! Backprop

» Backpropagation

! Backpropagation

PauL MUNRO
University of Pittsburgh, Pittsburgh, PA, USA

Synonyms
Backprop; BP; Generalized delta rule

Definition

Backpropagation of error (henceforth BP) is a method
for training feed-forward neural networks see
» Artificial Neural Networks. A specific implementa-
tion of BP is an iterative procedure that adjusts net-
work weight parameters according to the gradient of
an error measure. The procedure is implemented by
computing an error value for each output unit, and by
backpropagating the error values through the network.

Characteristics

Feed-Forward Networks

A feed-forward neural network is a mathematical
function that is composed of constituent “semi-linear”
functions constrained by a feed-forward network archi-
tecture, wherein the constituent functions correspond
to nodes (often called units or artificial neurons) in a
graph, as in Fig. 1. A feedfoward network architecture
has a connectivity structure that is an acyclic graph; that
is, there are no closed loops.

In most cases, the unit functions have a finite range
such as [0,1]. Thus, the network maps RN to [0,1],
where N is the number of input values and M is the
number of output units. Let Fanln(k) refer to the set
of units that provide input to unit k, and let FanOu#(k)

denote the set of units that receive input from
unit k.

In an acyclic graph, at least one unit has a Fanln
that is the null set. These are the input units; the activ-
ity of an input unit is not computed; rather it is set to
a value external to the network (i.e., from the training
data). Similarly, at least one unit has a null FanOut set.
Such units typically represent the output of the network;
i.e., this set of values is the result of the network com-
putation. Intermediate units (often called hidden units)
receive input from other units and project outputs to
other computational units.

For the BP procedure, the activity of each unit is
computed in two steps:

Linear step: the activities of the FanIn are each
multiplied by an independent “weight” parameter, to
which a “bias” parameter is added; each computa-
tional unit has a single bias parameter, independent
of the other units. Let this sum be denoted x; for
unit k.

Nonlinear step: The activity a; of unit k is a dif-
ferentiable nonlinear function of x;. A favorite func-
tion is the logistic a = 1/(1 + exp(—x)), because it
maps the range [-oo, +oo] to [0,1] and its deriva-
tive has properties conducive to the implementation
of BP.

ar = fi(xk); where x = by + Z
jeFanIn(k)

WkjS

Gradient Descent

Derivation of BP is a direct application of the gradient
descent approach to optimization and is dependent on
a definition of network error, a function of the actual
network response to a stimulus, r(s) and the target T(s).
The two most common error functions are the summed
squared error (SSE) and the cross entropy error (CE)
(CE error as defined here is based on the presumption
that the output values are in the range [0, 1]. Likewise

Claude Sammut & Geoffrey I. Webb (eds.), Encyclopedia of Machine Learning, DOI10.1007/978-0-387-30164-8,

© Springer Science+Business Media LLC 2011

70

Backpropagation

Output units

Ne s

il s sl

Standard 3 layer
classification net

- s\

? \ FanOut (k)
Ty, ," "’

)

General feedforward
net structure

Backpropagation. Figure 1. Two networks are shown. Input units are shown as simple squares at the bottom of each
figure. Other units are computational (designated by a horizontal line). Left: A standard 3-layer network. Four input
units project to five hidden units, which in turn project to a single output unit. Not all connections are shown. Such a
network is commonly used for classification tasks. Right: An example of a feed-forward network with four inputs, three

hidden units, and two outputs

for the target values; this is often used for classification
tasks, wherein target values are set to the endpoints of
the range, 0 and 1).

ESF = 3 (Ti(s) - ri(s))’

ieOutut
seTrain

E*= 3 [Ti(s)In (ri(s)) — (1= Ti(s)) In (1~ ri(s))]

ieOutut
seTrain

Each weight parameter, w;; (the weight of the connec-
tion from j to i), is updated by an amount propor-
tional to the negative gradient of the error measure with
respect to that parameter:

oE
Awjj = —Wm,
where the step size, 1, modulates the intrinsic tradeoff
between smooth convergence of the weights and the
speed of convergence; in the regime where # is small,
the system is well-behaved and converges smoothly, but
slowly, and for larger #, the system may learn some sub-
sets of the training set faster at the expense of smooth
convergence on all patterns in the set. Thus, 7 is also
called the learning rate.

Several aspects of the feed-forward network must be
defined prior to running a BP program, such as the
configuration of the hidden units, the initial values of
the weights, the functions they will compute, and the
numerical representation of the input and target data.
There are also parameters of the learning algorithm that
must be chosen, such as the value of # and the form of
the error function.

The weight and bias parameters are set to their ini-
tial values (these are usually random within specified
limits). BP is implemented as an iterative process as
follows:

1. A stimulus-target pair is drawn from the training
set.

2. The activity values for the units in the net-
work are computed for all the units in the net-
work in a forward fashion from input to output
(Fig. 2a).

3. The network output values are compared to the tar-
get and a delta (§) value is computed for each output
unit based on the difference between the target and
the actual output response value.

Backpropagation

71

ay

Xie= b+ Lw; &
j eFanin(k)

Activity propagates
forward

a

Errors from FanOut (k)

&= ZWd; 5,
i e FanOut(k) Ab,-= 175/ B
8= fi(ay) x e
Awj=nd;a;
g
Error propagates Weights are
backward updated

Backpropagation. Figure 2. With each iteration of the backprop algorithm, (a) An activity value is computed for every
unit in the network from the input to the output. (b) The network output is compared with the target. The error e, for
output unit k is defined as (T — r«). A value & is computed for each output unit by multiplying e, by the derivative of
the activity function. For hidden units, the error is propagated backward using the weights. (c) The weight parameters

w;; are updated in proportion to the product of §; and g;

4. The deltas are propagated backward through the
network using the same weights that were used to
compute the activity values (Fig. 2b).

5. Each weight is updated by an amount proportional
to the product of the downstream delta value and
the upstream activity (Fig. 2c).

The procedure can be run either in an online mode or
batch mode. In the online mode, the network param-
eters are updated for each stimulus-target pair. In the
batch mode, the weight changes are computed and accu-
mulated over several iterations without updating the
weights until alarge number (B) of stimulus-target pairs
have been processed (often, the entire training set),
at which the weights are updated by the accumulated
amounts.

online :

Awii(t) = nd:()aj(t) Abi(t) = n8;(t)

t+B
batch: Aw;(t+B) = Y n8;(s)a;(s)

s=t-1

t-B

Ab,‘(t+ T) = Z 176,(5)

s=t+1

The simplest and most common classification func-
tion returns a binary value, indicating membership in
a particular class. The most common network archi-
tecture for a task of this kind is the three-layer net-
work of Fig. 1 (left), with training values of 0 and 1.
For classification tasks, the cross entropy error function
generally gives significantly faster convergence. After
training, the network is in test mode or production
mode, and the responses are in the continuous range
[0, 1]; the response must thus be interpreted. The value
of the response could be interpreted as a probability or
fuzzy Boolean value. Often, however, a single threshold
is applied to give a binary answer. A double thresh-
old is sometimes used, with the midrange defined as
“uncertain.”

A feed-forward network can be trained to approximate
any function, given the sufficient hidden units. The
range of the output unit(s) must be capable of gen-
erating activity values in the required range. In order
to accommodate an arbitrary range uniformly, a linear

72

Backpropagation

function is advisable for the output units, and the SSE
function is the basis for gradient descent.

The autoencoder is a network design in which the
target pattern is identical to the input pattern. The
hidden units are configured such that there is a “bot-
tleneck layer” of units that is smaller than the input
layer, through which information flows; i.e., there are
no connections bypassing the bottleneck. Thus, any
information necessary to reconstruct the input pattern
at the output layer must be represented at the bottle-
neck. This approach has been successfully applied as
an approach to nonlinear dimensionality reduction (e.g.,
Demers & Cottrell, 1993). It bears notable similarities
and differences to linear techniques, such as »principal
components analysis (PCA).

The plain “vanilla” BP propagates input to output with
no explicit representation of time. Several approaches to
processing of temporal patterns have been put forward.
Most prominent among these are:

Time delay neural network. In this approach, the
input stimulus is simply a sample of a time vary-
ing signal. The input patterns are typically generated
by a sliding window of samples over time or over a
sequence.

»Simple recurrent network (Elman, 1990). A sequence

of stimulus patterns is presented as input for the net-
work, which has a single hidden layer design. With each
iteration, the input is augmented by a secondary set of
input units whose activity is a copy of the hidden layer
activity from the previous iteration. Thus, the network
is able to maintain a representation of the recent history
of network stimuli.

Backpropagation through time (Rumelhart, Hinton,
& Williams, 1986). A recurrent network (i.e., a cyclic
network) is “unfolded in time” by forming a large multi-
layer network, in which each layer is a copy of the entire
network shifted in time. Thus, the number of layers
limits the temporal window available to the network.

Recurrent backpropagation (Pineda, 1989). An
acyclic network is run with activity propagation and
error propagation, until variables converge. Then the
weights are updated.

Interest in BP as a training technique for classi-
fiers has waned somewhat since the introduction of
»Support vector machines (SVMs) in the mid 1990s.
However, the influence of BP as an approach to model-
ing cognitive processes, including perception, concept
learning, spatial cognition, and language learning,
remains strong. Analysis of hidden unit representations
(e.g., using clustering techniques) has given insight into
plausible intermediate processes that may underlie cog-
nitive phenomena. Also, many cognitive models trained
with BP have exhibited time courses consistent with
stages of human learning.

The “connectionist” approach to modeling cognition is
based on “neural network” models, which have been
touted as “biologically inspired” since their inception.
The similarities and differences between connectionist
architectures and living brains have been exhaustively
debated. Like the brain, the models consist of elements
that are extremely limited, computationally. Compu-
tational power is derived by several units in network
architecture. However, there are compelling differences
as well. For example, the temporal dynamics in bio-
logical neurons is far more complex than the simple
functions used in connectionist networks. It remains
unclear what level of neurobiological detail is relevant
to understand the cognitive functions.

The BP method is notorious for convergence problems.
An inherent problem of gradient descent approaches to
optimization is the issue of locally optimal values. Seek-
ing a minimum value be heading downhill is like water
running downhill. Not all water reaches the lowest point
(sea level). Water that flows into a mountain lake has
landed in a local minimum, a region that is bounded by
higher ground.

Even when BP converges to a global minimum (or a
local minimum that is “good enough”), it is sometimes
very slow. The convergence properties of BP depend on
the learning rate and random factors, such as the initial
weight and bias values.

Another difficulty with BP is the selection of a net-
work structure. The number of hidden units and the

Basic Lemma

73

interconnectivity among them has a strong influence on
both the generalization performance and the conver-
gence time. Since the nature of this influence is poorly
understood, the design of the network is left to guess-
work. The standard approach is to use a single hidden
layer (as in Fig. 1, left), which has the advantage of
relatively fast convergence.

The idea of training a multilayered network using error
propagation was originated by Frank Rosenblatt (1958,
1962). However, he was unable to apply gradient descent
because he was using linear threshold functions that
were not differentiable; therefore, the technique of gra-
dient descent was unavailable. He developed a tech-
nique known as the perceptron learning rule that is
only applicable to two layer networks (no hidden units).
Without hidden units, the computational power of the
network is severely reduced. Work in the field virtually
stopped with the publication of Perceptrons (Minsky &
Papert, 1969). The backpropagation procedure was first
published by Werbos (1974), but did not receive signifi-
cant recognition until it was put forward by Rumelhart
et al. (1986).

Cross References
» Artificial Neural Networks

Recommended Reading

Demers, D., & Cottrell, G. (1993). Non-linear dimensionality reduc-
tion. In S. J. Hanson, J. D. Cowan, & C. L. Giles (Eds.), Advances
in neural information processing systems (Vol. 5). San Mateo, CA:
Morgan Kaufmann.

Elman, J. (1990). Finding structure in time. Cognitive Science, 14,
179-211.

Minsky, M. L., & Papert, S. A. (1969). Perceptrons. Cambridge, MA:
MIT Press.

Pineda, F. J. (1989). Recurrent backpropagation and the dynamical
approach to adaptive neural computation. Neural Computation,
1, 161-172.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for
information storage and organization in the brain. Psychological
Review, 65, 386-408.

Rosenblatt, F. (1962). Principles of statistical neurodynamics.
Washington, DC: Spartan.

Werbos, P. (1974). Beyond regression: New tools for prediction
and analysis in the behavioral sciences. Ph.D. thesis, Harvard
University, Cambridge.

! Bagging

Bagging is an Pensemble learning technique. The
name “Bagging” is an acronym derived from Bootstrap
AGGregatING. Each member of the ensemble is con-
structed from a different training dataset. Each dataset
is a »bootstrap sample from the original. The models
are combined by a uniform average or vote. Bagging
works best with »unstable learners, that is those that
produce differing generalization patterns with small
changes to the training data. Bagging therefore tends
not to work well with linear models. See »ensemble
learning for more details.

|
Bake-Off

Definition

Bake-off is a disparaging term for experimental eval-
uation of multiple learning algorithms by a process of
applying each algorithm to a limited set of benchmark
problems.

Cross References
» Algorithm Evaluation

I Bandit Problem with Side
Information

> Associative Reinforcement Learning

I Bandit Problem with Side
Observations

> Associative Reinforcement Learning

| .
Basic Lemma

»Symmetrization Lemma

74

Basket Analysis

| Basket Analysis

HaNNU TOIVONEN
University of Helsinki, Helsinki, Finland

Synonyms
Market basket analysis

Definition

The goal of basket analysis is to utilize large volumes
of electronic receipts, stored at the checkout terminals
of supermarkets, for better understanding of customer
behavior.

While many forms of learning and mining can
be applied to market baskets, the term usually refers
to some variant of P-association rule mining. In the
basic setting, each market basket constitutes an exam-
ple essentially defined by the set of purchased products.
Association rules then identify sets of items that tend
to be bought together. A classical, anecdotal discov-
ery from supermarket data is that “if a basket contains
diapers then it often also contains beer” This example
illustrates several potential benefits of market basket
analysis by association rules: simplicity and under-
standability of the results, actionability of the results,
and a form of nonsupervised approach where the
consequent of the rule has not been fixed by the user.

Association rules are often found with the »Apriori
algorithm, and are based on »frequent itemsets.

Cross References
» Apriori Algorithm
» Association Rule
»EFrequent Itemset
»EFrequent Pattern

| Batch Learning

Synonyms
Offline Learning

Definition

A batch learning algorithm accepts a single input that is
a set or sequence of observations. The algorithm pro-
duces its »model, and does no further learning. Batch
learning stands in contrast to »online learning.

| Baum-Welch Algorithm

The Baum-Welch algorithm is used for computing
maximum likelihood estimates and posterior mode
estimates for the parameters (transition and emission
probabilities) of a HMM, when given only output
sequences (emissions) as training data.

The Baum-Welch algorithm is a particular instan-
tiation of the expectation-maximization algorithm,
suited for HMMs.

! Bayes Adaptive Markov Decision
Processes

»Bayesian Reinforcement Learning

! Bayes Net

» Bayesian Network

| Bayes Rule

GEOFFREY I. WEBB
Monash University

Definition

Bayes rule provides a decomposition of a conditional
probability that is frequently used in a family of learning
techniques collectively called Bayesian Learning. Bayes
rule is the equality

P(z)P(w|z)

P(z|w) = P(w)

@
P(w) is called the prior probability, P(w|z) is called the
posterior probability, and P(z| w) is called the likelihood.

Discussion

Bayes rule is used for two purposes. The first is Bayesian
update. In this context, z represents some new informa-
tion that has become available since an estimate P(w)

Bayesian Methods

75

was formed of some hypothesis w. The application of
Bayes’ rule enables a new estimate of the probability of
w (the posterior probability) to be calculated from esti-
mates of the prior probability, the likelihood and P(z).

The second common application of Bayes’ rule is for
estimating posterior probabilities in probabilistic learn-
ing, where it is the core of »-Bayesian networks, »naive
Bayes, and »semi-naive Bayesian techniques.

While Bayes’ rule may initially appear mysterious, it
is readily derived from the basic principle of conditional
probability that

P(wl2) = P(w,2)P(2) @
As
P(n2) - U G
and b
D bl @

Bayes’ rule (Eq. 1) follows by simple substitution of
Eq. (4) into Eq. (3) and then of the result into Eq. (2).

Cross References

» Bayesian Methods

» Bayesian Network

»Naive Bayes

»Semi-Naive Bayesian Learning

! Bayesian Methods

WRAY BUNTINE
NICTA, Canberra, Australia

Definition

The two most important concepts used in Bayesian
modeling are probability and utility. Probabilities are
used to model our belief about the state of the world
and utilities are used to model the value to us of different
outcomes, thus to model costs and benefits. Probabili-
ties are represented in the form of p(x|C), where C is the
current known context and x is some event(s) of inter-
est from a space y. The left and right arguments of the
probability function are in general propositions (in the

logical sense). Probabilities are updated based on new
evidence or outcomes y using Bayes rule, which takes
the form

PHCH =700

where y is the discrete domain of x. More generally, any
measurable set can be used for the domain . An inte-
gral or mixed sum and integral can replace the sum. For
a utility function u(x) of some event x, for instance the
benefit of a particular outcome, the expected value of
u() is

Euelu(x)] = ¥ p(xIC)u(x).

xeX

One then estimates the expected utility &Eyc,[u(x)]
based on different evidence, actions or outcomes y. An
action is taken to maximize this expected utility, appeal-
ing to the principle of maximum expected utility (MEU).
A common application of this principle is recursive: one
should take the action now that will maximize utility in
the future, assuming all future actions are also taken to
maximize utility.

Motivation and Background

In modeling a problem, primarily, one considers an
interrelated space of events or states, actions, and out-
comes. Events describe the state of the world, outcomes
are also sometimes considered events but they are spe-
cial in that one directly obtains from them costs or
benefits. Actions allow one to influence the world. Some
actions may instigate tests and thus also help measure
the state of the world to reduce uncertainty. Some prob-
lems may be dynamic in that a sequence of actions and
outcomes are considered and the resulting changes in
states modeled.

The Bayesian approach is a modeling methodol-
ogy that provides a principled approach of how to
reason and act in the context of uncertainty and a
dynamic environment. In the approach, probabilities
are used to model all forms of belief or proportions
about events and states, and then utilities are used
to model the costs and benefits of any actions taken.
An explicit assumption is that these probabilities and
utilities can be adequately elicited and precisely mod-
eled for the problem. An implicit assumption is that
the computation required - recursive evaluation of

76

Bayesian Methods

possibly nested integrals and sums (over domain vari-
ables) — can be done quickly enough so that the compu-
tation itself does not become a significant factor in the
costs considered.

The Bayesian approach is named after Rev. Thomas
Bayes, whose work was contributed to the Royal Society
in 1763 after his death, although it was independently
more generally presented as a theory by Laplace in 1812.
The field was subsequently developed into a field of
statistics, inference and decision theory by a stream of
authors in the 1900s including Jeffreys (Bernardo and
Smith, 1994). The field of statistics was dominated by
the frequentist school during the 1990s, and for a time
Bayesian methods were considered controversial. Like
the different schools of theory in machine learning,
these statistical approaches now coexist.

The Bayesian approach can be justified by axiomatic
prescriptions of how a rational agent should reason and
act, and by appeal to principles of consistency. In the
context of learning, probabilities are used to infer mod-
els of the problem of interest, and then utilities are
used to recommend predictions or analysis based on the
models.

Theory

First, consider definitions, the different kinds of proba-
bility, the process of reasoning (about probabilities), and
making decisions.

Basic definitions: Probabilities are represented in the
form of p(x|C), where C is the current known context
and x is some event(s) of interest. It is sufficient to place
in C only terms relevant to x and ignore terms assumed
by default. Moreover, both x and C must have well-
defined events. For instance, x = “John is tall” is not
considered a well-defined event since the word “tall” is
not precise. One would instead replace it with some-
thing like x = “John is greater than 6 foot tall” or x =
“Julie said John is tall”

An important functional used with probabilities
is the expected value. For a function f(x) of some
event x from a space y, the expected value of f() is
Exey[f(x)].

Utility is used to measure value or relative satis-
faction, and is usually represented as a function on
outcomes. Costs are negative utility and benefits are

positive. Utilities should be additive in worth, and are
often practically interpreted in monetary units. Strictly
speaking, the value of money is nonlinear (for most
people, 2 billion dollars is not significantly better than
1 billion dollars), so it is not a correct utility measure.
However, it is adequate when the range of financial
transactions expected is reasonable.

Expected utility, which is the expected value of
the utility function, is the fundamental quantity
assessed with Bayesian methods. Some scenarios are the
following:

Prediction: For prediction problems, the outcome is the
“true” value, and the utility is sometimes the mean
square error or the absolute error. In data mining,
the choices are much richer, see »>Model Evaluation.

Diagnosis: The outcome is the “true” diagnosis, and util-
ity is made up of the differing costs of treatment,
mistreatment, and delay or nontreatment, as well as
any benefit from correct diagnosis.

Game playing: The utility comes from the eventual out-
come of the game, each player has their own utility
and the state of the game constantly changes as plays
are made.

In Bayesian machine learning, we usually take utilities
as a given, and the majority of the work revolves around
evaluating and estimating probabilities and maximizing
of expected utility. In some ranking tasks and gener-
alized agent learning, the utilities themselves may be
poorly understood.

Belief and proportions: Some probabilities corre-
spond to proportions that exist in the real world, such as
the proportion of school children in the general popula-
tion of a given state. These real proportions can be mea-
sured by counting or sampling, and they are governed
by Kolmogorov’s Axioms for probability, including the
probability of certainty is 1 and the probability of a dis-
junction of mutually exclusive events is the sum of the
probabilities of the individual events. This kind of prob-
ability is used in the Frequentist School that only con-
siders long term average proportions obtained from a
series of independent and identical experiments. These
proportions can be model parameters one wishes to
reason about.

Probabilities can also represent beliefs. For instance,
in 2000, one could have had a belief about the event that

Bayesian Methods

77

George Bush would win the 2001 Presidential Election
in the USA. This event is unique and has only one out-
come, so the frequentist notion cannot be justified, i.e.,
there is no long-term sequence of different 2001 presi-
dential elections with George Bush. Beliefs are usually
considered to be subjective, in that they are specific to
each agent, reflecting their sum of unique experiences,
and the unique context in which the event in question
occurs.

To better understand the role beliefs play in
Bayesian methods, also see »Prior Probabilities.

Reasoning: A stylized version of probabilistic reasoning
considers an event of interest one is reasoning about,
x, and evidence, y, one may obtain. Typical scenarios
are

Learning: x = (@, M) are parameters O of a model from
family M, and y = DisasetofdataD = {d,, ..., dn}.
So one considers p(0, M|D, C) versus p(0, M|C).

Diagnosis: x a disease or condition, and y is a set of
observable symptoms or diagnostic tests. One might
choose a test y that maximizes the expected utility.

Hypothesis testing: x is a hypothesis H and y is some
sequence of evidence Ej, E,, ..., E,, so we consider
p(H|Ey, Es, ..., E,) and hope it is sufficiently high.

Different probabilities are then considered:

p(x|C): The prior probability for event x, called the base-
rate in some contexts.

p(¥|C): The prior probability for evidence y. Once the
evidence has been seen, this is also used as a proxy
for the quality of the model.

p(x|y, C): The posterior probability for event x given
evidence y.

p(y|x, C): The likelihood for the event x based on evi-
dence y.

In the case of diagnostic reasoning, the prior p(x|C) is
usually the base rate for the disease or condition, and
can be got from the population base rate.

In the case of learning, however, the prior p(©, M|C)
represents a prior distribution on parameters about
which we may well be largely ignorant, or at least
may not be able to readily elicit from experts. For
instance, the proportion 0p might be the proba-
bility of a new drug slowing the onset of AIDS

related diseases. At the moment of initial testing,
0p is unknown so one places a probability distribu-
tion over 0p, which represents one’s belief about the
proportion.

These priors are second-order probabilities, beliefs
about proportions, and they are the most challeng-
ing quantity modeled with the Bayesian approach.
They can be a function on thousands of parame-
ters, and can be critical in the success of applica-
tions. They are also challenging from the philosophical
perspective.

Decision theory: The term Bayesian inference is usu-
ally reserved for the process of manipulating priors
and posteriors, computing probabilities, and comput-
ing expected values. Bayesian decision theory describes
the process of formulating utilities and then evaluat-
ing the (sometimes) recursive maximum expected util-
ity formula, such as in game playing, or interactive
advertising.

In Bayesian theory one takes the action that max-
imizes expected utility (MEU) in the current context,
sometimes referred to as the expected utility hypothesis.
Decision theory places this in a dynamic context and
says each action should be taken to maximize expected
future utility. This is defined recursively, so taken to the
limit this implies the optimal future actions need to be
determined before the optimal current action can be got
via MEU.

This section covers basic mathematical justifications
of the theory. The best general reference for this is
Bernardo and Smith (1994). Additional discussion of
prior probabilities appears in »Prior Probabilities.

Note that Bayesian theory, with its acceptance as a
branch of mainstream statistics, is widely accepted for
the following reasons:

Application: It has extensive support through practical
success, often times by clever combination of prior
knowledge and statistical and computational finesse.

Explanation: It provides a convenient common lan-
guage in which a variety of other theoretical
approaches can be represented. For instance PAC,
MDL methods, penalized likelihood methods, and
the maximum margin approach all find good inter-
pretations within the Bayesian framework.

Bayesian Methods

Composition: It allows different reasoning tasks to
be composed in a coherent way. With a proba-
bilistic framework, the components can interop-
erate in a coherent manner, so that information
may flow bidirectionally between components via
probabilities.

Composition of processing steps in intelligent sys-
tems is a key application for Bayesian methods. For
instance, natural language and vision recognition tasks
can sometimes be broken down into a processing
chain (for instance, doing a named entity recogni-
tion step before a dependency parsing step), but these
components rarely work conclusively and unambigu-
ously. By attaching probabilities to the output of compo-
nents, and allowing probabilistic inputs, the uncertainty
inherent in individual steps can be propagated and
managed.

Theoretical justifications also exist to support each
of the different components, probabilities, and utilities.
These justifications are based on the concept of nor-
mative axioms, axioms that do not describe reasoning
but rather prescribe basic principles it should follow.
The axioms try to capture principles such as coherence
and consistency in a quantitative manner. These vari-
ous justifications have their reported shortcomings and
arich literature exists arguing about the details and pos-
tulating new variants. These axiomatic justifications are
supportive of the Bayesian approach, but they are not
irrefutable.

Justifying probabilities: In the Bayesian approach,
beliefs and proportions are given the same mathemati-
cal treatment.

One set of arguably controversial justifications for
this revolve around betting (Bernardo and Smith, 1994,
Sect. 2.8.3). Someone’s subjective beliefs about specific
events, such as significant economic and political events
(or horse races), are claimed to be measurable by offer-
ing them a series of options or bets. Moreover, if their
beliefs do not behave like proportions, then a clever
bookmaker can use a so-called Dutch book to consis-
tently profit from them.

An alternative scheme for justifying probability by
Cox is based on normative axioms that beliefs should
follow. For instance, one controversial axiom by Cox is
that belief about a single event should be represented
by a single real number. These axioms are presented by

Jaynes as rules for a robot (Jaynes, 2003), and as rules
for intelligent systems by Horvitz et al. (1986).

Justifying decision theory: Another scheme again
using normative axioms, by von Neumann and
Morgenstern, is used to justify the use of utilities. This
scheme assumes probabilities are the basis of infer-
ence about uncertainty. A different set of normative
axiomatic schemes have been developed that justify the
use of probabilities and utilities together under MEU,
the best known is by Savage but others exist (Bernardo
and Smith, 1994).

The first part of this article has been devoted to a brief
overview of the Bayesian approach. Computation for
Bayesian inference is an extensive field itself. Here we
review the basic aspects as a pointer to the literature.
This is an active area of research in machine learning,
statistics, and a many applied artificial intelligence com-
munities such as natural language processing, image
analysis, and others.

In general, in Bayesian reasoning one wants to esti-
mate posterior average parameter values, or their aver-
age variance, or some other averaged quantity, then
general formulas are given by (in the case of continuous
parameters)

0 =Egipu,c[O] = f@ 0,(0|D,M,C)de

var(@) = Egip,m,c [(@ - 6)2]

Marginal likelihood: A useful quantity to assist in
evaluating results, and a worthy score in its own right
is the marginal likelihood, in the continuous parameter
case found from the likelihood p(D|®, M, C) by taking
an average

»(D|M, C) = /@ »(0|M,C)p(D|©, M, C)de.

This is also called the normalizing constant due to its
occurrence in the posterior formula

M, C)p(D|®,M,C),

_p(O]
p(OID. M, €)= == D,)

It is generally difficult to estimate because of the multi-
dimensional integrals and sums.

Bayesian Methods

79

Exponential family distributions: Standard probabil-
ity distributions covered in mathematical statistics, such
as the »Gaussian Distribution, the Poisson, Dirichlet,
Gamma, and Wishart, have very convenient mathemat-
ical properties that make Bayesian estimation easier.
With these distributions, one computes statistics, called
sufficient statistics, such as a mean and sum of squares
(for the Gaussian), and then parameter estimation fol-
lows with a function inverse on a concave function.
This is the basis of »linear regression, »principal com-
ponents analysis, and some Pdecision tree learning
methods, for instance. All good texts on mathematical
statistics cover these in detail. Note the marginal likeli-
hood is often computable in closed form for exponential
family distributions.

Graphical models: »Graphical Models are a general
family of of probabilistic models formed by compos-
ing graphs over variables. They work particularly well
with exponential family distributions, and allow a rich
variety of popular machine learning and data mining
methods to be represented and manipulated. Graphi-
cal models allow complex models to be composed from
simpler components and provide a family of algorithm
schemes for developing inference and learning methods
that operate on them. They have become the de facto
standard for presenting (suitable decomposed) models
and algorithms in the machine learning community.

Maximum a posterior estimation: known as MAP,
is usually the simplest form of parameter estimation
that could be called Bayesian. It also corresponds to a
penalized or regularized maximum likelihood method.
Given the posterior for a stylized learning problem
of the previous section, one finds the parameters @
that maximizes the posterior p(®, M|D, C), which can
be conveniently done without computing the marginal
likelihood above, so

O, p = argmax logp(O,D|M, C),
)

where the log probability can be broken down as a prior
and a likelihood term

logp(©,D|M, C) =logp(O|M, C) +logp(D|O, M, C).

The Laplace approximation: When the posterior is
well behaved, and there is a large amount of data, the
posterior is focused around a vanishing small region in

parameter space of diameter O(1/ \/ZN)). If this occurs
away from the boundary of the parameter space, then
one can make a second-order Taylor expansion of the
log. posterior at the MAP point and the result is a
Gaussian approximation to the posterior.

log p(D, O|M, C) » log p(D, @y p|M, C)+% (Oxr-0)"
d*logp(D, ©|M,C)
dede’
(Oxr-0).

0=0,1p

From this, one can approximate integrals such as the
marginal likelihood p(D|M, C). This is known as the
Laplace approximation, the name of the correspond-
ing general method used for the asymptotic expansion
of integrals. In general, this is a poor approximation,
but it serves to aid our understanding of parame-
ter estimation (MacKay, 2003 Chaps. 27 and 28), and
is the approximate basis for some model selection
criteria.

Latent variable models: Latent variables are data that
are hidden and thus never observed in the evidence.
However, their existence is postulated as a significant
component of the model. For instance, in »Clustering
(an unsupervised method) and finite mixture models
generally, one assumes each data point has a hidden
class label, thus the Bayesian model of clustering is a
simple kind of latent variable model.

»Markov chain Monte Carlo methods: The most
general form of reasoning and estimation available are
the Markov chain Monte Carlo (MCMC) methods. The
MCMC methods couple two processes: first, they use
Monte Carlo or simulation methods to estimate the
integral, and second they use a Markov Chain to sam-
ple, so sampling is sequentially (Markovian) based, and
samples are not independent.

Simulation methods generally use the functional
form of p(0,D|M,C) so we do not need to compute
the marginal likelihood. Hence, given a set of I samples
{O,..., 0} the expected value is approximated with a
weighted average

The simplest case is where the samples are made inde-
pendently according to the posterior itself and then the

80

Bayesian Methods

weights w; = 1, This is called the ordinary Monte Carlo
(OMC) method, but it is not often usable in practice
because efficient multidimensional posterior samplers
rarely exist. Alternatively, one can sample according to
a Markov Chain, 0;,; ~ ¢(0;1,|0;), so each 0, is
conditionally dependent on @;. So while samples are
not independent, as long as the long run distribution of
the Markov chain is the same as the posterior, the same
approximation formula holds. There are a rich variety
of MCMC methods, and this forms one of the key areas
of current research.

Gibbs sampling: The simplest kind of MCMC
method samples each dimension (or sub-vector) in
turn. Suppose the parameter vector has K real com-
ponents, @ = (6;,...,0k). Sampling a complete O
in one go is not generally possible given just a func-
tional form of the posterior p(@|D, M, C) but given no
computable form for the normalizing constant. Gibbs
sampling works in the one-dimensional case where nor-
malizing bounds can be obtained and sampling tricks
used. The conditional posterior of 8 is given by

p(9k|(01, oy 061, 00ki - s QK),D,M, C),
and this is usually easier to sample from.

The Gibbs (and MCMC) sample 0, can be drawn
given the previous sample @; by progressively resam-
pling each dimension in turn and so slowly updating the
full vector:

1. Sample 0,,,; according to p(61]6;.,...
D, M, C).

> ei,K)

k. Sample 6;,, according to p(63|0is1,1, - - > Ois1 k-1
Hi,kﬂ, ey 91‘,1(, D, M, C)-

K. Sample 0, according to p(0|6is115 - - > Oir1,x-1
D, M,C).

In samping terms, this method is no more successful
than coordinate-wise ascent is as a primitive greedy
search method: it is supported by theoretical results but
can be very slow to converge.

Variational approximations: When the function you
seek to optimize or average over presents difficulty,
perhaps it is highly multimodal, then one option is
to change the function itself, and replace it with a

more readily approximated function. Variational meth-
ods provide a general principle for doing this safely. The
general principle uses variational calculus, which is the
calculus over functions, not just variables. Variational
methods are a very general approach that can be used
to develop a broad range of algorithms (Wainwright and
Jordan, 2008).

Nonparametric models: The above discussion implic-
itly assumed the model has a fixed finite parameter
vector @. If one is attempting to model a regression
function, or a language grammar, or image model of
unknown a priori structural complexity, then one can-
not know the dimension ahead of time. Moreover,
as in the case of functions, the dimension cannot
always be finite. The »Bayesian Nonparametric Mod-
els address this situation, and are perhaps the most
important family of techniques for general machine
learning.

Cross References

»Bayes Rule

»Bayesian Nonparametric Models
» Markov Chain Monte Carlo
»Prior Probability

Recommended Reading

A good introduction to the problems of uncertainty and philosophi-
cal issues behind the Bayesian treatment of probability is in Lindley
(2006). From the statistical machine learning perspective, a good
introductory text is by MacKay (2003) who carefully covers infor-
mation theory, probability, and inference but not so much statistical
machine learning. Another alternative introduction to probabilities
is the posthumously completed and published work of Jaynes (2003).

Discussions from the frequentist versus Bayesian battlefront can
be found in works such as (Rosenkrantz and Jaynes, 1983), and in
the approximate artificial intelligence versus probabilistic battle-
front in discussion articles such as Cheeseman’s (1988) and the many
responses and rebuttals. It should be noted that it is the continued
success in applications that have really led these methods into the
mainstream, not the entertaining polemics.

Good mathematical statistics text books, such as Casella and
Berger (2001) cover the breadth of statistical methods and therefore
handle basic Bayesian theory. A more comprehensive treatment is
given in Bayesian texts such as Gelman et al. (2003).

Most advanced statistical machine learning text books cover
Bayesian methods, but to fully understand the subtleties of prior
beliefs and Bayesian methodology one needs to view more advanced
Bayesian literature. A detailed theoretical reference for Bayesian
methods is Bernardo and Smith (1994).

Bernardo, J., & Smith, A. (1994). Bayesian theory. Chichester: Wiley.
Casella, G., & Berger, R. (2001). Statistical inference (2nd ed.). Pacific
Grove: Duxbury.

Bayesian Nonparametric Models

Cheeseman, P. (1988). An inquiry into computer understanding.
Computational Intelligence, 4(1), 58-66.

Gelman, A., Carlin, J., Stern, H., & Rubin, D. (2003). Bayesian data
analysis (2nd ed.). Boca Raton: Chapman & Hall/CRC Press.

Horvitz, E., Heckerman, D., & Langlotz, C. (1986). A framework for
comparing alternative formalisms for plausible reasoning. Fifth
National Conference on Artificial Intelligence, Philadelphia,
pp. 210-214.

Jaynes, E. (2003). Probability theory: the logic of science. New York:
Cambridge University Press.

Lindley, D. (2006). Understanding uncertainty. Hoboken: Wiley.

MacKay, D. (2003). Information theory, inference, and learning algo-
rithms. Cambridge: Cambridge University Press.

Rosenkrantz, R. (Ed.). (1983). E.T. Jaynes: papers on probability,
statistics and statistical physics. Dordrecht: D. Reidel.

Wainwright, M. J., & Jordan, M. I. (2008). Graphical models,
exponential families, and variational inference. Hanover: Now
Publishers.

! Bayesian Model Averaging

» Learning Graphical Models

! Bayesian Network

Synonyms
Bayes net

Definition
A Bayesian network is a form of directed »graphical
model for representing multivariate probability
distributions.

The nodes of the network represent a set of ran-
dom variables, and the directed arcs represent causal
relationships between variables. The Markov property
is usually required: every direct dependency between
a possible cause and a possible effect has to be shown
with an arc. Bayesian networks with the Markov prop-
erty are called I-maps (independence maps). If all arcs
in the network correspond to a direct dependence on
the system being modeled, then the network is said to
be a D-map (dependence-map). Each node is associated
with a conditional probability distribution, that quanti-
fies the effects the parents of the node, if any, have on
it. Bayesian support various forms of reasoning: diag-

nosis, to derive causes from symptoms, prediction, to

derive effects from causes, and intercausal reasoning, to
discover the mutual causes of a common effect.

Cross References
» Graphical Models

[. .
Bayesian Nonparametric Models

PETER ORBANZ', YEE WHYE TEH?
!Cambridge University, Cambridge, UK
*University College London, London, UK

Synonyms
Bayesian methods; Dirichlet process; Gaussian pro-
cesses; Prior probabilities

Definition

A Bayesian nonparametric model is a Bayesian model
on an infinite-dimensional parameter space. The param-
eter space is typically chosen as the set of all possible
solutions for a given learning problem. For example,
in a regression problem, the parameter space can be
the set of continuous functions, and in a density esti-
mation problem, the space can consist of all densities.
A Bayesian nonparametric model uses only a finite sub-
set of the available parameter dimensions to explain a
finite sample of observations, with the set of dimensions
chosen depending on the sample such that the effective
complexity of the model (as measured by the number
of dimensions used) adapts to the data. Classical adap-
tive problems, such as nonparametric estimation and
model selection, can thus be formulated as Bayesian
inference problems. Popular examples of Bayesian non-
parametric models include Gaussian process regression,
in which the correlation structure is refined with grow-
ing sample size, and Dirichlet process mixture models
for clustering, which adapt the number of clusters to the
complexity of the data. Bayesian nonparametric models
have recently been applied to a variety of machine learn-
ing problems, including regression, classification, clus-
tering, latent variable modeling, sequential modeling,
image segmentation, source separation, and grammar
induction.

82

Bayesian Nonparametric Models

Motivation and Background

Most of machine learning is concerned with learning an
appropriate set of parameters within a model class from
»training data. The meta-level problems of determin-
ing appropriate model classes are referred to as model
selection or model adaptation. These constitute impor-
tant concerns for machine learning practitioners, not
only for avoidance of over-fitting and under-fitting, but
also for discovery of the causes and structures underly-
ing data. Examples of model selection and adaptation
include selecting the number of clusters in a cluster-
ing problem, the number of hidden states in a hidden
Markov model, the number of latent variables in a latent
variable model, or the complexity of features used in
nonlinear regression.

Nonparametric models constitute an approach to
model selection and adaptation where the sizes of mod-
els are allowed to grow with data size. This is as opposed
to parametric models, which use a fixed number of
parameters. For example, a parametric approach to den-
sity estimation would be to fit a Gaussian or a mixture
of a fixed number of Gaussians by maximum likeli-
hood. A nonparametric approach would be a Parzen
window estimator, which centers a Gaussian at each
observation (and hence uses one mean parameter per
observation). Another example is the support vector
machine with a Gaussian kernel. The representer the-
orem shows that the decision function is a linear com-
bination of Gaussian radial basis functions centered at
every input vector, and thus has a complexity that grows
with more observations. Nonparametric methods have
long been popular in classical (non-Bayesian) statistics
(Wasserman, 2006). They often perform impressively
in applications and, though theoretical results for such
models are typically harder to prove than for paramet-
ric models, appealing theoretical properties have been
established for a wide range of models.

Bayesian nonparametric methods provide a Bayesian
framework for model selection and adaptation using
nonparametric models. A Bayesian formulation of non-
parametric problems is nontrivial, since a Bayesian
model defines prior and posterior distributions on a
single fixed parameter space, but the dimension of the
parameter space in a nonparametric approach should
change with sample size. The Bayesian nonparametric
solution to this problem is to use an infinite-dimensional
parameter space, and to invoke only a finite subset of

the available parameters on any given finite data set.
This subset generally grows with the data set. In the
context of Bayesian nonparametric models, “infinite-
dimensional” can therefore be interpreted as “of finite
but unbounded dimension.” More precisely, a Bayesian
nonparametric model is a model that (1) constitutes a
Bayesian model on an infinite-dimensional parameter
space and (2) can be evaluated on a finite sample in a
manner that uses only a finite subset of the available
parameters to explain the sample.

We make the above description more concrete in
the next section when we describe a number of stan-
dard machine learning problems and the correspond-
ing Bayesian nonparametric solutions. As we will see,
the parameter space in (1) typically consists of func-
tions or of measures, while (2) is usually achieved by
marginalizing out surplus dimensions over the prior.
Random functions and measures and, more gener-
ally, probability distributions on infinite-dimensional
random objects are called stochastic processes; exam-
ples that we will encounter include Gaussian pro-
cesses, Dirichlet processes, and beta processes. Bayesian
nonparametric models are often named after the
stochastic processes they contain. The examples are
then followed by theoretical considerations, includ-
ing formal constructions and representations of the
stochastic processes used in Bayesian nonparametric
models, exchangeability, and issues of consistency and
convergence rate. We conclude this chapter with future
directions and a list of literature available for reading.

Examples

Clustering with mixture models. Bayesian nonparamet-
ric generalizations of finite mixture models provide an
approach for estimating both the number of compo-
nents in a mixture model and the parameters of the
individual mixture components simultaneously from
data. Finite mixture models define a density function
over data items x of the form p(x) = Y, mp(x(6k),
where 7y is the mixing proportion and 6y are param-
eters associated with component k. The density can be
written in a non-standard manner as an integral: p(x) =
[p(x|0)G(8)d6, where G = Y5, mip, is a discrete
mixing distribution encapsulating all the parameters of
the mixture model and Jy is a dirac distribution (atom)
centered at 6. Bayesian nonparametric mixtures use

Bayesian Nonparametric Models

83

mixing distributions consisting of a countably infinite
number of atoms instead:

G= Z Tk (Sgk.)]
k=1

This gives rise to mixture models with an infinite num-
ber of components. When applied to a finite training set,
only a finite (but varying) number of components will
be used to model the data, since each data item is asso-
ciated with exactly one component but each component
can be associated with multiple data items. Inference in
the model then automatically recovers both the number
of components to use and the parameters of the compo-
nents. Being Bayesian, we need a prior over the mixing
distribution G, and the most common prior to use is a
Dirichlet process (DP). The resulting mixture model is
called a DP mixture.

Formally, a Dirichlet process DP(«, H) parametrized
by a concentration paramter & > 0 and a base distri-
bution H is a prior over distributions (probability mea-
sures) G such that, for any finite partition A;,..., A,
of the parameter space, the induced random vec-
tor (G(Ay),...,G(A,)) is Dirichlet distributed with
parameters («H(A;),...,aH(A,,)) (see entitled Sec-
tion “Theory” for a discussion of subtleties involved
in this definition). It can be shown that draws from a
DP will be discrete distributions as given in (1). The
DP also induces a distribution over partitions of inte-
gers called the Chinese restaurant process (CRP), which
directly describes the prior over how data items are clus-
tered under the DP mixture. For more details on the DP
and the CRP, see »Dirichlet Process.

Nonlinear regression. The aim of regression is to infer
a continuous function from a training set consisting of
input-output pairs {(#;,x;) }"-,. Parametric approaches
parametrize the function using a finite number of
parameters and attempt to infer these parameters
from data. The prototypical Bayesian nonparametric
approach to this problem is to define a prior distri-
bution over continuous functions directly by means of
a Gaussian process (GP). As explained in the Chapter
» Gaussian Process, a GP is a distribution on an infi-
nite collection of random variables X;, such that the
joint distribution of each finite subset X;,...,X;, is a
multivariate Gaussian. A value x; taken by the variable
X, can be regarded as the value of a continuous func-
tion f at ¢, that is, f(#) = x;. Given the training set,

the Gaussian process posterior is again a distribution on
functions, conditional on these functions taking values
f(tl) =Xy ,f(tn) =Xpn.
Latent feature models. These models represent a set of
objects in terms of a set of latent features, each of which
represents an independent degree of variation exhibited
by the data. Such a representation of data is sometimes
referred to as a distributed representation. In analogy to
nonparametric mixture models with an unknown num-
ber of clusters, a Bayesian nonparametric approach to
latent feature modeling allows for an unknown number
of latent features. The stochastic processes involved here
are known as the Indian buffet process (IBP) and the beta
process (BP). Draws from BPs are random discrete mea-
sures, where each of an infinite number of atoms has a
mass in (0, 1) but the masses of atoms need not sum to 1.
Each atom corresponds to a feature, with the mass cor-
responding to the probability that the feature is present
for an object. We can visualize the occurrences of fea-
tures among objects using a binary matrix, where the
(i, k) entry is 1 if object i has feature k and 0 otherwise.
The distribution over binary matrices induced by the BP
is called the IBP.
» Hidden Markov models (HMMs). HMMs are popu-
lar models for sequential or temporal data, where each
time step is associated with a state, with state transitions
dependent on the previous state. An infinite HMM is
a Bayesian nonparametric approach to HMMs, where
the number of states is unbounded and allowed to grow
with the sequence length. It is defined using one DP
prior for the transition probabilities going out from each
state. To ensure that the set of states reachable from
each outgoing state is the same, the base distributions
of the DPs are shared and given a DP prior recursively.
The construction is called a hierarchical Dirichlet process
(HDP); see below.
» Density A nonparametric Bayesian
approach to density estimation requires a prior on den-
sities or distributions. However, the DP is not useful
in this context, since it generates discrete distributions.
A useful density estimator should smooth the empiri-
cal density (such as a Parzen window estimator), which
requires a prior that can generate smooth distribu-
tions. Priors applicable in density estimation problems
include DP mixture models and Pélya trees.

If p(x|0) is a smooth density function, the density
Yoy 7k p(x|0%) induced by a DP mixture model is a

estimation.

84

Bayesian Nonparametric Models

smooth random density, such that DP mixtures can be
used as prior in density estimation problems.

Poélya trees are priors on probability distributions
that can generate both discrete and piecewise continu-
ous distributions, depending on the choice of parame-
ters. Pélya trees are defined by a recursive infinitely deep
binary subdivision of the domain of the generated ran-
dom measure. Each subdivision is associated with a beta
random variable which describes the relative amount of
mass on each side of the subdivision. The DP is a spe-
cial case of a Pélya tree corresponding to a particular
parametrization. For other parametrizations the result-
ing random distribution can be smooth, so it is suitable
for density estimation.

Power-law Phenomena. Many naturally occurring phe-
nomena exhibit power-law behavior. Examples include
natural languages, images, and social and genetic net-
works. An interesting generalization of the DP, called
the Pitman-Yor process, PYP(«, d, H), has recently been
successfully used to model power-law data. The Pitman-
Yor process augments the DP by a third parameter d ¢
[0,1). When d = 0 the PYP is a DP(«, H), while when
a = 0 it is a so called normalized stable process.
Sequential modeling. HMMs model sequential data
using latent variables representing the underlying state
of the system, and assuming that each state only
depends on the previous state (the so called Markov
property). In some applications, for example language
modeling and text compression, we are interested in
directly modeling sequences without using latent vari-
ables, and without making any Markov assumptions,
i.e., modeling each observation conditional on all previ-
ous observations in the sequence. Since the set of poten-
tial sequences of previous observations is unbounded,
this calls for nonparametric models. A hierarchical
Pitman-Yor process can be used to construct a Bayesian
nonparametric solution whereby the conditional prob-
abilities are coupled hierarchically.

Dependent and hierarchical models. Most of the Bayesian
nonparametric models described so far are applied
in settings where observations are homogeneous or
exchangeable. In many real world settings observations
are not homogeneous, and in fact are often structured
in interesting ways. For example, the data generating
process might change over time thus observations
at different times are not exchangeable, or obser-
vations might come in distinct groups with those

in the same group being more similar than across
groups.

Significant recent efforts in Bayesian nonparamet-
rics research have been placed in developing extensions
that can handle these non-homogeneous settings.
Dependent Dirichlet processes are stochastic pro-
cesses, typically over a spatial or temporal domain,
which define a Dirichlet process (or a related random
measure) at each point with neighboring DPs being
more dependent. These are used for spatial model-
ing, nonparametric regression, as well as for modeling
temporal changes. Alternatively, hierarchical Bayesian
nonparametric models like the hierarchical DP aim
to couple multiple Bayesian nonparametric models
within a hierarchical Bayesian framework. The idea
is to allow sharing of statistical strength across mul-
tiple groups of observations. Among other applica-
tions, these have been used in the infinite HMM,
topic modeling, language modeling, word segmenta-
tion, image segmentation, and grammar induction. For
an overview of various dependent Bayesian nonpara-
metric models and their applications in biostatistics
please refer to Dunson (2010). Teh and Jordan (2010)
is an overview of hierarchical Bayesian nonparametric
models as well as a variety of applications in machine
learning.

Theory

As we saw in the preceding examples, Bayesian non-
parametric models often make use of priors over
functions and measures. Because these spaces typi-
cally have uncountable number of dimensions, extra
care has to be taken to define the priors properly
and to study the asymptotic properties of estimation
in the resulting models. In this section we give an
overview of the basic concepts involved in the the-
ory of Bayesian nonparametric models. We start with
a discussion of the importance of exchangeability in
Bayesian parametric and nonparametric statistics. This
is followed by representations of the priors and issues of
convergence.

The underlying assumption of all Bayesian methods is
that the parameter specifying the observation model
is a random variable. This assumption is subject to

Bayesian Nonparametric Models

85

much criticism, and at the heart of the Bayesian versus
non-Bayesian debate that has long divided the statistics
community. However, there is a very general type of
observation for which the existence of such a random
variable can be derived mathematically: For so-called
exchangeable observations, the Bayesian assumption
that a randomly distributed parameter exists is not a
modeling assumption, but a mathematical consequence
of the data’s properties.

Formally, a sequence of variables X3, X;, . . ., X, over
the same probability space (X, Q) is exchangeable if
their joint distribution is invariant to permuting the
variables. That is, if P is the joint distribution and ¢ any
permutation of {1,...,n}, then

P(Xlle,Xz =X .. .Xn :Xn)
=P(X1=xa(1),X2=xa(2) ...XHZXU(H)). (2)

An infinite sequence X, X,,...
able if Xi,...
this chapter, we mean infinite exchangeability when-

is infinitely exchange-
,Xn is exchangeable for every n > 1. In

ever we write exchangeability. Exchangeability reflects
the assumption that the variables do not depend on
their indices although they may be dependent among
themselves. This is typically a reasonable assumption
in machine learning and statistical applications, even
if the variables are not themselves independently and
identically distributed (iid).

Exchangeability is a much weaker assumption than
iid since iid variables are automatically exchangeable.

If O parametrizes the underlying distribution, and
one assumes a prior distribution over 6, then the
resulting marginal distribution over X;,X5,... with 0
marginalized out will still be exchangeable. A funda-
mental result credited to de Finetti (1931) states that the
converse is also true. That is, if Xj, X5, ... is (infinitely)
exchangeable, then there is a random 0 such that:

P(Xl,...,Xn):/P(G)f[P(X,W)de 3)

for every n > 1. In other words, the seemingly innocuous
assumption of exchangeability automatically implies the
existence of a hierarchical Bayesian model with 6 being
the random latent parameter. This the crux of the fun-
damental importance of exchangeability to Bayesian
statistics.

In de Finetti’s Theorem it is important to stress that
0 can be infinite dimensional (it is typically a ran-
dom measure), thus the hierarchical Bayesian model
(3) is typically a nonparametric one. For an exam-
ple, the Blackwell-MacQueen urn scheme (related to
the CRP) is exchangeable and thus implicitly defines
a random measure, namely the DP (see »Dirichlet
Process for more details). In this sense, we will see
below that de Finetti’s theorem is an alternative route
to Kolmogorov’s extension theorem, which implicitly
defines the stochastic processes underlying Bayesian
nonparametric models.

In finite dimensions, a probability model is usually
defined by a density function or probability mass func-
tion. In infinite dimensional spaces, this approach is
not generally feasible, for reasons explained below. To
define or work with a Bayesian nonparametric model,
we have to choose alternative mathematical representa-
tions.

Weak distributions. A weak distribution is a representa-
tion for the distribution of a stochastic process, that is,
for a probability distribution on an infinite-dimensional
sample space. If we assume that the dimensions of the
space are indexed by t € T, the stochastic process can
be regarded as the joint distribution P of an infinite
set of random variables {X;}, ;. For any finite sub-
set S c T of dimensions, the joint distribution Pg
of the corresponding subset {X,}, ¢ of random vari-
ables is a finite-dimensional marginal of P. The weak
distribution of a stochastic process is the set of all its
finite-dimensional marginals, that is, the set {Ps : S c
T,|S| < co}. For example, the customary definition of
the Gaussian process as an infinite collection of ran-
dom variables, each finite subset of which has a joint
Gaussian distribution, is an example of a weak distri-
bution representation. In contrast to the explicit repre-
sentations to be described below, this representation is
generally not generative, because it represents the dis-
tribution rather than a random draw, but is more widely
applicable.

Apparently, just defining a weak distribution in this
manner need not imply that it is a valid represen-
tation of a stochastic process. A given collection of
finite-dimensional distributions represents a stochastic

86

Bayesian Nonparametric Models

process only (1) if a process with these distributions as
its marginals actually exists, and (2) if it is uniquely
defined by the marginals. The mathematical result
which guarantees that weak distribution representa-
tions are valid is the Kolmogorov extension theorem
(also known as the Daniell-Kolmogorov theorem or
the Kolmogorov consistency theorem). Suppose that
a collection {Pg S c T,|S| < oo} of distri-
butions is given. If all distributions in the collec-
tion are marginals of each other, that is, if Pg, is a
marginal of Ps, whenever § c §,, the set of dis-
tributions is called a projective family. The Kolmogorov
extension theorem states that, if the set T is count-
able, and if the distributions Ps form a projective family,
then there exists a uniquely defined stochastic process
with the collection {Ps} as its marginal distributions.
In other words, any projective family for a countable set
T of dimensions is the weak distribution of a stochas-
tic process. Conversely, any stochastic process can be
represented in this manner, by computing its set of
finite-dimensional marginals.

The weak distribution representation assumes that
all individual random variable X; of the stochastic pro-
cess take values in the same sample space Q. The
stochastic process P defined by the weak distribution
is then a probability distribution on the sample space
QT, which can be interpreted as the set of all func-
tions f : T — (. For example, to construct a GP we
might choose T' = Q and Q = R to obtain real-valued
functions on the countable space of rational numbers.
Since Q is dense in R, the function f can then be
extended to all of R by continuity. To define the DP as
a distribution over probability measures on R, we note
that a probability measure is a set function that maps
“random events,” i.e., elements of the Borel o-algebra
B(R) of R, into probabilities in [0,1]. We could there-
fore choose a weak distribution consisting of Dirichlet
distributions, and set T=B(R) and Q=[0,1]. How-
ever, this approach raises a new problem because the set
B(R) is not countable. As in the GP, we can first define
the DP on a countable “base” for B(R) then extend to
all random events by continuity of measures. More pre-
cise descriptions are unfortunately beyond the scope of
this chapter.

Explicit representations. Explicit representations directly
describe a random draw from a stochastic process,
rather than its distribution. A prominent example of

an explicit representation is the so-called stick-breaking
representation of the Dirichlet process. The discrete ran-
dom measure G in (1) is completely determined by the
two infinite sequences {7y} and {0} . The stick-
breaking representation of the DP generates these two
sequences by drawing 6; ~ H iid and v, ~ Beta(l, «)
fork =1,2,....The coefficients 7y are then computed as
e = Vi]'[]’-:11 (1-vx). The measure G so obtained can be
shown to be distributed according to a DP(«, Gy). Sim-
ilar representations can be derived for the Pitman-Yor
process and the beta process as well. Explicit representa-
tions, if they exist for a given model, are typically of great
practical importance for the derivation of algorithms.
Implicit Representations. A third representation of infi-
nite dimensional models is based on de Finetti’s The-
orem. Any exchangeable sequence Xj, ..., X, uniquely
defines a stochastic process 8, called the de Finetti mea-
sure, making the X;’s iid. If the X;’s are sufficient to
define the rest of the model and their conditional distri-
butions are easily specified, then it is sufficient to work
directly with the X;’s and have the underlying stochastic
process implicitly defined. Examples include the Chi-
nese restaurant process (an exchangeable distribution
over partitions) with the DP as the de Finetti measure,
and the Indian buffet process (an exchangeable distri-
bution over binary matrices) with the BP being the
corresponding de Finetti measure. These implicit rep-
resentations are useful in practice as they can lead to
simple and efficient inference algorithms.

Finite representations. A fourth representation of
Bayesian nonparametric models is as the infinite limit
of finite (parametric) Bayesian models. For example, DP
mixtures can be derived as the infinite limit of finite
mixture models with particular Dirichlet priors on mix-
ing proportions, GPs can be derived as the infinite limit
of particular Bayesian regression models with Gaussian
priors, while BPs can be derived as from the limit of
an infinite number of independent beta variables. These
representations are sometimes more intuitive for prac-
titioners familiar with parametric models. However, not
all Bayesian nonparametric models can be expressed in
this fashion, and they do not necessarily make clear the
mathematical subtleties involved.

A recent series of works in mathematical statis-
tics examines the convergence properties of Bayesian

Bayesian Nonparametric Models

87

nonparametric models, and in particular the questions
of consistency and convergence rates. In this context, a
Bayesian model is called consistent if, given that an
infinite amount of data is available, the model pos-
terior will concentrate in a neighborhood of the true
solution (e.g., true function or density). A rate of con-
vergence specifies, for a finite sample, how rapidly
the posterior concentrates depending on the sample
size. In their pioneering article Diaconis and Freed-
man (1986) showed, to the great surprise of much
of the Bayesian community, that models such as the
Dirichlet process can be inconsistent, and may converge
to arbitrary solutions even for an infinite amount of
data.

More recent results, notably by van der Vaart and
Ghosal, apply modern methods of mathematical statis-
tics to study the convergence properties of Bayesian
nonparametric models (see e.g., Gho, (2010) and ref-
erences therein). Consistency has been shown for a
number of models, including Gaussian processes and
Dirichlet process mixtures. However, a particularly
interesting aspect of this line of work are results on con-
vergence rates, which specify the rate of concentration
of the posterior depending on sample size, on the com-
plexity of the model, and on how much probability mass
the prior places around the true solution. To make such
results quantitative requires a measure for the complex-
ity of a Bayesian nonparametric model. This is done
by means of complexity measures developed in empir-
ical process theory and statistical learning theory, such
as metric entropies, covering numbers and bracketing,
some of which are well-known in theoretical machine
learning.

Inference

There are two aspects to inference from Bayesian non-
parametric models: the analytic tractability of posteri-
ors for the stochastic processes embedded in Bayesian
nonparametric models, and practical inference algo-
rithms for the overall models. Bayesian nonparametric
models typically include stochastic processes such as the
Gaussian process and the Dirichlet process. These pro-
cesses have an infinite number of dimensions, hence
naive algorithmic approaches to computing posteri-
ors are generally infeasible. Fortunately, these processes
typically have analytically tractable posteriors, so all but

finitely many of the dimensions can be analytically inte-
grated out efficiently. The remaining dimensions, along
with the parametric parts of the models, can then be
handled by the usual inference techniques employed in
parametric Bayesian modeling, including Markov chain
Monte Carlo, sequential Monte Carlo, variational infer-
ence, and message-passing algorithms like expectation
propagation. The precise choice of approximations to
use will depend on the specific models under consid-
eration, with speed/accuracy trade-offs between differ-
ent techniques generally following those for parametric
models. In the following, we will give two examples to
illustrate the above points, and discuss a few theoret-
ical issues associated with the analytic tractability of
stochastic processes.

In Gaussian process regression, we model the relation-
ship between an input x and an output y using a func-
tion f, so that y ~ f(x) + ¢, where € is iid Gaussian
noise. Given a GP prior over f and a finite training
data set {(x;, ;) }, we wish to compute the posterior
over f. Here we can use the weak representation of f
and note that { f(x;) }1, is simply a finite-dimensional
Gaussian with mean and covariance given by the mean
and covariance functions of the GP. Inference for
{f(x;)}, is then straightforward. The approach can
be thought of equivalently as marginalizing out the
whole function except its values on the training inputs.
Note that although we only have the posterior over
{f(x;)}1,, this is sufficient to reconstruct the function
evaluated at any other point x, (say the test input), since
f(x0) is Gaussian and independent of the training data
{(xi,y:) Y, given { f(x;) };. In GP regression the pos-
terior over { f(x;)}", can be computed exactly. In GP
classification or other regression settings with nonlin-
ear likelihood functions, the typical approach is to use
sparse methods based on variational approximations or
expectation propagation; see Chapter »Gaussian Pro-
cess for details.

Our second example involves Dirichlet process mix-
ture models. Recall that the DP induces a clustering
structure on the data items. If our training set con-
sists of n data items, since each item can only belong to
one cluster, there are at most n clusters represented in
the training set. Even though the DP mixture itself has
an infinite number of potential clusters, all but finitely

88

Bayesian Nonparametric Models

many of these are not associated with data, thus the
associated variables need not be explicitly represented at
all. This can be understood either as marginalizing out
these variables, or as an implicit representation which
can be made explicit whenever required by sampling
from the prior. This idea is applicable for DP mixtures
using both the Chinese restaurant process and the stick-
breaking representations. In the CRP representation,
each data item x; is associated with a cluster index z;,
and each cluster k with a parameter 6; (these parame-
ters can be marginalized out if H is conjugate to F), and
these are the only latent variables that need be repre-
sented in memory. In the stick-breaking representation,
clusters are ordered by decreasing prior expected size,
with cluster k associated with a parameter 0; and a size
mr. Bach data item is again associated with a cluster
index z;, and only the clusters up to K = max(zy, . ..,z,)
need to be represented. All clusters with index > K need
not be represented since their posterior conditioning on
{(xi,z:) } 1 is just the prior.

It is worth noting that the posterior of a Bayesian model
is, in abstract terms, defined as the conditional distri-
bution of the parameter given the data and the hyper-
parameters, and this definition does not require the
existence of a Bayes equation. If a Bayes equation exists
for the model, the posterior can equivalently be defined
as the left-hand side of the Bayes equation. However,
for some stochastic processes, notably the DP on an
uncountable space such as R, it is not possible to define
a Bayes equation even though the posterior is still a
well-defined mathematical object. Technically speak-
ing, existence of a Bayes equation requires the fam-
ily of all possible posteriors to be dominated by the
prior, but this is not the case for the DP. That poste-
riors of these stochastic processes can be evaluated at
all is solely due to the fact that they admit an analytic
representation.

The particular form of tractability exhibited by
many stochastic processes in the literature is that of
a conjugate posterior, that is, the posterior belongs
to the same model family as the prior, and the pos-
terior parameters can be computed as a function of
the prior hyperparameters and the observed data.
For example, the posterior of a DP(«,Gy) under

observations 0,...,0, is again a Dirichlet process,
DP(a + n, ——(aGo + ¥ 8p,)). Similarly the posterior
of a GP under observations of f(x;),...,f(x,) is still
a GP. It is this conjugacy that allows practical infer-
ence in the examples above. A Bayesian nonparametric
model is conjugate if and only if the elements of its weak
distribution, i.e., its finite-dimensional marginals, have
a conjugate structure as well (Orbanz, 2010). In par-
ticular, this characterizes a class of conjugate Bayesian
nonparametric models whose weak distributions con-
sist of exponential family models. Note however, that
lack of conjugacy does not imply intractable posteri-
ors. An example is given by the Pitman-Yor process in
which the posterior is given by a sum of a finite number
of atoms and a Pitman-Yor process independent from
the atoms.

Future Directions

Since MCMC (see »Markov Chain Monte Carlo)
sampling algorithms for Dirichlet process mixtures
became available in the 1990s and made latent vari-
able models with nonparametric Bayesian components
applicable to practical problems, the development of
Bayesian nonparametrics has experienced explosive
growth (Escobar & West, 1995; Neal, 2000). Arguably,
though, the results available so far have only scratched
the surface. The repertoire of available models is
still mostly limited to using the Gaussian process,
the Dirichlet process, the beta process, and gener-
alizations derived from those. In principle, Bayesian
nonparametric models may be defined on any infinite-
dimensional mathematical object of possible interest
to machine learning and statistics. Possible examples
are kernels, infinite graphs, special classes of functions
(e.g., piece-wise continuous or Sobolev functions), and
permutations.

Aside from the obvious modeling questions, two
major future directions are to make Bayesian non-
parametric methods available to a larger audience of
researchers and practitioners through the development
of software packages, and to understand and quantify
the theoretical properties of available methods.

There is currently significant growth in the appli-
cation of Bayesian nonparametric models across a

Bayesian Nonparametric Models

89

variety of application domains both in machine learn-
ing and in statistics. However significant hurdles still
exist, especially the expense and expertise needed to
develop computer programs for inference in these
complex models. One future direction is thus the
development of software packages that can com-
pile efficient inference algorithms automatically given
model specifications, thus allowing a much wider range
of modeler to make use of these models. Current
developments include the R DPpackage (http://cran.r-
project.org/web/packages/DPpackage), the hierarchical
Bayesian compiler (http://www.cs.utah.edu/hal/HBC),
adaptor grammars (http://www.cog.brown.edu/mj/
Software.htm), the MIT-Church project (http://
projects.csail. mit.edu/church/wiki/Church), as well as
efforts to add Bayesian nonparametric models to the
repertoire of current Bayesian modeling environments
like OpenBugs (http://mathstat.helsinki.fi/openbugs)
and inferNET (http://research.microsoft.com/en-us/
um/cambridge/projects/infernet).

Recent work in mathematical statistics provides some
insight into the quantitative behavior of Bayesian non-
parametric models (cf theory section). The elegant,
methodical approach underlying these results, which
quantifies model complexity by means of empirical pro-
cess theory and then derives convergence rates as a
function of the complexity, should be applicable to a
wide range of models. So far, however, only results for
Gaussian processes and Dirichlet process mixtures have
been proven, and it will be of great interest to establish
properties for other priors. Some models developed in
machine learning, such as the infinite HMM, may pose
new challenges to theoretical methodology, since their
study will probably have to draw on both the theory of
algorithms and mathematical statistics. Once a wider
range of results is available, they may in turn serve to
guide the development of new models, if it is possible
to establish how different methods of model construc-
tion affect the statistical properties of the constructed
model.

In addition to the references embedded in the text
above, we recommend the books Hjort, Holmes, Miiller,
and Walker (2010), Ghosh and Ramamoorthi (2002),

and the review articles Walker, Damien, Laud, and
Smith (1999), Miiller and Quintana (2004) on Bayesian
nonparametrics. Further references can be found in the
chapter by they Teh and Jordan (2010) of the book Hjort
et al. (2010).

Cross References
»Bayesian Methods
» Dirichlet Processes
» Gaussian Processes
» Mixture Modelling
» Prior Probabilities

Recommended Reading

Diaconis, P, & Freedman, D. (1986) On the consistency of
Bayes estimates (with discussion). Annals of Statistics, 14(1),
1-67.

Dunson, D. B. (2010). Nonparametric Bayes applications to biostatis-
tics. In N. Hjort, C. Holmes, P. Miiller, & S. Walker (Eds.),
Bayesian nonparametrics. Cambridge: Cambridge University
Press.

Escobar, M. D., & West, M. (1995). Bayesian density estimation and
inference using mixtures. Journal of the American Statistical
Association, 90, 577-588.

de Finetti, B. (1931). Funzione caratteristica di un fenomeno aleato-
rio. Atti della R. Academia Nazionale dei Lincei, Serie 6. Mem-
orie, Classe di Scienze Fisiche, Mathematice e Naturale, 4,
251-299.

Ghosh, J. K., & Ramamoorthi, R. V. (2002). Bayesian nonparametrics.
New York: Springer.

Hjort, N., Holmes, C., Miiller, P., & Walker, S. (Eds.) (2010). Bayesian
nonparametrics. In Cambridge series in statistical and proba-
bilistic mathematics (No. 28). Cambridge: Cambridge Univer-
sity Press.

Miiller, P.,, & Quintana, F. A. (2004). Nonparametric Bayesian data
analysis. Statistical Science, 19(1), 95-110.

Neal, R. M. (2000). Markov chain sampling methods for Dirichlet
process mixture models. Journal of Computational and Graphi-
cal Statistics, 9, 249-265.

Orbanz, P. (2010). Construction of nonparametric Bayesian models
from parametric Bayes equations. In Y. Bengio, D. Schuurmans,
J. Lafferty, C. K. I. Williams, & A. Culotta (Eds.), Advances in
neural information processing systems, 22, 1392-1400.

Teh, Y. W.,, & Jordan, M. I. (2010). Hierarchical Bayesian non-
parametric models with applications. In N. Hjort, C. Holmes,
P. Miiller, & S. Walker (Eds.), Bayesian nonparametrics. Cam-
bridge: Cambridge University Press.

Walker, S. G., Damien, P, Laud, P. W.,, & Smith, A. . M. (1999).
Bayesian nonparametric inference for random distributions and
related functions. Journal of the Royal Statistical Society, 61(3),
485-527.

Wasserman, L. (2006). All of nonparametric statistics. New York:
Springer.

http://cran.r-project.org/web/packages/DPpackage
http://cran.r-project.org/web/packages/DPpackage
http://www.cs.utah.edu/hal/HBC
http://projects.csail.mit.edu/church/wiki/Church
http://projects.csail.mit.edu/church/wiki/Church
http://research.microso%EF%BF%BD.com/en-us/um/cambridge/projects/infernet
http://research.microso%EF%BF%BD.com/en-us/um/cambridge/projects/infernet
http://www.cog.brown.edu/mj/Software.htm
http://www.cog.brown.edu/mj/Software.htm
http://mathstat.helsinki.fi/openbugs

Bayesian Reinforcement Learning

| . . .
Bayesian Reinforcement Learning

PascAL POUPART
University of Waterloo, Waterloo, Ontario, Canada

Synonyms
Adaptive control processes; Bayes adaptive Markov
decision processes; Dual control; Optimal learning

Definition

Bayesian reinforcement learning refers to »reinforce-
ment learning modeled as a Bayesian learning problem
(see »Bayesian Methods). More specifically, follow-
ing Bayesian learning theory, reinforcement learning
is performed by computing a posterior distribution on
the unknowns (e.g., any combination of the transition
probabilities, reward probabilities, value function, value
gradient, or policy) based on the evidence received (e.g.,
history of past state—action pairs).

Motivation and Background

Bayesian reinforcement learning can be traced back
to the 1950s and 1960s in the work of Bellman
(1961), Fel'Dbaum (1965), and several of Howard’s stu-
dents (Martin, 1967). Shortly after »Markov deci-
sion processes were formalized, the above researchers
(and several others) in Operations Research consid-
ered the problem of controlling a Markov process with
uncertain transition and reward probabilities, which
is equivalent to reinforcement learning. They consid-
ered Bayesian techniques since Bayesian learning is
performed by probabilistic inference, which naturally
combines with decision theory. In general, Bayesian
reinforcement learning distinguishes itself from other
reinforcement learning approaches by the use of prob-
ability distributions (instead of point estimates) to
fully capture the uncertainty. This enables the learner
to make more informed decisions, with the poten-
tial of learning faster with less data. In particular,
the exploration/exploitation tradeoft can be naturally
optimized. The use of a prior distribution also facil-
itates the encoding of domain knowledge, which is
exploited in a natural and principled way by the learning
process.

Structure of Learning Approach

A Markov decision process (MDP) (Puterman, 1994)
can be formalized by a tuple (S, A, T) where S is the set
of states s, A is the set of actions a, T (s, a,s") = Pr(s'|s,a)
is the transition distribution indicating the probability
of reaching s" when executing a in s. Let s, denote the
reward feature of a state and Pr (s.|s,a) be the prob-
ability of earning r when executing a in s. A policy
7 : S - A consists of a mapping from states to actions.
For a given discount factor 0 < y < I and horizon h,
the value V" of a policy 7 is the expected discounted
total reward earned while executing this policy: V7 (s) =
Y, ¥'Eqx [s7]. The value function V" can be written in
a recursive form as the expected sum of the immediate
reward s with the discounted future rewards: V" (s) =
Yo Pr(s'ls, m(s)) [s. + pV™(s")]. The goal is to find an
optimal policy 7%, that is, a policy with the highest value
V* in all states (i.e., V*(s) > V*(s) Vm,s). Many algo-
rithms exploit the fact that the optimal value function
V* satisfies Bellman’s equation:

V*(s) = max Z Pr(s'|s,a) [s. + yV*(s)] (1)

Reinforcement learning (Sutton & Barto, 1998) is
concerned with the problem of finding an optimal pol-
icy when the transition (and reward) probabilities T are
unknown (or uncertain). Bayesian learning is a learn-
ing approach in which unknowns are modeled as ran-
dom variables X over which distributions encode the
uncertainty. The process of learning consists of updating
the prior distribution Pr(X) based on some evidence
e to obtain a posterior distribution Pr(X|e) according
to Bayes theorem: Pr(X|e) = kPr(X)Pr(e|X). (Here
k = 1/Pr(e) is a normalization constant.) Hence,
Bayesian reinforcement learning consists of using
Bayesian learning for reinforcement learning. The
unknowns are the transition (and reward) probabili-
ties T, the optimal value function V*, and the opti-
mal policy 7*. Techniques that maintain a distribution
on T are known as model-based Bayesian reinforce-
ment learning since they explicitly learn the underlying
model T In contrast, techniques that maintain a distri-
bution on V* or 7" are known as model-free Bayesian
reinforcement learning since they directly learn the
optimal value function or policy without learning
a model.

Bayesian Reinforcement Learning

91

In model-based Bayesian reinforcement learning, the
learner starts with a prior distribution over the param-
eters of T, which we denote by 6. For instance, let
O = Pr(s'|s,a,0) be the unknown probability of
reaching s’ when executing a in s. In general, we denote
by 6 the set of all 6,y. Then, the prior b(8) represents
the initial belief of the learner regarding the underlying
model. The learner updates its belief after every s,a,s’
triple observed by computing a posterior b,y () =
b(0[s,a,s") according to Bayes theorem:

beas (8) = kb(6) Pr(s[s,0,6) = kb(6) s, (2)

In order to facilitate belief updates, it is convenient to
pick the prior from a family of distributions that is
closed under Bayes updates. This ensures that beliefs are
always parameterized in the same way. Such families are
called conjugate priors. In the case of a discrete model
(i.e., Pr(s[s,a,0) is a discrete distribution), Dirichlets
are conjugate priors and form a family of distributions
corresponding to monomials over the simplex of dis-
crete distributions (DeGroot, 1970). They are parame-
terized as follows: Dir(6;n) = k[]; 0/"". Here 6 is an
unknown discrete distribution such that }°; 8, = land »n
is a vector of strictly positive real numbers n; (known as
the hyperparameters) such that n; —1 can be interpreted
as the number of times that the 0;-probability event has
been observed. Since the unknown transition model 0
is made up of one unknown distribution 6;, per s, a pair,
let the prior be b(0) =1, Dir (03 n) such that n isa
vector of hyperparameters #;° . The posterior obtained
after transition §, a,$’ is

by (0) = k63 [Dir (055n))
s,a
= [Dir (651 + 8505 (s,a,5")) (3)
s,a
where 844 (s,a,s") is a Kronecker delta that returns

= ¢ and 0 otherwise. In
practice, belief monitoring is as simple as increment-

lwhens = §,a = 4, ¢

ing the hyperparameter corresponding to the observed
transition.

At any point in time, the belief b provides an explicit
representation of the uncertainty of the learner about

the underlying model. This information is very use-
ful to decide whether future actions should focus
on exploring or exploiting. Hence, in Bayesian rein-
forcement learning, policies 7 are mappings from
state-belief pairs (s,b) to actions. Equivalently, the
problem of Bayesian reinforcement learning can be
thought as one of planning with a belief MDP (or
a partially observable MDP). More precisely, every
Bayesian reinforcement learning problem has an equiv-
alent belief MDP formulation (Sp.;, Apes> Ther) Where
Ser =S x B (B is the space of beliefs b), Ap,;=A, and
Tbel (Shela Apels b;zel) = Pr (b;gel|bb€l’ abel) = PI‘(S’, 4 S, b, a)
= Pr(b'|s,b,a,s") Pr(s|s,b,a). The decomposition of
the transition dynamics is particularly interesting since
Pr(b|s,b,a,s") equals 1 when b’ = b5 (as defined in
Eq. 3) and 0 otherwise. Furthermore, Pr(s'|s,b,a) =
Job(0)Pr(s'|s,0,a)d6, which can be computed in
closed form when b is a Dirichlet. As a result, the transi-
tion dynamics of the belief MDP are fully known. This
is a remarkable fact since it means that Bayesian rein-
forcement learning problems, which by definition have
unknown/uncertain transition dynamics, can be recast
as belief MDPs with known transition dynamics. While
this doesn’t make the problem any easier since the belief
MDP has a hybrid state space (discrete s with contin-
uous b), it allows us to treat policy optimization as a

problem of planning and in particular to adapt algo-
rithms originally designed for belief MDPs (also known
as partially observable MDPs).

Many planning techniques compute the optimal value
function V*, from which an optimal policy 7* can eas-
ily be extracted. Despite the hybrid nature of the state
space, the optimal value function (for a finite hori-
zon) has a simple parameterization corresponding to
the upper envelope of a set of polynomials (Poupart,
Vlassis, Hoey, & Regan, 2006). Recall that the optimal
value function satisfies Bellman’s equation, which can
be adapted as follows for a belief MDP:

V*(s,b) =max) Pr(s',b[s,b,a) [s, + yV*(s',b")].

(4)

Using the fact that b must be b2 (otherwise

Pr(s',b|s,b,a) = 0) allows us to rewrite Bellman’s
equation as follows:

92

Bayesian Reinforcement Learning

V*(s,0) = max Y Pr(s'ls.b,a) [+ yV* (.65 .

(5)

Let I be a set of polynomials in 6 such that

the optimal value function V" with n steps to go

is V*(s,b) = [,b(0)poly.;,(0)d6 where polys, =

argmax, . r Jo b(0)poly(6)d6. It suffices to replace

Pr(s'|s,b,a), bff’ and V" by their definitions in Bell-
man’s equation

V™ (s,b) =max) feb(e) Pr(s'|s,0,a)

[0+ y poly,, . (6)] d (6)
= m:tx[)b(@) > 9;’51
[ri+ 7 poly, ,.(8) | 40)

to obtain a similar set of polynomials I7*!
{ZS/ 055 [+y poly.(6)]|a € A, polyy € 1“5'5} that rep-
resents V",

The fact that the optimal value function has a closed
form with a simple parameterization is quite useful for
planning algorithms based on value iteration. Instead
of using an arbitrary function approximator to fit the
value function, one can take advantage of the fact that
the value function can be represented by a set of poly-
nomials to choose a good representation. For instance,
the Beetle algorithm (Poupart et al., 2006) performs
point-based value iteration and approximates the value
function with a bounded set of polynomials that each
consists of a linear combination of monomial basis
functions.

Since the underlying model is unknown in reinforce-
ment learning, it is not clear whether actions should
be chosen to explore (gain more information about
the model) or exploit (maximize immediate rewards
based on information gathered so far). Bayesian rein-
forcement learning provides a principled solution to the
exploration/exploitation tradeoff. Despite the appear-
ance of multiple objectives induced by exploration
and exploitation, there is a single objective in rein-
forcement learning: maximize total discounted rewards.
Hence, an optimal policy (which maximizes total

discounted rewards) must naturally optimize the explo-
ration/exploitation tradeoff. In order for a policy to
be optimal, it must use all the information avail-
able. The information available to the learner con-
sists of the history of past states and actions. One can
show that state-belief pairs (s, b) are sufficient statis-
tics of the history. Hence, by searching for the mapping
from state-belief pairs to actions that maximizes total
discounted rewards, Bayesian reinforcement learning
implicitly seeks an optimal tradeoff between explo-
ration and exploitation. In contrast, traditional rein-
forcement learning approaches search in the space of
mappings from states to actions. As a result, such tech-
niques typically focus on asymptotic convergence (i.e.,
convergence to a policy that is optimal in the limit), but
do not effectively balance exploration and exploitation
since they do not use histories or beliefs to quantify the
uncertainty about the underlying model.

Michael Duft’s PhD thesis (Duff, 2002) provides an
excellent survey of Bayesian reinforcement learning up
until 2002. The above text pertains mostly to model-
based Bayesian reinforcement learning applied to dis-
crete, fully observable, single agent domains. Bayesian
learning has also been explored in model-free rein-
forcement learning (Dearden, Friedman, & Russell,
1998; Engel, Mannor, & Meir, 2005; Ghavamzadeh &
Engel, 2006) continuous-valued state spaces (Ross,
Chaib-Draa, & Pineau, 2008), partially observable
domains (Poupart & Vlassis, 2008; Ross, Chaib-
Draa, & Pineau, 2007), and multi-agent systems
(Chalkiadakis & Boutilier, 2003, 2004; Gmytrasiewicz
& Doshi, 2005).

Cross References

» Active Learning

» Markov Decision Processes
» Reinforcement Learning

Recommended Reading

Bellman, R. (1961). Adaptive control processes: A guided tour.
Princeton, NJ: Princeton University Press.

Behavioral Cloning

93

Chalkiadakis, G., & Boutilier, C. (2003). Coordination in multi-
agent reinforcement learning: A Bayesian approach. In Inter-
national joint conference on autonomous agents and multiagent
systems (AAMAS), Melbourne, Australia (pp. 709-716).

Chalkiadakis, G., & Boutilier, C. (2004). Bayesian reinforcement
learning for coalition formation under uncertainty. In Inter-
national joint conference on autonomous agents and multiagent
systems (AAMAS), New York (pp. 1090-1097).

Dearden, R., Friedman, N., & Russell, S. J. (1998). Bayesian
Q-learning. In National conference on artificial intelligence
(AAAI), Madison, Wisconsin (pp. 761-768).

DeGroot, M. H. (1970). Optimal statistical decisions. New York:
McGraw-Hill.

Duff, M. (2002). Optimal learning: Computational procedures for
Bayes-adaptive Markov decision processes. PhD thesis, Univer-
sity of Massachusetts, Amherst.

Engel, Y., Mannor, S., & Meir, R. (2005). Reinforcement learning
with Gaussian processes. In International conference on machine
learning (ICML), Bonn, Germany.

Fel’'Dbaum, A. (1965). Optimal control systems. New York: Academic.

Ghavamzadeh, M., & Engel, Y. (2006). Bayesian policy gradient algo-
rithms. In Advances in neural information processing systems
(NIPS), (pp. 457-464).

Gmytrasiewicz, P., & Doshi, P. (2005). A framework for sequential
planning in multi-agent settings. Journal of Artificial Intelli-
gence Research (JAIR), 24, 49-79.

Martin (1967). Bayesian decision problems and Markov chains. New
York: Wiley.

Poupart, P., & Vlassis, N. (2008). Model-based Bayesian reinforce-
ment learning in partially observable domains. In International
symposium on artificial intelligence and mathematics (ISAIM).

Poupart, P., Vlassis, N., Hoey, J., & Regan, K. (2006). An analytic
solution to discrete Bayesian reinforcement learning. In Inter-
national conference on machine learning (ICML), Pittsburgh,
Pennsylvania (pp. 697-704).

Puterman, M. L. (1994). Markov decision processes. New York: Wiley.

Ross, S., Chaib-Draa, B., & Pineau, J. (2007). Bayes-adaptive
POMDPs. In Advances in neural information processing systems
(NIPS).

Ross, S., Chaib-Draa, B., & Pineau, J. (2008). Bayesian reinforce-
ment learning in continuous POMDPs with application to robot
navigation. In IEEE International conference on robotics and
automation (ICRA), (pp. 2845-2851).

Sutton, R. S., & Barto, A. G. (1998). Reinforcement Learning.
Cambridge, MA: MIT Press.

[
Beam Search

CLAUDE SAMMUT
University of New South Wales, Sydney, Australia

A beam search is a heuristic search technique that com-
bines elements of breadth-first and best-first searches.
Like a breadth-first search, the beam search maintains

a list of nodes that represent a frontier in the search
space. Whereas the breadth-first adds all neighbors to
the list, the beam search orders the neighboring nodes
according to some heuristic and only keeps the n best,
where # is the beam size. This can significantly reduce
the processing and storage requirements for the search.

In machine learning, the beam search has been used
in algorithms, such as AQIl (Dietterich & Michalski,
1977).

Cross References
» Learning as Search

Recommended Reading

Dietterich, T. G., & Michalski, R. S. (1977). Learning and generaliza-
tion of characteristic descriptions: Evaluation criteria and com-
parative review of selected methods. In Fifth international joint
conference on artificial intelligence (pp. 223-231). Cambridge,
MA: William Kaufmann.

! Behavioral Cloning

CAUDE SAMMUT
The University of New South Wales, Sydney, Australia

Synonyms

Apprenticeship learning; Behavioral cloning; Learning
by demonstration; Learning by imitation; Learning con-
trol rules

Definition

Behavioral cloning is a method by which human sub-
cognitive skills can be captured and reproduced in a
computer program. As the human subject performs the
skill, his or her actions are recorded along with the situ-
ation that gave rise to the action. A log of these records is
used as input to a learning program. The learning pro-
gram outputs a set of rules that reproduce the skilled
behavior. This method can be used to construct auto-
matic control systems for complex tasks for which clas-
sical control theory is inadequate. It can also be used for
training.

94

Behavioral Cloning

Motivation and Background

Behavioral cloning (Michie, Bain, & Hayes-Michie,
1990) is a form of learning by imitation whose main
motivation is to build a model of the behavior of
a human when performing a complex skill. Prefer-
ably, the model should be in a readable form. It is
related to other forms of learning by imitation, such
as Pinverse reinforcement learning (Abbeel & Ng,
2004; Amit & Matari¢, 2002; Hayes & Demiris, 1994;
Kuniyoshi, Inaba, & Inoue, 1994; Pomerleau, 1989) and
methods that use data from human performances to
model the system being controlled (Atkeson & Schaal,
1997; Bagnell & Schneider, 2001).

Experts might be defined as people who know what
they are doing not what they are talking about. That
is, once a person becomes highly skilled in some task,
the skill becomes sub-cognitive and is no longer avail-
able to introspection. So when the person is asked to
explain why certain decisions were made, the expla-
nation is a post hoc justification rather than a true
explanation.

Michie et al. (1990) used an induction program to
learn rules for balancing a pole (in simulation) and
earlier work by Donaldson (1960), Widrow and Smith
(1964), and Chambers and Michie (1969) demonstrated
the feasibility of learning by imitation, also for pole-
balancing.

Structure of the Learning System

Behavioral cloning assumes that there is a plant of some
kind that is under the control of a human operator. The
plant may be a physical system or a simulation. In either
case, the plant must be instrumented so that it is pos-
sible to capture the state of the system, including all
the control settings. Thus, whenever the operator per-
forms an action, that is, changes a control setting, we
can associate that action with a particular state.

Let us use a simple example of a system that has only
one control action. A pole balancer has four state vari-
ables: the angle of the pole, 6, and its angular velocity,
0 and the position, x, and velocity , of the cart on the
track. The only action available to the controller is to
apply a fixed positive of negative force, F, to accelerate
the cart left or right.

We can create an experimental setup where a human
can control a pole and cart system (either real or in
simulation) by applying a left push or a right push at

Human
trainer

A

As the trainer
executes the task
all actions are recorded Y

L_og < Plant
file
v \/
Learning »| Controller
program

An learning program
uses the logged data
to build a controller

Behavioral Cloning. Figure 1. Structure of learning

system

the appropriate time. Whenever a control action is per-
formed, we record the action as well as values of the four
state variables at the time of the action. Each of these
records can be viewed as an example of a mapping from
state to action.

Michie et al. (1990) demonstrated that it is possi-
ble to construct a controller by learning from these
examples. The learning task is to predict the appro-
priate action, given the state. They used a »decision
tree learning program to produce a classifier that, given
the values of the four state variables, would output an
action. A decision tree is easily convertible into an exe-
cutable code as a nested if statement. The quality of the
controller can be tested by inserting the decision tree
into the simulator, replacing the human operator.

If the goal of learning is simply to produce an oper-
ational controller then any program capable of build-
ing a classifier could be used. The reason that Michie
et al. (1990) chose a symbolic learner was their desire
to produce a controller whose decision making was
transparent as well as operational. That is, it should be
possible to extract an explanation of the behavior that is
meaningful to an expert in the task.

A controller such as the one described above is referred
to as a direct controller because it maps situations to
actions. Other examples of learning a direct controller

Behavioral Cloning

95

are building an autopilot from behavioral traces of
human pilots flying aircraft in a flight simulator (Sam-
mut, Hurst, Kedzier, & Michie, 1992) and building
a control system for a container crane (Urbanci¢ &
Bratko, 1994). These systems extended the earlier work
by operating in domains in which there is more than
one control variable and the task is sufficiently complex
that it must be decomposed into several subtasks.

An operator of a container crane can control the
speed of the cart and the length of the rope. A pilot
of a fixed-wing aircraft can control the ailerons, eleva-
tors, rudder, throttle, and flaps. To build an autopilot,
the learner must build a system that can set each of the
control variables. Sammut et al. (1992), viewed this as a
multitask learning problem.

Each training example is a feature vector that
includes the position, orientation, and velocities of the
aircraft as well as the values of each of the control set-
tings: ailerons, elevator, throttle, and flaps. The rudder is
ignored. A separate decision tree is built for each con-
trol variable. For example, the aileron setting is treated
as the dependent variable and all the other variables,
including the other controls, are treated as the attributes
of the training example. A decision tree is built for
ailerons, then the process is repeated for the elevators,
etc. The result is a decision tree for each control
variable.

The autopilot code executes each decision tree in
each cycle of the control loop. This method treats the
setting of each control as a separate task. It may be
surprising that this method works since it is often neces-
sary to adjust more than one control simultaneously to
achieve the desired result. For example, to turn, it is nor-
mal to use the ailerons to roll the aircraft while adjusting
the elevators to pull it around. This kind of multivariable
control does result from multiple decision trees. When,
say, the aileron decision tree initiates a roll, the eleva-
tor’s decision tree detects the roll and causes the aircraft
to pitch up and execute a turn.

Limitations Direct controllers work quite well for sys-
tems that have a relatively small state space. How-
ever, for complex systems, behavioral cloning of direct
situation—action rules tends to produce very brittle con-
trollers. That is, they cannot tolerate large disturbances.
For example, when air turbulence is introduced into the
flight simulator, the performance of the clone degrades
very rapidly. This is because the examples provided by

logging the performance of a human only cover a very
small part of the state space of a complex system such
as an aircraft in flight. Thus, the“expertise” of the con-
troller is very limited. If the system strays outside the
controller’s region of expertise, it has no method for
recovering and failure is usually catastrophic.

More robust control is possible but only with a
significant change in approach. The more successful
methods decompose the learning task into two stages:
learning goals and learning the actions to achieve those
goals.

Learning Indirect (Goal-Directed)
Controllers

The problem of learning in a large search space can par-
tially be addressed by decomposing the learning into
subtasks. A controller built in this way is said to be
an indirect controller. A control is “indirect” if it does
not compute the next action directly from the system’s
current state but uses, in addition, some intermediate
information. An example of such intermediate informa-
tion is a subgoal to be attained before achieving the final
goal.

Subgoals often feature in an operator’s control
strategies and can be automatically detected from a
trace of the operator’s behavior (Suc & Bratko, 1997).
The problem of subgoal identification can be treated as
the inverse of the usual problem of controller design,
that is, given the actions in an operator’ trace, find the
goal that these actions achieve. The limitation of this
approach is that it only works well for cases in which
there are just a few subgoals, not when the operator’s tra-
jectory contains many subgoals. In these cases, a better
approach is to generalize the operator’s trajectory. The
generalized trajectory can be viewed as defining a con-
tinuously changing subgoal (Bratko & Suc, 2002; Suc &
Bratko, 1999a) (see also the use of flow tubes in dynamic
plan execution (Hofmann & Williams, 2006)).

Subgoals and generalized trajectories are not suf-
ficient to define a controller. A model of the systems
dynamics is also required. Therefore, in addition to
inducing subgoals or a generalized trajectory, this
approach also requires learning approximate system
dynamics, that is a model of the controlled system.
Bratko and Suc (2003) and Suc and Bratko (1999b) use
a combination of the Goldhorn (Krizman & DzZeroski,

96

Behavioral Cloning

1995) discovery program and locally weighted regres-
sion to build the model of the system’s dynamics. The
next action is then computed “indirectly” by (1) com-
puting the desired next state (e.g., next subgoal) and
(2) determining an action that brings the system to
the desired next state. Bratko and Suc also investigated
building qualitative control strategies from operator
traces (Bratko & Suc, 2002).

An analog to this approach is »inverse reinforce-
ment learning (Abbeel & Ng, 2004; Atkeson & Schaal,
1997; Ng & Russell, 2000) where the reward function is
learned. Here, the learning the reward function corre-
sponds to learning the human operator’s goals.

Isaac and Sammut (2003) uses an approach that
is similar in spirit to Suc and Bratko but incorpo-
rates classical control theory. Learned skills are repre-
sented by a two-level hierarchical decomposition with
an anticipatory goal level and a reactive control level.
The goal level models how the operator chooses goal
settings for the control strategy and the control level
models the operator’s reaction to any error between
the goal setting and actual state of the system. For
example, in flying, the pilot can achieve goal val-
ues for the desired heading, altitude, and airspeed by
choosing appropriate values of turn rate, climb rate,
and acceleration. The controls can be set to correct
errors between the current state and the desired state
of these goal-directing quantities. Goal models map
system states to a goal setting. Control actions are based
on the error between the output of each of the goal
models and the current system state.

The control level is modeled as a set of propor-
tional integral derivative (PID) controllers, one for each
control variable. A PID controller determines a control
value as a linear function proportional to the error on a
goal variable, the integral of the error, and the derivative
of the error.

Goal setting and control models are learned sepa-
rately. The process begins be deciding which variables
are to be used for the goal settings. For example, trainee
pilots will learn to execute a “constant-rate turn,” that
is, their goal is to maintain a given turn rate. A separate
goal rule is constructed for each goal variable using a
»model tree learner (Potts & Sammut, 2005).

A goal rule gives the setting for a goal variable and
therefore, we can find the difference (error) between the

current state value and the goal setting. The integral and
derivative of the error can also be calculated. For exam-
ple, if the set turn rate is 180° min, then the error on
the turn rate is calculated as the actual turn rate minus
180. The integral is then the running sum of the error
multiplied by the time interval between time samples,
starting from the first time sample of the behavioral
trace, and the derivative is calculated as the difference
between the error and previous error all divided by the
time interval.

For each control available to the operator, a model
tree learner is used to predict the appropriate control
setting. »Linear regression is used in the leaf nodes
of the model tree to produce linear equations whose
coefficients are the P, I, and D of values of the PID con-
troller. Thus the learner produces a collection of PID
controllers that are selected according to the conditions
in the internal nodes of the tree. In control theory, this
is known as piecewise linear control.

Another indirect method is to learn a model of
the dynamics of the system and use this to learn,
in simulation, a controller for the system (Bagnell &
Schneider, 2001; Ng, Jin Kim, Jordan, & Sastry, 2003).
This approach does not seek to directly model the
behavior of a human operator. A behavioral trace may
be used to generate data for modeling the system but
then a reinforcement learning algorithm is used to gen-
erate a policy for controlling the simulated system. The
learned policy can then be transferred to the physical
system. PLocally weighted regression is typically used
for system modeling, although »model trees can also
be used.

Cross References

» Apprenticeship Learning
»[nverse Reinforcement Learning
» Learning by Imitation

»Locally Weighted Regression
»Model Trees

»Reinforcement Learning

» System Identification

Recommended Reading

Abbeel, P., & Ng, A. Y. (2004). Apprenticeship learning via inverse
reinforcement learning. In International conference on machine
learning, Banff, Alberta, Canada. New York: ACM.

Bias

97

Amit, R., & Matari¢, M. (2002). Learning movement sequences from
demonstration. In Proceedings of the second international con-
ference on development and learning, Cambridge, MA, USA
(pp- 203-208). Washington, D.C.: IEEE.

Atkeson, C. G., & Schaal, S. (1997). Robot learning from demon-
stration. In D. H. Fisher (Ed.), Proceedings of the fourteenth
international conference on machine learning, Nashville, TN,
USA (pp. 12-20). San Francisco: Morgan Kaufmann.

Bagnell, J. A., & Schneider, J. G. (2001). Autonomous helicopter
control using reinforcement learning policy search methods.
In International conference on robotics and automation, South
Korea. IEEE Press, New York.

Bratko, I., & Suc, D. (2002). Using machine learning to understand
operator’s skill. In Proceedings of the 15th international con-
ference on industrial and engineering applications of artificial
intelligence and expert systems (pp. 812-823). London: Springer.
AAAI Press, Menlo Park, CA.

Bratko, L., & Suc, D. (2003). Learning qualitative models. AI Maga-
zine, 24(4), 107-119.

Chambers, R. A., & Michie, D. (1969). Man-machine co-operation
on a learning task. In R. Parslow, R. Prowse, & R. Elliott-Green
(Eds.), Computer graphics: techniques and applications. London:
Plenum.

Donaldson, P. E. K. (1960). Error decorrelation: A technique
for matching a class of functions. In Proceedings of
the third international conference on medical electronics
(pp. 173-178).

Hayes, G., & Demiris, J. (1994). A robot controller using learn-
ing by imitation. In Proceedings of the international symposium
on intelligent robotic systems, Grenoble, France (pp. 198-204).
Grenoble: LIFTA-IMAG.

Hofmann, A. G., & Williams, B. C. (2006). Exploiting spatial
and temporal flexiblity for plan execution of hybrid, under-
actuated systems. In Proceedings of the 2Ist national con-
ference on artficial intelligence, July 2006, Boston, MA (pp.
948-955).

Isaac, A., & Sammut, C. (2003). Goal-directed learning to fly. In
T. Fawcett & N. Mishra (Eds.), Proceedings of the twentieth
international conference on machine learning, Washington, D.C.
(pp. 258-265). Menlo Park: AAAIL

Krizman, V., & Dzeroski, S. (1995). Discovering dynamics
from measured data. Electrotechnical Review, 62(3-4),
191-198.

Kuniyoshi, Y., Inaba, M., & Inoue, H. (1994). Learning by watch-
ing: Extracting reusable task knowledge from visual observa-
tion of human performance. IEEE Transactions on Robotics and
Automation, 10, 799-822.

Michie, D., Bain, M., & Hayes-Michie, J. E. (1990). Cognitive models
from subcognitive skills. In M. Grimble, S. McGhee, & P. Mow-
forth (Eds.), Knowledge-based systems in industrial control.
Stevenage: Peter Peregrinus.

Ng, A. Y., Jin Kim, H., Jordan, M. I., & Sastry, S. (2003). Autonomous
helicopter flight via reinforcement learning. In S. Thrun, L.
Saul, & B. Scholkopf (Eds.), Advances in neural information
processing systems 16. Cambridge: MIT Press.

Ng, A. Y., & Russell, S. (2000). Algorithms for inverse reinforce-
ment learning. In Proceedings of 17th international conference
on machine learning, Stanford, CA, USA (pp. 663-670). San
Francisco: Morgan Kaufmann.

Pomerleau, D. A. (1989). ALVINN: An autonomous land vehi-
cle in a neural network. In D. S. Touretzky (Ed.), Advances
in neural information processing systems. San Mateo: Morgan
Kaufmann.

Potts, D., & Sammut, C. (November 2005). Incremental learning of
linear model trees. Machine Learning, 6(1-3), 5-48.

Sammut, C., Hurst, S., Kedzier, D., & Michie, D. (1992). Learning
to fly. In D. Sleeman & P. Edwards (Eds.), Proceedings of the
ninth international conference on machine learning, Aberdeen
(pp. 385-393). San Francisco: Morgan Kaufmann.

Suc, D., & Bratko, I. (1997). Skill reconstruction as induction of
LQ controllers with subgoals. In IJCAI-97: Proceedings of the
fiftheenth international joint conference on artificial intelligence,
Nagoya, Japan (Vol. 2, pp. 914-920). San Francisco: Morgan
Kaufmann.

Suc, D., & Bratko, L. (1999a). Modelling of control skill by qualitative
constraints. In Thirteenth international workshop on qualitative
reasoning, 7-9 June 1999, Lock Awe, Scotland (pp. 212-220).
Aberystwyth: University of Aberystwyth.

Suc, D., & Bratko, I. (1999b). Symbolic and qualitative recon-
struction of control skill. Electronic Transactions on Artificial
Intelligence, 3(B), 1-22.

Urbanc¢i¢, T., & Bratko, I. (1994). Reconstructing human skill with
machine learning. In A. Cohn (Ed.), Proceedings of the 1ith
European conference on artificial intelligence. Wiley. Amster-
dam: New York.

Widrow, B., & Smith, F. W. (1964). Pattern recognising control
systems. In J. T. Tou & R. H. Wilcox (Eds.), Computer and
information sciences. London: Clever Hume.

' Belief State Markov Decision
Processes

» Partially Observable Markov Decision Processes

[.
Bellman Equation

The Bellman Equation is a recursive formula that forms
the basis for »dynamic programming. It computes the
expected total reward of taking an action from a state
in a »Markov decision process by breaking it into the
immediate reward and the total future expected reward.
(See »dynamic programming.)

[.
Bias

Bias has two meanings, »inductive bias, and statistical
bias (see »bias variance decomposition).

Bias Specification Language

! Bias Specification Language

HENDRIK BLOCKEEL
Katholieke Universiteit Leuven, Belgium
The Netherlands

Definition
A bias specification language is a language in which a
user can specify a »Language Bias. The language bias
of a learner is the set of hypotheses (or hypothesis
descriptions) that this learner may return.

In contrast to the »hypothesis language, the bias
specification language allows us to describe not single
hypotheses but sets (languages) of hypotheses.

Examples

In learning approaches based on »graphical models or
»artificial neural networks, whenever the user provides
the graph structure of the model, he or she is specify-
ing a bias. The “language” used to specify this bias, in
this case, consists of graphs. Figure 1 shows examples
of such graphs. Not every kind of bias can necessar-
ily be expressed by some bias specification language;
for instance, the bias defined by the »Bayesian net-
work structure in Fig. 1 cannot be expressed using a

P(A,B,C) = p(A)p(B)p(C|A,B) P(A,B,C) = f,(A,C),(B,C)

Bias Specification Language. Figure 1. Graphs defining a
bias for learning joint distributions. The Bayesian net-
work structure to the left constrains the form of the joint
distribution in a particular way (shown as the equation
below the graph). Notably, it guarantees that only dis-
tributions can be learned in which the variables A and B
are (unconditionally) independent. The Markov network
structure to the right constrains the form of the joint
distribution in a different way: it states that it must be
possible to write the distribution as a product of a func-
tion of Aand Cand a function of Band C. These two biases
are different. In fact, no Markov network structure over
the variables A, B, and C exists that expresses the bias
specified by the Bayesian network structure

» Markov network. Bayesian networks and Markov net-
works have a different expressiveness, when viewed as
bias specification languages.

Also certain parameters of decision tree learners or
rule set learners effectively restrict the hypothesis lan-
guage (for instance, an upper bound on the rule length
or the size of the decision tree).

A combination of parameter values can hardly be
called a language, and even the “language” of graphs is a
relatively simple kind of language. More elaborate types
of bias specification languages are typically found in the
field of »inductive logic programming (ILP).

Bias Specification Languages in Inductive
Logic Programming

In ILP, the hypotheses returned by the learning algo-
rithm are typically written as first-order logic clauses.
As the set of all possible clauses is too large to handle, a
subset of these clauses is typically defined; this subset is
called the language bias. Several formalisms (“bias spec-
ification languages”) have been proposed for specifying
such subsets. We here focus on a few representative
ones.

In the DLAB bias specification language (Dehaspe &
De Raedt, 1996), the language bias is defined in a declar-
ative way, by defining a syntax that clauses must fulfill.
In its simplest form, a DLAB specification simply gives
a set of possible head and body literals out of which the
system can build a clause.

Example 1 The actual syntax of the DLAB specifica-
tion language is relatively complicated (see Dehaspe &
De Raedt, 1996), but in essence, one can write down a
specification such as:

{ parent ({X,Y,Z},{X,Y,2}),

grandparent ({X,Y,Z},
{X,Y,2}) }

{ parent ({X,Y,2},{X,Y,2}),
parent ({X,Y,2}, {X,Y,Z}),
grandparent ({X,Y,Z2},{X,Y,Z}),
grandparent ({X,Y,2}, {X,Y,Z}) }

which states that the hypothesis language consists of all

clauses that have at most one parent and at most one

Bias Specification Language

99

grandparent literal in the head, and at most two of
these literals in the body; the arguments of these literals
may be variables X, Y, Z. Thus, the following clauses are
in the hypothesis language:

grandparent (X, Y) :— parent(X, 2),
parent (Z,Y)
:— parent (X,Y), parent (Y, X)

:— parent (X, X)

These express the usual definition of grandparent as well
as the fact that there can be no cycles in the parent
relation.

Note that for each argument of each literal, all the
variables and constants that may occur have to be
enumerated explicitly. This can make a DLAB specifi-
cation quite complex. While DLAB contains advanced
constructs to alleviate this problem, it remains the case
that often very elaborate bias specifications are needed
in practical situations.

A more flexible bias specification language is used by
Progol (Muggleton, 1995) and many other ILP systems.
It is based on the notions of types and modes. In Progol,
arguments of a predicate can be typed, and a variable
can never occur in two locations with different types.
Similarly, arguments of a predicate have an input (+) or
output (—) mode; each variable that occurs as an input
argument of some literal must occur elsewhere as an
output argument, or must occur as input argument in
the head literal of a clause.

Example 2 In Progol, the specifications

type (parent (human, human)) .
type (grandparent (human, human)) .
modeh (grandparent (+,+)) .

[

% modeh: specifies a head literal

modeb (grandparent (+,-)) .

[

% modeb: specifies a body literal

modeb (parent (+,-)) .
allow the system to construct a clause such as

grandparent (X,Y) :- parent (X,Z2),

parent (Z,Y)

but not the following clause:

grandparent (X,Y) :— parent(Z,Y)

because 7 occurs as an input parameter for parent
without occurring elsewhere as an output parameter (i.e.,
it is being used without having been given a value first).

The FLIPPER system (Cohen, 1996) employs a power-
ful, but somewhat more procedural, bias specification
formalism. The user does not specify a set of valid
hypotheses directly, but rather, specifies a »Refinement
Operator. The language bias is the set of all clauses
that can be obtained from one or more starting clauses
through repeated application of this refinement oper-
ator. The operator itself is defined by specifying under
which conditions certain literals can be added to a
clause.

Rules defining the operator have one of the follow-
ing forms:

A < Bwhere Pre asserting Post
L where Pre asserting Post

The first form defines a set of “starting clauses,” and the
second form defines when a literal L can be added to a
clause. Each rule can only be applied when its precon-
ditions Pre are fulfilled, and upon application will assert
a set of literals Post. As an example (Cohen, 1996), the
rules

illegal(A,B,C,D,E, F) «
where frue
asserting {linked(A),linked(B),.. .,
linked(F)}

R(X,Y) where rel(R), linked(X), linked(Y)
asserting @

state that any clause of the form
illegal(A,B,C,D,E, F) «
can be used as a starting point for the refinement oper-

ator, and the variables in this clause are all linked. Fur-
ther, any literal of the form R(X,Y) with R a relation

100

Bias Variance Decomposition

symbol (as defined by the Rel predicate) and X and Y
linked variables can be added.

Grammars or term rewriting systems have been pro-
posed several times as a means of defining the hypoth-
esis language. A relatively recent approach along these
lines was given by Lloyd, who uses a rewriting system to
define the tests that can occur in the nodes of a decision
tree built by the Alkemy system (Lloyd, 2003).

Bostrom & Idestam-Almquist (1999) present an
approach where the language bias is implicitly defined
through the »Background Knowledge given to the
learner.

Knobbe et al. (2000) propose the use of UML as a
“common” bias specification language, specifications in
which could be translated automatically to languages
specific to a particular learner.

Further Reading

An overview of bias specification formalisms in ILP is
given by Nédellec et al. (1996). The bias specification
languages discussed above are discussed in more detail
in Dehaspe and De Raedt (1996), Muggleton (1995),
and Cohen (1996). De Raedt (1992) discusses language
bias and the concept of bias shift (learners weaken-
ing their bias, i.e., extending the set of hypotheses that
can be represented, when a given language bias turns
out to be too restrictive). A more recent approach to
learning declarative bias is presented by Bridewell and
Todorovski (2008).

Cross References
»Hypothesis Language
»Inductive Logic Programminllg

Recommended Reading

Bostrom, H., & Idestam-Almquist, P. (1999). Induction of logic
programs by example-guided unfolding. Journal of Logic Pro-
gramming, 40(2-3), 159-183.

Bridewell, W., & Todorovski, L. (2008). Learning declarative bias.
In Proceedings of the 17th international conference on inductive
logic programming. Lecture notes in computer science (Vol. 4894,
pp. 63-77). Berlin: Springer.

Cohen, W. (1996). Learning to classify English text with ILP meth-
ods. In L. De Raedt (Ed.), Advances in inductive logic program-
ming (pp. 124-143). Amsterdam: IOS Press.

De Raedt, L. (1992). Interactive theory revision: An inductive logic
programming approach. New York: Academic Press.

Dehaspe, L., & De Raedt, L. (1996). DLAB: A declarative language
bias formalism. In Proceedings of the international symposium
on methodologies for intelligent systems. Lecture notes in artifi-
cial intelligence (Vol. 1079, pp. 613-622). Berlin: Springer.

Knobbe, A. ., Siebes, A., Blockeel, H., & van der Wallen, D. (2000).
Multi-relational data mining, using UML for ILP. In Proceedings
of PKDD-2000 - The fourth European conference on principles
and practice of knowledge discovery in databases. Lecture notes in
artificial intelligence (Vol. 1910, pp. 1-12), Lyon, France. Berlin:
Springer.

Lloyd, J. W. (2003). Logic for learning. Berlin: Springer.

Muggleton, S. (1995). Inverse entailment and Progol. New Genera-
tion Computing, Special Issue on Inductive Logic Programming,
13(3-4), 245-286.

Nédellec, C., Adé, H., Bergadano, F., & Tausend, B. (1996). Declara-
tive bias in ILP. In L. De Raedt (Ed.), Advances in inductive logic
programming. Frontiers in artificial intelligence and applications
(Vol. 32, pp. 82-103). Amsterdam: IOS Press.

' Bias Variance Decomposition

Definition

The bias-variance decomposition is a useful theoreti-
cal tool to understand the performance characteristics
of a learning algorithm. The following discussion is
restricted to the use of squared loss as the performance
measure, although similar analyses have been under-
taken for other loss functions. The case receiving most
attention is the zero-one loss (i.e., classification prob-
lems), in which case the decomposition is nonunique
and a topic of active research. See Domingos (1992) for
details.

The decomposition allows us to see that the mean
squared error of a model (generated by a particular
learning algorithm) is in fact made up of two compo-
nents. The bias component tells us how accurate the
model is, on average across different possible training
sets. The variance component tells us how sensitive the
learning algorithm is to small changes in the training set
(Fig. 1).

Mathematically, this can be quantified as a decom-
position of the mean squared error function. For a
testing example {x, d}, the decomposition is:

Ep{(f(x) -d)*} = (Ep{f(x)} - d)’
+Ep{(f(®) - Ep{f(x)})’},

. 2 .
MSE = bias” + variance,

Bias-Variance Trade-offs: Novel Applications

101

X
X
x@

High bias Low bias
High variance High variance

) ©

High bias Low bias
Low variance Low variance

Bias Variance Decomposition. Figure 1. The bias-variance decomposition is like trying to hit the bullseye on a dart-

board. Each dart is thrown after training our “dart-throwing” model in a slightly different manner. If the darts vary

wildly, the learner is high variance. If they are far from the bullseye, the learner is high bias. The ideal is clearly to have
both low bias and low variance; however this is often difficult, giving an alternative terminology as the bias-variance

“dilemma"” (Dartboard analogy, Moore & McCabe (2002))

where the expectations are with respect to all possible
training sets. In practice, this can be estimated by cross-
validation over a single finite training set, enabling
a deeper understanding of the algorithm characteris-
tics. For example, efforts to reduce variance often cause
increases in bias, and vice versa. A large bias and low
variance is an indicator that a learning algorithm is
prone to »overfitting the model.

Cross References
» Bias-Variance Trade-offs: Novel Applications

Recommended Reading

Domingos, P. (1992). A unified bias-variance decomposition for
zero-one and squared loss. In Proceedings of national conference
on artificial intelligence. Austin, TX: AAAI Press.

Geman, S. (1992). Neural networks and the bias/variance dilemma.
Neural Computation, 4(1)

Moore, D. S., & McCabe, G. P. (2002). Introduction to the practice
of statistics. Michelle Julet

' Bias-Variance Trade-offs: Novel
Applications

DEv RAJNARAYAN, DAVID WOLPERT
NASA Ames Research Center, Moffett Field,
CA, USA

Definition

Consider a given random variable F and a random vari-
able that we can modify, F. We wish to use a sample of
F as an estimate of a sample of F. The mean squared
error (MSE) between such a pair of samples is a sum

of four terms. The first term reflects the statistical cou-
pling between F and F and is conventionally ignored
in bias-variance analysis. The second term reflects the
inherent noise in F and is independent of the estimator
F. Accordingly, we cannot affect this term. In contrast,
the third and fourth terms depend on E . 'The third term,
called the bias, is independent of the precise samples of
both F and F, and reflects the difference between the
means of Fand F. The fourth term, called the variance, is
independent of the precise sample of F, and reflects the
inherent noise in the estimator as one samples it. These
last two terms can be modified by changing the choice of
the estimator. In particular, on small sample sets, we can
often decrease our mean squared error by, for instance,
introducing a small bias that causes a large reduction the
variance. While most commonly used in machine learn-
ing, this article shows that such bias-variance trade-offs
are applicable in a much broader context and in a vari-
ety of situations. We also show, using experiments, how
existing bias-variance trade-offs can be applied in novel
circumstances to improve the performance of a class of
optimization algorithms.

Motivation and Background

In its simplest form, the bias-variance decomposition
is based on the following idea. Say we have a random
variable F taking on values F distributed according to a
density function p(F). We want to estimate the value of
a sample from p(F). To form our estimate, we sample
a different random variable F taking on values F dis-
tributed according to p(F). Assuming a quadratic loss
function, the quality of our estimate is measured by its
MSE:

102

Bias-Variance Trade-offs: Novel Applications

MSE(F) = /p(ﬁ, F) (F-F)*dFdF.

In many situations, F and £ are dependent variables.
For example, in supervised machine learning, F is a “tar-
get” conditional distribution, stochastically mapping
elements of an input space X into a space Y of output
variables. The associated distribution p(F) is the “prior”
of F. A random sample D of F, called “the training set,’
is generated, and D is used in a “learning algorithm” to
produce F, which is our estimate of F. Clearly, this F and
F are statistically dependent, via D. Indeed, intuitively
speaking, the goal in designing a learning algorithm is
that the £s it produces are positively correlated with F’s.

In practice this coupling is simply ignored in analy-
ses of bias plus variance, without any justification (one
such justification could be that the coupling has lit-
tle effect on the value of the MSE). We shall follow
that practice here. Accordingly, our equation for MSE
reduces to

MSE(E) = [p(F)p(F) (F-F)dFaR. ()

If we were to account for the coupling of F and F an
additive correction term would need to be added to the
right-hand side. For instance, see Wolpert (1997).

Using simple algebra, the right hand side of (1) can
be written as the sum of three terms. The first is the vari-
ance of F. Since this is beyond our control in designing
the estimator F, we ignore it for the rest of this arti-
cle. The second term involves a mean that describes
the deterministic component of the error. This term
depends on both the distribution of F and that of F,
and quantifies how close the means of those distribu-
tions are. The third term is a variance that describes
stochastic variations from one sample to the next. This
term is independent of the random variable being esti-
mated. Formally, up to an overall additive constant, we
can write

MSE(F) = /p(ﬁ)(ﬁz — 2FF + F*)dF

- [p(F)F? df - 2F [p(B)EdE + F?
—_——
=V(F) + [E(F)]* 2F E(F) + F?
=V(F) + [F-E(F)]?
| —
= variance + bias®. 2)

In light of (2), one way to try to reduce expected
quadratic error is to modify an estimator to trade-off
bias and variance. Some of the most famous applica-
tions of such bias-variance trade-offs occur in para-
metric machine learning, where many techniques have
been developed to exploit the trade-off. Nonetheless,
the trade-off also arises in many other fields, includ-
ing integral estimation and optimization. In the rest
of this paper we present a few novel applications of
bias-variance trade-off, and describe some interesting
features in each case. A recurring theme is the fol-
lowing: whenever a bias-variance trade-off arises in
a particular field, we can use many techniques from
parametric machine learning that have been devel-
oped for exploiting this trade-off. See Wolpert and Raj-
narayan (2007) for further details of many of these
applications.

Applications

In this section, we describe some applications of the
bias-variance tradeoft. First, we describe Monte Carlo
(MC) techniques for the estimation of integrals, and
provide a brief analysis of bias-variance trade-offs in
this context. Next, we introduce the field of Monte
Carlo optimization (MCO), and illustrate that there
are more subtleties involved than in simple MC. Then,
we describe the field of parametric machine learn-
ing, which, as will show, is formally identical to MCO.
Finally, we describe the application of parametric learn-
ing (PL) techniques to improve the performance of
MCO algorithms. We do this in the context of an MCO
problem that addresses black-box optimization.

Monte Carlo methods are often the method of choice for
estimating difficult high-dimensional integrals. Con-
sider a function f: X — R, which we want to integrate
over some region X’ ¢ X, yielding the value F, as given

by
F:fdef(x).

We can view this as a random variable F, with den-
sity function given by a Dirac delta function centered
on F. Therefore, the variance of F is 0, and (2) is
exact.

Bias-Variance Trade-offs: Novel Applications

103

A popular MC method to estimate this integral
is importance sampling (see Robert & Casella, 2004).
This exploits the law of large numbers as follows: i.i.d.
samples x(,i=1,...,m are generated from a so-called
importance distribution h(x) that we control, and the
associated values of the integrand, f(x()) are com-

puted. Denote these “data” by

D= {(xD,f(xD),i=1,...,m}. 3)

Now,

_ f(x)
F= f ah(y 05

x()
Zf(

with probability 1.

m—>oo m

Denote by F the random variable with value given
by the sample average for D:

»-I-P

1
m;

We use E as our statistical estimator for F, as we
broadly described in the introductory section. Assum-
ing a quadratic loss function, L(F,F) = (F - F)2, the
bias-variance decomposition described in (2) applies
exactly. It can be shown that the estimator F is unbiased,
that is, E(F) = F, where the mean is over samples of h.
Consequently, the MSE of this estimator is just its vari-
ance. The choice of sampling distribution 4 that min-
imizes this variance is given by (see Robert & Casella,
2004)

_ el
fx If (x")| dx””

By itself, this result is not very helpful, since the
equation for the optimal importance distribution con-
tains a similar integral to the one we are trying to
estimate. For non-negative integrands f (x), the VEGAS
algorithm (Lepage, 1978) describes an adaptive method
to find successively better importance distributions, by
iteratively estimating F, and then using that estimate
to generate the next importance distribution A. In the
case of these unbiased estimators, there is no trade-
off between bias and variance, and minimizing MSE is
achieved by minimizing variance.

h*(x) =

Instead of a fixed integral to evaluate, consider a para

= fX dxfo(x).

Further, suppose we are interested in finding the value
of the parameter 6 € © that minimizes F(0):

metrized integral

0" = argrgleler)lF(G).

In the case where the functional form of fy is not
explicitly known, one approach to solve this problem
is a technique called MCO (see Ermoliev & Norkin,
1998), involving repeated MC estimation of the inte-
gral in question with adaptive modification of the
parameter 6.

We proceed by analogy to the case with MC. First,
we introduce the 6-indexed random variable F(0),
all of whose components have delta-function distri-
butions about the associated values F(0). Next, we
introduce a 0-indexed vector random variable F with
values

F={F(8)V0ecO}. (4)

Each real-valued component F(6) can be sampled and
viewed as an estimate of F(6).

For example, let D be a data set as described in
(3). Then for every 6, any sample of D provides an
associated estimate

; z, fo(xU))

F (9) - Z h (x()

That average serves as an estimate of F(6). Formally,
F is a function of the random variable D, and is given
by such averaging over the elements of D. So, a sam-
ple of D provides a sample of F. A priori, we make no
restrictions on E, and so, in general, its components
may be statistically coupled with one another. Note that
this coupling arises even though we are, for simplicity,
treating each function F(8) as having a delta-function
distribution, rather than as having a non-zero variance
that would reflect our lack of knowledge of the f(0)
functions.

104

Bias-Variance Trade-offs: Novel Applications

However F is defined, given a sample of F, one way
to estimate 0~ is

0 = in F(6).
arg min £(6)

We call this approach “natural” MCO. As an example,
say that D is a set of m samples of h, and let

as above. Under this choice for F,

Ax _ .1 mf9(x(i))
0 =angin 3

(5)

We call this approach “naive” MCO.

Consider any algorithm that estimates 6* as a
single-valued function of F. The estimate of 6* pro-
duced by that algorithm is itself a random variable,
since it is a function of the random variable F. Call this
random variable Q*, taking on values 6*. Any MCO
algorithm is defined by § ", that random variable encap-
sulates the output estimate made by the algorithm.

To analyze the error of such an algorithm, con-
sider the associated random variable given by the true
parametrized integral F(Q*). The difference between a
sample of F(Q*) and the true minimal value of the inte-
gral, F(6*) = ming F(0), is the error introduced by
our estimating that optimal 0 as a sample of Q*. Since
our aim in MCO is to minimize F(0), we adopt the
loss function L(Q*,G*) S F(Q*) — F(6*). This is in
contrast to our discussion on MC integration, which
involved quadratic loss. The current loss function just
equals F(Q*) up to an additive constant F(6*) that
is fixed by the MCO problem at hand and is beyond
our control. Up to that additive constant, the associated
expected loss is

E(L) = f 40" p(0*)E(8"). (6)

Now change coordinates in this integral from the val-
ues of the scalar random variable Q " to the values of the
underlying vector random variable F. The expected loss
now becomes

E(L) = f dE p(BYF(§* ().

The natural MCO algorithm provides some insight
into these results. For that algorithm,

E(L) = f de(F)F(argmeinP(G))
:fdf:(ﬂl)df:(ﬂz)...p(ﬁ(el),ﬁ(ez),...)
F(argmeinf:(ﬁ)). (7)

For any fixed 0, there is an error between samples of
F(0) and the true value F(). Bias-variance consider-
ations apply to this error, exactly as in the discussion
of MC above. We are not, however, concerned with
F for a single component 6, but rather for a set ®
of Os.

The simplest such case is where the components
of F(®) are independent. Even so, argming F(6) is
distributed according to the laws for extrema of mul-
tiple independent random variables, and this distri-
bution depends on higher-order moments of each
random variable F(6). This means that E[L] also
depends on such higher-order moments. Only the first
two moments, however, arise in the bias and variance
for any single 0. Thus, even in the simplest possible case,
the bias-variance considerations for the individual 6 do
not provide a complete analysis.

In most cases, the components of F are not indepen-
dent. Therefore, in order to analyze E[L], in addition to
higher moments of the distribution for each 8, we must
now also consider higher-order moments coupling the
estimates F'(0) for different 6.

Due to these effects, it may be quite acceptable
for all the components F(8) to have both a large
bias and a large variance, as long as they still order
the 0s correctly with respect to the true F(6). In
such a situation, large covariances could ensure that
if some F(6) were incorrectly large, then F(6"),6’#6
would also be incorrectly large. This coupling between
the components of F would preserve the ordering
of 0’s under F. So, even with large bias and vari-
ance for each 6, the estimator as a whole would still
work well.

Nevertheless, it is sufficient to design estimators
F(0) with sufficiently small bias plus variance for each
single 6. More precisely, suppose that those terms are
very small on the scale of differences F(8) — F(0)
for any 6 and 0’. Then by Chebychev’s inequality,

Bias-Variance Trade-offs: Novel Applications

105

we know that the density functions of the random
variables F(8) and £(8’) have almost no overlap.
Accordingly, the probability that a sample of F(6) -
F(6') has the opposite sign of F(6) — F(8') is
almost zero.

Evidently, E[L] is generally determined by a compli-
cated relationship involving bias, variance, covariance,
and higher moments. Natural MCO in general, and
naive MCO in particular, ignore all of these effects, and
consequently, often perform quite poorly in practice. In
the next section we discuss some ways of addressing this
problem.

There are many versions of the basic MCO prob-
lem described in the previous section. Some of the
best-explored arise in parametric density estimation
and parametric supervised learning, which together
comprise the field of parametric machine learning
(PL).

In particular, parametric supervised learning
attempts to solve

argmin [dxp(x) [dyp(y|0fa().

Here, the values x represent inputs, and the values y rep-
resent corresponding outputs, generated according to
some stochastic process defined by a set of conditional
distributions {p(y | x), x € X'}. Typically, one tries to
solve this problem by casting it as an MCO problem. For
instance, say we adopt a quadratic loss between a pre-
dictor zg(x) and the true value of y. Using MCO nota-
tion, we can express the associated supervised learning
problem as finding arg ming F(0), where

() = [drp(r]) (z0(x))2,
fo(x) = p(x) lo(x),
F(0) = [dxfa(). ®)
Next, the argmin is estimated by minimizing a
sample-based estimate of the F(6)’s. More precisely, we
are given a “training set” of samples of p(y | x) p(x),

{(x(D,y")i =1,...,m}. This training set provides a set of
associated estimates of F(6):

B0)= - 31 ().

These are used to estimate arg ming F(6), exactly as in
MCO. In particular, one could estimate the minimizer
of F(9) by finding the minimum of F(), just as in nat-
ural MCO. As mentioned above, this MCO algorithm
can perform very poorly in practice. In PL, this poor
performance is called “overfitting the data”

There are several formal approaches that have been
explored in PL to try to address this “overfitting the
data” Interestingly, none are based on direct consider-
ation of the random variable F(8* (F)) and the rami-
fications of its distribution for expected loss (cf. (7)).
In particular, no work has applied the mathematics of
extrema of multiple random variables to analyze the
bias-variance-covariance trade-offs encapsulated in (7).

The PL approach that perhaps comes closest to such
direct consideration of the distribution of F(6 .) is uni-
form convergence theory, which is a central part of com-
putational learning theory (see Angluin, 1992). Uniform
convergence theory starts by crudely encapsulating the
quadratic loss formula for expected loss under natu-
ral MCO (7). It does this by considering the worst-case
bound, over possible p(x) and p(y | x), of the proba-
bility that F(6") exceeds ming F(0) by more than «. It
then examines how that bound varies with «. In partic-
ular, it relates such variation to characteristics of the set
of functions {fy : 6 € @}, e.g., the “VC dimension” of
that set (see Vapnik, 1982, 1995).

Another, historically earlier approach, is to apply
bias-plus-variance considerations to the entire PL algo-
rithm @, rather than to each F (0) separately. This
approach is applicable for algorithms that do not use
natural MCO, and even for non-parametric supervised
learning. As formulated for parameteric supervised
learning, this approach combines the formulas in (8) to
write

F(8) = [dxdy p(x)p(y |) (z0(x) -)™
This is then substituted into (6), giving
E[L] = [40 dxdy p(x) ply | %) p(0°) (2. () -)?
- [axp)| [46 ayp(p(y 1 20p(6°)
(25 (x) - »)*]. ©)

The term in square brackets is an x-parameterized
expected quadratic loss, which can be decomposed into

106

Bias-Variance Trade-offs: Novel Applications

a bias, variance, etc., in the usual way. This formula-
tion eliminates any direct concern for issues like the
distribution of extrema of multiple random variables,
covariances between F(6) and F(0') for different values
of 0, and so on.

There are numerous other approaches for address-
ing the problems of natural MCO that have been
explored in PL. Particularly important among these
are Bayesian approaches, e.g., Buntine and Weigend
(1991), Berger (1985), and Mackay (2003). Based on
these approaches, as well as on intuition, many pow-
erful techniques for addressing data-overfitting have
been explored in PL, including regularization, cross-
validation, stacking, bagging, etc. Essentially all of
these techniques can be applied to any MCO prob-
lem, not just PL problems. Since many of these tech-
niques can be justified using (9), they provide a way
to exploit the bias-variance trade-off in other domains
besides PL.

In this section, we illustrate how PL techniques that
exploit the bias-variance decomposition of (9) can be
used to improve an MCO algorithm used in a domain
outside of PL. This MCO algorithm is a version of adap-
tive importance sampling, somewhat similar to the CE
method (Rubinstein & Kroese, 2004), and is related
to function smoothing on continuous spaces. The PL
techniques described are applicable to any other MCO
problem, and this particular one is chosen just as an
example.

MCO Problem Description The problem is to find the
0-parameterized distribution gy that minimizes the

associated expected value of a function G:R"—R,
ie., find

arg mein Eq, [G].

We are interested in versions of this problem where we
do not know the functional form of G, but can obtain
its value G(x) at any x € X. Similarly we cannot assume
that G is smooth, nor can we evaluate its derivatives
directly. This scenario arises in many fields, includ-
ing blackbox optimization (see Wolpert, Strauss, &
Rajnarayan, 2006), and risk minimization (see Ermoliev
& Norkin, 1998).

We begin by expressing this minimization problem
as an MCO problem. We know that

E,,[G] = [drgo(x)G(x)

Using MCO terminology, fo(x)=g¢(x)G(x) and F(6)=
Eg,[G]. To apply MCO, we must define a vector-
valued random variable F with components indexed
by 60, and then use a sample of F to estimate
argming Eg,[G]. In particular, to apply naive MCO to
estimate argming E,, (G), we first i.i.d. sample a den-
sity function h(x). By evaluating the associated values
of G(x) we get a data set

D= (Dx,Dg)
=({xD:i=1,...,mL{G(xD):i=1,...,m}).

The associated estimates of F(8) for each 6 are

R 1 2 qo(xD)G(x(D)
F(0)z— > ————= 10

O & ha) 1
The associated naive MCO estimate of arg ming E,,[G]
is

A

0" = argmainf:(e).

Suppose © includes all possible density functions
over x’s. Then the gg minimizing our estimate is a delta
function about the x() € Dy with the lowest asso-
ciated value of G(x")/h(x("). This is clearly a poor
estimate in general; it suffers from “data-overfitting”
Proceeding as in PL, one way to address this data-
overfitting is to use regularization. In particular, we can
use the entropic regularizer, given by the negative of the
Shannon entropy S(gs). So we now want to find the
minimizer of Eg, [G(x)] - TS(qg), where T is the reg-
ularization parameter. Equivalently, we can minimize
BE4,[G(x)] - S(q¢), where f = 1/T. This changes the
definition of F from the function given in (10) to

. m DY G(£
HOE % ; ﬁ%(;(x()i)G)(x)

- S(qe)-

Solution Methodology Unfortunately, it can be difficult
to find the 6 globally minimizing this new F for an arbi-
trary D. An alternative is to find a close approximation

Bias-Variance Trade-offs: Novel Applications

107

to that optimal 8. One way to do this is as follows. First,
we find minimizer of

Z Br(x)G(x")

P ((z)) _S(P) (11)

over the set of all possible distributions p(x) with
domain X. We then find the gy that has minimal
Kullback-Leibler (KL) divergence from this p, evalu-
ated over Dy. That serves as our approximation to
argming F(0), and therefore as our estimate of the 6
that minimizes E,, (G).

The minimizer p of (11) can be found in closed form;
over Dy it is the Boltzmann distribution pf(x()) o
exp(—B G(x(")). The KL divergence in Dy from this
Boltzmann distribution to gg is

B(x
F(0) = KL(p*lgo) = [dep () 1°g(ge§x§)

The minimizer of this KL divergence is given by

of = argmm 21: eXP(h(ﬁ?g’)C)) log(ge (x)).

(12)
This approach is an approximation to a regularized ver-
sion of the naive MCO estimate of the 6 that minimizes
[E4, (G). The application of the technique of regulariza-
tion in this context has the same motivation as it does
in PL: to reduce bias plus variance.

Log-Concave Densities If gy is log-concave in its
parameters 0, then the minimization problem in (12) is
a convex optimization problem, and the optimal param-
eters can be found closed-form. Denote the likelihood
ratios by s() = exp(-pG(x(?))/h(xD). Differentiating
(12) with respect to the parameters g and ' and setting
them to zero yields

RO RO
wo= Yp s
g TpsG0))T

Yp s

Mixture Models The single Gaussian is a fairly restric-
tive class of models. Mixture models (see »Mixture
Modeling) can significantly improve flexibility, but at

the cost of convexity of the KL distance minimiza-
tion problem. However, a plethora of techniques from
supervised learning, in particular the expectation max-
imization (EM) algorithm, can be applied with minor
modifications.

Suppose gg is a mixture of M Gaussians, that is,
0 = (4, %, ¢) where ¢ is the mixing p.m.f, we can view
the problem as one where a hidden variable z decides
which mixture component each sample is drawn from.
We then have the optimization problem

pG") |
h(())

g(qg(x(i),z(i))).

minimize — Z

Following the standard EM procedure, we get the algo-
rithm described in (13). Since this is a nonconvex prob-
lem, one typically runs the algorithm multiple times
with random initializations of the parameters.

E-step: For each i, set Q;(z)) = p(z"|x("),
that is, ()—q Z¢(z()—]|x()) j=L...,M.

Y W]@S(i) x()
M-step: Set pj= ———————

Xp w](i)s(i)
D i LG N
7" () (i :
>p w; s()
>p Wj(i)s(i)
T Sps®

Test Problems To compare the performance of this
algorithm with and without the use of PL techniques,
we use a couple of very simple academic problems in
two and four dimensions - the Rosenbrock function in
two dimensions, given by

Gr(x) =100(x; - x7)* + (1-x1)%

and the Woods function in four dimensions, given by
given by

Gwoods (%) =100(x2 = x1)* + (1-x1)* + 90(x4 — x3)°
+(1-x3)*
+101[(1- %)%+ (1-x4)?]
+19.8(1-x2)(1—xy4).

108

Bias-Variance Trade-offs: Novel Applications

For the Rosenbrock, the optimum value of 0 is achieved
at x = (1,1), and for the Woods problem, the optimum
value of 0 is achieved at x = (1,1,1,1).

Application of PL Techniques As mentioned above,
there are many PL techniques beyond regularization
that are designed to optimize the trade-off between
bias and variance. So having cast the solution of
argming, E(G) as an MCO problem, we can apply
those other PL techniques instead of (or in addition to)
entropic regularization. This should improve the perfor-
mance of our MCO algorithm, for the exact same reason
that using those techniques to trade off bias and vari-
ance improves performance in PL. We briefly mention
some of those alternative techniques here.

The overall MCO algorithm is broadly described in
Algorithm 1. For the Woods problem, 20 samples of x
are drawn from the updated gy at each iteration, and
for the Rosenbrock, 10 samples. For comparing various
methods and plotting purposes, 1,000 samples of G(x)
are drawn to evaluate E,,[G(x)]. Note: in an actual
optimization, we will not be drawing these test sam-
ples! All the performance results in Fig. 1 are based on
50 runs of the PC algorithm, randomly initialized each
time. The sample mean performance across these runs
is plotted along with 95% confidence intervals for this
sample mean (shaded regions).

» Cross-Validation for Regularization: We note that we
are using regularization to reduce variance, but that reg-
ularization introduces bias. As is done in PL, we use
standard k-fold cross-validation to tradeoff this bias and

Algorithm 1 Overview of pq minimization using
Gaussian mixtures

1: Draw uniform random samples on X
2: Initialize regularization parameter f3
3: Compute G(x) values for those samples
4: repeat
5. Find a mixture distribution gy to minimize sam-
pled pq KL distance
Sample from gg
Compute G(x) for those samples
Update 8
until Termination
10: Sample final gg to get solution(s).

¥ 2 N2

variance. We do this by partitioning the data into k dis-
joint sets. The held-out data for the ith fold is just the
ith partition, and the held-in data is the union of all
other partitions. First, we “train” the regularized algo-
rithm on the held-in data D; to get an optimal set of
parameters 8%, then “test” this 6" by considering unreg-
ularized performance on the held-out data D,. In our
context, “training” refers to finding optimal parameters
by KL distance minimization using the held-in data, and
“testing” refers to estimating 4, [G(x)] on the held-
out data using the following formula (Robert & Casella,
2004).

q0(x)G(x)
h(x®)

%(x(i))
; h(x(®)

HOEE

We do this for several values of the regularization
parameter f in the interval k18 < 8 < k3, and choose
the one that yield the best held-out performance, aver-
aged over all folds. For our experiments, k; = 0.5, k; = 3,
and we use five equally-spaced values in this interval.
Having found the best regularization parameter in this
range, we then use all the data to minimize KL dis-
tance using this optimal value of . Note that all cross-
validation is done without any additional evaluations of
G(x). Cross-validation for 8 in PC is similar to opti-
mizing the annealing schedule in simulated annealing.
This “auto-annealing” is seen in Fig. 1a, which shows the
variation of with iterations of the Rosenbrock prob-
lem. It can be seen that f§ value sometimes decreases
from one iteration to the next. This can never happen
in any kind of “geometric annealing schedule <«
kgpB, kg > 1, of the sort that is often used in most
algorithms in the literature. In fact, we ran 50 trials of
this algorithm on the Rosenbrock and then computed
a best-fit geometric variation for 8, that is, a nonlin-
ear least squares fit to variation of 3, and a linear least
squares fit to the variation of log(/3). These are shown
in Fig. Ic and d. As can be seen, neither is a very good
fit. We then ran 50 trials of the algorithm with the fixed
update rule obtained by best-fit to log(f3), and found
that the adaptive setting of 8 using cross-validation
performed an order of magnitude better, as shown in
Fig. le.

Bias-Variance Trade-offs: Novel Applications

109

Cross-validation for p: log(p) History.

= o
5 w
° >
k]
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Iteration Iteration
a b
4 x10° Least-squares Fit to 8 10 10° Least-squares Fit to log(f)
T T
3l B, = 1.809e+00 r B, =1.240e-03
oo ky=1548 : « 5 k=832 | - |
1
0 0
0 10 20 30 40 50 0 10 20 30 40 50
Iteration Iteration

Iteration Iteration

Cross-validation for Regularization: Woods Problem. Cross-validation for Model-selection:2-D Rosenbrock

4.5 - iy 4

A Bestit p
B Cross-validation forp *

0.5 -
0 10 20 30 40 50 10
Iteration Iteration
e f
. Bagging: Noisy Rosenbrock. Model Selection Methods: Noisy Rosenbrock.
A No bagging & Single gaussian
! 8 Bagging B Cross-validation
3l | 3| @ Stacking
2 2|
G G
w1 o1
= =
o k]
0 ol
1 =y
i i |
5 2 i . . H |
0 5 10 15 20 25 0 5 10 15 20 25
Iteration Iteration
g h

Bias-Variance Trade-offs: Novel Applications. Figure 1. Various PL techniques improve MCO performance

110

Bias-Variance Trade-offs

Cross-Validation for Model Selection: Given a set ®
(sometimes called a model class) to choose 0 from, we
can find an optimal 6 € ®. But how do we choose the set
©?In PL, this is done using cross-validation. We choose
that set @ such that arg ming.e F(8) has the best held-
out performance. As before, we use that model class
O that yields the lowest estimate of E;,[G(x)] on the
held-out data. We demonstrate the use of this PL tech-
nique for minimizing the Rosenbrock problem, which
has a long curved valley that is poorly approximated
by a single Gaussian. We use cross-validation to choose
between a Gaussian mixture with up to four compo-
nents. The improvement in performance is shown in
Fig. 1d.

Bagging: In bagging (Breiman, 1996a), we generate mul-
tiple data sets by resampling the given data set with
replacement. These new data sets will, in general, con-
tain replicates. We “train” the learning algorithm on
each of these resampled data sets, and average the
results. In our case, we average the gy got by our KL
divergence minimization on each data set. PC works
even on stochastic objective functions, and on the
noisy Rosenbrock, we implemented PC with bagging by
resampling ten times, and obtained significant perfor-
mance gains, as seen in Fig. 1g.

Stacking: In bagging, we combine estimates of the same
learning algorithm on different data sets generated
by resampling, whereas in stacking (Breiman, 1996b;
Smyth & Wolpert, 1999), we combine estimates of dif-
ferent learning algorithms on the same data set. These
combined estimated are often better than any of the sin-
gle estimates. In our case, we combine the gg obtained
from our KL divergence minimization algorithm using
multiple models ®. Again, Fig. 1h shows that cross-
validation for model selection performs better than a
single model, and stacking performs slightly better than
cross-validation.

Conclusions

The conventional goal of reducing bias plus variance
has interesting applications in a variety of fields. In
straightforward applications, the bias-variance trade-
offs can decrease the MSE of estimators, reduce the
generalization error of learning algorithms, and so
on. In this article, we described a novel application
of bias-variance trade-offs: we placed bias-variance

trade-offs in the context of MCO, and discussed the
need for higher moments in the trade-off, such as a
bias-variance-covariance trade-off. We also showed a
way of applying just a bias-variance trade-off, as used
in Parametric Learning, to improve the performance of
MCO algorithms.

Recommended Reading

Angluin, D. (1992). Computational learning theory: Survey and
selected bibliography. In Proceedings of the twenty-fourth
annual ACM symposium on theory of computing. New York:
ACM.

Berger, J. O. (1985). Statistical decision theory and bayesian analysis.
New York: Springer.

Breiman, L. (1996a). Bagging predictors. Machine Learning, 24(2),
123-140.

Breiman, L. (1996b). Stacked regression. Machine Learning, 24(1),
49-64.

Buntine, W., & Weigend, A. (1991). Bayesian back-propagation.
Complex Systems, 5, 603-643.

Ermoliev, Y. M., & Norkin, V. I. (1998). Monte carlo optimization and
path dependent nonstationary laws of large numbers. Technical
Report IR-98-009. International Institute for Applied Systems
Analysis, Austria.

Lepage, G. P. (1978). A new algorithm for adaptive multidi-
mensional integration. Journal of Computational Physics, 27,
192-203.

Mackay, D. (2003). Information theory, inference, and learning algo-
rithms. Cambridge, UK: Cambridge University Press.

Robert, C. P, & Casella, G. (2004). Monte Carlo statistical methods.
New York: Springer.

Rubinstein, R., & Kroese, D. (2004). The cross-entropy method. New
York: Springer.

Smyth, P, & Wolpert, D. (1999). Linearly combining den-
sity estimators via stacking. Machine Learning, 36(1-2),
59-83.

Vapnik, V. N. (1982). Estimation of dependences based on empirical
data. New York: Springer.

Vapnik, V. N. (1995). The nature of statistical learning theory. New
York: Springer.

Wolpert, D. H. (1997). On bias plus variance. Neural Computation,
9, 1211-1244.

Wolpert, D. H., & Rajnarayan, D. (2007). Parametric learning and
monte carlo optimization. arXiv:0704.1274v1 [cs.LG].

Wolpert, D. H., Strauss, C. E. M., & Rajnarayan, D. (2006).
Advances in distributed optimization using proba-
bility collectives. Advances in Complex Systems, 9(4),
383-436.

|
Bias-Variance Trade-offs

» Bias-Variance

Biological Learning: Synaptic Plasticity, Hebb Rule and Spike Timing Dependent Plasticity

m

| Bias-Variance-Covariance
Decomposition

The bias-variance-covarianc delcomposition is a
theoretical result underlying Pensemble learning
algorithms. It is an extension of the Mbias-variance
decomposition, for linear combinations of models. The
expected squared error of the ensemble f(x) from a

target d is:

- —2 1 1
Ep{(f(x) -d)*} = bias. + ?W+ (1 - T)covar.

The error is composed of the average bias of the
models, plus a term involving their average variance,
and a final term involving their average pairwise covari-
ance. This shows that while a single model has a two-
way bias-variance tradeoff, an ensemble is controlled
by a three-way tradeoft. This ensemble tradeoft is often
referred to as the accuracy-diversity dilemma for an
ensemble. See »-ensemble learning for more details.

[oere . .
Bilingual Lexicon Extraction

Bilingual lexicon extraction is the task of automatically
identifying a terms in a first language and terms in a
second language which are translation f one another. In
this context, a term can be either a single word or an
expression composed of several words the full mean-
ing of which cannot be derived compositionally from
the meaning of the individual words. Bilingual lexi-
con extraction is itself a form of »cross-lingual text
mining and is an essential preliminary step in many
approaches for performing other »cross-lingual text
mining tasks.

! Binning

» Discretization

! Biological Learning: Synaptic
Plasticity, Hebb Rule and Spike
Timing Dependent Plasticity

WULFRAM GERSTNER
Brain Mind Institute, Lausanne EPFL, Switzerland

Synonyms
Correlation-based learning;
learning

Hebb rule; Hebbian

Definition

The brain of humans and animals consists of a large
number of interconnected neurons. Learning in biolog-
ical neural systems is thought to take place by changes in
the connections between these neurons. Since the con-
tact points between two neurons are called synapses,
the change in the connection strength is called synap-
tic plasticity. The mathematical description of synaptic
plasticity is called a (biological) learning rule. Most
of these biological learning rules can be categorized
in the context of machine learning as unsupervised
learning rules, and the remaining ones as reward-
based or reinforcement learning. The Hebb rule is an
example of an unsupervised correlation-based learning
rule formulated on the level of neuronal firing rates.
Spike-timing-dependent plasticity (STDP) is an unsu-
pervised learning rule formulated on the level of spikes.
Modulation of learning rates in a Hebb rule or STDP
rule by a diffusive signal carrying reward-related infor-
mation yields a biologically plausible form of a rein-
forcement learning rule.

Motivation and Background

Humans and animals can adapt to environmental con-
ditions and learn new tasks. Learning becomes measur-
able by changes in the behavior: humans and animals
get better at seeing and distinguishing visual objects
with experience; animals can learn to go to a targetloca-
tion; humans can memorize a list of words and recall the
items 2 days later. How learning is implemented in the
biological substrate is only partially known.

The brain consists of billions of neurons. Each neu-
ron has long wire-like extensions and makes contacts
with thousands of other neurons. This network of neu-
rons is not fixed but constantly changes. Connections

12

Biological Learning: Synaptic Plasticity, Hebb Rule and Spike Timing Dependent Plasticity

can be formed or can disappear, and existing connec-
tions can be strengthened or weakened. Neuroscientists
have shown in numerous experiments that changes can
be induced by stimulating neuronal activity in an appro-
priate fashion. Moreover, changes in synaptic connec-
tions that have been induced in one or a few seconds
can persist for hours or days, an effect called long-term
potentiation (LTP) or long-term depression (LTD) of
synapses.

The question arises of whether such long-lasting
changes in connections are useful for learning. To
answer this question, research in theoretical and com-
putational neuroscience needs to solve two problems:
First, develop a compact but realistic description of the
phenomenon of synaptic plasticity observed in biol-
ogy, i.e., extract learning rules from the biological data;
and second, study the functional consequences of these
learning rules. An important insight from experiments
on LTP is that the activation of a synaptic connection
alone does not lead to a long-lasting change; however,
if the activation of the synapses by presynaptic signals
is combined with some activation of the postsynaptic
neuron, then a long-lasting change of the synapse may
occur. The coactivation of presynaptic and postsynaptic
neurons as a condition for learning is the key ingredient
of Hebbian learning rules. Here, activation of the presy-
naptic neuron means that it fires one or several action
potentials; activation of the postsynaptic neuron can be
represented by high firing rates, a few well-timed action
potentials or input from other neurons that lead to an
increase in the membrane voltage.

Structure of the Learning System

Hebbian learning rules are local, i.e., they depend only
on the state of the presynaptic and postsynaptic neurons
plus possibly the current value of the synaptic weight
itself. Let w;; denotes the weight between a presynaptic
neuron j and a postsynaptic neuron i, and let us describe
the activity (e.g., the firing rate) of each neuron by a con-
tinuous variable v; and v;, respectively. Mathematically,
we may therefore write for a local learning rule

d

Vi = F(wij; vi vj) ey
where F is an unknown function. In addition to locality,
Hebbian learning requires some kind of cooperation or

correlation between the activity of the presynaptic neu-
ron and that of the postsynaptic neuron. At the moment
we restrict ourselves to the requirement of simultaneous
activity of presynaptic and postsynaptic neurons. Since
F is a function of the rates v; and v;, we may expand F
about v; = v; = 0. An expansion to second order of the
rates yields

pOSt

—wij(t) = co(wij) + cfre(w,-j) Vit

dt (wg)vi

(Wij) Viz

+ 5 (wyy) vj2 +0(v?). (2)

corr post
+657 (wij) vivi + 6

Here, v; and v; are functions of time, i.e., v;(¢) and v;(t)
and so is the weight w;;. The bilinear term v;(t) v;(t)
is sensitive to the instantaneous correlations between
presynaptic and postsynaptic activities. It is this term
that makes Hebbian learning a useful concept. The sim-
plest implementation of Hebbian plasticity would be to
require ¢5°™ > 0 and set all other parameters in the
expansion (2) to zero

*ij = C;orr(wzj) Vi Vj . (3)
dt
corr

Equation (3) with fixed parameter ¢5°* > 0 is the pro-
totype of Hebbian learning. However, since the activity
variables v; and v; are always positive, such a rule will
lead eventually to an increase of all weights in a network.
Hence, some of the other terms (e.g., ¢y or ¢}) need
to have a negative coefficient to make Hebbian learn-
ing stable. In passing we note that a learning rule with
¢5°"" < 0 is usually called anti-Hebbian.

Oja’s rule. A particular interesting case is a model
with coefficients ¢5°""
tees the normalization of the set of weights wj, ... win
converging onto the same postsynaptic neuron i.

BCM rule. The Bienenstock-Cooper-Munro learn-

ing rule (also called BCM rule) with

t . .
> 0and ¢ <0, since it guaran-

%W,‘j =a(wij)®(vi—9) Vj (4)
where @ is some nonlinear function with ®(0) = 0 is
a special case of (1). The parameter 9 depends on the
average firing rate.

Temporally asymmetric Hebbian learning. In the
Taylor expansion (2) we focused on instantaneous cor-
relations. More generally, we can use a Volterra expan-
sion so as to also include temporal correlations with

Biological Learning: Synaptic Plasticity, Hebb Rule and Spike Timing Dependent Plasticity

13

nonzero time lag. With the additional assumptions that
changes are instantaneous, a Volterra expansion gener-
ates terms of the form

%w,,. o fom[m(s)v,-(t) vi(t-s)
+ W_(s)vj(t) vi(t —s)]ds (5)

with some functions W, and W_. For reasons of causal-
ity, W, and W_ must vanish for s < 0. Since W, (s) #
W_(s), learning is asymmetric in time so that learning
rules of the form (5) are called temporally asymmetric
Hebbian learning. In the special case W, (s) = —W_(s),
we have antisymmetric Hebbian learning. The func-
tions W, and W_ may depend on the present weight
value.

STDP rule. STDP is a form of Hebbian learning
with increased temporal resolution. In contrast to rate-
based Hebb models, neuronal activity is described by
the firing times of the neuron, i.e., the moments when
the presynaptic and postsynaptic neurons emit action
potentials. Let tjf denote the fth spike of the presynaptic
neuron j and ¢! the nth spike of the postsynaptic neu-
ron i. The weight change in an STDP rule depends on
the exact timing of presynaptic and postsynaptic spikes

d
Vi = > [A(wyst - tjf)é\(t— t')

nf

+Bwyst—])8(t—t))] (6)

where A(x) and B(x) are some real-valued functions
with A(wjj,x) = B(wjj,x) = 0 for x < 0. Thus, at the
moment of a postsynaptic spike the synaptic weight is
updated by an amount that depends on the time tif —tjf
since a previous presynaptic spike tjf . Similarly, at the
moment of a presynaptic spike the synaptic weight is
updated by an amount that depends on the time tjf -
tf

dence on the present value w;; can be used to keep

since a previous postsynaptic spike tlf . The depen-

the weight in a desired range 0 < w;; < w™**. A standard
choice for the functions A and B is A(wy;);t - tjf =
Ay (wij) exp[—(t - tjf)/u] for t — tjf > 0 and zero oth-
erwise. Similarly, B(wij;t — t]') = B_(w;;)exp[—(t -
) /r_] for t - tlf > 0 and zero otherwise. Here, 7,
and 7_ are time constants in the range of 10-50 ms. The
case A, (x) = (W™ — x) ¢, and B,(x) = — c_x is called

soft bounds. The choice A, (x)=c;O(w™* — x) and
B, =-c_0O(x) is called hard bounds. Here, ¢, and c_ are
positive constants. The term proportional to A, causes
potentiation (weight increase), the one proportional to
A_ causes depression (weight decrease) of synapses.
Note that the STDP rule (6) can be interpreted as a
spike-based form of temporally asymmetric Hebbian
learning.

Sensitivity to correlations. All Hebbian learning rules are
sensitive to the correlations between the activity of the
presynaptic neuron j and that of the postsynaptic neu-
ron i. If the activity of the postsynaptic neuron is given
by a linear sum of all inputs rates, i.e., vi = y ¥; wivj,
then correlations between presynaptic and postsynap-
tic activities can be traced back to correlations in the
input. A particular clear example of learning driven by
correlations in the input is Oja’s learning rule applied to
a statistical ensemble of inputs with zero mean. In this
case, the postsynaptic neuron becomes sensitive to the
dominant principal component of the input ensemble.
If the neuron model is nonlinear, Hebbian learning
extracts the independent components of the statistical
input ensemble. These two examples show that learn-
ing by a Hebbian learning rule makes neurons adapt
to the statistics of the input. While the condition of
zero-mean input is biologically not realistic (because
neuronal firing rates are always positive), this condition
can be relaxed so that the same result is also applicable
to biologically plausible learning rules.

Receptive fields and cortical maps. Neurons in the
primary visual cortex of cats and monkeys respond to
visual stimuli in a localized region of the visual field.
This small sensitive zone is called the receptive field of
the neuron. Neighboring neurons normally have very
similar receptive fields. The exact location and prop-
erties of the receptive field are not fixed, but can be
influenced by sensory stimulation. Models of unsuper-
vised Hebbian learning can explain the development of
receptive fields and the adaptation of cortical maps to
the statistics of the ensemble of stimuli.

Beyond the Hebb rule. Standard models of Hebbian
learning are formulated on the level of neuronal firing
rates, a graded variable characterizing neuronal activ-
ity. However, real neurons communicate by spikes, short
electrical pulses or “action potentials” with a rather

14

Biomedical Informatics

stereotyped time course. Experiments have shown that
the changes of synaptic efficacy depend not only on the
mean firing rate of action potentials but on the rela-
tive timing of presynaptic and postsynaptic spikes on
the level of milliseconds. This Spike-Timing Dependent
Synaptic Plasticity (STDP) can be considered a tem-
porally more precise form of Hebbian learning. The
STDP rule indicated above supposes that pairs of spikes
(one presynaptic and one postsynaptic action poten-
tial) within some time window cause a weight change.
However, experimentally it was shown that at least three
spikes are necessary (one presynaptic and two postsy-
naptic spikes). Moreover, the voltage of the postsynaptic
neuron matters even in the absence of spikes.

In most models of Hebbian learning and STDP, the
factors cg,c}'“... are constant or depend only on the
synaptic weight. However, in biological context the
speed of learning is often gated by neuromodulators.
Since some of these neuromodulators contain reward-
related information, one can think of learning as a
three-factor rule where weight changes depend on
presynaptic activity, postsynaptic activity, and the pres-
ence of a reward-related factor. A prominent neuro-
modulator linked to reward information is dopamine.
Three factor learning rules fall in the class of reinforce-
ment learning algorithms.

Cross References

» Dimensionality Reduction
» Reinforcement Learning
»Self-Organizing Maps

Recommended Reading

Bliss, T., & Gardner-Medwin, A. (1973). Long-lasting potentation of
synaptic transmission in the dendate area of unanaesthetized
rabbit following stimulation of the perforant path. The Journal
of Physiology, 232, 357-374.

Bliss, T., Collingridge, G., & Morris, R. (2003). Long-term poten-
tiation: Enhancing neuroscience for 30 years - introduction.
Philosophical Transactions of the Royal Society of London. Series
B : Biological Sciences, 358, 607-611.

Cooper, L., Intrator, N., Blais, B., & Shouval, H. Z. (2004). Theory of
cortical plasticity. Singapore: World Scientific.

Dayan, P., & Abbott, L. E (2001). Theoretical Neuroscience.
Cambridge, MA: MIT Press.

Gerstner, W., & Kistler, W. K. (2002). Spiking neuron models.
Cambridgess, UK: Cambridge University Press.

Gerstner, W., Kempter, R., van Hemmen, J. L., & Wagner, H. (1996).
A neuronal learning rule for sub-millisecond temporal coding.
Nature, 383, 76-78.

Hebb, D. O. (1949). The organization of behavior. New York:
Wiley.

Lisman, J. (2003). Long-term potentiation: Outstanding questions
and attempted synthesis. Philosophical Transactions of the
Royal Society of London Series B, Biological Sciences, 358,
829-842.

Malenka, R. C., & Nicoll, R. A. (1999). Long-term potentiation-a
decade of progress? Science, 285, 1870-1874.

Markram, H., Liibke, J., Frotscher, M., & Sakmann, B. (1997). Reg-
ulation of synaptic efficacy by coincidence of postysnaptic AP
and EPSP. Science, 275, 213-215.

Schultz, W., Dayan, P., & Montague, R. (1997). A neural substrate for
prediction and reward. Science, 275, 1593-1599.

Biomedical Informatics

C. DAVID PAGE, SRIRAAM NATARAJAN
University of Wisconsin Medical School, Madison,
USA

Introduction

Recent years have witnessed a tremendous increase in
the use of machine learning for biomedical applica-
tions. This surge in interest has several causes. One
is the successful application of machine learning tech-
nologies in other fields such as web search, speech and
handwriting recognition, agent design, spatial mod-
eling, etc. Another is the development of technolo-
gies that enable the production of large amounts of
data in the time it used to take to generate a single
data point (run a single experiment). A third most
recent development is the advent of Electronic Medi-
cal/Health Records (EMRs/EHRs). The drastic increase
in the amount of data generated has led the biologists
and clinical researchers to adopt algorithms that can
construct predictive models from large amounts of data.
Naturally, machine learning is emerging as a tool of
choice.

In this article, we will present a few data types and
tasks involving such large-scale biological data, where
machine learning techniques have been applied. For
each of these data types and tasks, we first present
the required background, followed by the challenges
involved in addressing the tasks. Then, we present the
machine learning techniques that have been applied
to these data sets. Finally and most importantly, we

Biomedical Informatics

15

present the lessons learned in these tasks. We hope that
these lessons will be helpful to researchers who aim to
apply machine learning algorithms to biological appli-
cations and equip them with useful knowledge when
they collaborate with biological scientists.

Some of the data types that we present in this
work are:

o Gene expression microarrays

o SNPs and genetic data

e Mass spectrometry and other proteomic data

o High-throughput screening data for drug design

o Electronic Medical Records (EMR) and persona-
lized medicine

Some of the key lessons learned from all these data
types include the following: (1) We can often do sur-
prisingly well with far more features than data points if
there are many highly predictive features (e.g., predict-
ing cancer from microarray data) and if we use meth-
ods that are robust to overfitting such as Voted Deci-
sion Stumps (Hardin et al., 2004; Waddell et al., 2005)
(»Ensemble Learning and »Decision Stumps), »Naive
Bayes (Golub et al., 1999; Listgarten et al., 2004), or
Linear Support Vector Machines (SVMs) (see »Support
Vector Machine) (Furey et al., 2000; Hardin et al., 2004).
(2) Bayes Net learning (Friedman, 2000) (see »Bayesian
Methods) often does not give us causality, but »Active
Learning and »Time-Series data help if available (Peer,
Regev, Elidan, & Friedman, 2001; Ong, Glassner, &
Page, 2002; Tucker, Vinciotti, Hoen, Liu, & Famili, 2005;
Zou & Conzen, 2005). (3) Multi-relational methods are
useful for EMRs or molecular data as the data in these
cases are very highly relational (see »Multi-relational
Data Mining). (4) There are more important issues than
just increasing the accuracy of the learned model on
these data sets. Such issues include how data was cre-
ated, its comprehensibility (physicians typically want to
understand the model that has been learned), and its
privacy (some data sets contain private information that
cannot be posted on public web sites and cannot even be
downloaded off site).

The rest of the paper is organized as follows: First
we present gene expression microarrays, followed by
SNPs and other genetic data. We then present mass
spectrometry (MS) and related proteomic data. Next,
we present high-throughput screening data for drug

design, followed by EMR data and personalized
medicine. For each of these data types, we motivate
the problem and survey the different machine learning
solutions. Finally, we conclude by outlining the lessons
learned from all these data types and presenting some
interesting and exciting directions for future research.

Gene Expression Microarrays

This data type was presented in detail in AI Magazine
(Molla et al., 2004) and hence we will brief it in this sec-
tion. We encourage the reader to read Molla et al. (2004)
for more details on this data type. Genes are contained
in the DNA of an organism. The mechanism by which
proteins are produced from their corresponding genes
is a two-step process. The first step is the transcription
of a gene into a messenger RNA (mRNA) and in the
second step called as translation, a protein is built using
mRNA as a blueprint.

One property that DNA and RNA have in common
is that each is a chain of chemicals called as bases. In the
case of DNA, these bases are Adenine, Cytosine, Gua-
nine, and Thymine, commonly referred to as A,C, G,
and T, respectively. RNA has the same set of four bases,
except Thymine; RNA has Uracil, commonly referred
as U. An important characteristic of DNA and RNA is
complementarity, that is, each base only binds well with
its complement: A with T (or U) and G with C. As a
result of complementarity, a strand of either DNA or
RNA has a strong affinity toward what is known as its
reverse complement, which is a strand of either DNA or
RNA that has bases exactly complementary to the orig-
inal strand. Complementarity is central to the processes
of replication of the DNA and transcription.

In addition, complementarity can be used to detect
specific sequences of bases within strands of DNA and
RNA. This is done by first synthesizing a probe, a piece
of DNA that is the complement of a sequence that
one wants to detect, and then introducing this probe
to a solution containing the genetic material (DNA or
RNA) to be searched. This solution of genetic material
is called the sample. In theory, the probe will bind to
the sample if and only if the probe finds its complement
in the sample (in reality, this process is often imper-
fect). The act of binding between a sample and probe
is called hybridization. Prior to the experiment, a biol-
ogist labels the probe using a florescent flag. After the

116

Biomedical Informatics

hybridization experiment, one can easily scan to see if
the probe has hybridized to its reverse complement in
the sample. This allows the molecular biologist to deter-
mine the presence or absence of the sequence in the
sample.

DNA probe technology has been adapted for detection
of tens of thousands of sequences simultaneously. This
has become possible due to the device called a microar-
ray or gene chip, the working of which is illustrated
in Fig. 1. When using the chips it is more common to
label (luminescently) the samples than the probe. Thou-
sands of copies of this labeled sample are spread across
the probe, followed by washing away any copies that
do not remain bound. Since the probes are attached
at specific locations on the chip, if a labeled sample is
detected at any position in the chip, the probe that is
hybridized to its complement can be easily determined.
The most common use of these gene chips is to measure
the expression levels of various genes in the organism.

Probes are typically on the order of 25-bases long,
whereas samples are usually about 10 times, as long,
with a large variation due to the process that breaks up
long sequences of RNA into small samples (Molla et al.,
2004).

To understand about the biology of an organism,
say to understand human biology to design new drugs
or lower the blood pressure or to cure diabetes, there
is a necessity to understand the degree to which dif-
ferent genes get expressed as proteins under different
conditions and different cell types. It is much eas-
ier to estimate the amount of mRNA for a gene than
the protein-production rate. Microarrays provide the

N Labeled sample (RNA)
“\

Probes(DNA) - i Hybridization

Gene chip surface

Biomedical Informatics. Figure 1. Hybridization of sam-
ple to probe

measurement of RNAs corresponding to the given gene
rather than the amounts of protein.

In brief, experiments with the microarrays are per-
formed as follows: As can be seen from the figure,
probes are DNA strands attached to the gene chip sur-
face. A typical probe length is 25 bases (i.e., 25 letters
from A, C, G, T to represent a gene). There may be sev-
eral different subsequences of these 25 bases. Then the
mRNA (which is the labeled sample) is passed over the
microarrays and the mRNA will bind to the comple-
mentary DNA corresponding to the gene better than
the other DNA strings. Then the florescence levels of
the different gene chips segments are measured, which
in turn measures the amount of mRNA on that surface.
This mRNA measurement serves as a surrogate to the
expression level of the gene.

Machine Learning for Microarrays

The data from microarrays (gene chips) have been ana-
lyzed and used by machine learning researchers in two
different ways:

1. Data points are genes. This is the case where
the examples are genes while the features are the
samples (measured expression levels of a single gene
under a variety of conditions). The goal of this view
is to categorize new genes based on the current set
of examples.

2. Data points are samples (e.g., patients). This is the
case where the examples are patients and the fea-
tures are the measured expression levels of genes
under one condition.

The problems have been approached in two different
ways. In the »Unsupervised Learning approach, the
goal is to cluster the genes according to their expression
levels or to cluster the patients (samples) based on their
gene expression levels, or both. Hierarchical clustering
is especially widely applied. As one of many examples,
see Perou et al. (1999). In the »Supervised Learning set-
ting, the Class labels are the category of the genes or
the samples. The latter is the more common supervised
task, each sample being mRNA from a different patient
(with the same cell type from each patient) or an organ-
ism under different conditions to learn a model that
accurately predicts the class based on the features. The
features could be the patient’s expression values for each

Biomedical Informatics

17

gene, while the class labels might be the patients dis-
ease state. We discuss this task further in the subsequent
paragraphs.

Yet another widely studied supervised learning task
is to predict cancer vs. normal for a wide variety of
cancer types. One of the significant lessons learned is
that it is easy to predict cancer vs. normal in patients
based on the gene expression by several machine learn-
ing techniques, largely regardless of the type of cancer.
The main reason for this is that if cancer is present, many
genes in the cancer cells “go haywire” and hence are
very predictive of the cancer. The primary challenge in
this prediction problem is the noise in the data (impure
RNA, cross-hybridization, etc.).

Other related tasks that have been addressed include
distinguishing related cancer types and distinguishing
cancer from a related benign condition. An early success
was a work by Golub et al. (1999), distinguishing acute
myeloid leukemia and acute lymphoblastic leukemia
(ALL). They used a weighted voting algorithm simi-
lar to Naive Bayes and achieved a very high accuracy.
This result has been repeated on this data with many
other machine learning (ML) approaches. Other work
examined multiple myeloma vs. benign condition. This
task is challenging because the benign condition is very
similar to the cancer, and hence the machine learning
algorithms had a difficult time predicting accurately. We
refer to Hardin et al. (2004) for more details on the
experiments.

Another important lesson for machine learning
researchers from this data type is that the biologists
often do not want one predictive model, but a rank-
ordered list of genes that a biologist can explore further
with additional lab tests on certain genes. Hence, there
isaneed to present a small set of highly interesting genes
to perform follow-up experiments on. Toward this end,
statisticians have used mutual information or a t-test to
rank the genes. When using a t-test, they check if the
mean expression levels are different under the two con-
ditions (cancer vs. normal), yielding a p-value. But the
issue is that when working with a large number of genes
(typically in the order of 30,000), there could be some
genes with lower p-value by chance. This is known as the
“multiple comparisons problem.” One solution is to do
a Bonferoni correction (multiply p-values by the num-
ber of genes), but this can be a drastic step and may
eliminate all the genes. There are other methods such as

false discovery rate (Storey & Tibshirani, 2003) that uses
the notion of q-values. We do not go into detail of this
method. But the key recommendation we make is that
such a method should be used along with the supervised
learning method, as the biological collaborators might
be interested in the ranking of genes.

One of the most important research directions for
the use of microarray data lies in the prognosis and
treatment. The features are the same as those of diag-
nosis, but the class value becomes life expectancy for a
given treatment (or a positive response vs. no response
to a given treatment). The goal is to use the per-
son’s genes to make these predictions. An example of
this is the breast cancer prognosis study (Van't Veer
et al,, 2002), where the goal is to predict good progno-
sis (no metastastis within 5 years of initial diagnosis)
vs. poor prognosis. They used an ensemble of voting
algorithms and obtained very good results. Neverthe-
less, an important lesson learned from this experiment
and others was that when using P cross-validation,
there is a need to tune parameters and perform fea-
ture selection independently on each fold of the cross-
validation. There can be a large number of features,
and it is natural to want to reduce the size of the
data set before working with it. But reducing the num-
ber of features by some measure of correlation with
the class, such as information gain, using the entire
data set means that on each fold of cross-validation,
information has leaked from the labeled test set into
the training process — labels of test cases were used to
eliminate many features from the training set. Hence,
selecting features by looking at the entire data set can
partially negate the effect of cross-validation, some-
times yielding accuracy estimates that are more than
10% points overly optimistic. Hence the entire train-
ing process of selecting features, tuning parameters, and
learning a model must be repeated for every fold in
cross-validation by looking only at the training data for
that fold.

An important use of microarrays for prognosis
and therapy is in the area of predictive personalized
medicine (PPM). While we present the idea of PPM
later in the paper, it must be mentioned that combining
gene expression data with clinical trials of the patients
to recommend the best treatment for the patients is a
very exciting problem with promising impact in the area
of PPM.

18

Biomedical Informatics

P(A)

0-2

A P(B) AT P(C)
T 0-9 T 0.8
F| 0.1 F| 01

||| m
n | —o
o
N

Biomedical Informatics. Figure 2. A simple Bayes net.The
actual learning task typically involves thousands of vari-
ables

Bayesian Networks for Regulatory Pathways: »Bayesian
Networks have been one of the successful machine
learning methods used for the analysis of microarray
data. Recall that a Bayes net is a directed acyclic graph,
such as the one shown in Fig. 2 that defines a joint
distribution over the variables using a set of condi-
tional distributions. Friedman and Halpern (Friedman
& Halpern, 1999) were the first to use Bayes nets for
the microarrays data type. In particular, the problem
that was considered was finding regulatory pathways
in genes. This problem can be posed as a supervised
learning task as follows:

o Given: A set of microarray experiments for a single
organism under different conditions.

e Do: Learn a graphical model that accurately predicts
expression of some genes in terms of others.

Friedman and Halpern showed that using statistical
methods, a Bayes net representing the observations
(expression levels of different genes) can be learned
automatically. A main advantage of Bayes nets is that
they can (potentially) provide insight into the interac-
tion networks within cells that regulate the expression
of genes. But one has to exercise caution, interpreting
the arcs of a learned Bayes net as representing causality.
For example in Fig. 2, one might interpret the net-
work to mean that gene A causes gene B and gene C
to be expressed, in turn influencing gene D. Note that
however, the Bayes net in this case just denotes the cor-
relation and not the causality, that is, the direction of an

Problem: Not Causality

A is a good predictor of B. But is A regulating B??
Ground truth might be:

Or a more complicated variant

() ()—(c)—(e
& OO
&%

Biomedical Informatics. Figure 3. Why a learned Baye-
sian network may not be representing regulation of one
gene by another

arc merely represents the fact that one variable is a good
predictor of the other, as illustrated in Fig. 3.

One possible method of learning causality is to use
knock-out methods [Peer, Regev, Elidan, & Friedman,
2001], where for 300 of the genes in S. cerevisiae (bak-
ers’ yeast), biologists have created a knock-out mutant
or a genetic mutant lacking that gene. If the parent of a
gene in the Bayes net is knocked out and the child’s sta-
tus remains unchanged, then it is unlikely that the arc
from the parent to the child captures causality. A key
limitation is that the mutants are not available for many
organisms. Some other approaches such as RNAi have
been proposed for more efficiently doing knock-outs,
but a limitation is that RNAi typically reduces rather
than eliminates expression of a gene.

Ong, Glassner, and Page (2002) used time-series
data (data from the same organism at various time
points) to partially address the issue of causality. They
used these data to learn dynamic Bayesian networks in
order to infer temporal direction for gene interactions,
thereby getting a potentially better handle on causal-
ity. DBNs have been employed by other researchers for
time-series gene expression data, and the approach has
been extended to learn DBNs with continuous variables
(Segal, Peer, Regev, Koller, & Friedman, 2005).

Single Nucleotide Polymorphisms
Single-Nucleotide Polymorphisms (SNPs) are individ-
ual base positions (i.e., single-nucleotide positions)

Biomedical Informatics

19

in DNA, where people (or the organism of interest)
vary. Most of the variation in human DNA is due to
SNPs variations. (There are other variations such as
copy number, insertions and deletions that we do not
consider in this article.) There are well over three mil-
lion known SNPs in humans. Technologies such as Illu-
mina or Affymetrix whole-genome scan can measure a
million SNPs in short time. The measurement of these
variations is an order of magnitude faster, easier, and
cheaper than sequencing all the genes of the person.

It is believed that in the next decade, it will be
possible to obtain the entire genome sequence for an
individual human for under $1,000 (Mardis, 2006). If
we had every human’s entire sequence, it could be used
to predict the susceptibility of diseases for humans or
the adverse reactions to drugs for a certain subset of
patients. The idea is illustrated in Fig. 4. Suppose the red
dots in the figure are two copies of nucleotide A, and
the green dots denote a different nucleotide, say C. As
can be seen from the figure, people who respond to a
treatment T (top half of the figure) have two copies of
A (for instance, these could be the positive examples),
while the people who do not respond to the treatment
have at most one copy of A (negative examples and are
presented in the bottom half of the figure). Now, we can
imagine modeling the sequence to predict the suscepti-
bility to a disease or responsiveness to a treatment.

SNP data can serve as a surrogate for the above
problem. SNPs allow us to detect the variations among
humans. An example of SNP data is presented in Fig. 5

Susceptible to disease D or responds to treatment T

Not susceptible or not responding

Biomedical Informatics. Figure 4. Example application of
sequencing human genes. The top half is the case, where
patients respond to a treatment and the bottom is
the case, where three patients do not respond to the
treatment

for the prediction of myeloma cancer that is common
with older people (with age > 70) and is very rare in
younger people (age < 40). This data set consists of
40 people diagnosed with myeloma at young age and
40 people who weren’t diagnosed till they were 70 when
the disease is more common. Most SNP positions rep-
resent a pair of nucleotides and are typically restricted
in the combinations of values they may assume. For
example, in the figure, SNP 1 can take values from the
three possible combinations < C T, C C, T T > for
its two positions. The goal is to use the feature values
of the different SNPs to predict the class label which
could be the susceptibility. That is, the goal is to deter-
mine genetic difference between people who got the
disease at a young age vs. people who did not until they
were old.

There is also the possibility of two patients having
the same SNP pattern in the data but not the identical
DNA. Patients 1 and 2 may have CT for the SNP1 and
GA for SNP2, where both SNPs are on chromosome 1.
But, Patient 1 has C on SNPI in the same copy of chro-
mosome 1 as the G in SNP2, whereas Patient 2 has C on
the same copy as an A. Hence, while they have the same
SNP pattern of CT and GA, they do not have identi-
cal DNA. The process of converting the data from the
form in the Figure 5 below to the form above is called
Phasing. From a machine learning perspective, there is
a choice of either working with the unphased data or to
use an algorithm for phasing. It turns out that phasing
is very difficult and is an active research area. If there
are a number of unrelated patients phasing is very hard.
Hence many machine learning researchers work mainly
with unphased data. Admittedly, there is a small loss of
information with the unphased data that compensates
for the difficulty of phasing.

Most biologists and statisticians using SNP data per-
form genome-wide associations studies (GWAS). The
goal in this work is to find individual SNPs that are
significantly associated with disease, that is, such that
one of the SNP values, or alleles, raises the risk of dis-
ease. This is typically measured by “relative risk” or by
“odds ratio,” and significance is typically measured by
statistical tests such as Wald test, Score test, or LRLR
(»logistic regression log likelihood, where each SNP is
used individually to predict disease, and log likelihood
of the predictive model is compared to guessing under
the null hypothesis that the SNP is not associated).

120

Biomedical Informatics

Person SNP» 1 3 e Class
Person 1 c T A G T T Oid
Person 2 C C A G C T Young
Person 3 T T A A C C Old
Person 4 Cc T G G T T Young

Biomedical Informatics. Figure 5. Example of SNP data

One of many examples is the use of SNPs to predict
susceptibility to breast cancer (Easton et al., 2007).

The advantages of SNP data compared to microar-
ray data are the following: (1) Because SNP analysis is
typically performed on DNA from saliva or peripheral
blood cells, a person’s SNP pattern does not change with
time or disease. If the SNPs are collected from a blood
sample of a person aged 40 years, the SNP patterns are
probably the same as when they were born. This gives
more insight to the susceptibility of the person to many
diseases. Hence, we do not see the widespread changes
in SNP pattern with cancer, for example, that we see
in microarray data from tumor samples. (2) It is eas-
ier to collect the samples. These can be obtained from
the blood samples as against obtaining say, the biopsy
of other tissue types.

The challenges of SNP data are as follows: (1) As
explained earlier, the data is unphased. Algorithms exist
for phasing (haplotyping), but they are error prone and
do not work well with unrelated patient samples. They
require the data to consist of related individuals in
order to have a dense coverage. (2) »Missing Values
are more common than in microarray data. The good
news is that the amount of missing values is decreas-
ing substantially (down from 30-40% a few years ago to
1-2%). (3) The sheer volume of measurements -
currently, it is possible to measure a million SNPs out of
over three million SNPs in the human genome. While
this provides a tremendous amount of potential infor-
mation, the resulting high dimensionality causes prob-
lems for machine learning. As with gene expression
microarray data, we have a multiple comparisons prob-
lem, so approaches such as Bonferoni correction or

g-values from False Discovery Rate can again be
applied. But even when a significant SNP is found, it
usually only increases our accuracy at predicting dis-
ease by 2% or 3% points, because a single SNP typically
either has a small effect or small penetrance (the vari-
ation is fairly rare — one value of the SNP is strongly
predominant). So GWAS are missing a major opportu-
nity to build predictive models by combining multiple
SNPs with small effects - this is an exciting opportunity
for machine learning.

The supervised learning task can be defined as
follows:

o Given: A set of SNP profiles each from a different
patient.

Phased: Nucleotides at each SNP position on
each copy of each chromosome constitute the features
and patient’s disease susceptibility or drug response
constitutes the class.

Unphased: Unordered pair of nucleotides at each
SNP position constitutes the features and patient’s
disease susceptibility or drug response constitutes the
class.

e Do: Learn a model to predict the class based on the
features.

We now briefly present one example of supervised
learning from SNP data. (Waddell, Page, and Shaugh-
nessy (2005)) found that there was evidence of a genetic
component in predicting the blood cancer multiple
myeloma as it was possible to distinguish the two cases
significantly better than chance (71% accuracy). The
results from using Support Vector Machines (SVMs) are

Biomedical Informatics

121

Old Young
Oid 31 9
Actual
Young 14 26

Biomedical Informatics. Figure 6. Results on predicting
multiple myeloma, young (susceptible) vs. old (less sus-
ceptible), 3,000 SNPs

presented in Fig. 6. Similar results were obtained using
a Naive Bayes model as well. Listgarten et al. (2004) also
used the SNP data with the goal of predicting lung can-
cer. The accuracy of 69% obtained by them was remark-
ably similar to the task of predicting multiple myeloma.
The best models for predicting lung cancer were also
Naive Bayes and SVMs. There is a striking similarity
between the two experiments on unrelated tasks using
SNPs. When only the individual SNPs were considered,
the accuracy for both the experiments fell to 60%.

The lessons learned from SNP data are the fol-
lowing: (1) »Supervised learning algorithms such as
»Naive Bayes and »SVM that can handle large num-
ber of features in the presence of smaller number of
training examples can predict disease susceptibility at
rates better than chance and better than individual
SNPs. (2) Accuracies are much lower than the ones with
microarray data. This is mainly due to the fact that
we are predicting the susceptibility to the diseases (or
the response to a drug) as against predicting whether a
person already has the disease (as with the microarray
data). While we are predicting using the genetic compo-
nent, there are also many environmental components
that are responsible for the diseases and the response.
We are not considering such components in our model
and hence the accuracies are often not very high. In
spite of relatively lower accuracies, they give a different
valuable insight to the human gene.

We now briefly outline a couple of exciting future
directions for the use of SNP data. Pharmacogenetics
is the problem of predicting drug response from SNP
profile and has been gaining momentum over the past
few years. This includes predicting drug efficacy and
adverse reactions to certain drugs, given a person’s SNP
profile. A recent New England Journal of Medicine
article showed that the analysis of SNPs can signifi-
cantly improve the dosing model for the most widely

used orally available blood thinner, Warfarin (IWPC,
2009). Another exciting direction is the combination
of SNP data with other data types such as clinical data
that includes the history of the patient and the lab
tests and microarray data. The combination of these
different data sets will not only improve the accuracy
of the learned model but also provide a deeper insight
to the different kinds of interactions that occur within a
human, such as gene interactions with other drugs.

It should be mentioned that other genetic data types
are becoming available and may be useful for supervised
learning as well. These data types can provide additional
information about DNA sequence beyond SNPs but
without the expense of full genome sequencing. They
include copy-number variations and exon-sequencing.

Mass Spectrometry and Proteomics
Microarrays are useful primarily because mRNA
concentrations can serve as surrogates for protein con-
centrations and they are easier to measure. Though
measuring protein concentrations directly is possible, it
cannot be done in the same high-throughput manner
as measuring mRNA. Recently, techniques such as Mass
Spectrometry (MS or mass spec) have been successful in
high-throughput measuring of proteins. Mass spec still
does not given the complete coverage that microarrays
provide, nor as good a quantitation.

Mass spectometry is improving on many fronts,
using many technologies. As one example, we present
Time-Of-Flight (TOF) Mass Spectometry illustrated in
Fig. 7. This measures the time required for an ion-
ized particle starting from the sample plate (bottom of
the figure) to hit the detector. The key idea is to place
some proteins (indicated as larger circles) into a matrix
(smaller circles are the matrix molecules). Because of
mass spec limitations, the proteins typically are digested
(broken into smaller peptides), for example, by the
compound trypsin. When struck by a laser, the matrix
molecules release protons that attach themselves to the
peptides or protein fragments (shown in (a)). Note that
the plate where the peptides are present is positively
charged. This causes the peptides to migrate toward the
detector.

As can be seen in (b) of the figure, the molecules
with smaller mass move faster toward the detector. The
idea is to detect the number of molecules that hit the

122

Biomedical Informatics

Laser

N

Detector

8@ 2 © OOO 90,
88w
|

+10kv

The protons from the matrix molecules
get attached to the proteins

a

Laser

A N

Detector

Positively charged proteins are
repelled towards the detector

Smaller mass molecules hit detector
first, while heavier ones detected later

b

Biomedical Informatics. Figure 7. Time-Of-Flight mass spectrometry

detector at any given time. This makes it possible to
use time as a surrogate for mass of the protein. The
experiment is repeated a number of times, counting
frequencies of “flight-times”” Plotting time vs. the num-
ber of particles hitting the detector yields a spectrum
as presented in Fig. 8. The figure shows three different
fractions from the same sample. These kinds of spectra
provide us an insight about the different types of pro-
teins in a given sample. A technical detail is that some-
times molecules receive additional charge (additional
protons) and hence fly faster. Therefore, the horizon-
tal mass axis in a spectrum is actually a mass/charge
ratio.

The main issues for machine learning researchers
working with mass spectrometry data compared to
microarray data are as follows: (1) There is a lot of
»Noise in the data. The noise is due to extra peaks
from handling of sample, from machine and environ-
ment (e.g., electrical noise). Also the mass to charge
values may not exactly align across the spectra; the
accuracy of the mass/charge values is the resolution
of the mass spec. (2) Intensities (peak heights) are not
calibrated across the spectra, making quantification dif-
ficult. This is to say that if one spectrum is compared to
another, and if one of them has more intensity at a par-
ticular mass/charge, it does not necessarily mean that

the levels of the peptide at that mass/charge are higher
in that spectrum. (3) Another issue is that the mass
spectrometry data is not as comprehensive as microar-
ray data, in that it is not possible to measure all pep-
tides (typically only several hundred of them can be
obtained). To get the best results, there is a need to frac-
tionate the sample beforehand, getting different groups
of proteins in different subsamples (fractions). (4) As
already mentioned, the proteins themselves typically
must be broken down (digested) into smaller peptides
in order to get accurate readings from the mass spec. But
this means processing is needed afterward not only to
determine from a spectrum which peptides are present
but also from that determination which proteins are
present. It is worth noting that some of these challenges
are being partially addressed by ongoing improvements
in mass spectrometry technologies, including the use of
“tandem mass spectrometry””

This data type opens up a lot of possibilities for
machine learning research. Some of the learning tasks
include:

e Learn to predict proteins from spectra, when the
organism’s proteome (full set of proteins) is known.
e Learn to identify isotopic distributions (combi-
nations of multiple peaks for a given molecule

Biomedical Informatics

123

7000 T T T T T T T
line 1 —
line 2

6000 line 3—— 1

5000 R

4000 e, N H_Mmhu“_

3000 F

2000

1000

0 A x e A ' A -
0 20000 40000 60000 80000 100000 120000 140000 160000

Biomedical Informatics. Figure 8. Example spectra from a competition by Lin et al.

arising from different isotypes of carbon, nitrogen.
and oxygen).

e Learn to predict disease from either proteins, peaks
or isotopic distributions as features.

¢ Construct pathway models.

We will now present one case study that was success-
ful and generated a lot of interest — Early Detection of
Ovarian Cancer (Petricoin et al., 2002). Ovarian cancer
is difficult to detect early, often leading to poor prog-
nosis. The goal of this work was to predict ovarian
cancer from blood samples. To this effect, the researchers
trained and tested on mass spectra from blood serum.
They used 100 training cases (50 positive) and used
a held-out test set of 116 cases (50 positive). The
results were extremely impressive (100% sensitivity, 95%
specificity).

While the results were extremely impressive and
while the machine learning methodology seemed very
sound, it turns out that the preprocessing stage of the
data may have introduced errors (Baggerly, Morris, &
Combes, 2004). Mass spectrometry is very sensitive
to the external factors as well. For instance, if we run
cancer samples on Monday and normal samples on
Wednesday, it is possible that we could get differences

from variations in the machine or nearby electrical
equipment that is running on Monday but not Wednes-
day. Hence, one of the important lessons learned from
this data type is the need for careful randomization of
the data samples. This is to say that we should sample
the positive and negative samples under identical condi-
tions. It should not be the case that the positive examples
are run through the machine on one day and the neg-
atives on the other day. Any preprocessing of the data
must be performed similarly.

While mass spectrometry is a widely used type of
high-throughput proteomic data, other types of data are
also important and are briefly covered next.

Protein Structures

X-ray crystallography and nuclear magnetic resonance
are widely used to determine the three-dimensional
structures of proteins. Predicting protein structures has
been a very fertile field for machine learning research
for several decades.

While the amino acid sequence of a protein is called
its primary structure, it is more difficult to determine
secondary structure and tertiary (3D) structure. Sec-
ondary structure maps subsequences of the primary

124

Biomedical Informatics

structure in the three classes of alpha helix (helical
structures akin to a telephone cord, often denoted by A),
beta strand (which comes together with other strand
sections to form planar structures called beta sheets,
often denoted by B), and less descript regions referred
to as coil, or loop regions, often denoted by C.

Predicting secondary structure and tertiary struc-
ture has been a popular topic for machine learning for
many years, because training data exists yet it is difficult
and expensive to experimentally determine structures.
We will not attempt to survey all the work in this area.
Waltz and colleagues (Zhang, Mesirov, & Waltz, 1992)
showed the benefit of applying neural networks to the
task of secondary structure prediction, and the best sec-
ondary structure predictors (e.g., Rost & Sander, 1993)
have continued to be constructed by machine learning
over the years. Approaches for predicting the tertiary
structure have also relied heavily on machine learn-
ing and include ab initio prediction (e.g., Bonneau &
Baker, 2001), prediction aided by crystallography data
(e.g., DiMaio et al., 2007), and homology-based predic-
tion (by finding similar proteins). For over a decade,
there has been a regular competition in the prediction
of protein structures (Critical Assessment of Structure
Prediction [CASP]).

Protein-Protein Interactions
Another proteomics data type is protein—protein inter-
actions. Thisis illustrated in Fig. 9. The idea is to identify

Antibody

v

The pink objects are protein X and
they get attached to other proteins (2 in
this figure). The green Y-shaped objects
are the antibodies

a

7
]

b

proteins that interact with the current protein say P.
Generally, this is performed as follows: In the sample,
there are some proteins of type X (shown in pink in the
figure) and other types of proteins. Proteins that inter-
act with X are bonded to X. Then antibodies (shown
as Y-shaped green objects) are introduced in the sam-
ple. The idea of antibodies is to collect the proteins of
type X. Once the antibodies have collected all protein
X’s in the sample, they can be analyzed through mass
spectrometry presented earlier.

A particularly high-throughput way of measuring
protein—protein interactions is through “ChIP-chip’
data. The supervised learning tasks for this task include:

e Learn to predict protein-protein interactions: Pro-
tein three-dimensional structures may be critical.

o Use protein—protein interactions in construction of
pathway models.

e Learn to predict protein function from interaction
data.

Related Data Types

o Metabolomics measures concentration of each low-
molecular-weight molecule in sample. These typi-
cally are metabolites, or small molecules produced
or consumed by reactions in biochemical pathways.
These reactions are typically catalyzed by proteins
(specifically, enzymes). This data typically uses mass

spectrometry.

The antibodies get attached only to
protein X and hence collecting the
antibodies will result in collecting X’s and
the proteins that interact with X

Biomedical Informatics. Figure 9. Schematic of antibody-based identification of protein—protein interactions

Biomedical Informatics

125

o ChIP-chip data measures protein-DNA interactions.
For example, transcription factors are proteins that
interact with DNA in specific locations to alter tran-
scription of a nearby gene.

o Lipomics is analogous to metabolomics, but measur-
ing concentrations of Lipids rather than metabolites.
These potentially help induce biochemical pathway
information or to help disease diagnosis or treat-
ment choice.

High-Throughput Screening Data for Drug
Design
The typical steps in designing a drug are: (1) Identify-
ing a target protein - for example, while developing an
antibiotic, it will be useful to find a protein that belongs
to the bacteria that we are interested in and find a small
molecule that will bind to that protein. In order to per-
form this, we need the knowledge of proteome/genome
and the relevant biological path ways. (2) Determining
the target site structure once the protein has been identi-
fied - this is typically performed using crystallography.
(3) Finding a molecule that will bind to the target site.
These steps are presented in Fig. 10.

The molecules that bind to the target may have
a number of other problems and hence they cannot
directly be used as a drug. Some common problems are
as follows: (1) They may bind too tightly or not tightly
enough. (2) They may be toxic. (3) They may have unan-
ticipated side effects in the body. (4) They may break
down as soon as they get into the body or may not
leave the body soon enough. (5) They may not get to the
right target in the body (e.g., cross blood-brain barrier).
(6) They may not diffuse from gut to bloodstream. Also,

Identify target protein

A 4

Determine target
site structure

A 4

Synthesize a molecule
that will bind

Biomedical Informatics. Figure 10. Steps involved in

drug design

since the organisms are different, even if a molecule
works in the test tube and in animal studies, it may fail
in clinical trials. Also while a molecule may work for
some people, it may not work for others. Conversely,
while some molecules may cause harmful side effects in
some people, they may not do so in others.

Often pharmaceutical companies will use robotic
high-throughput screening assays to test many thou-
sands of molecules to see if they bind to the target
protein, and then computational chemists will work
to determine the commonalities that allow them to
bind to the target as often the structure of the tar-
get protein cannot be determined. The process of
discovering the commonalities across the different
molecules presents a great opportunity for machine
learning research. The first study of this task using
machine learning was by Dietterich, Lathrop, and
Lozano-Perez and led to the formulation of Multi-
Instance Learning. Yet, another machine learning task
could be to predict the reactions of the patients to
the drugs.

High-Throughput Screening: When the target struc-
ture is unknown, it is a common practice to test many
molecules (1,000,000) to find some that bind to the tar-
get. This is called as High-Throughput Screening. Hence,
itisimportant to infer the shape of the target from three-
dimensional structural similarities. The shared three-
dimensional structure is called as pharmacophore. This
is a perfect example of a machine learning task with a
spatial target and is presented in Fig. 11.

Given: A set of molecules, each labeled by activity
(binding affinity for a target protein) and a set of low-
energy conformers for each molecule

Do: Learn a model that accurately predicts the activ-
ity (may be Boolean or real valued).

Biomedical Informatics. Figure 1. An example of struc-
ture learning

Active
Inactive

126

Biomedical Informatics

The common machine learning approaches taken
toward solving this problem are:

1. Representing a molecule by thousands to millions of
features and use standard techniques (KDD, 2001)

2. Representing each low-energy conformer by fea-
ture vector and use multiple-instance learning (Jain
etal., 1994)

3. Relational learning - using either Inductive Logic
Programming techniques (Finn, Muggleton, Page,
& Srinivasan, 1998) or Graph Mining

Thermolysin Inhibitors: We present some results of rela-
tional learning algorithms on thermolysin inhibitors
data set (Davis, 2007a). Thermolysin belongs to the
family of metalloproteases and plays roles in physio-
logical processes such as digestion and blood pressure
regulation. The molecules in the data set are known
inhibitors of thermolysin. Activity for these molecules
is measured in pKi = —log Ki, where Ki is a dissocia-
tion constant, measuring the ratio of the concentrations
of bound product to unbound constituents. A higher
value indicates a stronger affinity for binding. The data
set that was used had the ten lowest energy confor-
mations (as computed by the SYBYL software package
[www.tripos.com]) for each of 31 thermolysin inhibitors
along with their activity levels.

The key results for this data set using the relational
algorithm SAYU (Davis, 2007b) were:

e Ten five-point pharmacophore identified, falling
into two groups (7/10 molecules):
o Three “acceptors,” one hydrophobe, and one

donor

e Four “acceptors,” and one donor

e Common core of Zn ligands, Arg203, and Asnll2
interactions identified

o Correct assignments of functional groups

e Correct geometry to 1 A tolerance

o Increasing tolerance to 1.5 A finds common six-point
pharmacophore including one extra interaction

Antibacterial Peptides: This is a data set of 11 pentapep-
tides showing activity against Pseudomonas aeruginosa
(Spatola, Page, Vogel, Blondell, & Crozet, 1999). There
are six active pharmacophores with < 64 ug/ml of ICsq

Biomedical Informatics. Table 1 Identified
Pharmacophore

A molecule M is active against Pseudomonas aeruginosa if
it has a conformation B such that

M has a hydrophobic group C
M has a hydrogen acceptor D

The distance between C and D in conformation B is
1n7A

M has a positively charged atom E
The distance between C and E in conformation B is 4 A

The distance between D and E in conformation B is
94 A

M has a positively charged atom F

The distance between C and F in conformation B is
nm1A

The distance between D and F in conformation B is
12.6 A

The distance between E and F in conformation B is
87A

Tolerance 1.5 A

and five inactives. The pharmacophore that has been
identified is presented in Table 1.

Dopamine Agonists: The last data set that we present
here consists of dopamine agonists (Martin et al., 1993).
Dopamine works as a neurotransmitter in the brain,
where it plays a major role in the movement control.
Dopamine agonists are molecules that function like
dopamine and produce dopamine-like effects and can
potentially be used to treat diseases such as Parkinson’s
disease. The data set had 23 dopamine agonists along
with their activity levels. The pharmacophore identi-
fied using Inductive Logic Programming is presented in
Table 2.

Electronic Medical Records (EMR) and
Personalized Medicine

Predictive personalized medicine (PPM) is a vision of
the future, whose parts are beginning to come into place
now. Under this vision, physicians can construct safer
and more effective prevention and treatment plans for

www.tripos.com

Biomedical Informatics

127

each patient. This is rendered possible by predicting
the impact of treatments on patients — their effective-
ness for different classes of patients, adverse reactions
of certain drugs that are prescribed to the patients, and
susceptibility of different types of patients to diseases.
PPM can become a reality due to three reasons: The

Biomedical Informatics. Table 2 Pharmacophore Identi-
fied for Dopamine Agonists

Molecule A has the desired activity if

e In conformation B molecule A contains a hydrogen
acceptor at C

e In conformation B molecule A contains a basic
nitrogen group at D

o The distance between C and D is 7.05966 + 0.75 A

e In conformation B molecule A contains a hydrogen
acceptor at E

o The distance between C and E is 2.80871 + 0.75 A
o The distance between D and E is 6.36846 + 0.75 A

e In conformation B molecule A contains a hydropho-
bic group at F

e The distance between C and F is 2.68136 + 0.75 A
e The distance between D and F is 4.80399 + 0.75 A
e The distance between E and F is 2.74602 + 0.75 A

Patient ID|Gender |Birthdate

P1 M | 3/22/63 P1
P1
Patient ID| Date Lab Test Result

P1 1/1/01 | blood glucose| 42
P1 1/9/01 | blood glucose 45

Patient ID | Date Prescribed | Date Filled

P1 5/17/98 5/18/98

1/1/01
2/1/03

first is the widespread use by many clinics of Electronic
Medical Records (EMR also called as Electronic Health
Records - EHR). The second is that whole-genome scan
technology makes it possible in one experiment, for well
under $1,000, to measure for one patient a half mil-
lion to one million SNPs, or individual positions in the
DNA where humans vary. The third key reason is the
advancement of statistical modeling (machine learning)
methods in the past decade that can handle large rela-
tional longitudinal databases with significant amount of
noise. The first two reasons make it possible for the clin-
ics to have a relational database of the form presented
in Fig. 12.

Given such a database, it is conceivable to use exist-
ing machine learning algorithms for achieving the goal
of PPM. These algorithms could focus on predicting
which patients are at risk (pos and neg examples).
Another task is predicting which patients will respond
to a specific treatment - a set of patients who have
undergone specific treatments in order to learn predic-
tive models that could be extended to similar patients of
the population. Similarly, it is possible to focus on cer-
tain drugs and their adverse reactions and use them to
predict the adverse reactions of similar drugs that are
released in the market. In this work, we focus on the
machine learning solutions to predicting adverse drug
reactions for different drugs.

There are actually at least three different tasks for
machine learning in predicting Adverse Drug Events
(ADEs).

Patient ID | Date | Physician| Symptoms | Diagnosis
Smith |Palpitations | Hypoglycemic
Jones |Fever,Aches| influenza

Patient ID| SNP1 |[SNP2 SNP500K
P1 AA | AB BB
P2 AB BB AA
Physician | Medication | Dose | Duration
Jones Prilosec 10 mg| 3 months

Biomedical Informatics. Figure 12. Electronic Health Records (dramatically simplified) - most data currently do not

include SNP information but are anticipated in the future

128

Biomedical Informatics

Task I:

Given: Patient data (from claims databases and/or
EMRs) and a drug D

Do: Construct a model to predict a minimum effi-
cacious dose of drug D, because a minimum dose is less
likely to induce an ADE.

An example of this task is predicting the “stable
dose” of the blood-thinner Warfarin (Coumadin) for
a patient (McCarty, Wilke, Giampietro, Wesbrook, &
Caldwell, 2005). A stable dose of Warfarin yields the
desired degree of anticoagulation, whereas a higher
dose can lead to bleeding ADEs; the stable dose for a
patient is currently found by trial and error, modify-
ing the dose and measuring the degree of anticoagula-
tion. The cited study shows that a learned dosing model
can predict a significantly better starting dose (signifi-
cantly closer to the final “stable dose”) than the 5 mg/day
starting dose currently used in many clinics.

Task 2:

Given: Patient data (from claims databases and/or
EMRs), a drug D, and an adverse event E

Do: Construct a model to predict which patients are
likely to suffer the adverse event E if they take D.

In this second task, we assume that the association
between D and E already has been hypothesized. We
seek to construct models that can predict who will suf-
fer a given event if they take the drug. Here, whether the
patient will suffer adverse event E is the class variable
to be predicted. This task is important for personalized
medicine, as accurate models for this task can be used
to identify patients who should not be given a particu-
lar drug. An earlier study has demonstrated the benefit
of a Statistical Relational Learning (SRL) system called
SAYU (Davis, 2007b) over standard machine learning
approaches with a feature-vector representation of the
EHR, for the task of predicting which users of cox2
inhibitors would have an MI.

Task 3:

Given: Patient data (from claims databases and/or
EMRs) and a drug D

Do: Determine if evidence exists that associates D
with a previously unanticipated adverse event.

This third task is the most challenging because no
associated event has been hypothesized. There is a need
to identify the response variable to be predicted. In
brief, the major approach for this task is to use machine

learning “in reverse” We seek a model that can pre-
dict which patients are on drug D using the data after
they start the drug (left censored) and also censor-
ing the indications of the drug. If a model can predict
(with accuracy better than chance on held-aside data)
which patients are taking the drug, there must be some
combination of variable settings more common among
patients on the drug. Because we have left censored, in
theory, this commonality should not consist of common
symptoms, but common effects, presumably from the
drug. The model can then be examined by the experts
to see if it might indicate a possible new adverse event
for the drug.

The preceding use of machine learning “in reverse”
actually can be viewed as Subgroup Discovery (Wrobel,
1997; Klosgen, 2002), finding a subgroup of patients on
drug D who share some subsequent clinical events. The
learned model - say an IF-THEN rule - need not cor-
rectly identify everyone on the drug but rather merely
a subgroup of those on the drug, while not generating
many false positives (individuals not on the drug). This
task poses several different challenges that traditional
ML methods will find difficult to handle.

First, the data is multi-relational. There are several
objects such as doctors, patients, drugs, diseases, and
labs that are connected through relations such as vis-
its, prescriptions, diagnoses, etc. If traditional machine
learning (ML) techniques are to be employed on this
problem, they require flattening the data into a single
table. All known flattening techniques such as com-
puting a join or summary features result in either
(1) changes in frequencies on which machine learning
algorithms critically depend or (2) loss of information.
They also typically result in loss of some correlations
between the objects and explosion in database size. Sec-
ond, the data is non-ii.d., as there are relationships
between the objects and between different rows within a
table. Third, there are arbitrary numbers of patient vis-
its, diagnoses, and prescriptions for different patients.
This is to say that there is no fixed pattern in the diag-
noses and prescriptions of the patients. It is incorrect to
assume that the patients are diagnosed a fixed number
of times or to assume only the last diagnosis is rele-
vant. To predict the adverse reactions to a drug, it is
important to consider the other drugs that the patient
is prescribed or has been prescribed in the past, as well
as past diagnoses and laboratory results. To capture

Biomedical Informatics

129

these interactions, it is critical to explicitly model time
since the interactions are highly temporal. Some drugs
taken at the same time can lead to side effects while in
some cases, drugs taken after one another cause side
effects. It is important to capture such interactions to
be able to make useful predictions for the physicians
and the Federal Drug Authority (FDA). In this work, we
focus on this hardest task and present the results on two
data sets.

Cox2 Inhibitors: Recently, a study was performed to
see if there were any unanticipated adverse events that
occurred when subjects used cox2 inhibitors (Vioxx,
Celebrex, and Bextra). Cox2 inhibitors are a nons-
teroidal anti-inflammatory class of drugs that were used
to reduce joint pain. Vioxx, Celebrex, and Bextra were
approved for use in the late 1990s and were ranked
as one of the top therapeutic drugs in the USA. Sev-
eral clinical trials were conducted, and the APPROVe
trial (focused on Vioxx outcomes) showed an increase
of adverse events from myocardial infarction, stroke,
and vascular thrombosis. The manufacturer withdrew
Vioxx from the market shortly after the results were
published. The other cox2 inhibitor drugs were discon-
tinued shortly thereafter.

This study utilized the Marshfield Clinic’s Person-
alized Medicine Research Project (McCarty, Wilke,
Giampietro, Wesbrook, & Caldwell, 2005) (PMRP)
cohort consisting of approximately 19,700+ subjects.
The PMRP cohort included adults aged 18 years and
older, who reside in the Marshfield Epidemiology Study
Area (MESA). Marshfield has one of the oldest inter-
nally developed Electronic Medical Records (Cattails
MD) in the USA, with coded diagnoses dating back
to the early 1960s. Cattails MD has over 13,000 users
throughout central and northern Wisconsin.

Since the data is multi-relational, an Inductive Logic
Programming (Muggleton & Raedt, 1994) system, Aleph
(Srinivasan, 2001) was used to learn the models. Aleph
learns rules in the form of Prolog clauses and scores
rules by positive examples covered (P) minus negative
examples covered (N). Seventy-five percent of the data
was used for training and rule development, while the
remaining 25% was used for testing. There were 14,654
subjects within the PMRP cohort that had medication
records. Within this cohort, almost 20% of the subjects
indicated use of a cox2 inhibitor, and more specifi-
cally, 8.5% indicated the use of Vioxx. Approximately,

Biomedical Informatics. Table 3 Cox2 Inhibitor Test Data

Results
+ 438 158 596
- 269 549 818
707 707 1,414
Accuracy 0.69801

3.5% of this cohort had an indicated use of clopidogrel
biosulfate (Plavix).

Aleph generated thousands of rules and selected
a subset of the “best” rules that were based on the
scoring algorithm. The authors also developed specific
hypotheses to test for known adverse events to vali-
date the approach (indicated by # A). This rule was:
cox2(A):- diagnoses(A, _,410°). It states that if find-
ing (A): the subject would have the diagnosis coded as
410 (myocardial infarction). Aleph also provided sum-
mary statistics on model performance for identifying
subjects on cox2 inhibitors, as indicated in Table 3. If
we assume that the probability of being on the cox2
inhibitor is greater than. 5 (the common threshold),
then the model has a predictive probability of 69% to
predict cox2 inhibitor use.

OMOP Challenge: Observational Medical Outcomes
Partnership (OMOP) designed and developed an auto-
mated procedure to construct simulated data sets to
identify adverse drug events. The simulated data sets
are modeled after real observational data sources but
are comprised of hypothetical persons with fictional
drug exposure and health outcomes occurrence. The
data sets are constructed such that the relationships
between the fictional drugs and fictional outcomes are
well characterized as true and false associations. That
is, hypothetical persons are created and assigned fic-
tional drug exposure periods and instances of health
outcomes based on random sampling from probability
distributions that define the relationships between the
fictional drugs and outcomes. The relationships created
within the simulated data sets are contrived but are rep-
resentative of the types of relationships observed within
real observational data sources. OMOP has made a

130

Biomedical Informatics

simulated data set and the simulator itself publicly avail-
able as part of the OMOP Cup Data Mining Competi-
tion (http://omopcup.orwik.com).

Aleph was used to learn rules from a subset of the
data (about 10,000 patients). Each patient had a record
of drugs and diagnoses (conditions) with dates attached.
A few examples of the ruleslearned by Aleph in this data
set are:

on_drug(A):- condition_occurrence(B,C,A,D,
E,3450,EG,H)
condition_occurrence(B,C,A,D,E,
140,EG,H)
condition_occurrence(L,],A,K,L,
1487,M,N,0)

on_drug(A):-

The first rule identifies drug 3450 as interesting, while
the second rule identifies two other drugs as interest-
ing when predicting the reaction for person A. With
about 150 rules, Aleph was able to achieve a 67% cov-
erage. The results were compared against a Statistical
Relational Learning technique (SRL) (Getoor & Taskar,
2007) that uses a probability distribution on the rules.
The results are presented in Fig. 13. As expected, with
a small number of rules, SRL has a better performance
than Aleph, but as the number of rules increase, they
converge on the same performance.

The leading approaches in the first OMOP Cup
include a machine learning approach based on random
forests as well as several approaches based on tech-
niques from epidemiology such as disproportionality
analysis. At the time of this writing further details, as

0.7

0.65 po----oC 1

= M

0.55 1

Accuracy
o
(6]

0.45

0.4 1 —— Aleph --SRL

0.35 A

0.3 T . . :
2 3 5 10

Number of rules

Biomedical Informatics. Figure 13. Results of OMOP data

well as plans for future competitions, are available at
http://omopcup.orwik.com/.

Identifying previously unanticipated ADEs, predict-
ing who is most at risk for an ADE, and predicting safe
and efficacious doses of drugs for particular patients are
all important needs for society. With the recent advent
of “paperless” medical record systems, the pieces are in
place for machine learning to help meet these important
needs.

Conclusion

In this work, we aim to survey the abundant opportu-
nities in biomedical applications to machine learning
researchers by presenting several data types to which
machine learning techniques have been applied suc-
cessfully or showing tremendous promise. One of the
most important developments in biology and medicine
over the last few years is the availability of technologies
that can produce large volumes of data. This in turn has
necessitated the need for processing large volumes of
data in a reasonable amount of time, presenting the per-
fect setting for machine learning algorithms to have an
impact. We outlined several data types including gene
expression microarrays (measuring mRNA), mass spec-
trometry (measuring proteins), SNP chips (measur-
ing genetic variation), and Electronic Medical/Health
Records (EMR/EHRSs).

The key lessons learned from all these data types are
as follows: (1) Even if the number of features is greater
than the number of data points (e.g., predicting can-
cer from microarray data), we can do well provided
the features are highly predictive. (2) Careful random-
ization of data samples is necessary. (3) It is very easy
to overfit the data and hence robust techniques such
as voted Pdecision stumps, Pnaive Bayes or linear
»SVMs are in general very useful tools for such data
sets. (4) »Bayes nets do not give us causality and hence
knock-out experiments (»active learning) and »DBNs
with »time-series data can help. (5) Multi-relational
methods such as SRL and ILP are helpful for predic-
tive personalized medicine due to the relational nature
of the data. (6) Mostly, the collaborators are interested
in measures other than just accuracy. Comprehensi-
bility, privacy, and ranking are other criteria that are
important to biologists.

This chapter is necessarily incomplete because so
many exciting tasks and data types exist within biology

http://omopcup.orwik.com
http://omopcup.orwik.com/

Biomedical Informatics

131

and medicine. While we have touched on many of the
leading such data types, other related ones also exist.
For example, there are many opportunities in analyz-
ing genomic and protein sequences (Learning Models of
Biological Sequences). Other opportunities exist within
phylogenetics, for example, see work by Heckerman
and colleagues on HIV (Carlson et al, 2009). New
technologies such as optical mapping are constantly
being developed and refined (Ananiev et al., 2008).
Machine learning has great potential for developing
models for computer-aided diagnosis (CAD), for exam-
ple, for mammography (Burnside et al., 2009). Data
types such as metabolomics and auxotropic growth
experiments raise opportunities for active learning and
for automatic revision of biological network models, for
example, as in the Robot Scientist projects (Jones et al.,
2004; Oliver etal., 2009). Incorporation of multiple data
types can further help in mapping out the regulatory
entities and networks of an organism (Noto & Craven,
2006). Itis our hope that this article will encourage some
machine learning researchers to delve deeper into these
and other related opportunities.

Acknowledgment

We would like to thank Elizabeth Burnside, Michael
Caldwell, Mark Craven, Jesse Davis, Lingjun Li, David
Madigan, Sean Mcllwain, Michael Molla, Irene Ong,
Peggy Peissig, Patrick Ryan, Jude Shavlik, Michael Suss-
man, Humberto Vidaillet, Michael Waddell and Steve
Wesbrook.

Cross References
» Learning Models of Biological Sequences

Recommended Reading

Ananiev, G. E., Goldstein, S., Runnheim, R., Forrest, D. K., Zhou, S.,
Potamousis, K., Churas, C. P, Bergendah, V., Thomson, J. A., &
David, C. (2008). Schwartzl. Optical mapping discerns genome
wide DNA methylation profiles. BMC Molecular Biology, 9,
doi:10.1186/1471-2199-9-68.

Baggerly, K., Morris, J. S., & Combes, K. R. (2004). Reproducibility
of seldi-tof protein patterns in serum: Comparing datasets from
different experiments. Bioinformatics, 20, 777-785.

Bonneau, R., & Baker, D. (2001). Ab initio protein structure predic-
tion: Progress and prospects. Annual Review of Biophysics and
Biomolecular Structure, 30, 173-189.

Burnside, E. S., Davis, J., Chhatwal, J., Alagoz, O., Lindstrom, M. J.,
Geller, B. M., Littenberg, B., Kahn, C. E., Shaffer, K., &

Page, D. (2009). Unique features of hla-mediated hiv evolu-
tion in a mexican cohort: A comparative study. Radiology, 251,
663-672.

Carlson, J., Valenzuela-Ponce, H., Blanco-Heredia, J., Garrido-
Rodriguez, D., Garcia-Morales, C., Heckerman, D., et al.
(2009). Unique features of hla-mediated hiv evolution
in a mexican cohort: A comparative study. Retrovirology,
6(72), 39.

Davis, J., Costa, V. S., Ray, S., & Page, D. (2007a). An integrated
approach to feature construction and model building for drug
activity prediction. In Proceedings of the 24th international
conference on machine learning (ICML).

Davis, J., Ong, L., Struyf, J., Burnside, E., Page, D., & Costa, V. S.
(2007b). Change of representation for statistical relational
learning. In Proceedings of the 20th international joint confer-
ence on artificial intelligence (IJCAI).

DiMaio, F, Kondrashov, D., Bitto, E., Soni, A., Bingman, C.,,
Phillips, G., & Shavlik, J. (2007). Creating protein models from
electron-density maps using particle-filtering methods. Bioin-
formatics, 23, 2851-2858.

Easton, D. F, Pooley, K. A., Dunning, A. M., Pharoah, P. D,, et al.
(2007). Genome-wide association study identifies novel breast
cancer susceptibility loci. Nature, 447, 1087-1093.

Finn, P., Muggleton, S., Page, D., & Srinivasan, A. (1998).
Discovery of pharmacophores using the inductive logic
programming system progol. Machine Learning, 30(1, 2),
241-270.

Friedman, N. (2000). Being Bayesian about network structure. In
Machine Learning, 50, 95-125.

Friedman, N., & Halpern, J. (1999). Modeling beliefs in dynamic sys-
tems. part ii: Revision and update. Journal of AI Research, 10,
117-167.

Furey, T. S., Cristianini, N., Duffy, N., Bednarski, B. W., Schummer,
M., & Haussler, D. (2000). Support vector classification and val-
idation of cancer tissue samples using microarray expression.
Bioinformatics, 16(10), 906-914.

Getoor, L., & Taskar, B. (2007). Introduction to statistical relational
learning. Cambridge, MA: MIT Press.

Golub, T. R, Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M.,
Mesirov, J. P, et al. (1999). Molecular classification of cancer:
Class discovery and class prediction by gene expression moni-
toring. Science, 286, 531-537.

Hardin, J., Waddell, M., Page, C. D., Zhan, F, Barlogie, B,
Shaughnessy, J., et al. (2004). Evaluation of multiple mod-
els to distinguish closely related forms of disease using DNA
microarray data: An application to multiple myeloma. Statisti-
cal Applications in Genetics and Molecular Biology, 3(1).

Jain, A. N, Dietterich, T. G., Lathrop, R. H., Chapman, D., Critchlow,
R. E., Bauer, B. E., et al. (1994). Compass: A shape-based
machine learning tool for drug design. Aided Molecular Design,
8(6), 635-652.

Jones, K. E., Reiser, F. M., Bryant, P. G. K., Muggleton, C. H., Kell, S,
King, D. B, et al. (2004). Functional genomic hypothesis gen-
eration and experimentation by a robot scientist. Nature, 427,
247-252.

KDD cup (2001). http://pages.cs.wisc.edu/ dpage/kddcup2001/.

Klésgen, W. (2002). Handbook of data mining and knowledge dis-
covery, chapter 16.3: Subgroup discovery. New York: Oxford
University Press.

Listgarten, J., Damaraju, S., Poulin, B., Cook, L., Dufour, J,
Driga, A., et al. (2004). Predictive models for breast cancer

http://pages.cs.wisc.edu/dpage/kddcup����/.

132

Blog Mining

susceptibility from multiple single nucleotide polymorphisms.
Clinical Cancer Research, 10, 2725-2737.

Mardis, E. R. (2006). Anticipating the 1,000 dollar genome. Genome
Biology, 7(7), 112.

Martin, Y. C., Bures, M. G., Danaher, E. A., DeLazzer, J., Lico, I. I., &
Pavlik, P. A. (1993). A fast new approach to pharmacophore
mapping and its application to dopaminergic and benzodi-
azepine agonists. Journal of Computer Aided Molecular Design,
8, 751-758.

McCarty, C., Wilke, R. A., Giampietro, P. F, Wesbrook, S. D., &
Caldwell, M. D. (2005). Personalized Medicine Research
Project (PMRP): Design, methods and recruitment for a large
population-based biobank. Personalized Medicine, 2, 49-79.

Molla, M., Waddell, M., Page, D., & Shavlik, J. (2004). Using machine
learning to design and interpret gene expression microarrays.
AI Magazine, 25(1), 23-44.

Muggleton, S., & De Raedt, L. (1994). Inductive logic programming:
Theory and methods. Journal of Logic Programming, 19(20),
629-679.

Noto, K., & Craven, M. (2006). A specialized learner for inferring
structured cis-regulatory modules. BMC Bioinformatics, 7(528),
d0i:10.1186/1471-2105-7-528.

Oliver, S. G., Young, M., Aubrey, W., Byrne, E., Liakata, M,
Markham, M., et al. (2009). The automation of science. Science,
324, 85-89.

Ong, I, Glassner, J., & Page, D. (2002). Modelling regulatory path-
ways in e.coli from time series expression profiles. Bioinformat-
ics, 18, 2415-248S.

Peer, D., Regev, A., Elidan, G., & Friedman, N. (2001). Inferring sub-
networks from perturbed expression profiles. Bioinformatics,
17, 215-224.

Perou, C., Jeffrey, S., Van De Rijn, M., Rees, C. A., Eisen, M. B,,
Ross, D. T., et al. (1999). Distinctive gene expression pat-
terns in human mammary epithelial cells and breast cancers.
Proccedings of National Academy of Science, 96, 9212-9217.

Petricoin, E. F, III, Ardekani, A. M., Hitt, B. A., Levine, P. J., Fusaro,
V. A., Steinberg, S. M., et al. (2002). Use of proteomic patterns
in serum to identify ovarian cancer. Lancet, 359, 572-577.

Rost, B., & Sander, C. (1993). Prediction of protein secondary struc-
ture at better than 70 accuracy. Journal of Molecular Biology,
232, 584-599.

Segal, E., Peer, D., Regev, A., Koller, D., & Friedman, N. (April
2005). Learning module networks. Journal of Machine Learning
Research, 6, 557-588.

Spatola, A., Page, D., Vogel, D., Blondell, S., & Crozet, Y. (1999). Can
machine learning and combinatorial chemistry co-exist? In Pro-
ceedings of the American Peptide Symposium. Kluwer Academic
Publishers.

Srinivasan, A. (2001). The aleph manual. http://web.comlab.ox.
ac.uk/oucl/research/areas/machlearn/Aleph/.

Storey, J. D., & Tibshirani, R. (2003). Statistical significance for
genome-wide studies. Proceedings of the National Academy of
Sciences, 100, 9440-9445.

The International Warfarin Pharmacogenetics Consortium (IWPC)
(2009). Estimation of the Warfarin Dose with Clinical and
Pharmacogenetic Data. The New England Journal of Medicine,
360:753-764.

Tucker, A., Vinciotti, V., Hoen, P. A. C,, Liu, X,, & Famili,
A. F. (2005). Bayesian network classifiers for time-series
microarray data. Advances in Intelligent Data Analysis VI, 3646,
475-485.

Van't Veer, L. L., Dai, H., van de Vijver, M. M., He, Y., Hart, A.,
Mao, M., et al. (2002). Gene expression profiling predicts clin-
ical outcome of breast cancer. Nature, 415, 530-536.

Waddell, M., Page, D., & Shaughnessy, J., Jr. (2005). Predicting can-
cer susceptibility from single-nucleotide polymorphism data: A
case study in multiple myeloma. BIOKDD’05: Proceedings of the
fifth international workshop on bioinformatics, Chicago, IL.

Wrobel, S. (1997). An algorithm for multi-relational discovery
of subgroups. In European symposium on principles of kdd
(pp. 78-87). Lecture notes in computer science, Springer,
Norway.

Zhang, X., Mesirov, J. P.,, & Waltz, D. L. (1992). Hybrid system for
protein secondary structure prediction. Journal of Molecular
Biology, 225, 81-92.

Zou, M., & Conzen, S. D. (2005). A new dynamic Bayesian network
approach for identifying gene regulatory networks from time
course microarray data. Bioinformatics, 21, 71-79.

! Blog Mining

Blog mining is the application of data mining (in par-
ticular, Web mining) techniques on blogs, adapted to
the content, format, and language of the medium blog.
A blog is a (more or less) frequently updated publication
on the Web, sorted in (usually reverse) chronological
order of the constituent blog posts. As in other areas of
the Web, mining is applied to the content of blogs, to
the various types of links between blogs, and to blog-
related behavior. The latter comprises blog authoring
including link setting, blog reading and commenting,
and querying (often in blog search engines). For more
details on blogs and on mining them, see »text mining
for news and blogs analysis.

|
Boltzmann Machines

GEOFFREY HINTON
University of Toronto, ON, Canada

Synonyms
Boltzmann machines

Definition

A Boltzmann machine is a network of symmetri-
cally connected, neuron-like units that make stochastic
decisions about whether to be on or off. Boltzmann
machines have a simple learning algorithm (Hinton &

http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/.
http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/.

Boltzmann Machines

133

Sejnowski, 1983) that allows them to discover interest-
ing features that represent complex regularities in the
training data. The learning algorithm is very slow in net-
works with many layers of feature detectors, but it is fast
in “restricted Boltzmann machines” that have a single
layer of feature detectors. Many hidden layers can be
learned efficiently by composing restricted Boltzmann
machines, using the feature activations of one as the
training data for the next.

Boltzmann machines are used to solve two quite dif-
ferent computational problems. For a search problem,
the weights on the connections are fixed and are used to
represent a cost function. The stochastic dynamics of a
Boltzmann machine then allow it to sample binary state
vectors that have low values of the cost function. For a
learning problem, the Boltzmann machine is shown a
set of binary data vectors and it must learn to generate
these vectors with high probability. To do this, it must
find weights on the connections so that relative to other
possible binary vectors, the data vectors have low val-
ues of the cost function. To solve a learning problem,
Boltzmann machines make many small updates to their
weights, and each update requires them to solve many
different search problems.

Motivation and Background

The brain is very good at settling on a sensible interpre-
tation of its sensory input within a few hundred mil-
liseconds, and it is also very good, over a much longer
timescale, at learning the code that is used to express
its interpretations. It achieves both the settling and the
learning using spiking neurons which, over a period of
a few milliseconds, have a state of 1 or 0. These neu-
rons have intrinsic noise caused by the quantal release
of vesicles of neurotransmitter at the synapses between
the neurons.

Boltzmann machines were designed to model both
the settling and the learning, and were based on two
seminal ideas that appeared in 1982. Hopfield (1982)
showed that a neural network composed of binary units
would settle to a minimum of a simple, quadratic energy
function provided that the units were updated asyn-
chronously and the pairwise connections between units
were symmetrically weighted. Kirkpatrick et al. (1982)
showed that systems that were settling to energy min-
ima could find deeper minima if noise was added to

the update rule so that the system could occasionally
increase its energy to escape from poor local minima.

Adding noise to a Hopfield net allows it to find
deeper minima that represent more probable interpre-
tations of the sensory data. More significantly, by using
the right kind of noise, it is possible to make the log
probability of finding the system in a particular global
configuration be a linear function of its energy. This
makes it possible to manipulate log probabilities by
manipulating energies, and since energies are simple
local functions of the connection weights, this leads to
a simple, local learning rule.

Structure of Learning System

The learning procedure for updating the connection
weights of a Boltzmann machine is very simple, but to
understand why it works it is first necessary to under-
stand how a Boltzmann machine models a probability
distribution over a set of binary vectors and how it
samples from this distribution.

When unit i is given the opportunity to update its binary
state, it first computes its total input, x;, which is the
sum of its own bias, b;, and the weights on connections
coming from other active units:

X = bi + ZSjW,‘j (1)
j

where wj; is the weight on the connection between
i and j, and s; is 1 if unit j is on and 0, otherwise.
Unit i then turns on with a probability given by the
logistic function:

1
prob(s; = 1) = = (2)

If the units are updated sequentially in any order that
does not depend on their total inputs, the network will
eventually reach a Boltzmann distribution (also called
its equilibrium or stationary distribution) in which the
probability of a state vector, v, is determined solely by
the “energy” of that state vector relative to the energies
of all possible binary state vectors:

P(v) =e M/ > e FW (3)

134

Boltzmann Machines

As in Hopfield nets, the energy of state vector v is
defined as

E(v)=- Zs}’bi - Zs}’sfwij (4)
i i<j

where s} is the binary state assigned to unit i by state

vector v.

If the weights on the connections are chosen so
that the energies of state vectors represent the cost of
those state vectors, then the stochastic dynamics of a
Boltzmann machine can be viewed as a way of escap-
ing from poor local optima while searching for low-cost
solutions. The total input to unit i, x;, represents the dif-
ference in energy depending on whether the unit is off
or on, and the fact that unit i occasionally turns on even
if x; is negative means that the energy can occasionally
increase during the search, thus allowing the search to
jump over energy barriers.

The search can be improved by using simulated
annealing. This scales down all of the weights and ener-
giesbya factor, T, which is analogous to the temperature
of a physical system. By reducing T from a large ini-
tial value to a small final value, it is possible to benefit
from the fast equilibration at high temperatures and
still have a final equilibrium distribution that makes
low-cost solutions much more probable than high-cost
ones. At a temperature of 0, the update rule becomes
deterministic and a Boltzmann machine turns into a
Hopfield network.

Given a training set of state vectors (the data), the
learning consists of finding weights and biases (the
parameters) that make those state vectors good. More
specifically, the aim is to find weights and biases that
define a Boltzmann distribution in which the training
vectors have high probability. By differentiating (3) and
using the fact that:

0E(v)/dwj; = —s]s} (5)

it can be shown that:

< olog P(v)

= (5i3j>data - <5i5j>model (6)
awij >data

where (-)dara is an expected value in the data dis-
tribution and (-)moder is an expected value when the

Boltzmann machine samples state vectors from its equi-
librium distribution at a temperature of 1. To per-
form gradient ascent in the log probability that the
Boltzmann machine would generate the observed data
when sampling from its equilibrium distribution, w;; is
incremented by a small learning rate times the RHS of
(6). The learning rule for the bias, b;, is the same as (6),
but with s; omitted.

If the observed data specifies a binary state for every
unit in the Boltzmann machine, the learning prob-
lem is convex: There are no nonglobal optima in the
parameter space. However, sampling from (-)mode; may
involve overcoming energy barriers in the binary state
space.

Learning becomes much more interesting if the
Boltzmann machine consists of some “visible” units
whose states can be observed, and some “hidden” units
whose states are not specified by the observed data. The
hidden units act as latent variables (features) that allow
the Boltzmann machine to model distributions over vis-
ible state vectors that cannot be modeled by direct pair-
wise interactions between the visible units. A surprising
property of Boltzmann machines is that, even with hid-
den units, the learning rule remains unchanged. This
makes it possible to learn binary features that capture
higher-order structure in the data. With hidden units,
the expectation (s;s;)data is the average, over all data vec-
tors, of the expected value of s;s; when a data vector is
clamped on the visible units and the hidden units are
repeatedly updated until they reach equilibrium with
the clamped data vector.

It is surprising that the learning rule is so sim-
ple because dlog P(v)/dw;; depends on all the other
weights in the network. Fortunately, the locally avail-
able difference in the two correlations in (6) tells w;;
everything it needs to know about the other weights.
This makes it unnecessary to explicitly propagate error
derivatives, as in the backpropagation algorithm.

The stochastic dynamics and the learning rule can
accommodate more complicated energy functions
(Sejnowski, 1986). For example, the quadratic energy
function in (4) can be replaced by an energy function

Boltzmann Machines

135

that has typical term s;sjs;wijk. The total input to unit i
that is used in the update rule must then be replaced by

Xi=bi+ Y sisiWijk.)
j<k

The only change in the learning rule is that s;s; is
replaced by s;s;s.

Boltzmann machines model the distribution of the
data vectors, but there is a simple extension, the “con-
ditional Boltzmann machine” for modeling conditional
distributions (Ackley, Hinton, & Sejnowski, 1985). The
only difference between the visible and the hidden units
is that, when sampling (s;sj)data> the visible units are
clamped and the hidden units are not. If a subset of the
visible units are also clamped when sampling (s;s;) model
this subset acts as “input” units and the remaining visi-
ble units act as “output” units. The same learning rule
applies, but now it maximizes the log probabilities of
the observed output vectors conditional on the input
vectors.

Instead of using units that have stochastic binary
states, it is possible to use “mean field” units that have
deterministic, real-valued states between 0 and 1, as in
an analog Hopfield net. Equation (2) is used to compute
an “ideal” value for a unit’s state, given the current states
of the other units, and the actual value is moved toward
the ideal value by some fraction of the difference. If this
fraction is small, all the units can be updated in parallel.
The same learning rules can be used by simply replacing
the stochastic, binary values by the deterministic real
values (Peterson & Anderson, 1987), but the learning
algorithm is hard to justify and the mean field nets have
problems in modeling multimodal distributions.

The binary stochastic units used in Boltzmann
machines can be generalized to “softmax” units that
have more than two discrete values, Gaussian units
whose output is simply their total input plus Gaussian
noise, binomial units, Poisson units, and any other type
of unit that falls in the exponential family (Welling,
Rosen-Zvi, & Hinton, 2005). This family is character-
ized by the fact that the adjustable parameters have lin-
ear effects on the log probabilities. The general form of
the gradient required for learning is simply the change
in the sufficient statistics caused by clamping data on the
visible units.

Learning is typically very slow in Boltzmann machines
with many hidden layers because large networks can
take a long time to approach their equilibrium distribu-
tion, especially when the weights are large and the equi-
librium distribution is highly multimodal, as it usually
is when the visible units are unclamped. Even if sam-
ples from the equilibrium distribution can be obtained,
the learning signal is very noisy because it is the differ-
ence of two sampled expectations. These difficulties can
be overcome by restricting the connectivity, simplifying
the learning algorithm, and learning one hidden layer at
a time.

A restricted Boltzmann machine (Smolensky, 1986)
consists of a layer of visible units and a layer of hid-
den units with no visible-visible or hidden-hidden con-
nections. With these restrictions, the hidden units are
conditionally independent given a visible vector, so
unbiased samples from (s;sj) data can be obtained in one
parallel step. To sample from (s;sj)model still requires
multiple iterations that alternate between updating all
the hidden units in parallel and updating all of the vis-
ible units in parallel. However, learning still works well
if (siSj)model is replaced by (sisj)reconstruction Which is
obtained as follows:

1. Starting with a data vector on the visible units,
update all of the hidden units in parallel.

2. Update all of the visible units in parallel to get a
“reconstruction”

3. Update all of the hidden units again.

This efficient learning procedure approximates gra-
dient descent in a quantity called “contrastive diver-
gence” and works well in practice (Hinton, 2002).

After learning one hidden layer, the activity vectors of
the hidden units, when they are being driven by the
real data, can be treated as “data” for training another
restricted Boltzmann machine. This can be repeated to
learn as many hidden layers as desired. After learning
multiple hidden layers in this way, the whole network
can be viewed as a single, multilayer generative model,

136

Boosting

and each additional hidden layer improves a lower
bound on the probability that the multilayer model
would generate the training data (Hinton, Osindero, &
Teh, 2006).

Learning one hidden layer at a time is a very effective
way to learn deep neural networks with many hidden
layers and millions of weights. Even though the learn-
ing is unsupervised, the highest level features are typi-
cally much more useful for classification than the raw
data vectors. These deep networks can be fine-tuned
to be better at classification or dimensionality reduc-
tion using the backpropagation algorithm (Hinton &
Salakhutdinov, 2006). Alternatively, they can be fine-
tuned to be better generative models using a version of
the “wake-sleep” algorithm Hinton et al. (2006).

Boltzmann machines are a type of Markov random field
(see »Graphical Models), but most Markov random
fields have simple, local interaction weights which are
designed by hand rather than being learned. Boltzmann
machines are also like Ising models, but Ising mod-
els typically use random or hand-designed interaction
weights. The search procedure for Boltzmann machines
is an early example of Gibbs sampling, a »Markov chain
Monte Carlo method which was invented indepen-
dently (Geman & Geman, 1984) and was also inspired
by simulated annealing.

Boltzmann machines are a simple type of undi-
rected graphical model. The learning algorithm for
Boltzmann machines was the first learning algorithm
for undirected graphical models with hidden variables
(Jordan, 1998). When restricted Boltzmann machines
are composed to learn a deep network, the top two
layers of the resulting graphical model form an undi-
rected Boltzmann machine, but the lower layers form
a directed acyclic graph with directed connections
from higher layers to lower layers, Hinton et al.
(2006).

Conditional random fields (Lafferty, McCallum, &
Pereira, 2001) can be viewed as simplified versions
of higher-order, conditional Boltzmann machines in
which the hidden units have been eliminated. This
makes the learning problem convex, but removes the
ability to learn new features.

Recommended Reading

Ackley, D., Hinton, G., & Sejnowski, T. (1985). A Learning
algorithm for boltzmann machines. Cognitive Science, 9(1),
147-169.

Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distri-
butions, and the Bayesian restoration of images. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 6(6),
721-741.

Hopfield, J. J. (1982). Neural networks and physical systems with
emergent collective computational abilities. Proceedings of the
National Academy of Sciences USA, 79, 2554-2558.

Hinton, G. E. (2002). Training products of experts by min-
imizing contrastive divergence. Neural Computation, 14(8),
1711-1800.

Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learn-
ing algorithm for deep belief nets. Neural Computation, 18,
1527-1554.

Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the
dimensionality of data with neural networks. Science, 313,
504-507.

Hinton, G. E., & Sejnowski, T. J. (1983). Optimal perceptual infer-
ence. In Proceedings of the IEEE conference on computer vision
and pattern recognition, Washington, DC (pp. 448-453).

Jordan, M. 1. (1998). Learning in graphical models. Cambridge, MA
MIT press.

Kirkpatrick, S., Gelatt, D. D., & Vecci, M. P. (1983). Optimization by
simulated annealing. Science, 220(4598), 671-680.

Lafferty, J., McCallum, A., & Pereira, F. (2001). Conditional ran-
dom fields: Probabilistic models for segmenting and labeling
sequence data. In Proceedings of the 18th international confer-
ence on machine learning (pp. 282-289). San Francisco, Morgan
Kaufmann.

Peterson, C., & Anderson, J. R. (1987). A mean field theory learning
algorithm for neural networks. Complex Systems, 1(5), 995-1019.

Sejnowski, T. J. (1986). Higher-order boltzmann machines. AIP
Conference Proceedings, 151(1), 398-403.

Smolensky, P. (1986). Information processing in dynamical sys-
tems: Foundations of harmony theory. In D. E. Rumelhart, &
J. L. McClelland (Eds.), Parallel distributed processing: Vol. I:
Foundations (pp. 194-281). Cambridge, MA: MIT Press.

Welling, M., Rosen-Zvi, M., & Hinton, G. E. (2005). Exponen-
tial family harmoniums with an application to information
retrieval. In Advances in neural information processing systems
(vol. 17, pp. 1481-1488). Cambridge, MA: MIT Press.

! Boosting

Boosting is a family of »ensemble learning methods.
The Boosting framework is an answer to a question
posed on whether two complexity classes of learning
problems are equivalent: strongly learnable, and weakly
learnable. The Boosting framework is a proof by con-
struction that the answer is positive, they are equivalent.
The framework allows a “weak” model, only slightly

Breakeven Point

137

better than random guessing, to be boosted into an
arbitrarily accurate strong model. »Adaboost is the
most well known and successful of the Boosting family,
though there exist many variants specialized for par-
ticular tasks, such as cost-sensitive and noise-tolerant
versions. See »ensemble learning for full details.

! Bootstrap Sampling

Definition

Bootstrap sampling is a process for creating a distribu-
tion of datasets out of a single dataset. It is used in the
»ensemble learning algorithm »Bagging. It can also be
used in P-algorithm evaluation to create a distribution
of training sets from which to estimate properties of an
algorithm.

Recommended Reading

Davison, A. C., & Hinkley, D. (2006). Bootstrap methods and their
applications (8th ed.). Cambridge: Cambridge Series in Statisti-
cal and Probabilistic Mathematics.

|
Bottom Clause

Synonyms
Saturation; Starting clause

Definition

The bottom clause is a notion from the field of
»inductive logic programming. It is used to refer to the
most specific hypothesis covering a particular example
when »learning from entailment. When learning from
entailment, a hypothesis H covers an example e relative
to the background theory Bif and only if BAH E e, that
is, B together with H »entails the example e. The bot-
tom clause is now the most specific clause satisfying this
relationship w.r.t the background theory B and a given
example e.

For instance, given the background theory B

bird
bird

:— blackbird.
:— ostrich.

and the example e:
normal.

flies :- blackbird,

the bottom clause is H

flies :- bird, blackbird, normal.

The bottom clause can be used to constrain the search
for clauses covering the given example because all
clauses covering the example relative to the background
theory should be more general than the bottom clause.
The bottom clause can be computed using Pinverse

entailment.

Cross References

» Entailment

»Inductive Logic Programming
» Inverse Entailment

»Logic of Generality

[
Bounded Differences Inequality

» McDiarmid’s Inequality

' BP

» Backpropagation

|
Breakeven Point

More accurately described as precision-recall BEP, it
is an evaluation measure originally introduced in the
field of information retrieval to evaluate retrieval sys-
tems that return a list of documents ordered by their
supposed relevance to the user’s information need (see
also »Document Classification). It can also be used
to evaluate any classification model f that addresses a
two-class classification problem but outputs real-valued
predictions f(x) instead of binary ones. To use such a
classifier in practice, one would select a threshold 6 and
predict an instance x to be positive if f (x) > 0 and nega-
tive otherwise. Thus, the »precision and Precall of this
system depend on the choice of the threshold . A lower
threshold means higher recall, but usually also lower
precision. At some point (when the number of instances
predicted to be positive is the same as the actual number

138

Breakeven Point

of positive instances), precision and recall are equal; this
value of precision and recall is known as the precision—
recall BEP. It is a useful measure of the quality of our
classifier because it gives us guidance into what sort of
tradeofls are available to the user of such a classifier via
the choice of threshold: if we want a precision above the
BEP, we must accept that our recall will be below the
BEP, and vice versa. A different meaning of the term

“breakeven point” is sometimes used in ROC (»ROC
Analysis), where the ROC breakeven is defined as the
point where the true positive rate and the false positive
rate sum to 1; smaller values of the ROC breakeven are
better than larger ones. Informally, the ROC breakeven
measures how close the ROC curve gets to the “ROC
sweet spot” in the top left corner (where the »true
positive rate is 1 and the »false positive rate is 0).

	B
	Backprop
	Backpropagation
	Synonyms
	Definition
	Characteristics
	Feed-Forward Networks
	Gradient Descent
	Implementation
	Classification Tasks with BP
	Curve Fitting with BP
	The Autoencoder Architecture
	Prediction with BP
	Cognitive Modeling with BP
	Biological Inspiration and Plausibility
	Shortcomings of BP
	History

	Cross References
	Recommended Reading

	Bagging
	Bake-Off
	Definition
	Cross References

	Bandit Problem with SideInformation
	Bandit Problem with Side Observations
	Basic Lemma
	Basket Analysis
	Synonyms
	Definition
	Cross References

	Batch Learning
	Synonyms
	Definition

	Baum–Welch Algorithm
	Bayes Adaptive Markov DecisionProcesses
	Bayes Net
	Bayes Rule
	Definition
	Discussion
	Cross References

	Bayesian Methods
	Definition
	Motivation and Background
	Theory
	Basic Theory
	Justifications
	Bayesian Computation

	Cross References
	Recommended Reading

	Bayesian Model Averaging
	Bayesian Network
	Synonyms
	Definition
	Cross References

	Bayesian Nonparametric Models
	Synonyms
	Definition
	Motivation and Background
	Examples
	Theory
	Exchangeability
	Model Representations
	Consistency and Convergence Rates

	Inference
	Examples
	On Bayes Equations and Conjugacy

	Future Directions
	General-Purpose Software Package
	Statistical Properties of Models

	Cross References
	Recommended Reading

	Bayesian Reinforcement Learning
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning Approach
	Model-Based Bayesian Learning
	Belief MDP Equivalence
	Optimal Value Function Parameterization
	Exploration/Exploitation Tradeoff
	Related Work

	Cross References
	Recommended Reading

	Beam Search
	Cross References
	Recommended Reading

	Behavioral Cloning
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Learning Direct (Situation–Action) Controllers
	Limitations

	Learning Indirect (Goal-Directed) Controllers
	Cross References
	Recommended Reading

	Belief State Markov Decision Processes
	Bellman Equation
	Bias
	Bias Specification Language
	Definition
	Examples
	Bias Specification Languages in Inductive Logic Programming
	DLAB
	Type- and Mode-Based Biases
	FLIPPER's Bias Specification Language
	Other Approaches

	Further Reading
	Cross References
	Recommended Reading

	Bias Variance Decomposition
	Definition
	Cross References
	Recommended Reading

	Bias-Variance Trade-offs: Novel Applications
	Definition
	Motivation and Background
	Applications
	Monte Carlo Estimation of Integrals Using Importance Sampling
	Monte Carlo Optimization
	Parametric Machine Learning
	PLMCO
	MCO Problem Description
	Solution Methodology
	Log-Concave Densities
	Mixture Models
	Test Problems
	Application of PL Techniques

	Conclusions
	Recommended Reading

	Bias-Variance Trade-offs
	Bias-Variance-CovarianceDecomposition
	Bilingual Lexicon Extraction
	Binning
	Biological Learning: Synaptic Plasticity, Hebb Rule and Spike Timing Dependent Plasticity
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	The Hebb Rule
	Functional Consequences of Hebbian Learning

	Cross References
	Recommended Reading

	Biomedical Informatics
	Introduction
	Gene Expression Microarrays
	Gene Chips

	Machine Learning for Microarrays
	Single Nucleotide Polymorphisms
	Mass Spectrometry and Proteomics
	Protein Structures
	Protein–Protein Interactions
	Related Data Types
	High-Throughput Screening Data for Drug Design
	Electronic Medical Records (EMR) and Personalized Medicine
	Conclusion
	Acknowledgment
	Cross References
	Recommended Reading

	Blog Mining
	Boltzmann Machines
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	The stochastic Dynamics of a Boltzmann Machine
	Learning in Boltzmann Machines Without Hidden Units
	Learning with Hidden Units
	Different Types of Boltzmann Machine
	The speed of Learning
	Restricted Boltzmann Machines
	Learning Deep Networks by Composing Restricted Boltzmann Machines
	Relationships to Other Models

	Recommended Reading

	Boosting
	Bootstrap Sampling
	Definition
	Recommended Reading

	Bottom Clause
	Synonyms
	Definition
	Cross References

	Bounded Differences Inequality
	BP
	Breakeven Point

