels states that have
already been “solved,” allowing faster convergence than
RTDP. Feng, Hansen, and Zilberstein (2003) proposed
Symbolic RTDP, which selects a set of states to update
at each step using symbolic model-checking techniques.
The RTDP convergence theorem still applies because
this is a special case of RTDP. Smith and Simmons
(2006) developed Focused RTDP that maintains a pri-
ority value for each state to better direct search and
produce faster convergence. Hansen and Zilbersteins
(2001) LAO* uses some of the same ideas as RTDP to
produce a heuristic search algorithm that can find solu-
tions with loops to non-deterministic heuristic search
problems. Many other variants are possible. Extending
ARTDP instead of RTDP in all of these ways would pro-
duce analogous algorithms that could be used when a
good model is not available.

Cross References
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» System Identification
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Synonyms
ART

Definition

Adaptive resonance theory, or ART, is both a cognitive
and neural theory of how the brain quickly learns to
categorize, recognize, and predict objects and events in
a changing world, and a set of algorithms that compu-
tationally embody ART principles and that are used in
large-scale engineering and technological applications
wherein fast, stable, and incremental learning about

complex changing environment is needed. ART clarifies
the brain processes from which conscious experiences
emerge. It predicts a functional link between processes
of consciousness, learning, expectation, attention, res-
onance, and synchrony (CLEARS), including the pre-
diction that “all conscious states are resonant states.”
This connection clarifies how brain dynamics enable
a behaving individual to autonomously adapt in real
time to a rapidly changing world. ART predicts how
top-down attention works and regulates fast stable
learning of recognition categories. In particular, ART
articulates a critical role for “resonant” states in driv-
ing fast stable learning; and thus the name adaptive
resonance. These resonant states are bound together,
using top-down attentive feedback in the form of
learned expectations, into coherent representations of
the world. ART hereby clarifies one important sense
in which the brain carries out predictive computa-
tion. ART has explained and successfully predicted
a wide range of behavioral and neurobiological data,
including data about human cognition and the dynam-
ics of spiking laminar cortical networks. ART algo-
rithms have been used in large-scale applications such
as medical database prediction, remote sensing, air-
plane design, and the control of autonomous adaptive
robots.

Motivation and Background

Many current learning algorithms do not emulate
the way in which humans and other animals learn.
The power of human and animal learning provides
high motivation to discover computational principles
whereby machines can learn with similar capabilities.
Humans and animals experience the world on the
fly, and carry out incremental learning of sequences
of episodes in real time. Often such learning is
unsupervised, with the world itself as the teacher.
Learning can also proceed with an unpredictable mix-
ture of unsupervised and supervised learning tri-
als. Such learning goes on successfully in a world
that is nonstationary; that is, the rules of which can
change unpredictably through time. Moreover, humans
and animals can learn quickly and stably through
time. A single important experience can be remem-
bered for a long time. ART proposes a solution of
this stability-plasticity dilemma (Grossberg, 1980) by
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showing how brains learn quickly without forcing catas-
trophic forgetting of already learned, and still success-
ful, memories.

Thus, ART autonomously carries out fast, yet sta-
ble, incremental learning under both unsupervised and
supervised learning conditions in response to a complex
nonstationary world. In contrast, many current learning
algorithms use batch learning in which all the informa-
tion about the world to be learned is available at a single
time. Other algorithms are not defined unless all learn-
ing trials are supervised. Yet other algorithms become
unstable in a nonstationary world, or become unsta-
ble if learning is fast; that is, if an event can be fully
learned on a single learning trial. ART overcomes these
problems.

Some machine learning algorithms are feed-forward
clustering algorithms that undergo catastrophic forget-
ting in a nonstationary world. The ART solution of the
stability—plasticity dilemma depends upon feedback,
or top-down, expectations that are matched against
bottom-up data and thereby focus attention upon
critical feature patterns. A good enough match leads to
resonance and fast learning. A big enough mismatch
leads to hypothesis testing or memory search that dis-
covers and learns a more predictive category. Thus,
ART is a self-organizing expert system that avoids the
brittleness of traditional expert systems.

The world is filled with uncertainty, so probability
concepts seem relevant to understanding how brains
learn about uncertain data. This fact has led some
machine learning practitioners to assume that brains
obey Bayesian laws. However, the Bayes rule is so gen-
eral that it can accommodate any system in nature.
Additional computational principles and mechanisms
must augment Bayes to distinguish a brain from, say, a
hydrogen atom or storm. Moreover, probabilistic mod-
els often use nonlocal computations. ART shows how
the brain embodies a novel kind of real-time probability
theory, hypothesis testing, prediction, and decision-
making, the local computations of which adapt to a
nonstationary world. These ART principles and mech-
anisms go beyond Bayesian analysis, and are embodied
parsimoniously in the laminar circuits of cerebral cor-
tex. Indeed, the cortex embodies a new kind of lam-
inar computing that reconciles the best properties of
feedforward and feedback processing, digital and ana-
log processing, and data-driven bottom-up processing

combined with hypothesis-driven top-down processing
(Grossberg, 2007).

Structure of Learning System

Humans are intentional beings who learn expecta-
tions about the world and make predictions about
what is about to happen. Humans are also attentional
beings who focus processing resources upon a restricted
amount of incoming information at any time. Why
are we both intentional and attentional beings, and
are these two types of processes related? The stability—
plasticity dilemma and its solution using resonant states
provide a unifying framework for understanding these
issues.

To clarify the role of sensory or cognitive expec-
tations, and of how a resonant state is activated, sup-
pose you were asked to “find the yellow ball as quickly
as possible, and you will win a $10,000 prize” Acti-
vating an expectation of a “yellow ball” enables its
more rapid detection, and with a more energetic neu-
ral response. Sensory and cognitive top-down expecta-
tions hereby lead to excitatory matching with consistent
bottom-up data. Mismatch between top-down expecta-
tions and bottom-up data can suppress the mismatched
part of the bottom-up data, to focus attention upon the
matched, or expected, part of the bottom-up data.

Excitatory matching and attentional focusing on
bottom-up data using top-down expectations generates
resonant brain states: When there is a good enough
match between bottom-up and top-down signal pat-
terns between two or more levels of processing, their
positive feedback signals amplify and prolong their
mutual activation, leading to a resonant state. Ampli-
fication and prolongation of activity triggers learning
in the more slowly varying adaptive weights that con-
trol the signal flow along pathways from cell to cell.
Resonance hereby provides a global context-sensitive
indicator that the system is processing data worthy of
learning, hence the name adaptive resonance theory.

In summary, ART predicts a link between the mech-
anisms which enable us to learn quickly and stably
about a changing world, and the mechanisms that
enable us to learn expectations about such a world,
test hypotheses about it, and focus attention upon
information that we find interesting. ART clarifies this
link by asserting that to solve the stability—plasticity
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dilemma, only resonant states can drive rapid new
learning.

It is just a step from here to propose that those expe-
riences which can attract our attention and guide our
tuture lives by being learned are also among the ones
that are conscious. Support for this additional assertion
derives from the many modeling studies whose simula-
tions of behavioral and brain data using resonant states
map onto properties of conscious experiences in those
experiments.

The type of learning within the sensory and cog-
nitive domain that ART mechanizes is match learning:
Match learning occurs only if a good enough match
occurs between bottom-up information and a learned
top-down expectation that is read out by an active
recognition category, or code. When such an approxi-
mate match occurs, previously learned knowledge can
be refined. Match learning raises the concern about
what happens if a match is not good enough? How does
such a model escape perseveration on already learned
representations?

If novel information cannot form a good enough
match with the expectations that are read-out by pre-
viously learned recognition categories, then a memory
search or hypothesis testing is triggered, which leads
to selection and learning of a new recognition cate-
gory, rather than catastrophic forgetting of an old one.
Figure 1 illustrates how this happens in an ART model;
it is discussed in great detail below. In contrast, learn-
ing within spatial and motor processes is proposed to be
mismatch learning that continuously updates sensory-
motor maps or the gains of sensory-motor commands.
As a result, we can stably learn what is happening in a
changing world, thereby solving the stability—plasticity
dilemma, while adaptively updating our representations
of where objects are and how to act upon them using
bodies whose parameters change continuously through
time. Brain systems that use inhibitory matching and
mismatch learning cannot generate resonances; hence,
their representations are not conscious.

It has been mathematically proved that match learn-
ing within an ART model leads to stable memories in
response to arbitrary list of events to be learned (e.g.,

Carpenter & Grossberg, 1987). However, match learn-
ing also has a serious potential weakness: If you can only
learn when there is a good match between bottom-up
data and learned top-down expectations, then how do
you ever learn anything that you do not already know?
ART proposes that this problem is solved by the brain by
using an interaction between complementary processes
of resonance and reset, which are predicted to control
properties of attention and memory search, respectively.
These complementary processes help our brains to bal-
ance between the complementary demands of process-
ing the familiar and the unfamiliar, the expected and the
unexpected.

Organization of the brain into complementary pro-
cesses is predicted to be a general principle of brain
design that is not just found in ART (Grossberg, 2000).
A complementary process can individually compute
some properties well, but cannot, by itself, process
other complementary properties. In thinking intuitively
about complementary properties, one can imagine puz-
zle pieces fitting together. Both pieces are needed
to finish the puzzle. Complementary brain processes
are more dynamic than any such analogy: Pairs of
complementary processes interact to form emergent
properties which overcome their complementary defi-
ciencies to compute complete information with which
to represent or control some aspect of intelligent
behavior.

The resonance process in the complementary pair
of resonance and reset is predicted to take place in
the What cortical stream, notably in the inferotempo-
ral and prefrontal cortex. Here top-down expectations
are matched against bottom-up inputs. When a top-
down expectation achieves a good enough match with
bottom-up data, this match process focuses attention
upon those feature clusters in the bottom-up input that
are expected. If the expectation is close enough to the
input pattern, then a state of resonance develops as the
attentional focus takes hold.

Figure 1 illustrates these ART ideas in a simple
two-level example. Here, a bottom-up input pattern,
or vector, I activates a pattern X of activity across the
feature detectors of the first level F;. For example, a
visual scene may be represented by the features com-
prising its boundary and surface representations. This
feature pattern represents the relative importance of dif-
ferent features in the inputs pattern I. In Fig. la, the
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Adaptive Resonance Theory. Figure 1. Search for a recognition code within an ART learning circuit: (a) The input pat-
tern | is instated across the feature detectors at level F; as a short term memory (STM) activity pattern X. Input | also
nonspecifically activates the orienting system with a gain that is called vigilance (p); that is, all the input pathways con-
verge with gain p onto the orienting system and try to activate it. STM pattern X is represented by the hatched pattern
across Fy. Pattern X both inhibits the orienting system and generates the output pattern S. Pattern S is multiplied by
learned adaptive weights, also called long term memory (LTM) traces. These LTM-gated signals are added at Fcells,
or nodes, to form the input pattern T, which activates the STM pattern Y across the recognition categories coded at
level F,. (b) Pattern Y generates the top-down output pattern U which is multiplied by top-down LTM traces and added
at F; nodes to form a prototype pattern V that encodes the learned expectation of the active F, nodes. Such a prototype
represents the set of commonly shared features in all the input patterns capable of activating Y. If V mismatches | at F;,
then a new STM activity pattern X* is selected at F;. X" is represented by the hatched pattern. It consists of the features
of | that are confirmed by V. Mismatched features are inhibited. The inactivated nodes corresponding to unconfirmed
features of X are unhatched. The reduction in total STM activity which occurs when X is transformed into X* causes
a decrease in the total inhibitionfrom F; to the orienting system. (c) If inhibition decreases sufficiently, the orienting
system releases a nonspecific arousal wave to F,; that is, a wave of activation that equally activates all F, nodes. This
wave instantiates the intuition that “novel events are arousing.” This arousal wave resets the STM pattern Y at F> by
inhibiting Y. (d) After Y is inhibited, its top-down prototype signal is eliminated, and X can be reinstated at F;. The prior
reset event maintains inhibition of Y during the search cycle. As a result, X can activate a different STM pattern Y at F..
If the top-down prototype due to this new Y pattern also mismatches | at F;, then the search for an appropriate F, code
continues until a more appropriate F, representation is selected. Such a search cycle represents a type of nonstationary
hypothesis testing. When search ends, an attentive resonance develops and learning of the attended data is initiated
(adapted with permission from Carpenter and Grossberg (1993)). The distributed ART architecture supports fast stable
learning with arbitrarily distributed F, codes (Carpenter, 1997)
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pattern peaks represent more activated feature detector
cells, and the troughs, less-activated feature detectors.
This feature pattern sends signals S through an adap-
tive filter to the second level F, at which a compressed
representation Y (also called a recognition category, or
a symbol) is activated in response to the distributed
input T. Input T is computed by multiplying the sig-
nal vector S by a matrix of adaptive weights that can be
altered through learning. The representation Y is com-
pressed by competitive interactions across F, that allow
only a small subset of its most strongly activated cells
to remain active in response to T. The pattern Y in the
figure indicates that a small number of category cells
may be activated to different degrees. These category
cells, in turn, send top-down signals U to F;. The vec-
tor U is converted into the top-down expectation V by
being multiplied by another matrix of adaptive weights.
When V is received by Fy, a matching process takes place
between the input vector I and V which selects that sub-
set X* of F; features that were “expected” by the active
F, category Y. The set of these selected features is the
emerging “attentional focus.”

If the top-down expectation is close enough to the
bottom-up input pattern, then the pattern X* of
attended features reactivates the category Y which, in
turn, reactivates X*. The network hereby locks into a
resonant state through a positive feedback loop that
dynamically links, or binds, the attended features across
X* with their category, or symbol, Y.

Resonance itself embodies another type of comple-
mentary processing. Indeed, there seem to be comple-
mentary processes both within and between cortical
processing streams (Grossberg, 2000). This particu-
lar complementary relation occurs between distributed
feature patterns and the compressed categories, or sym-
bols, that selectively code them:

Individual features at F; have no meaning on their
own, just like the pixels in a picture are meaningless
one-by-one. The category, or symbol, in F, is sensitive
to the global patterning of these features, and can selec-
tively fire in response to this pattern. But it cannot rep-
resent the “contents” of the experience, including their
conscious qualia, due to the very fact that a category is a
compressed or “symbolic” representation. Practitioners

of artificial intelligence have claimed that neural models
can process distributed features, but not symbolic rep-
resentations. This is not, of course, true in the brain. Nor
is it true in ART.

Resonance between these two types of informa-
tion converts the pattern of attended features into a
coherent context-sensitive state that is linked to its
category through feedback. This coherent state, which
binds together distributed features and symbolic cate-
gories, can enter consciousness while it binds together
spatially distributed features into either a stable equi-
librium or a synchronous oscillation. The original
ART article (Grossberg, 1976) predicted the existence
of such synchronous oscillations, which were there
described in terms of their mathematical properties as
“order-preserving limit cycles” See Carpenter, Gross-
berg, Markuzon, Reynolds & Rosen (1992) and Gross-
berg & Versace (2008) for reviews of confirmed ART
predictions, including predictions about synchronous
oscillations.

In ART, the resonant state, rather than bottom-up acti-
vation, is predicted to drive learning. This state persists
long enough, and at a high enough activity level, to
activate the slower learning processes in the adaptive
weights that guide the flow of signals between bottom-
up and top-down pathways between levels F; and F,
in Fig. 1. This viewpoint helps to explain how adaptive
weights that were changed through previous learning
can regulate the brain’s present information processing,
without learning about the signals that they are cur-
rently processing unless they can initiate a resonant
state. Through resonance as a mediating event, one
can understand from a deeper mechanistic view why
humans are intentional beings who are continually pre-
dicting what may next occur, and why we tend to learn
about the events to which we pay attention.

More recent versions of ART, notably the synchro-
nous matching ART (SMART) model (Grossberg &
Versace, 2008) show how a match may lead to fast
gamma oscillations that facilitate spike-timing depen-
dent plasticity (STDP), whereas mismatch can lead
to slower beta oscillations that lower the probability
that mismatched events can be learned by a STDP
learning law.
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A sufficiently bad mismatch between an active top-
down expectation and a bottom-up input, say because
the input represents an unfamiliar type of experience,
can drive a memory search. Such a mismatch within the
attentional system is proposed to activate a complemen-
tary orienting system, which is sensitive to unexpected
and unfamiliar events. ART suggests that this orienting
system includes the nonspecific thalamus and the hip-
pocampal system. See Grossberg & Versace (2008) for
a summary of data supporting this prediction. Output
signals from the orienting system rapidly reset the
recognition category that has been reading out the
poorly matching top-down expectation (Figs. 1b and ¢).
The cause of the mismatch is hereby removed, thereby
freeing the system to activate a different recognition cat-
egory (Fig. 1d). The reset event hereby triggers memory
search, or hypothesis testing, which automatically leads
to the selection of a recognition category that can better
match the input.

If no such recognition category exists, say because
the bottom-up input represents a truly novel experi-
ence, then the search process automatically activates an
as yet uncommitted population of cells, with which to
learn about the novel information. In order for a top-
down expectation to match a newly discovered recog-
nition category, its top-down adaptive weights initially
have large values, which are pruned by the learning of a
particular expectation.

This learning process works well under both unsu-
pervised and supervised conditions (Carpenter et al.,
1992). Unsupervised learning means that the system can
learn how to categorize novel input patterns without any
external feedback. Supervised learning uses predictive
errors to let the system know whether it has catego-
rized the information correctly. Supervision can force
a search for new categories that may be culturally deter-
mined, and are not based on feature similarity alone. For
example, separating the letters E and F that are of sim-
ilar features into separate recognition categories is cul-
turally determined. Such error-based feedback enables
variants of E and F to learn their own category and
top-down expectation, or prototype. The complemen-
tary, but interacting, processes of attentive-learning and
orienting-search together realize a type of error cor-
rection through hypothesis testing that can build an

ever-growing, self-refining internal model of a changing
world.

What combinations of features or other information are
bound together into conscious object or event repre-
sentations? One view is that exemplars or individual
experiences are learned because humans can have very
specific memories. For example, we can all recognize
the particular faces of our friends. On the other hand,
storing every remembered experience as exemplars can
lead to a combinatorial explosion of memory, as well as
to unmanageable problems of memory retrieval. A pos-
sible way out is suggested by the fact that humans can
learn prototypes which represent general properties of
the environment (Posner & Keele, 1968). For example,
we can recognize that everyone has a face. But then how
do we learn specific episodic memories? ART provides
an answer that overcomes the problems faced by earlier
models.

ART prototypes are not merely averages of the
exemplars that are classified by a category, as is typically
assumed in classical prototype models. Rather, they
are the actively selected critical feature patterns upon
which the top-down expectations of the category focus
attention. In addition, the generality of the information
that is codes by these critical feature patterns is con-
trolled by a gain control process, called vigilance control,
which can be influenced by environmental feedback or
internal volition (Carpenter & Grossberg, 1987). Low
vigilance permits the learning of general categories with
abstract prototypes. High vigilance forces a memory
search to occur for a new category when even small
mismatches exist between an exemplar and the cate-
gory that it activates. As a result, in the limit of high
vigilance, the category prototype may encode an indi-
vidual exemplar.

Vigilance is computed within the orienting system
of an ART model (Fig. 1b-d). It is here that bottom-up
excitation from all the active features in an input pat-
tern I is compared with inhibition from all the active
features in a distributed feature representation across F;.
If the ratio of the total activity across the active features
in F (i.e., the “matched” features) to the total activity of
all the features in I is less than a vigilance parameter p
(Fig. 1b), then a reset wave is activated (Fig. 1c), which
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can drive the search for another category to classify the
exemplar. In other words, the vigilance parameter con-
trols how bad a match can be tolerated before search for
a new category is initiated. If the vigilance parameter is
low, then many exemplars can influence the learning of
a shared prototype, by chipping away at the features that
are not shared with all the exemplars. If the vigilance
parameter is high, then even a small difference between
a new exemplar and a known prototype (e.g., F vs. E)
can drive the search for a new category with which to
represent E

One way to control vigilance is by a process of match
tracking. Here a predictive error (e.g., D is predicted in
response to F), the vigilance parameter increases until
it is just higher than the ratio of active features in F; to
total features in I. In other words, vigilance “tracks” the
degree of match between input exemplar and matched
prototype. This is the minimal level of vigilance that
can trigger a reset wave and thus a memory search
for a new category. Match tracking realizes a minimax
learning rule that conjointly maximizes category gener-
ality while it minimizes predictive error. In other words,
match tracking uses the least memory resources that can
prevent errors from being made.

Because vigilance can vary across learning trials,
recognition categories capable of encoding widely dif-
fering degrees of generalization or abstraction can be
learned by a single ART system. Low vigilance leads to
broad generalization and abstract prototypes. High vig-
ilance leads to narrow generalization and to prototypes
that represent fewer input exemplars, even a single
exemplar. Thus a single ART system may be used, say,
to learn abstract prototypes with which to recognize
abstract categories of faces and dogs, as well as “exem-
plar prototypes” with which to recognize individual
views of faces and dogs. ART models hereby try to learn
the most general category that is consistent with the
data. This tendency can, for example, lead to the type of
overgeneralization that is seen in young children until
further learning leads to category refinement.

As sequences of inputs are practiced over learning
trials, the search process eventually converges upon
stable categories. It has been mathematically proved

(Carpenter & Grossberg, 1987) that familiar inputs
directly access the category whose prototype provides
the best match globally, while unfamiliar inputs engage
the orienting subsystem to trigger memory searches for
better categories until they become familiar. This pro-
cess continues until the memory capacity, which can
be chosen arbitrarily large, is fully utilized. The process
whereby search is automatically disengaged is a form
of memory consolidation that emerges from network
interactions. Emergent consolidation does not preclude
structural consolidation at individual cells, since the
amplified and prolonged activities that subserve a res-
onance may be a trigger for learning-dependent cellu-
lar processes, such as protein synthesis and transmitter
production.

It has also been shown that the adaptive weights
which are learned by some ART models can, at any
stage of learning, be translated into fuzzy IF-THEN
rules (Carpenter et al., 1992). Thus the ART model is a
self-organizing rule-discovering production system as
well as a neural network. These examples show that the
claims of some cognitive scientists and Al practition-
ers that neural network models cannot learn rule-based
behaviors are as incorrect as the claims that neural
models cannot learn symbols.

More recent versions of ART have shown how predicted
ART mechanisms may be embodied within known lam-
inar microcircuits of the cerebral cortex. These include
the family of LAMINART models (Fig. 2; see Raizada &
Grossberg, 2003) and the synchronous matching ART,
or SMART, model (Fig. 3; see Grossberg & Versace,
2008). SMART, in particular, predicts how a top-down
match may lead to fast gamma oscillations that facili-
tate spike-timing dependent plasticity (STDP), whereas
a mismatch can lead to slower beta oscillations that
prevent learning by a STDP learning law. At least three
neurophysiological labs have recently reported data
consistent with the SMART prediction.

From Winner-Take-All to Distributed Coding As noted
above, ART networks serve both as models of human
cognitive information processing (Carpenter, 1997;
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Adaptive Resonance Theory. Figure 2. LAMINART circuit clarifies how known cortical connections within and across
cortical layers join the layer 6 — 4 and layer 2/3 circuits to form a laminar circuit model for the interblobs and pale stripe
regions of cortical areas V1and V2. Inhibitory interneurons are shown filled-in black. (a) The LGN provides bottom-up
activation to layer 4 via two routes. First, it makes a strong connection directly into layer 4. Second, LGN axons send
collaterals into layer 6, and thereby also activate layer 4 via the 6 — 4 on-center off-surround path. The combined
effect of the bottom-up LGN pathways is to stimulate layer 4 via an on-center off-surround, which provides divisive
contrast normalization (Grossberg, 1980) of layer 4 cell responses. (b)Folded feedback carries attentional signals from
higher cortex into layer 4 of V1, via the modulatory 6 — 4 path. Corticocortical feedback axons tend preferentially to
originate in layer 6 of the higher area and to terminate in layer 1 of the lower cortex, where they can excite the apical
dendrites of layer 5 pyramidal cells whose axons send collaterals into layer 6. The triangle in the figure represents such
a layer 5 pyramidal cell. Several other routes through which feedback can pass into V1 layer 6 exist. Having arrived in
layer 6, the feedback is then “folded” back up into the feedforward stream by passing through the 6 — 4 on-center
off-surround path (Bullier, Hup'e, James, & Girard, 1996). (c)Connecting the 6 — 4 on-centeroff-surround to the layer
2/3 grouping circuit: like-oriented layer 4 simple cells with opposite contrast polarities compete (not shown) before
generating half-wave rectified outputs that converge onto layer 2/3 complex cells in the column above them. Just like
attentional signals from higher cortex, as shown in (b), groupings that form within layer 2/3 also send activation into
the folded feedback path, to enhance their own positions in layer 4 beneath them via the 6 — 4 on-center, and to
suppress input to other groupings via the 6 — 4 off-surround. There exist direct layer 2/3 — 6 connections in macaque
V1, as well as indirect routes via layer 5. (d) Top-down corticogeniculate feedback from V1layer 6 to LGN also has an on-
center off-surround anatomy, similar to the 6 — 4 path. The on-center feedback selectively enhances LGN cells that are
consistent with the activation that they cause (Sillito, Jones, Gerstein, & West, 1994), and the off-surround contributes
to length-sensitive (endstopped) responses that facilitate grouping perpendicular to line ends. (e) The entire V1/V2
circuit: V2 repeats the laminar pattern of V1 circuitry, but at a larger spatial scale. In particular, the horizontal layer 2/3
connections have a longer range in V2, allowing above-threshold perceptual groupings between more widely spaced
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Grossberg, 1999, 2003) and as neural systems for
technology transfer (Caudell, Smith, Escobedo, &
Anderson, 1994; Parsons & Carpenter, 2003). Design
principles derived from scientific analyses and design
constraints imposed by targeted applications have
jointly guided the development of many variants
of the basic networks, including fuzzy ARTMAP
(Carpenter et al., 1992), ART-EMAP, ARTMAP-IC, and
Gaussian ARTMAP. Early ARTMAP systems, including
fuzzy ARTMAP, employ winner-take-all (WTA) coding,
whereby each input activates a single category node
during both training and testing. When a node is first
activated during training, it is mapped to its designated
output class.

Starting with ART-EMAP, subsequent systems have
used distributed coding during testing, which typ-
ically improves predictive accuracy, while avoiding
the computational problems inherent in the use of
distributed code representations during training. In
order to address these problems, distributed ARTMAP
(Carpenter, 1997; Carpenter, Milenova, & Noeske, 1998)
introduced a new network configuration, in addition to
new learning laws.

Comparative analysis of the performance of
ARTMAP systems on a variety of benchmark prob-
lems has led to the identification of a default ARTMAP
network, which features simplicity of design and
robust performance in many application domains.
Default ARTMAP employs winner-take-all coding
during training and distributed coding during test-
ing within a distributed ARTMAP network archi-
tecture. With winner-take-all coding during testing,
default ARTMAP reduces to a version of fuzzy
ARTMAP.

Complement Coding: Learning both Absent and Present
Features ART and ARTMAP employ a preprocess-
ing step called complement coding (Fig. 4), which
models the nervous system’s ubiquitous use of the

computational design known as opponent processing.
Balancing an entity against its opponent, as in agonist—
antagonist muscle pairs, allows a system to act upon
relative quantities, even as absolute magnitudes may
vary unpredictably. In ART systems, complement cod-
ing is analogous to retinal ON-cells and OFF-cells.
When the learning system is presented with a set of
input features a = (ay...d;...ap ), complement coding
doubles the number of input components, presenting
to the network both the original feature vector and its
complement.

Complement coding allows an ART system to
encode within its critical feature patterns of memory
features that are consistently absent on an equal basis
with features that are consistently present. Features that
are sometimes absent and sometimes present when a
given category is learning are regarded as uninforma-
tive with respect to that category. Since its introduc-
tion, complement coding has been a standard element
of ART and ARTMAP networks, where it plays multi-
ple computational roles, including input normalization.
However, this device is not particular to ART, and could,
in principle, be used to preprocess the inputs to any type
of system.

To implement complement coding, component
activities a; of a feature vector a are scaled; thus, 0 <
a; < 1. For each feature i, the ON activity a; deter-
mines the complementary OFF activity (1- a;). Both
a; and (1 - a;) are represented in the 2M-dimensional
(a |a®) (Fig. 4). Subse-
quent network computations then operate in this 2M-

system input vector A =

dimensional input space. In particular, learned weight
vectors w;y are 2M-dimensional.

ARTMAP Search and Match Tracking in Fuzzy ARTMAP
As illustrated by Fig. 1, the ART matching process
triggers either learning or a parallel memory search.
If search ends at an established code, the memory

inducing stimuli to form. V1 layer 2/3 projects up to V2 layers 6 and 4, just as LGN projects to layers 6 an 4 of V1. Higher
cortical areas send feedback into V2 which ultimately reaches layer 6, just as V2 feedback acts on layer 6 of V1. Feedback
paths from higher cortical areas straight into V1 (not shown) can complement and enhance feedback from V2 into V1.
Top-down attention can also modulate layer 2/3 pyramidal cells directly by activating both the pyramidal cells and
inhibitory interneurons in that layer. The inhibition tends to balance the excitation, leading to a modulatory effect.
These top-down attentional pathways tend to synapse in layer 1, as shown in Fig. 2b. Their synapses on apical dendrites
in layer 1are not shown, for simplicity. (Reprinted with permission from Raizada & Grossberg (2003))
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Adaptive Resonance Theory. Figure 3. SMART model overview. A first-order and higher-order cortical area are linked
by corticocortical and corticothalamocortical connections. The thalamus is subdivided into specific first-order, second-
order, nonspecific, and thalamic reticular nucleus (TRN). The thalamic matrix (one cell population shown as an open
ring) provides priming to layer 1, where layer 5 pyramidal cell apical dendrites terminate. The specific thalamus
relays sensory information (first-order thalamus) or lower-order cortical information (second-order thalamus) to the
respective cortical areas via plastic connections. The nonspecific thalamic nucleus receives convergent BU input and
inhibition from the TRN, and projects to layer 1 of the laminar cortical circuit, where it regulates reset and search in
the cortical circuit (see text). Corticocortical feedback connections link layer 6" of the higher cortical area to layer
1 of the lower cortical area, whereas thalamocortical feedback originates in layer 6" and terminates in the specific
thalamus after synapsing on the TRN. Layer 6" corticothalamic feedback matches the BU input in the specific thala-
mus. V1 receives two parallel BU thalamocortical pathways. The LGN—V1 layer 4 pathway and the modulatory LGN—V1
layer 6'-4 pathway provide divisive contrast normalization of layer 4 cell responses. The intracortical loop V1 layer
4-2/3-5-6'-4 pathway (folded feedback) enhances the activity of winning layer 2/3 cells at their own positions via
the 6'>4 on-center, and suppresses input to other layer 2/3 cells via the 6'~4 off-surround. V1 also activates the BU
V1-V2 corticocortical pathways (V1 layer 2/3—V2 layers 6' and 4) and the BU corticothalamocortical pathways (V1 layer
5--PULV—V2 layers 6' and 4), where the layer 6'~4 pathway provides divisive contrast normalization to V2 layer 4 cells
analogously to V1. Corticocortical feedback from V2 layer 6"—V1 layer 5-6'>4 also uses the same modulatory 6'—4
pathway. TRN cells of the two thalamic sectors are linked via gap junctions, which provide synchronization of the two
thalamocortical sectors when processing BU stimuli (reprinted with permission from Grossberg & Versace (2008))

for fuzzy ARTMAP (Fig. 5) describes a winner-take all
system.

Before ARTMAP makes a class prediction, the
bottom-up input A is matched against the top-down

representation may either remain the same or incor-
porate new information from matched portions of the
current input. While this dynamic applies to arbitrarily
distributed activation patterns, the F, search and code
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complement coded input
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Adaptive Resonance Theory. Figure 4. Complement coding transforms an M-dimensional feature vector a into a 2M-
dimensional system input vector A. A complement-coded system input represents both the degree to which a feature
iis present (a;) and the degree to which that feature is absent (1 - a;)

J=J1 J=J1
s

fuzzy ART

Fo

C

Adaptive Resonance Theory. Figure 5. A fuzzy ART search cycle, with a distributed ART network configuration
(Carpenter, 1997). The ART 1 search cycle (Carpenter and Grossberg, 1987) is the same, but allows only binary
inputs and did not originally feature complement coding. The match field F; represents the matched activa-
tion pattern x = A A wy, where A denotes the component-wise minimum, or fuzzy intersection, between the
bottom-up input A and the top-down expectation w,. If the matched pattern fails to meet the matching crite-
rion, then the active code is reset at F,, and the system searches for another code y that better represents the
input. The match/mismatch decision takes place in the ART orienting system. Each active feature in the input

pattern A excites the orienting system with gain equal to the vigilance parameter p. Hence, with complement
coding, the total excitatory input is p|A] pZA =pM. Active cells |n the matched pattern x inhibit the ori-
—ZX: If plA] - x| <

ing system remains quiet, allowing resonance and learning to occur. If plA| -

enting system, leading to a total inhibitory |nput equal to - |x| = 0, then the orient-

|x| > 0, then the reset signal
r =1, initiating search for a better matching code
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learned expectation, or critical feature pattern, that is
read out by the active node (Fig. 5b). The matching
criterion is set by a vigilance parameter p. As noted
above, low vigilance permits the learning of abstract,
prototype-like patterns, while high vigilance requires
the learning of specific, exemplar-like patterns. When
a new input arrives, vigilance equals a baseline level p.
Baseline vigilance is set equal to zero by default, in order
to maximize generalization. Vigilance rises only after
the system has made a predictive error. The internal
control process that determines how far it must rise
in order to correct the error is called match tracking.
As vigilance rises, the network is required to pay more
attention to how well top-down expectations match the
current bottom-up input.

Match tracking (Fig. 6) forces an ARTMAP system
not only to reset its mistakes, but to learn from them.
With match tracking and fast learning, each ARTMAP
network passes the next input test, which requires that,

match tracking predictive error
F” ~(p-p)+TRre it

J
Wy plAI=Ix|<0
re=1
X=A¢W&4444+
rC
+p|A | -t
*(p

Al

@iﬁ\

Adaptive Resonance Theory. Figure 6. ARTMAP match
tracking. When an active node J meets the matching
criterion (p|A|-|x|<0), the reset signal r = 0 and
the node makes an prediction. If the predicted output
is incorrect, the feedback signal R = 1. While R = r¢ =1,
r increases rapidly. As soon as p > %, r switches to 1,
which both halts the increase of r and resets the active
F> node. From one chosen node to the next, r decays to
slightly below B (MT-). On the time scale of learning r

[A]
returns to j

if a training input were re-presented immediately after
a learning trial, it would directly activate the cor-
rect output class, with no predictive errors or search.
Match tracking thus simultaneously implements the
design goals of maximizing generalization and mini-
mizing predictive error, without requiring the choice of
a fixed matching criterion. ARTMAP memories thereby
include both broad and specific pattern classes, with the
latter typically formed as exceptions to the more general
“rules” defined by the former. ARTMAP learning typi-
cally produces a wide variety of such mixtures, whose
exact composition depends upon the order of training
exemplar presentation.

Unless they have already activated all their coding
nodes, ARTMAP systems contain a reserve of nodes
that have never been activated, with weights at their
initial values. These uncommitted nodes compete with
the previously active committed nodes, and an uncom-
mitted node is chosen over poorly matched committed
nodes. An ARTMAP design constraint specifies that
an active uncommitted node should not reset itself.
Weights initially begin with w;; = 1. Thus, when the
active node J is uncommitted, x = A A w; = A at the
match field. Then, p |A| - |x| = p|A| - |A] = (p - 1) |A].
Thus p |A| - |x| < 0 and an uncommitted node does not
trigger a reset, provided p < 1.

ART Geometry Fuzzy ART long-term memories are
visualized as hyper-rectangles, called category boxes.
The weight vector wy is interpreted geometrically as a
box R; whose ON-channel corner u; and OFF-channel
corner vy are, in the format of the complement-coded
input vector, defined by (u] |v]C) = wy (Fig. 7). For
fuzzy ART with the choice-by-difference Fy — F, signal
function T7, an input a activates the node J of the closest
category box Ry, according to the L; (city-block) met-
ric. In case of a tie, as when a lies in more than one box,
the node with the smallest R; is chosen where |Rj| is

defined as the sum of the edge lengths Z [viy — uy| The

chosen node J will reset if |R; & a| > M (1-p), where
R; @ a is the smallest box enclosing both R; and a. Oth-
erwise, R; expands toward R; @ a during learning. With

fast learning, Rj*Y = R?ld ®a.
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Adaptive Resonance Theory. Figure 7. Fuzzy ART geom-
etry. The weight of a category node J is represented
in complement-coding form as w, = (u, | v§ ), and the
M-dimensional vectors u; and v, define the corners of
the category box R;. When M = 2, the size of R, equals its
width plus its height. During learning, R; expands toward
R,;®a, defined as the smallest box enclosing both R, and a.
Node J will reset before learning if |[R; @ a| > M (1 - p)

Biasing Against Previously Active Category Nodes and
Previously Attended Features During Attentive Memory
Search Activity x at the ART field F; continuously com-
putes the match between the field’s bottom-up and top-
down input patterns. A reset signal r shuts off the active
F, node ] when x fails to meet the matching criterion
determined by the value of the vigilance parameter p.
Reset alone does not, however, trigger a search for a dif-
ferent F, node: unless the prior activation has left an
enduring trace within the Fy-to-F, subsystem, the net-
work will simply reactivate the same node as before.
As modeled in ART 3, biasing the bottom-up input
to the coding field F, to favor the previously inactive
nodes implements search by allowing the network to
activate a new node in response to a reset signal. The
ART 3 search mechanism defines a medium-term mem-
ory (MTM) in the Fy-to-F, adaptive filter which biases
the system against re-choosing a node that had just pro-
duced a reset. A presynaptic interpretation of this bias
is transmitter depletion, or habituation (Fig. 8).
Medium-term memory in all ART models allows
the network to shift attention among learned categories
at the coding field F, during search. The new biased ART
network (Carpenter & Gaddam, 2010) introduces a sec-
ond medium-term memory that shifts attention among
input features, as well as categories, during search.

Self-Organizing Rule Discovery This foundation of com-
putational principles and mechanisms has enabled the

ART 3 search mechanism

reset
plAl - Ixl > 0

Adaptive Resonance Theory. Figure 8. ART 3 search imp-
lements a medium-term memory within the Fo-to-F>
pathways, which biases the system against choosing a
category node that had just produced a reset

development of an ART information fusion system
that is capable of incrementally learning a cognitive
hierarchy of rules in response to probabilistic, incom-
plete, and even contradictory data that are collected by
multiple observers (Carpenter, Martens, & Ogas, 2005).
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definitions of agents. Most of them would agree on the
following set of agent properties:

e DPersistence: Code is not executed on demand but
runs continuously and decides autonomously when
it should perform some activity.

e Social ability: Agents are able to interact with other
agents.

e Reactivity: Agents perceive the environment and are
able to react.

o Proactivity: Agents exhibit goal-directed behavior
and can take the initiative.

| Agent-Based Computational Models

» Artificial Societies

! Agent-Based Modeling and
Simulation

» Artificial Societies

| Agent-Based Simulation Models

» Artificial Societies

" AIS

» Artificial Immune Systems

! Adaptive System

»Complexity in Adaptive Systems

! Agent

In computer science, the term “agent” usually denotes
a software abstraction of a real entity which is capable
of acting with a certain degree of autonomy. For exam-
ple, in artificial societies, agents are software abstrac-
tions of real people, interacting in an artifical, simulated
environment. Various authors have proposed different

| Algorithm Evaluation

GEOFFREY I. WEBB
Monash University, Victoria, Australia

Definition
Algorithm evaluation is the process of assessing a prop-
erty or properties of an algorithm.

Motivation and Background
It is often valuable to assess the efficacy of an algo-
rithm. In many cases, such assessment is relative, that is,
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evaluating which of several alternative algorithms is
best suited to a specific application.

Processes and Techniques

Many learning algorithms have been proposed. In order
to understand the relative merits of these alternatives, it
is necessary to evaluate them. The primary approaches
to evaluation can be characterized as either theoreti-
cal or experimental. Theoretical evaluation uses formal
methods to infer properties of the algorithm, such as its
computational complexity (Papadimitriou, 1994), and
also employs the tools of »-computational learning the-
ory to assess learning theoretic properties. Experimen-
tal evaluation applies the algorithm to learning tasks to
study its performance in practice.

There are many different types of property that
may be relevant to assess depending upon the intended
application. These include algorithmic properties, such
as time and space complexity. These algorithmic prop-
erties are often assessed separately with respect to per-
formance when learning a »>model, that is, at »-training
time, and performance when applying a learned model,
that is, at »-test time.

Other types of property that are often studied are the
properties of the models that are learned (see »model
evaluation). Strictly speaking, such properties should
be assessed with respect to a specific application or
class of applications. However, much machine learning
research includes experimental studies in which algo-
rithms are compared using a set of data sets with little
or no consideration given to what class of applications
those data sets might represent. It is dangerous to draw
general conclusions about relative performance on any
application from relative performance on this sample
of some unknown class of applications. Such experi-
mental evaluation has become known disparagingly as
a bake-off .

An approach to experimental evaluation that may
be less subject to the limitations of bake-offs is the use
of experimental evaluation to assess a learning algo-
rithm’s »bias and variance profile. Bias and variance
measure properties of an algorithm’s propensities in
learning models rather than directly being properties of
the models that are learned. Hence, they may provide
more general insights into the relative characteristics
of alternative algorithms than do assessments of the
performance of learned models on a finite number of

applications. One example of such use of bias-variance
analysis is found in Webb (2000).

Techniques for experimental algorithm evaluation
include »bootstrap sampling, »cross-validation, and
»holdout evaluation.
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! Analogical Reasoning

»Instance-Based Learning

| Analysis of Text
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! Ant Colony Optimization

MARCO DORIGO, MAURO BIRATTARI
Université Libre de Bruxelles, Brussels, Belgium

Synonyms
ACO

Definition
Ant colony optimization (ACO) is a population-based
metaheuristic for the solution of difficult combinatorial
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optimization problems. In ACO, each individual of the
population is an artificial agent that builds incremen-
tally and stochastically a solution to the considered
problem. Agents build solutions by moving on a graph-
based representation of the problem. At each step their
moves define which solution components are added to
the solution under construction. A probabilistic model
is associated with the graph and is used to bias the
agents’ choices. The probabilistic model is updated on-
line by the agents so as to increase the probability that
future agents will build good solutions.

Motivation and Background

Ant colony optimization is so called because of its
original inspiration: the foraging behavior of some ant
species. In particular, in Beckers, Deneubourg, and
Goss (1992) it was demonstrated experimentally that
ants are able to find the shortest path between their
nest and a food source by collectively exploiting the
pheromone they deposit on the ground while walk-
ing. Similar to real ants, ACO’s artificial agents, also
called artificial ants, deposit artificial pheromone on the
graph of the problem they are solving. The amount of
pheromone each artificial ant deposits is proportional
to the quality of the solution the artificial ant has built.
These artificial pheromones are used to implement a
probabilistic model that is exploited by the artificial ants
to make decisions during their solution construction
activity.

Structure of the Optimization System
Let us consider a minimization problem (S, f ), where S
is the set of feasible solutions, and f is the objective func-
tion, which assigns to each solution s € S a cost value
f(s). The goal is to find an optimal solution s*, that is, a
feasible solution of minimum cost. The set of all optimal
solutions is denoted by S*.

Ant colony optimization attempts to solve this
minimization problem by repeating the following two
steps:

o Candidate solutions are constructed using a param-
eterized probabilistic model, that is, a parameterized
probability distribution over the solution space.

e The candidate solutions are used to modify the
model in a way that is intended to bias future sam-
pling toward low cost solutions.

We assume that the combinatorial optimization prob-
lem (S,f) is mapped on a problem that can be charac-
terized by the following list of items:

e AfinitesetC={cy,ca,...,cn, } of components, where
N is the number of components.

o Afinite set X' of states of the problem, where a state is
a sequence X = (Ci,Cj,...,Ck, . .. ) over the elements
of C. The length of a sequence x, that is, the number
of components in the sequence, is expressed by |x|.
The maximum length of a sequence is bounded by a
positive constant n < +oco.

e A set of (candidate) solutions S, which is a subset of
X (ie,ScX).

o A set of feasible states X', with X ¢ X, defined via a
set of constraints Q).

e A nonempty set S* of optimal solutions, with
S*cXand S*cS.

Given the above formulation (Note that, because
this formulation is always possible, ACO can in prin-
ciple be applied to any combinatorial optimization
problem.) artificial ants build candidate solutions by
performing randomized walks on the completely con-
nected, weighted graph G = (C,L£,T), where the
vertices are the components C, the set £ fully con-
nects the components C, and 7T is a vector of so-called
pheromone trails T. Pheromone trails can be associ-
ated with components, connections, or both. Here we
assume that the pheromone trails are associated with
connections, so that 7(i,j) is the pheromone associ-
ated with the connection between components i and
j. It is straightforward to extend the algorithm to the
other cases. The graph G is called the construction
graph.

To construct candidate solutions, each artificial ant
is first put on a randomly chosen vertex of the graph.
It then performs a randomized walk by moving at each
step from vertex to vertex on the graph in such a way
that the next vertex is chosen stochastically according
to the strength of the pheromone currently on the arcs.
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While moving from one node to another of the graph G,
constraints ) may be used to prevent ants from building
infeasible solutions. Formally, the solution construction
behavior of a generic ant can be described as follows:

ANT_SOLUTION_CONSTRUCTION

e For each ant:
- Select a start node ¢; according to some problem
dependent criterion.
- Setk=1and x; = {c).
,cx) € X,xi ¢ S, and the set Jy,
of components that can be appended to x; is not

e Whilex; = {c1,¢2,...

empty, select the next node (component) ¢ ran-
domly according to:

Pr(cxs1 = clxx)
F(Ck,f) (T(Ck’ C))
Z(w)ehk Fieyy (t(cwy))

if (cx>c)€lx;»

0 otherwise,

©)

where a connection (ck, y) belongs to Jy, if and only
(C], (%2 >
constraints Q (that is, x¢,1 € X) and F; j)(2) is
some monotonic function — a common choice being
2°5(i,j)P, where &, f > 0, and #(i,)’s are heuristic
values measuring the desirability of adding compo-
nent j after i. If at some stage xx ¢ S and J,, = @, that
is, the construction process has reached a dead-end,
the current state x; is discarded. However, this sit-
uation may be prevented by allowing artificial ants
to build infeasible solutions as well. In such a case,
an infeasibility penalty term is usually added to the
cost function. Nevertheless, in most of the settings in
which ACO has been applied, the dead-end situation
does not occur.

if the sequence x4 = ,Ck, y) satisfies the

For certain problems, one may find it useful to use
a more general scheme, where F depends on the
pheromone values of several “related” connections
rather than just a single one. Moreover, instead of
the random-proportional rule above, different selection
schemes, such as the pseudo-random-proportional rule
(Dorigo & Gambardella, 1997), may be used.

Many different schemes for pheromone update have
been proposed within the ACO framework. For an
extensive overview, see Dorigo and Stiitzle (2004). Most
pheromone updates can be described using the follow-
ing generic scheme:

GENERIC_ACO_UPDATE

o VseS,V(ij)es: 7(i,j) « (i) +Qr(sSi,- .., St)s
o V(ij): 7(ij) « (1= p)-7(isf)s

where S; is the sample in the ith iteration, p, 0<p <1,
is the evaporation rate, and Q¢(s[S,...,S;) is some
“quality function,” which is typically required to be non-
increasing with respect to f and is defined over the
“reference set” §;.

Different ACO algorithms may use different quality
functions and reference sets. For example, in the very
first ACO algorithm - Ant System (Dorigo, Maniezzo, &
Colorni, 1991, 1996) - the quality function is simply
1/f(s) and the reference set §; = S,. In a subsequently
proposed scheme, called iteration best update (Dorigo
& Gambardella, 1997), the reference set is a singleton
containing the best solution within S, (if there are sev-
eral iteration-best solutions, one of them is chosen ran-
domly). For the global-best update (Dorigo et al., 1996;
Stiitzle & Hoos, 1997), the reference set contains the best
among all the iteration-best solutions (and if there are
more than one global-best solution, the earliest one is
chosen). In Dorigo et al. (1996) an elitist strategy was
introduced, in which the update is a combination of the
previous two.

In case a good lower bound on the optimal solu-
tion cost is available, one may use the following quality
function (Maniezzo, 1999):

~ _f(s)-1B . f-1(s)
Qf(ssl""’st)_%(l f-1B )_  F-1B’
()

where f is the average of the costs of the last k solutions
and LB is the lower bound on the optimal solution cost.
With this quality function, the solutions are evaluated
by comparing their cost to the average cost of the other
recent solutions, rather than by using the absolute cost
values. In addition, the quality function is automatically
scaled based on the proximity of the average cost to the
lower bound.
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A pheromone update that slightly differs from the
generic update described above was used in ant colony
system (ACS) (Dorigo & Gambardella, 1997). There the
pheromone is evaporated by the ants online during
the solution construction, hence only the pheromone
involved in the construction evaporates.

Another modification of the generic update was
introduced in MAX-MIN Ant System (Stiitzle &
Hoos, 1997, 2000), which uses maximum and mini-
mum pheromone trail limits. With this modification,
the probability of generating any particular solution is
kept above some positive threshold. This helps to pre-
vent search stagnation and premature convergence to
suboptimal solutions.
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! Anytime Algorithm

An anytime algorithm is an algorithm whose out-
put increases in quality gradually with increased
running time. This is in contrast to algorithms that
produce no output at all until they produce full-quality
output after a sufficiently long execution time. An exam-
ple of an algorithm with good anytime performance

is »Adaptive Real-Time Dynamic Programming
(ARTDP).

' AODE

» Averaged One-Dependence Estimators

! Apprenticeship Learning

» Behavioral Cloning

! Approximate Dynamic
Programming

» Value Function Approximation

! Apriori Algorithm

HANNU TOIVONEN
University of Helsinki, Helsinki, Finland

Definition

Apriori algorithm (Agrawal, Mannila, Srikant, Toivo-
nen, & Verkamo, 1996) is a »data mining method which
outputs all »frequent itemsets and »association rules
from given data.

Input: set I of items, multiset D of subsets of Z, fre-
quency threshold min_fr, and confidence threshold
min_conf.

Output: all frequent itemsets and all valid association
rules in D.

Method:

L: level := 1; frequent_sets := &5;

2: candidate_sets := {{i} |ie Z};

3: while candidate_sets + &

3.1: scan data D to compute frequencies of all sets in can-
didate_sets;

3.2: frequent_sets := frequent_sets U {C € candi-
date_sets | frequency(C) > min_fr};

3.3 level :=level + 1;

3.4: candidate_sets := {A c Z | |A| = leveland B ¢
frequent_sets for all B c A, |B| = level — 1};
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4: output frequent_sets;

5: for each F € frequent_sets

5.1:foreachEc F,E+ &, E+F

5.1.1: if frequency(F)/frequency(E) > min_conf then
output association rule E - (F \ E)

The algorithm finds frequent itemsets (lines 1-4) by
a breadth-first, general-to-specific search. It generates
and tests candidate itemsets in batches, to reduce the
overhead of database access. The search starts with the
most general itemset patterns, the singletons, as can-
didate patterns (line 2). The algorithm then iteratively
computes the frequencies of candidates (line 3.1) and
saves those that are frequent (line 3.2). The crux of
the algorithm is in the candidate generation (line 3.4):
on the next level, those itemsets are pruned that have
an infrequent subset. Obviously, such itemsets cannot
be frequent. This allows Apriori to find all frequent
itemset without spending too much time on infrequent
itemsets. See »-frequent pattern and »constraint-based
mining for more details and extensions.

Finally, the algorithm tests all frequent association
rules and outputs those that are also confident (lines
5-5.11).

Cross References
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|
Area Under Curve

Synonyms
AUC

Definition
The area under curve (AUC) statistic is an empirical
measure of classification performance based on the area

under an ROC curve. It evaluates the performance of a
scoring classifier on a test set, but ignores the magni-
tude of the scores and only takes their rank order into
account. AUC is expressed on a scale of 0 to 1, where
0 means that all negatives are ranked before all posi-
tives, and 1 means that all positives are ranked before
all negatives. See »ROC Analysis.

IAQ

»Rule Learning

" ARL

> Average-Reward Reinforcement Learning

" ART

» Adaptive Resonance Theory

' ARTDP

» Adaptive Real-Time Dynamic Programming
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Artificial Imnmune Systems

JoN TimmiIs
University of York, Heslington, North Yorkshire, UK

Synonyms
AIS; Immune computing; Immune-inspired computing;
Immunocomputing; Immunological computation

Definition

Artificial immune systems (AIS) have emerged as a
computational intelligence approach that shows great
promise. Inspired by the complexity of the immune
system, computer scientists and engineers have created
systems that in some way mimic or capture certain
computationally appealing properties of the immune
system, with the aim of building more robust and adapt-
able solutions. AIS have been defined by de Castro and
Timmis (2002) as:




42

Artificial Immune Systems

» adaptive systems, inspired by theoretical immunology
and observed immune functions, principle and models,
which are applied to problem solving

AIS are not limited to machine learning systems, there
are a wide variety of other areas in which AIS are devel-
oped such as optimization, scheduling, fault tolerance,
and robotics (Hart & Timmis, 2008). Within the context
of machine learning, both supervised and unsupervised
approaches have been developed. Immune-inspired
learning approaches typically develop a memory set of
detectors that are capable of classifying unseen data
items (in the case of supervised learning) or a memory
set of detectors that represent clusters within the data
(in the case of unsupervised learning). Both static and
dynamic learning systems have been developed.

Motivation and Background

The immune system is a complex system that under-
takes a myriad of tasks. The abilities of the immune
system have helped to inspire computer scientists to
build systems that mimic, in some way, various prop-
erties of the immune system. This field of research, AIS,
has seen the application of immune-inspired algorithms
to a wide variety of areas.

The origin of AIS has its roots in the early theoret-
ical immunology work of Farmer, Perelson, and Varela
(Farmer, Packard, & Perelson, 1986; Varela, Coutinho,
Dupire, & Vaz, 1988). These works investigated a num-
ber of theoretical »immune network models proposed
to describe the maintenance of immune memory in
the absence of antigen. While controversial from an
immunological perspective, these models began to give
rise to an interest from the computing community. The
most influential people at crossing the divide between
computing and immunology in the early days were
Bersini and Forrest. It is fair to say that some of the
early work by Bersini (1991) was very well rooted in
immunology, and this is also true of the early work
by Forrest (1994). It was these works that formed the
basis of a solid foundation for the area of AIS. In the
case of Bersini, he concentrated on the immune net-
work theory, examining how the immune system main-
tained its memory and how one might build models
and algorithms mimicking that property. With regard
to Forrest, her work was focused on computer security

(in particular, network intrusion detection) and formed
the basis of a great deal of further research by the com-
munity on the application of immune-inspired tech-
niques to computer security.

At about the same time as Forrest was undertak-
ing her work, other researchers began to investigate the
nature of learning in the immune system and how that
might by used to create machine learning algorithms
(Cook & Hunt, 1995). They had the idea that it might
be possible to exploit the mechanisms of the immune
system (in particular, the immune network) in learn-
ing systems, so they set about doing a proof of concept
(Cook & Hunt, 1995). Initial results were very encour-
aging, and they built on their success by applying the
immune ideas to the classification of DNA sequences as
either promoter or nonpromoter classes: this work was
generalized in Timmis and Neal (2001).

Similar work was carried out by de Castro and
Von Zuben (2001), who developed algorithms for
use in function optimization and data clustering.
Work in dynamic unsupervised machine learning algo-
rithms was also undertaken, meeting with success in
works such as Neal (2002). In the supervised learning
domain, very little happened until the work by Watkins
(2001) (later expanded in Watkins, 2005) developed an
immune-based classifier known as AIRS, and in the
dynamic supervised domain, with the work in Secker,
Freitas, and Timmis (2003) being one of a number of
successes.

Structure of the Learning System

In an attempt to create a common basis for AIS, the
work in de Castro and Timmis (2002) proposed the idea
of a framework for engineering AIS. They argued that
the case for such a framework as the existence of similar
frameworks in other biologically inspired approaches,
such as Partificial neural networks (ANNSs) and evolu-
tionary algorithms (EAs), has helped considerably with
the understanding and construction of such systems.
For example, de Castro and Timmis (2002) consider a
set of artificial neurons, which can be arranged together
to form an ANN. In order to acquire knowledge, these
neural networks undergo an adaptive process, known as
learning or training, which alters (some of) the param-
eters within the network. Therefore, they argued that
in a simplified form, a framework to design an ANN is
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composed of a set of artificial neurons, a pattern of inter-
connection for these neurons, and a learning algorithm.
Similarly, they argued that in evolutionary algorithms,
there is a set of artificial chromosomes representing a
population of individuals that iteratively suffer a process
of reproduction, genetic variation, and selection. As a
result of this process, a population of evolved artificial
individuals arises. A framework, in this case, would cor-
respond to the genetic representation of the individuals
of the population, plus the procedures for reproduc-
tion, genetic variation, and selection. Therefore, they
proposed that a framework to design a biologically
inspired algorithm requires, at least, the following basic
elements:

e A representation for the components of the system

e A set of mechanisms to evaluate the interaction of
individuals with the environment and each other.
The environment is usually stimulated by a set of
input stimuli, one or more fitness function(s), or
other means

e Procedures of adaptation that govern the dynam-
ics of the system, ie., how its behavior varies
over time

This framework can be thought of as a layered
approach such as the specific framework for engi-
neering AIS of de Castro and Timmis (2002) shown
in Fig.1. This framework follows the three basic
elements for designing a biologically inspired algo-
rithm just described, where the set of mechanisms for
evaluation are the affinity measures and the procedures

/4 Solution

of adaptation are the immune algorithms. In order to
build a system such as an AIS, one typically requires
an application domain or target function. From this
basis, the way in which the components of the sys-
tem will be represented is considered. For example, the
representation of network traffic may well be different
from the representation of a real-time embedded sys-
tem. In AIS, the way in which something is represented
is known as shape space. There are many kinds of shape
space, such as Hamming, real valued, and so on, each of
which carries it own bias and should be selected with
care (Freitas & Timmis, 2003). Once the representa-
tion has been chosen, one or more affinity measures
are used to quantify the interactions of the elements of
the system. There are many possible affinity measures
(which are partially dependent upon the representation
adopted), such as Hamming and Euclidean distance
metrics. Again, each of these has its own bias, and the
affinity function must be selected with great care, as it
can affect the overall performance (and ultimately the
result) of the system (Freitas & Timmis, 2003).

The artificial immune recognition system (AIRS)
algorithm was introduced as one of the first immune-
inspired supervised learning algorithms and has
subsequently gone through a period of study and
refinement (Watkins, 2005). To use classifications
from de Castro and Timmis (2002), for the proce-
dures of adaptation, AIRS is a, Pclonal selection type
of immune-inspired algorithm. The representation
and affinity layers of the system are standard in

Immune networks

| Immune Algorithms |—//

Clonal selection

AlS — | r—continuous
| Affinity Measures - Euclidean
| Representation }; g;?e\r/alues

Application Domain

Artificial Imnmune Systems. Figure 1. AlS layered framework adapted from de Castro and Timmis (2002)
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that any number of representations such as binary,
real values, etc., can be used with the appropriate
affinity function. AIRS has its origin in two other
immune-inspired algorithms: CLONALG (CLONAL
Selection alGorithm) and Artificial Immune NEt-
work (AINE) (de Castro and Timmis, 2002). AIRS
resembles CLONALG in the sense that both the
algorithms are concerned with developing a set of
memory cells that give a representation of the learned
environment.

AIRS is concerned with the development of a set
of memory cells that can encapsulate the training data.
This is done in a two-stage process of first evolving
a candidate memory cell and then determining if this
candidate cell should be added to the overall pool of
memory cells. The learning process can be outlined as
follows:

1. For each pattern to be recognized, do

(a) Compare a training instance with all memory
cells of the same class and find the memory cell
with the best affinity for the training instance.
This is referred to as a memory cell mcmach-

(b) Clone and mutate mcy ¢, in proportion to its
affinity to create a pool of abstract B-cells.

(c) Calculate the affinity of each B-cell with the
training instance.

(d) Allocate resources to each B-cell based on its
affinity.

(e) Remove the weakest B-cells until the number
of resources returns to a preset limit.

(f) If the average affinity of the surviving B-cells
is above a certain level, continue to step 1(g).
Else, clone and mutate these surviving B-cells
based on their affinity and return to step 1(c).

(g) Choose the best B-cell as a candidate memory
cell (mcgang)-

(h) If the affinity of mceng for the training
instance is better than the affinity of mcmatch»
then add mcg,ng to the memory cell pool.
If, in addition to this, the affinity between
MCeand and MCpaecp 1S within a certain thresh-
old, then remove mcmach from the memory
cell pool.

2. Repeat from step 1(a) until all training instances
have been presented.

Once this training routine is complete, AIRS clas-
sifies the instances using k-nearest neighbor with the
developed set of memory cells.

The artificial immune network (aiNET) algorithm was
introduced as one of the first immune-inspired unsu-
pervised learning algorithms and has subsequently
gone through a period of study and refinement (de
Castro & Von Zuben, 2001). To use classifications
from de Castro and Timmis (2002), for the proce-
dures of adaptation, aiNET is an immune network type
of immune-inspired algorithm. The representation and
affinity layers of the system are standard (the same as
in AIRS). aiNET has its origin in another immune-
inspired algorithms: CLONALG (the same forerunner
to AIRS), and resembles CLONALG in the sense that
both algorithms (again) are concerned with developing
a set of memory cells that give a representation of the
learnt environment. However, within aiNET there is no
error feedback into the learning process. The learning
process can be outlined as follows:

1. Randomly initialize a population P
2. For each pattern to be recognized, do

(a) Calculate the affinity of each B-cell () in the
network for an instance of the pattern being
learnt

(b) Select a number of elements from P into a
clonal pool C

(c) Mutate each element of C proportional to
affinity to the pattern being learnt (the higher
the affinity, the less mutation applied)

(d) Select the highest affinity members of C to
remain in the set C and remove the remaining
elements

(e) Calculate the affinity between all members of C
and remove elements in C that have an affinity
below a certain threshold (user defined)

(f) Combine the elements of C with the set P

(g) Introduce a random number of randomly cre-
ated elements into P to maintain diversity

3. Repeat from 2(a) until stopping criteria is met

Once this training routine is complete, the minimum-
spanning tree algorithm is applied to the network to
extract the clusters from within the network.
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Artificial Life

Artificial Life is an interdisciplinary research area trying
to reveal and understand the principles and organiza-
tion of living systems. Its main goal is to artificially
synthesize life-like behavior from scratch in computers
or other artificial media. Important topics in artificial

life include the origin of life, growth and develop-
ment, evolutionary and ecological dynamics, adaptive
autonomous robots, emergence and self-organization,
social organization, and cultural evolution.

[
Artificial Neural Networks

(ANNs) is a computational model based on biologi-
cal neural networks. It consists of an interconnected
group of artificial neurons and processes information
using a connectionist approach to computation. In most
cases an ANN is an adaptive system that changes its
structure based on external or internal information
that flows through the network during the learning
phase.
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Synonyms

Agent-based computational models; Agent-based
modeling and simulation; Agent-based simulation
models
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Definition

An artificial society is an agent-based, computer-
implemented simulation model of a society or group
of people, usually restricted to their interaction in a
particular situation. Artificial societies are used in eco-
nomics and social sciences to explain, understand, and
analyze socioeconomic phenomena. They provide sci-
entists with a fully controllable virtual laboratory to
test hypotheses and observe complex system behavior
emerging as result of the P»agents’ interaction. They
allow formalizing and testing social theories by using
computer code, and make it possible to use experi-
mental methods with social phenomena, or at least
with their computer representations, on a large scale.
Because the designer is free to choose any desired
»agent behavior as long as it can be implemented,
research based on artificial societies is not restricted
by assumptions typical in classical economics, such as
homogeneity and full rationality of agents. Overall, arti-
ficial societies have added an all new dimension to
research in economics and social sciences and have
resulted in a new research field called “agent-based
computational economics.”

Artificial societies should be distinguished from vir-
tual worlds and p-artificial life. The term virtual world is
usually used for virtual environments to interact with,
as, e.g., in computer games. In artificial life, the goal
is more to learn about biological principles, under-
stand how life could emerge, and create life within a
computer.

Motivation and Background

Classical economics can be roughly divided into
analytical and empirical approaches. The former uses
deduction to derive theorems from assumptions.
Thereby, analytical models usually include a num-
ber of simplifying assumptions in order to keep the
model tractable, the most typical being full rationality
and homogeneity of agents. Also, analytical economics
is often limited to equilibrium calculations. Classical
empirical economics collects data from the real world,
and derives patterns and regularities inductively. In
recent years, the tremendous increase in available com-
putational power gave rise to a new branch of eco-
nomics and sociology which uses simulation of artificial
societies as a tool to generate new insights.

Artificial societies are agent-based, computer-
implemented simulation models of real societies or a
group of people in a specific situation. They are built
from the bottom up, by specifying the behavior of
the agents in different situations. The simulation then
reveals the emerging global behavior of the system,
and thus provides a link between micro-level behavior
of the agents and macro-level characteristics of the
system. Using simulation, researchers can now carry
out social experiments under fully controlled and
reproducible laboratory conditions, trying out different
configurations and observing the consequences.

Like deduction, simulation models are based on a
set of clearly specified assumptions as written down
in a computer program. This is then used to generate
data, from which regularities and patterns are derived
inductively. As such, research based on artificial soci-
eties stands somewhere between the classical analytical
and empirical social sciences.

One of the main advantages of artificial societies
is that they allow to consider very complex scenarios
where agents are heterogeneous, boundedly rational, or
have the ability to learn. Also, they allow to observe
evolution over time, instead of just the equilibrium.

Artificial societies can be used for many purposes,

eg.:

1. Verification: Test a hypothesis or theory by examin-
ing its validity in relevant, clearly defined scenarios.

2. Explanation: Construct an artificial society which
shows the same behavior as the real society. Then
analyze the model to explain the emergent behavior.

3. Prediction: Run a model of an existing society into
the future. Also, feed the model with different input
parameters and use the result as a prediction on how
the society would react.

4. Optimization: Test different strategies in the sim-
ulation environment, trying to find a best possible
strategy.

5. Existence proof: Demonstrate that a specific sim-
ulation model is able to generate a certain global
behavior.

6. Discovery: Play around with parameter settings,
discovering new interdependencies and gaining
new insights.

7. Training and education: Use simulation as demon-
strator.
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Structure of the Learning System
Using artificial societies requires the usual steps in
model building and experimental science, including

Developing a conceptual model
Building the simulation model
Verification (making sure the model is correct)

Ll

Validation (making sure the model is suitable to
answer the posed questions)

5. Simulation and analysis using an appropriate exper-
imental design.

Artificial society is an interdisciplinary research area
involving, among others, computer science, psychology,
economics, sociology, and biology.

The modeling, simulation, and analysis process des-
cribed in the previous section is rather complex and
only remotely connected to machine learning. Thus,
instead of a detailed description of all steps, the follow-
ing focuses on aspects particularly interesting from a
machine learning point of view.

One of the main advantages of artificial societies is
that they can account for boundedly rational and learn-
ing agents. For that, one has to specify (in form of a
program) exactly how agents decide and learn.

In principle, all the learning algorithms developed in
machine learning could be used, and many have been
used successfully, including »reinforcement learning,
»artificial neural networks, and »evolutionary algo-
rithms. However, note that the choice of a learning
algorithm is not determined by its learning speed and
efficiency (as usual in machine learning), but by how
well it reflects human learning in the considered sce-
nario, at least if the goal is to construct an artificial
society which allows conclusions to be transferred to
the real world. As a consequence, many learning models
used in artificial societies are motivated by psychology.
The idea of the most suitable model depends on the sim-
ulation context, e.g., on whether the simulated learning
process is conscious or nonconscious, or on the time
and effort an individual may be expected to spend on
a particular decision.

Besides individual learning (i.e., learning from
own past experience), artificial societies usually feature
social learning (where one agent learns by observing
others), and cultural learning (e.g., the evolution of
norms). While the latter simply emerges from the inter-
action of the agents, the former has to be modeled
explicitly. Several different models for learning in artifi-
cial societies are discussed in Brenner (2006).

One popular learning paradigm which can be used
as a model for individual as well as social learning
are Pevolutionary algorithms (EAs). Several studies
suggest that EAs are indeed an appropriate model for
learning in artificial societies, either based on compar-
isons of simulations with human subject experiments or
based on comparisons with other learning mechanisms
such as reinforcement learning (Duffy, 2006). As EAs
are successful search strategies, they seem particularly
suitable if the space of possible actions or strategies is
very large.

If used to model individual learning, each agent uses
a separate EA to search for a better personal solution.
In this case, the EA population represents the differ-
ent alternative actions or strategies that an agent con-
siders. The genetic operators crossover and mutation
are clearly related to two major ingredients of human
innovation: combination and variation. Crossover can
be seen as deriving a new concept by combining two
known concepts, and mutation corresponds to a small
variation of an existing concept. So, the agent, in some
sense, creatively tries out new possibilities. Selection,
which favors the best solutions found so far, models the
learning part. A solution’s quality is usually assessed by
evaluating it in a simulation assuming all other agents
keep their behavior.

For modeling social learning, EAs can be used in
two different ways. In both cases, the population rep-
resents the actions or strategies of the different agents
in the population. From this it follows that the popu-
lation size corresponds to the number of agents in the
simulation. Fitness values are calculated by running the
simulation and observing how the different agents per-
form. Crossover is now seen as a model for information
exchange, or imitation, among agents. Mutation, as in
the individual learning case, is seen as a small variation
of an existing concept.

The first social learning model simply uses a stan-
dard EA, i.e., selection chooses agents to “reproduce,”
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and the resulting new agent strategy replaces an old
strategy in the population. While allowing to use stan-
dard EA libraries, this approach does not provide
a direct link between agents in the simulation and
individuals in the EA population. In the second social
learning model, each agent directly corresponds to an
individual in the EA. In every iteration, each agent cre-
ates and tests a new strategy as follows. First, it selects a
“donor” individual, with preference to successful indi-
viduals. Then it performs a crossover of its own strategy
and the donor’s strategy, and mutates the result. This can
be regarded as an agent observing other agents, and par-
tially adopting the strategies of successful other agents.
Then, the resulting new strategy is tested in a “thought
experiment,” by testing whether the agent would be bet-
ter off with the new strategy compared with its current
strategy, assuming all other agents keep their behavior.
If the new strategy performs better, it replaces the cur-
rent strategy in the next iteration. Otherwise, the new
strategy is discarded and the agent again uses its old
strategy in the next iteration. The testing of new strate-
gies against their parents has been termed election oper-
ator in Arifovic (1994), and makes sure that some very
bad and obviously implausible agent strategies never
enter the artificial society.

One of the first forerunners of artificial societies
was Schelling’s segregation model, 1969. In this study,
Schelling placed some artificial agents of two different
colors on a simple grid. Each agent follows a simple
rule: if less than a given percentage of agents in the
neighborhood had the same color, the agent moves to
a random free spot. Otherwise, it stays. As the simula-
tion shows, in this model, segregation of agent colors
could be observed even if every individual agent was
satisfied to live in a neighborhood with only 50% of
its neighbors being of the same color. Thus, with this
simple model, Schelling demonstrated that segregation
of races in suburbs can occur even if each individual
would be happy to live in a diverse neighborhood. Note
that the simulations were actually not implemented on
a computer but carried out by moving coins on a grid
by hand.

Other milestones in artificial societies are cer-
tainly the work by Epstein and Axtell on their “sug-
arscape” model (Epstein & Axtell, 1996), and the Santa

Fe artificial stock market (Arthur, Holland, LeBaron,
Palmer, & Taylor, 1997). In the former, agents popu-
late a simple grid world, with sugar growing as the
only resource. The agents need the sugar for sur-
vival, and can move around to collect it. Axtell and
Epstein have shown that even with agents following
some very simple rules, the emerging behavior of the
overall system can be quite complex and similar in
many aspects to observations in the real world, e.g.,
showing a similar wealth distribution or population
trajectories.

The latter is a simple model of a stock market with
only a single stock and a risk-free fixed-interest alter-
native. This model has subsequently been refined and
studied by many researchers. One remarkable result of
the first model was to demonstrate that technical trad-
ing can actually be a viable strategy, something widely
accepted in practice, but which classical analytical eco-
nomics struggled to explain.

One of the most sophisticated artificial societies is
perhaps the model of the Anasazi tribe, who left their
dwellings in the Long House Valley in northeastern
Arizona for so far unknown reasons around 1300 BC
(Axtell et al., 2002). By building an artificial society of
this tribe and the natural surroundings (climate etc.),
it was possible to replicate macro behavior which is
known to have occurred and provide a possible expla-
nation for the sudden move.

The NewTies project (Gilbert et al., 2006) has a dif-
ferent and quite ambitious focus: it constructs artificial
societies with the hope of an emerging artificial lan-
guage and culture, which then might be studied to help
explain how language and culture formed in human
societies.

Agent-based simulations can be facilitated by using
specialized software libraries such as Ascape, Netlogo,
Repast, StarLogo, Mason, and Swarm. A comparison of
different libraries can be found in Railsback, Lytinen,
and Jackson (2006).

Applications

Artificial societies have many practical applications,
from rather simple simulation models to very com-
plex economic decision problems, examples include
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traffic simulation, market design, evaluation of vaccina-
tion programs, evacuation plans, or supermarket layout
optimization. See, e.g., Bonabeau (2002) for a discus-
sion of several such applications.

Future Directions, Challenges

The science on artificial societies is still at its infancy,
but the field is burgeoning and has already produced
some remarkable results. Major challenges lie in the
model building, calibration, and validation of the arti-
ficial society simulation model. Despite several agent-
based modeling toolkits available, there is a lot to be
gained by making them more flexible, intuitive, and
user-friendly, allowing to construct complex models
simply by selecting and combining provided building
blocks of agent behavior. »Behavioral Cloning may
be a suitable machine learning approach to generate
representative agent models.

Cross References
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Assertion

In »Minimum Message Length, the code or language
shared between sender and receiver that is used to
describe the model.
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Definition
Association rules (Agrawal, Imielinski, & Swami, 1993)
can be extracted from data sets where each example
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consists of a set of items. An association rule has the
form X — Y, where X and Y are »itemsets, and the
interpretation is that if set X occurs in an example, then
set Y is also likely to occur in the example.

Each association rule is usually associated with
two statistics measured from the given data set. The
frequency or supportof arule X — Y, denoted fr(X—Y),
is the number (or alternatively the relative frequency)
of examples in which X U Y occurs. Its confidence, in
turn, is the observed conditional probability P(Y | X) =
fr(XuY)/fr(X).

The > Apriori algorithm (Agrawal, Mannila, Srikant,
Toivonen & Verkamo, 1996) finds all association rules,
between any sets X and Y, which exceed user-specified
support and confidence thresholds. In association rule
mining, unlike in most other learning tasks, the result
thus is a set of rules concerning different subsets of the
feature space.

Association rules were originally motivated by
supermarket »basket analysis, but as a domain inde-
pendent technique they have found applications in
numerous fields. Association rule mining is part of the
larger field of »frequent itemset or »frequent pattern
mining.

Cross References
» Apriori Algorithm
> Basket Analysis
»Frequent Itemset
»Frequent Pattern
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Synonyms

Associative bandit problem; Bandit problem with side
information; Bandit problem with side observations;
One-step reinforcement learning

Definition

The associative reinforcement-learning problem is a spe-
cific instance of the Preinforcement learning problem
whose solution requires generalization and exploration
but not temporal credit assignment. In associative rein-
forcement learning, an action (also called an arm) must
be chosen from a fixed set of actions during succes-
sive timesteps and from this choice a real-valued reward
or payoff results. On each timestep, an input vector is
provided that along with the action determines, often
probabilistically, the reward. The goal is to maximize
the expected long-term reward over a finite or infinite
horizon. It is typically assumed that the action choices
do not affect the sequence of input vectors. However,
even if this assumption is not asserted, learning algo-
rithms are not required to infer or model the relation-
ship between input vectors from one timestep to the
next. Requiring a learning algorithm to discover and
reason about this underlying process results in the full
reinforcement learning problem.

Motivation and Background

The problem of associative reinforcement learning may
be viewed as connecting the problems of »supervised
learning or »-classification, which is more specific, and
reinforcement learning, which is more general. Its study
is motivated by real-world applications such as choos-
ing which internet advertisements to display based on
information about the user or choosing which stock to
buy based on current information related to the market.
Both problems are distinguished from supervised learn-
ing by the absence of labeled training examples to learn
from. For instance, in the advertisement problem, the
learner is never told which ads would have resulted in
the greatest expected reward (in this problem, reward is
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determined by whether an ad is clicked on or not). In the
stock problem, the best choice is never revealed since
the choice itself affects the future price of the stocks and
therefore the payoff.

The Learning Setting
The learning problem consists of the following core
objects:

e An input space &, which is a set of objects (often a
subset of the n-dimension Euclidean space R").

o A setof actions or arms A, which is often a finite set
of size k.

o A distribution D over X. In some cases, D is allowed
to be time-dependent and may be denoted D; on
timestep t for t =1,2,. . ..

A learning sequence proceeds as follows. During
each timestep t = 1,2,..., an input vector x; € X is
is drawn according to the distribution D and is pro-
vided to the algorithm. The algorithm selects an aarm
at a; € A. This choice may be stochastic and depend
on all previous inputs and rewards observed by the
algorithm as well as all previous action choices made
by the algorithm for timesteps t = 1,2,.... Then, the
learner receives a payoff r, generated according to some
unknown stochastic process that depends only on the x;
and a;. The informal goal is to maximize the expected
long-term payoff. Let w : X — A be any policy that
maps input vectors to actions. Let

T
V™(T) ::E[Zri ‘ a;=n(x;) fori=12,....,T[ (1)
i=1

denotes the expected total reward over T steps obtained
by choosing arms according to policy 7. The expecta-
tion is taken over any randomness in the generation of
input vectors x; and rewards r;. The expected regret of a
learning algorithm with respect to policy 7 is defined as
V™(T)-E[XL, r;] the expected difference between the
return from following policy 7 and the actual obtained
return.

Wang, Kulkarni, and Poor (2005) studied the associa-
tive reinforcement learning problem from a statistical
viewpoint. They considered the setting with two action

and analyzed the expected inferior sampling time, which
is the number of times that the lesser action, in terms
of expected reward, is selected. The function map-
ping input vectors to conditional reward distributions
belongs to a known parameterized class of functions,
with the true parameters being unknown. They show
that, under some mild conditions, an algorithm can
achieve finite expected inferior sampling time. This
demonstrates the power provided by the input vec-
tors (also called side observations or side information),
because such a result is not possible in the stan-
dard multi-armed bandit problem, which corresponds to
the associative reinforcement-learning problem with-
out input vectors x;. Intuitively, this type of result is
possible when the side information can be used to infer
the payoft function of the optimal action.

In its most general setting, the associative reinforce-
ment learning problem is intractable. One way to rectify
this problem is to assume that the payoff function is
described by a linear system. For instance, Abe and
Long (1999) and Auer (2002) consider a model where
during each timestep t, there is a vector z;; associ-
ated with each arm i. The expected payoft of pulling
arm i on this timestep is given by 67z, ; where 6 is an
unknown parameter vector and 07 denotes the trans-
pose of f. This framework maps to the framework
described above by taking x; = (2¢1,212, - - - 2.k ). They
assume a time-dependent distribution D and focus on
obtaining bounds on the regret against the optimal
policy. Assuming that all rewards lie in the interval
[0,1], the worst possible regret of any learning algo-
rithm is linear. When considering only the number
of timesteps T, Auer (2002) shows that a regret (with
respect to the optimal policy) of O(v/TIn(T)) can be
obtained.

The previously mentioned works analyze the growth
rate of the regret of a learning algorithm with respect to
the optimal policy. Another way to approach the prob-
lem is to allow the learner some number of timesteps of
exploration. After the exploration trials, the algorithm
is required to output a policy. More specifically, given
inputs 0 < € < land 0 < & < 1, the algorithm is
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required to output an e-optimal policy with probability
at least 1 — §. This type of analysis is based on the work
by Valiant (1984), and learning algorithms satisfying
the above condition are termed probably approximately
correct (PAC).

Motivated by the work of Kaelbling (1994), Fiechter
(1995) developed a PAC algorithm when the true pay-
off function can be described by a decision list over the
action and input vector. Building on both works, Strehl,
Mesterharm, Littman, and Hirsh (2006) showed that
a class of associative reinforcement learning problems
can be solved efficiently, in a PAC sense, when given a
learning algorithm for efficiently solving classification
problems.
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Synonyms
Characteristic; Feature; Property; Trait

Definition

Attributes are properties of things, ways that we, as
humans, might describe them. If we were talking about
the appearance of our friends, we might describe one of
them as “sex female,” “hair brown,” “height 5 ft 7 in.” Lin-
guistically, this is rather terse, but this very terseness has
the advantage of limiting ambiguity. The attributes are
sex, hair color, and height. For each friend, we could give
the appropriate values to go along with each attribute,
some examples are shown in Table 1. Attribute-value
pairs are a standard way of describing things within
the machine learning community. Traditionally, values
have come in one of three types: binary, sex has two val-
ues; nominal, hair color has many values; real, height
has an ordered set of values. Ideally, the attribute-value
pairs are sufficient to describe some things accurately
and to tell them apart from others. What might be
described is very varied, so the attributes themselves
will vary widely.

Motivation and Background

For machine learning to be successful, we need a lan-
guage to describe everyday things that is sufficiently
powerful to capture the similarities and differences
between them and yet is computationally easy to man-
age. The idea that a sufficient number of attribute-value

Attribute. Table 1 Some friends

Male Black 6ft2in.
Female Brown 5ft7in.
Female Blond 5ft9in.
Male Brown 5ft10in.




Attribute

53

pairs would meet this requirement is an intuitive one.
It has also been studied extensively in philosophy and
psychology, as a way that humans represent things men-
tally. In the early days of artificial intelligence research,
the frame (Minsky, 1974) became a common way of
representing knowledge. We have, in many ways, inher-
ited this representation, attribute-value pairs sharing
much in common with the labeled slots for values used
in frames. In addition, the data for many practical prob-
lems comes in this form. Popular methods of storing
and manipulating data such as relational databases,
and less formal structures such as spread sheets, have
columns as attributes and cells as values. So, attribute-
value pairs are a ubiquitous way of representing
data.

Future Directions

The notion of an attribute-value pair is so well
entrenched in machine learning that it is difficult to
perceive what might replace it. As, in many practical
applications, the data comes in this form, this repre-
sentation will undoubtedly be around for some time.
One change that is occurring is the growing complex-
ity of attribute-values. Traditionally, we have used the
simple value types, binary, nominal, and real, discussed
earlier. But to effectively describe many things, we need
to extend this simple language and use more complex
values. For example, in »data mining applied to mul-
timedia, more new complex representations abound.
Sound and video streams, images, and various proper-
ties of them, are just a few examples (Cord et al., 2005;
Simoft & Djeraba, 2000).

Perhaps, the most significant change is away
from attributes, albeit with complex values, to struc-
tural forms where the relationship between things is
included. As Quinlan (1996) states “Data may concern
objects or observations with arbitrarily complex struc-
ture that cannot be captured by the values of a prede-
termined set of attributes.” There is a large and growing
community of researchers in P relational learning. This
is evidenced by the number, and growing frequency,
of recent workshops at the International Conference
for Machine Learning (Cord et al, 2005; De Raedt
& Kramer, 2000; Dietterich, Getoor, & Murphy, 2004;
Fern, Getoor, & Milch, 2006).

Limitations
In philosophy there is the idea of essence, the properties
an object must have to be what it is. In machine learning,
particularly in practical applications, we get what we are
given and have little control in the choice of attributes
and their range of values. If domain experts have chosen
the attributes, we might hope that they are properties
that can be readily ascertained and are relevant to the
task at the hand. For example, when describing one
of our friends, we would not say Fred is the one with
the spleen. It is not only difficult to observe, it is also
poor at discriminating between people. Data are col-
lected for many reasons. In medical applications, all
sorts of attribute-values would be collected on patients.
Most are unlikely to be important to the current task.
An important part of learning is »feature extraction,
determining which attributes are necessary for learning.
Whether or not attribute-value pairs are an essen-
tial representation for the type of learning required in
the development, and functioning, of intelligent agents,
remains to be seen. Attribute-values readily capture
symbolic information, typically at the level of words
that humans naturally use. But if our agents need to
move around in their environment, recognizing what
they encounter, we might need a different nonlin-
guistic representation. Certainly, other representations
based on a much finer granularity of features, and
more holistic in nature, have been central to areas such
as Pneural networks for some time. In research into
»dynamic systems, attractors in a sensor space might
be more realistic that attribute-values (See chapter on
» Classification).
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» Feature Selection

[ . .
Attribute-Value Learning

Attribute-value learning refers to any learning task in
which the each »Instance is described by the values
of some finite set of attributes (see » Attribute). Each
of these instances is often represented as a vector of
attribute values, each position in the vector correspond-
ing to a unique attribute.

" AUC

» Area Under Curve
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Definition

Helicopter flight is a highly challenging control prob-
lem. While it is possible to obtain controllers for simple
maneuvers (like hovering) by traditional manual design
procedures, this approach is tedious and typically
requires many hours of adjustments and flight testing,
even for an experienced control engineer. For complex
maneuvers, such as aerobatic routines, this approach

is likely infeasible. In contrast, »reinforcement learn-
ing (RL) algorithms enable faster and more automated
design of controllers. Model-based RL algorithms have
been used successfully for autonomous helicopter flight
for hovering, forward flight and, using apprenticeship
learning methods for expert-level aerobatics. In model-
based RL, first one builds a model of the helicopter
dynamics and specifies the task using a reward func-
tion. Then, given the model and the reward function,
the RL algorithm finds a controller that maximizes the
expected sum of rewards accumulated over time.

Motivation and Background

Autonomous helicopter flight represents a challenging
control problem and is widely regarded as being signifi-
cantly harder than control of fixed-wing aircraft. (See,
e.g., Leishman, (2000); Seddon, (1990)). At the same
time, helicopters provide unique capabilities such as in-
place hover, vertical takeoft and landing, and low-speed
maneuvering. These capabilities make helicopter con-
trol an important research problem for many practical
applications.

Building autonomous flight controllers for heli-
copters, however, is far from trivial When done
by hand, it can require many hours of tuning by
experts with extensive prior knowledge about heli-
copter dynamics. Meanwhile, the automated develop-
ment of helicopter controllers has been a major success
story for RL methods. Controllers built using RL algo-
rithms have established state-of-the-art performance
for both basic flight maneuvers, such as hovering and
forward flight (Bagnell & Schneider, 2001; Ng, Kim,
Jordan, & Sastry, 2004), as well as being among the
only successful methods for advanced aerobatic stunts.
Autonomous helicopter aerobatics has been success-
tully tackled using the innovation of “apprenticeship
learning,” where the algorithm learns by watching a
human demonstrator (Abbeel & Ng, 2004). These meth-
ods have enabled autonomous helicopters to fly aero-
batics as well as an expert human pilot, and often even
better (Coates, Abbeel, & Ng, 2008).

Developing autonomous flight controllers for heli-
copters is challenging for a number of reasons:

1. Helicopters have unstable, high-dimensional, asym-
metric, noisy, nonlinear, non-minimum phase dynam-
ics. As a consequence, all successful helicopter flight
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controllers (to date) have many parameters. Con-
trollers with 10-100 gains are not atypical. Hand
engineering the right setting for each of the parame-
ters is difficult and time consuming, especially since
their effects on performance are often highly cou-
pled through the helicopter’s complicated dynamics.
Moreover, the unstable dynamics, especially in the
low-speed flight regime, complicates flight testing.

2. Helicopters are underactuated: their position and
orientation is representable using six parameters,
but they have only four control inputs. Thus heli-
copter control requires significant planning and
making trade-offs between errors in orientation and
errors in desired position.

3. Helicopters have highly complex dynamics: Even
though we describe the helicopter as having a
twelve dimensional state (position, velocity, orien-
tation, and angular velocity), the true dynamics are
significantly more complicated. To determine the
precise effects of the inputs, one would have to con-
sider the airflow in a large volume around the heli-
copter, as well as the parasitic coupling between the
different inputs, the engine performance, and the
non-rigidity of the rotor blades. Highly accurate
simulators are thus difficult to create, and con-
trollers developed in simulation must be sufficiently
robust that they generalize to the real helicopter in
spite of the simulator’s imperfections.

4. Sensing capabilities are often poor: For small
remotely controlled (RC) helicopters, sensing is
limited because the on-board sensors must deal
with a large amount of vibration caused by the heli-
copter blades rotating at about 30 Hz, as well as

higher frequency noise from the engine. Although
noise at these frequencies (which are well above the
roughly 10 Hz at which the helicopter dynamics can
be modeled reasonably) might be easily removed
by low pass filtering, this introduces latency and
damping effects that are detrimental to control per-
formance. As a consequence, helicopter flight con-
trollers have to be robust to noise and/or latency in
the state estimates to work well in practice.

Typical Hardware Setup

A typical autonomous helicopter has several basic sen-
sors on board. An Inertial Measurement Unit (IMU)
measures angular rates and linear accelerations for each
of the helicopter’s three axes. A 3-axis magnetometer
senses the direction of the Earth’s magnetic field, similar
to a magnetic compass (Fig. 1).

Attitude-only sensing, as provided by the inertial
and magnetic sensors, is insufficient for precise, stable
hovering, and slow-speed maneuvers. These maneu-
vers require that the helicopter maintain relatively
tight control over its position error, and hence high-
quality position sensing is needed. GPS is often used to
determine helicopter position (with carrier-phase GPS
units achieving sub-decimeter accuracy), but vision-
based solutions have also been employed (Abbeel,
Coates, Quigley, & Ng, 2007; Coates et al., 2008;
Saripalli, Montgomery, & Sukhatme, 2003).

Vibration adds errors to the sensor measurements
and may damage the sensors themselves, hence signifi-
cant effort may be required to mount the sensors on the
airframe (Dunbabin, Brosnan, Roberts, & Corke, 2004).
Provided there is no aliasing, sensor errors added by

a ‘ - b
Autonomous Helicopter Flight Using Reinforcement Learning. Figure 1. (a) Stanford University’s instrumented XCell

Tempest autonomous helicopter. (b) A Bergen Industrial Twin autonomous helicopter with sensors and on-board

computer
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vibration can be removed by using a digital filter on the
measurements (though, again, one must be careful to
avoid adding too much latency).

Sensor data from the aircraft sensors is used to
estimate the state of the helicopter for use by the con-
trol algorithm. This is usually done with an extended
Kalman filter (EKF). A unimodal distribution (as com-
puted by the EKF) suffices to represent the uncertainty
in the state estimates and it is common practice to use
the mode of the distribution as the state estimate for
feedback control. In general the accuracy obtained with
this method is sufficiently high that one can treat the
state as fully observed.

Most autonomous helicopters have an on-board
computer that runs the EKF and the control algo-
rithm (Gavrilets, Martinos, Mettler, & Feron, 2002a;
La Civita, Papageorgiou, Messner, & Kanade, 2006; Ng
et al,, 2004). However, it is also possible to use ground-
based computers by sending sensor data by wireless
to the ground, and then transmitting control signals
back to the helicopter through the pilot’s RC transmit-
ter (Abbeel et al., 2007; Coates et al., 2008).

Helicopter State and Controls
The helicopter state s is defined by its position
(Px> Py» P2)» orientation (which could be expressed using
a unit quaternion g), velocity (v,v,,v;) and angular
velocity (wy, wy, w;).

The helicopter is controlled via a 4-dimensional
action space:

1. u; and uy: The lateral (left-right) and longitudinal
(front-back) cyclic pitch controls (together referred
to as the “cyclic” controls) cause the helicopter to
roll left or right, and pitch forward or backward,
respectively.

2. uz: The tail rotor pitch control affects tail rotor
thrust, and can be used to yaw (turn) the helicopter
about its vertical axis. In analogy to airplane con-
trol, the tail rotor control is commonly referred to
as “rudder”

3. uy: The collective pitch control (often referred to
simply as “collective”), increases and decreases the
pitch of the main rotor blades, thus increasing
or decreasing the vertical thrust produced as the
blades sweep through the air.

By using the cyclic and rudder controls, the pilot can
rotate the helicopter into any orientation. This allows
the pilot to direct the thrust of the main rotor in any
particular direction, and thus fly in any direction, by
rotating the helicopter appropriately.

Helicopter Flight as an RL Problem

A RL problem can be described by a tuple (S, 4, T, H,
s(0),R), which is referred to as a »Markov decision
process (MDP). Here S is the set of states; A is the set of
actions or inputs; T is the dynamics model, which is a
set of probability distributions {P%,} (P.,(s|s, u) is the
probability of being in state s at time ¢ + 1, given the
state and action at time ¢ are s and u); H is the horizon
or number of time steps of interest; s(0) € S is the initial
state; R : § x A — R is the reward function.

A policy m=(po,41,...,pun) is a tuple of map-
pings from states S to actions A, one mapping for
each time t=0,...,H. The expected sum of rewards
when acting according to a policy 7 is given by:
U(n) = B[S, R(s(t), u(t))|r]. The optimal policy 7*
for an MDP (S, A, T, H,s(0), R) is the policy that max-
imizes the expected sum of rewards. In particular, the
optimal policy is given by: n* = arg max, U(r).

The common approach to finding a good policy
for autonomous helicopter flight proceeds in two steps:
First one collects data from manual helicopter flights to
build a model (One could also build a helicopter model
by directly measuring physical parameters such as mass,
rotor span, etc. However, even when this approach is
pursued, one often resorts to collecting flight data to
complete the model.). Then one solves the MDP com-
prised of the model and some chosen reward function.
Although the controller obtained, in principle, is only
optimal for the learned simulator model, it has been
shown in various settings that optimal controllers per-
form well even when the model has some inaccuracies
(see, e.g., Anderson & Moore, (1989)).

One way to create a helicopter model is to use direct
knowledge of aerodynamics to derive an explicit math-
ematical model. This model will depends on a num-
ber of parameters that are particular to the helicopter
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being flown. Many of the parameters may be mea-
sured directly (e.g., mass, rotational inertia), while oth-
ers must be estimated from flight experiments. This
approach has been used successfully on several systems
(see, e.g., (Gavrilets, Martinos, Mettler, & Feron, 2002b;
Gavrilets, Mettler, & Feron, 2001; La Civita, 2003)).
However, substantial expert aerodynamics knowledge
is required for this modeling approach. Moreover, these
models tend to cover only a limited fraction of the flight
envelope.

Alternatively, one can learn a model of the dynam-
ics directly from flight data, with only limited a priori
knowledge of the helicopter’s dynamics. Data is usually
collected from a series of manually controlled flights.
These flights involve the human sweeping the control
sticks back and forth at varying frequencies to cover as
much of the flight envelope as possible, while record-
ing the helicopter’s state and the pilot inputs at each
instant.

Given a corpus of flight data, various different learn-
ing algorithms can be used to learn the underlying
model of the helicopter dynamics.

If one is only interested in a single flight regime,
one could learn a linear model that maps from the
current state and action to the next state. Such a model
can be easily estimated using »linear regression (While
the methods presented here emphasize time-domain
estimation, frequency domain estimation is also pos-
sible for the special case of estimating linear models
(Tischler & Cauffman, 1992).). Linear models are
restricted to small flight regimes (e.g., hover or inverted
hover) and do not immediately generalize to full-
envelope flight. To cover a broader flight regime, non
parametric algorithms such as locally-weighted linear
regression have been used (Bagnell & Schneider, 2001;
Ng et al., 2004). Non parametric models that map from
current state and action to next state can, in princi-
ple, cover the entire flight regime. Unfortunately, one
must collect large amounts of data to obtain an accu-
rate model and the models are often quite slow to
evaluate.

An alternative way to increase the expressiveness of
the model, without resorting to non parametric meth-
ods, is to consider a time-varying model where the
dynamics are explicitly allowed to depend on time. One
can then proceed to compute simpler (say, linear) para-
metric models for each choice of the time parameter.

This method is effective when learning a model spe-
cific to a trajectory whose dynamics are repeatable but
vary as the aircraft travels along the trajectory. Since
this method can also require a great deal of data (simi-
lar to nonparametric methods) in practice, it is helpful
to begin with a non-time-varying parametric model fit
from a large amount of data, and then augment it with
a time-varying component that has fewer parameters
(Abbeel, Quigley, & Ng, 2006; Coates et al., 2008).

One can also take advantage of symmetry in the
helicopter dynamics to reduce the amount of data
needed to fit a parametric model. In Abbeel, Ganap-
athi, and Ng (2006) observe that - in a coordinate frame
attached to the helicopter - the helicopter dynamics
are essentially the same for any orientation (or posi-
tion) once the effect of gravity is removed. They learn
a model that predicts (angular and linear) accelera-
tions — except for the effects of gravity — in the helicopter
frame as a function of the inputs and the (angu-
lar and linear) velocity in the helicopter frame. This
leads to a lower-dimensional learning problem, which
requires significantly less data. To simulate the heli-
copter dynamics over time, the predicted accelerations
augmented with the effects of gravity are integrated
over time to obtain velocity, angular rates, position, and
orientation.

Abbeel et al. (2007) used this approach to learn a
helicopter model that was later used for autonomous
aerobatic helicopter flight maneuvers covering a large
part of the flight envelope. Significantly less data is
required to learn a model using the gravity-free param-
eterization compared to a parameterization that directly
predicts the next state as a function of current state
and actions (as was used in Bagnell and Schneider
(2001), Ng et al. (2004)). Abbeel et al. evaluate their
model by checking its simulation accuracy over longer
time scales than just a one-step acceleration predic-
tion. Such an evaluation criterion maps more directly to
the reinforcement learning objective of maximizing the
expected sum of rewards accumulated over time (see
also Abbeel & Ng, (2005b)).

The models considered above are deterministic.
This normally would allow us to drop the expectation
when evaluating a policy according to E[YF | R(s(t),
u(t))|]. However, it is common to add stochasticity
to account for unmodeled effects. Abbeel et al. (2007)
and Ng et al. (2004) include additive process noise in
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their models. Bagnell and Schneider (2001) go further,
learning a distribution over models. Their policy must
then perform well, on expectation, for a (deterministic)
model selected randomly from the distribution.

Given a model of the helicopter, we now seek a pol-
icy m that maximizes the expected sum of rewards
U(n) = B[, R(s(t), u(t))|7] achieved when acting
according to the policy 7.

Policy Search General policy search algorithms can be
employed to search for optimal policies for the MDP
based on the learned model. Given a policy 7, we can
directly try to optimize the objective U(s). Unfortu-
nately, U(7r) is an expectation over a complicated distri-
bution making it impractical to evaluate the expectation
exactly in general.

One solution is to approximate the expectation
U(m) by Monte Carlo sampling: under certain bound-
edness assumptions the empirical average of the sum
of rewards accumulated over time will give a good
estimate U(7) of the expectation U (7). Naively Apply-
ing Monte Carlo sampling to accurately compute, e.g.,
the local gradient from the difference in function value
at nearby points, requires very large amounts of samples
due to the stochasticity in the function evaluation.

To get around this hurdle, the PEGASUS algo-
rithm (Ng & Jordan, 2000) can be used to convert the
stochastic optimization problem into a deterministic
one. When evaluating by averaging over n simulations,
PEGASUS initially fixes #n random seeds. For each pol-
icy evaluation, the same n random seeds are used so
that the simulator is now deterministic. In particular,
multiple evaluations of the same policy will result in
the same computed reward. A search algorithm can
then be applied to the deterministic problem to find an
optimum.

The PEGASUS algorithm coupled with a simple
local policy search was used by Ng et al. (2004) to
develop a policy for their autonomous helicopter
that successfully sustains inverted hover. Bagnell and
Schneider (2001) proceed similarly, but use the “amoeba”
search algorithm (Nelder & Mead, 1964) for policy
search.

Because of the searching involved, the policy class
must generally have low dimension. Nonetheless, it is

often possible to find good policies within these policy
classes. The policy class of Ng et al. (2004), for instance,
is a decoupled, linear PD controller with a sparse depen-
dence on the state variables (For instance, the linear
controller for the pitch axis is parametrized as u; =
co(px—pi)+c(ve—vy)+c20, which hasjust three param-
eters while the entire state is nine dimensional. Here, p.,
v., and p¥, v, respectively, are the actual and desired
position and velocity. 6 denotes the pitch angle.). The
sparsity reduces the policy class to just nine parame-
ters. In Bagnell and Schneider (2001), two-layer neural
network structures are used with a similar sparse depen-
dence on the state variables. Two neural networks with
five parameters each are learned for the cyclic controls.

Differential Dynamic Programming Abbeel et al. (2007)
use differential dynamic programming (DDP) for the
task of aerobatic trajectory following. DDP (Jacobson
& Mayne, 1970) works by iteratively approximating the
MDP as linear quadratic regulator (LQR) problems. The
LQR control problem is a special class of MDPs, for
which the optimal policy can be computed efficiently.
In LQR the set of states is given by S = R", the set of
actions/inputs is given by A = R?, and the dynamics
model is given by:

s(t+1) = A(t)s(t) + B(H)u(t) + w(t),

where for all t=0,...,H we have that A(¢) € R™",
B(t) € R™? and w(t) is a mean zero random variable
(with finite variance). The reward for being in state s(t)
and taking action u(t) is given by:

=s(6)"Q(1)s(t) — u(t)"R(t)u(t).

Here Q(t),R(t) are positive semi-definite matrices
which parameterize the reward function. It is well-
known that the optimal policy for the LQR control
problem is a linear feedback controller which can be
efficiently computed using dynamic programming (see,
e.g., Anderson & Moore, (1989), for details on linear
quadratic methods.)

DDP approximately solves general continuous state-
space MDPs by iterating the following two steps until
convergence:

1. Compute a linear approximation to the nonlin-
ear dynamics and a quadratic approximation to
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the reward function around the trajectory obtained
when executing the current policy in simulation.

2. Compute the optimal policy for the LQR problem
obtained in Step 1 and set the current policy equal
to the optimal policy for the LQR problem.

During the first iteration, the linearizations are per-
formed around the target trajectory for the maneuver,
since an initial policy is not available.

This method is used to perform autonomous flips,
rolls, and “funnels” (high-speed sideways flight in a
circle) in Abbeel et al. (2007) and autonomous autoro-
tation (Autorotation is an emergency maneuver that
allows a skilled pilot to glide a helicopter to a safe land-
ing in the event of an engine failure or tail-rotor failure.)
in Abbeel, Coates, Hunter, and Ng (2008), Fig. 2.

While DDP computes a solution to the non-linear
optimization problem, it relies on the accuracy of the
non-linear model to correctly predict the trajectory that
will be flown by the helicopter. This prediction is used
in Step 1 above to linearize the dynamics. In practice,
the helicopter will often not follow the predicted trajec-
tory closely (due to stochasticity and modeling errors),
and thus the linearization will become a highly inaccu-
rate approximation of the non-linear model. A common
solution to this, applied by Coates et al. (2008), is to
compute the DDP solution online, linearizing around
a trajectory that begins at the current helicopter state.
This ensures that the model is always linearized around
a trajectory near the helicopter’s actual flight path.

Apprenticeship Learning and Inverse RL In computinga
policy for an MDP, simply finding a solution (using any
method) that performs well in simulation may not be
enough. One may need to adjust both the model and

reward function based on the results of flight testing.
Modeling error may result in controllers that fly per-
fectly in simulation but perform poorly or fail entirely
in reality. Because helicopter dynamics are difficult to
model exactly, this problem is fairly common. Mean-
while, a poor reward function can result in a controller
that is not robust to modeling errors or unpredicted
perturbations (e.g., it may use large control inputs that
are unsafe in practice). If a human “expert” is available
to demonstrate the maneuver, this demonstration flight
can be leveraged to obtain a better model and reward
function.

The reward function encodes both the trajectory
that the helicopter should follow, as well as the trade-offs
between different types of errors. If the desired trajec-
tory is infeasible (either in the non-linear simulation or
in reality), this results in a significantly more difficult
control problem. Also, if the trade-offs are not specified
correctly, the helicopter may be unable to compensate
for significant deviations from the desired trajectory.
For instance, a typical reward function for hovering
implicitly specifies a trade-off between position error
and orientation error (it is possible to reduce one error,
but usually at the cost of increasing the other). If this
trade-off is incorrectly chosen, the controller may be
pushed off course by wind (if it tries too hard to keep the
helicopter level) or, conversely, may tilt the helicopter
to an unsafe attitude while trying to correct for a large
position error.

We can use demonstrations from an expert pilot to
recover both a good choice for the desired trajectory as
well as good choices of reward weights for errors rela-
tive to this trajectory. In apprenticeship learning, we are
given a set of N recorded state and control sequences,

Autonomous Helicopter Flight Using Reinforcement Learning. Figure 2. Snapshots of an autonomous helicopter

performing in-place flips and rolls
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{sk(t), ux(t) L, for k = 1,...,N, from demonstra-
tion flights by an expert pilot. Coates et al. (2008) note
that these demonstrations may be sub-optimal but are
often sub-optimal in different ways. They suggest that a
large number of expert demonstrations may implicitly
encode the optimal trajectory and propose a genera-
tive model that explains the expert demonstrations as
stochastic instantiations of an “ideal” trajectory. This is
the desired trajectory that the expert has in mind but
is unable to demonstrate exactly. Using an Expectation-
Maximization (Dempster, Laird, & Rubin, 1977) algo-
rithm, they infer the desired trajectory and use this as
the target trajectory in their reward function.

A good choice of reward weights (for errors rela-
tive to the desired trajectory) can be recovered using
inverse reinforcement learning (Abbeel & Ng, 2004;
Ng & Russell, 2000). Suppose the reward function
is written as a linear combination of features as fol-
lows: R(s,u) = codo(s,u) + adi(s,u) + -
single recorded demonstration, {s(t),u(t)}2,, the
pilot’s accumulated reward corresponding to each fea-
ture can be computed as ¢;¢} = ¢; Y1 ¢i(s(t), u(t)). If
the pilot out-performs the autonomous flight controller
with respect to a particular feature ¢;, this indicates
that the pilot's own “reward function” places a higher
value on that feature, and hence its weight ¢; should

-. For a

be increased. Using this procedure, a good choice of
reward function that makes trade-offs similar to that of
a human pilot can be recovered. This method has been
used to guide the choice of reward for many maneuvers
during flight testing (Abbeel et al., 2007, 2008; Coates
et al., 2008).

In addition to learning a better reward function
from pilot demonstration, one can also use the pilot
demonstration to improve the model directly and
attempt to reduce modeling error. Coates et al. (2008),
for instance, use errors observed in expert demonstra-
tions to jointly infer an improved dynamics model along
with the desired trajectory. Abbeel et al. (2007), how-
ever, have proposed the following alternating proce-
dure that is broadly applicable (see also Abbeel and Ng
(2005a) for details):

1. Collect data from a human pilot flying the desired
maneuvers with the helicopter. Learn a model from
the data.

2. Find a controller that works in simulation based on
the current model.

3. Test the controller on the helicopter. If it works, we
are done. Otherwise, use the data from the test flight
to learn a new (improved) model and go back to
Step 2.

This procedure has similarities with model-based RL
and with the common approach in control to first
perform system identification and then find a controller
using the resulting model. However, the key insight
from Abbeel and Ng (2005a) is that this procedure
is guaranteed to converge to expert performance in a
polynomial number of iterations. The authors report
needing at most three iterations in practice. Impor-
tantly, unlike the E’ family of algorithms (Kearns &
Singh, 2002), this procedure does not require explicit
exploration policies. One only needs to test controllers
that try to fly as well as possible (according to the
current choice of dynamics model) (Indeed, the E>-
family of algorithms (Kearns & Singh, 2002) and its
extensions (Brafman & Tennenholtz, 2002; Kakade,
Kearns, & Langford, 2003; Kearns & Koller, 1999) pro-
ceed by generating “exploration” policies, which try
to visit inaccurately modeled parts of the state space.
Unfortunately, such exploration policies do not even
try to fly the helicopter well, and thus would almost
invariably lead to crashes.).

The apprenticeship learning algorithms described
above have been used to fly the most advanced
autonomous maneuvers to date. The apprenticeship
learning algorithm of Coates et al. (2008), for exam-
ple, has been used to attain expert level performance on
challenging aerobatic maneuvers as well as entire air-
shows composed of many maneuvers in rapid sequence.
These maneuvers include in-place flips and rolls, tic-
tocs (“Tic-toc” is a maneuver where the helicopter
pitches forward and backward with its nose pointed
toward the sky (resembling an inverted clock pen-
dulum).), and chaos (“Chaos” is a maneuver where
the helicopter flips in-place but does so while con-
tinuously pirouetting at a high rate. Visually, the
helicopter body appears to tumble chaotically while
nevertheless remaining in roughly the same position.)
(see Fig. 3). These maneuvers are considered among the
most challenging possible and can only be performed
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Autonomous Helicopter Flight Using Reinforcement Learning. Figure 3. Snapshot sequence of an autonomous heli-
copter flying a “chaos” maneuver using apprenticeship learning methods. Beginning from top-left and proceeding
left-to-right, top-to-bottom, the helicopter performs a flip while pirouetting counter-clockwise about its vertical axis.
(This maneuver has been demonstrated continuously for as long as 15 cycles like the one shown here)

Autonomous Helicopter Flight Using Reinforcement Learning. Figure 4. Super-imposed sequence of images of auto-

nomous autorotation landings (from Abbeel et al. (2008))

by advanced human pilots. In fact, Coates et al. (2008)
show that their learned controller performance can
even exceed the performance of the expert pilot provid-
ing the demonstrations, putting many of the maneuvers
on par with professional pilots (Fig. 4).

A similar approach has been used in Abbeel et al.
(2008) to perform the first successful autonomous
autorotations. Their aircraft has performed more than
30 autonomous landings successfully without engine
power.

Not only do apprenticeship methods achieve state-
of-the-art performance, but they are among the fastest
learning methods available, as they obviate the need
for arduous hand tuning by engineers. Coates et al.
(2008), for instance, report that entire airshows can be

created from scratch with just 1h of work. This is in
stark contrast to previous approaches that may have
required hours or even days of tuning for relatively
simple maneuvers.

Conclusion

Helicopter control is a challenging control problem and
has recently seen major successes with the applica-
tion of learning algorithms. This Chapter has shown
how each step of the control design process can be
automated using machine learning algorithms for sys-
tem identification and reinforcment learning algo-
rithms for control. It has also shown how apprentice-
ship learning algorithms can be employed to achieve
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expert-level performance on challenging aerobatic
maneuvers when an expert pilot can provide demon-
strations. Autonomous helicopters with control systems
developed using these methods are now capable of
flying advanced aerobatic maneuvers (including flips,
rolls, tic-tocs, chaos, and auto-rotation) at the level of
expert human pilots.
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Synonyms
AODE

Definition

Averaged one-dependence estimators is a Psemi-
naive Bayesian Learning method. It performs clas-
sification by aggregating the predictions of multi-
ple one-dependence classifiers in which all attributes
depend on the same single parent attribute as well as
the class.

Classification with AODE

An effective approach to accommodating violations
of naive Bayes attribute independence assumption is
to allow an attribute to depend on other non-class
attributes. To maintain efficiency it can be desirable to
utilize one-dependence classifiers, such as »Tree Aug-
mented Naive Bayes (TAN), in which each attribute
depends upon the class and at most one other attribute.
However, most approaches to learning with one-
dependence classifiers perform model selection, a pro-
cess that usually imposes substantial computational
overheads and substantially increases variance relative
to naive Bayes.

AODE avoids model selection by averaging the pre-
dictions of multiple one-dependence classifiers. In each
one-dependence classifier, an attribute is selected as
the parent of all the other attributes. This attribute is

called the SuperParent and this type of one-dependence
classifier is called a SuperParent one-dependence esti-
mator (SPODE). Only those SPODEs with SuperParent
x; where the value of x; occurs at least m times are
used for predicting a class label y for the test instance

x = (x1,...,%,). For any attribute value x;,

P(y,x) = P(y,x:)P(x | y, x;).

This equality holds for every x;. Therefore,

_ leignAF(xi)zrn P(y’xi)P(X | y’xi)

P(y,x) = {1<i<nAF(x;)>m} W

where F(x;) is the frequency of attribute value x; in
the training sample. Utilizing (1) and the assumption
that attributes are independent given the class and
the SuperParent x;, AODE predicts the class for x by
selecting

Pl.x) T1 Py lpx). )

I<j<n,j#i

argmax Z

y 1<i<nAF(x;)>m

It averages over estimates of the terms in (1), rather than
the true values, which has the effect of reducing the
variance of these estimates.

Figure 1 shows a Markov network representation of
an example AODE.

As AODE makes a weaker attribute conditional
independence assumption than naive Bayes while still
avoiding model selection, it has substantially lower
»bias with a very small increase in »variance. A num-
ber of studies (Webb, Boughton, & Wang, 2005; Zheng
& Webb, 2005) have demonstrated that it often has
considerably lower zero-one loss than naive Bayes
with moderate time complexity. For comparisons with
other semi-naive techniques, see »semi-naive Bayesian
learning. One study (Webb, Boughton, & Wang, 2005)
found AODE to provide classification accuracy com-
petitive to a state-of-the-art discriminative algorithm,
boosted decision trees.

When a new instance is available, like naive Bayes,
AODE only needs to update the probability esti-
mates. Therefore, it is also suited to incremental
learning.
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Averaged One-Dependence Estimators. Figure 1. A Markov network representation of the SPODEs that comprise an

example AODE
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ment learning

Definition

Average-reward reinforcement learning (ARL) refers to
learning policies that optimize the average reward per
time step by continually taking actions and observing
the outcomes including the next state and the immedi-
ate reward.

Motivation and Background

»Reinforcement learning (RL) is the study of programs
that improve their performance at some task by receiv-
ing rewards and punishments from the environment
(Sutton & Barto, 1998). RL has been quite successful
in automatic learning of good procedures for complex
tasks such as playing Backgammon and scheduling ele-
vators (Crites & Barto, 1998; Tesauro, 1992). In episodic
domains in which there is a natural termination con-
dition such as the end of the game in Backgammon,
the obvious performance measure to optimize is the
expected total reward per episode. But some domains
such as elevator scheduling are recurrent, i.e., do not
have a natural termination condition. In such cases,
total expected reward can be infinite, and we need a
different optimization criterion.

In the discounted optimization framework, in each
time step, the value of the reward is multiplied by a dis-
count factor y < 1, so that the total discounted reward
is always finite. However, in many domains, there is no
natural interpretation for the discount factor y. A natu-
ral performance measure to optimize in such domains is
the average reward received per time step. Although one
could use a discount factor which is close to 1 to approx-
imate average-reward optimization, an approach that
directly optimizes the average reward avoids this addi-
tional parameter and often leads to faster convergence
in practice.

There is significant theory behind average-reward
optimization based on PMarkov decision processes
(MDPs) (Puterman, 1994). An MDP is described by a
4-tuple (S, A, P, r), where S is a discrete set of states and
A is a discrete set of actions. P is a conditional proba-
bility distribution over the next states, given the current
state and action, and r gives the immediate reward for
a given state and action. A policy 7 is a mapping from
states to actions. Each policy 7 induces a Markov pro-
cess over some set of states. In ergodic MDPs, every
policy 7 forms a single closed set of states, and the aver-
age reward per time step of 7 in the limit of infinite
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horizon is independent of the starting state. We call it
the “gain” of the policy 7, denoted by p (), and consider
the problem of finding a “gain-optimal policy,” 7, that
maximizes p (7).

Even though the gain p(7) of a policy 7 is indepen-
dent of the starting state s, the total expected reward in
time ¢ is not. It can be denoted by p(7)t + h(s), where
h(s) is a state-dependent bias term. It is the bias values
of states that determine which states and actions are pre-
ferred, and need to be learned for optimal performance.
The following theorem gives the Bellman equation for
the bias values of states.

Theorem 3  For ergodic MDPs, there exist a scalar p
and a real-valued bias function h over S that satisfy the
recurrence relation

VseS, h(s)= max {r(s,a) + Y P(s']s, a)h(s')} - p.

s'eS
)
Further, the gain-optimal policy u* attains the above
maximum for each state s, and p is its gain.

Note that any one solution to (1) yields an infinite
number of solutions by adding the same constant to all
h-values. However, all these sets of h-values will result
in the same set of optimal policies y*, since the opti-
mal action in a state is determined only by the relative
differences between the values of h.

bad-move

good-move h(1)=0

Average-Reward Reinforcement Learning. Figure 1. A
simple Markov decision process (MDP) that illustrates
the Bellman equation

For example, in Fig. 1, the agent has to select between
the actions good-move and bad-move in state 0. If it
stays in state 1, it gets an average reward of 1. If it stays in
state 2, it gets an average reward of —1. For this domain,
p = 1 for the optimal policy of choosing good-move
in state 0. If we arbitrarily set h(0) to 0, then h(1) = 0,
h(2) =1, and h(3) = 2 satisfy the recurrence relations in
(1). For example, the difference between h(3) and k(1)
is 2, which equals the difference between the immediate
reward for the optimal action in state 3 and the optimal
average reward 1.

Given the probability model P and the immediate
rewards r, the above equations can be solved by White’s
relative value iteration method by setting the h-value of
an arbitrarily chosen reference state to 0 and using syn-
chronous successive approximation (Bertsekas, 1995).
There is also a policy iteration approach to determine
the optimal policy starting with some arbitrary pol-
icy, solving for its values using the value iteration, and
updating the policy using one step look-ahead search.
The above iteration is repeated until the policy con-
verges (Puterman, 1994).

Model-Based Learning

If the probabilities and the immediate rewards are
not known, the system needs to learn them before
applying the above methods. A model-based approach
called H-learning interleaves model learning with Bell-
man backups of the value function (Tadepalli & Ok,
1998). This is an average-reward version of »-adaptive
real-time dynamic programming (Barto, Bradtke, &
Singh, 1995). The models are learned by collecting
samples of state-action-next-state triples (s,a,s’) and
computing P(s'[s,a) using the maximum likelihood
estimation. It then employs the “certainty equivalence
principle” by using the current estimates as the true
value while updating the h-value of the current state
s according to the following update equation derived
from the Bellman equation.

h(s) < riax{r(s,a) + P(s's,a)h(s')} -p. (2

s’eS

One complication in ARL is the estimation of
the average reward p in the update equations dur-
ing learning. One could use the current estimate
of the long-term average reward, but it is distorted
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by the exploratory actions that the agent needs to
take to learn about the unexplored parts of the state
space. Without the exploratory actions, ARL meth-
ods converge to a suboptimal policy. To take this into
account, we have from (1), in any state s and a non-
exploratory action a that maximizes the right-hand
side, p=r(s,a) —h(s) + Xges P(s'|S,a)h(s"). Hence, p
is estimated by cumulatively averaging r — h(s) + h(s'),
whenever a greedy action a is executed in state s result-
ing in state s’ and immediate reward r. p is updated
using the following equation where « is the learning
rate.

p < p+a(r—h(s)+h(s)). (3)

One issue with model-based learning is that the
models require too much space and time to learn as
tables. In many cases, actions can be represented much
more compactly. For example, Tadepalli and Ok (1998)
uses dynamic Bayesian networks to represent and learn
action models, resulting in significant savings in space
and time for learning the models.

Model-Free Learning

One of the disadvantages of the model-based meth-
ods is the need to explicitly represent and learn action
models. This is completely avoided in model-free meth-
ods such as »Q-learning by learning value functions
over state—action pairs. Schwartz’s R-learning is an
adaptation of Q-learning, which is a discounted rein-
forcement learning method, to optimize average reward
(Schwartz, 1993).

The state-action value R(s,a) can be defined as the
expected long-term advantage of executing action a in
state s and from then on following the optimal average-
reward policy. It can be defined using the bias values h
and the optimal average reward p as follows.

R(s,a) =r(s,a) + Y. P(s'|s,a)h(s") —p.  (4)

s’eS

The main difference with Q-values is that instead
of discounting the expected total reward from the next
state, we subtract the average reward p in each time step,
which is the constant penalty for using up a time step.
The h value of any state s can now be defined using the
following equation.

h(s") = maxR(s', u). (5)

Initially all the R-values are set to 0. When action a is
executed in state s, the value of R(s, a) is updated using
the update equation

R(s,a) < (1= B)R(s,a) + p(r + h(s') = p), (6)

where f8 is the learning rate, r is the immediate reward
received, s’ is the next state, and p is the estimate
of the average reward of the current greedy policy.
In any state s, the greedy action a maximizes the
value R(s,a); so R-learning does not need to explic-
itly learn the immediate reward function r(s,a) or the
action models P(s'|s,a), since it does not use them
either for the action selection or for updating the
R-values.

Both model-free and model-based ARL methods
have been evaluated in several experimental domains
(Mahadevan, 1996; Tadepalli & Ok, 1998). When there is
a compact representation for models and can be learned
quickly, the model-based method seems to perform bet-
ter. It also has the advantage of fewer number of tunable
parameters. However, model-free methods are more
convenient to implement especially if the models are
hard to learn or represent.

Scaling Average-Reward Reinforcement
Learning

Just as for discounted reinforcement learning, scaling
issues are paramount for ARL. Since the number of
states is exponential to the number of relevant state
variables, a table-based approach does not scale well.
The problem is compounded in multi-agent domains
where the number of joint actions is exponential in
the number of agents. Several function approximation
approaches, such as linear functions, multi-layer per-
ceptrons (Marbach, Mihatsch, & Tsitsiklis, 2000), local
»linear regression (Tadepalli & Ok, 1998), and tile cod-
ing (Proper & Tadepalli, 2006) were tried with varying
degrees of success.

» Hierarchical reinforcement learning based on the
MAXQ framework was also explored in the average-
reward setting and was shown to lead to significantly
faster convergence. In MAXQ framework, we have a
directed acyclic graph, where each node represents a
task and stores the value function for that task. Usually,
the value function for subtasks depends on fewer state
variables than the overall value function and hence can
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be more compactly represented. The relevant variables
for each subtask are fixed by the designer of the hier-
archy, which makes it much easier to learn the value
functions. One potential problem with the hierarchical
approach is the loss due to the hierarchical constraint
on the policy. Despite this limitation, both model-based
(Seri & Tadepalli, 2002) and model-free approaches
(Ghavamzadeh & Mahadevan, 2006) were shown to
yield optimal policies in some domains that satisfy the
assumptions of these methods.

Applications

A temporal difference method for average reward
based on TD(0) was used to solve a call admis-
sion control and routing problem (Marbach et al.,
2000). On a modestly sized network of 16 nodes,
it was shown that the average-reward TD(0) outper-
forms the discounted version because it required more
careful tuning of its parameters. Similar results were
obtained in other domains such as automatic guided
vehicle routing (Ghavamzadeh & Mahadevan, 2006)
and transfer line optimization (Wang & Mahadevan,
1999).

Convergence Analysis
Unlike their discounted counterparts, both R-Learning
and H-Learning lack convergence guarantees. This is
because due to the lack of discounting, the updates
can no longer be thought of as contraction mappings,
and hence the standard theory of stochastic approx-
imation does not apply. Simultaneous update of the
average reward p and the value functions makes the
analysis of these algorithms much more complicated.
However, some ARL algorithms have been proved con-
vergent in the limit using analysis based on ordinary
differential equations (ODE) (Abounadi, Bertsekas, &
Borkar, 2002). The main idea is to turn to ordinary
differential equations that are closely tracked by the
update equations and use two time-scale analysis to
show convergence. In addition to the standard assump-
tions of stochastic approximation theory, the two time-
scale analysis requires that p is updated at a much slower
time scale than the value function.

The previous convergence results are based on the
limit of infinite exploration. One of the many challenges
in reinforcement learning is that of efficient exploration

of the MDP to learn the dynamics and the rewards.
There are model-based algorithms that guarantee learn-
ing an approximately optimal average-reward policy in
time polynomial in the numbers of states and actions
of the MDP and its mixing time. These algorithms
work by alternating between learning the action mod-
els of the MDP by taking actions in the environ-
ment, and solving the learned MDP using offline value
iteration.

In the “Explicit Explore and Exploit” or E* algo-
rithm, the agent explicitly decides between exploiting
the known part of the MDP and optimally trying to
reach the unknown part of the MDP (exploration)
(Kearns & Singh, 2002). During exploration, it uses
the idea of “balanced wandering,” where the least exe-
cuted action in the current state is preferred until all
actions are executed a certain number of times. In con-
trast, the R-Max algorithm implicitly chooses between
exploration and exploitation by using the principle of
“optimism under uncertainty” (Brafman & Tennenholtz,
2002). The idea here is to initialize the model parame-
ters optimistically so that all unexplored actions in all
states are assumed to reach a fictitious state that yields
maximum possible reward from then on regardless of
which action is taken. The optimistic initialization of the
model parameters automatically encourages the agent
to execute unexplored actions, until the true models and
values of more states and actions are gradually revealed
to the agent. It has been shown that with a probability
atleast 1 — 8, both E*> and R-MAX learn approximately
correct models whose optimal policies have an average
reward e-close to the true optimal in time polynomial
in the numbers of states and actions, the mixing time of
the MDP, %, and %.

Unfortunately the convergence results do not apply
when there is function approximation involved. In the
presence of linear function approximation, the average-
reward version of temporal difference learning, which
learns a state-based value function for a fixed policy, is
shown to converge in the limit (Tsitsiklis & Van Roy,
1999). The transient behavior of this algorithm is simi-
lar to that of the corresponding discounted TD-learning
with an appropriately scaled constant basis function
(Van Roy & Tsitsiklis, 2002). As in the discounted
case, development of provably convergent optimal pol-
icy learning algorithms with function approximation is
a challenging open problem.
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