
B

Backprop

7Backpropagation

Backpropagation

Paul Munro

University of Pittsburgh, Pittsburgh, PA, USA

Synonyms
Backprop; BP; Generalized delta rule

Definition
Backpropagation of error (henceforth BP) is a method

for training feed-forward neural networks see

7Arti�cial Neural Networks. A speci�c implementa-
tion of BP is an iterative procedure that adjusts net-

work weight parameters according to the gradient of

an error measure. �e procedure is implemented by

computing an error value for each output unit, and by

backpropagating the error values through the network.

Characteristics
Feed-Forward Networks

A feed-forward neural network is a mathematical

function that is composed of constituent “semi-linear”

functions constrained by a feed-forward network archi-

tecture, wherein the constituent functions correspond

to nodes (o�en called units or arti�cial neurons) in a

graph, as in Fig. . A feedfoward network architecture

has a connectivity structure that is an acyclic graph; that

is, there are no closed loops.

In most cases, the unit functions have a �nite range

such as [, ]. �us, the network maps RN to [, ]M ,

where N is the number of input values and M is the

number of output units. Let FanIn(k) refer to the set

of units that provide input to unit k, and let FanOut(k)

denote the set of units that receive input from

unit k.

In an acyclic graph, at least one unit has a FanIn

that is the null set. �ese are the input units; the activ-

ity of an input unit is not computed; rather it is set to

a value external to the network (i.e., from the training

data). Similarly, at least one unit has a null FanOut set.

Such units typically represent the output of the network;

i.e., this set of values is the result of the network com-

putation. Intermediate units (o�en called hidden units)

receive input from other units and project outputs to

other computational units.

For the BP procedure, the activity of each unit is

computed in two steps:

Linear step: the activities of the FanIn are each

multiplied by an independent “weight” parameter, to

which a “bias” parameter is added; each computa-

tional unit has a single bias parameter, independent

of the other units. Let this sum be denoted xk for

unit k.

Nonlinear step: �e activity ak of unit k is a dif-

ferentiable nonlinear function of xk. A favorite func-

tion is the logistic a = /( + exp(−x)), because it

maps the range [−∞, +∞] to [, ] and its deriva-

tive has properties conducive to the implementation

of BP.

ak = fk(xk); where xk = bk + ∑

j∈FanIn(k)

wkjsj

Gradient Descent

Derivation of BP is a direct application of the gradient

descent approach to optimization and is dependent on

a de�nition of network error, a function of the actual

network response to a stimulus, r(s) and the targetT(s).
�e twomost common error functions are the summed

squared error (SSE) and the cross entropy error (CE)

(CE error as de�ned here is based on the presumption

that the output values are in the range [, ]. Likewise

Claude Sammut & Geoffrey I. Webb (eds.), Encyclopedia of Machine Learning, DOI ./----,

© Springer Science+Business Media LLC 

 B Backpropagation

Unit k

FanOut (k)

FanIn (k)

Output units

Hidden units

Input units

Standard 3 layer
classification net

General feedforward
net structure

Backpropagation. Figure . Two networks are shown. Input units are shown as simple squares at the bottom of each

figure. Other units are computational (designated by a horizontal line). Left: A standard -layer network. Four input

units project to five hidden units, which in turn project to a single output unit. Not all connections are shown. Such a

network is commonly used for classification tasks. Right: An example of a feed-forward network with four inputs, three

hidden units, and two outputs

for the target values; this is o�en used for classi�cation

tasks, wherein target values are set to the endpoints of

the range,  and ).

ESSE ≡ ∑
i∈Outut
s∈Train

(Ti(s) − ri(s))


ECE≡ ∑
i∈Outut
s∈Train

[Ti(s) ln (ri(s)) − ( − Ti(s)) ln ( − ri(s))]

Each weight parameter, wij (the weight of the connec-

tion from j to i), is updated by an amount propor-

tional to the negative gradient of the errormeasure with

respect to that parameter:

∆wij = −η
∂E

∂wij

,

where the step size, η, modulates the intrinsic tradeo�

between smooth convergence of the weights and the

speed of convergence; in the regime where η is small,

the system is well-behaved and converges smoothly, but

slowly, and for larger η, the systemmay learn some sub-

sets of the training set faster at the expense of smooth

convergence on all patterns in the set. �us, η is also

called the learning rate.

Implementation

Several aspects of the feed-forward network must be

de�ned prior to running a BP program, such as the

con�guration of the hidden units, the initial values of

the weights, the functions they will compute, and the

numerical representation of the input and target data.

�ere are also parameters of the learning algorithm that

must be chosen, such as the value of η and the form of

the error function.

�e weight and bias parameters are set to their ini-

tial values (these are usually random within speci�ed

limits). BP is implemented as an iterative process as

follows:

. A stimulus-target pair is drawn from the training

set.

. �e activity values for the units in the net-

work are computed for all the units in the net-

work in a forward fashion from input to output

(Fig. a).

. �e network output values are compared to the tar-

get and a delta (δ) value is computed for each output

unit based on the di�erence between the target and

the actual output response value.

Backpropagation B 

B
ak

i

Dbi = hdi

d

Activity propagates
forward

Error propagates
backward

Weights are
updated

Errors from FanOut (k)

ak = fk(xk)

xk = bk + Σwkj aj

j ÎFanIn(k)

ek = Σwikdi

i ÎFanOut(k)

Inputs to unit k

¢dk = fk (ak) × ek

aj

Dwij = hdi aj

Backpropagation. Figure . With each iteration of the backprop algorithm, (a) An activity value is computed for every

unit in the network from the input to the output. (b) The network output is compared with the target. The error ek for

output unit k is defined as (Tk − rk). A value δk is computed for each output unit by multiplying ek by the derivative of

the activity function. For hidden units, the error is propagated backward using the weights. (c) The weight parameters

wij are updated in proportion to the product of δi and aj

. �e deltas are propagated backward through the

network using the same weights that were used to

compute the activity values (Fig. b).

. Each weight is updated by an amount proportional

to the product of the downstream delta value and

the upstream activity (Fig. c).

�e procedure can be run either in an online mode or

batch mode. In the online mode, the network param-

eters are updated for each stimulus-target pair. In the

batchmode, theweight changes are computed and accu-

mulated over several iterations without updating the

weights until a large number (B) of stimulus-target pairs

have been processed (o�en, the entire training set),

at which the weights are updated by the accumulated

amounts.

online : ∆wij(t) = ηδi(t)aj(t) ∆bi(t) = ηδi(t)

batch : ∆wij(t + B) =
t+B

∑
s=t−

ηδi(s)aj(s)

∆bi(t + T) =
t−B

∑
s=t+

ηδi(s)

Classification Tasks with BP

�e simplest and most common classi�cation func-

tion returns a binary value, indicating membership in

a particular class. �e most common network archi-

tecture for a task of this kind is the three-layer net-

work of Fig.  (le�), with training values of  and .

For classi�cation tasks, the cross entropy error function

generally gives signi�cantly faster convergence. A�er

training, the network is in test mode or production

mode, and the responses are in the continuous range

[, ]; the response must thus be interpreted. �e value

of the response could be interpreted as a probability or

fuzzy Boolean value. O�en, however, a single threshold

is applied to give a binary answer. A double thresh-

old is sometimes used, with the midrange de�ned as

“uncertain.”

Curve Fitting with BP

A feed-forward network can be trained to approximate

any function, given the su�cient hidden units. �e

range of the output unit(s) must be capable of gen-

erating activity values in the required range. In order

to accommodate an arbitrary range uniformly, a linear

 B Backpropagation

function is advisable for the output units, and the SSE

function is the basis for gradient descent.

The Autoencoder Architecture

�e autoencoder is a network design in which the

target pattern is identical to the input pattern. �e

hidden units are con�gured such that there is a “bot-

tleneck layer” of units that is smaller than the input

layer, through which information �ows; i.e., there are

no connections bypassing the bottleneck. �us, any

information necessary to reconstruct the input pattern

at the output layer must be represented at the bottle-

neck. �is approach has been successfully applied as

an approach to nonlinear dimensionality reduction (e.g.,

Demers & Cottrell, ). It bears notable similarities

and di�erences to linear techniques, such as7principal

components analysis (PCA).

Prediction with BP

�e plain “vanilla” BP propagates input to output with

no explicit representation of time. Several approaches to

processing of temporal patterns have been put forward.

Most prominent among these are:

Time delay neural network. In this approach, the

input stimulus is simply a sample of a time vary-

ing signal. �e input patterns are typically generated

by a sliding window of samples over time or over a

sequence.

7Simple recurrent network (Elman, ). A sequence
of stimulus patterns is presented as input for the net-

work, which has a single hidden layer design.With each

iteration, the input is augmented by a secondary set of

input units whose activity is a copy of the hidden layer

activity from the previous iteration. �us, the network

is able to maintain a representation of the recent history

of network stimuli.

Backpropagation through time (Rumelhart, Hinton,

& Williams, ). A recurrent network (i.e., a cyclic

network) is “unfolded in time” by forming a largemulti-

layer network, in which each layer is a copy of the entire

network shi�ed in time. �us, the number of layers

limits the temporal window available to the network.

Recurrent backpropagation (Pineda, ). An

acyclic network is run with activity propagation and

error propagation, until variables converge. �en the

weights are updated.

Cognitive Modeling with BP

Interest in BP as a training technique for classi-

�ers has waned somewhat since the introduction of

7Support vector machines (SVMs) in the mid s.

However, the in�uence of BP as an approach to model-

ing cognitive processes, including perception, concept

learning, spatial cognition, and language learning,

remains strong. Analysis of hidden unit representations

(e.g., using clustering techniques) has given insight into

plausible intermediate processes that may underlie cog-

nitive phenomena. Also,many cognitivemodels trained

with BP have exhibited time courses consistent with

stages of human learning.

Biological Inspiration and Plausibility

�e “connectionist” approach to modeling cognition is

based on “neural network” models, which have been

touted as “biologically inspired” since their inception.

�e similarities and di�erences between connectionist

architectures and living brains have been exhaustively

debated. Like the brain, the models consist of elements

that are extremely limited, computationally. Compu-

tational power is derived by several units in network

architecture. However, there are compelling di�erences

as well. For example, the temporal dynamics in bio-

logical neurons is far more complex than the simple

functions used in connectionist networks. It remains

unclear what level of neurobiological detail is relevant

to understand the cognitive functions.

Shortcomings of BP

�e BP method is notorious for convergence problems.

An inherent problem of gradient descent approaches to

optimization is the issue of locally optimal values. Seek-

ing a minimum value be heading downhill is like water

running downhill. Not all water reaches the lowest point

(sea level). Water that �ows into a mountain lake has

landed in a local minimum, a region that is bounded by

higher ground.

Even when BP converges to a global minimum (or a

local minimum that is “good enough”), it is sometimes

very slow.�e convergence properties of BP depend on

the learning rate and random factors, such as the initial

weight and bias values.

Another di�culty with BP is the selection of a net-

work structure. �e number of hidden units and the

Basic Lemma B 

B

interconnectivity among them has a strong in�uence on

both the generalization performance and the conver-

gence time. Since the nature of this in�uence is poorly

understood, the design of the network is le� to guess-

work. �e standard approach is to use a single hidden

layer (as in Fig. , le�), which has the advantage of

relatively fast convergence.

History

�e idea of training a multilayered network using error

propagation was originated by Frank Rosenblatt (,

). However, he was unable to apply gradient descent

because he was using linear threshold functions that

were not di�erentiable; therefore, the technique of gra-

dient descent was unavailable. He developed a tech-

nique known as the perceptron learning rule that is

only applicable to two layer networks (no hidden units).

Without hidden units, the computational power of the

network is severely reduced. Work in the �eld virtually

stopped with the publication of Perceptrons (Minsky &

Papert, ). �e backpropagation procedure was �rst

published by Werbos (), but did not receive signi�-

cant recognition until it was put forward by Rumelhart

et al. ().

Cross References
7Arti�cial Neural Networks

Recommended Reading
Demers, D., & Cottrell, G. (). Non-linear dimensionality reduc-

tion. In S. J. Hanson, J. D. Cowan, & C. L. Giles (Eds.), Advances

in neural information processing systems (Vol. ). SanMateo, CA:

Morgan Kaufmann.

Elman, J. (). Finding structure in time. Cognitive Science, ,

–.

Minsky, M. L., & Papert, S. A. (). Perceptrons. Cambridge, MA:

MIT Press.

Pineda, F. J. (). Recurrent backpropagation and the dynamical

approach to adaptive neural computation. Neural Computation,

, –.

Rosenblatt, F. (). The perceptron: A probabilistic model for

information storage and organization in the brain. Psychological

Review, , –.

Rosenblatt, F. (). Principles of statistical neurodynamics.

Washington, DC: Spartan.

Werbos, P. (). Beyond regression: New tools for prediction

and analysis in the behavioral sciences. Ph.D. thesis, Harvard

University, Cambridge.

Bagging

Bagging is an 7ensemble learning technique. �e
name “Bagging” is an acronym derived from Bootstrap

AGGregatING. Each member of the ensemble is con-

structed from a di�erent training dataset. Each dataset

is a 7bootstrap sample from the original. �e models
are combined by a uniform average or vote. Bagging

works best with 7unstable learners, that is those that
produce di�ering generalization patterns with small

changes to the training data. Bagging therefore tends

not to work well with linear models. See 7ensemble
learning for more details.

Bake-Off

Definition
Bake-o� is a disparaging term for experimental eval-

uation of multiple learning algorithms by a process of

applying each algorithm to a limited set of benchmark

problems.

Cross References
7Algorithm Evaluation

Bandit Problem with Side
Information

7Associative Reinforcement Learning

Bandit Problem with Side
Observations

7Associative Reinforcement Learning

Basic Lemma

7Symmetrization Lemma

 B Basket Analysis

Basket Analysis

Hannu Toivonen

University of Helsinki, Helsinki, Finland

Synonyms
Market basket analysis

Definition
�e goal of basket analysis is to utilize large volumes

of electronic receipts, stored at the checkout terminals

of supermarkets, for better understanding of customer

behavior.

While many forms of learning and mining can

be applied to market baskets, the term usually refers

to some variant of 7association rule mining. In the
basic setting, each market basket constitutes an exam-

ple essentially de�ned by the set of purchased products.

Association rules then identify sets of items that tend

to be bought together. A classical, anecdotal discov-

ery from supermarket data is that “if a basket contains

diapers then it o�en also contains beer.” �is example

illustrates several potential bene�ts of market basket

analysis by association rules: simplicity and under-

standability of the results, actionability of the results,

and a form of nonsupervised approach where the

consequent of the rule has not been �xed by the user.

Association rules are o�en found with the7Apriori
algorithm, and are based on7frequent itemsets.

Cross References
7Apriori Algorithm
7Association Rule
7Frequent Itemset
7Frequent Pattern

Batch Learning

Synonyms
O�ine Learning

Definition
A batch learning algorithm accepts a single input that is

a set or sequence of observations. �e algorithm pro-

duces its 7model, and does no further learning. Batch
learning stands in contrast to7online learning.

Baum–Welch Algorithm

�e Baum–Welch algorithm is used for computing

maximum likelihood estimates and posterior mode

estimates for the parameters (transition and emission

probabilities) of a HMM, when given only output

sequences (emissions) as training data.

�e Baum–Welch algorithm is a particular instan-

tiation of the expectation-maximization algorithm,

suited for HMMs.

Bayes Adaptive Markov Decision
Processes

7Bayesian Reinforcement Learning

Bayes Net

7Bayesian Network

Bayes Rule

Geoffrey I. Webb

Monash University

Definition
Bayes rule provides a decomposition of a conditional

probability that is frequently used in a family of learning

techniques collectively called Bayesian Learning. Bayes

rule is the equality

P(z ∣w) =
P(z)P(w ∣ z)

P(w)
()

P(w) is called the prior probability, P(w ∣ z) is called the

posterior probability, and P(z ∣w) is called the likelihood.

Discussion
Bayes rule is used for two purposes.�e �rst is Bayesian

update. In this context, z represents some new informa-

tion that has become available since an estimate P(w)

Bayesian Methods B 

B

was formed of some hypothesis w. �e application of

Bayes’ rule enables a new estimate of the probability of

w (the posterior probability) to be calculated from esti-

mates of the prior probability, the likelihood and P(z).

�e second common application of Bayes’ rule is for

estimating posterior probabilities in probabilistic learn-

ing, where it is the core of7Bayesian networks,7naïve
Bayes, and7semi-naïve Bayesian techniques.
While Bayes’ rule may initially appear mysterious, it

is readily derived from the basic principle of conditional

probability that

P(w ∣ z) = P(w, z)P(z) ()

As

P(w, z) =
P(w)P(w, z)

P(w)
()

and
P(w, z)

P(w)
= P(z ∣w), ()

Bayes’ rule (Eq. ) follows by simple substitution of

Eq. () into Eq. () and then of the result into Eq. ().

Cross References
7Bayesian Methods
7Bayesian Network
7Naïve Bayes
7Semi-Naïve Bayesian Learning

Bayesian Methods

Wray Buntine

NICTA, Canberra, Australia

Definition
�e two most important concepts used in Bayesian

modeling are probability and utility. Probabilities are

used to model our belief about the state of the world

and utilities are used tomodel the value to us of di�erent

outcomes, thus to model costs and bene�ts. Probabili-

ties are represented in the form of p(x∣C), whereC is the

current known context and x is some event(s) of inter-

est from a space χ. �e le� and right arguments of the

probability function are in general propositions (in the

logical sense). Probabilities are updated based on new

evidence or outcomes y using Bayes rule, which takes

the form

p(x∣C, y) =
p(x∣C)p(y∣x,C)

p(y∣C)
,

where χ is the discrete domain of x. More generally, any

measurable set can be used for the domain χ. An inte-

gral or mixed sum and integral can replace the sum. For

a utility function u(x) of some event x, for instance the

bene�t of a particular outcome, the expected value of

u() is

Ex∣C[u(x)] = ∑
x∈X

p(x∣C)u(x).

One then estimates the expected utility Ex∣C,y[u(x)]

based on di�erent evidence, actions or outcomes y. An

action is taken tomaximize this expected utility, appeal-

ing to the principle ofmaximum expected utility (MEU).

A common application of this principle is recursive: one

should take the action now that will maximize utility in

the future, assuming all future actions are also taken to

maximize utility.

Motivation and Background
In modeling a problem, primarily, one considers an

interrelated space of events or states, actions, and out-

comes. Events describe the state of the world, outcomes

are also sometimes considered events but they are spe-

cial in that one directly obtains from them costs or

bene�ts. Actions allow one to in�uence the world. Some

actions may instigate tests and thus also help measure

the state of the world to reduce uncertainty. Some prob-

lems may be dynamic in that a sequence of actions and

outcomes are considered and the resulting changes in

states modeled.

�e Bayesian approach is a modeling methodol-

ogy that provides a principled approach of how to

reason and act in the context of uncertainty and a

dynamic environment. In the approach, probabilities

are used to model all forms of belief or proportions

about events and states, and then utilities are used

to model the costs and bene�ts of any actions taken.

An explicit assumption is that these probabilities and

utilities can be adequately elicited and precisely mod-

eled for the problem. An implicit assumption is that

the computation required – recursive evaluation of

 B Bayesian Methods

possibly nested integrals and sums (over domain vari-

ables) – can be done quickly enough so that the compu-

tation itself does not become a signi�cant factor in the

costs considered.

�e Bayesian approach is named a�er Rev. �omas

Bayes, whose work was contributed to the Royal Society

in  a�er his death, although it was independently

more generally presented as a theory by Laplace in .

�e �eld was subsequently developed into a �eld of

statistics, inference and decision theory by a stream of

authors in the s including Je�reys (Bernardo and

Smith, ). �e �eld of statistics was dominated by

the frequentist school during the s, and for a time

Bayesian methods were considered controversial. Like

the di�erent schools of theory in machine learning,

these statistical approaches now coexist.

�e Bayesian approach can be justi�ed by axiomatic

prescriptions of how a rational agent should reason and

act, and by appeal to principles of consistency. In the

context of learning, probabilities are used to infer mod-

els of the problem of interest, and then utilities are

used to recommend predictions or analysis based on the

models.

Theory
Basic Theory

First, consider de�nitions, the di�erent kinds of proba-

bility, the process of reasoning (about probabilities), and

making decisions.

Basic de�nitions: Probabilities are represented in the

form of p(x∣C), where C is the current known context

and x is some event(s) of interest. It is su�cient to place

in C only terms relevant to x and ignore terms assumed

by default. Moreover, both x and C must have well-

de�ned events. For instance, x = “John is tall” is not

considered a well-de�ned event since the word “tall” is

not precise. One would instead replace it with some-

thing like x = “John is greater than  foot tall” or x =

“Julie said John is tall.”

An important functional used with probabilities

is the expected value. For a function f (x) of some

event x from a space χ, the expected value of f () is

Ex∈χ[f (x)].

Utility is used to measure value or relative satis-

faction, and is usually represented as a function on

outcomes. Costs are negative utility and bene�ts are

positive. Utilities should be additive in worth, and are

o�en practically interpreted in monetary units. Strictly

speaking, the value of money is nonlinear (for most

people,  billion dollars is not signi�cantly better than

 billion dollars), so it is not a correct utility measure.

However, it is adequate when the range of �nancial

transactions expected is reasonable.

Expected utility, which is the expected value of

the utility function, is the fundamental quantity

assessedwith Bayesianmethods. Some scenarios are the

following:

Prediction: For prediction problems, the outcome is the

“true” value, and the utility is sometimes the mean

square error or the absolute error. In data mining,

the choices are much richer, see7Model Evaluation.
Diagnosis:�e outcome is the “true” diagnosis, and util-

ity is made up of the di�ering costs of treatment,

mistreatment, and delay or nontreatment, as well as

any bene�t from correct diagnosis.

Game playing: �e utility comes from the eventual out-

come of the game, each player has their own utility

and the state of the game constantly changes as plays

are made.

In Bayesian machine learning, we usually take utilities

as a given, and themajority of the work revolves around

evaluating and estimating probabilities andmaximizing

of expected utility. In some ranking tasks and gener-

alized agent learning, the utilities themselves may be

poorly understood.

Belief and proportions: Some probabilities corre-

spond to proportions that exist in the real world, such as

the proportion of school children in the general popula-

tion of a given state.�ese real proportions can be mea-

sured by counting or sampling, and they are governed

by Kolmogorov’s Axioms for probability, including the

probability of certainty is  and the probability of a dis-

junction of mutually exclusive events is the sum of the

probabilities of the individual events.�is kind of prob-

ability is used in the Frequentist School that only con-

siders long term average proportions obtained from a

series of independent and identical experiments. �ese

proportions can be model parameters one wishes to

reason about.

Probabilities can also represent beliefs. For instance,

in , one could have had a belief about the event that

Bayesian Methods B 

B

George Bush would win the  Presidential Election

in the USA. �is event is unique and has only one out-

come, so the frequentist notion cannot be justi�ed, i.e.,

there is no long-term sequence of di�erent  presi-

dential elections with George Bush. Beliefs are usually

considered to be subjective, in that they are speci�c to

each agent, re�ecting their sum of unique experiences,

and the unique context in which the event in question

occurs.

To better understand the role beliefs play in

Bayesian methods, also see7Prior Probabilities.

Reasoning: A stylized version of probabilistic reasoning

considers an event of interest one is reasoning about,

x, and evidence, y, one may obtain. Typical scenarios

are

Learning: x = (Θ,M) are parametersΘ of a model from
familyM, and y = D is a set of dataD = {d, . . . ,dN}.

So one considers p(Θ,M∣D,C) versus p(Θ,M∣C).

Diagnosis: x a disease or condition, and y is a set of

observable symptoms or diagnostic tests. One might

choose a test y that maximizes the expected utility.

Hypothesis testing: x is a hypothesis H and y is some

sequence of evidence E,E, . . . ,En, so we consider

p(H∣E,E, . . . ,En) and hope it is su�ciently high.

Di�erent probabilities are then considered:

p(x∣C):�e prior probability for event x, called the base-

rate in some contexts.

p(y∣C): �e prior probability for evidence y. Once the

evidence has been seen, this is also used as a proxy

for the quality of the model.

p(x∣y,C): �e posterior probability for event x given

evidence y.

p(y∣x,C): �e likelihood for the event x based on evi-

dence y.

In the case of diagnostic reasoning, the prior p(x∣C) is

usually the base rate for the disease or condition, and

can be got from the population base rate.

In the case of learning, however, the prior p(Θ,M∣C)

represents a prior distribution on parameters about

which we may well be largely ignorant, or at least

may not be able to readily elicit from experts. For

instance, the proportion θD might be the proba-

bility of a new drug slowing the onset of AIDS

related diseases. At the moment of initial testing,

θD is unknown so one places a probability distribu-

tion over θD, which represents one’s belief about the

proportion.

�ese priors are second-order probabilities, beliefs

about proportions, and they are the most challeng-

ing quantity modeled with the Bayesian approach.

�ey can be a function on thousands of parame-

ters, and can be critical in the success of applica-

tions. �ey are also challenging from the philosophical

perspective.

Decision theory: �e term Bayesian inference is usu-

ally reserved for the process of manipulating priors

and posteriors, computing probabilities, and comput-

ing expected values. Bayesian decision theory describes

the process of formulating utilities and then evaluat-

ing the (sometimes) recursive maximum expected util-

ity formula, such as in game playing, or interactive

advertising.

In Bayesian theory one takes the action that max-

imizes expected utility (MEU) in the current context,

sometimes referred to as the expected utility hypothesis.

Decision theory places this in a dynamic context and

says each action should be taken to maximize expected

future utility. �is is de�ned recursively, so taken to the

limit this implies the optimal future actions need to be

determined before the optimal current action can be got

via MEU.

Justifications

�is section covers basic mathematical justi�cations

of the theory. �e best general reference for this is

Bernardo and Smith (). Additional discussion of

prior probabilities appears in7Prior Probabilities.
Note that Bayesian theory, with its acceptance as a

branch of mainstream statistics, is widely accepted for

the following reasons:

Application: It has extensive support through practical

success, o�en times by clever combination of prior

knowledge and statistical and computational �nesse.

Explanation: It provides a convenient common lan-

guage in which a variety of other theoretical

approaches can be represented. For instance PAC,

MDL methods, penalized likelihood methods, and

the maximum margin approach all �nd good inter-

pretations within the Bayesian framework.

 B Bayesian Methods

Composition: It allows di�erent reasoning tasks to

be composed in a coherent way. With a proba-

bilistic framework, the components can interop-

erate in a coherent manner, so that information

may �ow bidirectionally between components via

probabilities.

Composition of processing steps in intelligent sys-

tems is a key application for Bayesian methods. For

instance, natural language and vision recognition tasks

can sometimes be broken down into a processing

chain (for instance, doing a named entity recogni-

tion step before a dependency parsing step), but these

components rarely work conclusively and unambigu-

ously. By attaching probabilities to the output of compo-

nents, and allowing probabilistic inputs, the uncertainty

inherent in individual steps can be propagated and

managed.

�eoretical justi�cations also exist to support each

of the di�erent components, probabilities, and utilities.

�ese justi�cations are based on the concept of nor-

mative axioms, axioms that do not describe reasoning

but rather prescribe basic principles it should follow.

�e axioms try to capture principles such as coherence

and consistency in a quantitative manner. �ese vari-

ous justi�cations have their reported shortcomings and

a rich literature exists arguing about the details and pos-

tulating new variants. �ese axiomatic justi�cations are

supportive of the Bayesian approach, but they are not

irrefutable.

Justifying probabilities: In the Bayesian approach,

beliefs and proportions are given the same mathemati-

cal treatment.

One set of arguably controversial justi�cations for

this revolve around betting (Bernardo and Smith, ,

Sect. ..). Someone’s subjective beliefs about speci�c

events, such as signi�cant economic and political events

(or horse races), are claimed to be measurable by o�er-

ing them a series of options or bets. Moreover, if their

beliefs do not behave like proportions, then a clever

bookmaker can use a so-called Dutch book to consis-

tently pro�t from them.

An alternative scheme for justifying probability by

Cox is based on normative axioms that beliefs should

follow. For instance, one controversial axiom by Cox is

that belief about a single event should be represented

by a single real number. �ese axioms are presented by

Jaynes as rules for a robot (Jaynes, ), and as rules

for intelligent systems by Horvitz et al. ().

Justifying decision theory: Another scheme again

using normative axioms, by von Neumann and

Morgenstern, is used to justify the use of utilities. �is

scheme assumes probabilities are the basis of infer-

ence about uncertainty. A di�erent set of normative

axiomatic schemes have been developed that justify the

use of probabilities and utilities together under MEU,

the best known is by Savage but others exist (Bernardo

and Smith, ).

Bayesian Computation

�e �rst part of this article has been devoted to a brief

overview of the Bayesian approach. Computation for

Bayesian inference is an extensive �eld itself. Here we

review the basic aspects as a pointer to the literature.

�is is an active area of research in machine learning,

statistics, and amany applied arti�cial intelligence com-

munities such as natural language processing, image

analysis, and others.

In general, in Bayesian reasoning one wants to esti-

mate posterior average parameter values, or their aver-

age variance, or some other averaged quantity, then

general formulas are given by (in the case of continuous

parameters)

Θ = EΘ∣D,M,C[Θ] = ∫
Θ
Θp(Θ∣D,M,C)dΘ

var(Θ) = EΘ∣D,M,C [(Θ − Θ)]

Marginal likelihood: A useful quantity to assist in

evaluating results, and a worthy score in its own right

is the marginal likelihood, in the continuous parameter

case found from the likelihood p(D∣Θ,M,C) by taking
an average

p(D∣M,C) = ∫
Θ
p(Θ∣M,C)p(D∣Θ,M,C)dΘ.

�is is also called the normalizing constant due to its

occurrence in the posterior formula

p(Θ∣D,M,C) =
p(Θ∣M,C)p(D∣Θ,M,C)

p(D∣M,C)
!.

It is generally di�cult to estimate because of the multi-

dimensional integrals and sums.

Bayesian Methods B 

B

Exponential family distributions: Standard probabil-

ity distributions covered inmathematical statistics, such

as the 7Gaussian Distribution, the Poisson, Dirichlet,
Gamma, andWishart, have very convenient mathemat-

ical properties that make Bayesian estimation easier.

With these distributions, one computes statistics, called

su�cient statistics, such as a mean and sum of squares

(for the Gaussian), and then parameter estimation fol-

lows with a function inverse on a concave function.

�is is the basis of7linear regression,7principal com-
ponents analysis, and some 7decision tree learning
methods, for instance. All good texts on mathematical

statistics cover these in detail. Note the marginal likeli-

hood is o�en computable in closed form for exponential

family distributions.

Graphical models: 7Graphical Models are a general
family of of probabilistic models formed by compos-

ing graphs over variables. �ey work particularly well

with exponential family distributions, and allow a rich

variety of popular machine learning and data mining

methods to be represented and manipulated. Graphi-

cal models allow complex models to be composed from

simpler components and provide a family of algorithm

schemes for developing inference and learningmethods

that operate on them. �ey have become the de facto

standard for presenting (suitable decomposed) models

and algorithms in the machine learning community.

Maximum a posterior estimation: known as MAP,

is usually the simplest form of parameter estimation

that could be called Bayesian. It also corresponds to a

penalized or regularized maximum likelihood method.

Given the posterior for a stylized learning problem

of the previous section, one �nds the parameters Θ
that maximizes the posterior p(Θ,M∣D,C), which can
be conveniently done without computing the marginal

likelihood above, so

Θ̂M P = argmax
Θ

log p(Θ,D∣M,C),

where the log probability can be broken down as a prior

and a likelihood term

log p(Θ,D∣M,C) = log p(Θ∣M,C) + log p(D∣Θ,M,C).

�e Laplace approximation: When the posterior is

well behaved, and there is a large amount of data, the

posterior is focused around a vanishing small region in

parameter space of diameterO(/
√

(N)). If this occurs

away from the boundary of the parameter space, then

one can make a second-order Taylor expansion of the

log. posterior at the MAP point and the result is a

Gaussian approximation to the posterior.

log p(D,Θ∣M,C) ≈ log p(D, Θ̂M P∣M,C)+



(Θ̂M P−Θ)

T

d log p(D,Θ∣M,C)
dΘdΘT

∣
Θ=Θ̂M P

(Θ̂M,P − Θ) .

From this, one can approximate integrals such as the

marginal likelihood p(D∣M,C). �is is known as the
Laplace approximation, the name of the correspond-

ing general method used for the asymptotic expansion

of integrals. In general, this is a poor approximation,

but it serves to aid our understanding of parame-

ter estimation (MacKay,  Chaps.  and ), and

is the approximate basis for some model selection

criteria.

Latent variable models: Latent variables are data that

are hidden and thus never observed in the evidence.

However, their existence is postulated as a signi�cant

component of the model. For instance, in 7Clustering
(an unsupervised method) and �nite mixture models

generally, one assumes each data point has a hidden

class label, thus the Bayesian model of clustering is a

simple kind of latent variable model.

7Markov chain Monte Carlo methods: �e most

general form of reasoning and estimation available are

theMarkov chain Monte Carlo (MCMC) methods. �e

MCMC methods couple two processes: �rst, they use

Monte Carlo or simulation methods to estimate the

integral, and second they use a Markov Chain to sam-

ple, so sampling is sequentially (Markovian) based, and

samples are not independent.

Simulation methods generally use the functional

form of p(Θ,D∣M,C) so we do not need to compute
the marginal likelihood. Hence, given a set of I samples

{Θ, . . . ,ΘI} the expected value is approximated with a

weighted average

Θ ≈


I

I

∑
i=

wiΘi.

�e simplest case is where the samples are made inde-

pendently according to the posterior itself and then the

 B Bayesian Methods

weights wi = , �is is called the ordinary Monte Carlo

(OMC) method, but it is not o�en usable in practice

because e�cient multidimensional posterior samplers

rarely exist. Alternatively, one can sample according to

a Markov Chain, Θi+ ∼ q(Θi+∣Θi), so each Θi+ is

conditionally dependent on Θi. So while samples are

not independent, as long as the long run distribution of

the Markov chain is the same as the posterior, the same

approximation formula holds. �ere are a rich variety

of MCMCmethods, and this forms one of the key areas

of current research.

Gibbs sampling: �e simplest kind of MCMC

method samples each dimension (or sub-vector) in

turn. Suppose the parameter vector has K real com-

ponents, Θ = (θ, . . . , θK). Sampling a complete Θ
in one go is not generally possible given just a func-

tional form of the posterior p(Θ∣D,M,C) but given no
computable form for the normalizing constant. Gibbs

samplingworks in the one-dimensional case where nor-

malizing bounds can be obtained and sampling tricks

used. �e conditional posterior of θk is given by

p(θk∣(θ, . . . , θk−, θk+, . . . , θK),D,M,C),

and this is usually easier to sample from.

�e Gibbs (and MCMC) sample Θi+ can be drawn

given the previous sample Θi by progressively resam-

pling each dimension in turn and so slowly updating the

full vector:

. Sample θ i+, according to p(θ∣θ i,, . . . , θ i,K ,

D,M,C).
. . .

k. Sample θ i+,k according to p(θ∣θ i+,, . . . , θ i+,k−,

θ i,k+, . . . , θ i,K ,D,M,C).
. . .

K. Sample θ i+,k according to p(θK ∣θ i+,, . . . , θ i+,K−,

D,M,C).

In samping terms, this method is no more successful

than coordinate-wise ascent is as a primitive greedy

search method: it is supported by theoretical results but

can be very slow to converge.

Variational approximations: When the function you

seek to optimize or average over presents di�culty,

perhaps it is highly multimodal, then one option is

to change the function itself, and replace it with a

more readily approximated function. Variational meth-

ods provide a general principle for doing this safely.�e

general principle uses variational calculus, which is the

calculus over functions, not just variables. Variational

methods are a very general approach that can be used

to develop a broad range of algorithms (Wainwright and

Jordan, ).

Nonparametricmodels:�e above discussion implic-

itly assumed the model has a �xed �nite parameter

vector Θ. If one is attempting to model a regression
function, or a language grammar, or image model of

unknown a priori structural complexity, then one can-

not know the dimension ahead of time. Moreover,

as in the case of functions, the dimension cannot

always be �nite. �e 7Bayesian Nonparametric Mod-
els address this situation, and are perhaps the most

important family of techniques for general machine

learning.

Cross References
7Bayes Rule
7Bayesian Nonparametric Models
7Markov Chain Monte Carlo
7Prior Probability

Recommended Reading
A good introduction to the problems of uncertainty and philosophi-

cal issues behind the Bayesian treatment of probability is in Lindley

(). From the statistical machine learning perspective, a good

introductory text is by MacKay () who carefully covers infor-

mation theory, probability, and inference but not so much statistical

machine learning. Another alternative introduction to probabilities

is the posthumously completed and published work of Jaynes ().

Discussions from the frequentist versus Bayesian battlefront can

be found in works such as (Rosenkrantz and Jaynes, ), and in

the approximate artificial intelligence versus probabilistic battle-

front in discussion articles such as Cheeseman’s () and the many

responses and rebuttals. It should be noted that it is the continued

success in applications that have really led these methods into the

mainstream, not the entertaining polemics.

Good mathematical statistics text books, such as Casella and

Berger () cover the breadth of statistical methods and therefore

handle basic Bayesian theory. A more comprehensive treatment is

given in Bayesian texts such as Gelman et al. ().

Most advanced statistical machine learning text books cover

Bayesian methods, but to fully understand the subtleties of prior

beliefs and Bayesian methodology one needs to view more advanced

Bayesian literature. A detailed theoretical reference for Bayesian

methods is Bernardo and Smith ().

Bernardo, J., & Smith, A. (). Bayesian theory. Chichester: Wiley.

Casella, G., & Berger, R. (). Statistical inference (nd ed.). Pacific

Grove: Duxbury.

Bayesian Nonparametric Models B 

B

Cheeseman, P. (). An inquiry into computer understanding.

Computational Intelligence, (), –.

Gelman, A., Carlin, J., Stern, H., & Rubin, D. (). Bayesian data

analysis (nd ed.). Boca Raton: Chapman & Hall/CRC Press.

Horvitz, E., Heckerman, D., & Langlotz, C. (). A framework for

comparing alternative formalisms for plausible reasoning. Fifth

National Conference on Artificial Intelligence, Philadelphia,

pp. –.

Jaynes, E. (). Probability theory: the logic of science. New York:

Cambridge University Press.

Lindley, D. (). Understanding uncertainty. Hoboken: Wiley.

MacKay, D. (). Information theory, inference, and learning algo-

rithms. Cambridge: Cambridge University Press.

Rosenkrantz, R. (Ed.). (). E.T. Jaynes: papers on probability,

statistics and statistical physics. Dordrecht: D. Reidel.

Wainwright, M. J., & Jordan, M. I. (). Graphical models,

exponential families, and variational inference. Hanover: Now

Publishers.

Bayesian Model Averaging

7Learning Graphical Models

Bayesian Network

Synonyms
Bayes net

Definition
A Bayesian network is a form of directed 7graphical
model for representing multivariate probability

distributions.

�e nodes of the network represent a set of ran-

dom variables, and the directed arcs represent causal

relationships between variables. �e Markov property

is usually required: every direct dependency between

a possible cause and a possible e�ect has to be shown

with an arc. Bayesian networks with the Markov prop-

erty are called I-maps (independence maps). If all arcs

in the network correspond to a direct dependence on

the system being modeled, then the network is said to

be aD-map (dependence-map). Each node is associated

with a conditional probability distribution, that quanti-

�es the e�ects the parents of the node, if any, have on

it. Bayesian support various forms of reasoning: diag-

nosis, to derive causes from symptoms, prediction, to

derive e�ects from causes, and intercausal reasoning, to

discover the mutual causes of a common e�ect.

Cross References
7Graphical Models

Bayesian Nonparametric Models

Peter Orbanz, Yee Whye Teh

Cambridge University, Cambridge, UK
University College London, London, UK

Synonyms
Bayesian methods; Dirichlet process; Gaussian pro-

cesses; Prior probabilities

Definition
A Bayesian nonparametric model is a Bayesian model

on an in�nite-dimensional parameter space.�eparam-

eter space is typically chosen as the set of all possible

solutions for a given learning problem. For example,

in a regression problem, the parameter space can be

the set of continuous functions, and in a density esti-

mation problem, the space can consist of all densities.

A Bayesian nonparametric model uses only a �nite sub-

set of the available parameter dimensions to explain a

�nite sample of observations, with the set of dimensions

chosen depending on the sample such that the e�ective

complexity of the model (as measured by the number

of dimensions used) adapts to the data. Classical adap-

tive problems, such as nonparametric estimation and

model selection, can thus be formulated as Bayesian

inference problems. Popular examples of Bayesian non-

parametricmodels includeGaussian process regression,

in which the correlation structure is re�ned with grow-

ing sample size, and Dirichlet process mixture models

for clustering, which adapt the number of clusters to the

complexity of the data. Bayesian nonparametric models

have recently been applied to a variety ofmachine learn-

ing problems, including regression, classi�cation, clus-

tering, latent variable modeling, sequential modeling,

image segmentation, source separation, and grammar

induction.

 B Bayesian Nonparametric Models

Motivation and Background
Most ofmachine learning is concerned with learning an

appropriate set of parameters within a model class from

7training data. �e meta-level problems of determin-
ing appropriate model classes are referred to as model

selection or model adaptation. �ese constitute impor-

tant concerns for machine learning practitioners, not

only for avoidance of over-�tting and under-�tting, but

also for discovery of the causes and structures underly-

ing data. Examples of model selection and adaptation

include selecting the number of clusters in a cluster-

ing problem, the number of hidden states in a hidden

Markovmodel, the number of latent variables in a latent

variable model, or the complexity of features used in

nonlinear regression.

Nonparametric models constitute an approach to

model selection and adaptation where the sizes of mod-

els are allowed to growwith data size.�is is as opposed

to parametric models, which use a �xed number of

parameters. For example, a parametric approach to den-

sity estimation would be to �t a Gaussian or a mixture

of a �xed number of Gaussians by maximum likeli-

hood. A nonparametric approach would be a Parzen

window estimator, which centers a Gaussian at each

observation (and hence uses one mean parameter per

observation). Another example is the support vector

machine with a Gaussian kernel. �e representer the-

orem shows that the decision function is a linear com-

bination of Gaussian radial basis functions centered at

every input vector, and thus has a complexity that grows

with more observations. Nonparametric methods have

long been popular in classical (non-Bayesian) statistics

(Wasserman, ). �ey o�en perform impressively

in applications and, though theoretical results for such

models are typically harder to prove than for paramet-

ric models, appealing theoretical properties have been

established for a wide range of models.

Bayesiannonparametricmethods provide aBayesian

framework for model selection and adaptation using

nonparametric models. A Bayesian formulation of non-

parametric problems is nontrivial, since a Bayesian

model de�nes prior and posterior distributions on a

single �xed parameter space, but the dimension of the

parameter space in a nonparametric approach should

change with sample size. �e Bayesian nonparametric

solution to this problem is to use an in�nite-dimensional

parameter space, and to invoke only a �nite subset of

the available parameters on any given �nite data set.

�is subset generally grows with the data set. In the

context of Bayesian nonparametric models, “in�nite-

dimensional” can therefore be interpreted as “of �nite

but unbounded dimension.” More precisely, a Bayesian

nonparametric model is a model that () constitutes a

Bayesian model on an in�nite-dimensional parameter

space and () can be evaluated on a �nite sample in a

manner that uses only a �nite subset of the available

parameters to explain the sample.

We make the above description more concrete in

the next section when we describe a number of stan-

dard machine learning problems and the correspond-

ing Bayesian nonparametric solutions. As we will see,

the parameter space in () typically consists of func-

tions or of measures, while () is usually achieved by

marginalizing out surplus dimensions over the prior.

Random functions and measures and, more gener-

ally, probability distributions on in�nite-dimensional

random objects are called stochastic processes; exam-

ples that we will encounter include Gaussian pro-

cesses, Dirichlet processes, and beta processes. Bayesian

nonparametric models are o�en named a�er the

stochastic processes they contain. �e examples are

then followed by theoretical considerations, includ-

ing formal constructions and representations of the

stochastic processes used in Bayesian nonparametric

models, exchangeability, and issues of consistency and

convergence rate. We conclude this chapter with future

directions and a list of literature available for reading.

Examples
Clustering with mixture models. Bayesian nonparamet-

ric generalizations of �nite mixture models provide an

approach for estimating both the number of compo-

nents in a mixture model and the parameters of the

individual mixture components simultaneously from

data. Finite mixture models de�ne a density function

over data items x of the form p(x) = ∑
K
k= πkp(x∣θk),

where πk is the mixing proportion and θk are param-

eters associated with component k. �e density can be

written in a non-standardmanner as an integral: p(x) =

∫ p(x∣θ)G(θ)dθ, where G = ∑
K
k= πkδθk

is a discrete

mixing distribution encapsulating all the parameters of

the mixture model and δθ is a dirac distribution (atom)

centered at θ. Bayesian nonparametric mixtures use

Bayesian Nonparametric Models B 

B

mixing distributions consisting of a countably in�nite

number of atoms instead:

G =
∞

∑
k=

πkδθk
. ()

�is gives rise to mixture models with an in�nite num-

ber of components.When applied to a �nite training set,

only a �nite (but varying) number of components will

be used to model the data, since each data item is asso-

ciated with exactly one component but each component

can be associated with multiple data items. Inference in

themodel then automatically recovers both the number

of components to use and the parameters of the compo-

nents. Being Bayesian, we need a prior over the mixing

distribution G, and the most common prior to use is a

Dirichlet process (DP). �e resulting mixture model is

called a DP mixture.

Formally, aDirichlet processDP(α,H)parametrized

by a concentration paramter α >  and a base distri-

bution H is a prior over distributions (probability mea-

sures) G such that, for any �nite partition A, . . . ,Am

of the parameter space, the induced random vec-

tor (G(A), . . . ,G(Am)) is Dirichlet distributed with

parameters (αH(A), . . . , αH(Am)) (see entitled Sec-

tion “�eory” for a discussion of subtleties involved

in this de�nition). It can be shown that draws from a

DP will be discrete distributions as given in (). �e

DP also induces a distribution over partitions of inte-

gers called the Chinese restaurant process (CRP), which

directly describes the prior over howdata items are clus-

tered under the DPmixture. For more details on the DP

and the CRP, see7Dirichlet Process.
Nonlinear regression. �e aim of regression is to infer

a continuous function from a training set consisting of

input–output pairs {(ti, xi)}
n
i=. Parametric approaches

parametrize the function using a �nite number of

parameters and attempt to infer these parameters

from data. �e prototypical Bayesian nonparametric

approach to this problem is to de�ne a prior distri-

bution over continuous functions directly by means of

a Gaussian process (GP). As explained in the Chapter

7Gaussian Process, a GP is a distribution on an in�-
nite collection of random variables Xt , such that the

joint distribution of each �nite subset Xt , . . . ,Xtm is a

multivariate Gaussian. A value xt taken by the variable

Xt can be regarded as the value of a continuous func-

tion f at t, that is, f (t) = xt . Given the training set,

the Gaussian process posterior is again a distribution on

functions, conditional on these functions taking values

f (t) = x, . . . , f (tn) = xn.

Latent feature models. �ese models represent a set of

objects in terms of a set of latent features, each of which

represents an independent degree of variation exhibited

by the data. Such a representation of data is sometimes

referred to as a distributed representation. In analogy to

nonparametricmixturemodels with an unknown num-

ber of clusters, a Bayesian nonparametric approach to

latent feature modeling allows for an unknown number

of latent features.�e stochastic processes involved here

are known as the Indian bu�et process (IBP) and the beta

process (BP). Draws from BPs are random discrete mea-

sures, where each of an in�nite number of atoms has a

mass in (, ) but themasses of atoms need not sum to .

Each atom corresponds to a feature, with the mass cor-

responding to the probability that the feature is present

for an object. We can visualize the occurrences of fea-

tures among objects using a binary matrix, where the

(i, k) entry is  if object i has feature k and  otherwise.

�e distribution over binarymatrices induced by the BP

is called the IBP.

7Hidden Markov models (HMMs). HMMs are popu-

lar models for sequential or temporal data, where each

time step is associated with a state, with state transitions

dependent on the previous state. An in�nite HMM is

a Bayesian nonparametric approach to HMMs, where

the number of states is unbounded and allowed to grow

with the sequence length. It is de�ned using one DP

prior for the transition probabilities going out fromeach

state. To ensure that the set of states reachable from

each outgoing state is the same, the base distributions

of the DPs are shared and given a DP prior recursively.

�e construction is called a hierarchical Dirichlet process

(HDP); see below.

7Density estimation. A nonparametric Bayesian

approach to density estimation requires a prior on den-

sities or distributions. However, the DP is not useful

in this context, since it generates discrete distributions.

A useful density estimator should smooth the empiri-

cal density (such as a Parzen window estimator), which

requires a prior that can generate smooth distribu-

tions. Priors applicable in density estimation problems

include DP mixture models and Pólya trees.

If p(x∣θ) is a smooth density function, the density

∑
∞
k= πk p(x∣θk) induced by a DP mixture model is a

 B Bayesian Nonparametric Models

smooth random density, such that DP mixtures can be

used as prior in density estimation problems.

Pólya trees are priors on probability distributions

that can generate both discrete and piecewise continu-

ous distributions, depending on the choice of parame-

ters. Pólya trees are de�ned by a recursive in�nitely deep

binary subdivision of the domain of the generated ran-

dommeasure. Each subdivision is associatedwith a beta

random variable which describes the relative amount of

mass on each side of the subdivision. �e DP is a spe-

cial case of a Pólya tree corresponding to a particular

parametrization. For other parametrizations the result-

ing random distribution can be smooth, so it is suitable

for density estimation.

Power-law Phenomena.Many naturally occurring phe-

nomena exhibit power-law behavior. Examples include

natural languages, images, and social and genetic net-

works. An interesting generalization of the DP, called

the Pitman-Yor process, PYP(α,d,H), has recently been

successfully used tomodel power-law data.�ePitman-

Yor process augments the DP by a third parameter d ∈

[, ). When d =  the PYP is a DP(α,H), while when

α =  it is a so called normalized stable process.

Sequential modeling. HMMs model sequential data

using latent variables representing the underlying state

of the system, and assuming that each state only

depends on the previous state (the so called Markov

property). In some applications, for example language

modeling and text compression, we are interested in

directly modeling sequences without using latent vari-

ables, and without making any Markov assumptions,

i.e., modeling each observation conditional on all previ-

ous observations in the sequence. Since the set of poten-

tial sequences of previous observations is unbounded,

this calls for nonparametric models. A hierarchical

Pitman-Yor process can be used to construct a Bayesian

nonparametric solution whereby the conditional prob-

abilities are coupled hierarchically.

Dependent and hierarchicalmodels.Most of theBayesian

nonparametric models described so far are applied

in settings where observations are homogeneous or

exchangeable. In many real world settings observations

are not homogeneous, and in fact are o�en structured

in interesting ways. For example, the data generating

process might change over time thus observations

at di�erent times are not exchangeable, or obser-

vations might come in distinct groups with those

in the same group being more similar than across

groups.

Signi�cant recent e�orts in Bayesian nonparamet-

rics research have been placed in developing extensions

that can handle these non-homogeneous settings.

Dependent Dirichlet processes are stochastic pro-

cesses, typically over a spatial or temporal domain,

which de�ne a Dirichlet process (or a related random

measure) at each point with neighboring DPs being

more dependent. �ese are used for spatial model-

ing, nonparametric regression, as well as for modeling

temporal changes. Alternatively, hierarchical Bayesian

nonparametric models like the hierarchical DP aim

to couple multiple Bayesian nonparametric models

within a hierarchical Bayesian framework. �e idea

is to allow sharing of statistical strength across mul-

tiple groups of observations. Among other applica-

tions, these have been used in the in�nite HMM,

topic modeling, language modeling, word segmenta-

tion, image segmentation, and grammar induction. For

an overview of various dependent Bayesian nonpara-

metric models and their applications in biostatistics

please refer to Dunson (). Teh and Jordan ()

is an overview of hierarchical Bayesian nonparametric

models as well as a variety of applications in machine

learning.

Theory
As we saw in the preceding examples, Bayesian non-

parametric models o�en make use of priors over

functions and measures. Because these spaces typi-

cally have uncountable number of dimensions, extra

care has to be taken to de�ne the priors properly

and to study the asymptotic properties of estimation

in the resulting models. In this section we give an

overview of the basic concepts involved in the the-

ory of Bayesian nonparametric models. We start with

a discussion of the importance of exchangeability in

Bayesian parametric and nonparametric statistics. �is

is followed by representations of the priors and issues of

convergence.

Exchangeability

�e underlying assumption of all Bayesian methods is

that the parameter specifying the observation model

is a random variable. �is assumption is subject to

Bayesian Nonparametric Models B 

B

much criticism, and at the heart of the Bayesian versus

non-Bayesian debate that has long divided the statistics

community. However, there is a very general type of

observation for which the existence of such a random

variable can be derived mathematically: For so-called

exchangeable observations, the Bayesian assumption

that a randomly distributed parameter exists is not a

modeling assumption, but a mathematical consequence

of the data’s properties.

Formally, a sequence of variablesX,X, . . . ,Xn over

the same probability space (X , Ω) is exchangeable if

their joint distribution is invariant to permuting the

variables. �at is, if P is the joint distribution and σ any

permutation of {, . . . ,n}, then

P(X=x,X=x . . .Xn=xn)

= P(X=xσ(),X=xσ() . . .Xn=xσ(n)). ()

An in�nite sequence X,X, . . . is in�nitely exchange-

able if X, . . . ,Xn is exchangeable for every n ≥ . In

this chapter, we mean in�nite exchangeability when-

ever we write exchangeability. Exchangeability re�ects

the assumption that the variables do not depend on

their indices although they may be dependent among

themselves. �is is typically a reasonable assumption

in machine learning and statistical applications, even

if the variables are not themselves independently and

identically distributed (iid).

Exchangeability is a much weaker assumption than

iid since iid variables are automatically exchangeable.

If θ parametrizes the underlying distribution, and

one assumes a prior distribution over θ, then the

resulting marginal distribution over X,X, . . . with θ

marginalized out will still be exchangeable. A funda-

mental result credited to de Finetti () states that the

converse is also true. �at is, if X,X, . . . is (in�nitely)

exchangeable, then there is a random θ such that:

P(X, . . . ,Xn) = ∫ P(θ)
n

∏
i=

P(Xi∣θ)dθ ()

for everyn ≥ . In otherwords, the seemingly innocuous

assumption of exchangeability automatically implies the

existence of a hierarchical Bayesian model with θ being

the random latent parameter. �is the crux of the fun-

damental importance of exchangeability to Bayesian

statistics.

In de Finetti’s �eorem it is important to stress that

θ can be in�nite dimensional (it is typically a ran-

dom measure), thus the hierarchical Bayesian model

() is typically a nonparametric one. For an exam-

ple, the Blackwell–MacQueen urn scheme (related to

the CRP) is exchangeable and thus implicitly de�nes

a random measure, namely the DP (see 7Dirichlet
Process for more details). In this sense, we will see

below that de Finetti’s theorem is an alternative route

to Kolmogorov’s extension theorem, which implicitly

de�nes the stochastic processes underlying Bayesian

nonparametric models.

Model Representations

In �nite dimensions, a probability model is usually

de�ned by a density function or probability mass func-

tion. In in�nite dimensional spaces, this approach is

not generally feasible, for reasons explained below. To

de�ne or work with a Bayesian nonparametric model,

we have to choose alternative mathematical representa-

tions.

Weak distributions. A weak distribution is a representa-

tion for the distribution of a stochastic process, that is,

for a probability distribution on an in�nite-dimensional

sample space. If we assume that the dimensions of the

space are indexed by t ∈ T, the stochastic process can

be regarded as the joint distribution P of an in�nite

set of random variables {Xt}t∈T . For any �nite sub-

set S ⊂ T of dimensions, the joint distribution PS

of the corresponding subset {Xt}t∈S of random vari-

ables is a �nite-dimensional marginal of P. �e weak

distribution of a stochastic process is the set of all its

�nite-dimensional marginals, that is, the set {PS : S ⊂

T, ∣S∣ < ∞}. For example, the customary de�nition of

the Gaussian process as an in�nite collection of ran-

dom variables, each �nite subset of which has a joint

Gaussian distribution, is an example of a weak distri-

bution representation. In contrast to the explicit repre-

sentations to be described below, this representation is

generally not generative, because it represents the dis-

tribution rather than a random draw, but is more widely

applicable.

Apparently, just de�ning a weak distribution in this

manner need not imply that it is a valid represen-

tation of a stochastic process. A given collection of

�nite-dimensional distributions represents a stochastic

 B Bayesian Nonparametric Models

process only () if a process with these distributions as

its marginals actually exists, and () if it is uniquely

de�ned by the marginals. �e mathematical result

which guarantees that weak distribution representa-

tions are valid is the Kolmogorov extension theorem

(also known as the Daniell–Kolmogorov theorem or

the Kolmogorov consistency theorem). Suppose that

a collection {PS : S ⊂ T, ∣S∣ < ∞} of distri-

butions is given. If all distributions in the collec-

tion are marginals of each other, that is, if PS is a

marginal of PS whenever S ⊂ S, the set of dis-

tributions is called a projective family. �e Kolmogorov

extension theorem states that, if the set T is count-

able, and if the distributions PS form a projective family,

then there exists a uniquely de�ned stochastic process

with the collection {PS} as its marginal distributions.

In other words, any projective family for a countable set

T of dimensions is the weak distribution of a stochas-

tic process. Conversely, any stochastic process can be

represented in this manner, by computing its set of

�nite-dimensional marginals.

�e weak distribution representation assumes that

all individual random variable Xt of the stochastic pro-

cess take values in the same sample space Ω. �e

stochastic process P de�ned by the weak distribution

is then a probability distribution on the sample space

ΩT , which can be interpreted as the set of all func-

tions f : T → Ω. For example, to construct a GP we

might choose T = Q and Ω = R to obtain real-valued
functions on the countable space of rational numbers.

Since Q is dense in R, the function f can then be

extended to all of R by continuity. To de�ne the DP as
a distribution over probability measures on R, we note
that a probability measure is a set function that maps

“random events,” i.e., elements of the Borel σ-algebra

B(R) of R, into probabilities in [, ]. We could there-

fore choose a weak distribution consisting of Dirichlet

distributions, and set T =B(R) and Ω = [, ]. How-

ever, this approach raises a new problem because the set

B(R) is not countable. As in the GP, we can �rst de�ne

the DP on a countable “base” for B(R) then extend to

all random events by continuity of measures. More pre-

cise descriptions are unfortunately beyond the scope of

this chapter.

Explicit representations.Explicit representations directly

describe a random draw from a stochastic process,

rather than its distribution. A prominent example of

an explicit representation is the so-called stick-breaking

representation of the Dirichlet process.�e discrete ran-

dom measure G in () is completely determined by the

two in�nite sequences {πk}k∈N and {θk}k∈N. �e stick-

breaking representation of the DP generates these two

sequences by drawing θk ∼ H iid and vk ∼ Beta(, α)

for k = , ,�e coe�cients πk are then computed as

πk = vk∏
k−
j= (− vk). �e measureG so obtained can be

shown to be distributed according to aDP(α,G). Sim-

ilar representations can be derived for the Pitman–Yor

process and the beta process as well. Explicit representa-

tions, if they exist for a givenmodel, are typically of great

practical importance for the derivation of algorithms.

Implicit Representations. A third representation of in�-

nite dimensional models is based on de Finetti’s �e-

orem. Any exchangeable sequence X, . . . ,Xn uniquely

de�nes a stochastic process θ, called the de Finetti mea-

sure, making the Xi’s iid. If the Xi’s are su�cient to

de�ne the rest of the model and their conditional distri-

butions are easily speci�ed, then it is su�cient to work

directly with theXi’s and have the underlying stochastic

process implicitly de�ned. Examples include the Chi-

nese restaurant process (an exchangeable distribution

over partitions) with the DP as the de Finetti measure,

and the Indian bu�et process (an exchangeable distri-

bution over binary matrices) with the BP being the

corresponding de Finetti measure. �ese implicit rep-

resentations are useful in practice as they can lead to

simple and e�cient inference algorithms.

Finite representations. A fourth representation of

Bayesian nonparametric models is as the in�nite limit

of �nite (parametric) Bayesianmodels. For example, DP

mixtures can be derived as the in�nite limit of �nite

mixturemodels with particular Dirichlet priors onmix-

ing proportions, GPs can be derived as the in�nite limit

of particular Bayesian regression models with Gaussian

priors, while BPs can be derived as from the limit of

an in�nite number of independent beta variables.�ese

representations are sometimes more intuitive for prac-

titioners familiar with parametricmodels. However, not

all Bayesian nonparametric models can be expressed in

this fashion, and they do not necessarily make clear the

mathematical subtleties involved.

Consistency and Convergence Rates

A recent series of works in mathematical statis-

tics examines the convergence properties of Bayesian

Bayesian Nonparametric Models B 

B

nonparametric models, and in particular the questions

of consistency and convergence rates. In this context, a

Bayesian model is called consistent if, given that an

in�nite amount of data is available, the model pos-

terior will concentrate in a neighborhood of the true

solution (e.g., true function or density). A rate of con-

vergence speci�es, for a �nite sample, how rapidly

the posterior concentrates depending on the sample

size. In their pioneering article Diaconis and Freed-

man () showed, to the great surprise of much

of the Bayesian community, that models such as the

Dirichlet process can be inconsistent, andmay converge

to arbitrary solutions even for an in�nite amount of

data.

More recent results, notably by van der Vaart and

Ghosal, apply modern methods of mathematical statis-

tics to study the convergence properties of Bayesian

nonparametric models (see e.g., Gho, () and ref-

erences therein). Consistency has been shown for a

number of models, including Gaussian processes and

Dirichlet process mixtures. However, a particularly

interesting aspect of this line of work are results on con-

vergence rates, which specify the rate of concentration

of the posterior depending on sample size, on the com-

plexity of themodel, and on howmuch probabilitymass

the prior places around the true solution. To make such

results quantitative requires a measure for the complex-

ity of a Bayesian nonparametric model. �is is done

by means of complexity measures developed in empir-

ical process theory and statistical learning theory, such

as metric entropies, covering numbers and bracketing,

some of which are well-known in theoretical machine

learning.

Inference
�ere are two aspects to inference from Bayesian non-

parametric models: the analytic tractability of posteri-

ors for the stochastic processes embedded in Bayesian

nonparametric models, and practical inference algo-

rithms for the overall models. Bayesian nonparametric

models typically include stochastic processes such as the

Gaussian process and the Dirichlet process. �ese pro-

cesses have an in�nite number of dimensions, hence

naïve algorithmic approaches to computing posteri-

ors are generally infeasible. Fortunately, these processes

typically have analytically tractable posteriors, so all but

�nitely many of the dimensions can be analytically inte-

grated out e�ciently. �e remaining dimensions, along

with the parametric parts of the models, can then be

handled by the usual inference techniques employed in

parametric Bayesianmodeling, includingMarkov chain

Monte Carlo, sequential Monte Carlo, variational infer-

ence, and message-passing algorithms like expectation

propagation. �e precise choice of approximations to

use will depend on the speci�c models under consid-

eration, with speed/accuracy trade-o�s between di�er-

ent techniques generally following those for parametric

models. In the following, we will give two examples to

illustrate the above points, and discuss a few theoret-

ical issues associated with the analytic tractability of

stochastic processes.

Examples

In Gaussian process regression, we model the relation-

ship between an input x and an output y using a func-

tion f , so that y ∼ f (x) + є, where є is iid Gaussian

noise. Given a GP prior over f and a �nite training

data set {(xi, yi)}
n
i= we wish to compute the posterior

over f . Here we can use the weak representation of f

and note that { f (xi)}
n
i= is simply a �nite-dimensional

Gaussian with mean and covariance given by the mean

and covariance functions of the GP. Inference for

{ f (xi)}
n
i= is then straightforward. �e approach can

be thought of equivalently as marginalizing out the

whole function except its values on the training inputs.

Note that although we only have the posterior over

{ f (xi)}
n
i=, this is su�cient to reconstruct the function

evaluated at any other point x (say the test input), since

f (x) is Gaussian and independent of the training data

{(xi, yi)}
n
i= given { f (xi)}

n
i=. In GP regression the pos-

terior over { f (xi)}
n
i= can be computed exactly. In GP

classi�cation or other regression settings with nonlin-

ear likelihood functions, the typical approach is to use

sparse methods based on variational approximations or

expectation propagation; see Chapter 7Gaussian Pro-
cess for details.

Our second example involvesDirichlet processmix-

ture models. Recall that the DP induces a clustering

structure on the data items. If our training set con-

sists of n data items, since each item can only belong to

one cluster, there are at most n clusters represented in

the training set. Even though the DP mixture itself has

an in�nite number of potential clusters, all but �nitely

 B Bayesian Nonparametric Models

many of these are not associated with data, thus the

associated variables need not be explicitly represented at

all. �is can be understood either as marginalizing out

these variables, or as an implicit representation which

can be made explicit whenever required by sampling

from the prior. �is idea is applicable for DP mixtures

using both the Chinese restaurant process and the stick-

breaking representations. In the CRP representation,

each data item xi is associated with a cluster index zi,

and each cluster k with a parameter θ∗k (these parame-

ters can be marginalized out ifH is conjugate to F), and

these are the only latent variables that need be repre-

sented inmemory. In the stick-breaking representation,

clusters are ordered by decreasing prior expected size,

with cluster k associated with a parameter θ∗k and a size

πk. Each data item is again associated with a cluster

index zi, and only the clusters up toK = max(z, . . . , zn)

need to be represented. All clusters with index > K need

not be represented since their posterior conditioning on

{(xi, zi)}
n
i= is just the prior.

On Bayes Equations and Conjugacy

It is worth noting that the posterior of a Bayesianmodel

is, in abstract terms, de�ned as the conditional distri-

bution of the parameter given the data and the hyper-

parameters, and this de�nition does not require the

existence of a Bayes equation. If a Bayes equation exists

for the model, the posterior can equivalently be de�ned

as the le�-hand side of the Bayes equation. However,

for some stochastic processes, notably the DP on an

uncountable space such asR, it is not possible to de�ne
a Bayes equation even though the posterior is still a

well-de�ned mathematical object. Technically speak-

ing, existence of a Bayes equation requires the fam-

ily of all possible posteriors to be dominated by the

prior, but this is not the case for the DP. �at poste-

riors of these stochastic processes can be evaluated at

all is solely due to the fact that they admit an analytic

representation.

�e particular form of tractability exhibited by

many stochastic processes in the literature is that of

a conjugate posterior, that is, the posterior belongs

to the same model family as the prior, and the pos-

terior parameters can be computed as a function of

the prior hyperparameters and the observed data.

For example, the posterior of a DP(α,G) under

observations θ, . . . , θn is again a Dirichlet process,

DP(α + n, 

α+n
(αG + ∑ δθ i

)). Similarly the posterior

of a GP under observations of f (x), . . . , f (xn) is still

a GP. It is this conjugacy that allows practical infer-

ence in the examples above. A Bayesian nonparametric

model is conjugate if and only if the elements of its weak

distribution, i.e., its �nite-dimensional marginals, have

a conjugate structure as well (Orbanz, ). In par-

ticular, this characterizes a class of conjugate Bayesian

nonparametric models whose weak distributions con-

sist of exponential family models. Note however, that

lack of conjugacy does not imply intractable posteri-

ors. An example is given by the Pitman–Yor process in

which the posterior is given by a sum of a �nite number

of atoms and a Pitman-Yor process independent from

the atoms.

Future Directions
Since MCMC (see 7Markov Chain Monte Carlo)
sampling algorithms for Dirichlet process mixtures

became available in the s and made latent vari-

able models with nonparametric Bayesian components

applicable to practical problems, the development of

Bayesian nonparametrics has experienced explosive

growth (Escobar & West, ; Neal, ). Arguably,

though, the results available so far have only scratched

the surface. �e repertoire of available models is

still mostly limited to using the Gaussian process,

the Dirichlet process, the beta process, and gener-

alizations derived from those. In principle, Bayesian

nonparametric models may be de�ned on any in�nite-

dimensional mathematical object of possible interest

to machine learning and statistics. Possible examples

are kernels, in�nite graphs, special classes of functions

(e.g., piece-wise continuous or Sobolev functions), and

permutations.

Aside from the obvious modeling questions, two

major future directions are to make Bayesian non-

parametric methods available to a larger audience of

researchers and practitioners through the development

of so�ware packages, and to understand and quantify

the theoretical properties of available methods.

General-Purpose Software Package

�ere is currently signi�cant growth in the appli-

cation of Bayesian nonparametric models across a

Bayesian Nonparametric Models B 

B

variety of application domains both in machine learn-

ing and in statistics. However signi�cant hurdles still

exist, especially the expense and expertise needed to

develop computer programs for inference in these

complex models. One future direction is thus the

development of so�ware packages that can com-

pile e�cient inference algorithms automatically given

model speci�cations, thus allowing a much wider range

of modeler to make use of these models. Current

developments include the R DPpackage (http://cran.r-

project.org/web/packages/DPpackage), the hierarchical

Bayesian compiler (http://www.cs.utah.edu/hal/HBC),

adaptor grammars (http://www.cog.brown.edu/mj/

So�ware.htm), the MIT-Church project (http://

projects.csail.mit.edu/church/wiki/Church), as well as

e�orts to add Bayesian nonparametric models to the

repertoire of current Bayesian modeling environments

like OpenBugs (http://mathstat.helsinki.�/openbugs)

and infer.NET (http://research.microso�.com/en-us/

um/cambridge/projects/infernet).

Statistical Properties of Models

Recent work in mathematical statistics provides some

insight into the quantitative behavior of Bayesian non-

parametric models (cf theory section). �e elegant,

methodical approach underlying these results, which

quanti�esmodel complexity bymeans of empirical pro-

cess theory and then derives convergence rates as a

function of the complexity, should be applicable to a

wide range of models. So far, however, only results for

Gaussian processes andDirichlet processmixtures have

been proven, and it will be of great interest to establish

properties for other priors. Some models developed in

machine learning, such as the in�nite HMM, may pose

new challenges to theoretical methodology, since their

study will probably have to draw on both the theory of

algorithms and mathematical statistics. Once a wider

range of results is available, they may in turn serve to

guide the development of new models, if it is possible

to establish how di�erent methods of model construc-

tion a�ect the statistical properties of the constructed

model.

In addition to the references embedded in the text

above, we recommend the booksHjort, Holmes,Müller,

and Walker (), Ghosh and Ramamoorthi (),

and the review articles Walker, Damien, Laud, and

Smith (), Müller and Quintana () on Bayesian

nonparametrics. Further references can be found in the

chapter by they Teh and Jordan () of the bookHjort

et al. ().

Cross References
7Bayesian Methods
7Dirichlet Processes
7Gaussian Processes
7Mixture Modelling
7Prior Probabilities

Recommended Reading
Diaconis, P., & Freedman, D. () On the consistency of

Bayes estimates (with discussion). Annals of Statistics, (),

–.

Dunson, D. B. (). Nonparametric Bayes applications to biostatis-

tics. In N. Hjort, C. Holmes, P. Müller, & S. Walker (Eds.),

Bayesian nonparametrics. Cambridge: Cambridge University

Press.

Escobar, M. D., & West, M. (). Bayesian density estimation and

inference using mixtures. Journal of the American Statistical

Association, , –.

de Finetti, B. (). Funzione caratteristica di un fenomeno aleato-

rio. Atti della R. Academia Nazionale dei Lincei, Serie . Mem-

orie, Classe di Scienze Fisiche, Mathematice e Naturale, ,

–.

Ghosh, J. K., & Ramamoorthi, R. V. (). Bayesian nonparametrics.

New York: Springer.

Hjort, N., Holmes, C., Müller, P., & Walker, S. (Eds.) (). Bayesian

nonparametrics. In Cambridge series in statistical and proba-

bilistic mathematics (No. ). Cambridge: Cambridge Univer-

sity Press.

Müller, P., & Quintana, F. A. (). Nonparametric Bayesian data

analysis. Statistical Science, (), –.

Neal, R. M. (). Markov chain sampling methods for Dirichlet

process mixture models. Journal of Computational and Graphi-

cal Statistics, , –.

Orbanz, P. (). Construction of nonparametric Bayesian models

from parametric Bayes equations. In Y. Bengio, D. Schuurmans,

J. Lafferty, C. K. I. Williams, & A. Culotta (Eds.), Advances in

neural information processing systems, , –.

Teh, Y. W., & Jordan, M. I. (). Hierarchical Bayesian non-

parametric models with applications. In N. Hjort, C. Holmes,

P. Müller, & S. Walker (Eds.), Bayesian nonparametrics. Cam-

bridge: Cambridge University Press.

Walker, S. G., Damien, P., Laud, P. W., & Smith, A. F. M. ().

Bayesian nonparametric inference for random distributions and

related functions. Journal of the Royal Statistical Society, (),

–.

Wasserman, L. (). All of nonparametric statistics. New York:

Springer.

http://cran.r-project.org/web/packages/DPpackage
http://cran.r-project.org/web/packages/DPpackage
http://www.cs.utah.edu/hal/HBC
http://projects.csail.mit.edu/church/wiki/Church
http://projects.csail.mit.edu/church/wiki/Church
http://research.microso%EF%BF%BD.com/en-us/um/cambridge/projects/infernet
http://research.microso%EF%BF%BD.com/en-us/um/cambridge/projects/infernet
http://www.cog.brown.edu/mj/Software.htm
http://www.cog.brown.edu/mj/Software.htm
http://mathstat.helsinki.fi/openbugs

 B Bayesian Reinforcement Learning

Bayesian Reinforcement Learning

Pascal Poupart

University of Waterloo, Waterloo, Ontario, Canada

Synonyms
Adaptive control processes; Bayes adaptive Markov

decision processes; Dual control; Optimal learning

Definition
Bayesian reinforcement learning refers to 7reinforce-
ment learning modeled as a Bayesian learning problem

(see 7Bayesian Methods). More speci�cally, follow-
ing Bayesian learning theory, reinforcement learning

is performed by computing a posterior distribution on

the unknowns (e.g., any combination of the transition

probabilities, reward probabilities, value function, value

gradient, or policy) based on the evidence received (e.g.,

history of past state–action pairs).

Motivation and Background
Bayesian reinforcement learning can be traced back

to the s and s in the work of Bellman

(), Fel’Dbaum (), and several of Howard’s stu-

dents (Martin, ). Shortly a�er 7Markov deci-
sion processes were formalized, the above researchers

(and several others) in Operations Research consid-

ered the problem of controlling a Markov process with

uncertain transition and reward probabilities, which

is equivalent to reinforcement learning. �ey consid-

ered Bayesian techniques since Bayesian learning is

performed by probabilistic inference, which naturally

combines with decision theory. In general, Bayesian

reinforcement learning distinguishes itself from other

reinforcement learning approaches by the use of prob-

ability distributions (instead of point estimates) to

fully capture the uncertainty. �is enables the learner

to make more informed decisions, with the poten-

tial of learning faster with less data. In particular,

the exploration/exploitation tradeo� can be naturally

optimized. �e use of a prior distribution also facil-

itates the encoding of domain knowledge, which is

exploited in a natural and principledway by the learning

process.

Structure of Learning Approach
A Markov decision process (MDP) (Puterman, )

can be formalized by a tuple ⟨S,A,T⟩ where S is the set

of states s,A is the set of actions a,T(s, a, s′) = Pr(s′∣s, a)

is the transition distribution indicating the probability

of reaching s′ when executing a in s. Let sr denote the

reward feature of a state and Pr (s′r ∣s, a) be the prob-

ability of earning r when executing a in s. A policy

π : S → A consists of a mapping from states to actions.

For a given discount factor  ≤ γ ≤  and horizon h,

the value Vπ of a policy π is the expected discounted

total reward earnedwhile executing this policy:Vπ(s) =

∑
h
t=o γtEs∣π [str].�e value functionV

π can be written in

a recursive form as the expected sum of the immediate

reward s′r with the discounted future rewards: V
π(s) =

∑s′ Pr(s
′∣s, π(s)) [s′r + γVπ(s′)]. �e goal is to �nd an

optimal policy π∗, that is, a policy with the highest value

V∗ in all states (i.e., V∗(s) ≥ Vπ(s) ∀π, s). Many algo-

rithms exploit the fact that the optimal value function

V∗ satis�es Bellman’s equation:

V∗
(s) = max

a
∑
s′
Pr(s′∣s, a) [s′r + γV∗

(s)] ()

Reinforcement learning (Sutton & Barto, ) is

concerned with the problem of �nding an optimal pol-

icy when the transition (and reward) probabilities T are

unknown (or uncertain). Bayesian learning is a learn-

ing approach in which unknowns are modeled as ran-

dom variables X over which distributions encode the

uncertainty.�eprocess of learning consists of updating

the prior distribution Pr(X) based on some evidence

e to obtain a posterior distribution Pr(X∣e) according

to Bayes theorem: Pr(X∣e) = kPr(X)Pr(e∣X). (Here

k = /Pr(e) is a normalization constant.) Hence,

Bayesian reinforcement learning consists of using

Bayesian learning for reinforcement learning. �e

unknowns are the transition (and reward) probabili-

ties T, the optimal value function V∗, and the opti-

mal policy π∗. Techniques that maintain a distribution

on T are known as model-based Bayesian reinforce-

ment learning since they explicitly learn the underlying

model T. In contrast, techniques that maintain a distri-

bution on V∗ or π∗ are known as model-free Bayesian

reinforcement learning since they directly learn the

optimal value function or policy without learning

a model.

Bayesian Reinforcement Learning B 

B

Model-Based Bayesian Learning

In model-based Bayesian reinforcement learning, the

learner starts with a prior distribution over the param-

eters of T, which we denote by θ. For instance, let

θsas′ = Pr(s′∣s, a, θ) be the unknown probability of

reaching s′ when executing a in s. In general, we denote

by θ the set of all θsas′ . �en, the prior b(θ) represents

the initial belief of the learner regarding the underlying

model. �e learner updates its belief a�er every s, a, s′

triple observed by computing a posterior bsas′(θ) =

b(θ∣s, a, s′) according to Bayes theorem:

bsas′(θ) = kb(θ)Pr(s′∣s, a, θ) = kb(θ)θsas′ . ()

In order to facilitate belief updates, it is convenient to

pick the prior from a family of distributions that is

closed under Bayes updates.�is ensures that beliefs are

always parameterized in the sameway. Such families are

called conjugate priors. In the case of a discrete model

(i.e., Pr(s′∣s, a, θ) is a discrete distribution), Dirichlets

are conjugate priors and form a family of distributions

corresponding to monomials over the simplex of dis-

crete distributions (DeGroot, ). �ey are parame-

terized as follows: Dir(θ;n) = k∏i θni−
i . Here θ is an

unknown discrete distribution such that∑i θ i =  and n

is a vector of strictly positive real numbers ni (known as

the hyperparameters) such that ni−  can be interpreted

as the number of times that the θ i-probability event has

been observed. Since the unknown transition model θ

is made up of one unknown distribution θ s
a per s, a pair,

let the prior be b(θ) = ∏s,aDir (θ s
a;n

s
a) such that n

s
a is a

vector of hyperparameters ns,s
′

a . �e posterior obtained

a�er transition ŝ, â, ŝ′ is

bs,s
′

a (θ) = kθ s,s′

a ∏
s,a

Dir (θ s
a;n

s
a)

=∏
s,a

Dir (θ s
a;n

s
a + δŝ,â,ŝ′(s, a, s

′
)) ()

where δŝ,â,ŝ′(s, a, s
′) is a Kronecker delta that returns

 when s = ŝ, a = â, s′ = ŝ′ and  otherwise. In

practice, belief monitoring is as simple as increment-

ing the hyperparameter corresponding to the observed

transition.

Belief MDP Equivalence

At any point in time, the belief b provides an explicit

representation of the uncertainty of the learner about

the underlying model. �is information is very use-

ful to decide whether future actions should focus

on exploring or exploiting. Hence, in Bayesian rein-

forcement learning, policies π are mappings from

state-belief pairs ⟨s, b⟩ to actions. Equivalently, the

problem of Bayesian reinforcement learning can be

thought as one of planning with a belief MDP (or

a partially observable MDP). More precisely, every

Bayesian reinforcement learning problem has an equiv-

alent belief MDP formulation ⟨Sbel,Abel,Tbel⟩ where

Sbel = S×B (B is the space of beliefs b), Abel =A, and

Tbel (sbel, abel, b
′
bel) = Pr (b

′
bel∣bbel, abel) = Pr(s

′, b′∣s, b, a)

= Pr(b′∣s, b, a, s′)Pr(s′∣s, b, a). �e decomposition of

the transition dynamics is particularly interesting since

Pr(b′∣s, b, a, s′) equals  when b′ = bs,s
′

a (as de�ned in

Eq. ) and  otherwise. Furthermore, Pr(s′∣s, b, a) =

∫θ b(θ)Pr(s′∣s, θ, a)dθ, which can be computed in

closed formwhen b is a Dirichlet. As a result, the transi-

tion dynamics of the belief MDP are fully known. �is

is a remarkable fact since it means that Bayesian rein-

forcement learning problems, which by de�nition have

unknown/uncertain transition dynamics, can be recast

as belief MDPs with known transition dynamics. While

this doesn’t make the problem any easier since the belief

MDP has a hybrid state space (discrete s with contin-

uous b), it allows us to treat policy optimization as a

problem of planning and in particular to adapt algo-

rithms originally designed for belief MDPs (also known

as partially observable MDPs).

Optimal Value Function Parameterization

Many planning techniques compute the optimal value

function V∗, from which an optimal policy π∗ can eas-

ily be extracted. Despite the hybrid nature of the state

space, the optimal value function (for a �nite hori-

zon) has a simple parameterization corresponding to

the upper envelope of a set of polynomials (Poupart,

Vlassis, Hoey, & Regan, ). Recall that the optimal

value function satis�es Bellman’s equation, which can
be adapted as follows for a belief MDP:

V∗
(s, b) = max

a
∑
s′
Pr(s′, b′∣s, b, a) [s′r + γV∗

(s′, b′)] .

()

Using the fact that b′ must be bs,s
′

a (otherwise

Pr(s′, b′∣s, b, a) = ) allows us to rewrite Bellman’s

equation as follows:

 B Bayesian Reinforcement Learning

V∗
(s, b) = max

a
∑
s′
Pr(s′∣s, b, a) [s′r + γV∗

(s′, bs,s
′

a)] .

()

Let Γn be a set of polynomials in θ such that

the optimal value function Vn with n steps to go

is Vn(s, b) = ∫θ b(θ)polys,b(θ)dθ where polys,b =

argmaxpoly∈Γns ∫θ b(θ)poly(θ)dθ. It su�ces to replace

Pr(s′∣s, b, a), bs,s
′

a and Vn by their de�nitions in Bell-

man’s equation

Vn+
(s, b) = max

a
∑
s′
∫

θ
b(θ)Pr(s′∣s, θ, a)

[r′s + γ poly
s′ ,bs,s

′

a
(θ)]dθ ()

= max
a
∫

θ
b(θ)∑

s′
θ s,s′

a

[r′s + γ poly
s′ ,bs,s

′

a
(θ)]dθ ()

to obtain a similar set of polynomials Γn+s =

{∑s′ θ s,s′

a [r′s + γ poly′s(θ)] ∣a ∈ A, polys′ ∈ Γ
n
s′} that rep-

resents Vn+.

�e fact that the optimal value function has a closed

form with a simple parameterization is quite useful for

planning algorithms based on value iteration. Instead

of using an arbitrary function approximator to �t the

value function, one can take advantage of the fact that

the value function can be represented by a set of poly-

nomials to choose a good representation. For instance,

the Beetle algorithm (Poupart et al., ) performs

point-based value iteration and approximates the value

function with a bounded set of polynomials that each

consists of a linear combination of monomial basis

functions.

Exploration/Exploitation Tradeoff

Since the underlying model is unknown in reinforce-

ment learning, it is not clear whether actions should

be chosen to explore (gain more information about

the model) or exploit (maximize immediate rewards

based on information gathered so far). Bayesian rein-

forcement learning provides a principled solution to the

exploration/exploitation tradeo�. Despite the appear-

ance of multiple objectives induced by exploration

and exploitation, there is a single objective in rein-

forcement learning:maximize total discounted rewards.

Hence, an optimal policy (which maximizes total

discounted rewards) must naturally optimize the explo-

ration/exploitation tradeo�. In order for a policy to

be optimal, it must use all the information avail-

able. �e information available to the learner con-

sists of the history of past states and actions. One can

show that state–belief pairs ⟨s, b⟩ are su�cient statis-

tics of the history. Hence, by searching for the mapping

from state–belief pairs to actions that maximizes total

discounted rewards, Bayesian reinforcement learning

implicitly seeks an optimal tradeo� between explo-

ration and exploitation. In contrast, traditional rein-

forcement learning approaches search in the space of

mappings from states to actions. As a result, such tech-

niques typically focus on asymptotic convergence (i.e.,

convergence to a policy that is optimal in the limit), but

do not e�ectively balance exploration and exploitation

since they do not use histories or beliefs to quantify the

uncertainty about the underlying model.

Related Work

Michael Du� ’s PhD thesis (Du�, ) provides an

excellent survey of Bayesian reinforcement learning up

until . �e above text pertains mostly to model-

based Bayesian reinforcement learning applied to dis-

crete, fully observable, single agent domains. Bayesian

learning has also been explored in model-free rein-

forcement learning (Dearden, Friedman, & Russell,

; Engel, Mannor, & Meir, ; Ghavamzadeh &

Engel, ) continuous-valued state spaces (Ross,

Chaib-Draa, & Pineau, ), partially observable

domains (Poupart & Vlassis, ; Ross, Chaib-

Draa, & Pineau, ), and multi-agent systems

(Chalkiadakis & Boutilier, , ; Gmytrasiewicz

& Doshi, ).

Cross References
7Active Learning
7Markov Decision Processes
7Reinforcement Learning

Recommended Reading
Bellman, R. (). Adaptive control processes: A guided tour.

Princeton, NJ: Princeton University Press.

Behavioral Cloning B 

B

Chalkiadakis, G., & Boutilier, C. (). Coordination in multi-

agent reinforcement learning: A Bayesian approach. In Inter-

national joint conference on autonomous agents and multiagent

systems (AAMAS), Melbourne, Australia (pp. –).

Chalkiadakis, G., & Boutilier, C. (). Bayesian reinforcement

learning for coalition formation under uncertainty. In Inter-

national joint conference on autonomous agents and multiagent

systems (AAMAS), New York (pp. –).

Dearden, R., Friedman, N., & Russell, S. J. (). Bayesian

Q-learning. In National conference on artificial intelligence

(AAAI), Madison, Wisconsin (pp. –).

DeGroot, M. H. (). Optimal statistical decisions. New York:

McGraw-Hill.

Duff, M. (). Optimal learning: Computational procedures for

Bayes-adaptive Markov decision processes. PhD thesis, Univer-

sity of Massachusetts, Amherst.

Engel, Y., Mannor, S., & Meir, R. (). Reinforcement learning

with Gaussian processes. In International conference on machine

learning (ICML), Bonn, Germany.

Fel’Dbaum, A. (). Optimal control systems. New York: Academic.

Ghavamzadeh, M., & Engel, Y. (). Bayesian policy gradient algo-

rithms. In Advances in neural information processing systems

(NIPS), (pp. –).

Gmytrasiewicz, P., & Doshi, P. (). A framework for sequential

planning in multi-agent settings. Journal of Artificial Intelli-

gence Research (JAIR), , –.

Martin (). Bayesian decision problems and Markov chains. New

York: Wiley.

Poupart, P., & Vlassis, N. (). Model-based Bayesian reinforce-

ment learning in partially observable domains. In International

symposium on artificial intelligence and mathematics (ISAIM).

Poupart, P., Vlassis, N., Hoey, J., & Regan, K. (). An analytic

solution to discrete Bayesian reinforcement learning. In Inter-

national conference on machine learning (ICML), Pittsburgh,

Pennsylvania (pp. –).

Puterman, M. L. ().Markov decision processes. New York: Wiley.

Ross, S., Chaib-Draa, B., & Pineau, J. (). Bayes-adaptive

POMDPs. In Advances in neural information processing systems

(NIPS).

Ross, S., Chaib-Draa, B., & Pineau, J. (). Bayesian reinforce-

ment learning in continuous POMDPs with application to robot

navigation. In IEEE International conference on robotics and

automation (ICRA), (pp. –).

Sutton, R. S., & Barto, A. G. (). Reinforcement Learning.

Cambridge, MA: MIT Press.

Beam Search

Claude Sammut

University of New South Wales, Sydney, Australia

A beam search is a heuristic search technique that com-

bines elements of breadth-�rst and best-�rst searches.

Like a breadth-�rst search, the beam search maintains

a list of nodes that represent a frontier in the search

space. Whereas the breadth-�rst adds all neighbors to

the list, the beam search orders the neighboring nodes

according to some heuristic and only keeps the n best,

where n is the beam size. �is can signi�cantly reduce

the processing and storage requirements for the search.

Inmachine learning, the beam search has been used

in algorithms, such as AQ (Dietterich & Michalski,

).

Cross References
7Learning as Search

Recommended Reading
Dietterich, T. G., & Michalski, R. S. (). Learning and generaliza-

tion of characteristic descriptions: Evaluation criteria and com-

parative review of selected methods. In Fifth international joint

conference on artificial intelligence (pp. –). Cambridge,

MA: William Kaufmann.

Behavioral Cloning

Caude Sammut

�e University of New South Wales, Sydney, Australia

Synonyms
Apprenticeship learning; Behavioral cloning; Learning

by demonstration; Learning by imitation; Learning con-

trol rules

Definition
Behavioral cloning is a method by which human sub-

cognitive skills can be captured and reproduced in a

computer program. As the human subject performs the

skill, his or her actions are recorded along with the situ-

ation that gave rise to the action. A log of these records is

used as input to a learning program. �e learning pro-

gram outputs a set of rules that reproduce the skilled

behavior. �is method can be used to construct auto-

matic control systems for complex tasks for which clas-

sical control theory is inadequate. It can also be used for

training.

 B Behavioral Cloning

Motivation and Background
Behavioral cloning (Michie, Bain, & Hayes-Michie,

) is a form of learning by imitation whose main

motivation is to build a model of the behavior of

a human when performing a complex skill. Prefer-

ably, the model should be in a readable form. It is

related to other forms of learning by imitation, such

as 7inverse reinforcement learning (Abbeel & Ng,
; Amit & Matarić, ; Hayes & Demiris, ;

Kuniyoshi, Inaba, & Inoue, ; Pomerleau, ) and

methods that use data from human performances to

model the system being controlled (Atkeson & Schaal,

; Bagnell & Schneider, ).

Experts might be de�ned as people who know what

they are doing not what they are talking about. �at

is, once a person becomes highly skilled in some task,

the skill becomes sub-cognitive and is no longer avail-

able to introspection. So when the person is asked to

explain why certain decisions were made, the expla-

nation is a post hoc justi�cation rather than a true

explanation.

Michie et al. () used an induction program to

learn rules for balancing a pole (in simulation) and

earlier work by Donaldson (), Widrow and Smith

(), and Chambers andMichie () demonstrated

the feasibility of learning by imitation, also for pole-

balancing.

Structure of the Learning System
Behavioral cloning assumes that there is a plant of some

kind that is under the control of a human operator. �e

plant may be a physical system or a simulation. In either

case, the plant must be instrumented so that it is pos-

sible to capture the state of the system, including all

the control settings. �us, whenever the operator per-

forms an action, that is, changes a control setting, we

can associate that action with a particular state.

Let us use a simple example of a system that has only

one control action. A pole balancer has four state vari-

ables: the angle of the pole, θ, and its angular velocity,

θ̇ and the position, x, and velocity ẋ, of the cart on the

track. �e only action available to the controller is to

apply a �xed positive of negative force, F, to accelerate

the cart le� or right.

We can create an experimental setupwhere a human

can control a pole and cart system (either real or in

simulation) by applying a le� push or a right push at

Human
trainer

Plant

Controller

Log
file

Learning
program

As the trainer
executes the task

all actions are recorded

An learning program
uses the logged data
to build a controller

Behavioral Cloning. Figure . Structure of learning

system

the appropriate time. Whenever a control action is per-

formed, we record the action as well as values of the four

state variables at the time of the action. Each of these

records can be viewed as an example of a mapping from

state to action.

Michie et al. () demonstrated that it is possi-

ble to construct a controller by learning from these

examples. �e learning task is to predict the appro-

priate action, given the state. �ey used a 7decision
tree learning program to produce a classi�er that, given

the values of the four state variables, would output an

action. A decision tree is easily convertible into an exe-

cutable code as a nested if statement. �e quality of the
controller can be tested by inserting the decision tree

into the simulator, replacing the human operator.

If the goal of learning is simply to produce an oper-

ational controller then any program capable of build-

ing a classi�er could be used. �e reason that Michie

et al. () chose a symbolic learner was their desire

to produce a controller whose decision making was

transparent as well as operational. �at is, it should be

possible to extract an explanation of the behavior that is

meaningful to an expert in the task.

Learning Direct (Situation–Action) Controllers

A controller such as the one described above is referred

to as a direct controller because it maps situations to

actions. Other examples of learning a direct controller

Behavioral Cloning B 

B

are building an autopilot from behavioral traces of

human pilots �ying aircra� in a �ight simulator (Sam-

mut, Hurst, Kedzier, & Michie, ) and building

a control system for a container crane (Urbančič &

Bratko, ). �ese systems extended the earlier work

by operating in domains in which there is more than

one control variable and the task is su�ciently complex

that it must be decomposed into several subtasks.

An operator of a container crane can control the

speed of the cart and the length of the rope. A pilot

of a �xed-wing aircra� can control the ailerons, eleva-

tors, rudder, throttle, and �aps. To build an autopilot,

the learner must build a system that can set each of the

control variables. Sammut et al. (), viewed this as a

multitask learning problem.

Each training example is a feature vector that

includes the position, orientation, and velocities of the

aircra� as well as the values of each of the control set-

tings: ailerons, elevator, throttle, and �aps.�e rudder is

ignored. A separate decision tree is built for each con-

trol variable. For example, the aileron setting is treated

as the dependent variable and all the other variables,

including the other controls, are treated as the attributes

of the training example. A decision tree is built for

ailerons, then the process is repeated for the elevators,

etc. �e result is a decision tree for each control

variable.

�e autopilot code executes each decision tree in

each cycle of the control loop. �is method treats the

setting of each control as a separate task. It may be

surprising that thismethodworks since it is o�en neces-

sary to adjust more than one control simultaneously to

achieve the desired result. For example, to turn, it is nor-

mal to use the ailerons to roll the aircra�while adjusting

the elevators to pull it around.�is kind ofmultivariable

control does result from multiple decision trees. When,

say, the aileron decision tree initiates a roll, the eleva-

tor’s decision tree detects the roll and causes the aircra�

to pitch up and execute a turn.

Limitations Direct controllers work quite well for sys-

tems that have a relatively small state space. How-

ever, for complex systems, behavioral cloning of direct

situation–action rules tends to produce very brittle con-

trollers. �at is, they cannot tolerate large disturbances.

For example, when air turbulence is introduced into the

�ight simulator, the performance of the clone degrades

very rapidly. �is is because the examples provided by

logging the performance of a human only cover a very

small part of the state space of a complex system such

as an aircra� in �ight. �us, the“expertise” of the con-

troller is very limited. If the system strays outside the

controller’s region of expertise, it has no method for

recovering and failure is usually catastrophic.

More robust control is possible but only with a

signi�cant change in approach. �e more successful

methods decompose the learning task into two stages:

learning goals and learning the actions to achieve those

goals.

Learning Indirect (Goal-Directed)
Controllers
�e problem of learning in a large search space can par-

tially be addressed by decomposing the learning into

subtasks. A controller built in this way is said to be

an indirect controller. A control is “indirect” if it does

not compute the next action directly from the system’s

current state but uses, in addition, some intermediate

information. An example of such intermediate informa-

tion is a subgoal to be attained before achieving the �nal

goal.

Subgoals o�en feature in an operator’s control

strategies and can be automatically detected from a

trace of the operator’s behavior (Šuc & Bratko, ).

�e problem of subgoal identi�cation can be treated as

the inverse of the usual problem of controller design,

that is, given the actions in an operator’s trace, �nd the

goal that these actions achieve. �e limitation of this

approach is that it only works well for cases in which

there are just a few subgoals, notwhen the operator’s tra-

jectory contains many subgoals. In these cases, a better

approach is to generalize the operator’s trajectory. �e

generalized trajectory can be viewed as de�ning a con-

tinuously changing subgoal (Bratko & Šuc, ; Šuc &

Bratko, a) (see also the use of �ow tubes in dynamic

plan execution (Hofmann &Williams, )).

Subgoals and generalized trajectories are not suf-

�cient to de�ne a controller. A model of the systems

dynamics is also required. �erefore, in addition to

inducing subgoals or a generalized trajectory, this

approach also requires learning approximate system

dynamics, that is a model of the controlled system.

Bratko and Šuc () and Šuc and Bratko (b) use

a combination of the Goldhorn (Križman & Džeroski,

 B Behavioral Cloning

) discovery program and locally weighted regres-

sion to build the model of the system’s dynamics. �e

next action is then computed “indirectly” by () com-

puting the desired next state (e.g., next subgoal) and

() determining an action that brings the system to

the desired next state. Bratko and Šuc also investigated

building qualitative control strategies from operator

traces (Bratko & Šuc, ).

An analog to this approach is 7inverse reinforce-
ment learning (Abbeel & Ng, ; Atkeson & Schaal,

; Ng & Russell, ) where the reward function is

learned. Here, the learning the reward function corre-

sponds to learning the human operator’s goals.

Isaac and Sammut () uses an approach that

is similar in spirit to Šuc and Bratko but incorpo-

rates classical control theory. Learned skills are repre-

sented by a two-level hierarchical decomposition with

an anticipatory goal level and a reactive control level.

�e goal level models how the operator chooses goal

settings for the control strategy and the control level

models the operator’s reaction to any error between

the goal setting and actual state of the system. For

example, in �ying, the pilot can achieve goal val-

ues for the desired heading, altitude, and airspeed by

choosing appropriate values of turn rate, climb rate,

and acceleration. �e controls can be set to correct

errors between the current state and the desired state

of these goal-directing quantities. Goal models map

system states to a goal setting. Control actions are based

on the error between the output of each of the goal

models and the current system state.

�e control level is modeled as a set of propor-

tional integral derivative (PID) controllers, one for each

control variable. A PID controller determines a control

value as a linear function proportional to the error on a

goal variable, the integral of the error, and the derivative

of the error.

Goal setting and control models are learned sepa-

rately. �e process begins be deciding which variables

are to be used for the goal settings. For example, trainee

pilots will learn to execute a “constant-rate turn,” that

is, their goal is to maintain a given turn rate. A separate

goal rule is constructed for each goal variable using a

7model tree learner (Potts & Sammut, ).
A goal rule gives the setting for a goal variable and

therefore, we can �nd the di�erence (error) between the

current state value and the goal setting.�e integral and

derivative of the error can also be calculated. For exam-

ple, if the set turn rate is ○ min, then the error on

the turn rate is calculated as the actual turn rate minus

. �e integral is then the running sum of the error

multiplied by the time interval between time samples,

starting from the �rst time sample of the behavioral

trace, and the derivative is calculated as the di�erence

between the error and previous error all divided by the

time interval.

For each control available to the operator, a model

tree learner is used to predict the appropriate control

setting. 7Linear regression is used in the leaf nodes
of the model tree to produce linear equations whose

coe�cients are the P, I, and D of values of the PID con-

troller. �us the learner produces a collection of PID

controllers that are selected according to the conditions

in the internal nodes of the tree. In control theory, this

is known as piecewise linear control.

Another indirect method is to learn a model of

the dynamics of the system and use this to learn,

in simulation, a controller for the system (Bagnell &

Schneider, ; Ng, Jin Kim, Jordan, & Sastry, ).

�is approach does not seek to directly model the

behavior of a human operator. A behavioral trace may

be used to generate data for modeling the system but

then a reinforcement learning algorithm is used to gen-

erate a policy for controlling the simulated system. �e

learned policy can then be transferred to the physical

system. 7Locally weighted regression is typically used
for system modeling, although 7model trees can also
be used.

Cross References
7Apprenticeship Learning
7Inverse Reinforcement Learning
7Learning by Imitation
7Locally Weighted Regression
7Model Trees
7Reinforcement Learning
7System Identi�cation

Recommended Reading
Abbeel, P., & Ng, A. Y. (). Apprenticeship learning via inverse

reinforcement learning. In International conference on machine

learning, Banff, Alberta, Canada. New York: ACM.

Bias B 

B

Amit, R., & Matarić, M. (). Learning movement sequences from

demonstration. In Proceedings of the second international con-

ference on development and learning, Cambridge, MA, USA

(pp. –). Washington, D.C.: IEEE.

Atkeson, C. G., & Schaal, S. (). Robot learning from demon-

stration. In D. H. Fisher (Ed.), Proceedings of the fourteenth

international conference on machine learning, Nashville, TN,

USA (pp. –). San Francisco: Morgan Kaufmann.

Bagnell, J. A., & Schneider, J. G. (). Autonomous helicopter

control using reinforcement learning policy search methods.

In International conference on robotics and automation, South

Korea. IEEE Press, New York.

Bratko, I., & Šuc, D. (). Using machine learning to understand

operator’s skill. In Proceedings of the th international con-

ference on industrial and engineering applications of artificial

intelligence and expert systems (pp. –). London: Springer.

AAAI Press, Menlo Park, CA.

Bratko, I., & Šuc, D. (). Learning qualitative models. AI Maga-

zine, (), –.

Chambers, R. A., & Michie, D. (). Man-machine co-operation

on a learning task. In R. Parslow, R. Prowse, & R. Elliott-Green

(Eds.), Computer graphics: techniques and applications. London:

Plenum.

Donaldson, P. E. K. (). Error decorrelation: A technique

for matching a class of functions. In Proceedings of

the third international conference on medical electronics

(pp. –).

Hayes, G., & Demiris, J. (). A robot controller using learn-

ing by imitation. In Proceedings of the international symposium

on intelligent robotic systems, Grenoble, France (pp. –).

Grenoble: LIFTA-IMAG.

Hofmann, A. G., & Williams, B. C. (). Exploiting spatial

and temporal flexiblity for plan execution of hybrid, under-

actuated systems. In Proceedings of the st national con-

ference on artficial intelligence, July , Boston, MA (pp.

–).

Isaac, A., & Sammut, C. (). Goal-directed learning to fly. In

T. Fawcett & N. Mishra (Eds.), Proceedings of the twentieth

international conference on machine learning, Washington, D.C.

(pp. –). Menlo Park: AAAI.

Križman, V., & Džeroski, S. (). Discovering dynamics

from measured data. Electrotechnical Review, (–),

–.

Kuniyoshi, Y., Inaba, M., & Inoue, H. (). Learning by watch-

ing: Extracting reusable task knowledge from visual observa-

tion of human performance. IEEE Transactions on Robotics and

Automation, , –.

Michie, D., Bain, M., & Hayes-Michie, J. E. (). Cognitive models

from subcognitive skills. In M. Grimble, S. McGhee, & P. Mow-

forth (Eds.), Knowledge-based systems in industrial control.

Stevenage: Peter Peregrinus.

Ng, A. Y., Jin Kim, H., Jordan, M. I., & Sastry, S. (). Autonomous

helicopter flight via reinforcement learning. In S. Thrun, L.

Saul, & B. Schölkopf (Eds.), Advances in neural information

processing systems . Cambridge: MIT Press.

Ng, A. Y., & Russell, S. (). Algorithms for inverse reinforce-

ment learning. In Proceedings of th international conference

on machine learning, Stanford, CA, USA (pp. –). San

Francisco: Morgan Kaufmann.

Pomerleau, D. A. (). ALVINN: An autonomous land vehi-

cle in a neural network. In D. S. Touretzky (Ed.), Advances

in neural information processing systems. San Mateo: Morgan

Kaufmann.

Potts, D., & Sammut, C. (November ). Incremental learning of

linear model trees. Machine Learning, (–), –.

Sammut, C., Hurst, S., Kedzier, D., & Michie, D. (). Learning

to fly. In D. Sleeman & P. Edwards (Eds.), Proceedings of the

ninth international conference on machine learning, Aberdeen

(pp. –). San Francisco: Morgan Kaufmann.

Šuc, D., & Bratko, I. (). Skill reconstruction as induction of

LQ controllers with subgoals. In IJCAI-: Proceedings of the

fiftheenth international joint conference on artificial intelligence,

Nagoya, Japan (Vol. , pp. –). San Francisco: Morgan

Kaufmann.

Šuc, D., & Bratko, I. (a). Modelling of control skill by qualitative

constraints. In Thirteenth international workshop on qualitative

reasoning, – June , Lock Awe, Scotland (pp. –).

Aberystwyth: University of Aberystwyth.

Šuc, D., & Bratko, I. (b). Symbolic and qualitative recon-

struction of control skill. Electronic Transactions on Artificial

Intelligence, (B), –.

Urbančič, T., & Bratko, I. (). Reconstructing human skill with

machine learning. In A. Cohn (Ed.), Proceedings of the th

European conference on artificial intelligence. Wiley. Amster-

dam: New York.

Widrow, B., & Smith, F. W. (). Pattern recognising control

systems. In J. T. Tou & R. H. Wilcox (Eds.), Computer and

information sciences. London: Clever Hume.

Belief State Markov Decision
Processes

7Partially Observable Markov Decision Processes

Bellman Equation

�e Bellman Equation is a recursive formula that forms

the basis for 7dynamic programming. It computes the
expected total reward of taking an action from a state

in a 7Markov decision process by breaking it into the
immediate reward and the total future expected reward.

(See7dynamic programming.)

Bias

Bias has two meanings, 7inductive bias, and statistical
bias (see7bias variance decomposition).

 B Bias Specification Language

Bias Specification Language

Hendrik Blockeel

Katholieke Universiteit Leuven, Belgium

�e Netherlands

Definition
A bias speci�cation language is a language in which a

user can specify a 7Language Bias. �e language bias
of a learner is the set of hypotheses (or hypothesis

descriptions) that this learner may return.

In contrast to the 7hypothesis language, the bias
speci�cation language allows us to describe not single

hypotheses but sets (languages) of hypotheses.

Examples
In learning approaches based on 7graphical models or
7arti�cial neural networks, whenever the user provides
the graph structure of the model, he or she is specify-

ing a bias. �e “language” used to specify this bias, in

this case, consists of graphs. Figure  shows examples

of such graphs. Not every kind of bias can necessar-

ily be expressed by some bias speci�cation language;

for instance, the bias de�ned by the 7Bayesian net-
work structure in Fig.  cannot be expressed using a

A B

C

A B

C

p(A,B,C) = p(A)p(B)p(C |A,B) p(A,B,C) = f1(A,C)f2(B,C)

Bias Specification Language. Figure . Graphs defining a

bias for learning joint distributions. The Bayesian net-

work structure to the left constrains the form of the joint

distribution in a particular way (shown as the equation

below the graph). Notably, it guarantees that only dis-

tributions can be learned in which the variables A and B

are (unconditionally) independent. The Markov network

structure to the right constrains the form of the joint

distribution in a different way: it states that it must be

possible to write the distribution as a product of a func-

tion ofA andC and a function ofB andC. These two biases

are different. In fact, no Markov network structure over

the variables A, B, and C exists that expresses the bias

specified by the Bayesian network structure

7Markov network. Bayesian networks andMarkov net-
works have a di�erent expressiveness, when viewed as

bias speci�cation languages.

Also certain parameters of decision tree learners or

rule set learners e�ectively restrict the hypothesis lan-

guage (for instance, an upper bound on the rule length

or the size of the decision tree).

A combination of parameter values can hardly be

called a language, and even the “language” of graphs is a

relatively simple kind of language. More elaborate types

of bias speci�cation languages are typically found in the

�eld of7inductive logic programming (ILP).

Bias Specification Languages in Inductive
Logic Programming
In ILP, the hypotheses returned by the learning algo-

rithm are typically written as �rst-order logic clauses.

As the set of all possible clauses is too large to handle, a

subset of these clauses is typically de�ned; this subset is

called the language bias. Several formalisms (“bias spec-

i�cation languages”) have been proposed for specifying

such subsets. We here focus on a few representative

ones.

DLAB

In the DLAB bias speci�cation language (Dehaspe &

De Raedt, ), the language bias is de�ned in a declar-

ative way, by de�ning a syntax that clauses must ful�ll.

In its simplest form, a DLAB speci�cation simply gives

a set of possible head and body literals out of which the

system can build a clause.

Example  �e actual syntax of the DLAB speci�ca-

tion language is relatively complicated (see Dehaspe &

De Raedt, ), but in essence, one can write down a

speci�cation such as:

{ parent({X,Y,Z},{X,Y,Z}),
grandparent({X,Y,Z},
{X,Y,Z}) }

:-
{ parent({X,Y,Z},{X,Y,Z}),
parent({X,Y,Z},{X,Y,Z}),
grandparent({X,Y,Z},{X,Y,Z}),
grandparent({X,Y,Z}, {X,Y,Z}) }

which states that the hypothesis language consists of all

clauses that have at most one parent and at most one

Bias Specification Language B 

B

grandparent literal in the head, and at most two of

these literals in the body; the arguments of these literals

may be variables X,Y,Z. �us, the following clauses are

in the hypothesis language:

grandparent(X, Y) :- parent(X, Z),
parent(Z,Y)

:- parent(X,Y), parent(Y,X)
:- parent(X,X)

�ese express the usual de�nition of grandparent as well

as the fact that there can be no cycles in the parent

relation.

Note that for each argument of each literal, all the

variables and constants that may occur have to be

enumerated explicitly. �is can make a DLAB speci�-

cation quite complex. While DLAB contains advanced

constructs to alleviate this problem, it remains the case

that o�en very elaborate bias speci�cations are needed

in practical situations.

Type- and Mode-Based Biases

A more �exible bias speci�cation language is used by

Progol (Muggleton, ) and many other ILP systems.

It is based on the notions of types andmodes. In Progol,

arguments of a predicate can be typed, and a variable

can never occur in two locations with di�erent types.

Similarly, arguments of a predicate have an input (+) or

output (−) mode; each variable that occurs as an input

argument of some literal must occur elsewhere as an

output argument, or must occur as input argument in

the head literal of a clause.

Example  In Progol, the speci�cations

type(parent(human,human)).
type(grandparent(human,human)).
modeh(grandparent(+,+)).
% modeh: specifies a head literal

modeb(grandparent(+,-)).
% modeb: specifies a body literal

modeb(parent(+,-)).

allow the system to construct a clause such as

grandparent(X,Y) :- parent(X,Z),
parent(Z,Y)

but not the following clause:

grandparent(X,Y) :- parent(Z,Y)

because Z occurs as an input parameter for parent
without occurring elsewhere as an output parameter (i.e.,

it is being used without having been given a value �rst).

FLIPPER’s Bias Specification Language

�e FLIPPER system (Cohen, ) employs a power-

ful, but somewhat more procedural, bias speci�cation

formalism. �e user does not specify a set of valid

hypotheses directly, but rather, speci�es a7Re�nement
Operator. �e language bias is the set of all clauses

that can be obtained from one or more starting clauses

through repeated application of this re�nement oper-

ator. �e operator itself is de�ned by specifying under

which conditions certain literals can be added to a

clause.

Rules de�ning the operator have one of the follow-

ing forms:

A← B where Pre asserting Post

L where Pre asserting Post

�e �rst form de�nes a set of “starting clauses,” and the

second form de�nes when a literal L can be added to a

clause. Each rule can only be applied when its precon-

ditions Pre are ful�lled, and upon application will assert

a set of literals Post. As an example (Cohen, ), the

rules

illegal(A,B,C,D,E,F) ←

where true

asserting {linked(A), linked(B), . . .,

linked(F)}

R(X,Y) where rel(R), linked(X), linked(Y)

asserting ∅

state that any clause of the form

illegal(A,B,C,D,E,F) ←

can be used as a starting point for the re�nement oper-

ator, and the variables in this clause are all linked. Fur-

ther, any literal of the form R(X,Y) with R a relation

 B Bias Variance Decomposition

symbol (as de�ned by the Rel predicate) and X and Y

linked variables can be added.

Other Approaches

Grammars or term rewriting systems have been pro-

posed several times as a means of de�ning the hypoth-

esis language. A relatively recent approach along these

lines was given by Lloyd, who uses a rewriting system to

de�ne the tests that can occur in the nodes of a decision

tree built by the Alkemy system (Lloyd, ).

Boström & Idestam-Almquist () present an

approach where the language bias is implicitly de�ned

through the 7Background Knowledge given to the
learner.

Knobbe et al. () propose the use of UML as a

“common” bias speci�cation language, speci�cations in

which could be translated automatically to languages

speci�c to a particular learner.

Further Reading
An overview of bias speci�cation formalisms in ILP is

given by Nédellec et al. (). �e bias speci�cation

languages discussed above are discussed in more detail

in Dehaspe and De Raedt (), Muggleton (),

and Cohen (). De Raedt () discusses language

bias and the concept of bias shi� (learners weaken-

ing their bias, i.e., extending the set of hypotheses that

can be represented, when a given language bias turns

out to be too restrictive). A more recent approach to

learning declarative bias is presented by Bridewell and

Todorovski ().

Cross References
7Hypothesis Language
7Inductive Logic Programminllg

Recommended Reading
Boström, H., & Idestam-Almquist, P. (). Induction of logic

programs by example-guided unfolding. Journal of Logic Pro-

gramming, (–), –.

Bridewell, W., & Todorovski, L. (). Learning declarative bias.

In Proceedings of the th international conference on inductive

logic programming. Lecture notes in computer science (Vol. ,

pp. –). Berlin: Springer.

Cohen, W. (). Learning to classify English text with ILP meth-

ods. In L. De Raedt (Ed.), Advances in inductive logic program-

ming (pp. –). Amsterdam: IOS Press.

De Raedt, L. (). Interactive theory revision: An inductive logic

programming approach. New York: Academic Press.

Dehaspe, L., & De Raedt, L. (). DLAB: A declarative language

bias formalism. In Proceedings of the international symposium

on methodologies for intelligent systems. Lecture notes in artifi-

cial intelligence (Vol. , pp. –). Berlin: Springer.

Knobbe, A. J., Siebes, A., Blockeel, H., & van der Wallen, D. ().

Multi-relational data mining, using UML for ILP. In Proceedings

of PKDD- – The fourth European conference on principles

and practice of knowledge discovery in databases. Lecture notes in

artificial intelligence (Vol. , pp. –), Lyon, France. Berlin:

Springer.

Lloyd, J. W. (). Logic for learning. Berlin: Springer.

Muggleton, S. (). Inverse entailment and Progol. New Genera-

tion Computing, Special Issue on Inductive Logic Programming,

(–), –.

Nédellec, C., Adé, H., Bergadano, F., & Tausend, B. (). Declara-

tive bias in ILP. In L. De Raedt (Ed.), Advances in inductive logic

programming. Frontiers in artificial intelligence and applications

(Vol. , pp. –). Amsterdam: IOS Press.

Bias Variance Decomposition

Definition
�e bias-variance decomposition is a useful theoreti-

cal tool to understand the performance characteristics

of a learning algorithm. �e following discussion is

restricted to the use of squared loss as the performance

measure, although similar analyses have been under-

taken for other loss functions. �e case receiving most

attention is the zero-one loss (i.e., classi�cation prob-

lems), in which case the decomposition is nonunique

and a topic of active research. See Domingos () for

details.

�e decomposition allows us to see that the mean

squared error of a model (generated by a particular

learning algorithm) is in fact made up of two compo-

nents. �e bias component tells us how accurate the

model is, on average across di�erent possible training

sets. �e variance component tells us how sensitive the

learning algorithm is to small changes in the training set

(Fig. ).

Mathematically, this can be quanti�ed as a decom-

position of the mean squared error function. For a

testing example {x,d}, the decomposition is:

ED{(f (x) − d)} = (ED{ f (x)} − d)

+ ED{(f (x) − ED{ f (x)})},

MSE = bias

+ variance,

Bias-Variance Trade-offs: Novel Applications B 

B

High bias
High variance

High bias
Low variance

Low bias
High variance

Low bias
Low variance

Bias Variance Decomposition. Figure . The bias-variance decomposition is like trying to hit the bullseye on a dart-

board. Each dart is thrown after training our “dart-throwing” model in a slightly different manner. If the darts vary

wildly, the learner is high variance. If they are far from the bullseye, the learner is high bias. The ideal is clearly to have

both low bias and low variance; however this is often difficult, giving an alternative terminology as the bias-variance

“dilemma” (Dartboard analogy, Moore & McCabe ())

where the expectations are with respect to all possible

training sets. In practice, this can be estimated by cross-

validation over a single �nite training set, enabling

a deeper understanding of the algorithm characteris-

tics. For example, e�orts to reduce variance o�en cause

increases in bias, and vice versa. A large bias and low

variance is an indicator that a learning algorithm is

prone to7over�tting the model.

Cross References
7Bias-Variance Trade-o�s: Novel Applications

Recommended Reading
Domingos, P. (). A unified bias-variance decomposition for

zero-one and squared loss. In Proceedings of national conference

on artificial intelligence. Austin, TX: AAAI Press.

Geman, S. (). Neural networks and the bias/variance dilemma.

Neural Computation, ()

Moore, D. S., & McCabe, G. P. (). Introduction to the practice

of statistics. Michelle Julet

Bias-Variance Trade-offs: Novel
Applications

Dev Rajnarayan, David Wolpert

NASA Ames Research Center, Mo�ett Field,

CA, USA

Definition
Consider a given random variable F and a random vari-

able that we can modify, F̂. We wish to use a sample of

F̂ as an estimate of a sample of F. �e mean squared

error (MSE) between such a pair of samples is a sum

of four terms. �e �rst term re�ects the statistical cou-

pling between F and F̂ and is conventionally ignored

in bias-variance analysis. �e second term re�ects the

inherent noise in F and is independent of the estimator

F̂. Accordingly, we cannot a�ect this term. In contrast,

the third and fourth terms depend on F̂.�e third term,

called the bias, is independent of the precise samples of

both F and F̂, and re�ects the di�erence between the

means ofF and F̂.�e fourth term, called the variance, is

independent of the precise sample of F, and re�ects the

inherent noise in the estimator as one samples it. �ese

last two terms can bemodi�ed by changing the choice of

the estimator. In particular, on small sample sets, we can

o�en decrease our mean squared error by, for instance,

introducing a small bias that causes a large reduction the

variance.Whilemost commonly used inmachine learn-

ing, this article shows that such bias-variance trade-o�s

are applicable in a much broader context and in a vari-

ety of situations. We also show, using experiments, how

existing bias-variance trade-o�s can be applied in novel

circumstances to improve the performance of a class of

optimization algorithms.

Motivation and Background
In its simplest form, the bias-variance decomposition

is based on the following idea. Say we have a random

variable F taking on values F distributed according to a

density function p(F). We want to estimate the value of

a sample from p(F). To form our estimate, we sample

a di�erent random variable F̂ taking on values F̂ dis-

tributed according to p(F̂). Assuming a quadratic loss

function, the quality of our estimate is measured by its

MSE:

 B Bias-Variance Trade-offs: Novel Applications

MSE(F̂) ≡ ∫ p(F̂,F) (F̂ − F)dF̂ dF.

Inmany situations, F and F̂ are dependent variables.

For example, in supervisedmachine learning,F is a “tar-

get” conditional distribution, stochastically mapping

elements of an input space X into a space Y of output

variables.�e associated distribution p(F) is the “prior”

of F. A random sampleD of F, called “the training set,”

is generated, and D is used in a “learning algorithm” to

produce F̂, which is our estimate of F. Clearly, this F and

F̂ are statistically dependent, via D. Indeed, intuitively

speaking, the goal in designing a learning algorithm is

that the F̂’s it produces are positively correlated with F’s.

In practice this coupling is simply ignored in analy-

ses of bias plus variance, without any justi�cation (one

such justi�cation could be that the coupling has lit-

tle e�ect on the value of the MSE). We shall follow

that practice here. Accordingly, our equation for MSE

reduces to

MSE(F̂) = ∫ p(F̂)p(F) (F̂ − F)dF̂ dF. ()

If we were to account for the coupling of F̂ and F̂ an

additive correction term would need to be added to the

right-hand side. For instance, see Wolpert ().

Using simple algebra, the right hand side of () can

be written as the sum of three terms.�e �rst is the vari-

ance of F. Since this is beyond our control in designing

the estimator F̂, we ignore it for the rest of this arti-

cle. �e second term involves a mean that describes

the deterministic component of the error. �is term

depends on both the distribution of F and that of F̂,

and quanti�es how close the means of those distribu-

tions are. �e third term is a variance that describes

stochastic variations from one sample to the next. �is

term is independent of the random variable being esti-

mated. Formally, up to an overall additive constant, we

can write

MSE(F̂) = ∫ p(F̂)(F̂ − FF̂ + F)dF̂

= ∫ p(F̂)F̂ dF̂ − F∫ p(F̂)F̂ dF̂ + F

=

³¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

V(F̂) + [E(F̂)] −F E(F̂) + F

= V(F̂) + [F −E(F̂)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= variance + bias

. ()

In light of (), one way to try to reduce expected

quadratic error is to modify an estimator to trade-o�

bias and variance. Some of the most famous applica-

tions of such bias-variance trade-o�s occur in para-

metric machine learning, where many techniques have

been developed to exploit the trade-o�. Nonetheless,

the trade-o� also arises in many other �elds, includ-

ing integral estimation and optimization. In the rest

of this paper we present a few novel applications of

bias-variance trade-o�, and describe some interesting

features in each case. A recurring theme is the fol-

lowing: whenever a bias-variance trade-o� arises in

a particular �eld, we can use many techniques from

parametric machine learning that have been devel-

oped for exploiting this trade-o�. See Wolpert and Raj-

narayan () for further details of many of these

applications.

Applications
In this section, we describe some applications of the

bias-variance tradeo�. First, we describe Monte Carlo

(MC) techniques for the estimation of integrals, and

provide a brief analysis of bias-variance trade-o�s in

this context. Next, we introduce the �eld of Monte

Carlo optimization (MCO), and illustrate that there

are more subtleties involved than in simple MC. �en,

we describe the �eld of parametric machine learn-

ing, which, as will show, is formally identical to MCO.

Finally, we describe the application of parametric learn-

ing (PL) techniques to improve the performance of

MCO algorithms. We do this in the context of an MCO

problem that addresses black-box optimization.

Monte Carlo Estimation of Integrals Using Importance

Sampling

MonteCarlomethods are o�en themethod of choice for

estimating di�cult high-dimensional integrals. Con-

sider a function f ∶X → R, which we want to integrate
over some region X ⊆ X, yielding the value F, as given

by

F = ∫
X
dx f (x).

We can view this as a random variable F, with den-

sity function given by a Dirac delta function centered

on F. �erefore, the variance of F is , and () is

exact.

Bias-Variance Trade-offs: Novel Applications B 

B

A popular MC method to estimate this integral

is importance sampling (see Robert & Casella, ).

�is exploits the law of large numbers as follows: i.i.d.

samples x(i), i= , . . . ,m are generated from a so-called

importance distribution h(x) that we control, and the

associated values of the integrand, f (x(i)) are com-

puted. Denote these “data” by

D = {(x(i), f (x(i)), i = , . . . ,m}. ()

Now,

F = ∫
X
dx h(x)

f (x)

h(x)

= lim
m→∞



m

m

∑
i=

f (x(i))

h(x(i))
with probability .

Denote by F̂ the random variable with value given

by the sample average forD:

F̂ =


m

m

∑
i=

f (x(i))

h(x(i))
.

We use F̂ as our statistical estimator for F, as we

broadly described in the introductory section. Assum-

ing a quadratic loss function, L(F̂,F) = (F − F̂), the

bias-variance decomposition described in () applies

exactly. It can be shown that the estimator F̂ is unbiased,

that is, E(F̂) = F, where the mean is over samples of h.

Consequently, the MSE of this estimator is just its vari-

ance. �e choice of sampling distribution h that min-

imizes this variance is given by (see Robert & Casella,

)

h⋆(x) =
∣f (x)∣

∫X ∣f (x′)∣dx′
.

By itself, this result is not very helpful, since the

equation for the optimal importance distribution con-

tains a similar integral to the one we are trying to

estimate. For non-negative integrands f (x), the VEGAS

algorithm (Lepage, ) describes an adaptive method

to �nd successively better importance distributions, by

iteratively estimating F, and then using that estimate

to generate the next importance distribution h. In the

case of these unbiased estimators, there is no trade-

o� between bias and variance, and minimizing MSE is

achieved by minimizing variance.

Monte Carlo Optimization

Instead of a �xed integral to evaluate, consider a para

metrized integral

F(θ) = ∫
X
dx fθ(x).

Further, suppose we are interested in �nding the value

of the parameter θ ∈ Θ that minimizes F(θ):

θ⋆ = argmin
θ∈Θ

F(θ).

In the case where the functional form of fθ is not

explicitly known, one approach to solve this problem

is a technique called MCO (see Ermoliev & Norkin,

), involving repeated MC estimation of the inte-

gral in question with adaptive modi�cation of the

parameter θ.

We proceed by analogy to the case with MC. First,

we introduce the θ-indexed random variable F(θ),

all of whose components have delta-function distri-

butions about the associated values F(θ). Next, we

introduce a θ-indexed vector random variable F̂ with

values

F̂ ≡ {F̂(θ) ∀ θ ∈ Θ}. ()

Each real-valued component F̂(θ) can be sampled and

viewed as an estimate of F(θ).

For example, let D be a data set as described in

(). �en for every θ, any sample of D provides an

associated estimate

F̂(θ) =


m

m

∑
i=

fθ(x
(i))

h(x(i))
.

�at average serves as an estimate of F(θ). Formally,

F̂ is a function of the random variable D, and is given

by such averaging over the elements of D. So, a sam-

ple of D provides a sample of F̂. A priori, we make no

restrictions on F̂, and so, in general, its components

may be statistically coupled with one another. Note that

this coupling arises even though we are, for simplicity,

treating each function F(θ) as having a delta-function

distribution, rather than as having a non-zero variance

that would re�ect our lack of knowledge of the f (θ)

functions.

 B Bias-Variance Trade-offs: Novel Applications

However F̂ is de�ned, given a sample of F̂, one way

to estimate θ⋆ is

θ̂⋆ = argmin
θ∈Θ

F̂(θ).

We call this approach “natural” MCO. As an example,

say thatD is a set ofm samples of h, and let

F̂(θ) ≜


m

m

∑
i=

fθ(x
(i))

h(x(i))
,

as above. Under this choice for F̂,

θ̂⋆ = argmin
θ∈Θ



m

m

∑
i=

fθ(x
(i))

h(x(i))
. ()

We call this approach “naive” MCO.

Consider any algorithm that estimates θ⋆ as a

single-valued function of F̂. �e estimate of θ⋆ pro-

duced by that algorithm is itself a random variable,

since it is a function of the random variable F̂. Call this

random variable θ̂
⋆
, taking on values θ̂⋆. Any MCO

algorithm is de�ned by θ̂
⋆
; that random variable encap-

sulates the output estimate made by the algorithm.

To analyze the error of such an algorithm, con-

sider the associated random variable given by the true

parametrized integral F(θ̂
⋆
). �e di�erence between a

sample of F(θ̂
⋆
) and the true minimal value of the inte-

gral, F(θ⋆) = minθ F(θ), is the error introduced by

our estimating that optimal θ as a sample of θ̂
⋆
. Since

our aim in MCO is to minimize F(θ), we adopt the

loss function L(θ̂
⋆
, θ⋆) ≜ F(θ̂

⋆
) − F(θ⋆). �is is in

contrast to our discussion on MC integration, which

involved quadratic loss. �e current loss function just

equals F(θ̂
⋆
) up to an additive constant F(θ⋆) that

is �xed by the MCO problem at hand and is beyond

our control. Up to that additive constant, the associated

expected loss is

E(L) = ∫ dθ̂⋆p(θ̂⋆)F(θ̂⋆). ()

Now change coordinates in this integral from the val-

ues of the scalar random variable θ̂
⋆
to the values of the

underlying vector random variable F̂. �e expected loss

now becomes

E(L) = ∫ dF̂ p(F̂)F(θ̂⋆(F̂)).

�e natural MCO algorithm provides some insight

into these results. For that algorithm,

E(L) = ∫ dF̂ p(F̂)F (argmin
θ

F̂(θ))

= ∫ dF̂(θ)dF̂(θ) . . . p(F̂(θ), F̂(θ), . . .)

F (argmin
θ

F̂(θ)) . ()

For any �xed θ, there is an error between samples of

F̂(θ) and the true value F(θ). Bias-variance consider-

ations apply to this error, exactly as in the discussion

of MC above. We are not, however, concerned with

F̂ for a single component θ, but rather for a set Θ

of θ’s.

�e simplest such case is where the components

of F̂(Θ) are independent. Even so, argminθ F̂(θ) is

distributed according to the laws for extrema of mul-

tiple independent random variables, and this distri-

bution depends on higher-order moments of each

random variable F̂(θ). �is means that E[L] also

depends on such higher-order moments. Only the �rst

two moments, however, arise in the bias and variance

for any single θ.�us, even in the simplest possible case,

the bias-variance considerations for the individual θ do

not provide a complete analysis.

Inmost cases, the components of F̂ are not indepen-

dent.�erefore, in order to analyze E[L], in addition to

higher moments of the distribution for each θ, we must

now also consider higher-order moments coupling the

estimates F̂(θ) for di�erent θ.

Due to these e�ects, it may be quite acceptable

for all the components F̂(θ) to have both a large

bias and a large variance, as long as they still order

the θ’s correctly with respect to the true F(θ). In

such a situation, large covariances could ensure that

if some F̂(θ) were incorrectly large, then F̂(θ′), θ′≠θ

would also be incorrectly large. �is coupling between

the components of F̂ would preserve the ordering

of θ’s under F. So, even with large bias and vari-

ance for each θ, the estimator as a whole would still

work well.

Nevertheless, it is su�cient to design estimators

F̂(θ) with su�ciently small bias plus variance for each

single θ. More precisely, suppose that those terms are

very small on the scale of di�erences F(θ) − F(θ′)

for any θ and θ′. �en by Chebychev’s inequality,

Bias-Variance Trade-offs: Novel Applications B 

B

we know that the density functions of the random

variables F̂(θ) and F̂(θ′) have almost no overlap.

Accordingly, the probability that a sample of F̂(θ) −

F̂(θ′) has the opposite sign of F(θ) − F(θ′) is

almost zero.

Evidently,E[L] is generally determined by a compli-

cated relationship involving bias, variance, covariance,

and higher moments. Natural MCO in general, and

naive MCO in particular, ignore all of these e�ects, and

consequently, o�en perform quite poorly in practice. In

the next sectionwe discuss someways of addressing this

problem.

Parametric Machine Learning

�ere are many versions of the basic MCO prob-

lem described in the previous section. Some of the

best-explored arise in parametric density estimation

and parametric supervised learning, which together

comprise the �eld of parametric machine learning

(PL).

In particular, parametric supervised learning

attempts to solve

argmin
θ∈Θ
∫ dx p(x)∫ dy p(y ∣ x)fθ(x).

Here, the values x represent inputs, and the values y rep-

resent corresponding outputs, generated according to

some stochastic process de�ned by a set of conditional

distributions {p(y ∣ x), x ∈ X}. Typically, one tries to

solve this problem by casting it as anMCOproblem. For

instance, say we adopt a quadratic loss between a pre-

dictor zθ(x) and the true value of y. Using MCO nota-

tion, we can express the associated supervised learning

problem as �nding argminθ F(θ), where

lθ(x) = ∫ dy p(y ∣ x) (zθ(x) − y),

fθ(x) = p(x) lθ(x),

F(θ) = ∫ dx fθ(x). ()

Next, the argmin is estimated by minimizing a

sample-based estimate of the F(θ)’s. More precisely, we

are given a “training set” of samples of p(y ∣ x) p(x),

{(x(i), yi)i = , . . . ,m}.�is training set provides a set of

associated estimates of F(θ):

F̂(θ) =


m

m

∑
i=

lθ(x
(i)

).

�ese are used to estimate argminθ F(θ), exactly as in

MCO. In particular, one could estimate the minimizer

of F(θ) by �nding the minimum of F̂(θ), just as in nat-

ural MCO. As mentioned above, this MCO algorithm

can perform very poorly in practice. In PL, this poor

performance is called “over�tting the data.”

�ere are several formal approaches that have been

explored in PL to try to address this “over�tting the

data.” Interestingly, none are based on direct consider-

ation of the random variable F(θ̂⋆(F̂)) and the rami-

�cations of its distribution for expected loss (cf. ()).

In particular, no work has applied the mathematics of

extrema of multiple random variables to analyze the

bias-variance-covariance trade-o�s encapsulated in ().

�e PL approach that perhaps comes closest to such

direct consideration of the distribution of F(θ̂
⋆
) is uni-

formconvergence theory, which is a central part of com-

putational learning theory (seeAngluin, ). Uniform

convergence theory starts by crudely encapsulating the

quadratic loss formula for expected loss under natu-

ral MCO (). It does this by considering the worst-case

bound, over possible p(x) and p(y ∣ x), of the proba-

bility that F(θ
⋆
) exceeds minθ F(θ) by more than κ. It

then examines how that bound varies with κ. In partic-

ular, it relates such variation to characteristics of the set

of functions {fθ : θ ∈ Θ}, e.g., the “VC dimension” of

that set (see Vapnik, , ).

Another, historically earlier approach, is to apply

bias-plus-variance considerations to the entire PL algo-

rithm θ̂
⋆
, rather than to each F̂(θ) separately. �is

approach is applicable for algorithms that do not use

natural MCO, and even for non-parametric supervised

learning. As formulated for parameteric supervised

learning, this approach combines the formulas in () to

write

F(θ) = ∫ dxdy p(x)p(y ∣ x)(zθ(x) − y).

�is is then substituted into (), giving

E[L] = ∫ dθ̂⋆dxdy p(x) p(y ∣ x) p(θ̂⋆)(z
θ̂⋆
(x) − y)

= ∫ dx p(x) [∫ dθ̂⋆dy p(x)p(y ∣ x)p(θ̂⋆)

(z
θ̂⋆
(x) − y)] . ()

�e term in square brackets is an x-parameterized

expected quadratic loss, which can be decomposed into

 B Bias-Variance Trade-offs: Novel Applications

a bias, variance, etc., in the usual way. �is formula-

tion eliminates any direct concern for issues like the

distribution of extrema of multiple random variables,

covariances between F̂(θ) and F̂(θ′) for di�erent values

of θ, and so on.

�ere are numerous other approaches for address-

ing the problems of natural MCO that have been

explored in PL. Particularly important among these

are Bayesian approaches, e.g., Buntine and Weigend

(), Berger (), and Mackay (). Based on

these approaches, as well as on intuition, many pow-

erful techniques for addressing data-over�tting have

been explored in PL, including regularization, cross-

validation, stacking, bagging, etc. Essentially all of

these techniques can be applied to any MCO prob-

lem, not just PL problems. Since many of these tech-

niques can be justi�ed using (), they provide a way

to exploit the bias-variance trade-o� in other domains

besides PL.

PLMCO

In this section, we illustrate how PL techniques that

exploit the bias-variance decomposition of () can be

used to improve an MCO algorithm used in a domain

outside of PL.�isMCO algorithm is a version of adap-

tive importance sampling, somewhat similar to the CE

method (Rubinstein & Kroese, ), and is related

to function smoothing on continuous spaces. �e PL

techniques described are applicable to any other MCO

problem, and this particular one is chosen just as an

example.

MCO Problem Description �e problem is to �nd the

θ-parameterized distribution qθ that minimizes the

associated expected value of a function G∶Rn→R,
i.e., �nd

argmin
θ

Eqθ
[G].

We are interested in versions of this problem where we

do not know the functional form of G, but can obtain

its valueG(x) at any x ∈ X . Similarly we cannot assume

that G is smooth, nor can we evaluate its derivatives

directly. �is scenario arises in many �elds, includ-

ing blackbox optimization (see Wolpert, Strauss, &

Rajnarayan, ), and riskminimization (see Ermoliev

& Norkin, ).

We begin by expressing this minimization problem

as an MCO problem. We know that

Eqθ
[G] = ∫

X
dx qθ(x)G(x)

Using MCO terminology, fθ(x)=qθ(x)G(x) and F(θ)=

Eqθ
[G]. To apply MCO, we must de�ne a vector-

valued random variable F̂ with components indexed

by θ, and then use a sample of F̂ to estimate

argminθ Eqθ
[G]. In particular, to apply naive MCO to

estimate argminθ Eqθ
(G), we �rst i.i.d. sample a den-

sity function h(x). By evaluating the associated values

of G(x) we get a data set

D ≡ (DX ,DG)

= ({x(i) : i = , . . . ,m},{G(x(i)) : i = , . . . ,m}).

�e associated estimates of F(θ) for each θ are

F̂(θ) ≜


m

m

∑
i=

qθ(x
(i))G(x(i))

h(x(i))
. ()

�e associated naive MCO estimate of argminθ Eqθ
[G]

is

θ̂⋆ ≡ argmin
θ

F̂(θ).

Suppose Θ includes all possible density functions

over x’s. �en the qθ minimizing our estimate is a delta

function about the x(i) ∈ DX with the lowest asso-

ciated value of G(x(i))/h(x(i)). �is is clearly a poor

estimate in general; it su�ers from “data-over�tting.”

Proceeding as in PL, one way to address this data-

over�tting is to use regularization. In particular, we can

use the entropic regularizer, given by the negative of the

Shannon entropy S(qθ). So we now want to �nd the

minimizer of Eqθ
[G(x)] − TS(qθ), where T is the reg-

ularization parameter. Equivalently, we can minimize

βEqθ
[G(x)] − S(qθ), where β = /T. �is changes the

de�nition of F̂ from the function given in () to

F̂(θ) ≜


m

m

∑
i=

β qθ(x
(i))G(x(i))

h(x(i))
− S(qθ).

Solution Methodology Unfortunately, it can be di�cult

to �nd the θ globally minimizing this new F̂ for an arbi-

trary D. An alternative is to �nd a close approximation

Bias-Variance Trade-offs: Novel Applications B 

B

to that optimal θ. One way to do this is as follows. First,

we �nd minimizer of



m

m

∑
i=

β p(x(i))G(x(i))

h(x(i))
− S(p) ()

over the set of all possible distributions p(x) with

domain X . We then �nd the qθ that has minimal

Kullback–Leibler (KL) divergence from this p, evalu-

ated over DX . �at serves as our approximation to

argminθ F̂(θ), and therefore as our estimate of the θ

that minimizes Eqθ
(G).

�eminimizer p of () can be found in closed form;

over DX it is the Boltzmann distribution pβ(x(i)) ∝

exp(−βG(x(i))). �e KL divergence in DX from this

Boltzmann distribution to qθ is

F(θ) = KL(pβ
∥qθ) = ∫

X
dx pβ

(x) log(
pβ(x)

qθ(x)
) .

�e minimizer of this KL divergence is given by

θ† = argmin
θ
−

m

∑
i=

exp(−βG(x(i)))

h(x(i))
log(qθ(x

(i)
)).

()

�is approach is an approximation to a regularized ver-

sion of the naive MCO estimate of the θ that minimizes

Eqθ
(G). �e application of the technique of regulariza-

tion in this context has the same motivation as it does

in PL: to reduce bias plus variance.

Log-Concave Densities If qθ is log-concave in its

parameters θ, then the minimization problem in () is

a convex optimization problem, and the optimal param-

eters can be found closed-form. Denote the likelihood

ratios by s(i) = exp(−βG(x(i)))/h(x(i)). Di�erentiating

()with respect to the parameters µ and Σ− and setting

them to zero yields

µ⋆ =
∑D s(i)x(i)

∑D s(i)

Σ
⋆
=
∑D s(i)(x(i) − µ⋆)(x(i) − µ⋆)T

∑D s(i)

Mixture Models �e single Gaussian is a fairly restric-

tive class of models. Mixture models (see 7Mixture
Modeling) can signi�cantly improve �exibility, but at

the cost of convexity of the KL distance minimiza-

tion problem. However, a plethora of techniques from

supervised learning, in particular the expectation max-

imization (EM) algorithm, can be applied with minor

modi�cations.

Suppose qθ is a mixture of M Gaussians, that is,

θ = (µ, Σ, ϕ) where ϕ is the mixing p.m.f, we can view

the problem as one where a hidden variable z decides

which mixture component each sample is drawn from.

We then have the optimization problem

minimize −∑
D

p(x(i))

h(x(i))
log (qθ(x

(i)
, z(i))) .

Following the standard EM procedure, we get the algo-

rithm described in (). Since this is a nonconvex prob-

lem, one typically runs the algorithm multiple times

with random initializations of the parameters.

E-step: For each i, set Qi(z
(i)

) = p(z(i)∣x(i)),

that is, w
(i)

j = qµ ,Σ,ϕ(z
(i)

= j∣x(i)), j = , . . . ,M.

M-step: Set µj =
∑D w

(i)

j s(i) x(i)

∑D w
(i)

j s(i)
,

Σj =
∑D w

(i)

j s(i) (x(i) − µj)(x
(i)
− µj)

T

∑D w
(i)

j s(i)
,

ϕj =
∑D w

(i)

j s(i)

∑D s(i)
.

Test Problems To compare the performance of this

algorithm with and without the use of PL techniques,

we use a couple of very simple academic problems in

two and four dimensions – the Rosenbrock function in

two dimensions, given by

GR(x) = (x − x)

+ ( − x)


,

and the Woods function in four dimensions, given by

given by

GWoods(x) = (x − x)

+ ( − x)


+ (x − x)



+ ( − x)


+ .[( − x)

+ ( − x)


]

+ .( − x)( − x).

 B Bias-Variance Trade-offs: Novel Applications

For the Rosenbrock, the optimum value of  is achieved

at x = (, ), and for the Woods problem, the optimum

value of  is achieved at x = (, , , ).

Application of PL Techniques As mentioned above,

there are many PL techniques beyond regularization

that are designed to optimize the trade-o� between

bias and variance. So having cast the solution of

argminqθ
E(G) as an MCO problem, we can apply

those other PL techniques instead of (or in addition to)

entropic regularization.�is should improve the perfor-

mance of ourMCOalgorithm, for the exact same reason

that using those techniques to trade o� bias and vari-

ance improves performance in PL. We brie�y mention

some of those alternative techniques here.

�e overall MCO algorithm is broadly described in

Algorithm . For the Woods problem,  samples of x

are drawn from the updated qθ at each iteration, and

for the Rosenbrock,  samples. For comparing various

methods and plotting purposes, , samples of G(x)

are drawn to evaluate Eqθ
[G(x)]. Note: in an actual

optimization, we will not be drawing these test sam-

ples! All the performance results in Fig.  are based on

 runs of the PC algorithm, randomly initialized each

time. �e sample mean performance across these runs

is plotted along with % con�dence intervals for this

sample mean (shaded regions).

7Cross-Validation for Regularization: We note that we

are using regularization to reduce variance, but that reg-

ularization introduces bias. As is done in PL, we use

standard k-fold cross-validation to tradeo� this bias and

Algorithm  Overview of pqminimization using
Gaussian mixtures

: Draw uniform random samples on X

: Initialize regularization parameter β

: Compute G(x) values for those samples

: repeat
: Find a mixture distribution qθ to minimize sam-

pled pq KL distance

: Sample from qθ

: Compute G(x) for those samples

: Update β

: until Termination
: Sample �nal qθ to get solution(s).

variance. We do this by partitioning the data into k dis-

joint sets. �e held-out data for the ith fold is just the

ith partition, and the held-in data is the union of all

other partitions. First, we “train” the regularized algo-

rithm on the held-in data Dt to get an optimal set of

parameters θ⋆, then “test” this θ⋆ by considering unreg-

ularized performance on the held-out data Dv. In our

context, “training” refers to �nding optimal parameters

byKLdistanceminimization using the held-in data, and

“testing” refers to estimating Eqθ
[G(x)] on the held-

out data using the following formula (Robert & Casella,

).

ĝ(θ) =

∑
Dv

qθ(x
(i))G(x(i))

h(x(i))

∑
Dv

qθ(x
(i))

h(x(i))

.

We do this for several values of the regularization

parameter β in the interval kβ < β < kβ, and choose

the one that yield the best held-out performance, aver-

aged over all folds. For our experiments, k = ., k = ,

and we use �ve equally-spaced values in this interval.

Having found the best regularization parameter in this

range, we then use all the data to minimize KL dis-

tance using this optimal value of β. Note that all cross-

validation is done without any additional evaluations of

G(x). Cross-validation for β in PC is similar to opti-

mizing the annealing schedule in simulated annealing.

�is “auto-annealing” is seen in Fig. a, which shows the

variation of β with iterations of the Rosenbrock prob-

lem. It can be seen that β value sometimes decreases

from one iteration to the next. �is can never happen

in any kind of “geometric annealing schedule,” β ←

kβ β, kβ > , of the sort that is o�en used in most

algorithms in the literature. In fact, we ran  trials of

this algorithm on the Rosenbrock and then computed

a best-�t geometric variation for β, that is, a nonlin-

ear least squares �t to variation of β, and a linear least

squares �t to the variation of log(β). �ese are shown

in Fig. c and d. As can be seen, neither is a very good

�t. We then ran  trials of the algorithm with the �xed

update rule obtained by best-�t to log(β), and found

that the adaptive setting of β using cross-validation

performed an order of magnitude better, as shown in

Fig. e.

Bias-Variance Trade-offs: Novel Applications B 

B

–4

–2

0

2

4

6

8

5

10
–10

10
–10

10
10

10
10

10
010

0

10

10 20 30 40 50

0

0.5
100

1

2

3

4

4.5

3.5

2.5

1.5

20 30 40 50

0
0

0

5

10

0 10 20 30 40 50

0 10 20 30 40 50

1

2

3

4

20 30 5040

0 10 15 20 25 30 302520151050

0

1

2

3

4

–2

–1

Iteration

Iteration

Iteration

Iteration

Iteration Iteration

Iteration

Iteration

Iteration

lo
g(

β)

Cross-validation for β: log(β) History. Cross-validation for β: log[E(G) History.

Iteration

lo
g(

E
(G

)

x10
9 x10

9Least-squares Fit to β Least-squares Fit to log(β)

βo = 1.809e+00 βo = 1.240e-03

kβ = 1.832kβ = 1.548β β

lo
g(

β)

lo
g(

β)

Cross-validation for Regularization: Woods Problem.

Best-fit β
Cross-validation for β

Cross-validation for Model-selection:2-D Rosenbrock.

Single gaussian
Mixture model

0

0

1

2

3

4

3.5

2.5

–1

–0.5

0.5

1.5

5 10 15 20 25

lo
g[

E
(G

)]
lo

g[
E

(G
)]

lo
g[

E
(G

)]

Bagging: Noisy Rosenbrock.
4

3

2

1

0

0 5 10 15 20 25 0

lo
g[

E
(G

)]

1

0

2

3

4

–2

–1

5 10 15 20 25

–1

–2

Model Selection Methods: Noisy Rosenbrock.

Single gaussian
Cross-validation
Stacking

No bagging
Bagging

ba

c d

e f

hg

Bias-Variance Trade-offs: Novel Applications. Figure . Various PL techniques improve MCO performance

 B Bias-Variance Trade-offs

Cross-Validation for Model Selection: Given a set Θ

(sometimes called a model class) to choose θ from, we

can �nd an optimal θ ∈ Θ. But how dowe choose the set

Θ? In PL, this is done using cross-validation.We choose

that set Θ such that argminθ∈Θ F̂(θ) has the best held-

out performance. As before, we use that model class

Θ that yields the lowest estimate of Eqθ
[G(x)] on the

held-out data. We demonstrate the use of this PL tech-

nique for minimizing the Rosenbrock problem, which

has a long curved valley that is poorly approximated

by a single Gaussian. We use cross-validation to choose

between a Gaussian mixture with up to four compo-

nents. �e improvement in performance is shown in

Fig. d.

Bagging: In bagging (Breiman, a), we generatemul-

tiple data sets by resampling the given data set with

replacement. �ese new data sets will, in general, con-

tain replicates. We “train” the learning algorithm on

each of these resampled data sets, and average the

results. In our case, we average the qθ got by our KL

divergence minimization on each data set. PC works

even on stochastic objective functions, and on the

noisy Rosenbrock, we implemented PCwith bagging by

resampling ten times, and obtained signi�cant perfor-

mance gains, as seen in Fig. g.

Stacking: In bagging, we combine estimates of the same

learning algorithm on di�erent data sets generated

by resampling, whereas in stacking (Breiman, b;

Smyth & Wolpert, ), we combine estimates of dif-

ferent learning algorithms on the same data set. �ese

combined estimated are o�en better than any of the sin-

gle estimates. In our case, we combine the qθ obtained

from our KL divergence minimization algorithm using

multiple models Θ. Again, Fig. h shows that cross-

validation for model selection performs better than a

single model, and stacking performs slightly better than

cross-validation.

Conclusions
�e conventional goal of reducing bias plus variance

has interesting applications in a variety of �elds. In

straightforward applications, the bias-variance trade-

o�s can decrease the MSE of estimators, reduce the

generalization error of learning algorithms, and so

on. In this article, we described a novel application

of bias-variance trade-o�s: we placed bias-variance

trade-o�s in the context of MCO, and discussed the

need for higher moments in the trade-o�, such as a

bias-variance-covariance trade-o�. We also showed a

way of applying just a bias-variance trade-o�, as used

in Parametric Learning, to improve the performance of

MCO algorithms.

Recommended Reading
Angluin, D. (). Computational learning theory: Survey and

selected bibliography. In Proceedings of the twenty-fourth

annual ACM symposium on theory of computing. New York:

ACM.

Berger, J. O. (). Statistical decision theory and bayesian analysis.

New York: Springer.

Breiman, L. (a). Bagging predictors. Machine Learning, (),

–.

Breiman, L. (b). Stacked regression. Machine Learning, (),

–.

Buntine, W., & Weigend, A. (). Bayesian back-propagation.

Complex Systems, , –.

Ermoliev, Y. M., & Norkin, V. I. ().Monte carlo optimization and

path dependent nonstationary laws of large numbers. Technical

Report IR--. International Institute for Applied Systems

Analysis, Austria.

Lepage, G. P. (). A new algorithm for adaptive multidi-

mensional integration. Journal of Computational Physics, ,

–.

Mackay, D. (). Information theory, inference, and learning algo-

rithms. Cambridge, UK: Cambridge University Press.

Robert, C. P., & Casella, G. (). Monte Carlo statistical methods.

New York: Springer.

Rubinstein, R., & Kroese, D. (). The cross-entropy method. New

York: Springer.

Smyth, P., & Wolpert, D. (). Linearly combining den-

sity estimators via stacking. Machine Learning, (–),

–.

Vapnik, V. N. (). Estimation of dependences based on empirical

data. New York: Springer.

Vapnik, V. N. (). The nature of statistical learning theory. New

York: Springer.

Wolpert, D. H. (). On bias plus variance. Neural Computation,

, –.

Wolpert, D. H., & Rajnarayan, D. (). Parametric learning and

monte carlo optimization. arXiv:.v [cs.LG].

Wolpert, D. H., Strauss, C. E. M., & Rajnarayan, D. ().

Advances in distributed optimization using proba-

bility collectives. Advances in Complex Systems, (),

–.

Bias-Variance Trade-offs

7Bias-Variance

Biological Learning: Synaptic Plasticity, Hebb Rule and Spike Timing Dependent Plasticity B 

B

Bias-Variance-Covariance
Decomposition

�e bias-variance-covarianc delcomposition is a

theoretical result underlying 7ensemble learning
algorithms. It is an extension of the 7bias-variance
decomposition, for linear combinations of models. �e

expected squared error of the ensemble f̄ (x) from a
target d is:

ED{(f̄ (x) − d)} = bias

+


T
var +

⎛

⎝
 −


T

⎞

⎠
covar.

�e error is composed of the average bias of the

models, plus a term involving their average variance,

and a �nal term involving their average pairwise covari-

ance. �is shows that while a single model has a two-

way bias-variance tradeo�, an ensemble is controlled

by a three-way tradeo�. �is ensemble tradeo� is o�en

referred to as the accuracy-diversity dilemma for an

ensemble. See7ensemble learning for more details.

Bilingual Lexicon Extraction

Bilingual lexicon extraction is the task of automatically

identifying a terms in a �rst language and terms in a

second language which are translation f one another. In

this context, a term can be either a single word or an

expression composed of several words the full mean-

ing of which cannot be derived compositionally from

the meaning of the individual words. Bilingual lexi-

con extraction is itself a form of 7cross-lingual text
mining and is an essential preliminary step in many

approaches for performing other 7cross-lingual text
mining tasks.

Binning

7Discretization

Biological Learning: Synaptic
Plasticity, Hebb Rule and Spike
Timing Dependent Plasticity

Wulfram Gerstner

Brain Mind Institute, Lausanne EPFL, Switzerland

Synonyms
Correlation-based learning; Hebb rule; Hebbian

learning

Definition
�e brain of humans and animals consists of a large

number of interconnected neurons. Learning in biolog-

ical neural systems is thought to take place by changes in

the connections between these neurons. Since the con-

tact points between two neurons are called synapses,

the change in the connection strength is called synap-

tic plasticity. �e mathematical description of synaptic

plasticity is called a (biological) learning rule. Most

of these biological learning rules can be categorized

in the context of machine learning as unsupervised

learning rules, and the remaining ones as reward-

based or reinforcement learning. �e Hebb rule is an

example of an unsupervised correlation-based learning

rule formulated on the level of neuronal �ring rates.

Spike-timing-dependent plasticity (STDP) is an unsu-

pervised learning rule formulated on the level of spikes.

Modulation of learning rates in a Hebb rule or STDP

rule by a di�usive signal carrying reward-related infor-

mation yields a biologically plausible form of a rein-

forcement learning rule.

Motivation and Background
Humans and animals can adapt to environmental con-

ditions and learn new tasks. Learning becomes measur-

able by changes in the behavior: humans and animals

get better at seeing and distinguishing visual objects

with experience; animals can learn to go to a target loca-

tion; humans canmemorize a list of words and recall the

items  days later. How learning is implemented in the

biological substrate is only partially known.

�e brain consists of billions of neurons. Each neu-

ron has long wire-like extensions and makes contacts

with thousands of other neurons. �is network of neu-

rons is not �xed but constantly changes. Connections

 B Biological Learning: Synaptic Plasticity, Hebb Rule and Spike Timing Dependent Plasticity

can be formed or can disappear, and existing connec-

tions can be strengthened or weakened. Neuroscientists

have shown in numerous experiments that changes can

be induced by stimulating neuronal activity in an appro-

priate fashion. Moreover, changes in synaptic connec-

tions that have been induced in one or a few seconds

can persist for hours or days, an e�ect called long-term

potentiation (LTP) or long-term depression (LTD) of

synapses.

�e question arises of whether such long-lasting

changes in connections are useful for learning. To

answer this question, research in theoretical and com-

putational neuroscience needs to solve two problems:

First, develop a compact but realistic description of the

phenomenon of synaptic plasticity observed in biol-

ogy, i.e., extract learning rules from the biological data;

and second, study the functional consequences of these

learning rules. An important insight from experiments

on LTP is that the activation of a synaptic connection

alone does not lead to a long-lasting change; however,

if the activation of the synapses by presynaptic signals

is combined with some activation of the postsynaptic

neuron, then a long-lasting change of the synapse may

occur.�e coactivation of presynaptic and postsynaptic

neurons as a condition for learning is the key ingredient

of Hebbian learning rules. Here, activation of the presy-

naptic neuron means that it �res one or several action

potentials; activation of the postsynaptic neuron can be

represented by high �ring rates, a few well-timed action

potentials or input from other neurons that lead to an

increase in the membrane voltage.

Structure of the Learning System
The Hebb Rule

Hebbian learning rules are local, i.e., they depend only

on the state of the presynaptic and postsynaptic neurons

plus possibly the current value of the synaptic weight

itself. Let wij denotes the weight between a presynaptic

neuron j and a postsynaptic neuron i, and let us describe

the activity (e.g., the �ring rate) of each neuron by a con-

tinuous variable νj and νi, respectively. Mathematically,

we may therefore write for a local learning rule

d

dt
wij = F(wij; νi, νj) ()

where F is an unknown function. In addition to locality,

Hebbian learning requires some kind of cooperation or

correlation between the activity of the presynaptic neu-

ron and that of the postsynaptic neuron. At themoment

we restrict ourselves to the requirement of simultaneous

activity of presynaptic and postsynaptic neurons. Since

F is a function of the rates νi and νj, we may expand F

about νi = νj = . An expansion to second order of the

rates yields

d

dt
wij(t) ≈ c(wij) + c

pre

 (wij) νj + c
post

 (wij)νi

+ ccorr (wij) νi νj + c
post

 (wij) νi

+ c
pre

 (wij) νj +O(ν). ()

Here, νi and νj are functions of time, i.e., νi(t) and νj(t)

and so is the weight wij. �e bilinear term νi(t) νj(t)

is sensitive to the instantaneous correlations between

presynaptic and postsynaptic activities. It is this term

that makes Hebbian learning a useful concept.�e sim-

plest implementation of Hebbian plasticity would be to

require ccorr >  and set all other parameters in the

expansion () to zero

d

dt
wij = ccorr (wij) νi νj . ()

Equation () with �xed parameter ccorr >  is the pro-

totype of Hebbian learning. However, since the activity

variables νi and νj are always positive, such a rule will

lead eventually to an increase of all weights in a network.

Hence, some of the other terms (e.g., c or c
pre

) need

to have a negative coe�cient to make Hebbian learn-

ing stable. In passing we note that a learning rule with

ccorr <  is usually called anti-Hebbian.

Oja’s rule. A particular interesting case is a model

with coe�cients ccorr >  and c
post

 < , since it guaran-

tees the normalization of the set of weights wi, . . .wiN

converging onto the same postsynaptic neuron i.

BCM rule. �e Bienenstock–Cooper–Munro learn-

ing rule (also called BCM rule) with

d

dt
wij = a(wij)Φ(νi − ϑ) νj ()

where Φ is some nonlinear function with Φ() =  is

a special case of (). �e parameter ϑ depends on the

average �ring rate.

Temporally asymmetric Hebbian learning. In the

Taylor expansion () we focused on instantaneous cor-

relations. More generally, we can use a Volterra expan-

sion so as to also include temporal correlations with

Biological Learning: Synaptic Plasticity, Hebb Rule and Spike Timing Dependent Plasticity B 

B

nonzero time lag. With the additional assumptions that

changes are instantaneous, a Volterra expansion gener-

ates terms of the form

d

dt
wij ∝ ∫

∞


[W+(s)νi(t) νj(t − s)

+W−(s)νj(t) νi(t − s)]ds ()

with some functionsW+ andW−. For reasons of causal-

ity,W+ andW− must vanish for s < . SinceW+(s) ≠

W−(s), learning is asymmetric in time so that learning

rules of the form () are called temporally asymmetric

Hebbian learning. In the special caseW+(s) = −W−(s),

we have antisymmetric Hebbian learning. �e func-

tions W+ and W− may depend on the present weight

value.

STDP rule. STDP is a form of Hebbian learning

with increased temporal resolution. In contrast to rate-

based Hebb models, neuronal activity is described by

the �ring times of the neuron, i.e., the moments when

the presynaptic and postsynaptic neurons emit action

potentials. Let t
f

j denote the f th spike of the presynaptic

neuron j and tni the nth spike of the postsynaptic neu-

ron i. �e weight change in an STDP rule depends on

the exact timing of presynaptic and postsynaptic spikes

d

dt
wij = ∑

n

∑
f

[A(wij; t − t
f

j)δ(t − tni)

+ B(wij; t − t
f

i)δ(t − t
f

j)] ()

where A(x) and B(x) are some real-valued functions

with A(wij, x) = B(wij, x) =  for x < . �us, at the

moment of a postsynaptic spike the synaptic weight is

updated by an amount that depends on the time t
f

i −t
f

j

since a previous presynaptic spike t
f

j . Similarly, at the

moment of a presynaptic spike the synaptic weight is

updated by an amount that depends on the time t
f

j −

t
f

i since a previous postsynaptic spike t
f

i . �e depen-

dence on the present value wij can be used to keep

the weight in a desired range <wij <w
max. A standard

choice for the functions A and B is A(wij); t − t
f

j =

A+(wij) exp[−(t − t
f

j)/τ+] for t − t
f

j >  and zero oth-

erwise. Similarly, B(wij; t − tni) = B−(wij) exp[−(t −

tni)/τ−] for t − t
f

i >  and zero otherwise. Here, τ+
and τ− are time constants in the range of –ms. �e

case A+(x)= (wmax − x) c+ and Bx(x)= − c−x is called

so� bounds. �e choice A+(x)= c+Θ(wmax − x) and

Bx =−c−Θ(x) is called hard bounds. Here, c+ and c− are

positive constants. �e term proportional to A+ causes

potentiation (weight increase), the one proportional to

A− causes depression (weight decrease) of synapses.

Note that the STDP rule () can be interpreted as a

spike-based form of temporally asymmetric Hebbian

learning.

Functional Consequences of Hebbian Learning

Sensitivity to correlations. All Hebbian learning rules are

sensitive to the correlations between the activity of the

presynaptic neuron j and that of the postsynaptic neu-

ron i. If the activity of the postsynaptic neuron is given

by a linear sum of all inputs rates, i.e., νi = γ∑j wijνj,

then correlations between presynaptic and postsynap-

tic activities can be traced back to correlations in the

input. A particular clear example of learning driven by

correlations in the input is Oja’s learning rule applied to

a statistical ensemble of inputs with zero mean. In this

case, the postsynaptic neuron becomes sensitive to the

dominant principal component of the input ensemble.

If the neuron model is nonlinear, Hebbian learning

extracts the independent components of the statistical

input ensemble. �ese two examples show that learn-

ing by a Hebbian learning rule makes neurons adapt

to the statistics of the input. While the condition of

zero-mean input is biologically not realistic (because

neuronal �ring rates are always positive), this condition

can be relaxed so that the same result is also applicable

to biologically plausible learning rules.

Receptive �elds and cortical maps. Neurons in the

primary visual cortex of cats and monkeys respond to

visual stimuli in a localized region of the visual �eld.

�is small sensitive zone is called the receptive �eld of

the neuron. Neighboring neurons normally have very

similar receptive �elds. �e exact location and prop-

erties of the receptive �eld are not �xed, but can be

in�uenced by sensory stimulation. Models of unsuper-

vised Hebbian learning can explain the development of

receptive �elds and the adaptation of cortical maps to

the statistics of the ensemble of stimuli.

Beyond the Hebb rule. Standard models of Hebbian

learning are formulated on the level of neuronal �ring

rates, a graded variable characterizing neuronal activ-

ity.However, real neurons communicate by spikes, short

electrical pulses or “action potentials” with a rather

 B Biomedical Informatics

stereotyped time course. Experiments have shown that

the changes of synaptic e�cacy depend not only on the

mean �ring rate of action potentials but on the rela-

tive timing of presynaptic and postsynaptic spikes on

the level of milliseconds.�is Spike-Timing Dependent

Synaptic Plasticity (STDP) can be considered a tem-

porally more precise form of Hebbian learning. �e

STDP rule indicated above supposes that pairs of spikes

(one presynaptic and one postsynaptic action poten-

tial) within some time window cause a weight change.

However, experimentally it was shown that at least three

spikes are necessary (one presynaptic and two postsy-

naptic spikes).Moreover, the voltage of the postsynaptic

neuron matters even in the absence of spikes.

In most models of Hebbian learning and STDP, the

factors c, c
pre

 ... are constant or depend only on the

synaptic weight. However, in biological context the

speed of learning is o�en gated by neuromodulators.

Since some of these neuromodulators contain reward-

related information, one can think of learning as a

three-factor rule where weight changes depend on

presynaptic activity, postsynaptic activity, and the pres-

ence of a reward-related factor. A prominent neuro-

modulator linked to reward information is dopamine.

�ree factor learning rules fall in the class of reinforce-

ment learning algorithms.

Cross References
7Dimensionality Reduction
7Reinforcement Learning
7Self-Organizing Maps

Recommended Reading
Bliss, T., & Gardner-Medwin, A. (). Long-lasting potentation of

synaptic transmission in the dendate area of unanaesthetized

rabbit following stimulation of the perforant path. The Journal

of Physiology, , –.

Bliss, T., Collingridge, G., & Morris, R. (). Long-term poten-

tiation: Enhancing neuroscience for  years - introduction.

Philosophical Transactions of the Royal Society of London. Series

B : Biological Sciences, , –.

Cooper, L., Intrator, N., Blais, B., & Shouval, H. Z. (). Theory of

cortical plasticity. Singapore: World Scientific.

Dayan, P., & Abbott, L. F. (). Theoretical Neuroscience.

Cambridge, MA: MIT Press.

Gerstner, W., & Kistler, W. K. (). Spiking neuron models.

Cambridgess, UK: Cambridge University Press.

Gerstner, W., Kempter, R., van Hemmen, J. L., & Wagner, H. ().

A neuronal learning rule for sub-millisecond temporal coding.

Nature, , –.

Hebb, D. O. (). The organization of behavior. New York:

Wiley.

Lisman, J. (). Long-term potentiation: Outstanding questions

and attempted synthesis. Philosophical Transactions of the

Royal Society of London Series B, Biological Sciences, ,

–.

Malenka, R. C., & Nicoll, R. A. (). Long-term potentiation–a

decade of progress? Science, , –.

Markram, H., Lübke, J., Frotscher, M., & Sakmann, B. (). Reg-

ulation of synaptic efficacy by coincidence of postysnaptic AP

and EPSP. Science, , –.

Schultz, W., Dayan, P., & Montague, R. (). A neural substrate for

prediction and reward. Science, , –.

Biomedical Informatics

C. David Page, Sriraam Natarajan

University of Wisconsin Medical School, Madison,

USA

Introduction
Recent years have witnessed a tremendous increase in

the use of machine learning for biomedical applica-

tions. �is surge in interest has several causes. One

is the successful application of machine learning tech-

nologies in other �elds such as web search, speech and

handwriting recognition, agent design, spatial mod-

eling, etc. Another is the development of technolo-

gies that enable the production of large amounts of

data in the time it used to take to generate a single

data point (run a single experiment). A third most

recent development is the advent of Electronic Medi-

cal/Health Records (EMRs/EHRs). �e drastic increase

in the amount of data generated has led the biologists

and clinical researchers to adopt algorithms that can

construct predictivemodels from large amounts of data.

Naturally, machine learning is emerging as a tool of

choice.

In this article, we will present a few data types and

tasks involving such large-scale biological data, where

machine learning techniques have been applied. For

each of these data types and tasks, we �rst present

the required background, followed by the challenges

involved in addressing the tasks. �en, we present the

machine learning techniques that have been applied

to these data sets. Finally and most importantly, we

Biomedical Informatics B 

B

present the lessons learned in these tasks. We hope that

these lessons will be helpful to researchers who aim to

apply machine learning algorithms to biological appli-

cations and equip them with useful knowledge when

they collaborate with biological scientists.

Some of the data types that we present in this

work are:

● Gene expression microarrays

● SNPs and genetic data

● Mass spectrometry and other proteomic data

● High-throughput screening data for drug design

● Electronic Medical Records (EMR) and persona-

lized medicine

Some of the key lessons learned from all these data

types include the following: () We can o�en do sur-

prisingly well with far more features than data points if

there are many highly predictive features (e.g., predict-

ing cancer from microarray data) and if we use meth-

ods that are robust to over�tting such as Voted Deci-

sion Stumps (Hardin et al., ; Waddell et al., )

(7Ensemble Learning and7Decision Stumps),7Naive
Bayes (Golub et al., ; Listgarten et al., ), or

Linear Support Vector Machines (SVMs) (see 7Support
VectorMachine) (Furey et al., ;Hardin et al., ).

() BayesNet learning (Friedman, ) (see7Bayesian
Methods) o�en does not give us causality, but 7Active
Learning and7Time-Series data help if available (Pe’er,
Regev, Elidan, & Friedman, ; Ong, Glassner, &

Page, ; Tucker, Vinciotti, Hoen, Liu, & Famili, ;

Zou & Conzen, ). () Multi-relational methods are

useful for EMRs or molecular data as the data in these

cases are very highly relational (see 7Multi-relational
DataMining). ()�ere are more important issues than

just increasing the accuracy of the learned model on

these data sets. Such issues include how data was cre-

ated, its comprehensibility (physicians typically want to

understand the model that has been learned), and its

privacy (some data sets contain private information that

cannot be posted on public web sites and cannot even be

downloaded o� site).

�e rest of the paper is organized as follows: First

we present gene expression microarrays, followed by

SNPs and other genetic data. We then present mass

spectrometry (MS) and related proteomic data. Next,

we present high-throughput screening data for drug

design, followed by EMR data and personalized

medicine. For each of these data types, we motivate

the problem and survey the di�erent machine learning

solutions. Finally, we conclude by outlining the lessons

learned from all these data types and presenting some

interesting and exciting directions for future research.

Gene Expression Microarrays
�is data type was presented in detail in AI Magazine

(Molla et al., ) and hence we will brief it in this sec-

tion.We encourage the reader to readMolla et al. ()

for more details on this data type. Genes are contained

in the DNA of an organism. �e mechanism by which

proteins are produced from their corresponding genes

is a two-step process. �e �rst step is the transcription

of a gene into a messenger RNA (mRNA) and in the

second step called as translation, a protein is built using

mRNA as a blueprint.

One property that DNA and RNA have in common

is that each is a chain of chemicals called as bases. In the

case of DNA, these bases are Adenine, Cytosine, Gua-

nine, and �ymine, commonly referred to as A,C,G,

and T, respectively. RNA has the same set of four bases,

except �ymine; RNA has Uracil, commonly referred

as U. An important characteristic of DNA and RNA is

complementarity, that is, each base only binds well with

its complement: A with T (or U) and G with C. As a

result of complementarity, a strand of either DNA or

RNA has a strong a�nity toward what is known as its

reverse complement, which is a strand of either DNA or

RNA that has bases exactly complementary to the orig-

inal strand. Complementarity is central to the processes

of replication of the DNA and transcription.

In addition, complementarity can be used to detect

speci�c sequences of bases within strands of DNA and

RNA. �is is done by �rst synthesizing a probe, a piece

of DNA that is the complement of a sequence that

one wants to detect, and then introducing this probe

to a solution containing the genetic material (DNA or

RNA) to be searched. �is solution of genetic material

is called the sample. In theory, the probe will bind to

the sample if and only if the probe �nds its complement

in the sample (in reality, this process is o�en imper-

fect). �e act of binding between a sample and probe

is called hybridization. Prior to the experiment, a biol-

ogist labels the probe using a �orescent �ag. A�er the

 B Biomedical Informatics

hybridization experiment, one can easily scan to see if

the probe has hybridized to its reverse complement in

the sample.�is allows themolecular biologist to deter-

mine the presence or absence of the sequence in the

sample.

Gene Chips

DNA probe technology has been adapted for detection

of tens of thousands of sequences simultaneously. �is

has become possible due to the device called amicroar-

ray or gene chip, the working of which is illustrated

in Fig. . When using the chips it is more common to

label (luminescently) the samples than the probe.�ou-

sands of copies of this labeled sample are spread across

the probe, followed by washing away any copies that

do not remain bound. Since the probes are attached

at speci�c locations on the chip, if a labeled sample is

detected at any position in the chip, the probe that is

hybridized to its complement can be easily determined.

�emost common use of these gene chips is to measure

the expression levels of various genes in the organism.

Probes are typically on the order of -bases long,

whereas samples are usually about  times, as long,

with a large variation due to the process that breaks up

long sequences of RNA into small samples (Molla et al.,

).

To understand about the biology of an organism,

say to understand human biology to design new drugs

or lower the blood pressure or to cure diabetes, there

is a necessity to understand the degree to which dif-

ferent genes get expressed as proteins under di�erent

conditions and di�erent cell types. It is much eas-

ier to estimate the amount of mRNA for a gene than

the protein-production rate. Microarrays provide the

Gene chip surface

Probes(DNA)

Labeled sample (RNA)

Hybridization

Biomedical Informatics. Figure . Hybridization of sam-

ple to probe

measurement of RNAs corresponding to the given gene

rather than the amounts of protein.

In brief, experiments with the microarrays are per-

formed as follows: As can be seen from the �gure,

probes are DNA strands attached to the gene chip sur-

face. A typical probe length is  bases (i.e.,  letters

from A,C,G,T to represent a gene). �ere may be sev-

eral di�erent subsequences of these  bases. �en the

mRNA (which is the labeled sample) is passed over the

microarrays and the mRNA will bind to the comple-

mentary DNA corresponding to the gene better than

the other DNA strings. �en the �orescence levels of

the di�erent gene chips segments are measured, which

in turn measures the amount of mRNA on that surface.

�is mRNA measurement serves as a surrogate to the

expression level of the gene.

Machine Learning for Microarrays
�e data from microarrays (gene chips) have been ana-

lyzed and used by machine learning researchers in two

di�erent ways:

. Data points are genes. �is is the case where

the examples are genes while the features are the

samples (measured expression levels of a single gene

under a variety of conditions). �e goal of this view

is to categorize new genes based on the current set

of examples.

. Data points are samples (e.g., patients). �is is the

case where the examples are patients and the fea-

tures are the measured expression levels of genes

under one condition.

�e problems have been approached in two di�erent

ways. In the 7Unsupervised Learning approach, the
goal is to cluster the genes according to their expression

levels or to cluster the patients (samples) based on their

gene expression levels, or both. Hierarchical clustering

is especially widely applied. As one of many examples,

see Perou et al. (). In the7Supervised Learning set-
ting, the Class labels are the category of the genes or

the samples. �e latter is the more common supervised

task, each sample being mRNA from a di�erent patient

(with the same cell type from each patient) or an organ-

ism under di�erent conditions to learn a model that

accurately predicts the class based on the features. �e

features could be the patient’s expression values for each

Biomedical Informatics B 

B

gene, while the class labels might be the patient’s dis-

ease state.We discuss this task further in the subsequent

paragraphs.

Yet another widely studied supervised learning task

is to predict cancer vs. normal for a wide variety of

cancer types. One of the signi�cant lessons learned is

that it is easy to predict cancer vs. normal in patients

based on the gene expression by several machine learn-

ing techniques, largely regardless of the type of cancer.

�emain reason for this is that if cancer is present,many

genes in the cancer cells “go haywire” and hence are

very predictive of the cancer. �e primary challenge in

this prediction problem is the noise in the data (impure

RNA, cross-hybridization, etc.).

Other related tasks that have been addressed include

distinguishing related cancer types and distinguishing

cancer froma related benign condition.An early success

was a work by Golub et al. (), distinguishing acute

myeloid leukemia and acute lymphoblastic leukemia

(ALL). �ey used a weighted voting algorithm simi-

lar to Naive Bayes and achieved a very high accuracy.

�is result has been repeated on this data with many

other machine learning (ML) approaches. Other work

examined multiple myeloma vs. benign condition. �is

task is challenging because the benign condition is very

similar to the cancer, and hence the machine learning

algorithms had a di�cult time predicting accurately.We

refer to Hardin et al. () for more details on the

experiments.

Another important lesson for machine learning

researchers from this data type is that the biologists

o�en do not want one predictive model, but a rank-

ordered list of genes that a biologist can explore further

with additional lab tests on certain genes. Hence, there

is a need to present a small set of highly interesting genes

to perform follow-up experiments on. Toward this end,

statisticians have used mutual information or a t-test to

rank the genes. When using a t-test, they check if the

mean expression levels are di�erent under the two con-

ditions (cancer vs. normal), yielding a p-value. But the

issue is that when working with a large number of genes

(typically in the order of ,), there could be some

geneswith lower p-value by chance.�is is known as the

“multiple comparisons problem.” One solution is to do

a Bonferoni correction (multiply p-values by the num-

ber of genes), but this can be a drastic step and may

eliminate all the genes.�ere are other methods such as

false discovery rate (Storey&Tibshirani, ) that uses

the notion of q-values. We do not go into detail of this

method. But the key recommendation we make is that

such amethod should be used alongwith the supervised

learning method, as the biological collaborators might

be interested in the ranking of genes.

One of the most important research directions for

the use of microarray data lies in the prognosis and

treatment. �e features are the same as those of diag-

nosis, but the class value becomes life expectancy for a

given treatment (or a positive response vs. no response

to a given treatment). �e goal is to use the per-

son’s genes to make these predictions. An example of

this is the breast cancer prognosis study (Van’t Veer

et al., ), where the goal is to predict good progno-

sis (no metastastis within  years of initial diagnosis)

vs. poor prognosis. �ey used an ensemble of voting

algorithms and obtained very good results. Neverthe-

less, an important lesson learned from this experiment

and others was that when using 7cross-validation,
there is a need to tune parameters and perform fea-

ture selection independently on each fold of the cross-

validation. �ere can be a large number of features,

and it is natural to want to reduce the size of the

data set before working with it. But reducing the num-

ber of features by some measure of correlation with

the class, such as information gain, using the entire

data set means that on each fold of cross-validation,

information has leaked from the labeled test set into

the training process – labels of test cases were used to

eliminate many features from the training set. Hence,

selecting features by looking at the entire data set can

partially negate the e�ect of cross-validation, some-

times yielding accuracy estimates that are more than

% points overly optimistic. Hence the entire train-

ing process of selecting features, tuning parameters, and

learning a model must be repeated for every fold in

cross-validation by looking only at the training data for

that fold.

An important use of microarrays for prognosis

and therapy is in the area of predictive personalized

medicine (PPM). While we present the idea of PPM

later in the paper, it must be mentioned that combining

gene expression data with clinical trials of the patients

to recommend the best treatment for the patients is a

very exciting problemwith promising impact in the area

of PPM.

 B Biomedical Informatics

Gene A

Gene B Gene C

Gene D

A P(B)
0.9
0.1

T
F

P(A)
0.2

A
T
F 0.1

0.8
P(C)

B
T
T
F
F F

T
F
T
C P(D)

0.9
0.2
0.3
0.1

Biomedical Informatics. Figure . A simple Bayes net. The

actual learning task typically involves thousands of vari-

ables

Bayesian Networks for Regulatory Pathways: 7Bayesian
Networks have been one of the successful machine

learning methods used for the analysis of microarray

data. Recall that a Bayes net is a directed acyclic graph,

such as the one shown in Fig.  that de�nes a joint

distribution over the variables using a set of condi-

tional distributions. Friedman and Halpern (Friedman

& Halpern, ) were the �rst to use Bayes nets for

the microarrays data type. In particular, the problem

that was considered was �nding regulatory pathways

in genes. �is problem can be posed as a supervised

learning task as follows:

● Given: A set of microarray experiments for a single

organism under di�erent conditions.

● Do: Learn a graphical model that accurately predicts

expression of some genes in terms of others.

Friedman and Halpern showed that using statistical

methods, a Bayes net representing the observations

(expression levels of di�erent genes) can be learned

automatically. A main advantage of Bayes nets is that

they can (potentially) provide insight into the interac-

tion networks within cells that regulate the expression

of genes. But one has to exercise caution, interpreting

the arcs of a learned Bayes net as representing causality.

For example in Fig. , one might interpret the net-

work to mean that gene A causes gene B and gene C

to be expressed, in turn in�uencing gene D. Note that

however, the Bayes net in this case just denotes the cor-

relation and not the causality, that is, the direction of an

Problem: Not Causality

A B

A is a good predictor of B. But is A regulating B??

Ground truth might be:

B A A C B

B C A

B

C

A Or a more complicated variant

Biomedical Informatics. Figure . Why a learned Baye-

sian network may not be representing regulation of one

gene by another

arc merely represents the fact that one variable is a good

predictor of the other, as illustrated in Fig. .

One possible method of learning causality is to use

knock-out methods [Pe’er, Regev, Elidan, & Friedman,

], where for  of the genes in S. cerevisiae (bak-

ers’ yeast), biologists have created a knock-out mutant

or a genetic mutant lacking that gene. If the parent of a

gene in the Bayes net is knocked out and the child’s sta-

tus remains unchanged, then it is unlikely that the arc

from the parent to the child captures causality. A key

limitation is that the mutants are not available for many

organisms. Some other approaches such as RNAi have

been proposed for more e�ciently doing knock-outs,

but a limitation is that RNAi typically reduces rather

than eliminates expression of a gene.

Ong, Glassner, and Page () used time-series

data (data from the same organism at various time

points) to partially address the issue of causality. �ey

used these data to learn dynamic Bayesian networks in

order to infer temporal direction for gene interactions,

thereby getting a potentially better handle on causal-

ity. DBNs have been employed by other researchers for

time-series gene expression data, and the approach has

been extended to learn DBNs with continuous variables

(Segal, Pe’er, Regev, Koller, & Friedman, ).

Single Nucleotide Polymorphisms
Single-Nucleotide Polymorphisms (SNPs) are individ-

ual base positions (i.e., single-nucleotide positions)

Biomedical Informatics B 

B

in DNA, where people (or the organism of interest)

vary. Most of the variation in human DNA is due to

SNPs variations. (�ere are other variations such as

copy number, insertions and deletions that we do not

consider in this article.) �ere are well over three mil-

lion known SNPs in humans. Technologies such as Illu-

mina or A�ymetrix whole-genome scan can measure a

million SNPs in short time. �e measurement of these

variations is an order of magnitude faster, easier, and

cheaper than sequencing all the genes of the person.

It is believed that in the next decade, it will be

possible to obtain the entire genome sequence for an

individual human for under $, (Mardis, ). If

we had every human’s entire sequence, it could be used

to predict the susceptibility of diseases for humans or

the adverse reactions to drugs for a certain subset of

patients.�e idea is illustrated in Fig. . Suppose the red

dots in the �gure are two copies of nucleotide A, and

the green dots denote a di�erent nucleotide, say C. As

can be seen from the �gure, people who respond to a

treatment T (top half of the �gure) have two copies of

A (for instance, these could be the positive examples),

while the people who do not respond to the treatment

have at most one copy of A (negative examples and are

presented in the bottom half of the �gure). Now, we can

imagine modeling the sequence to predict the suscepti-

bility to a disease or responsiveness to a treatment.

SNP data can serve as a surrogate for the above

problem. SNPs allow us to detect the variations among

humans. An example of SNP data is presented in Fig. 

Susceptible to disease D or responds to treatment T

Not susceptible or not responding

Biomedical Informatics. Figure . Example application of

sequencing human genes. The top half is the case, where

patients respond to a treatment and the bottom is

the case, where three patients do not respond to the

treatment

for the prediction of myeloma cancer that is common

with older people (with age > ) and is very rare in

younger people (age < ). �is data set consists of

 people diagnosed with myeloma at young age and

 people who weren’t diagnosed till they were  when

the disease is more common. Most SNP positions rep-

resent a pair of nucleotides and are typically restricted

in the combinations of values they may assume. For

example, in the �gure, SNP  can take values from the

three possible combinations < C T, C C, T T > for

its two positions. �e goal is to use the feature values

of the di�erent SNPs to predict the class label which

could be the susceptibility. �at is, the goal is to deter-

mine genetic di�erence between people who got the

disease at a young age vs. people who did not until they

were old.

�ere is also the possibility of two patients having

the same SNP pattern in the data but not the identical

DNA. Patients  and  may have CT for the SNP and

GA for SNP, where both SNPs are on chromosome .

But, Patient  has C on SNP in the same copy of chro-

mosome  as the G in SNP, whereas Patient  has C on

the same copy as an A. Hence, while they have the same

SNP pattern of CT and GA, they do not have identi-

cal DNA. �e process of converting the data from the

form in the Figure  below to the form above is called

Phasing. From a machine learning perspective, there is

a choice of either working with the unphased data or to

use an algorithm for phasing. It turns out that phasing

is very di�cult and is an active research area. If there

are a number of unrelated patients phasing is very hard.

Hencemanymachine learning researchers workmainly

with unphased data. Admittedly, there is a small loss of

information with the unphased data that compensates

for the di�culty of phasing.

Most biologists and statisticians using SNP data per-

form genome-wide associations studies (GWAS). �e

goal in this work is to �nd individual SNPs that are

signi�cantly associated with disease, that is, such that

one of the SNP values, or alleles, raises the risk of dis-

ease. �is is typically measured by “relative risk” or by

“odds ratio,” and signi�cance is typically measured by

statistical tests such as Wald test, Score test, or LRLR

(7logistic regression log likelihood, where each SNP is
used individually to predict disease, and log likelihood

of the predictive model is compared to guessing under

the null hypothesis that the SNP is not associated).

 B Biomedical Informatics

Person 1

Person 2 C C A

Person 3 T T A A C C

Person 1 2 3 . . . Class

C T A G T T . . . Old

G C T . . . Young

. . . Old

Person 4 C T G G T T . . . Young

.

.

.

SNP

Biomedical Informatics. Figure . Example of SNP data

One of many examples is the use of SNPs to predict

susceptibility to breast cancer (Easton et al., ).

�e advantages of SNP data compared to microar-

ray data are the following: () Because SNP analysis is

typically performed on DNA from saliva or peripheral

blood cells, a person’s SNP pattern does not change with

time or disease. If the SNPs are collected from a blood

sample of a person aged  years, the SNP patterns are

probably the same as when they were born. �is gives

more insight to the susceptibility of the person to many

diseases. Hence, we do not see the widespread changes

in SNP pattern with cancer, for example, that we see

in microarray data from tumor samples. () It is eas-

ier to collect the samples. �ese can be obtained from

the blood samples as against obtaining say, the biopsy

of other tissue types.

�e challenges of SNP data are as follows: () As

explained earlier, the data is unphased. Algorithms exist

for phasing (haplotyping), but they are error prone and

do not work well with unrelated patient samples. �ey

require the data to consist of related individuals in

order to have a dense coverage. () 7Missing Values
are more common than in microarray data. �e good

news is that the amount of missing values is decreas-

ing substantially (down from –% a few years ago to

–%). () �e sheer volume of measurements –

currently, it is possible tomeasure amillion SNPs out of

over three million SNPs in the human genome. While

this provides a tremendous amount of potential infor-

mation, the resulting high dimensionality causes prob-

lems for machine learning. As with gene expression

microarray data, we have a multiple comparisons prob-

lem, so approaches such as Bonferoni correction or

q-values from False Discovery Rate can again be

applied. But even when a signi�cant SNP is found, it

usually only increases our accuracy at predicting dis-

ease by % or % points, because a single SNP typically

either has a small e�ect or small penetrance (the vari-

ation is fairly rare – one value of the SNP is strongly

predominant). So GWAS are missing a major opportu-

nity to build predictive models by combining multiple

SNPs with small e�ects – this is an exciting opportunity

for machine learning.

�e supervised learning task can be de�ned as

follows:

● Given: A set of SNP pro�les each from a di�erent

patient.

Phased: Nucleotides at each SNP position on

each copy of each chromosome constitute the features

and patient’s disease susceptibility or drug response

constitutes the class.

Unphased: Unordered pair of nucleotides at each

SNP position constitutes the features and patient’s

disease susceptibility or drug response constitutes the

class.

● Do: Learn a model to predict the class based on the

features.

We now brie�y present one example of supervised

learning from SNP data. (Waddell, Page, and Shaugh-

nessy ()) found that there was evidence of a genetic

component in predicting the blood cancer multiple

myeloma as it was possible to distinguish the two cases

signi�cantly better than chance (% accuracy). �e

results fromusing SupportVectorMachines (SVMs) are

Biomedical Informatics B 

B

Old

Old

Young

Young

Actual
31

14 26

9

Biomedical Informatics. Figure . Results on predicting

multiple myeloma, young (susceptible) vs. old (less sus-

ceptible), , SNPs

presented in Fig. . Similar results were obtained using

a Naive Bayesmodel as well. Listgarten et al. () also

used the SNP data with the goal of predicting lung can-

cer.�e accuracy of % obtained by themwas remark-

ably similar to the task of predicting multiple myeloma.

�e best models for predicting lung cancer were also

Naive Bayes and SVMs. �ere is a striking similarity

between the two experiments on unrelated tasks using

SNPs. When only the individual SNPs were considered,

the accuracy for both the experiments fell to %.

�e lessons learned from SNP data are the fol-

lowing: () 7Supervised learning algorithms such as
7Naive Bayes and 7SVM that can handle large num-
ber of features in the presence of smaller number of

training examples can predict disease susceptibility at

rates better than chance and better than individual

SNPs. () Accuracies are much lower than the ones with

microarray data. �is is mainly due to the fact that

we are predicting the susceptibility to the diseases (or

the response to a drug) as against predicting whether a

person already has the disease (as with the microarray

data).While we are predicting using the genetic compo-

nent, there are also many environmental components

that are responsible for the diseases and the response.

We are not considering such components in our model

and hence the accuracies are o�en not very high. In

spite of relatively lower accuracies, they give a di�erent

valuable insight to the human gene.

We now brie�y outline a couple of exciting future

directions for the use of SNP data. Pharmacogenetics

is the problem of predicting drug response from SNP

pro�le and has been gaining momentum over the past

few years. �is includes predicting drug e�cacy and

adverse reactions to certain drugs, given a person’s SNP

pro�le. A recent New England Journal of Medicine

article showed that the analysis of SNPs can signi�-

cantly improve the dosing model for the most widely

used orally available blood thinner, Warfarin (IWPC,

). Another exciting direction is the combination

of SNP data with other data types such as clinical data

that includes the history of the patient and the lab

tests and microarray data. �e combination of these

di�erent data sets will not only improve the accuracy

of the learned model but also provide a deeper insight

to the di�erent kinds of interactions that occur within a

human, such as gene interactions with other drugs.

It should be mentioned that other genetic data types

are becoming available andmay be useful for supervised

learning as well.�ese data types can provide additional

information about DNA sequence beyond SNPs but

without the expense of full genome sequencing. �ey

include copy-number variations and exon-sequencing.

Mass Spectrometry and Proteomics
Microarrays are useful primarily because mRNA

concentrations can serve as surrogates for protein con-

centrations and they are easier to measure. �ough

measuring protein concentrations directly is possible, it

cannot be done in the same high-throughput manner

asmeasuringmRNA. Recently, techniques such asMass

Spectrometry (MS or mass spec) have been successful in

high-throughput measuring of proteins. Mass spec still

does not given the complete coverage that microarrays

provide, nor as good a quantitation.

Mass spectometry is improving on many fronts,

using many technologies. As one example, we present

Time-Of-Flight (TOF) Mass Spectometry illustrated in

Fig. . �is measures the time required for an ion-

ized particle starting from the sample plate (bottom of

the �gure) to hit the detector. �e key idea is to place

some proteins (indicated as larger circles) into a matrix

(smaller circles are the matrix molecules). Because of

mass spec limitations, the proteins typically are digested

(broken into smaller peptides), for example, by the

compound trypsin. When struck by a laser, the matrix

molecules release protons that attach themselves to the

peptides or protein fragments (shown in (a)). Note that

the plate where the peptides are present is positively

charged.�is causes the peptides to migrate toward the

detector.

As can be seen in (b) of the �gure, the molecules

with smaller mass move faster toward the detector. �e

idea is to detect the number of molecules that hit the

 B Biomedical Informatics

+10kv

Laser
Detector

The protons from the matrix molecules
get attached to the proteins

+10kv

Laser
Detector

Positively charged proteins are
repelled towards the detector

Smaller mass molecules hit detector
first, while heavier ones detected later

ba

+
+ + ++

+

+

+
+

+
+

Biomedical Informatics. Figure . Time-Of-Flight mass spectrometry

detector at any given time. �is makes it possible to

use time as a surrogate for mass of the protein. �e

experiment is repeated a number of times, counting

frequencies of “�ight-times.” Plotting time vs. the num-

ber of particles hitting the detector yields a spectrum

as presented in Fig. . �e �gure shows three di�erent

fractions from the same sample. �ese kinds of spectra

provide us an insight about the di�erent types of pro-

teins in a given sample. A technical detail is that some-

times molecules receive additional charge (additional

protons) and hence �y faster. �erefore, the horizon-

tal mass axis in a spectrum is actually a mass/charge

ratio.

�e main issues for machine learning researchers

working with mass spectrometry data compared to

microarray data are as follows: () �ere is a lot of

7Noise in the data. �e noise is due to extra peaks
from handling of sample, from machine and environ-

ment (e.g., electrical noise). Also the mass to charge

values may not exactly align across the spectra; the

accuracy of the mass/charge values is the resolution

of the mass spec. () Intensities (peak heights) are not

calibrated across the spectra, making quanti�cation dif-

�cult. �is is to say that if one spectrum is compared to

another, and if one of them has more intensity at a par-

ticular mass/charge, it does not necessarily mean that

the levels of the peptide at that mass/charge are higher

in that spectrum. () Another issue is that the mass

spectrometry data is not as comprehensive as microar-

ray data, in that it is not possible to measure all pep-

tides (typically only several hundred of them can be

obtained). To get the best results, there is a need to frac-

tionate the sample beforehand, getting di�erent groups

of proteins in di�erent subsamples (fractions). () As

already mentioned, the proteins themselves typically

must be broken down (digested) into smaller peptides

in order to get accurate readings from themass spec. But

this means processing is needed a�erward not only to

determine from a spectrum which peptides are present

but also from that determination which proteins are

present. It is worth noting that some of these challenges

are being partially addressed by ongoing improvements

in mass spectrometry technologies, including the use of

“tandem mass spectrometry.”

�is data type opens up a lot of possibilities for

machine learning research. Some of the learning tasks

include:

● Learn to predict proteins from spectra, when the

organism’s proteome (full set of proteins) is known.

● Learn to identify isotopic distributions (combi-

nations of multiple peaks for a given molecule

Biomedical Informatics B 

B

7000

6000

5000

4000

3000

2000

1000

0
0 20000 40000 60000 80000 100000 120000 140000 160000

line 1
line 2

line 3

Biomedical Informatics. Figure . Example spectra from a competition by Lin et al.

arising from di�erent isotypes of carbon, nitrogen.

and oxygen).

● Learn to predict disease from either proteins, peaks

or isotopic distributions as features.

● Construct pathway models.

We will now present one case study that was success-

ful and generated a lot of interest – Early Detection of

Ovarian Cancer (Petricoin et al., ). Ovarian cancer

is di�cult to detect early, o�en leading to poor prog-

nosis. �e goal of this work was to predict ovarian

cancer fromblood samples. To this e�ect, the researchers

trained and tested on mass spectra from blood serum.

�ey used  training cases ( positive) and used

a held-out test set of  cases ( positive). �e

results were extremely impressive (% sensitivity, %

speci�city).

While the results were extremely impressive and

while the machine learning methodology seemed very

sound, it turns out that the preprocessing stage of the

data may have introduced errors (Baggerly, Morris, &

Combes, ). Mass spectrometry is very sensitive

to the external factors as well. For instance, if we run

cancer samples on Monday and normal samples on

Wednesday, it is possible that we could get di�erences

from variations in the machine or nearby electrical

equipment that is running onMonday but notWednes-

day. Hence, one of the important lessons learned from

this data type is the need for careful randomization of

the data samples. �is is to say that we should sample

the positive andnegative samples under identical condi-

tions. It should not be the case that the positive examples

are run through the machine on one day and the neg-

atives on the other day. Any preprocessing of the data

must be performed similarly.

While mass spectrometry is a widely used type of

high-throughput proteomic data, other types of data are

also important and are brie�y covered next.

Protein Structures
X-ray crystallography and nuclear magnetic resonance

are widely used to determine the three-dimensional

structures of proteins. Predicting protein structures has

been a very fertile �eld for machine learning research

for several decades.

While the amino acid sequence of a protein is called

its primary structure, it is more di�cult to determine

secondary structure and tertiary (D) structure. Sec-

ondary structure maps subsequences of the primary

 B Biomedical Informatics

structure in the three classes of alpha helix (helical

structures akin to a telephone cord, o�en denoted byA),

beta strand (which comes together with other strand

sections to form planar structures called beta sheets,

o�en denoted by B), and less descript regions referred

to as coil, or loop regions, o�en denoted by C.

Predicting secondary structure and tertiary struc-

ture has been a popular topic for machine learning for

many years, because training data exists yet it is di�cult

and expensive to experimentally determine structures.

We will not attempt to survey all the work in this area.

Waltz and colleagues (Zhang, Mesirov, & Waltz, )

showed the bene�t of applying neural networks to the

task of secondary structure prediction, and the best sec-

ondary structure predictors (e.g., Rost & Sander, )

have continued to be constructed by machine learning

over the years. Approaches for predicting the tertiary

structure have also relied heavily on machine learn-

ing and include ab initio prediction (e.g., Bonneau &

Baker, ), prediction aided by crystallography data

(e.g., DiMaio et al., ), and homology-based predic-

tion (by �nding similar proteins). For over a decade,

there has been a regular competition in the prediction

of protein structures (Critical Assessment of Structure

Prediction [CASP]).

Protein–Protein Interactions
Another proteomics data type is protein–protein inter-

actions.�is is illustrated in Fig. .�e idea is to identify

proteins that interact with the current protein say P.

Generally, this is performed as follows: In the sample,

there are some proteins of type X (shown in pink in the

�gure) and other types of proteins. Proteins that inter-

act with X are bonded to X. �en antibodies (shown

as Y-shaped green objects) are introduced in the sam-

ple. �e idea of antibodies is to collect the proteins of

type X. Once the antibodies have collected all protein

X’s in the sample, they can be analyzed through mass

spectrometry presented earlier.

A particularly high-throughput way of measuring

protein–protein interactions is through “ChIP-chip”

data.�e supervised learning tasks for this task include:

● Learn to predict protein–protein interactions: Pro-

tein three-dimensional structures may be critical.

● Use protein–protein interactions in construction of

pathway models.

● Learn to predict protein function from interaction

data.

Related Data Types
● Metabolomics measures concentration of each low-

molecular-weight molecule in sample. �ese typi-

cally are metabolites, or small molecules produced

or consumed by reactions in biochemical pathways.

�ese reactions are typically catalyzed by proteins

(speci�cally, enzymes).�is data typically uses mass

spectrometry.

Antibody

The pink objects are protein X and
they get attached to other proteins (2 in
this figure). The green Y-shaped objects
are the antibodies

The antibodies get attached only to
protein X and hence collecting the
antibodies will result in collecting X ’s and
the proteins that interact with X

ba

Biomedical Informatics. Figure . Schematic of antibody-based identification of protein–protein interactions

Biomedical Informatics B 

B

● ChIP-chip datameasures protein–DNA interactions.

For example, transcription factors are proteins that

interact with DNA in speci�c locations to alter tran-

scription of a nearby gene.

● Lipomics is analogous to metabolomics, but measur-

ing concentrations of Lipids rather thanmetabolites.

�ese potentially help induce biochemical pathway

information or to help disease diagnosis or treat-

ment choice.

High-Throughput Screening Data for Drug
Design
�e typical steps in designing a drug are: () Identify-

ing a target protein – for example, while developing an

antibiotic, it will be useful to �nd a protein that belongs

to the bacteria that we are interested in and �nd a small

molecule that will bind to that protein. In order to per-

form this, we need the knowledge of proteome/genome

and the relevant biological path ways. () Determining

the target site structure once the protein has been identi-

�ed – this is typically performed using crystallography.

() Finding a molecule that will bind to the target site.

�ese steps are presented in Fig. .

�e molecules that bind to the target may have

a number of other problems and hence they cannot

directly be used as a drug. Some common problems are

as follows: () �ey may bind too tightly or not tightly

enough. ()�eymay be toxic. ()�eymay have unan-

ticipated side e�ects in the body. () �ey may break

down as soon as they get into the body or may not

leave the body soon enough. ()�eymay not get to the

right target in the body (e.g., cross blood–brain barrier).

()�eymay not di�use from gut to bloodstream. Also,

Identify target protein

Determine target
site structure

Synthesize a molecule
that will bind

Biomedical Informatics. Figure . Steps involved in

drug design

since the organisms are di�erent, even if a molecule

works in the test tube and in animal studies, it may fail

in clinical trials. Also while a molecule may work for

some people, it may not work for others. Conversely,

while somemolecules may cause harmful side e�ects in

some people, they may not do so in others.

O�en pharmaceutical companies will use robotic

high-throughput screening assays to test many thou-

sands of molecules to see if they bind to the target

protein, and then computational chemists will work

to determine the commonalities that allow them to

bind to the target as o�en the structure of the tar-

get protein cannot be determined. �e process of

discovering the commonalities across the di�erent

molecules presents a great opportunity for machine

learning research. �e �rst study of this task using

machine learning was by Dietterich, Lathrop, and

Lozano-Perez and led to the formulation of Multi-

Instance Learning. Yet, another machine learning task

could be to predict the reactions of the patients to

the drugs.

High-�roughput Screening: When the target struc-

ture is unknown, it is a common practice to test many

molecules (,,) to �nd some that bind to the tar-

get. �is is called as High-�roughput Screening. Hence,

it is important to infer the shape of the target from three-

dimensional structural similarities. �e shared three-

dimensional structure is called as pharmacophore. �is

is a perfect example of a machine learning task with a

spatial target and is presented in Fig. .

Given: A set of molecules, each labeled by activity

(binding a�nity for a target protein) and a set of low-

energy conformers for each molecule

Do: Learn amodel that accurately predicts the activ-

ity (may be Boolean or real valued).

A
ct

iv
e

In
ac

tiv
e

Biomedical Informatics. Figure . An example of struc-

ture learning

 B Biomedical Informatics

�e common machine learning approaches taken

toward solving this problem are:

. Representing amolecule by thousands tomillions of

features and use standard techniques (KDD, )

. Representing each low-energy conformer by fea-

ture vector and use multiple-instance learning (Jain

et al., )

. Relational learning – using either Inductive Logic

Programming techniques (Finn, Muggleton, Page,

& Srinivasan, ) or Graph Mining

�ermolysin Inhibitors: We present some results of rela-

tional learning algorithms on thermolysin inhibitors

data set (Davis, a). �ermolysin belongs to the

family of metalloproteases and plays roles in physio-

logical processes such as digestion and blood pressure

regulation. �e molecules in the data set are known

inhibitors of thermolysin. Activity for these molecules

is measured in pKi = −log Ki, where Ki is a dissocia-

tion constant, measuring the ratio of the concentrations

of bound product to unbound constituents. A higher

value indicates a stronger a�nity for binding. �e data

set that was used had the ten lowest energy confor-

mations (as computed by the SYBYL so�ware package

[www.tripos.com]) for each of  thermolysin inhibitors

along with their activity levels.

�e key results for this data set using the relational

algorithm SAYU (Davis, b) were:

● Ten �ve-point pharmacophore identi�ed, falling

into two groups (/ molecules):

● �ree “acceptors,” one hydrophobe, and one

donor

● Four “acceptors,” and one donor

● Common core of Zn ligands, Arg, and Asn

interactions identi�ed

● Correct assignments of functional groups

● Correct geometry to  Å tolerance

● Increasing tolerance to .Å�nds common six-point

pharmacophore including one extra interaction

Antibacterial Peptides: �is is a data set of  pentapep-

tides showing activity against Pseudomonas aeruginosa

(Spatola, Page, Vogel, Blondell, & Crozet, ). �ere

are six active pharmacophores with <  µg/ml of IC

Biomedical Informatics. Table  Identified

Pharmacophore

A molecule M is active against Pseudomonas aeruginosa if
it has a conformation B such that

M has a hydrophobic group C

M has a hydrogen acceptor D

The distance between C and D in conformation B is
. Å

M has a positively charged atom E

The distance between C and E in conformation B is  Å

The distance between D and E in conformation B is
. Å

M has a positively charged atom F

The distance between C and F in conformation B is
. Å

The distance between D and F in conformation B is
. Å

The distance between E and F in conformation B is
. Å

Tolerance . Å

and �ve inactives. �e pharmacophore that has been

identi�ed is presented in Table .

Dopamine Agonists: �e last data set that we present

here consists of dopamine agonists (Martin et al., ).

Dopamine works as a neurotransmitter in the brain,

where it plays a major role in the movement control.

Dopamine agonists are molecules that function like

dopamine and produce dopamine-like e�ects and can

potentially be used to treat diseases such as Parkinson’s

disease. �e data set had  dopamine agonists along

with their activity levels. �e pharmacophore identi-

�ed using Inductive Logic Programming is presented in

Table .

Electronic Medical Records (EMR) and
Personalized Medicine
Predictive personalized medicine (PPM) is a vision of

the future, whose parts are beginning to come into place

now. Under this vision, physicians can construct safer

and more e�ective prevention and treatment plans for

www.tripos.com

Biomedical Informatics B 

B

each patient. �is is rendered possible by predicting

the impact of treatments on patients – their e�ective-

ness for di�erent classes of patients, adverse reactions

of certain drugs that are prescribed to the patients, and

susceptibility of di�erent types of patients to diseases.

PPM can become a reality due to three reasons: �e

Biomedical Informatics. Table  Pharmacophore Identi-

fied for Dopamine Agonists

Molecule A has the desired activity if

● In conformation B molecule A contains a hydrogen
acceptor at C

● In conformation B molecule A contains a basic
nitrogen group at D

● The distance between C and D is . ± . Å

● In conformation B molecule A contains a hydrogen
acceptor at E

● The distance between C and E is . ± . Å

● The distance between D and E is . ± . Å

● In conformation B molecule A contains a hydropho-
bic group at F

● The distance between C and F is . ± . Å

● The distance between D and F is . ± . Å

● The distance between E and F is . ± . Å

�rst is the widespread use by many clinics of Electronic

Medical Records (EMR also called as Electronic Health

Records – EHR).�e second is that whole-genome scan

technologymakes it possible in one experiment, for well

under $,, to measure for one patient a half mil-

lion to one million SNPs, or individual positions in the

DNA where humans vary. �e third key reason is the

advancement of statisticalmodeling (machine learning)

methods in the past decade that can handle large rela-

tional longitudinal databases with signi�cant amount of

noise.�e �rst two reasonsmake it possible for the clin-

ics to have a relational database of the form presented

in Fig. .

Given such a database, it is conceivable to use exist-

ing machine learning algorithms for achieving the goal

of PPM. �ese algorithms could focus on predicting

which patients are at risk (pos and neg examples).

Another task is predicting which patients will respond

to a speci�c treatment – a set of patients who have

undergone speci�c treatments in order to learn predic-

tivemodels that could be extended to similar patients of

the population. Similarly, it is possible to focus on cer-

tain drugs and their adverse reactions and use them to

predict the adverse reactions of similar drugs that are

released in the market. In this work, we focus on the

machine learning solutions to predicting adverse drug

reactions for di�erent drugs.

�ere are actually at least three di�erent tasks for

machine learning in predicting Adverse Drug Events

(ADEs).

Patient ID Gender Birthdate Patient ID

Patient ID SNP1 SNP2 … SNP500K

P1 M 3/22/63

Date Physician Diagnosis

P1
P1

1/1/01
2/1/03

Smith
Jones

Palpitations
Fever, Aches

Patient ID Date Lab Test Result

P1
P1

1/1/01
1/9/01

42
45

P1
P2

AA
AB

AB
BB

BB
AA

Patient ID Date Prescribed Date Filled Physician Medication Dose Duration

P1 5/17/98 5/18/98 Jones Prilosec 10 mg 3 months

blood glucose
blood glucose

Hypoglycemic
influenza

Symptoms

Biomedical Informatics. Figure . Electronic Health Records (dramatically simplified) – most data currently do not

include SNP information but are anticipated in the future

 B Biomedical Informatics

Task :

Given: Patient data (from claims databases and/or

EMRs) and a drug D

Do: Construct a model to predict a minimum e�-

cacious dose of drug D, because a minimum dose is less

likely to induce an ADE.

An example of this task is predicting the “stable

dose” of the blood-thinner Warfarin (Coumadin) for

a patient (McCarty, Wilke, Giampietro, Wesbrook, &

Caldwell, ). A stable dose of Warfarin yields the

desired degree of anticoagulation, whereas a higher

dose can lead to bleeding ADEs; the stable dose for a

patient is currently found by trial and error, modify-

ing the dose and measuring the degree of anticoagula-

tion.�e cited study shows that a learned dosing model

can predict a signi�cantly better starting dose (signi�-

cantly closer to the �nal “stable dose”) than the mg/day

starting dose currently used in many clinics.

Task :

Given: Patient data (from claims databases and/or

EMRs), a drug D, and an adverse event E

Do: Construct a model to predict which patients are

likely to su�er the adverse event E if they take D.

In this second task, we assume that the association

between D and E already has been hypothesized. We

seek to construct models that can predict who will suf-

fer a given event if they take the drug. Here, whether the

patient will su�er adverse event E is the class variable

to be predicted. �is task is important for personalized

medicine, as accurate models for this task can be used

to identify patients who should not be given a particu-

lar drug. An earlier study has demonstrated the bene�t

of a Statistical Relational Learning (SRL) system called

SAYU (Davis, b) over standard machine learning

approaches with a feature-vector representation of the

EHR, for the task of predicting which users of cox

inhibitors would have an MI.

Task :

Given: Patient data (from claims databases and/or

EMRs) and a drug D

Do: Determine if evidence exists that associates D

with a previously unanticipated adverse event.

�is third task is the most challenging because no

associated event has been hypothesized.�ere is a need

to identify the response variable to be predicted. In

brief, the major approach for this task is to use machine

learning “in reverse.” We seek a model that can pre-

dict which patients are on drug D using the data a�er

they start the drug (le� censored) and also censor-

ing the indications of the drug. If a model can predict

(with accuracy better than chance on held-aside data)

which patients are taking the drug, there must be some

combination of variable settings more common among

patients on the drug. Because we have le� censored, in

theory, this commonality should not consist of common

symptoms, but common e�ects, presumably from the

drug. �e model can then be examined by the experts

to see if it might indicate a possible new adverse event

for the drug.

�e preceding use of machine learning “in reverse”

actually can be viewed as Subgroup Discovery (Wrobel,

; Klösgen, ), �nding a subgroup of patients on

drug D who share some subsequent clinical events. �e

learned model – say an IF-THEN rule – need not cor-

rectly identify everyone on the drug but rather merely

a subgroup of those on the drug, while not generating

many false positives (individuals not on the drug). �is

task poses several di�erent challenges that traditional

ML methods will �nd di�cult to handle.

First, the data is multi-relational. �ere are several

objects such as doctors, patients, drugs, diseases, and

labs that are connected through relations such as vis-

its, prescriptions, diagnoses, etc. If traditional machine

learning (ML) techniques are to be employed on this

problem, they require �attening the data into a single

table. All known �attening techniques such as com-

puting a join or summary features result in either

() changes in frequencies on which machine learning

algorithms critically depend or () loss of information.

�ey also typically result in loss of some correlations

between the objects and explosion in database size. Sec-

ond, the data is non-i.i.d., as there are relationships

between the objects and between di�erent rowswithin a

table. �ird, there are arbitrary numbers of patient vis-

its, diagnoses, and prescriptions for di�erent patients.

�is is to say that there is no �xed pattern in the diag-

noses and prescriptions of the patients. It is incorrect to

assume that the patients are diagnosed a �xed number

of times or to assume only the last diagnosis is rele-

vant. To predict the adverse reactions to a drug, it is

important to consider the other drugs that the patient

is prescribed or has been prescribed in the past, as well

as past diagnoses and laboratory results. To capture

Biomedical Informatics B 

B

these interactions, it is critical to explicitly model time

since the interactions are highly temporal. Some drugs

taken at the same time can lead to side e�ects while in

some cases, drugs taken a�er one another cause side

e�ects. It is important to capture such interactions to

be able to make useful predictions for the physicians

and the Federal Drug Authority (FDA). In this work, we

focus on this hardest task and present the results on two

data sets.

Cox Inhibitors: Recently, a study was performed to

see if there were any unanticipated adverse events that

occurred when subjects used cox inhibitors (Vioxx,

Celebrex, and Bextra). Cox inhibitors are a nons-

teroidal anti-in�ammatory class of drugs that were used

to reduce joint pain. Vioxx, Celebrex, and Bextra were

approved for use in the late s and were ranked

as one of the top therapeutic drugs in the USA. Sev-

eral clinical trials were conducted, and the APPROVe

trial (focused on Vioxx outcomes) showed an increase

of adverse events from myocardial infarction, stroke,

and vascular thrombosis. �e manufacturer withdrew

Vioxx from the market shortly a�er the results were

published. �e other cox inhibitor drugs were discon-

tinued shortly therea�er.

�is study utilized the Marsh�eld Clinic’s Person-

alized Medicine Research Project (McCarty, Wilke,

Giampietro, Wesbrook, & Caldwell, ) (PMRP)

cohort consisting of approximately , + subjects.

�e PMRP cohort included adults aged  years and

older, who reside in theMarsh�eld Epidemiology Study

Area (MESA). Marsh�eld has one of the oldest inter-

nally developed Electronic Medical Records (Cattails

MD) in the USA, with coded diagnoses dating back

to the early s. Cattails MD has over , users

throughout central and northern Wisconsin.

Since the data is multi-relational, an Inductive Logic

Programming (Muggleton&Raedt, ) system,Aleph

(Srinivasan, ) was used to learn the models. Aleph

learns rules in the form of Prolog clauses and scores

rules by positive examples covered (P) minus negative

examples covered (N). Seventy-�ve percent of the data

was used for training and rule development, while the

remaining % was used for testing. �ere were ,

subjects within the PMRP cohort that had medication

records. Within this cohort, almost % of the subjects

indicated use of a cox inhibitor, and more speci�-

cally, .% indicated the use of Vioxx. Approximately,

Biomedical Informatics. Table  Cox Inhibitor Test Data

Results

Actual

Rule + −

+   

−   

  , 

Accuracy .

.% of this cohort had an indicated use of clopidogrel

biosulfate (Plavix).

Aleph generated thousands of rules and selected

a subset of the “best” rules that were based on the

scoring algorithm. �e authors also developed speci�c

hypotheses to test for known adverse events to vali-

date the approach (indicated by # A). �is rule was:

cox(A):- diagnoses(A, _,‘’). It states that if �nd-

ing (A): the subject would have the diagnosis coded as

 (myocardial infarction). Aleph also provided sum-

mary statistics on model performance for identifying

subjects on cox inhibitors, as indicated in Table . If

we assume that the probability of being on the cox

inhibitor is greater than.  (the common threshold),

then the model has a predictive probability of % to

predict cox inhibitor use.

OMOP Challenge: Observational Medical Outcomes

Partnership (OMOP) designed and developed an auto-

mated procedure to construct simulated data sets to

identify adverse drug events. �e simulated data sets

are modeled a�er real observational data sources but

are comprised of hypothetical persons with �ctional

drug exposure and health outcomes occurrence. �e

data sets are constructed such that the relationships

between the �ctional drugs and �ctional outcomes are

well characterized as true and false associations. �at

is, hypothetical persons are created and assigned �c-

tional drug exposure periods and instances of health

outcomes based on random sampling from probability

distributions that de�ne the relationships between the

�ctional drugs and outcomes. �e relationships created

within the simulated data sets are contrived but are rep-

resentative of the types of relationships observed within

real observational data sources. OMOP has made a

 B Biomedical Informatics

simulated data set and the simulator itself publicly avail-

able as part of the OMOP Cup Data Mining Competi-

tion (http://omopcup.orwik.com).

Aleph was used to learn rules from a subset of the

data (about , patients). Each patient had a record

of drugs anddiagnoses (conditions)with dates attached.

A few examples of the rules learned byAleph in this data

set are:

on_drug(A):- condition_occurrence(B,C,A,D,

E,,F,G,H)

on_drug(A):- condition_occurrence(B,C,A,D,E,

,F,G,H)

condition_occurrence(I,J,A,K,L,

,M,N,O)

�e �rst rule identi�es drug  as interesting, while

the second rule identi�es two other drugs as interest-

ing when predicting the reaction for person A. With

about  rules, Aleph was able to achieve a % cov-

erage. �e results were compared against a Statistical

Relational Learning technique (SRL) (Getoor & Taskar,

) that uses a probability distribution on the rules.

�e results are presented in Fig. . As expected, with

a small number of rules, SRL has a better performance

than Aleph, but as the number of rules increase, they

converge on the same performance.

�e leading approaches in the �rst OMOP Cup

include a machine learning approach based on random

forests as well as several approaches based on tech-

niques from epidemiology such as disproportionality

analysis. At the time of this writing further details, as

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

2 3 5 10

A
cc

ur
ac

y

Number of rules

Aleph SRL

Biomedical Informatics. Figure . Results of OMOP data

well as plans for future competitions, are available at

http://omopcup.orwik.com/.

Identifying previously unanticipatedADEs, predict-

ing who is most at risk for an ADE, and predicting safe

and e�cacious doses of drugs for particular patients are

all important needs for society. With the recent advent

of “paperless” medical record systems, the pieces are in

place formachine learning to helpmeet these important

needs.

Conclusion
In this work, we aim to survey the abundant opportu-

nities in biomedical applications to machine learning

researchers by presenting several data types to which

machine learning techniques have been applied suc-

cessfully or showing tremendous promise. One of the

most important developments in biology and medicine

over the last few years is the availability of technologies

that can produce large volumes of data.�is in turn has

necessitated the need for processing large volumes of

data in a reasonable amount of time, presenting the per-

fect setting for machine learning algorithms to have an

impact. We outlined several data types including gene

expressionmicroarrays (measuringmRNA),mass spec-

trometry (measuring proteins), SNP chips (measur-

ing genetic variation), and Electronic Medical/Health

Records (EMR/EHRs).

�e key lessons learned from all these data types are

as follows: () Even if the number of features is greater

than the number of data points (e.g., predicting can-

cer from microarray data), we can do well provided

the features are highly predictive. () Careful random-

ization of data samples is necessary. () It is very easy

to over�t the data and hence robust techniques such

as voted 7decision stumps, 7naive Bayes or linear
7SVMs are in general very useful tools for such data
sets. ()7Bayes nets do not give us causality and hence
knock-out experiments (7active learning) and7DBNs
with 7time-series data can help. () Multi-relational
methods such as SRL and ILP are helpful for predic-

tive personalized medicine due to the relational nature

of the data. () Mostly, the collaborators are interested

in measures other than just accuracy. Comprehensi-

bility, privacy, and ranking are other criteria that are

important to biologists.

�is chapter is necessarily incomplete because so

many exciting tasks and data types exist within biology

http://omopcup.orwik.com
http://omopcup.orwik.com/

Biomedical Informatics B 

B

and medicine. While we have touched on many of the

leading such data types, other related ones also exist.

For example, there are many opportunities in analyz-

ing genomic andprotein sequences (LearningModels of

Biological Sequences). Other opportunities exist within

phylogenetics, for example, see work by Heckerman

and colleagues on HIV (Carlson et al., ). New

technologies such as optical mapping are constantly

being developed and re�ned (Ananiev et al., ).

Machine learning has great potential for developing

models for computer-aided diagnosis (CAD), for exam-

ple, for mammography (Burnside et al., ). Data

types such as metabolomics and auxotropic growth

experiments raise opportunities for active learning and

for automatic revision of biological networkmodels, for

example, as in the Robot Scientist projects (Jones et al.,

; Oliver et al., ). Incorporation ofmultiple data

types can further help in mapping out the regulatory

entities and networks of an organism (Noto & Craven,

). It is our hope that this articlewill encourage some

machine learning researchers to delve deeper into these

and other related opportunities.

Acknowledgment
We would like to thank Elizabeth Burnside, Michael

Caldwell, Mark Craven, Jesse Davis, Lingjun Li, David

Madigan, Sean McIlwain, Michael Molla, Irene Ong,

Peggy Peissig, Patrick Ryan, Jude Shavlik,Michael Suss-

man, Humberto Vidaillet, Michael Waddell and Steve

Wesbrook.

Cross References
7Learning Models of Biological Sequences

Recommended Reading
Ananiev, G. E., Goldstein, S., Runnheim, R., Forrest, D. K., Zhou, S.,

Potamousis, K., Churas, C. P., Bergendah, V., Thomson, J. A., &

David, C. (). Schwartz. Optical mapping discerns genome

wide DNA methylation profiles. BMC Molecular Biology, ,

doi:./---.

Baggerly, K., Morris, J. S., & Combes, K. R. (). Reproducibility

of seldi-tof protein patterns in serum: Comparing datasets from

different experiments. Bioinformatics, , –.

Bonneau, R., & Baker, D. (). Ab initio protein structure predic-

tion: Progress and prospects. Annual Review of Biophysics and

Biomolecular Structure, , –.

Burnside, E. S., Davis, J., Chhatwal, J., Alagoz, O., Lindstrom, M. J.,

Geller, B. M., Littenberg, B., Kahn, C. E., Shaffer, K., &

Page, D. (). Unique features of hla-mediated hiv evolu-

tion in a mexican cohort: A comparative study. Radiology, ,

–.

Carlson, J., Valenzuela-Ponce, H., Blanco-Heredia, J., Garrido-

Rodriguez, D., Garcia-Morales, C., Heckerman, D., et al.

(). Unique features of hla-mediated hiv evolution

in a mexican cohort: A comparative study. Retrovirology,

(), .

Davis, J., Costa, V. S., Ray, S., & Page, D. (a). An integrated

approach to feature construction and model building for drug

activity prediction. In Proceedings of the th international

conference on machine learning (ICML).

Davis, J., Ong, I., Struyf, J., Burnside, E., Page, D., & Costa, V. S.

(b). Change of representation for statistical relational

learning. In Proceedings of the th international joint confer-

ence on artificial intelligence (IJCAI).

DiMaio, F., Kondrashov, D., Bitto, E., Soni, A., Bingman, C.,

Phillips, G., & Shavlik, J. (). Creating protein models from

electron-density maps using particle-filtering methods. Bioin-

formatics, , –.

Easton, D. F., Pooley, K. A., Dunning, A. M., Pharoah, P. D., et al.

(). Genome-wide association study identifies novel breast

cancer susceptibility loci. Nature, , –.

Finn, P., Muggleton, S., Page, D., & Srinivasan, A. ().

Discovery of pharmacophores using the inductive logic

programming system progol. Machine Learning, (, ),

–.

Friedman, N. (). Being Bayesian about network structure. In

Machine Learning, , –.

Friedman, N., & Halpern, J. (). Modeling beliefs in dynamic sys-

tems. part ii: Revision and update. Journal of AI Research, ,

–.

Furey, T. S., Cristianini, N., Duffy, N., Bednarski, B. W., Schummer,

M., & Haussler, D. (). Support vector classification and val-

idation of cancer tissue samples using microarray expression.

Bioinformatics, (), –.

Getoor, L., & Taskar, B. (). Introduction to statistical relational

learning. Cambridge, MA: MIT Press.

Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M.,

Mesirov, J. P., et al. (). Molecular classification of cancer:

Class discovery and class prediction by gene expression moni-

toring. Science, , –.

Hardin, J., Waddell, M., Page, C. D., Zhan, F., Barlogie, B.,

Shaughnessy, J., et al. (). Evaluation of multiple mod-

els to distinguish closely related forms of disease using DNA

microarray data: An application to multiple myeloma. Statisti-

cal Applications in Genetics and Molecular Biology, ().

Jain, A. N., Dietterich, T. G., Lathrop, R. H., Chapman, D., Critchlow,

R. E., Bauer, B. E., et al. (). Compass: A shape-based

machine learning tool for drug design. Aided Molecular Design,

(), –.

Jones, K. E., Reiser, F. M., Bryant, P. G. K., Muggleton, C. H., Kell, S.,

King, D. B., et al. (). Functional genomic hypothesis gen-

eration and experimentation by a robot scientist. Nature, ,

–.

KDD cup (). http://pages.cs.wisc.edu/ dpage/kddcup/.

Klösgen, W. (). Handbook of data mining and knowledge dis-

covery, chapter .: Subgroup discovery. New York: Oxford

University Press.

Listgarten, J., Damaraju, S., Poulin, B., Cook, L., Dufour, J.,

Driga, A., et al. (). Predictive models for breast cancer

http://pages.cs.wisc.edu/dpage/kddcup����/.

 B Blog Mining

susceptibility from multiple single nucleotide polymorphisms.

Clinical Cancer Research, , –.

Mardis, E. R. (). Anticipating the , dollar genome. Genome

Biology, (), .

Martin, Y. C., Bures, M. G., Danaher, E. A., DeLazzer, J., Lico, I. I., &

Pavlik, P. A. (). A fast new approach to pharmacophore

mapping and its application to dopaminergic and benzodi-

azepine agonists. Journal of Computer Aided Molecular Design,

, –.

McCarty, C., Wilke, R. A., Giampietro, P. F, Wesbrook, S. D., &

Caldwell, M. D. (). Personalized Medicine Research

Project (PMRP): Design, methods and recruitment for a large

population-based biobank. Personalized Medicine, , –.

Molla, M., Waddell, M., Page, D., & Shavlik, J. (). Using machine

learning to design and interpret gene expression microarrays.

AI Magazine, (), –.

Muggleton, S., & De Raedt, L. (). Inductive logic programming:

Theory and methods. Journal of Logic Programming, (),

–.

Noto, K., & Craven, M. (). A specialized learner for inferring

structured cis-regulatory modules. BMC Bioinformatics, (),

doi:./---.

Oliver, S. G., Young, M., Aubrey, W., Byrne, E., Liakata, M.,

Markham, M., et al. (). The automation of science. Science,

, –.

Ong, I., Glassner, J., & Page, D. (). Modelling regulatory path-

ways in e.coli from time series expression profiles. Bioinformat-

ics, , S–S.

Pe’er, D., Regev, A., Elidan, G., & Friedman, N. (). Inferring sub-

networks from perturbed expression profiles. Bioinformatics,

, –.

Perou, C., Jeffrey, S., Van De Rijn, M., Rees, C. A., Eisen, M. B.,

Ross, D. T., et al. (). Distinctive gene expression pat-

terns in human mammary epithelial cells and breast cancers.

Proccedings of National Academy of Science, , –.

Petricoin, E. F., III, Ardekani, A. M., Hitt, B. A., Levine, P. J., Fusaro,

V. A., Steinberg, S. M., et al. (). Use of proteomic patterns

in serum to identify ovarian cancer. Lancet, , –.

Rost, B., & Sander, C. (). Prediction of protein secondary struc-

ture at better than  accuracy. Journal of Molecular Biology,

, –.

Segal, E., Pe’er, D., Regev, A., Koller, D., & Friedman, N. (April

). Learning module networks. Journal of Machine Learning

Research, , –.

Spatola, A., Page, D., Vogel, D., Blondell, S., & Crozet, Y. (). Can

machine learning and combinatorial chemistry co-exist? In Pro-

ceedings of the American Peptide Symposium. Kluwer Academic

Publishers.

Srinivasan, A. (). The aleph manual. http://web.comlab.ox.

ac.uk/oucl/research/areas/machlearn/Aleph/.

Storey, J. D., & Tibshirani, R. (). Statistical significance for

genome-wide studies. Proceedings of the National Academy of

Sciences, , –.

The International Warfarin Pharmacogenetics Consortium (IWPC)

(). Estimation of the Warfarin Dose with Clinical and

Pharmacogenetic Data. The New England Journal of Medicine,

:–.

Tucker, A., Vinciotti, V., Hoen, P. A. C., Liu, X., & Famili,

A. F. (). Bayesian network classifiers for time-series

microarray data. Advances in Intelligent Data Analysis VI, ,

–.

Van’t Veer, L. L., Dai, H., van de Vijver, M. M., He, Y., Hart, A.,

Mao, M., et al. (). Gene expression profiling predicts clin-

ical outcome of breast cancer. Nature, , –.

Waddell, M., Page, D., & Shaughnessy, J., Jr. (). Predicting can-

cer susceptibility from single-nucleotide polymorphism data: A

case study in multiple myeloma. BIOKDD’: Proceedings of the

fifth international workshop on bioinformatics, Chicago, IL.

Wrobel, S. (). An algorithm for multi-relational discovery

of subgroups. In European symposium on principles of kdd

(pp. –). Lecture notes in computer science, Springer,

Norway.

Zhang, X., Mesirov, J. P., & Waltz, D. L. (). Hybrid system for

protein secondary structure prediction. Journal of Molecular

Biology, , –.

Zou, M., & Conzen, S. D. (). A new dynamic Bayesian network

approach for identifying gene regulatory networks from time

course microarray data. Bioinformatics, , –.

Blog Mining

Blog mining is the application of data mining (in par-

ticular, Web mining) techniques on blogs, adapted to

the content, format, and language of the medium blog.

A blog is a (more or less) frequently updated publication

on the Web, sorted in (usually reverse) chronological

order of the constituent blog posts. As in other areas of

the Web, mining is applied to the content of blogs, to

the various types of links between blogs, and to blog-

related behavior. �e latter comprises blog authoring

including link setting, blog reading and commenting,

and querying (o�en in blog search engines). For more

details on blogs and on mining them, see7text mining
for news and blogs analysis.

Boltzmann Machines

Geoffrey Hinton

University of Toronto, ON, Canada

Synonyms
Boltzmann machines

Definition
A Boltzmann machine is a network of symmetri-

cally connected, neuron-like units that make stochastic

decisions about whether to be on or o�. Boltzmann

machines have a simple learning algorithm (Hinton &

http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/.
http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/.

Boltzmann Machines B 

B

Sejnowski, ) that allows them to discover interest-

ing features that represent complex regularities in the

training data.�e learning algorithm is very slow in net-

works withmany layers of feature detectors, but it is fast

in “restricted Boltzmann machines” that have a single

layer of feature detectors. Many hidden layers can be

learned e�ciently by composing restricted Boltzmann

machines, using the feature activations of one as the

training data for the next.

Boltzmannmachines are used to solve two quite dif-

ferent computational problems. For a search problem,

the weights on the connections are �xed and are used to

represent a cost function. �e stochastic dynamics of a

Boltzmannmachine then allow it to sample binary state

vectors that have low values of the cost function. For a

learning problem, the Boltzmann machine is shown a

set of binary data vectors and it must learn to generate

these vectors with high probability. To do this, it must

�nd weights on the connections so that relative to other

possible binary vectors, the data vectors have low val-

ues of the cost function. To solve a learning problem,

Boltzmannmachines makemany small updates to their

weights, and each update requires them to solve many

di�erent search problems.

Motivation and Background
�e brain is very good at settling on a sensible interpre-

tation of its sensory input within a few hundred mil-

liseconds, and it is also very good, over a much longer

timescale, at learning the code that is used to express

its interpretations. It achieves both the settling and the

learning using spiking neurons which, over a period of

a few milliseconds, have a state of  or . �ese neu-

rons have intrinsic noise caused by the quantal release

of vesicles of neurotransmitter at the synapses between

the neurons.

Boltzmann machines were designed to model both

the settling and the learning, and were based on two

seminal ideas that appeared in . Hop�eld ()

showed that a neural network composed of binary units

would settle to aminimumof a simple, quadratic energy

function provided that the units were updated asyn-

chronously and the pairwise connections between units

were symmetrically weighted. Kirkpatrick et al. ()

showed that systems that were settling to energy min-

ima could �nd deeper minima if noise was added to

the update rule so that the system could occasionally

increase its energy to escape from poor local minima.

Adding noise to a Hop�eld net allows it to �nd

deeper minima that represent more probable interpre-

tations of the sensory data. More signi�cantly, by using

the right kind of noise, it is possible to make the log

probability of �nding the system in a particular global

con�guration be a linear function of its energy. �is

makes it possible to manipulate log probabilities by

manipulating energies, and since energies are simple

local functions of the connection weights, this leads to

a simple, local learning rule.

Structure of Learning System
�e learning procedure for updating the connection

weights of a Boltzmann machine is very simple, but to

understand why it works it is �rst necessary to under-

stand how a Boltzmann machine models a probability

distribution over a set of binary vectors and how it

samples from this distribution.

The stochastic Dynamics of a Boltzmann Machine

Whenunit i is given the opportunity to update its binary

state, it �rst computes its total input, xi, which is the

sum of its own bias, bi, and the weights on connections

coming from other active units:

xi = bi +∑
j

sjwij ()

where wij is the weight on the connection between

i and j, and sj is  if unit j is on and , otherwise.

Unit i then turns on with a probability given by the

logistic function:

prob(si = ) =


 + e−xi
()

If the units are updated sequentially in any order that

does not depend on their total inputs, the network will

eventually reach a Boltzmann distribution (also called

its equilibrium or stationary distribution) in which the

probability of a state vector, v, is determined solely by
the “energy” of that state vector relative to the energies

of all possible binary state vectors:

P(v) = e−E(v)/∑
u
e
−E(u)

()

 B Boltzmann Machines

As in Hop�eld nets, the energy of state vector v is
de�ned as

E(v) = −∑
i

svi bi −∑
i<j

svi s
v
j wij ()

where svi is the binary state assigned to unit i by state

vector v.
If the weights on the connections are chosen so

that the energies of state vectors represent the cost of

those state vectors, then the stochastic dynamics of a

Boltzmann machine can be viewed as a way of escap-

ing from poor local optima while searching for low-cost

solutions.�e total input to unit i, xi, represents the dif-

ference in energy depending on whether the unit is o�

or on, and the fact that unit i occasionally turns on even

if xi is negative means that the energy can occasionally

increase during the search, thus allowing the search to

jump over energy barriers.

�e search can be improved by using simulated

annealing.�is scales down all of the weights and ener-

gies by a factor,T, which is analogous to the temperature

of a physical system. By reducing T from a large ini-

tial value to a small �nal value, it is possible to bene�t

from the fast equilibration at high temperatures and

still have a �nal equilibrium distribution that makes

low-cost solutions much more probable than high-cost

ones. At a temperature of , the update rule becomes

deterministic and a Boltzmann machine turns into a

Hop�eld network.

Learning in Boltzmann Machines Without Hidden Units

Given a training set of state vectors (the data), the

learning consists of �nding weights and biases (the

parameters) that make those state vectors good. More

speci�cally, the aim is to �nd weights and biases that

de�ne a Boltzmann distribution in which the training

vectors have high probability. By di�erentiating () and

using the fact that:

∂E(v)/∂wij = −s
v
i s

v
j ()

it can be shown that:

⟨
∂ logP(v)
∂wij

⟩

data

= ⟨sisj⟩data − ⟨sisj⟩model ()

where ⟨⋅⟩data is an expected value in the data dis-

tribution and ⟨⋅⟩model is an expected value when the

Boltzmannmachine samples state vectors from its equi-

librium distribution at a temperature of . To per-

form gradient ascent in the log probability that the

Boltzmann machine would generate the observed data

when sampling from its equilibrium distribution, wij is

incremented by a small learning rate times the RHS of

(). �e learning rule for the bias, bi, is the same as (),

but with sj omitted.

If the observed data speci�es a binary state for every

unit in the Boltzmann machine, the learning prob-

lem is convex: �ere are no nonglobal optima in the

parameter space. However, sampling from ⟨⋅⟩model may

involve overcoming energy barriers in the binary state

space.

Learning with Hidden Units

Learning becomes much more interesting if the

Boltzmann machine consists of some “visible” units

whose states can be observed, and some “hidden” units

whose states are not speci�ed by the observed data.�e

hidden units act as latent variables (features) that allow

the Boltzmannmachine tomodel distributions over vis-

ible state vectors that cannot be modeled by direct pair-

wise interactions between the visible units. A surprising

property of Boltzmann machines is that, even with hid-

den units, the learning rule remains unchanged. �is

makes it possible to learn binary features that capture

higher-order structure in the data. With hidden units,

the expectation ⟨sisj⟩data is the average, over all data vec-

tors, of the expected value of sisj when a data vector is

clamped on the visible units and the hidden units are

repeatedly updated until they reach equilibrium with

the clamped data vector.

It is surprising that the learning rule is so sim-

ple because ∂ logP(v)/∂wij depends on all the other

weights in the network. Fortunately, the locally avail-

able di�erence in the two correlations in () tells wij

everything it needs to know about the other weights.

�is makes it unnecessary to explicitly propagate error

derivatives, as in the backpropagation algorithm.

Different Types of Boltzmann Machine

�e stochastic dynamics and the learning rule can

accommodate more complicated energy functions

(Sejnowski, ). For example, the quadratic energy

function in () can be replaced by an energy function

Boltzmann Machines B 

B

that has typical term sisjskwijk. �e total input to unit i

that is used in the update rule must then be replaced by

xi = bi +∑
j<k

sjskwijk. ()

�e only change in the learning rule is that sisj is

replaced by sisjsk.

Boltzmann machines model the distribution of the

data vectors, but there is a simple extension, the “con-

ditional Boltzmann machine” for modeling conditional

distributions (Ackley, Hinton, & Sejnowski, ). �e

only di�erence between the visible and the hidden units

is that, when sampling ⟨sisj⟩data, the visible units are

clamped and the hidden units are not. If a subset of the

visible units are also clamped when sampling ⟨sisj⟩model
this subset acts as “input” units and the remaining visi-

ble units act as “output” units. �e same learning rule

applies, but now it maximizes the log probabilities of

the observed output vectors conditional on the input

vectors.

Instead of using units that have stochastic binary

states, it is possible to use “mean �eld” units that have

deterministic, real-valued states between  and , as in

an analog Hop�eld net. Equation () is used to compute

an “ideal” value for a unit’s state, given the current states

of the other units, and the actual value is moved toward

the ideal value by some fraction of the di�erence. If this

fraction is small, all the units can be updated in parallel.

�e same learning rules can be used by simply replacing

the stochastic, binary values by the deterministic real

values (Peterson & Anderson, ), but the learning

algorithm is hard to justify and the mean �eld nets have

problems in modeling multimodal distributions.

�e binary stochastic units used in Boltzmann

machines can be generalized to “so�max” units that

have more than two discrete values, Gaussian units

whose output is simply their total input plus Gaussian

noise, binomial units, Poisson units, and any other type

of unit that falls in the exponential family (Welling,

Rosen-Zvi, & Hinton, ). �is family is character-

ized by the fact that the adjustable parameters have lin-

ear e�ects on the log probabilities. �e general form of

the gradient required for learning is simply the change

in the su�cient statistics caused by clamping data on the

visible units.

The speed of Learning

Learning is typically very slow in Boltzmann machines

with many hidden layers because large networks can

take a long time to approach their equilibrium distribu-

tion, especially when the weights are large and the equi-

librium distribution is highly multimodal, as it usually

is when the visible units are unclamped. Even if sam-

ples from the equilibrium distribution can be obtained,

the learning signal is very noisy because it is the di�er-

ence of two sampled expectations.�ese di�culties can

be overcome by restricting the connectivity, simplifying

the learning algorithm, and learning one hidden layer at

a time.

Restricted Boltzmann Machines

A restricted Boltzmann machine (Smolensky, )

consists of a layer of visible units and a layer of hid-

den units with no visible-visible or hidden-hidden con-

nections. With these restrictions, the hidden units are

conditionally independent given a visible vector, so

unbiased samples from ⟨sisj⟩data can be obtained in one

parallel step. To sample from ⟨sisj⟩model still requires

multiple iterations that alternate between updating all

the hidden units in parallel and updating all of the vis-

ible units in parallel. However, learning still works well

if ⟨sisj⟩model is replaced by ⟨sisj⟩reconstruction which is

obtained as follows:

. Starting with a data vector on the visible units,

update all of the hidden units in parallel.

. Update all of the visible units in parallel to get a

“reconstruction.”

. Update all of the hidden units again.

�is e�cient learning procedure approximates gra-

dient descent in a quantity called “contrastive diver-

gence” and works well in practice (Hinton, ).

Learning Deep Networks by Composing Restricted

Boltzmann Machines

A�er learning one hidden layer, the activity vectors of

the hidden units, when they are being driven by the

real data, can be treated as “data” for training another

restricted Boltzmann machine. �is can be repeated to

learn as many hidden layers as desired. A�er learning

multiple hidden layers in this way, the whole network

can be viewed as a single, multilayer generative model,

 B Boosting

and each additional hidden layer improves a lower

bound on the probability that the multilayer model

would generate the training data (Hinton, Osindero, &

Teh, ).

Learning one hidden layer at a time is a very e�ective

way to learn deep neural networks with many hidden

layers and millions of weights. Even though the learn-

ing is unsupervised, the highest level features are typi-

cally much more useful for classi�cation than the raw

data vectors. �ese deep networks can be �ne-tuned

to be better at classi�cation or dimensionality reduc-

tion using the backpropagation algorithm (Hinton &

Salakhutdinov, ). Alternatively, they can be �ne-

tuned to be better generative models using a version of

the “wake-sleep” algorithm Hinton et al. ().

Relationships to Other Models

Boltzmannmachines are a type ofMarkov random �eld

(see 7Graphical Models), but most Markov random
�elds have simple, local interaction weights which are

designed by hand rather than being learned. Boltzmann

machines are also like Ising models, but Ising mod-

els typically use random or hand-designed interaction

weights.�e search procedure for Boltzmannmachines

is an early example ofGibbs sampling, a7Markov chain
Monte Carlo method which was invented indepen-

dently (Geman & Geman, ) and was also inspired

by simulated annealing.

Boltzmann machines are a simple type of undi-

rected graphical model. �e learning algorithm for

Boltzmann machines was the �rst learning algorithm

for undirected graphical models with hidden variables

(Jordan, ). When restricted Boltzmann machines

are composed to learn a deep network, the top two

layers of the resulting graphical model form an undi-

rected Boltzmann machine, but the lower layers form

a directed acyclic graph with directed connections

from higher layers to lower layers, Hinton et al.

().

Conditional random �elds (La�erty, McCallum, &

Pereira, ) can be viewed as simpli�ed versions

of higher-order, conditional Boltzmann machines in

which the hidden units have been eliminated. �is

makes the learning problem convex, but removes the

ability to learn new features.

Recommended Reading
Ackley, D., Hinton, G., & Sejnowski, T. (). A Learning

algorithm for boltzmann machines. Cognitive Science, (),

–.

Geman, S., & Geman, D. (). Stochastic relaxation, Gibbs distri-

butions, and the Bayesian restoration of images. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, (),

–.

Hopfield, J. J. (). Neural networks and physical systems with

emergent collective computational abilities. Proceedings of the

National Academy of Sciences USA, , –.

Hinton, G. E. (). Training products of experts by min-

imizing contrastive divergence. Neural Computation, (),

–.

Hinton, G. E., Osindero, S., & Teh, Y. W. (). A fast learn-

ing algorithm for deep belief nets. Neural Computation, ,

–.

Hinton, G. E., & Salakhutdinov, R. R. (). Reducing the

dimensionality of data with neural networks. Science, ,

–.

Hinton, G. E., & Sejnowski, T. J. (). Optimal perceptual infer-

ence. In Proceedings of the IEEE conference on computer vision

and pattern recognition, Washington, DC (pp. –).

Jordan, M. I. (). Learning in graphical models. Cambridge, MA

MIT press.

Kirkpatrick, S., Gelatt, D. D., & Vecci, M. P. (). Optimization by

simulated annealing. Science, (), –.

Lafferty, J., McCallum, A., & Pereira, F. (). Conditional ran-

dom fields: Probabilistic models for segmenting and labeling

sequence data. In Proceedings of the th international confer-

ence on machine learning (pp. –). San Francisco, Morgan

Kaufmann.

Peterson, C., & Anderson, J. R. (). A mean field theory learning

algorithm for neural networks. Complex Systems, (), –.

Sejnowski, T. J. (). Higher-order boltzmann machines. AIP

Conference Proceedings, (), –.

Smolensky, P. (). Information processing in dynamical sys-

tems: Foundations of harmony theory. In D. E. Rumelhart, &

J. L. McClelland (Eds.), Parallel distributed processing: Vol. :

Foundations (pp. –). Cambridge, MA: MIT Press.

Welling, M., Rosen-Zvi, M., & Hinton, G. E. (). Exponen-

tial family harmoniums with an application to information

retrieval. In Advances in neural information processing systems

(vol. , pp. –). Cambridge, MA: MIT Press.

Boosting

Boosting is a family of 7ensemble learning methods.
�e Boosting framework is an answer to a question

posed on whether two complexity classes of learning

problems are equivalent: strongly learnable, and weakly

learnable. �e Boosting framework is a proof by con-

struction that the answer is positive, they are equivalent.

�e framework allows a “weak” model, only slightly

Breakeven Point B 

B

better than random guessing, to be boosted into an

arbitrarily accurate strong model. 7Adaboost is the
most well known and successful of the Boosting family,

though there exist many variants specialized for par-

ticular tasks, such as cost-sensitive and noise-tolerant

versions. See7ensemble learning for full details.

Bootstrap Sampling

Definition
Bootstrap sampling is a process for creating a distribu-

tion of datasets out of a single dataset. It is used in the

7ensemble learning algorithm7Bagging. It can also be
used in 7algorithm evaluation to create a distribution
of training sets from which to estimate properties of an

algorithm.

Recommended Reading
Davison, A. C., & Hinkley, D. (). Bootstrap methods and their

applications (th ed.). Cambridge: Cambridge Series in Statisti-

cal and Probabilistic Mathematics.

Bottom Clause

Synonyms
Saturation; Starting clause

Definition
�e bottom clause is a notion from the �eld of

7inductive logic programming. It is used to refer to the
most speci�c hypothesis covering a particular example

when7learning from entailment. When learning from
entailment, a hypothesisH covers an example e relative

to the background theory B if and only if B∧H ⊧ e, that

is, B together with H 7entails the example e. �e bot-
tom clause is now themost speci�c clause satisfying this

relationship w.r.t the background theory B and a given

example e.

For instance, given the background theory B

bird :- blackbird.
bird :- ostrich.

and the example e:

flies :- blackbird, normal.

the bottom clause is H

flies :- bird, blackbird, normal.

�e bottom clause can be used to constrain the search

for clauses covering the given example because all

clauses covering the example relative to the background

theory should be more general than the bottom clause.

�e bottom clause can be computed using 7inverse
entailment.

Cross References
7Entailment
7Inductive Logic Programming
7Inverse Entailment
7Logic of Generality

Bounded Differences Inequality

7McDiarmid’s Inequality

BP

7Backpropagation

Breakeven Point

More accurately described as precision–recall BEP, it

is an evaluation measure originally introduced in the

�eld of information retrieval to evaluate retrieval sys-

tems that return a list of documents ordered by their

supposed relevance to the user’s information need (see

also 7Document Classi�cation). It can also be used
to evaluate any classi�cation model f that addresses a

two-class classi�cation problem but outputs real-valued

predictions f (x) instead of binary ones. To use such a

classi�er in practice, one would select a threshold θ and

predict an instance x to be positive if f (x) > θ and nega-

tive otherwise. �us, the7precision and7recall of this
system depend on the choice of the threshold θ. A lower

threshold means higher recall, but usually also lower

precision. At some point (when the number of instances

predicted to be positive is the same as the actual number

 B Breakeven Point

of positive instances), precision and recall are equal; this

value of precision and recall is known as the precision–

recall BEP. It is a useful measure of the quality of our

classi�er because it gives us guidance into what sort of

tradeo�s are available to the user of such a classi�er via

the choice of threshold: if we want a precision above the

BEP, we must accept that our recall will be below the

BEP, and vice versa. A di�erent meaning of the term

“breakeven point” is sometimes used in ROC (7ROC
Analysis), where the ROC breakeven is de�ned as the

point where the true positive rate and the false positive

rate sum to ; smaller values of the ROC breakeven are

better than larger ones. Informally, the ROC breakeven

measures how close the ROC curve gets to the “ROC

sweet spot” in the top le� corner (where the 7true
positive rate is  and the7false positive rate is ).

	B
	Backprop
	Backpropagation
	Synonyms
	Definition
	Characteristics
	Feed-Forward Networks
	Gradient Descent
	Implementation
	Classification Tasks with BP
	Curve Fitting with BP
	The Autoencoder Architecture
	Prediction with BP
	Cognitive Modeling with BP
	Biological Inspiration and Plausibility
	Shortcomings of BP
	History

	Cross References
	Recommended Reading

	Bagging
	Bake-Off
	Definition
	Cross References

	Bandit Problem with SideInformation
	Bandit Problem with Side Observations
	Basic Lemma
	Basket Analysis
	Synonyms
	Definition
	Cross References

	Batch Learning
	Synonyms
	Definition

	Baum–Welch Algorithm
	Bayes Adaptive Markov DecisionProcesses
	Bayes Net
	Bayes Rule
	Definition
	Discussion
	Cross References

	Bayesian Methods
	Definition
	Motivation and Background
	Theory
	Basic Theory
	Justifications
	Bayesian Computation

	Cross References
	Recommended Reading

	Bayesian Model Averaging
	Bayesian Network
	Synonyms
	Definition
	Cross References

	Bayesian Nonparametric Models
	Synonyms
	Definition
	Motivation and Background
	Examples
	Theory
	Exchangeability
	Model Representations
	Consistency and Convergence Rates

	Inference
	Examples
	On Bayes Equations and Conjugacy

	Future Directions
	General-Purpose Software Package
	Statistical Properties of Models

	Cross References
	Recommended Reading

	Bayesian Reinforcement Learning
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning Approach
	Model-Based Bayesian Learning
	Belief MDP Equivalence
	Optimal Value Function Parameterization
	Exploration/Exploitation Tradeoff
	Related Work

	Cross References
	Recommended Reading

	Beam Search
	Cross References
	Recommended Reading

	Behavioral Cloning
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Learning Direct (Situation–Action) Controllers
	Limitations

	Learning Indirect (Goal-Directed) Controllers
	Cross References
	Recommended Reading

	Belief State Markov Decision Processes
	Bellman Equation
	Bias
	Bias Specification Language
	Definition
	Examples
	Bias Specification Languages in Inductive Logic Programming
	DLAB
	Type- and Mode-Based Biases
	FLIPPER's Bias Specification Language
	Other Approaches

	Further Reading
	Cross References
	Recommended Reading

	Bias Variance Decomposition
	Definition
	Cross References
	Recommended Reading

	Bias-Variance Trade-offs: Novel Applications
	Definition
	Motivation and Background
	Applications
	Monte Carlo Estimation of Integrals Using Importance Sampling
	Monte Carlo Optimization
	Parametric Machine Learning
	PLMCO
	MCO Problem Description
	Solution Methodology
	Log-Concave Densities
	Mixture Models
	Test Problems
	Application of PL Techniques

	Conclusions
	Recommended Reading

	Bias-Variance Trade-offs
	Bias-Variance-CovarianceDecomposition
	Bilingual Lexicon Extraction
	Binning
	Biological Learning: Synaptic Plasticity, Hebb Rule and Spike Timing Dependent Plasticity
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	The Hebb Rule
	Functional Consequences of Hebbian Learning

	Cross References
	Recommended Reading

	Biomedical Informatics
	Introduction
	Gene Expression Microarrays
	Gene Chips

	Machine Learning for Microarrays
	Single Nucleotide Polymorphisms
	Mass Spectrometry and Proteomics
	Protein Structures
	Protein–Protein Interactions
	Related Data Types
	High-Throughput Screening Data for Drug Design
	Electronic Medical Records (EMR) and Personalized Medicine
	Conclusion
	Acknowledgment
	Cross References
	Recommended Reading

	Blog Mining
	Boltzmann Machines
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	The stochastic Dynamics of a Boltzmann Machine
	Learning in Boltzmann Machines Without Hidden Units
	Learning with Hidden Units
	Different Types of Boltzmann Machine
	The speed of Learning
	Restricted Boltzmann Machines
	Learning Deep Networks by Composing Restricted Boltzmann Machines
	Relationships to Other Models

	Recommended Reading

	Boosting
	Bootstrap Sampling
	Definition
	Recommended Reading

	Bottom Clause
	Synonyms
	Definition
	Cross References

	Bounded Differences Inequality
	BP
	Breakeven Point

