
C

C.

7Decision Tree

Cannot-Link Constraint

Apairwise constraint between two items indicating that

they should be placed into di�erent clusters in the �nal

partition.

Candidate-Elimination
Algorithm

Mitchell’s, (, ) candidate-elimination algorithm

performs a bidirectional search in the 7hypothesis
space. It maintains a set, S, of most speci�c hypotheses
that are consistent with the training data and a set, G,
of most general hypotheses consistent with the training

data.�ese two sets form two boundaries on the version

space. See7Learning as Search.

Recommended Reading
Mitchell, T. M. (). Generalization as search. Artificial Intelli-

gence, (), –.
Mitchell, T. M. (). Machine learning. New York: McGraw-Hill.

Cascade-Correlation

Thomas R. Shultz, Scott E. Fahlman

McGill University, Montréal, QC, Canada
Carnegie Mellon University, Pittsburgh, PA, USA

Synonyms
Cascor; CC

Definition
Cascade-Correlation (o�en abbreviated as “Cascor”

or “CC”) is a 7supervised learning algorithm for

7arti�cial neural networks. It is related to the 7back-
propagation algorithm (“backprop”). CC di�ers from

backprop in that a CC network begins with no hidden

units, and then adds units one-by-one, as needed during

learning.

Each new hidden unit is trained to correlate with

residual error in the network built so far. When it is

added to the network, the new unit is frozen, in the

sense that its input weights are �xed. �e hidden units

form a cascade: each new unit receives weighted input
fromall the original network inputs and from the output

of every previously created hidden unit. �is cascad-

ing creates a network that is as deep as the number

of hidden units. Stated another way, the CC algorithm

is capable of e�ciently creating complex, higher-order

nonlinear basis functions – the hidden units –which are

then combined to form the desired outputs.

�e result is an algorithm that learns complex

input/outputmappings very fast compared to backprop,

and that builds a multi-layer network structure that is

customized for the problem at hand.

Motivation and Background
Cascade-Correlationwas designed (Fahlman&Lebiere,

) to address two well-known problems with

the popular back-propagation algorithm (“backprop”).

First, a backprop user has to guess what network struc-

ture – the number of hidden layers and the number of

units in each layer – would be best for a given learning

problem. If the network is too small or too shallow, it

won’t solve the problem; if it is too large or too deep,

training is very slow, and the network is prone to over-

�tting the training data. Because there is no reliable way

to choose a good structure before training begins, most

backprop users have to train many di�erent structures

before �nding one that is well-matched to the task.

Claude Sammut & Geoffrey I. Webb (eds.), Encyclopedia of Machine Learning, DOI ./----,
© Springer Science+Business Media LLC 

 C Cascade-Correlation

Second, even if a backprop usermanages to choose a

good network structure, training is generally very slow.

�at is particularly true in networks with many hidden

units or with more than one hidden layer. One cause

of slow learning in backprop is the use of a uniform

learning-rate parameter for updating network weights.

�is problem was addressed with the Quickprop algo-

rithm (Fahlman, ), an approximation to Newton’s

method that adapts the learning rate for each weight

parameter depending on the �rst two derivatives of

the local error surface. Quickprop improved learning

speed, sometimes dramatically, but learningwas still too

slow in large or deep networks.

Another cause of slow learning in backprop is the

“herd e�ect” (Fahlman & Lebiere, ). If the solution

to a network problem requires, say,  hidden units,

each of these units must be trained to do a di�erent

job – that is, to compute a di�erent nonlinear basis

function. Each hidden unit starts with a di�erent and

randomly chosen set of input weights; but if the units

are all trained at once, they all see the same error sig-

nal. �ere is no central authority telling each unit to do

a separate job, so they tend to dri� toward the same part

of parameter space, forming a herd that moves around

together. Eventually, the units may dri� apart and begin

to di�erentiate, but there is nothing to compel this, so

the process is slow and unreliable. Usually, in selecting

an initial topology for a backprop net, it is necessary to

include many extra hidden units to increase the odds

that each job will be done by some unit.

CC addresses this problem by introducing and

training hidden units one by one. Each hidden unit

sees a strong, clear error gradient, not confused by the

simultaneous movement of other hidden units. A new

hidden unit can thus move quickly and decisively to a

position in parameter space where it can perform a use-

ful function, reducing the residual error. One by one,

cascor-hidden units take up distinct jobs, instead of

milling about together competing to do the same job.

Structure of Learning System
The Algorithm

�e CC architecture is illustrated in Fig. . It begins

with some inputs and one or more output units, but

no hidden units. �e numbers of inputs and outputs

are dictated by the problem. As in backprop, the output

units generally have a sigmoid activation function, but

could alternatively have a linear activation function.

Every input is connected to every output unit by a con-

nection with an adjustable weight. �ere is also a bias
input, permanently set to +.
Hidden units are added to the network one by one.

Each new hidden unit receives a weighted connection

from each of the network’s original inputs and also

from every existing hidden unit. Each new unit there-

fore adds a new single-unit layer to the network. �is

makes it possible to create high-order nonlinear feature

detectors, customized for the problem at hand.

As noted, learning begins without hidden units.�e

direct input–output connections are trained as well as

possible over the entire set of training examples, using

Quickprop. At some point, this training approaches an

asymptote. When no signi�cant error reduction has

occurred a�er a certain number of training cycles, this

output phase is terminated and there is a shi� to input

phase to recruit a new hidden unit, using the unit-

creation algorithm to be described. �e new unit is

added to the net, its input weights are frozen, and all the

output weights are once again trained using Quickprop.

�is cycle repeats until the error is acceptably small,

in the sense that all network outputs for all training

patterns are within a speci�ed threshold of their target

values.

To create a new hidden unit, input phase begins

with several candidate units that receive trainable input
connections from all of the network inputs and from

all existing hidden units. �e outputs of these candi-

dates are not yet connected to the network. �ere are a

number of passes over the examples of the training set,

adjusting the candidate unit’s input weights a�er each

pass. �e goal of these adjustments, using Quickprop,

is to maximize the correlation between each candidate’s

output and the residual error.

When these correlation measures show no further

signi�cant improvement, input phase stops, the best-

correlating candidate’s input weights are frozen, and

that unit is installed in the network.�e remaining can-

didates are discarded and the algorithm then retrains

the output weights, making use of this new feature as

well as all the old ones. As the new unit’s output corre-

lates well with some component of the residual error, its

output weights can be quickly adjusted to reduce that

Cascade-Correlation C 

C

After adding second
Hidden unit

After adding first
Hidden unit

Initial network
No hidden units

Inputs

Outputs

Outputs

Outputs

+1

Inputs

+1

Inputs

+1

Cascade-Correlation. Figure . The Cascade–Correlation (CC) architecture, as new hidden units are added. Black circles

are frozen connection weights, white circles are weights trained during output-training phase. The vertical lines sum

all incoming activation

 C Cascade-Correlation

component. So a�er adding each new hidden unit, the

network’s residual error should be smaller than before.

Using several candidates, each with di�erently-

initialized input weights, greatly reduces the chances of

installing a bad hidden unit that gets the network stuck

in a local optimum far from the global optimum value.

All candidates receive the same input signals and see the

same residual error for each training pattern. Because

they do not interact with one another or a�ect the net-

work during training, these candidates can be trained

in parallel. In a pool of four to eight candidates, there

are almost always several high-quality candidates with

nearly equal correlation values.

Hidden units continue to be recruited until net-

work error reaches an acceptable level, or until cross-

validation signals a stop. Because only a single layer

of weights is adjusted at a time, rather than back-

propagating an error signal through several layers of

shi�ing units, CC training proceeds very quickly.

Performance

CC is designed to produce a network just large enough

to solve the problem, and to do so much faster than

backprop and related algorithms. In many reported

cases that require hidden units, CC learns the desired

behavior – times faster than standard backprop

(Fahlman & Lebiere, ). One striking example of

this is the two-spirals problem, an arti�cial benchmark
designed to be very di�cult for neural networks with

sigmoid units. At the time CC was developed, the best

known backprop solutions for two-spirals required a

network with three hidden layers of �ve units each. CC

typically solves this problem with  hidden units, and

has found solutions with as few as nine hidden units.

In terms of runtime, CC training was about  times

faster than standard backprop and  times faster than

Quickprop used within a static network.

Variants of Cascade-Correlation

Flat Cascade-Correlation In standard CC, each new

hidden unit receives inputs from every existing unit, so

the net becomes one level deeper every time a unit is

added. �is is a powerful mechanism, creating increas-

ingly complex feature detectors as the network learns.

But sometimes this added depth is not required for the

problem, creating a very deep network that performs no

better than a shallow one. �e resulting network might

have more weights than are required for the problem,

raising concern about over-�tting. Another concern

was that the cascaded non-linearity of CC might also

compromise generalization. To address these concerns,

a �at variant of cascor adds new recruited units onto a

single layer (i.e., cascaded connections are eliminated),

limiting the depth of the network and eliminating all

cascaded weights between hidden units.

Comparison of �at to standard CC on gen-

eralization in particular learning problems yielded

inconsistent results, but a more problem–neutral,

student–teacher approach found no generalization dif-

ferences between �at and standard versions of CC

(Dandurand, Berthiaume, & Shultz, ). Here, �at

and standard student CC networks learned the input–

output mappings of other, randomly initialized �at and

standard CC teacher networks, where task complex-

ity was systematically manipulated. Both standard and

�at CC student networks learned and generalized well

on problems of varying complexity. In low-complexity

tasks, there were no signi�cant performance di�er-

ences between �at and standard CC student networks.

For high-complexity tasks, �at CC student networks

required fewer connection weights and learned with

less computational cost than did standard CC student

networks.

Sibling-Descendant Cascade-Correlation (SDCC) SDCC

(Baluja & Fahlman, ) provides a more general solu-

tion to the problem of network depth. In the candidate

pool there are two kinds of candidate units: descendant
units that receive inputs from all existing hidden units,

and sibling units that receive the same inputs as the
deepest hidden units in the current net. When the time

comes to choose a winning candidate, the candidate

with the best correlation wins, but there is a slight pref-

erence for sibling units. So unless a descendant unit is

clearly superior, a sibling unit will be recruited, making

the active network larger, but not deeper. In problems

where standard CC produces a network with  or 

hidden units and an equal number of layers, SDCC

o�en produces a network with only two or three hidden

layers.

Recurrent Cascade-Correlation (RCC) Standard CC pro-

duces a network that maps its current inputs to outputs.
�e network has no memory of recent inputs, so this

Cascade-Correlation C 

C

architecture is not able to learn to recognize a sequence

of inputs. In the RCC algorithm, each candidate and

hidden unit takes the same inputs as in standardCC, but

it also takes an additional input: the unit’s own previous

output, delayed by one time interval (Fahlman, ).

�e weight on this time-delayed input is trained by the

same algorithm as all the other inputs.

�is delayed loop gives RCC networks a way of

remembering past inputs and internal states, so they

can learn to recognize sequences of input patterns. In

e�ect, the architecture builds a �nite-state machine tai-

lored speci�cally to recognize the pattern sequences in

the training set. For example, an RCC net learned to

recognize characters in Morse code.

Knowledge-Based Cascade-Correlation (KBCC) KBCC is

a variant that can recruit previously-learned networks

or indeed any di�erentiable function, in competition

with single hidden units (Shultz & Rivest, ; Shultz,

Rivest, Egri,�ivierge, &Dandurand, ).�e recruit

is the candidate whose output correlates best with resid-

ual network error, just as in ordinary CC.�e candidate

pool usually has a number of randomly initialized sig-

moid units and a number of candidate source networks,

i.e., networks previously trained on other tasks. �e

input weights to multiple copies of the source networks

are usually randomly initialized to improve optimiza-

tion. Of these copies, one is typically connected with

an identity matrix with o�-diagonal zeros, to enable

quick learning of the target task when exact knowledge

is available. A hypothetical KBCC network is shown in

Fig. .

Software Most CC algorithms are available in a variety

of formats and languages, including:

CASCOR: Lisp and C implementations of Cascade-

correlation

http://www.cs.cmu.edu/afs/cs/project/ai-repository/

ai/areas/neural/systems/cascor/.html

Free Lisp and C implementations of cascade-

correlation.

Cascade Neural Network Simulator

http://www.cs.cmu.edu/~sef/sefSo�.htm

A public domain C program that implements

cascade-correlation and recurrent cascade-correlation,

Outputs

Unit

Source

Bias Inputs

Cascade-Correlation. Figure . Hypothetical knowledge-

based cascade-correlation (KBCC) network that has

recruited a source network and then a sigmoid unit, each

installed on a separate layer. The dashed line represents

a single connection weight, thin solid lines represent

weight vectors, and thick solid lines represent weight

matrices

plus experimental versions of cascade  and recur-

rent cascade .

LNSC Cascade-correlation Simulator Applet

http://www.psych.mcgill.ca/perpg/fac/shultz/cdp/

lnsc_applet.htm

A Java applet allowing direct comparisons of

cascade-correlation andback-propagation algorithms

on some benchmark problems, also permitting entry

of text-edited custom training and test patterns.

LNSC Java Code Library

http://www.lnsclab.org/

Free compiled Java versions of BP, CC, SDCC,

and KBCC neural-network so�ware, along with a

tutorial

Applications
CC

Partly because of its ability to grow its own networks

and build new learning on top of existing knowledge,

CC has been used to simulate many phenomena in cog-

nitive development. �ese characteristics embody the

constructivism that developmental psychologists o�en

discussed but did not formulate precisely. Simulations

are typically evaluated by how well they capture the

various psychological phenomena that characterize a

particular domain.

http://www.cs.cmu.edu/afs/cs/project/ai-repository/ ai/areas/neural/systems/cascor/0.html
http://www.cs.cmu.edu/afs/cs/project/ai-repository/ ai/areas/neural/systems/cascor/0.html
http://www.cs.cmu.edu/~sef/sefSoft.htm
http://www.lnsclab.org/
http://www.psych.mcgill.ca/perpg/fac/shultz/cdp/lnsc_applet.htm
http://www.psych.mcgill.ca/perpg/fac/shultz/cdp/lnsc_applet.htm

 C Cascade-Correlation

�e balance-scale task involves presenting a child

with a rigid beam balanced on a fulcrum with pegs

spaced at equal intervals to the le� and right of the ful-

crum. A number of identical weights are placed on a

peg on the le� side and a peg on the right side, and

the child is asked to predict which side will descend

when the beam is released from its moorings. CC net-

works passed through the stages observed with children

and captured the so-called torque-di�erence e�ect, the

tendency to do better on problems with large absolute

torque di�erences than on problems with small torque

di�erences (Shultz, Mareschal, & Schmidt, ; Shultz

and Takane, ).

�e conservation task presents a child with two

quantities of objects that the child judges to be equal and

then transforms one set in a way that either changes that

relationship or conserves it. CC networks captured four

important conservation regularities (Shultz, ):

. A shi� from nonconservation to conservation

beliefs

. A sudden spurt in performance during acquisition

. Emergence of correct conservation judgments for

small quantities before larger quantities

. Young children’s choice of the longer row as having

more items than the shorter row

Analysis of network solutions at various points in devel-

opment revealed a gradual shi� from perceptual (how

the sets of items look) to cognitive (whether or not the

transformation changed a quantity) solutions, similar to

what had been found with children.

�e seriation task requires a child to order a dis-

ordered collection of sticks of di�erent lengths. CC

networks passed through the four stages seen in chil-

dren (total failure, partial sort, trial-and-error sort, and

systematic sort) and captured the tendency for sets

with smaller di�erences to be more di�cult to sort

(Mareschal & Shultz, ). Analysis of network solu-

tions revealed early success at the short end of the series

that was gradually extended to the longer end, as in

children.

�e transitivity problem typically also employs

sticks of di�erent length. Here the child is trained on

all pairs of sticks that are adjacent in length and then

is asked to infer the relative length of untrained pairs.

Five psychological regularities were captured when CC

networks were trained to compare the relative sizes of

adjacent pairs (Shultz & Vogel, ):

. Learning short or long adjacent pairs before adja-

cent pairs of medium length.

. Faster inferences with pairs farther apart in length

than with pairs close together in length, an e�ect

that diminished with age. A constraint-satisfaction

networkmodule simulated reaction times by input-

ting the output of a CC network and settling over

time cycles into a low-energy solution that satis�ed

the constraints supplied by connection weights and

inputs, e�ectively cleaning up the output of the CC

network.

. Faster inferences with pairs containing the shortest

or longest stick.

. Faster inferences when the expression used in the

question (e.g., shorter) is compatible with an end

stick (e.g., the shortest stick) in the compared

pair than when the question term (e.g., shorter)

is incompatible with an end stick (e.g., the longest

stick) in the compared pair.

. Older children learned adjacent pairs faster and

made inference comparisons faster and more accu-

rately than did young children.

�e computational bases for these e�ects were revealed

by examining the pattern of connection weights within

the CC network module. �e pattern of these weights

formed a cubic shape, symmetrical for the two sticks

being compared, in which discrimination was better at

the ends of the array than in the middle and became

sharper with deeper learning.

Another task calls for integration of cues formoving

objects, governed by the equation velocity = distance/
time. Children were presented with information on two

of those quantities and asked to infer the third. �ree

stages involved �rst using the quantity that varied pos-

itively with the quantity to be inferred, second adding

or subtracting the known quantities, and �nally multi-

plying or dividing the known quantities. Already docu-

mented stages were captured and others were correctly

predicted by CC networks (Buckingham & Shultz,

).

Semantic rules for deictic personal pronouns specify

thatme refers to the person using the pronoun and you
refers to the person who is being addressed. Although

Cascade-Correlation C 

C

most children acquire these pronouns without notable

errors, a few reverse these pronouns, persistently call-

ing themselves you and the mother me. Such reversals
in children are produced by lack of opportunity to over-

hear these pronouns used by other people, where the

shi�ing reference can be observed. CC networks cov-

ered these phenomena and generated predictions for

e�ective therapy to correct reversal errors (Oshima-

Takane, Takane, & Shultz, ).

Discrimination shi� learning tasks repeatedly present

pairs of stimuli with mutually exclusive attributes on

several binary dimensions, such as color, shape, and

position, and a child learns to select the correct stimulus

in each pair, e.g., square. Feedback is given and learn-
ing continues until the child reaches a success criterion,

e.g., / correct. �en reward contingencies shi�, usu-

ally without warning. A reversal shi� stays within the
initially relevant dimension, e.g., from square to cir-
cle. A nonreversal shi� is to another dimension, such
as from square to blue. �ere are related tasks that use
new stimulus values in the shi� phase. �ese are called

intradimensional shi�s if the shi� remains within the
initial dimension, e.g., square to triangle, or extradimen-
sional if there is a change to another dimension, e.g.,
from square to yellow. �e optional shi� task presents
only two stimulus pairs in the shi� phase, making it

ambiguous whether the shi� is a reversal or nonreversal

shi�.�e pattern of subsequent choices allows determi-

nation of whether the child interprets this as a reversal

or a nonreversal shi�.

Age di�erences in the large literature on these shi�s

indicate that older children learn a reversal shi� faster

than a nonreversal shi�, learn an intradimensional shi�

faster than an extradimensional shi�, make a reversal

shi� in the optional task, and are initially impaired on

unchanged pairs during a nonreversal shi�. Younger

children learn reversal and nonreversal shi�s equally

fast, learn an intra-dimensional shi� faster than an

extra-dimensional shi�, make a nonreversal shi� in the

optional task, and are unimpaired on unchanged pairs

during a nonreversal shi�. �ese �ndings were simu-

lated by CC networks (Sirois & Shultz, ), which

also generated predictions that were later con�rmed.

When infants repeatedly experience stimuli from a

particular class, their attention decreases, but it recovers

to stimuli from a di�erent class. �is familiarize-and-

test paradigm is responsible for most of the discoveries

of infant psychological abilities. CC networks simulated

�ndings on infant attention to syntactic patterns in an

arti�cial language (Shultz & Bale, ) and age di�er-

ences in infant categorization of visual stimuli (Shultz &

Cohen, ), and generated several predictions, some

of which were tested and con�rmed.

SDCC

Because of SDCC’s ability to create a variety of network

topologies, it is beginning to be used in psychology

simulations: infant learning of word-stress patterns

in arti�cial languages (Shultz & Bale, ), sylla-

ble boundaries (Shultz & Bale, ), visual concepts

(Shultz, ), and false-belief tasks; learning the struc-

ture of mathematical groups (Schlimm& Shultz, );

replication of the results of the CC simulation of

conservation acquisition (Shultz, ); and concept

acquisition.

CC and SDCC networks capture developmental

stages by growing in computational power and by being

sensitive to statistical patterns in the training envi-

ronment (Shultz, ). �e importance of growth

was demonstrated by comparisons with static back-

prop networks, designed with the same �nal topology

as successful CC networks, that learn only by adjust-

ing connection weights (Shultz, ). Coupled with

the variety of successful SDCC topologies, this suggests

that the constructive process is more important than

precise network topologies. Capturing stages is chal-

lenging because the system has to not only succeed on

the task but also make the samemistakes on the road to

success that children do. CC and SDCC arguably pro-

duced the best data coverage of any models applied to

the foregoing phenomena. Both static and constructive

networks capture various perceptual e�ects by virtue

of their sensitivity to quantitative variation in stimulus

inputs (Shultz, ).

Comparison of the two algorithms in psychologi-

cal modeling indicates that SDCC provides the same

functionality as CC but with fewer connection weights

and shallower and more variable network topologies

(Shultz, ).

KBCC

KBCC also has potential for simulating psychological

development, but it has so far been applied mainly

to toy and engineering problems. Exploration of a

 C Cascade-Correlation

variety of toy problems was important in understand-

ing the behavior of this complex algorithm. Some

toy problems involved learning about two-dimensional

geometric shapes under various transformations such

as translation, rotation, and size changes, as well as

compositions of complex shapes from simpler shapes

(Shultz & Rivest, ). Networks had to learn to distin-

guish points within a target shape from points outside

the shape. Learning time without relevant knowledge

was up to  times longer than with relevant knowl-

edge on these problems. �ere was a strong tendency

to recruit relevant knowledge whenever it was available.

Direct comparison revealed that KBCC learned spa-

tial translation problems faster thanMultitask Learning

networks did.

Parity problems require a network to activate an out-

put unit only when an odd number of binary inputs

are activated.When parity- networks were included in

the candidate source pool, KBCC learned parity- prob-

lems (with eight binary inputs) faster and with fewer

recruits than did CC networks. Parity- networks were

recruited by these KBCC target networks whenever

available.

KBCC also learned complex chessboard shapes

from knowledge of simpler chessboards. As with parity,

networks used simpler previous knowledge to compose

a solution to a more complex problem and learning was

speeded accordingly.

In a more realistic vein, KBCC networks recruit-

ing knowledge of vowels from one sort of speaker (e.g.,

adult females) learned to recognize vowels spoken by

other sets of speakers (e.g., children and adult males)

faster than did knowledge-free networks.

KBCC learned an e�cient algorithm for detect-

ing prime numbers by recruiting previously-learned

knowledge of divisibility (Shultz et al., ). �is well-

known detection algorithm tests the primality of an

integer n by checking if n is divisible by any integers
between  and the integer part of

√
n. Starting with

small primes is e�cient because the smaller the prime

divisor, the more composites are detected in a �xed

range of integers. �e candidate pool contained net-

works that had learned whether an integer could be

divided by each of a range of integers, e.g., a divide-

by- network, a divide-by- network, etc., up to a divisor

of . KBCC target networks trained on  randomly-

selected integers from  to  recruited only source

networks involving prime divisors below the square

root of , in order from small to large divisors.

KBCC avoided recruiting single hidden units, source

networks with composite divisors, any divisors greater

than the square root of  even if prime, and divisor

networks with randomized connection weights. KBCC

never recruited a divide-by- source network because

it instead learned to check the last binary digit of n to
determine if n was odd or even, an e�ective shortcut to
dividing by . Such KBCC networks learned the train-

ing patterns in about one third the time required by

knowledge-free networks, with fewer recruits on fewer

network layers, and they generalized almost perfectly

to novel test integers. In contrast, even a�er mastering

the training patterns, CC networks generalized less well

than automatic guessing that the integer was compos-

ite, which was true for % of integers in this range.

As predicted by the simulation, adults testing primality

also used mainly prime divisors below
√
n and ordered

divisors from small to large.

�is work underscores the possibility of neural-

network approaches to compositionality because KBCC

e�ectively composed a solution to prime-number detec-

tion by recruiting and organizing previously learned

parts of the problem, in the form of divisibility net-

works.

Future Directions
One new trend is to inject symbolic rules or func-

tions into KBCC source networks. �is is similar to

KBANN, but more �exible because a KBCC target net-

work decides whether and how to recruit these func-

tions.�is provides onemethod of integrating symbolic

andneural computation and allows for simulation of the

e�ects of direct instruction.

Cross References
7Arti�cial Neural Networks
7Backpropagation

Recommended Reading
Baluja, S., & Fahlman, S. E. (). Reducing network depth in

the cascade-correlation learning architecture. Pittsburgh, PA:
School of Computer Science, Carnegie Mellon University.

Buckingham, D., & Shultz, T. R. (). The developmental course

of distance, time, and velocity concepts: A generative con-

nectionist model. Journal of Cognition and Development, ,
–.

Case-Based Reasoning C 

Cll

Dandurand, F., Berthiaume, V., & Shultz, T. R. (). A system-

atic comparison of flat and standard cascade-correlation using

a student-teacher network approximation task. Connection Sci-
ence, , –.

Fahlman, S. E. (). Faster-learning variations on back-

propagation: An empirical study. In D. S. Touretzky,

G. E. Hinton, & T. J. Sejnowski (Eds.), Proceedings of the
 connectionist models summer school (pp. –). Los Altos,
CA: Morgan Kaufmann.

Fahlman, S. E. (). The recurrent cascade-correlation architec-

ture. In D. S. Touretzky (Ed.), Advances in neural information
processing systems. (Vol. ) Los Altos CA: Morgan Kaufmann.

Fahlman, S. E., & Lebiere, C. (). The cascade-correlation learn-

ing architecture. In D. S. Touretzky (Ed.), Advances in neural
information processing systems (Vol. , pp. –). Los Altos,
CA: Morgan Kaufmann.

Mareschal, D., & Shultz, T. R. (). Development of children’s

seriation: A connectionist approach. Connection Science, ,
–.

Oshima-Takane, Y., Takane, Y., & Shultz, T. R. (). The

learning of first and second pronouns in English: Net-

work models and analysis. Journal of Child Language, ,
–.

Schlimm, D., & Shultz, T. R. (). Learning the structure of

abstract groups. In N. A. Taatgen & H. V. Rijn (Eds.), Proceed-
ings of the st annual conference of the cognitive science society
(pp. –). Austin, TX: Cognitive Science Society.

Shultz, T. R. (). A computational analysis of conservation.

Developmental Science, , –.
Shultz, T. R. (). Computational developmental psychology.

Cambridge, MA: MIT Press.

Shultz, T. R. (). Constructive learning in the modeling of psy-

chological development. In Y. Munakata & M. H. Johnson

(Eds.), Processes of change in brain and cognitive development:
Attention and performance XXI (pp. –). Oxford, UK: Oxford
University Press.

Shultz, T. R., & Bale, A. C. (). Neural networks discover a near-

identity relation to distinguish simple syntactic forms. Minds
and Machines, , –.

Shultz, T. R., & Cohen, L. B. (). Modeling age differences in

infant category learning. Infancy, , –.
Shultz, T. R., Mareschal, D., & Schmidt, W. C. (). Modeling

cognitive development on balance scale phenomena. Machine
Learning, , –.

Shultz, T. R., & Rivest, F. (). Knowledge-based cascade-

correlation: Using knowledge to speed learning. Connection
Science, , –.

Shultz, T. R., Rivest, F., Egri, L., Thivierge, J.-P., & Dandurand, F.

(). Could knowledge-based neural learning be useful in

developmental robotics? The case of KBCC. International Jour-
nal of Humanoid Robotics, , –.

Shultz, T. R., & Takane, Y. (). Rule following and rule use in

simulations of the balance-scale task. Cognition, , –.
Shultz, T. R., & Vogel, A. (). A connectionist model of the devel-

opment of transitivity. In Proceedings of the twenty-sixth annual
conference of the cognitive science society (pp. –).
Mahwah, NJ: Erlbaum.

Sirois, S., & Shultz, T. R. (). Neural network modeling of devel-

opmental effects in discrimination shifts. Journal of Experimen-
tal Child Psychology, , –.

CART

7Decision Tree

Cascor

7Cascade-Correlation

Case

7Instance

Case-Based Learning

7Instance-Based Learning

Case-Based Reasoning

Susan Craw

�e Robert Gordon University, Scotland, UK

Synonyms
CBR; Experience-based reasoning; Lessons-learned

systems; Memory-based learning

Definition
Case-based reasoning solves problems by retrieving

similar, previously solved problems and reusing their

solutions. Experiences are memorized as cases in a case

base. Each experience is learned as a problem or situa-

tion together with its corresponding solution or action.

�e experience need not record how the solution was
reached, simply that the solution was used for the prob-

lem.�e case base acts as a memory, and remembering

is achieved using similarity-based retrieval and reuse of

the retrieved solutions. Newly solved problems may be

retained in the case base and so the memory is able to

grow as problem-solving occurs.

 C Case-Based Reasoning

Motivation and Background
Case-based reasoning (CBR) is inspired by memory-

based human problem-solving in which instances of

earlier problem-solving are remembered and applied

to solve new problems. For example, in Case Law, the

decisions in trials are based on legal precedents from

previous trials. In this way speci�c experiences are

memorized, and remembered and reused when appro-

priate (Leake, ). �is contrasts with rule-based or

theory-based problem-solving in which knowledge of

how to solve a problem is applied. A doctor diagnosing
a patient’s symptoms may apply knowledge about how

diseases manifest themselves, or she may remember a

previous patient who demonstrated similar symptoms.

Schank’s7dynamic memorymodel was highly in�uen-
tial in early CBR systems (Kolodner, ; Riesbeck &

Schank, ). Its emphasis on the use of speci�c experi-

ences to underpin problem-solving and enable learning

is replicated in CBR.

�e fundamental assumption of CBR is that Similar
problems have similar solutions. For example, a patient
with similar symptoms will have the same diagnosis,

the price of a house with similar accommodation and

location will be similar, the design for a kitchen with a

similar shape and size can be reused, a journey plan for a

nearby destination is similar to the earlier trip. A related

assumption is that the world is a regular place, and what

holds true today will probably hold true tomorrow. A

further assumption relevant to memory is that situa-

tions repeat, because if they do not, there is no point

in remembering them!

CBR is an example of 7Lazy Learning because
there is no learned model to apply to solve new prob-

lems. Instead, the generalization needed to solve unseen

problems happens when a new problem is presented

and the similarity-based retrieval identi�es relevant

previous experiences. �e lack of a learned model and

the reliance on stored experiences mean that CBR is

particularly relevant in domains which are ill-de�ned,

not well understood, or where no underlying theory is

available.

Structure of the Learning System
Figure  shows the structure of a CBR system (Aamodt

& Plaza, ). A case base of Previous Cases is the

primary knowledge source in a CBR system, with

New
Case

Solved
Case

Tested/
Repaired

Case

Retrieved
Case

RETRIEVE

R
E

U
S

E

REVISE
R

E
T

A
IN

Problem

Suggested
Solution

Confirmed
Solution

Previous
Cases

Learned
Case

New
Case

Case Base

Other
Knowledge
Containers

New
Case

Solved
Case

Tested/
Repaired

Case

Retrieved
Case

RETRIEVE

R
E

U
S

E

REVISE
R

E
T

A
IN

Previous
Cases

Learned
Case

New
Case

Case Base

Other
Knowledge
Containers

Case-Based Reasoning. Figure . CBR system (adapted

from Aamodt and Plaza ())

additional knowledge being used to identify similar

cases in the RETRIEVE stage, and to REUSE and

REVISE the Retrieved Case. A CBR system learns as it

solves new problems when a Learned Case is created

from the New Case and its Con�rmed Solution, and

RETAINed as a new case in the case base.

Knowledge Containers

Case knowledge is the primary source of knowledge in

a CBR system. However, case knowledge is only one

of four knowledge containers identi�ed by Richter and

Aamodt ().

● Vocabulary: �e representation language used to

describe the cases captures the concepts involved in

the problem-solving.

● SimilarityKnowledge:�e similaritymeasure de�nes

how the distances between cases are computed so

that the nearest neighbors are identi�ed for retrieval.

● Adaptation Knowledge: Reusing solutions from

retrieved cases may require some adaptation to

enable them to �t the new problem.

● Case Base: �e stored cases capture the previous

problem-solving experiences.

Case-Based Reasoning C 

C

�econtent of each knowledge container is not �xed

and knowledge in one container can compensate for

a lack of knowledge in another. It is easy to see that

a more sophisticated knowledge representation could

be less demanding on the content of the case base.

Similarly, vocabulary can make similarity assessment

during retrieval easier, or a more complete case base

could reduce the demands on adaptation during reuse.

Further knowledge containers (e.g., maintenance) are

proposed by others.

Cases may be represented as simple feature vectors

containing nominal or numeric values. A case capturing

a whisky tasting experiencemight contain features such

as sweetness, color, nose, palate, and the7classi�cation
as the distillery where it was made.

Sweetness Peatiness Color Nose Palate Distillery

  amber full medium-dry Dalmore

More structured representations can use frame-

based or object-oriented cases. �e choice of represen-

tation depends on the complexity of the experiences

being remembered and is in�uenced by how similar-

ity should be determined. Hierarchical case representa-

tions allow cases to be remembered at di�erent levels of

abstraction, and retrieval and reuse may occur at these

di�erent levels (Bergmann &Wilke, ).

In7classi�cation, the case base can be considered to
contain exemplars of problem-solving. Aha et al.’s ()

family of instance-based learning algorithms IB, IB

and IB apply increasingly informed selection methods

to determine whether a classi�cation experience should

become part of the case base. IB simply remembers all

experiences, IB stores an experience only if it would

be wrongly solved by the existing stored experiences,

and IB keeps a score for the reuse of each experience

and discards those whose classi�cation success is poor.

�is notion of exemplar con�rms a CBR case base as

a source of knowledge; it contains only those experi-

ences that are believed to be useful for problem-solving.

A similar view is taken for non-classi�cation domains;

for example, the case base contains useful designs that

can be used for re-design, and plans for re-planning.

One of the advantages of CBR is that a case base

is composed of independent cases that each captures

some local problem-solving knowledge that has been

experienced. �erefore, the “knowledge acquisition

bottleneck” of many rule-based and model-based sys-

tems is reduced for CBR. However, the Other Knowl-

edge Containers provide additional knowledge acquisi-

tion demands that may lessen the advantage of CBR for

some domains.

CBR Cycle

Aamodt and Plaza () propose a four-stage CBR

cycle for problem-solving and learning (Fig. ). It is

commonly referred to as the “Four REs” or “R” cycle

to recognize the following stages.

● RETRIEVE: �e cases that are most similar to

the New Case de�ned by the description of the

new problem are identi�ed and retrieved from the

case base. �e RETRIEVE stage uses the similarity

knowledge container in addition to the case base.

● REUSE: �e solutions in the Retrieved (most simi-

lar) Cases are reused to build a Suggested Solution

to create the Solved Case from the New Case. �e

REUSE stage may use the adaptation knowledge

container to re�ne the retrieved solutions.

● REVISE: �e Suggested Solution in the Solved Case

is evaluated for correctness and is repaired if nec-

essary to provide the Con�rmed Solution in the

Tested/Repaired Case. �e REVISE stage may be

achieved manually or may use adaptation knowl-

edge, but it should be noted that a revision to a

Suggested Solution is likely to be a less demanding

task than solving the problem from scratch.

● RETAIN: �e Repaired Case may be retained in the

case base as a newly Learned Case if it is likely to be

useful for future problem-solving. �us the primary

knowledge source for CBR may be added to dur-

ing problem-solving and is an evolving, self-adaptive

collection of problem-solving experiences.

Retrieval

CBR retrieval compares the problem part of the new

case with each of the cases in the case base to establish

the distance between the new case and the stored cases.

�e cases closest to the new case are retrieved for reuse.

Retrieval is a major focus of López de Mántaras et al.’s

() review of research contributions related to the

CBR cycle.

Similarity- and distance-based neighborhoods are

commonly used interchangeably when discussing CBR

 C Case-Based Reasoning

retrieval. Similarity and distance are inverses: the simi-

larity is highest when the distance is close to , and the

similarity is  when the distance is large. Several func-

tions may be applied to de�ne a suitable relationship

between a distance d and a similarity s, including the
following simple versions:

Linear: s =  − d (for normalized d)

Inverse: s = 
d
(for d ≠ ) .

It is common to establish the distance between each

pair of feature values and then to use a distance met-

ric, o�en Euclidean or 7Manhattan distance (see also
7SimilarityMeasure), to calculate the distance between
the feature vectors for theNew andRetrievedCases.�e

distance between twonumeric feature values v andw for
a feature F is normally taken to be the distance between
the normalized values:

d(v,w) = ∣ v −w ∣
Fmax − Fmin

where Fmax/Fmin are the maximum/minimum values of
the feature F.
For nominal values v andw the simplest approach is

to apply a binary distance function:

d(v,w) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

 if v = w

 otherwise

For ordered nominal values amore �ne-grained dis-

tance may be appropriate. �e distance between the

ith value vi and the jth value vj in the ordered values
v, v, . . . , vn may use the separation in the ordering to
de�ne the distance:

d(vi, vj) =
∣ i − j ∣
n − 

.

Extending this to arbitrary nominal values, a dis-

tance matrix D may de�ne the distance between each

pair of nominal values by assigning the distance d(vi, vj)
to dij.
Returning to the whisky-tasting example, suppose

Sweetness and Peatiness score values –, Color takes

ordered values {pale, straw, gold, honey, amber}, Palate

uses binary distance, and Nose is de�ned by the follow-

ing distance matrix.

Nose Distance Matrix

Distances peat fresh soft full

peat  .  .

fresh .  . .

soft  .  .

full . . . 

Dalmore whisky above can be compared with

Laphroaig and�e Macallan as follows:

Sweetness Peatiness Color Nose Palate Distillery

  amber peat medium-dry Laphroaig

  gold full big-body The Macallan

�eManhattan distances are:

d(Dalmore,Laphroaig) = . + . +  + . +  = .;

d(Dalmore,�e Macallan) = . + . + . +  +  = ..

Taking all the whisky features with equal importance,

Dalmore is more similar to Laphroaig than to �e

Macallan.

In situations where the relative importance of fea-

tures should be taken into account, a weighted version

of the distance function should be used; for example, the

weighted Manhattan distance between two normalized

vectors x = (x, x, . . . xn) and y = (y, y, . . . yn) with
weight wi for the ith feature is

d(x, y) = ∑
n
i= wi ∣ xi − yi ∣
∑ni= wi

In the example above if Peatiness has weight  and

the other features have weight  then the weightedMan-

hattan distances are:

d(Dalmore,Laphroaig) = (. +  × . + 
+ . + )/ = .;

d(Dalmore,�e Macallan) = (. +  × . + .
+  + )/ = ..

�erefore, emphasizing the distinctive Peatiness fea-

ture, Dalmore is more similar to �e Macallan than to

Laphroaig.

Case-Based Reasoning C 

C

�e similarity knowledge container contains knowl-

edge to calculate similarities. For simple feature vectors

a weighted sum of distances is o�en su�cient, and the

weights are similarity knowledge. However, even our

whisky tasting domain had additional similarity knowl-

edge containing the distance matrix for the Nose fea-

ture. Structured cases require methods to calculate the

similarity of two cases from the similarities of compo-

nents. CBRmay use very knowledge-intensive methods

to decide similarity for the retrieval stage. Ease of reuse

or revision may even be incorporated as part of the

assessment of similarity. Similarity knowledge may also

de�ne how 7missing values are handled: the feature
may be ignored, the similarity may be maximally pes-

simistic, or a default or average value may be used to

calculate the distance.

A CBR case base may be indexed to avoid similarity

matching being applied to all the cases in the case base.

One approach uses kd trees to partition the case base

according to hyper-planes. 7Decision Tree algorithms
may be used to build the kd tree by using the cases as

training data, partitioning the cases according to the

chosen decision nodes, and storing the cases in the

appropriate leaf nodes. Retrieval �rst traverses the deci-

sion tree to select the cases in a leaf node, and similarity

matching is applied to only this partition. Case Retrieval

Nets are designed to speed up retrieval by applying

spreading activation to select relevant cases. In Case

Retrieval Nets the feature value nodes are linked via

similarity to each other and to cases. Indexes can speed

up retrieval but they also pre-select cases according to

some criteria that may di�er from similarity.

Reuse and Revision

Reusemay be as simple as copying the solution from the

Retrieved Case. If k nearest neighbors are retrieved then
a vote of the classes predicted in the retrieved cases may

be used for 7classi�cation, or the average of retrieved
values for 7regression. A weighted vote or weighted
average of the retrieved solutions can take account of

the nearness of the retrieved cases in the calculation.

For more complex solutions, such as designs or plans,

the amalgamation of the solutions from the Retrieved

Cases may be more knowledge intensive.

If the New Case and the Retrieved Case are di�er-

ent in a signi�cant way then it may be that the solu-

tion from the Retrieved Case should be adapted before

being proposed as a Suggested Solution. Adaptation is

designed to recognize signi�cant di�erences between

the New and Retrieved Cases and to take account of

these by adapting the solution in the Retrieved Case.

In classi�cation domains, it is likely that all classes

are represented in the case base. However, di�erent

problem features may alter the classi�cation and so

adaptation may correct for a lack of cases. In construc-

tive problem-solving like design and planning, however,

it is unlikely that all solutions (designs, plans, etc.) will

be represented in the case base. �erefore, a retrieved

case suggests an initial design or plan, and adaptation

alters it to re�ect novel feature values.

�ere are threemain types of adaptation thatmay be

used as part of the reuse step, to re�ne the solution in the

Retrieved Case to match better the new problem, or as

part of the revise stage to repair the Suggested Solution

in the Solved Case.

● Substitution: Replace parts of the retrieved solu-

tion. In Hammond’s () CHEF system to plan

Szechuan recipes, the substitution of ingredients

enables the requirements of the new menu to be

achieved. For example, the beef and broccoli in

a retrieved recipe is substituted with chicken and

snowpeas.

● Transformation: Add, change, or remove parts of the

retrieved solution. CHEF adds a skinning step to the

retrieved recipe that is needed for chicken but not

for beef.

● Generative Adaptation: Replay the method used to

derive the retrieved solution. �us the retrieved

solution is not adapted but a new solution is gener-

ated from reusing the retrieved method for the new

circumstances.�is approach is similar to reasoning

by analogy.

CHEF also had a clear REVISE stage where the Sug-

gested Solution recipe was tested in simulation and any

faults were identi�ed, explained, and repaired. In one

recipe a strawberry sou�é was too liquid. CHEF has a

set of �ematic Organization Packets (TOPs) that are

templates for repairs for di�erent types of explained fail-

ures. (TOPs continue the experience template theme

of 7dynamic memory model MOPs.) One repair for
the sou�é is to drain the strawberry pulp and this

 C Case-Based Reasoning

transformation adaptation is one REVISE operation

that could be applied.

�e adaptation knowledge container is an important

source of knowledge for someCBR systems, particularly

for design and planning, where re�ning an initial design

or plan is expected. Acquiring adaptation knowledge

can be onerous. �e CHEF examples above indicate

that the knowledge must store re�nements to the solu-

tions initially proposed from the retrieved cases. Learn-

ing adaptation knowledge from the implicit re�nement

information captured in the case base has been e�ec-

tive for substitution adaptation in component-based

design (Craw, Wiratunga, & Rowe, ).

Retention and Maintenance

Retention of new cases during problem-solving is an

important advantage of CBR systems. However, it is

not always advantageous to retain all new cases. �e

7Utility Problem – that the computational bene�t from
additional knowledge must not outweigh the cost of
applying it – in CBR refers to cases and the added cost of
retrieval. �e case base must be kept “lean and mean,”

and so new cases are not retained automatically, and

cases that are no longer useful are removed. New cases

should be retained if they add to the competence of

the CBR system by providing problem-solving capabil-

ity in an area of the problem space that is currently

sparse. Conversely, existing cases should be reviewed for

the role they play and forgetting cases is an important

maintenance task. Existing cases may contain outdated

experiences and so should be removed, or they may be

superseded by new cases.

Case base maintenance manages the contents of

the case base to achieve high competence. Competence

depends on the domain and may involve

● quality of solution;

● user con�dence in solution; or

● e�ciency of solution prediction (e.g., speed-up

learning).

Case base maintenance systems commonly assume

that the case base contains a representative sample of the

problem-solving experiences.�ey exploit this by using

a leave-one-out approach where repeatedly for each

case in the case base, the one extracted case is used as

a new case to be solved, and the remaining cases become

the case base. �is enables the problem-solving compe-

tence of the cases in the case base to be estimated using

the extracted cases as representative new cases to be

solved. Smyth & McKenna’s () competence model

uses this approach to identify competence groups of

cases with similar problem-solving ability. �is model

is used to underpin maintenance algorithms to priori-

tize cases for deletion and to identify areas where new

cases might be added. �ere are several trade-o�s to be

managed by case base maintenance algorithms: larger

case bases contain more experiences but take longer

for retrieval; smaller case bases are likely to lack some

key problem-solving ability; cases whose solution is

markedly di�erent from their nearest neighbors may be

noisy or may be an important outlier.

CBR Tools

myCBR (mycbr-project.net) and jCOLIBRI (www.

sourceforge.net) are open source CBR tools. Both

provide state-of-the-art CBR functionality, and jCol-

ibri also incorporates a range of facilities for tex-

tual CBR. Several commercial CBR tools are avail-

able including Empolis: Information Access Suite

(www.attensity.com), Kaidara’s Advisor (www.

servigistics.com), and ISo�’s ReCall (www.alice-so�.

com).

Applications

Several successful deployed applications of CBR are

described in Cheetham and Watson (), including

Lockheed’s CLAVIER for designing layouts for auto-

clave ovens, Compaq’s SMART help-desk system, Boe-

ing’s CASSIOPÉE for trouble-shooting aircra� engines

andGeneral Electric’s FormTool for plastic colormatch-

ing (Cheetham, ).�edevelopment of the INRECA

methodology for engineering CBR systems was based

on a range of industrial applications (Bergmann et al.,

).

�ewide range of CBR applications is demonstrated

by the following list of application types.

● Classi�cation – Medical diagnosis systems use
patient records as a source of reusable experiences.

Examples include SHRINK for psychiatry, CASEY

for cardiac disease, ICONS for antibiotic therapy for

intensive care, and BOLERO for pneumonia. Other

diagnostic systems include failure prediction of rails

www.attensity.com
www.sourceforge.net
www.sourceforge.net
www.servigistics.com
www.servigistics.com
http://www.alice-soft.com
http://www.alice-soft.com

Case-Based Reasoning C 

C

for Dutch railways from ultrasonic NDT, and fail-

ure analysis of semiconductors at National Semicon-

ductor. Classi�cation systems include PROTOS for

audiologic disorders.

● Design – Architectural design was a popular early
domain: CYCLOPS, ARCHIE, FABEL, and CADsyn

are all early case-based design systems. Other design

applications include CADET and KRITIK for engi-

neering design, JULIA for recipes, chemical formu-

lation for tyre rubber and pharmaceutical products,

Déjà Vu for plant control so�ware.

● Planning – PRODIGY is a general purpose

planner that uses analogical reasoning to adapt

retrieved plans. Other planning applications include

PARIS (Bergmann & Wilke, ) for manufactur-

ing planning in mechanical engineering, HICAP for

evacuation planning, planning for forest �re man-

agement, mission planning for US navy, and route

planning for DaimlerChrysler cars.

● Conversational CBR – Conversational systems

extract the problem speci�cation from the user

through an interactive case-based dialogue and sug-

gest solutions that match the partial speci�cation.

Examples include help-desk support, CaseAdvisor

and CBR Strategist for fault diagnosis, and Wasabi,

Sermo and ShowMe product recommender systems.

● Personalization – Personalized compilations of

news, stories, music tracks, TV listings reuse pre-

vious experiences of the individual or others who

have similar tastes. Other forms of personalized sys-

tems using CBR include route and travel planning,

SPAM �ltering and email management, and ClixS-

mart Navigator for mobile devices.

● Textual CBR – Legal decision support systems

were an important early application domain for tex-

tual CBR. Examples include HYPO (Ashley & Riss-

land, ), CATO, GREBE, and SMILE. Question

answering was another fruitful text-based domain:

FAQ-Finder and FAQ. More recently, textual CBR

is used for decision support systems based on textual

reports; for example, SOPHIA.

Future Directions
�e drivers for Ubiquitous Computing – wireless com-

munication and small devices – also a�ect future devel-

opments in CBR. �e local, independent knowledge of

case bases make them ideal to collect experiences, and

to deliver experience-based knowledge for reuse.

Textual CBR systems are becoming increasingly

important for extracting and representing knowledge

captured in textual documents. �is is particularly

in�uenced by the availability of electronic documents

and the Web as an information source.

Cross References
7Explanation-Based Learning
7Instance-Based Learning
7Lazy Learning
7Nearest Neighbor
7Similarity Metrics

Recommended Reading
Aamodt, A., & Plaza, E. (). Case-based reasoning: Foun-

dational issues, methodological variations, and system

approaches. AI Communications, , –. citeseerx.

ist.psu.edu/viewdoc/summary?doi=.....

Aha, D. W., Kibler, D., & Albert, M. K. (). Instance-based

learning algorithms. Machine Learning, (), –. doi:
./A:.

Ashley, K., & Rissland, E. L. (). A case-based approach

to modeling legal expertise. IEEE Expert, (), –. doi:
./..

Bergmann, R., Althoff, K.-D., Breen, S., Göker, M., Manago, M., &

Traphöner, R. (Eds.). (). Developing industrial case-based
reasoning applications. LNCS (Vol. ). Berlin/Heidelberg:
Springer. doi:./b.

Bergmann, R., &Wilke, W. (). On the role of abstraction in case-

based reasoning. In I. Smith & B. Faltings (Eds.), Proceedings of
the third European workshop on case-based reasoning, Lausanne,
Switzerland (pp. –), LNCS (Vol. ). Berlin/Heidelberg:
Springer.

Cheetham, W. (). Tenth anniversary of the plastics color for-

mulation tool. AI Magazine, (), –. www.aaai.org/Papers/
Magazine/Vol/-/AIMag--.pdf.

Cheetham, W., & Watson, I. (). Fielded applications of case-

based reasoning. Knowledge Engineering Review, (), –.
doi:./S.

Craw, S., Wiratunga, N., & Rowe, R. C. (). Learning adaptation

knowledge to improve case-based reasoning. Artificial Intelli-
gence, (–), –. doi: ./j.artint....

Hammond, K. J. (). Explaining and repairing plans that fail.

Artificial Intelligence, (–), –.
Kolodner, J. L. (). Case-based reasoning. San Mateo, CA: Morgan

Kaufmann.

Leake, D. (). CBR in context: The present and future. In

D. Leake (Ed.), Case-based reasoning: Experiences, lessons, and
future directions (pp. –). Menlo Park, CA: AAAI Press.
citeseerx.ist.psu.edu/viewdoc/summary?doi=.....

López de Mántaras, R., McSherry, D., Bridge, D., Leake, D.,

Smyth, B., Craw, S., Faltings, B., Maher, M.L., Cox, M.T., Forbus,

K., Aamodt, A., & Watson, I. (). Retrieval, reuse, revision,

www.aaai.org/Papers/Magazine/Vol26/26-03/AIMag26-03-007.pdf.
www.aaai.org/Papers/Magazine/Vol26/26-03/AIMag26-03-007.pdf.

 C Categorical Attribute

and retention in case-based reasoning. Knowledge Engineering
Review, (), –. doi: ./S.

Richter, M. M., & Aamodt, A. (). Case-based reasoning

foundations. Knowledge Engineering Review, (), –.
doi:./S.

Riesbeck, C. K., & Schank, R. C. (). Inside case-based reasoning.
Hillsdale, NJ: Lawrence Erlbaum.

Smyth, B., & McKenna, E. (). Competence models and the main-

tenance problem. Computational Intelligence, (), –.
doi:./-..

Categorical Attribute

Synonyms
Qualitative attribute

Categorical attributes are attributes whose values can
be placed into distinct categories. See 7Attribute and
7Measurement Scales.

Categorical Data Clustering

Periklis Andritsos, Panayiotis Tsaparas

Toronto, ON, Canada
Mountain View, CA, USA

Synonyms
Clustering of nonnumerical data; Grouping

Definition
Data clustering is informally de�ned as the problem

of partitioning a set of objects into groups, such that

the objects in the same group are similar, while the

objects in di�erent groups are dissimilar. Categorical

data clustering refers to the case where the data objects

are de�ned over 7categorical attributes. A categorical
attribute is an attribute whose domain is a set of dis-

crete values that are not inherently comparable. �at is,

there is no single ordering or inherent distance func-

tion for the categorical values, and there is no mapping

fromcategorical to numerical values that is semantically

meaningful.

Motivation and Background
Clustering is a problem of great practical importance

that has been the focus of substantial research in several

domains for decades. As storage capacities grow, we

have at hand larger amounts of data available for analy-

sis andmining. Clustering plays an instrumental role in

this process. �is trend has created a surge of research

activity in devising new clustering algorithms that can

handle large amounts of data and produce results of

high quality.

In data clustering, we want to partition objects

into groups such that similar objects are grouped

together while dissimilar objects are grouped separately.

�is objective assumes that there is some well-de�ned

notion of similarity, or distance, between data objects,

and a way to decide if a group of objects is a homoge-

neous cluster. Most of the clustering algorithms in the

literature focus on data sets where objects are de�ned

over numerical attributes. In such cases, the similarity

(or dissimilarity) of objects and the quality of a clus-

ter can be de�ned using well-studied measures that are

derived fromgeometric analogies.�ese de�nitions rely

on the semantics of the data values themselves. For

example, the values $, and $, are more

similar than $, and $,, and intuitivelymore

similar than $, and $. �e existence of a distance

measure allows us to de�ne a quality measure for a clus-

tering such as the mean square distance between each

point and the representative of its cluster. Clustering

then becomes the problem of grouping together points

such that the quality measure is optimized.

However, there are many data sets where the data

objects are de�ned over attributes, which are neither

numerical nor inherently comparable in any way. We

term such data sets categorical, since they represent
values of certain categories. As a concrete example,

consider the toy data set in Table  that stores infor-

mation about movies. For the purpose of exposition,

a movie is characterized by the attributes “director,”

“actor/actress,” and “genre.” In this setting, it is not

immediately obvious what the distance, or similarity,

is between the values “Coppola” and “Scorsese,” or the

movies “Vertigo” and “Harvey.”

�ere are plenty of examples of categorical data:

product data, where products are de�ned over attributes

such as brand, model, or color; census data, where

information about individuals includes attributes such

as marital status, education, and occupation; ecological

data where plants and animals can be described with

attributes such as shape of petals or type of habitat.

Categorical Data Clustering C 

C

Categorical Data Clustering. Table  An instance of a

movie database

Director Actor Genre

t (Godfather II) Coppola De Niro Crime

t (Good fellas) Scorsese De Niro Crime

t (Vertigo) Hitchcock Stewart Thriller

t (N by NW) Hitchcock Grant Thriller

t (Bishop’s wife) Koster Grant Comedy

t (Harvey) Koster Stewart Comedy

�ere is a plethora of such data sets, and there is always

a need for clustering and analyzing them.

�e lack of an inherent distance or similarity mea-

sure between categorical data objects, makes categorical

data clustering a challenging problem. �e challenge

lies in de�ning a quality measure for categorical data

clustering that captures the human intuition of what

it means for categorical data objects to be similar. In

the next sections, we present an overview of the di�er-

ent e�orts at addressing this problem and the resulting

clustering algorithms.

Structure of the Learning System
Generic Data Clustering System

We�rst describe the outline for a generic data clustering

system, not necessarily of categorical data. In the next

section we focus on categorical data speci�c challenges.

Data clustering is not a one-step process. In one of

the seminal texts on Cluster Analysis, Jain and Dubes

divide the clustering process into the following stages

(Jain & Dubes, ):

Data collection: Includes the careful extraction of
relevant data objects from the underlying data sources.

In our context, data objects are distinguished by their

individual values for a set of attributes.

Initial screening: Refers to themassaging of data a�er
its extraction from the source or sources. �is stage

is closely related to the process of data cleaning in

databases (Jarke, Lenzerini, Vassiliou, & Vassiliadis,

).

Representation: Includes the proper preparation of
the data in order to become suitable for the clustering

algorithm. In this step, the similarity measure is chosen,

and the characteristics and dimensionality of the data

are examined.

Clustering tendency: Checks whether the data at
hand has a natural tendency to cluster or not.�is stage

is o�en ignored, especially for large data sets.

Clustering strategy: Involves the careful choice of
clustering algorithm and initial parameters, if any.

Validation: Validation is o�en based on manual
examination and visual techniques. However, as the

amount of data and its dimensionality grow, we may

have nomeans to compare the resultswith preconceived

ideas or other clusterings.

Interpretation: �is stage includes the combination
of clustering results with other analyses of the data (e.g.,

classi�cation), in order to draw conclusions and suggest

further analysis.

In this chapter, we are interested in problems relat-

ing to Representation and Clustering Strategy. �ese lie

in the heart of the data clustering problem, and there

has been considerable research e�ort in these areas

within theDataMining andMachine Learning commu-

nities. More speci�cally, we consider the following two

subproblems.

Formal formulation of the clustering problem: In
order to devise algorithms for clustering, we need to

mathematically formulate the intuition captured in the

informal de�nition of the clustering problem that sim-

ilar objects should be grouped together and dissimilar

objects should be grouped separately. �e problem for-

mulation typically requires at least one of the following:

● Ameasure of similarity or distance between two data

objects.

● A measure of similarity or distance between a data

object and a cluster of objects. �is is o�en de�ned

by de�ning a representative for a cluster as a (new)

data object and comparing the data object with the

representative.

● A measure of the quality of a cluster of data objects.

�e result of the formulation step is to de�ne a clus-

tering optimization criterion that guides the grouping

of the objects into clusters.

When the data is de�ned over numerical attributes,

these measures are de�ned using geometric analogies.

For example, if each object is a point in the Euclidean

space, then the distance between two points can be

 C Categorical Data Clustering

de�ned as the Euclidean distance, and the represen-

tative of a cluster as the mean Euclidean vector. �e

quality of a cluster can be de�ned with respect to the

“variance” of the cluster, that is, the sum of squares

of the distances between each object and the mean of

the cluster. �e optimization criterion then becomes to

minimize the variance over all clusters of the clustering.

�e clustering algorithm: Once we have a mathe-
matical formulation of the clustering problem, we need

an algorithm that will �nd the optimal clustering in

an e�cient manner. In most cases, �nding the opti-

mal solution is an NP-hard problem e�cient heuristics

or approximation algorithms are considered. �ere is

a large literature on this subject that approaches the

problem from di�erent angles.

�ere exist a large number of di�erent clustering

techniques and algorithms.We now selectively describe

some broad classes of clustering algorithms and prob-

lems. A thorough categorization of clustering tech-

niques can be found in Han and Kamber (), where

di�erent clustering problems, paradigms, and tech-

niques are discussed.

Hierarchical clustering algorithms: �is is a popular
clustering technique, since it is easy to implement, and

it lends itself well to visualization and interpretation.

Hierarchical algorithms create a hierarchical decom-

position of the objects. �ey are either agglomerative
(bottom-up) or divisive (top-down). Agglomerative algo-
rithms start with each object being a separate cluster

itself, and successively merge groups according to a dis-

tance measure. Divisive algorithms follow the opposite
strategy. �ey start with one group of all objects and

successively split groups into smaller ones, until each

object falls into one cluster, or as desired. �e hierar-

chical dendrogram produced is o�en in itself the output
of the algorithm, since it can be used for visualizing the

data.Most of the times, both approaches su�er from the

fact that once a merge or a split is committed, it cannot

be undone or re�ned.

Partitional clustering algorithms: 7Partitional clus-
tering algorithms de�ne a clustering optimization

criterion and then seek the partition that optimizes

this criterion. Exhaustive search over all partitions is

infeasible, since even for few data objects the num-

ber of possible partitions is huge. Partitional clustering

algorithms o�en start with an initial, usually random,

partition and proceed with its re�nement by locally

improving the optimization criterion. �e majority of

such algorithms could be considered as greedy-like

algorithms.�ey su�er from the fact that they can easily

get stuck to local optima.

Spectral clustering algorithms: Spectral algorithms
view the data set to be clustered as a two dimensional

matrix of data objects and attributes. �e entries in

the matrix may be the raw values or some normalized

form of these values. �e principal eigenvectors of the

matrix have been shown to capture the main clusters in

the data. �ere is a rich literature on di�erent types of

spectral algorithms.

Graph clustering:7Graph clustering de�nes a range
of clustering problems, where the distinctive character-

istic is that the input data is represented as a graph. �e

nodes of the graph are the data objects, and the (possi-

bly weighted) edges capture the similarity or distance

between the data objects. �e data may come natu-

rally in the form of a graph (e.g., a social network),

or the graph may be derived in some way from the

data (e.g., link two products if they appear together in

a transaction). Some of the techniques we described

above are directly applicable to graph data. We can also

use techniques from graph theory for �nding a good

clustering.

Categorical Data Clustering System

In the clustering paradigm we outlined, a step of fun-

damental importance is to formally formulate the clus-

tering problem, by de�ning a clustering optimization

criterion. As we detailed above, for this step we need

a measure of distance or similarity between the data

objects, or a measure of cluster quality for a group of

data objects. For categorical data there exists no inher-

ent ordering or distance measure, and no natural geo-

metric analogies we can explore, causing the clustering

paradigm to break down.Research e�orts on categorical

data clustering have focused on addressing this problem

by imposing distance measures on the categorical data

and de�ning clustering quality criteria. We now outline

some of these approaches.

Overlap-Based Similarity Measures A simple and intu-

itive method for comparing two categorical data objects

is based on counting the overlap between the categorical

values of the objects. �e higher the overlap, the more

similar the two objects are. �is intuition leads to the

Categorical Data Clustering C 

C

use of well-known measures such as the (generalized)
Hamming distance (Jain & Dubes, ), which mea-
sures the number of attributes that take di�erent values

between two tuples, or the Jaccard similarity measure,
which is de�ned as the intersection over the union of the

values in the two tuples. In the example of Table , tuples

t (Godfather II) and t (Good fellas) have Hamming
distance  and Jaccard coe�cient /.

Two algorithms that make use of overlap-based

measures are k-modes (Huang, ), and RObust Clus-
tering using linKs (ROCK) (Guha, Rastogi, & Shim,
).�e k-modes algorithm is a partitional algorithm
inspired by the k-means algorithm, a well-known clus-
tering algorithm for numerical data. �e representative

of a categorical data cluster is de�ned to be a data

object where each attribute takes the mode emphasize
themode value of an attribute is themost frequent value

for that attribute in the cluster.

�e ROCK algorithmmakes use of the Jaccard coef-

�cient to de�ne links between data objects. �e data is
then represented in the form of a graph, and the prob-

lem becomes essentially a graph clustering problem.

Given two clusters of categorical data, ROCK measures

the similarity of two clusters by comparing their aggre-
gate interconnectivity against a user-speci�ed model,
thus avoiding the problem of de�ning a cluster repre-

sentative.

Context-Based Similarity Measures One way to de�ne

relationships between categorical values is by compar-

ing the context in which they appear. For two categorical
attribute values we de�ne the context as the values of

the remaining attributes with which they co-occur in

the data set. �e more similar these two contexts are,

the more similar the attribute values are. For exam-

ple, in Table , Scorsese and Coppola are close since

they appear in exactly the same context (“De Niro”,

“Crime”), while Scorsese and Hitchcock are far since

their contexts are completely disjoint. De�ning a dis-

tance between value contexts can be done using over-

lap similarity measures (Das & Mannila, ) or by

using information-theoretic measures, i.e., comparing

the distributions de�ned by the two contexts (Andrit-

sos, Tsaparas, Miller, Kenneth, & Sevcik, ). Once

we have the relationships between the values we can use

standard clustering techniques for solving the clustering

problem.

�ere are various algorithms that make use of the

idea that similar values should appear in similar con-

texts in order to cluster categorical data. �e Clustering
cAteCorigal daTa Using Summaries (CACTUS) algo-
rithm (Ganti, Gehrke, & Ramakrishnan, ) creates

groups of attribute values based on the similarity of their

context. It then uses a hierarchical greedy algorithm for

grouping tuples and attributes.

In a slightly di�erent fashion, the STIRR algo-
rithm (Sieving �rough Iterated Relational Reinforce-
ment) [GKR] uses the idea that similar tuples should
contain co-occurring values and similar values should

appear in tuples with high overlap. �is idea is imple-

mented via a dynamical system, inspired by Informa-

tion Retrieval techniques (Kleinberg Jon, ). When

the dynamical system is linear, the algorithm is similar

to spectral clustering algorithms.

CLICKS (Zaki, Peters, Assent, & Seidl, ) is

an algorithm that is similar to STIRR. Rather than a

measure of similarity/distance, it uses a graph-theoretic

approach to �nd k disjoint sets of vertices in a graph
constructed for a particular data set. One special char-

acteristic of this algorithm is that it discovers clusters in

a subset of the underlying set of attributes.

Information-Theoretic Clustering Criteria �e informa-

tion content in a data set can be quanti�ed through the

well-studied notions of entropy andmutual information
(Cover & �omas, ). Entropy measures the uncer-

tainty in predicting the values of the data when drawn

from the data distribution. If we view each tuple, or

cluster of tuples, as a distribution over the categorical

values, then we can de�ne the conditional entropy of the
attribute values given a set of tuples, as the uncertainty

of predicting the values in this set of tuples. If we have

a single tuple, then the entropy is zero, since we can

accurately predict the values. For tuple t we know the
director, the actor, and the genre with full certainty. As

we group tuples together the uncertainty (and entropy)

increases. Grouping together tuples t and t creates
uncertainty about the director attribute, while grouping

t and t creates uncertainty about all attributes. Hence
the latter grouping has higher entropy than the former.

Information-theoretic criteria for clustering aim at gen-

erating clusters with low entropy, since this would imply

that the clusters are homogeneous, and there is little

 C Categorical Data Clustering

information loss as a result of the clustering. �is for-
mulation allows for de�ning the distance between sets

of tuples, using entropy-based distance measures such

as the Jensen–Shannon divergence (Cover & �omas,

). �e Jensen–Shannon divergence captures the

informational distances in categorical data, in a sim-

ilar way that Euclidean distance captures geometric

distances inherent in numerical data.

Two algorithms that make use of this idea are

COOLCAT (Barbarà, Couto, & Li, ) and LIMBO
(scaLable InforMation Bottleneck) [ATMR]. COOL-
CAT is a partitional algorithm that performs a local

search for �nding the partition with k clusters with
the lowest entropy. LIMBO works by constructing a

summary of the data set that preserves as much infor-

mation about the data as possible and then produces a

hierarchical clustering of the summary. It is a scalable

algorithm that can be used in both static and streaming

environments.

A related approach is adopted by the COBWEB

algorithm (Fisher, ; Gluck & Corter, ), a divi-

sive hierarchical algorithm that optimizes the category
utility measure, which measures how well particular
values can be predicted given the clustering as opposed

to having them in the original data set unclustered.

Categorical Clustering as Clustering Aggregation A dif-

ferent approach to the categorical data clustering prob-

lem is to view it as a clustering aggregation problem.
Given a collection of clusterings of the data objects,

the clustering aggregation problem looks for the sin-

gle clustering that agrees as much as possible with the

input clusterings. �e problem of clustering aggrega-

tion has been shown to be equivalent to categorical

data clustering (Gionis, Mannila, & Tsaparas, ),

where each categorical attribute de�nes a clustering of

the data objects, grouping all the objects with the same

value together. For example, in Table , the attribute

“genre” de�nes three clusters: the Crime cluster, the

�riller cluster, and the Comedy cluster. Similarly, the

attribute “actor” de�nes three clusters, and the attribute

“director” de�nes four clusters.

Various de�nitions have been considered in the

literature for the notion of agreement between the

output clustering and the input clusterings. One

de�nition looks at all pairs of objects, and de�nes a

disagreement between two clusterings if one clustering
places the two objects in the same cluster, while the

other places them in di�erent clusters; an agreement
is de�ned otherwise. �e clustering criterion is then

to minimize the number of disagreements (or maxi-

mize the number of agreements). Other de�nitions are

also possible, which make use of information-theoretic

measures, or mappings between the clusters of the two

clusterings. �ere is a variety of algorithms for �nding

the best aggregate cluster, many of which have also been

studied theoretically.

Cross References
7Clustering
7Data Mining
7Graph clustering
7Instance-Based Learning
7Partitional clustering

Recommended Reading
Andritsos, P., Tsaparas, P., Miller, R. J., Kenneth, C., & Sevcik, K. C.

(). LIMBO: Scalable clustering of categorical data. In

Proceedings of the th international conference on extending
database technology (EDBT) (pp. –). Heraklion, Greece.

Barbarà, D., Couto, J., & Li, Y. (). COOLCAT: An entropy-

based algorithm for categorical clustering. In Proceedings of
the th international conference on information and knowledge
management (CIKM) (pp. –). McLean, VA.

Cover, T. M., & Thomas, J. A. (). Elements of information theory.
New York: Wiley.

Das, G., & Mannila, H. (). Context-based similarity measures

for categorical databases. In Proceedings of the th European
conference on principles of data mining and knowledge discovery
(PKDD) (pp. –). Lyon, France.

Fisher, D. H. (). Knowledge acquisition via incremental concep-

tual clustering. Machine Learning, , –.
Ganti, V., Gehrke, J., & Ramakrishnan, R. (). CACTUS: Cluster-

ing categorical data using summaries. In Proceedings of the th
international conference on knowledge discovery and data mining
(KDD) (pp. –). San Diego, CA.

Gionis, A., Mannila, H., & Tsaparas, P. (). Clustering aggrega-

tion. ACM Transactions on Knowledge Discovery from Data, (),
Article No .

Gluck, M., & Corter, J. (). Information, uncertainty, and the

utility of categories. In Proceedings of the th annual conference
of the cognitive science society (COGSCI) (pp. –). Irvine,
CA.

Guha, S., Rastogi, R., & Shim, K. (). ROCK: A robust cluster-

ing algorithm for categorical attributes. In Proceedings of the
th international conference on data engineering (pp. –).
Sydney, Australia.

Han, J., & Kamber, M. (). Data mining: Concepts and techniques.
San Francisco: Morgan Kaufmann.

Causality C 

C

Huang, Z. (). Extensions to the k-means algorithm for cluster-

ing large data sets with categorical values. Data Mining and
Knowledge Discovery, (), –.

Jain, A. K., & Dubes, R. C. (). Algorithms for clustering data.
Englewood Cliffs, NJ: Prentice-Hall.

Jarke, M., Lenzerini, M., Vassiliou, Y., & Vassiliadis, P. ().

Fundamentals of data warehouses. Berlin: Springer.
Kleinberg, Jon (). Authoritative sources in a hyperlinked envi-

ronment”. Journal of the ACM (): –.
Zaki, M. J., Peters, M., Assent, I., & Seidl, T. (). CLICKS: An

effective algorithm for mining subspace clusters in categori-

cal datasets. In Proceeding of the th international conference
on knowledge discovery and data mining (KDD) (pp. –).
Chicago, IL.

Categorization

7Classi�cation
7Concept Learning

Category

7Class

Causal Discovery

7Learning Graphical Models

Causality

Ricardo Silva

University College London, London, UK

Definition
�e main task in causal inference is predicting the

outcome of an intervention. For example, a treatment

assigned by a doctor that will change the patient’s heart

condition is an intervention. Predicting the change in

the patient’s condition is a causal inference task. In gen-

eral, an intervention is an action taken by an external

agent that changes the original values, or the probabil-

ity distributions, of some of the variables in the system.

Besides predicting outcomes of actions, causal inference

is also concerned with explanation: identifying which

were the causes of a particular event that happened in

the past.

Motivation and Background
Many problems in machine learning are prediction

problems.Given a feature vectorX, the task is to provide
an estimate of some output vector Y, or its conditional
probability distribution P(Y∣X). �is typically assumes
that the distribution of Y given X during learning is the
same distribution at prediction time. �ere are many

scenarios where this is not the case.

Epidemiology and several medical sciences provide

counterexamples. Consider two seemingly straightfor-

ward learning problems. In the �rst example, one is

given epidemiological data where smokers are clearly

more propense than nonsmokers to develop lung can-

cer. Can I use this data to learn that smoking causes

cancer? In the second example, consider a group of

patients su�ering from a type of artery disease. In this

group, those that receive a bypass surgery are likely to

survive longer than those that receive a particular set of

drugs with no surgery.

�ere is no fundamental problem on using such

datasets to predict the probability of a smoker develop-

ing lung cancer, or the life expectancy of someone who

went through surgery. Yet, the data does not necessar-

ily tell you if smoking is a cause of lung cancer, or that

nationwide the government should promote surgery as

the treatment of choice for that particular heart disease.

What is going on?

�ere are reasons to be initially suspicious of such

claims. �is is well-known in statistics as the expres-

sion “association is not causation” (Wasserman, ,

p. ). �e data-generating mechanism for our out-

come Y (“developing lung cancer,” “getting cured from
artery disease”) given the relevant inputs X (“smok-
ing habit,” “having a surgery”) might change under an

intervention for reasons such as follows.
In the smoking example, the reality might be that

there are several hidden common causes that are respon-
sible for the observed association. A genetic factor, for

instance: the possibility that there is a class of genotypes

on which people are more likely to pick up smoking

and develop lung cancer, without any direct causal con-
nection between the two variables. In the artery disease

 C Causality

example, surgery might not be the best choice to be

made by a doctor. It might have been the case that so

far patients in better shape were more daring in choos-

ing, by themselves, the surgery treatment.�is selection
bias will favor surgery over drug treatment, since from
the outset the patients that are most likely to improve

take that treatment.

When treatment is enforced by an external agent
(the doctor), such selection bias disappears, and the

resulting P(Y∣X) will not be the same. One way of
learning this relationship is through randomized trials
(Rosenbaum, ). �e simplest case consists on �ip-

ping a coin for each patient on the training set. Each

face of the coin corresponds to a possible treatment,

and assignment is done accordingly. Since assignment

does not depend on any hidden common cause or

selection bias, this provides a basis for learning causal

e�ects. Machine learning and statistical techniques can

be applied directly in this case (e.g., 7logistic regres-
sion). Data analysis performed with a randomized trial

is sometimes called an interventional study.
�esmokingcase ismore complicated: adirect inter-

vention is not possible, since it is not acceptable to force

someone to smoke or not to smoke. �e inquiry asks

only for a hypothetical intervention, that is, if someone
is forced to smoke, will his or her chances of developing

lung cancer increase? Such an intervention will not take

place, but this still has obvious implications in public

policy. �is is the heart of the matter in issues such as

deciding on raising tobacco taxes, or forbidding smok-

ing in public places. However, data that measures this

interventional data-generation mechanism will never

be available for ethical reasons. �e question has to

be addressed through an observational study, that is, a
study for causal predictionswithout interventional data.

Observational studies arise not only under the

impossibility of performing interventions, but also in

the case where performing interventions is too expen-

sive or time consuming. In this case, observational

studies, or a combination of observational and interven-

tional studies, can provide extra information to guide

an experimental analysis (Cooper & Yoo, ; Eaton &

Murphy, ; Eberhardt, Glymour, & Scheines, ;

Sachs, Prez, Pe’er, Lau�enburger, & Nolan, ). �e

use of observational data, or the combination of several

interventional datasets, is where the greatest contribu-

tions of machine learning to causal inference rest.

Background
knowledge

Observational
data

Interventional
data

Causal query

Prediction

Causal model

Structure of the Learning System
Structure of Causal Inference

In order to use observational data, a causal inference

system needs a way of linking the state of the world

under an intervention to the natural state of the world.
�e natural state is de�ned as the one to which no

external intervention is applied. In themost general for-

mulation, this link between the natural state and the

manipulated world is de�ned for interventions in any

subset of variables in the system.

A common language for expressing the relationship

between the di�erent states of the world is a causal
graph, as explained in more detail in the next section.
A causal model is composed of the graph and a proba-

bility distribution that factorizes according to the graph,

as in a standard 7graphical model. �e only di�erence
between a standard graphicalmodel and a causal graph-

ical model is that in the latter extra assumptions are

made. �e graphical model can be seen as a way of

encoding such assumptions.

�e combination of assumptions, observational, and

interventional data generates such a causal graphical

model. In the related problem of reinforcement learn-

ing, the agent has tomaximize a speci�c utility function

and typically has full control on which interventions

(actions) can be performed. Here we will focus on the

unsupervised problem of learning a causal model for a

�xed input of observational and interventional data.

Because only some (or no) interventional datamight

be available, the learning system might not be able to

answer some causal queries. �at is, the system will not

provide an answer for some prediction tasks.

Languages and Assumptions for Causal Inference Direc-

ted acyclic graphs (DAGs) are a popular language

in machine learning to encode qualitative statements

about causal relationships. A DAG is composed of a

set of vertices and a set of directed edges. �e notions

Causality C 

C

of parents, children, ancestors, and descendants are the

usual ones found in graphical modeling literature.

In terms of causal statements, a directed edgeA→ B
states that A is a direct cause of B: that is, di�erent inter-
ventions on Awill result in di�erent distributions for B,
even if we intervene on all other variables. �e assump-

tion that A is a cause of B is not used in noncausal
7graphical models.
A causal DAG G satis�es the causal Markov con-

dition if and only if a vertex is independent of all of
its nondescendants given its direct causes (parents). In

Fig. (a), A is independent of D, E, and F given its par-
ents, B and C. It may or may not be independent of G
given B and C.

�e causal Markov condition implies several other

conditional independence statements. For instance, in

Fig. (a) we have that H is independent of F given A.
Yet, this is not a statement about the parents of any

vertex. Pearl’s d-separation criterion (Pearl, ) is a

sound and complete way of reading o� independencies,

out of a DAG, which are entailed by the causal Markov

condition. We assume that the joint probability distri-

bution over the vertice variables isMarkov with respect
to the graph, that is, any independence statement that is

encoded by the graph should imply the corresponding

independence in the distribution.

Representing Interventions

�e local modularity given by the causal Markov condi-

tion leads to a natural notion of intervention. Random

variable V , represented by a particular vertex in the
graph, is following a local mechanism: its direct causes
determine the distribution of V before its direct e�ects
are generated. �e role of an intervention is to override
the natural local mechanism. An external agent substi-

tutes the natural P(V ∣Parents(V)) by a new distribu-
tion PMan(V ∣Parents(V)) while keeping the rest of the
model unchanged (“Man” here stands for a particular

manipulation).�e notion of intervening by changing a

single local mechanism is sometimes known as an ideal
intervention. Other general types of interventions can
be de�ned (Eaton &Murphy, ), but the most com-

mon frameworks for calculating causal e�ects rely on

this notion.

A common type of intervention is the point mass

intervention, which happens when V is set to some
constant v.�is can be represented graphically by “wip-
ing out” all edges into V . Figure (b) represents the
resulting graph in (a) under a point manipulation of A.
Notice that A is now d-separated from its direct causes
under this regime. It is also probabilistically indepen-

dent, sinceA is now constant.�is allows for a graphical
machinery that can read o� independencies out of a

manipulated graph (i.e., the one with removed edges).
It is the idea of representing the natural state of the

world with a single causal graph, and allowing for mod-

i�cations in this graph according to the intervention of

choice, that links the di�erent regimes obtained under

di�erent interventions.

For the general case where a particular variable

V is set to a new distribution, a manipulation node
is added as an extra parent of V : this represents
that an external agent is acting over that particu-

lar variable (Dawid, ; Pearl, ; Spirtes, Gly-

mour, & Scheines, ), as illustrated in Fig. (c).

P(V ∣Parents(V)) under intervention I is some new
distribution PMan(V ∣Parents(V), I).

Calculating Distributions under Interventions

�e notion of independence is a key aspect of proba-

bilistic graphical models, where it allows for e�cient

computation of marginal probabilities. In causal graph-

ical models, it also ful�lls another important role: inde-

pendencies indicate that the e�ect of some interventions

can be estimated using observational data.

A G H

F

D

C

BE

a

G H

E B F

D

Cb I

G H

E B F

D

Cc
Causality. Figure . (a) A causal DAG. (b) Structure of the causal graph under some intervention that sets the value of

A to a constant. (c) Structure of the causal graph under some intervention that changes the distribution of A

 C Causality

H

I X Y
a

H

I X Y

Z

b

Causality. Figure . (a) X and Y have a hidden common

cause H. (b) Y is dependent on the intervention node I

given X, but conditioning on Z and marginalizing it out

will allow us to eliminate the “back-door” path that links

X and Y through the hidden common cause H

We will illustrate this concept with a simple exam-

ple. One of the key di�culties in calculating a causal

e�ect is unmeasured confounding, that is, hidden com-
mon causes. Consider Fig. (a), whereX is a direct cause
of Y , H is a hidden common cause of both and I is an
intervention vertex.Without extra assumptions, there is

noway of estimating the e�ect ofX onY using a training
set that is sampled from the observedmarginal P(X,Y).
�is is more easily seen in the case where the model

is multivariate Gaussian with zero mean. In this case,

each variable is a linear combination of its parents with

standard Gaussian additive noise

X = aH + єX

Y = bX + cH + єY

where H is also a standard normal random variable.
�e manipulated distribution PMan(Y ∣X, I), where I is
a point intervention setting X = x, is a Gaussian distri-
bution with mean b ⋅x. Value x is given by construction,
but one needs to learn the unknown value b.
One can verify that the covariance of X and Y in the

natural state is given by a + bc. Observational data, that
is, data sampled from P(X,Y), can be used to estimate
the covariance of X and Y in the natural state, but from
that it is not possible to infer the value of b: there are too
many degrees of freedom.

However, there are several cases where the probabil-
ity of Y given some intervention on X can be estimated
with observational data and a given causal graph. Con-

sider the graph in Fig. (b). �e problem again is to

learn the distribution of Y given X under regime I,
that is, P(Y ∣X, I). It can be read from the graph that

I and Y are not independent given X, which means
P(Y ∣X, I) ≠ P(Y ∣X). How can someone then estimate
P(Y ∣X, I) if no data for this process has been collected?
�e answer lies on reducing the “causal query” to a
“probabilistic query” where the dependence on I disap-
pears (and, hence, the necessity of having datameasured

under the I intervention).�is is done by relying on the
assumptions encoded by the graph:

P(Y ∣X, I) = ∑z P(Y ∣X, I, z)P(Z = z∣X, I)

(Z is discrete in this example)

= ∑z P(Y ∣X, z)P(Z = z∣X, I)

(Y and I are independent given Z)

∝ ∑z P(Y ∣X, z)P(X∣z, I)P(Z = z∣I)

(By Bayes’ rule)

= ∑z P(Y ∣X, z)P(X∣z, I)P(Z = z)

(Z and I are marginally independent)

In the last line, we have P(Y ∣X,Z) and P(Z), which can
be estimatedwith observational data, since no interven-

tion variable I appears on the expression.P(X∣Z, I) is set
by the external agent: its value is known by construc-

tion. �is means that the causal distribution P(Y ∣X, I)
can be learned even in this case where X and Y share a
hidden common cause H.

�ere are several notations for denoting an interven-

tional distribution such as P(Y ∣X, I). One of the earliest
was that of Spirtes et al. (), who used the notation

P(Y ∣set X = x) ()

to represent the distribution under an intervention I
that �xed the value ofX to some constant x. Pearl ()
uses the operator do with a similar meaning.

P(Y ∣do(X = x)) ()

Pearl’s do-calculus is essentially a set of operations
for reducing a probability distribution that is a function

of some intervention to a probability distribution that

does not refer to any intervention. All reductions are

conditioned on the independencies encoded in a given

causal graph. �is is in the same spirit of the example

presented above.

Causality C 

C

�e advantage of such notations is that, for point

interventions, they lead to simple yet e�ective trans-

formations (or to a report that no transformation is

possible). Spirtes et al. () and Pearl () provide

a detailed account of such prediction tools. By mak-

ing a clear distinction between P(Y ∣X) (X under the
natural state) and P(Y ∣do(X)) (X under some interven-
tion), much of the confusion that con�ates causal and

noncausal predictions disappears.

It is important to stress that methods such as

the do-calculus are nonparametric, in the sense that
they rely on conditional independence constraints only.

More powerful reductions are possible if one is willing

to provide extra information, such as assuming linear-

ity of causal e�ects. For such cases, other parametric

constraints can be exploited (Pearl, ; Spirtes et al.,

).

Learning Causal Structure

In all of the previous section, we assumed that a causal

graph was available. Since background knowledge is

o�en limited, learning such graph structures becomes

an important task. However, this cannot be accom-

plishedwithout extra assumptions. To see why, consider

again the example in Fig. (a): if a + bc = , it fol-
lows that the X and Y are independent in the natural
state. However, Y is not causally independent of X (if
b ≠ ): P(Y ∣do(X = x)) and P(Y ∣do(X = x)) will
be two di�erent Gaussians with means b ⋅ x and b ⋅ x,
respectively.

�is example demonstrates that an independence

constraint that is testable by observational data does

not warrant causal independence, at least based on the

causal Markov condition only. However, an indepen-

dence constraint that arises from particular identities

such as a + bc =  is not stable, in the sense that it
does not follow from the qualitative causal relations

entailed by the Markov condition: a change in any of

the parameter values will destroy such a constraint.

�e arti�ciality of unstable independencies moti-

vates an extra assumption: the faithfulness condition
(Spirtes et al., ), also known as the stability condi-
tion (Pearl, ).We say that a distribution P is faithful
to a causal graph G if P is Markov with respect to G,
and if each conditional independence in P corresponds
to some d-separation in G. �at is, on top of the causal
Markov condition we assume that all independencies in

P are entailed by the causal graph G.

�e faithfulness condition allows us to reconstruct

classes of causal graphs from observational data. In the

simplest case, observing that X and Y are independent
entails that there is no causal connection between X
and Y . Consequently, P(Y ∣do(X)) = P(Y ∣X) = P(Y).
No interventional data was necessary to arrive at this

conclusion, given the faithfulness condition.

In general, the solution is undetermined: more than

one causal graph will be compatible with a set of

observable independence constraints. Consider a sim-

ple example, where data is generated by a causal model

with a causal graph given as in Fig. (a). �is graph

entails some independencies: for instance, that X and Z
are independent givenW, or that X and Y are not inde-
pendent given any subset of {W,Z}. However, several
other graphs entail the same conditional independen-

cies.�e graph in Fig. (b) is one example.�e learning

task is then discovering an equivalence class of graphs,
not necessarily a particular graph. �is is in contrast

with the problem of learning the structure of noncausal

graphical models: the fact that there are other struc-

tures compatible with the data is not important in this

case, since we will not use such graphical models to

predict the e�ect of some hypothetical intervention. An

equivalence class might not be enough information to

reduce a desired causal query to a probabilistic query,

but it might require much less prior knowledge than

specifying a full causal graph.

Assume for now that no hidden common causes

exist in this domain. In particular, the graphical object

in Fig. (c) is a representation of the equivalence class

of graphs that are compatible with the independencies

encoded in Fig. (a) (Pearl, ; Spirtes et al., ).

All members of the equivalence class will have the same

YX

W

Za

X Y

W

Zb

W

YX

Zc

Causality. Figure . (a) A particular causal graph which

entails a few independence constraints, such as X and Z

being independent given W. (b) A different causal graph

that entails exactly the same independence constraints

as (a). (c) A representation for all graphs that entail the

same conditional independencies as (a) and (b)

 C Causality

skeleton of this representation, that is, the same adja-
cencies. An undirected edge indicates that there are two

members in the equivalence class where directionality

of this particular edge goes in opposite directions. Some

di�erent directions are illustrated in Fig. (b). One can

verify from the properties of d-separation that if an

expert or an experiment indicates that X −W should

be directed as X →W, then the edgeW−Z is compelled
to be directed asW → Z: the directionW ← Z is incom-
patible with the simultaneous �ndings that X and Z are
independent givenW, and that X causesW.
More can be discovered if more independence con-

straintsexist.InFig.(a),X isnotacauseofY .Ifweassume
no hidden common causes exist in this domain, then no

other causal graph is compatible with the independence

constraintsofFig. (a): theequivalenceclass is this graph

only. However, the assumption of no hidden common

causes is strong and undesirable. For instance, the graph

in Fig. (b), whereH andH are hidden, is in the same
equivalenceclassof(a).Yet,thegraphinFig.(a)indicates

that P(W∣do(X)) = P(W∣X), which can be arbitrarily
di�erent from the realP(W∣do(X)) if Fig. (b) is the real
graph. Some equivalence class representations, such as

thePartialAncestralGraph representation (Spirtes et al.,

), are robust to hidden common causes: in Fig. (c),

an edge that has a circle as endpoint indicates that is not

known if there is a causal path into both, for example, X
andW (which would be the case for a hidden common
cause of X andW).�e arrow intoW does indicate that
W cannot be a cause of X. A fully directed edge such as
W → Z indicates total information:W is a causeofZ,Z is

W

Z

X Y

a Z

H1 H2

YX

W

b ZZ

X

W

Y

c

Causality. Figure . (a) A particular causal graph with no

other member on its equivalence class (assuming there

are no hidden common causes). (b) Graph under the pres-

ence of two hidden common causesH andH. (c) A repre-

sentation for all graphs that entail the same conditional

independencies as (a), without assuming the nonexis-

tence of hidden common causes

not a cause ofW, andW andZ have no hidden common
causes.

Given equivalence class representations and back-

groundknowledge, di�erent types of algorithms explore

independence constraints to learn an equivalence class.

It is typically assumed that the true graph is acyclic.�e

basic structure is to evaluate how well a set of condi-

tional independence hypotheses are supported by the

data. Depending on which constraints are judged to

hold in the population, we keep, delete, or orient edges

accordingly. Some algorithms, such as the PC algorithm

(Spirtes et al., ), test a single independence hypoth-

esis at a time, and assemble the individual outcomes in

the end into an equivalence class representation. Other

algorithms such as the GES algorithm (Chickering,

; Meek, ) start from a prior distribution for

graphs and parameters, and proceed to compare the

marginal likelihood of members of di�erent equiva-

lence classes (which can be seen as a Bayesian joint test

of independence hypotheses). In the end, this reduces to

a search for themaximum a posteriori equivalence class

estimator. Both PC and GES have consistency proper-

ties: in the limit of in�nite data, they return the right

equivalence class under the faithfulness assumption.

However, both PC and GES, and most causal discovery

algorithms, assume that there are no hidden common

causes in the domain. �e fast causal inference (FCI)

algorithm of Spirtes et al. () is able to generate

equivalence class representations as in Fig. (c). As in

the PC algorithm, this is done by testing a single inde-

pendence hypothesis at a time, and therefore is not

very robust given small samples. A GES-like algorithm

with the consistency properties of FCI is not currently

known. An algorithm that allows for cyclic networks is

discussed byRichardson ().More details of the fun-

damentals of structure learning algorithms are given by

Scheines ().

Our examples relied on conditional independence

constraints. In this case, the equivalence class is known

as the Markov equivalence class. Markov equivalence
classes are “nonparametric,” in the sense that they do

not refer to any particular probability family. In practice,

this advantage is limited by our ability on evaluating

independence hypotheses within �exible probability

families. Another shortcoming of Markov equivalence

classes is that they might be poorly informative if few

independence constraints exist in the population. �is

Causality C 

C

will happen, for instance, if a single hidden variable is a

common cause of all observed variables. If one is will-

ing to incorporate further assumptions, such as linearity

of causal relationships, parametric constraints can be

used to de�ne other types of equivalence classes that are

more discriminative than theMarkov equivalence class.

Silva, Scheines, Glymour, & Spirtes () describe how

some rank constraints in the covariance matrix of the

observed variables can be used to learn the structure of

linear models, even if no independence constraints are

observable.

Evaluating the success of a structure learning algo-

rithm is di�cult, since ultimately it depends on inter-

ventional data. A promising area of application is

molecular biology, where the large number of vari-

ables makes the use of graphical models a promising

venue for decomposing complex biological systems,

and for combining multiple sources of observational

and interventional data. Sachs et al. () describe a

potential application, with further analysis discussed by

Eaton and Murphy (). Other applications are dis-

cussed in the volume edited by Glymour and Cooper

().

Confidence Intervals Several causal learning algorithms

suchasthePCandFCIalgorithms(Spirtesetal.,)are

consistent, in the sense that they can recover the correct

equivalence class given the faithfulness assumption and

an in�nite amount of data. Although point estimates of

causale�ectsareimportant,it isalsoimportanttoprovide

con�dence intervals. Bayesian con�dence intervals are

readily available by having priors over parameters and

graphs. 7Markov chain Monte Carlo algorithms, how-
ever, might be problematic due to the high-dimensional

anddiscretegraphspace.Apracticalalgorithmthatrelies

onaprioroverorderingsofvariables (suchthat foragiven
ordering, a graph is not allowed to have vertex X as an
ancestor of Y if Y antecedes X in the ordering) is given
by Friedman and Koller ().

Such methods do not necessarily guarantee good

frequentist properties. As a matter of fact, it has been

shown that no such method can exist given the faith-

fulness assumption only (Robins, Scheines, Spirtes,

& Wasserman, ). An intuitive explanation is as

follows: consider the model such as the one in Fig. (a).

For any given sample size, there is at least one model

such that the associations due to the paths X ← H → Y

and X → Y nearly cancel each other (faithfulness is still
preserved), making the covariance of X and Y statisti-
cally undistinguishable from zero. In order to achieve

uniform consistency, causal inference algorithms will

need assumptions stronger than faithfulness. Zhang and

Spirtes () provide some directions.

Other Languages and Tasks in Causal Learning

A closely related language for representing causal mod-

els is the potential outcomes framework popularized by
Rubin (). In this case, random variables for a same

variableY are de�ned for each possible state of the inter-
vened variable X. Notice that, by de�nition, only one of
the possibleY outcomes can be observed for any speci�c
data point. �is model is popular in statistics literature

as a type of missing data model. �e relation between

potential outcomes and graphical models is discussed

by Pearl ().

A case where potential outcomes become more

clearly motivated is in causal explanation. In this setup,
the model is asked for the probability that a particular

event in time was the cause of a particular outcome.

�is is o�en cast as a counterfactual question: had A
been false, would B still have happened? Questions in
History and law are of this type: the legal responsibil-

ity of an airplane manufacturer in an accident depends

on technical malfunction being an actual cause of the
accident. Ultimately, such issues of causal explanation,

actual causation and other counterfactual answers, are

untestable. Although machine learning can be a useful

tool to derive the consequences of assumptions com-

bined with data about other events of the same type,

in general the answers will not be robust to changes

in the assumptions, and the proper assumptions ulti-

mately cannot be selected with the available data. Some

advances in generating explanations with causal models

are described by Halpern and Pearl ().

Cross References
7Graphical Models
7Learning Graphical Models

Recommended Reading
Chickering, D. (). Optimal structure identification with greedy

search. Journal of Machine Learning Research, , –.
Cooper, G., & Yoo, C. (). Causal discovery from a mixture of

experimental and observational data. In Uncertainty in Artifi-
cial Intelligence (UAI).

 C CBR

Dawid, A. P. (). Influence diagrams for causal modelling and

inference. International Statistical Review, , –.
Eaton, D., & Murphy, K. (). Exact Bayesian structure learn-

ing from uncertain interventions. In Artificial Intelligence and
Statistics (AISTATS).

Eberhardt, F., Glymour, C., & Scheines, R. (). On the number of

experiments sufficient and in the worst case necessary to iden-

tify all causal relations among N variables. In Uncertainty in
Artificial Intelligence (UAI) (pp. –).

Friedman, N., & Koller, D. (). Being Bayesian about net-

work structure: A Bayesian approach to structure discovery in

Bayesian networks. Machine Learning, , –.
Glymour, C., & Cooper, G. (). Computation, causation and

discovery. Cambridge, MA: MIT Press.
Halpern, J., & Pearl, J. (). Causes and explanations: A structural-

model approach. Part II: Explanations. British Journal for the
Philosophy of Science, , –.

Meek, C. (). Graphical models: Selecting causal and statistical
models. PhD thesis, Carnegie Mellon University.

Pearl, J. (). Causality: Models, reasoning and inference.
Cambridge: Cambridge University Press.

Richardson, T. (). A discovery algorithm for directed cyclic

graphs. In Proceedings of th conference on Uncertainty in
Artificial Intelligence.

Robins, J., Scheines, R., Spirtes, P., &Wasserman, L. (). Uniform

consistency in causal inference. Biometrika, , –.
Rosenbaum, P. (). Observational studies. New York: Springer.
Rubin, D. (). Direct and indirect causal effects via potential

outcomes. Scandinavian Journal of Statistics, , –.
Sachs, K., Prez, O., Pe’er, D., Lauffenburger, D., & Nolan, G. ().

Causal protein-signaling networks derived from multiparame-

ter single-cell data. Science, , –.
Scheines, R. (). An introduction to causal inference. In

V. McKim & S. Turner (Eds.), Causality in Crisis? (pp.
–).

Silva, R., Scheines, R., Glymour, C., & Spirtes, P. (). Learning

the structure of linear latent variable models. Journal of Machine
Learning Research, , –.

Spirtes, P., Glymour, C., & Scheines, R. (). Causation, prediction
and search. Cambridge, MA: Cambridge University Press.

Wasserman, L. (). All of statistics. New York: Springer.
Zhang, J., & Spirtes, P. (). Strong faithfulness and uniform

consistency in causal inference. In Uncertainty in Artificial
Intelligence.

CBR

7Case-Based Reasoning

CC

7Cascade-Correlation

Certainty Equivalence Principle

7Internal Model Control

Characteristic

7Attribute

City Block Distance

7Manhattan Distance

Class

Chris Drummond

National Research Council of Canada

Synonyms
Category; Class; Collection; Kind; Set; Sort; Type

Definition
A class is a collection of things that might reasonably be

grouped together. Classes that we commonly encounter

have simple names so, as humans, we can easily refer to

them. �e class of dogs, for example, allows me to say

“my dog ate my newspaper” without having to describe

a particular dog, or indeed, a particular newspaper. In

machine learning, the name of the class is called the

class label. Exactly what it means to belong to a class, or

category, is a complex philosophical question but o�en

we think of a class in terms of the common properties

of its members. We think particularly of those proper-

ties which seperate them from other things which are in

many ways similar, e.g., cats mieow and dogs bow-wow.

We would be unlikely to form a class from a random

collection of things, as they would share no common

properties. Knowing something belonged to such a col-

lection would be of no particular bene�t. Although

Class Imbalance Problem C 

C

many every day classes will have simple names, we may

construct them however we like, e.g., “�e things I like

to eat for breakfast on a Saturday morning.” As there is

no simple name for such a collection, in machine learn-

ingwewould typically refer to it as the positive class, and

all occurences of it are positive examples; the negative

class would be everything else.

Motivation and Background
�e idea of a class is important in learning. If we dis-

cover something belongs to a class, we suddenly know

quite a lot about it even if we have not encountered

that particular example before. In machine learning,

our use of the term accords closely with the math-

ematical de�nition of a class, as a collection of sets

unambiguously de�ned by a property that all its mem-

bers share. It also accords with the idea of equivalence

classes, which group similar things. Sets have an inten-

sion, the description of what it means to be a member,

and an extension, things that belong to the set, use-

ful properties of a class in machine learning. Class is

also a term used extensively in knowledge bases to

denote an important relationship between groups, of

sub-class and super class. Learning is o�en viewed as

a way of solving the knowledge acquisition bottleneck

(Buchanan et al., ) in knowledge bases and the use

of the term class in machine learning highlights this

connection.

Recommended Reading
Buchanan, B., Barstow, D., Bechtel, R., Bennett, J., Clancey, W.,

Kulikowski, C., et al. () Constructing an expert system. In

F. Hayes-Roth, D.A. Waterman, & D.B. Lenat (Eds.), Building
expert systems (pp. –). Reading, MA: Addison-Wesley.

Class Imbalance Problem

Charles X. Ling, Victor S. Sheng

�e University of Western Ontario

Canada

Definition
Data are said to su�er the Class Imbalance Problem
when the class distributions are highly imbalanced. In

this context, many 7classi�cation learning algorithms

have low 7predictive accuracy for the infrequent class.
7Cost-sensitive learning is a common approach to
solve this problem.

Motivation and Background
Class imbalanced datasets occur in many real-world

applications where the class distributions of data are

highly imbalanced. For the two-class case, without loss

of generality, one assumes that theminority or rare class

is the positive class, and themajority class is the negative

class. O�en theminority class is very infrequent, such as

% of the dataset. If one applies most traditional (cost-

insensitive) classi�ers on the dataset, they are likely to

predict everything as negative (the majority class). �is

was o�en regarded as a problem in learning from highly

imbalanced datasets.

However, Provost () describes two fundamen-

tal assumptions that are o�en made by traditional cost-

insensitive classi�ers. �e �rst is that the goal of the

classi�ers is to maximize the accuracy (or minimize the

error rate); the second is that the class distribution of

the training and test datasets is the same. Under these

two assumptions, predicting everything as negative for

a highly imbalanced dataset is o�en the right thing to
do. Drummond and Holte () show that it is usu-
ally very di�cult to outperform this simple classi�er in

this situation.

�us, the imbalanced class problem becomesmean-

ingful only if one or both of the two assumptions above

are not true; that is, if the cost of di�erent types of

error (false positive and false negative in the binary clas-

si�cation) is not the same, or if the class distribution

in the test data is di�erent from that of the training

data. �e �rst case can be dealt with e�ectively using

methods in cost-sensitive meta-learning (see 7Cost-
sensitive learning).

In the case when the misclassi�cation cost is not

equal, it is usually more expensive to misclassify a

minority (positive) example into the majority (nega-

tive) class, than a majority example into the minority

class (otherwise it is more plausible to predict every-

thing as negative). �at is, FNcost > FPcost. �us, given
the values of FNcost and FPcost, a variety of cost-
sensitive meta-learningmethods can be, and have been,

used to solve the class imbalance problem (Japkow-

icz & Stephen, ; Ling & Li, ). If the values of

 C Classification

FNcost and FPcost are not unknown explicitly, FNcost
and FPcost can be assigned to be proportional to the
number of positive and negative training cases (Japkow-

icz & Stephen, ).

In case the class distributions of training and test

datasets are di�erent (e.g., if the training data is highly

imbalanced but the test data is more balanced), an obvi-

ous approach is to sample the training data such that its

class distribution is the same as the test data.�is can be

achieved by oversampling (creating multiple copies of

examples of) the minority class and/or undersampling

(selecting a subset of) themajority class (Provost, ).

Note that sometimes the number of examples of

the minority class is too small for classi�ers to learn

adequately. �is is the problem of insu�cient (small)

training data and di�erent from that of imbalanced

datasets.

Recommended Reading
Drummond, C., & Holte, R. (). Exploiting the cost

(in)sensitivity of decision tree splitting criteria. In Pro-
ceedings of the seventeenth international conference on machine
learning (pp. –).

Drummond, C., & Holte, R. (). Severe class imbalance: Why bet-

ter algorithms aren’t the answer. In Proceedings of the sixteenth
European conference of machine learning, LNAI (Vol. ,
pp. –).

Japkowicz, N., & Stephen, S. (). The class imbalance prob-

lem: A systematic study. Intelligent Data Analysis, (),
–.

Ling, C. X., & Li, C. (). Data mining for direct marketing –

Specific problems and solutions. In Proceedings of fourth inter-
national conference on Knowledge Discovery and Data Mining
(KDD-) (pp. –).

Provost, F. (). Machine learning from imbalanced data sets

. In Proceedings of the AAAI’ workshop on imbalanced
data.

Classification

Chris Drummond

National Research Council of Canada

Synonyms
Categorization; Generalization; Identi�cation; Induc-

tion; Recognition

Definition
In common usage, the word classi�cation means to put

things into categories, group them together in someuse-

ful way. If we are screening for a disease, we would

group people into thosewith the disease and thosewith-

out. We, as humans, usually do this because things in

a group, called a 7class in machine learning, share
common characteristics. If we know the class of some-

thing, we know a lot about it. In machine learning, the

term classi�cation is most commonly associated with

a particular type of learning where examples of one or

more 7classes, labeled with the name of the class, are
given to the learning algorithm.�e algorithmproduces

a classi�er which maps the properties of these exam-

ples, normally expressed as 7attribute-value pairs, to
the class labels. A new example whose class is unknown

is classi�ed when it is given a class label by the clas-

si�er based on its properties. In machine learning, we

use the word classi�cation because we call the group-

ing of things a class. We should note, however, that

other �elds use di�erent terms. In philosophy and statis-

tics, the term categorization is more commonly used. In

many areas, in fact, classi�cation o�en refers to what is

called7clustering in machines learning.

Motivation and Background
Classi�cation is a common, and important, human

activity. Knowing something’s class allows us to pre-

dict many of its properties and so act appropriately.

Telling other people its class allows them to do the same,

making for e�cient communication. �is emphasizes

two commonly held views of the objectives of learn-

ing. First, it is a means of 7generalization, to predict
accurately the values for previously unseen examples.

Second, it is a means of compression, to make transmis-

sion or communication more e�cient. Classi�cation is

certainly not a new idea and has been studied for some

considerable time. From the days of the early Greek

philosophers such as Socrates, we had the idea of cat-

egorization.�ere are essential properties of things that

make them what they are. It embodies the idea that

there are natural kinds, ways of grouping things, that

are inherent in the world. A major goal of learning,

therefore, is recognizing natural kinds, establishing the

necessary and su�cient conditions for belonging to a

category. �is “classical” view of categorization, most

Classification C 

C

o�en attributed to Aristotle, is now strongly disputed.

�e main competitor is prototype theory; things are

categorized by their similarity to a prototypical exam-

ple (Lako�, ), either real or imagined. �ere is also

much debate in psychology (Ashby & Maddox, ),

where many argue that there is no single method of

categorization used by humans.

As much of the inspiration for machine learning

originated in how humans learn, it is unsurprising

that our algorithms re�ect these distinctions.7Nearest
neighbor algorithms would seem to have much in com-

mon with prototype theory. �ese have been part of

pattern recognition for some time (Cover & Hart, )

and have become popular in machine learning, more

recently, as 7instance-based learners (Aha, Kiber, &
Albert, ). In machine learning, we measure the dis-

tance to one or more members of a concept rather a

specially constructed prototype. So, this type of learn-

ing is perhaps more a case of the exemplar learning

found in the psychological literature, where multiple

examples represent a category. �e closest we have

to prototype learning occurs in clustering, a type of

7unsupervised learning, rather than classi�cation. For
example, in7k-means clustering group membership is
determined by closeness to a central value.

In the early days of machine learning, our

algorithms (Mitchell, ; Winston, ) had much

in common with the classical theory of categorization

in philosophy and psychology. It was assumed that the

data were consistent, there were no examples with the

same attribute values but belonging to di�erent classes.

It was quickly realized that, even if the properties where

necessary and su�cient to capture the class, there was

o�en noise in the attribute and perhaps the class val-

ues. So, complete consistency was seldom attainable in

practice. New7classi�cation algorithmswere designed,
which could tolerate some noise, such as 7decision
trees (Breiman, Friedman,Olshen, & Stone, ; Quin-

lan, , ) and rule-based learners (see 7Rule
Learning) (Clark&Niblett, ;Holte, ;Michalski,

).

Structure of the Learning System
Whether one uses instance-based learning, rule-based

learning, decision trees, or indeed any other classi�cation

algorithm, the end result is the division of the input

space into regions belonging to a single class. �e

input space is de�ned by the Cartesian product of the

attributes, all possible combinations of possible values.

As a simple example, Fig.  shows two classes +
and −, each a random sample of a normal distribution.
�e attributes are X and Y of real type. �e values for
each attribute range from ±∞. �e �gure shows a cou-
ple of alternativeways that the spacemay be divided into

regions. �e bold dark lines, construct regions using

lines that are parallel to the axes. New examples that

haveY less than  andX less than . with be classi�ed as
+, all others classi�ed as−. Decision trees and rules form
this type of boundary. A7linear discriminant function,
such as the bold dashed line, would divide the space into

half-spaces, with new examples below the line being

classi�ed as + and those above as −. Instance-based
learning will also divide the space into regions but the

boundary is implicit. Classi�cation occurs by choosing

the class of the majority of the nearest neighbors to a

new example. To make the boundary explicit, we could

mark the regions where an example would be classi�ed

as + and those classi�ed as −. We would end up with
regions bounded by polygons.

What di�ers among the algorithms is the shape of

the regions, and how and when they are chosen. Some-

times the regions are implicit as in lazy learners (see

7Lazy Learning) (Aha, ), where the boundaries
are not decided until a new example is being classi�ed.

−−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

+

+

+
+

+

+
+ +

+

+

+
++

+

+
+

+ +

+

+

+
+

++
+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

++

+

+

+

+

+

+
+

+

+

+
+

+ +

+

+

+

+

+

+

+

+
+

+

+

+
+

+

++

+

+

+

+

+ ++

+

+

+

+

+

+

+

++

+

+

+

+

+

+
+

+

+

+

+ ++

+

++

+

+

+

+
+

+

+

+

+

+
+

+

+

+ ++

+

+

+
+

+

+
+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+
+

+

+

+

+ +

+
+

+

+

+

+

+

+ +

+

+

+

+
+

+

+
+

+

+

+

+

+

+

++
+

−

−
−

−

−

− −

−

−
−

−

−

−

−

−

−
−

−

−

−

−

−

−

−
−

−

−

−−

−

−

−

−

−

−

−

−

−

−

−
−

−

−

−

−

−

−

−−

−

− −− −

−

−

−

−

−

−

−

−

−

−

−

−

−

−
−

−

−

−

−

−

−
−

−

−

−

−

−

−

−

−
−

−

−
−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−
−

−

−

−

−

−
−

−

−

−

−

−

−

−

−

−

−

−

− −

−

−

−

−

−

−
−

−

−

−−

−

−

−

−

− −

−

−

−−

−

−

−

−

− −

−

−

−

−

−

−

−

−

−

−

−

− −

−

−

−

−−

−

−

−

−

−

−

−

−

−
− −

−−

0 2 4
X

−4

−2

0

2

4

Y

−4 −2

Classification. Figure . Dividing the input space

 C Classification

Sometimes the regions are determined by decision

theory as in generative classi�ers (see 7Generative
Learners) (Rubinstein &Hastie, ), whichmodel the

full joint distribution of the classes. For all classi�ers

though, the input space is e�ectively partitioned into

regions representing a single class.

Applications
One of the reasons that classi�cation is an important

part ofmachine learning is that it has proved to be a very

useful technique for solving practical problems. Classi-

�cation has been used to help scientists in the explo-

ration, and comprehension, of their particular domains

of interest. It has also been used to help solve signi�-

cant industrial problems. Over the years a number of

authors have stressed the importance of applications to

machine learning and listed many successful examples

(Brachman, Khabaza, Kloesgen, Piatetsky-Shapiro, &

Simoudis, ; Langley & Simon, ; Michie, ).

�ere have also been workshops on applications

(Aha & Riddle, ; Engels, Evans, Herrmann, &

Verdenius, ; Kodrato�, ) at major machine

learning conferences and a special issue of Machine

Learning (Kohavi & Provost, ), one of the main

journals in the �eld. �ere are now conferences that

are highly focused on applications. Collocated with

major arti�cial intelligence conferences is the Innova-

tive Applications of Arti�cial Intelligence conference.

Since , this conference has highlighted practical

applications of machine learning, including classi�ca-

tion (Schorr & Rappaport, ). In addition, there

are now at least two major knowledge discovery and

7data mining conferences (Fayyad & Uthurusamy,
; Komorowski & Zytkow, ) with a strong focus

on applications.

Future Directions
In machine learning, there are already a large num-

ber of di�erent classi�cation algorithms, yet new ones

still appear. It seems unlikely that there is an end in

sight.�e “no free lunch theory” (Wolpert &Macready,

) indicates that there will never be a single best

algorithm, better than all others in terms of predictive

power. However, apart from their predictive perfor-

mance, each classi�er has its own attractive properties

which are important to di�erent groups of people. So,

new algorithms are still of value. Further, even if we

are solely concerned about performance, it may be use-

ful to have many di�erent algorithms, all with their

own biases (see 7Inductive Bias). �ey may be com-
bined together to form an ensemble classi�er (Caruana,

Niculescu-Mizil, Crew, & Ksikes, ), which outper-

forms single classi�ers of one type (see 7Ensemble
Learning).

Limitations
Classi�cation has been critical part of machine research

for some time. �ere is a concern that the emphasis

on classi�cation, and more generally on 7supervised
learning, is too strong. Certainly much of human learn-

ing does not use, or require, labels supplied by an expert.

Arguably, unsupervised learning should play a more

central role in machine learning research. Although

classi�cation does require a label, it does necessarily

need an expert to provide labeled examples. Many suc-

cessful applications rely on �nding some, easily identi-

�able, property which stands in for the class.

Recommended Reading
Aha, D. W. (). Editorial. Artificial Intelligence Review, (–),

–.

Aha, D. W., Kibler, D., & Albert, M. K. (). Instance-based

learning algorithms. Machine Learning, (), –.
Aha, D. W., & Riddle, P. J. (Eds.). (). Workshop on apply-

ing machine learning in practice. In Proceedings of the th
international conference on machine learning.

Ashby, F. G., & Maddox, W. T. (). Human category learning.

Annual Review of Psychology, , –.
Bishop, C. M. (). Pattern recognition and machine learning. New

York: Springer.

Brachman, R. J., Khabaza, T., Kloesgen, W., Piatetsky-Shapiro, G., &

Simoudis, E. (). Mining business databases. Communica-
tions of the ACM, (), –.

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. ().

Classification and regression trees. Belmont, CA: Wadsworth.
Caruana, R., Niculescu-Mizil, A., Crew, G., & Ksikes, A. ().

Ensemble selection from libraries of models. In Proceed-
ings of the st international conference on machine learning
(pp. –).

Clark, P., & Niblett, T. (). The CN induction algorithm.

Machine Learning, , –.
Cover, T., & Hart, P. (). Nearest neighbor pattern classification.

IEEE Transactions on Information Theory, , –.
Dietterich, T., & Shavlik, J. (Eds.). Readings in machine learning. San

Mateo, CA: Morgan Kaufmann.

Engels, R., Evans, B., Herrmann, J., & Verdenius, F. (Eds.). ().

Workshop on machine learning applications in the real world;

Classification Tree C 

C

methodological aspects and implications. In Proceedings of the
th international conference on machine learning.

Fayyad, U. M., & Uthurusamy, R. (Eds.). (). Proceedings of the
first international conference on knowledge discovery and data
mining.

Holte, R. C. (). Very simple classification rules perform well on

most commonly used datasets. Machine Learning, (), –.
Kodratoff, Y. (Ed.). (). Proceedings of MLNet workshop on indus-

trial application of machine learning.
Kodratoff, Y., & Michalski, R. S. (). Machine learning: An arti-

ficial intelligence approach, (Vol. ). San Mateo, CA: Morgan
Kaufmann.

Kohavi, R., & Provost, F. (). Glossary of terms. Editorial for

the special issue on applications of machine learning and the

knowledge discovery process. Machine Learning, (/).
Komorowski, H. J., & Zytkow, J. M. (Eds.). (). Proceedings of

the first European conference on principles of data mining and
knowledge discovery.

Lakoff, G. (). Women, fire and dangerous things. Chicago, IL:
University of Chicago Press.

Langley, P., & Simon, H. A. (). Applications of machine learn-

ing and rule induction. Communications of the ACM, (),
–.

Michalski, R. S. (). A theory and methodology of inductive

learning. In R. S. Michalski, T. J. Carbonell, & T. M. Mitchell

(Eds.), Machine learning: An artificial intelligence approach
(pp. –). Palo Alto, CA: TIOGA Publishing.

Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (Eds.). ().

Machine learning: An artificial intelligence approach. Palo Alto,
CA: Tioga Publishing Company.

Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (Eds.). ().

Machine learning: An artificial intelligence approach, (Vol. ).
San Mateo, CA: Morgan Kaufmann.

Michie, D. ().Machine intelligence and related topics. New York:
Gordon and Breach Science Publishers.

Mitchell, T. M. (). Version spaces: A candidate elimination

approach to rule learning. In Proceedings of the fifth interna-
tional joint conferences on artificial intelligence (pp. –).

Mitchell, T. M. ().Machine learning. Boston, MA: McGraw-Hill.
Quinlan, J. R. (). Induction of decision trees.Machine Learning,

, –.
Quinlan, J. R. (). C. programs for machine learning. San Mateo,

CA: Morgan Kaufmann.

Rubinstein, Y. D., & Hastie, T. (). Discriminative vs informative

learning. In Proceedings of the third international conference on
knowledge discovery and data mining (pp. –).

Russell, S., & Norvig, P. (). Artificial intelligence: A modern
approach. Upper Saddle River, NJ: Prentice-Hall.

Schorr, H., & Rappaport, A. (Eds.). (). Proceedings of the first
conference on innovative applications of artificial intelligence.

Winston, P. H. (). Learning structural descriptions from exam-

ples. In P. H. Winston (Ed.), The psychology of computer vision
(pp. –). New York: McGraw-Hill.

Witten, I. H., & Frank, E. (). Data mining: Practical machine
learning tools and techniques. San Fransisco: Morgan Kauf-
mann.

Wolpert, D. H., &Macready, W. G. (). No free lunch theorems for

optimization. IEEE Transactions on Evolutionary Computation,
(), –.

Classification Algorithms

�ere is a very large number of classi�cation algo-

rithms, including 7decision trees, 7instance-based
learners,7support vectormachines,7rule-based learn-
ers,7neural networks,7Bayesian networks.�ere also
ways of combining them into 7ensemble classi�ers
such as7boosting,7bagging,7stacking, and7forests
of trees.

To delve deeper into classi�ers and their role in

machine learning, a number of books are recommended

covering machine learning (Bishop, ; Mitchell,

; Witten & Frank, ) and arti�cial intelli-

gence (Russell & Norvig, ) in general. Seminal

papers on classi�ers can be found in collections of

papers onmachine learning (Dietterich& Shavlik, ;

Kodrato� & Michalski, ; Michalski, Carbonell, &

Mitchell, , ).

Recommended Reading
Bishop, C. M. (). Pattern recognition and machine learning. New

York: Springer.

Dietterich, T., & Shavlik, J. (Eds.). Readings in machine learning. San
Mateo, CA: Morgan Kaufmann.

Kodratoff, Y., & Michalski, R. S. (). Machine learning: An arti-
ficial intelligence approach, (Vol. ). San Mateo, CA: Morgan
Kaufmann.

Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (Eds.). ().

Machine learning: An artificial intelligence approach. Palo Alto,
CA: Tioga Publishing Company.

Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (Eds.). ().

Machine learning: An artificial intelligence approach, (Vol. ).
San Mateo, CA: Morgan Kaufmann.

Mitchell, T. M. ().Machine learning. Boston, MA: McGraw-Hill.
Russell, S., & Norvig, P. (). Artificial intelligence: A modern

approach. Upper Saddle River, NJ: Prentice-Hall.
Witten, I. H., & Frank, E. (). Data mining: Practical

machine learning tools and techniques. San Fransisco: Morgan
Kaufmann.

Classification Learning

7Concept Learning

Classification Tree

7Decision Tree

 C Classifier Systems

Classifier Systems

Pier Luca Lanzi

Politecnico di Milano, Milano, Italy

Synonyms
Genetics-based machine learning; Learning classi�er

systems

Definition
Classi�er systems are rule-based systems that com-

bine 7temporal di�erence learning or 7supervised
learning with a genetic algorithm to solve classi�ca-

tion and 7reinforcement learning problems. Classi�er
systems come in two �avors: Michigan classi�er sys-

tems, which are designed for online learning, but can

also tackle o�ine problems; and Pittsburgh classi�er

systems, which can only be applied to o�ine learning.

In Michigan classi�er systems (Holland, ),

learning is viewed as an online adaptation process to

an unknown environment that represents the problem

and provides feedback in terms of a numerical reward.

Michigan classi�er systems maintain a single candidate

solution consisting of a set of rules, or a population of

classi�ers. Michigan systems apply () temporal di�er-

ence learning to distribute the incoming reward to the

classi�ers that are accountable for it; and () a genetic

algorithm to select, recombine, and mutate individual

classi�ers so as to improve their contribution to the

current solution.

In contrast, in Pittsburgh classi�er systems (Smith,

), learning is viewed as an o�ine optimization pro-

cess in which a genetic algorithm alone is applied to

search for the best solution to a given problem. In addi-

tion, Pittsburgh classi�er systems maintain not one, but

a set of candidate solutions. While in the Michigan

classi�er system each individual classi�er represents a

part of the overall solution, in the Pittsburgh system

each individual is a complete candidate solution (itself

consisting of a set of classi�ers).�e�tness of each Pitts-

burgh individual is computed o�ine by testing it on a

representative sample of problem instances. �e indi-

viduals compete among themselves through selection,

while crossover and mutation recombine solutions to

search for better solutions.

Motivation and Background
Machine learning is usually viewed as a search process

in which a solution space is explored until an appropri-

ate solution to the target problem is found (Mitchell,

) (see 7Learning as Search). Machine learning
methods are characterized by the way they represent

solutions (e.g., using 7decision trees, rules), by the
way they evaluate solutions (e.g., classi�cation accuracy,

information gain) and by the way they explore the solu-

tion space (e.g., using a7general-to-speci�c strategy or
a7speci�c-to-general strategy).
Classi�er systems are methods of genetics-based

machine learning introduced by Holland, the father of

7genetic algorithms. �ey made their �rst appearance
in Holland () where the �rst diagram of a clas-

si�er system, labeled “cognitive system,” was shown.

Subsequently, they were described in detail in the paper

“Cognitive Systems based on Adaptive Algorithms”

(Holland and Reitman, ). Classi�er systems are

characterized by a rule-based representation of solu-

tions and a genetics-based exploration of the solution

space. While other 7rule learning methods, such as
CN (Clark & Niblett, ) and FOIL (Quinlan &

Cameron-Jones, ), generate one rule at a time fol-

lowing a sequential covering strategy (see 7Covering
Algorithm), classi�er systems work on one or more

solutions at once, and they explore the solution space by

applying the principles of natural selection and genetics.

In classi�er systems (Holland, ; Holland and

Reitman, ;Wilson, ), machine learning is mod-

eled as an online adaptation process to an unknown

environment, which provides feedback in terms of a
numerical reward. A classi�er system perceives the

environment through its detectors and, based on its

sensations, it selects an action to be performed in the

environment through its e�ectors. Depending on the

e�cacy of its actions, the environment may eventu-

ally reward the system. A classi�er system learns by

trying to maximize the amount of reward it receives

from the environment. To pursue such a goal, it main-

tains a set (a population) of condition-action-prediction
rules, called classi�ers, which represents the current
solution. Each classi�er’s condition identi�es some part

of the problem domain; the classi�er’s action repre-

sents a decision on the subproblem identi�ed by its

condition; and the classi�er’s prediction, or strength,

estimates the value of the action in terms of future

Classifier Systems C 

C

rewards on that subproblem. Two separate components,

credit assignment and rule discovery, act on the popu-

lation with di�erent goals. 7Credit assignment, imple-
mented either by methods of temporal di�erence or

supervised learning, exploits the incoming reward to

estimate the action values in each subproblem so as

to identify the best classi�ers in the population. At

the same time, rule discovery, usually implemented by

a genetic algorithm, selects, recombines, and mutates

the classi�ers in the population to improve the current

solution.

Classi�er systems were initially conceived asmodel-

ing tools. Given a real systemwith unknown underlying

dynamics, for instance a �nancial market, a classi�er

system would be used to generate a behavior that

matched the real system. �e evolved rules would pro-

vide a plausible, human readablemodel of the unknown

system – a way to look inside the box. Subsequently,

with the developments in the area of machine learn-

ing and the rise of reinforcement learning, classi�er

systems have been more and more o�en studied and

presented as alternatives to other machine learning

methods. Wilson’s XCS (), the most successful clas-

si�er system to date, has proven to be both a valid

alternative to other reinforcement learning approaches

and an e�ective approach to classi�cation and datamin-

ing (Bull, ; Bull & Kovacs, ; Lanzi, Stolzmann,

&Wilson, ).

Kenneth de Jong and his students (de Jong, ;

Smith, , ) took a di�erent perspective on

genetics-based machine learning and modeled learn-

ing as an optimization process rather than an adaptation
process as done in Holland (). In this case, the solu-

tion space is explored by applying a genetic algorithm

to a population of individuals each representing a com-
plete candidate solution – that is, a set of rules (or a
production system, de Jong, ; Smith, ). At each

cycle, a critic is applied to each individual (to each set

of rules) to obtain a performance measure that is then

used by the genetic algorithm to guide the exploration

of the solution space. �e individuals in the population

compete among themselves through selection, while

crossover and mutation recombine solutions to search

for better ones.

�e approaches of Holland (Holland, ; Hol-

land and Reitman, ) and de Jong (de Jong, ;

Smith, , ) have been extended and improved

in several ways (see Lanzi et al. () for a review).

�e models of classi�er systems that are inspired by

the work of Holland () at the University of Michi-

gan are usually called Michigan classi�er systems; the

ones that are inspired by Smith (, ) and de Jong

() at the University of Pittsburgh are usually termed

Pittsburgh classi�er systems – or brie�y, Pitt classi�er

systems.

Pittsburgh classi�er systems separate the evaluation

of candidate solutions, performed by an external critic,

from the genetic search. As they evaluate candidate

solutions as a whole, Pittsburgh classi�er systems can

easily identify and emphasize sequentially cooperat-

ing classi�ers, which is particularly helpful in problems

involving partial observability. In contrast, in Michigan

classi�er systems the credit assignment is focused, due

to identi�cation of the actual classi�ers that produce the

reward, so learning ismuch faster but sequentially coop-
erating classi�ers are more di�cult to spot. As Pitts-

burgh classi�er systems apply the genetic algorithm to a

set of solutions, they only work o�ine, whereas Michi-

gan classi�er systems work online, although they can

also tackle o�ine problems. Finally, the design of Pitts-

burgh classi�er systems involves decisions as to how an

entire solution should be represented and how solutions

should be recombined – a task which can be daunting.

In contrast, the design of Michigan classi�er systems

involves simpler decisions about how a rule should be

represented and how two rules should be recombined.

Accordingly, while the representation of solutions and

its related issues play a key role in Pittsburgh mod-

els, Michigan models easily work with several types of

representations (Lanzi, ; Lanzi & Perrucci, ;

Mellor, ).

Structure of the Learning System
Michigan and Pittsburgh classi�er systems were both

inspired by the work of Holland on the broadcast

language (Holland, ). However, their structures

re�ect two di�erent ways to model machine learn-

ing: as an adaptation process in the case of Michi-

gan classi�er systems; and as an optimization prob-

lem, in the case of Pittsburgh classi�er systems. �us,

the two models, originating from the same idea (Hol-

land’s broadcast language), have radically di�erent

structures.

 C Classifier Systems

Michigan Classifier Systems
Holland’s classi�er systems de�ne a general paradigm

for genetics-based machine learning. �e description

in Holland and Reitman () provides a list of prin-

ciples for online learning through adaptation. Over

the years, such principles have guided researchers who

developed several models of Michigan classi�er sys-

tems (Butz, ; Wilson, , , ) and applied

them to a large variety of domains (Bull, ; Lanzi &

Riolo, ; Lanzi et al., ). �ese models extended

and improved Holland’s original ideas, but kept all

the ingredients of the original recipe: a population of

classi�ers, which represents the current system knowl-

edge; a performance component, which is responsi-

ble for the short-term behavior of the system; a credit

assignment (or reinforcement) component, which dis-

tributes the incoming reward among the classi�ers; and

a rule discovery component, which applies a genetic

algorithm to the classi�ers to improve the current

knowledge.

Knowledge Representation
In Michigan classi�er systems, knowledge is repre-

sented by a population of classi�ers. Each classi�er is

usually de�ned by four main parameters: the condition,
which identi�es some part of the problem domain; the

action, which represents a decision on the subproblem
identi�ed by its condition; the prediction or strength,
which estimates the amount of reward that the system

will receive if its action is performed; and �nally, the �t-
ness, which estimates how good the classi�er is in terms
of problem solution.

�e knowledge representation of Michigan classi-

�er systems is extremely �exible. Each one of the four

classi�er components can be tailored to �t the need of

a particular application, without modifying the main

structure of the system. In problems involving binary

inputs, classi�er conditions can be simply represented

using strings de�ned over the alphabet {, , #}, as done

in Holland and Reitman (), Goldberg (), and

Wilson (). In problems involving real inputs, con-

ditions can be represented as disjunctions of intervals,

similar to the ones produced by other rule learning

methods (Clark & Niblett, ) Conditions can also

be represented as general-purpose symbolic expressions

(Lanzi, ; Lanzi & Perrucci, ) or �rst-order

logic expressions (Mellor, ). Classi�er actions are

typically encoded by a set of symbols (either binary

strings or simple labels), but continuous real-valued

actions are also available (Wilson, ). Classi�er pre-

diction (or strength) is usually encoded by a parame-

ter (Goldberg, ; Holland & Reitman, ; Wilson,

). However, classi�er prediction can also be com-

puted using a parameterized function (Wilson, ),

which results in solutions represented as an ensem-

ble of local approximators – similar to the ones pro-

duced in generalized reinforcement learning (Sutton &

Barto, ).

Performance Component
A simpli�ed structure of Michigan classi�er systems

is shown in Fig. . We refer the reader to Goldberg

() and Holland and Reitman () for a detailed

description of the original model and to Butz ()

andWilson (, , ) for descriptions of recent

classi�er system models.

A classi�er system learns through trial and error

interactions with an unknown environment. �e sys-

tem and the environment interact continually. At each

time step, the classi�er system perceives the envi-

ronment through its detectors; it builds a match set
containing all the classi�ers in the population whose

conditionmatches the current sensory input.�ematch

set typically contains classi�ers that advocate contrast-

ing actions; accordingly, the classi�er system evaluates

each action in the match set, and selects an action to

be performed balancing exploration and exploitation.

�e selected action is sent to the e�ectors to be exe-

cuted in the environment; depending on the e�ect that

the action has in the environment, the system receives a

scalar reward.

Credit Assignment
�e credit assignment component (also called reinforce-
ment component, Wilson ) distributes the incom-

ing reward to the classi�ers that are accountable for it.

In Holland and Reitman (), credit assignment is

implemented by Holland’s bucket brigade algorithm

(Holland, ), which was partially inspired by the

credit allocation mechanism used by Samuel in his

Classifier Systems C 

C

Rule Discovery Component

Perceptions

Detectors

Reward Action

Effectors

Match Set

Classifiers
matching

the current
sensory inputs

Population

Classifiers
representing
the current
knowledge

Evaluation of
the actions in
the match set

Credit Assignment
Component

1 2

3

Classifier Systems. Figure . Simplified structure of a Michigan classifier system. The system perceives the environment

through its detectors and () it builds the match set containing the classifiers in the population that match the current

sensory inputs; then () all the actions in the match set are evaluated, and () an action is selected to be performed in

the environment through the effectors

pioneering work on learning checkers-playing pro-

grams (Samuel, ).

In the early years, classi�er systems and the bucket

brigade algorithm were con�ned to the evolutionary

computation community. �e rise of reinforcement

learning increased the connection between classi�er

systems and temporal di�erence learning (Sutton, ;

Sutton & Barto, ): in particular, Sutton ()

showed that the bucket brigade algorithm is a kind

of temporal di�erence learning, and similar connec-

tions were also made in Watkins () and Dorigo

and Bersini (). Later, the connection between

classi�er systems and reinforcement learning became

tighter with the introduction of Wilson’s XCS (),

in which credit assignment is implemented by a mod-

i�cation of Watkins Q-learning (Watkins, ). As

a consequence, in recent years, classi�er systems are

o�en presented as methods of reinforcement learn-

ing with genetics-based generalization (Bull & Kovacs,

).

Rule Discovery Component
�e rule discovery component is usually implemented
by a genetic algorithm that selects classi�ers in the

population with probability proportional to their �t-

ness; it copies the selected classi�ers and applies genetic

operators (usually crossover and mutation) to the o�-

spring classi�ers; the new classi�ers are inserted in the

population, while other classi�ers are deleted to keep

the population size constant.

Classi�ers selection plays a central role in rule dis-

covery. Classi�er selection depends on the de�nition

of classi�er �tness and on the subset of classi�ers con-

sidered during the selection process. In Holland and

Reitman (), classi�er �tness coincides with clas-

si�er prediction, while selection is applied to all the

classi�ers in the population. �is approach results in

a pressure toward classi�ers predicting high returns,

but typically tends to produce overly general solutions.

To avoid such solutions, Wilson () introduced the

XCS classi�er system in which accuracy-based �tness is

 C Classifier Systems

coupled with a niched genetic algorithm.�is approach

results in a pressure toward accurate maximally gen-

eral classi�ers, and has made XCS the most successful

classi�er system to date.

Pittsburgh Classifier Systems
�e idea underlying the development of Pittsburgh clas-

si�er systems was to show that interesting behaviors

could be evolved using a simpler model than the one

proposed by Holland with Michigan classi�er systems

(Holland, ; Holland & Reitman, ).

In Pittsburgh classi�er systems, each individual is a

set of rules that encodes an entire candidate solution;

each rule has a �xed length, but each rule set (each indi-

vidual) usually contains a variable number of rules.�e

genetic operators, crossover and mutation, are tailored

to the rule-based, variable-length representation. �e

individuals in the population compete among them-

selves, following the selection-recombination-mutation

cycle that is typical of genetic algorithms (Goldberg,

; Holland, ). While in Michigan classi�er sys-

tems individuals in the population (the single rules)

cooperate, in Pittsburgh classi�er systems there is no

cooperation among individuals (the rule sets), so that

the genetic algorithm operation is simpler for Pitts-

burghmodels. However, as Pittsburgh classi�er systems

explore a much larger search space, they usually require

more computational resources than Michigan classi�er

systems.

�e pseudo-code of a Pittsburgh classi�er system is

shown in Fig. . At �rst, the individuals in the popu-

lation are randomly initialized (line ). At time t, the

individuals are evaluated by an external critic, which

returns a performance measure that the genetic algo-

rithm exploits to compute the �tness of individuals

(lines  and ). Following this, selection (line ),

recombination, and mutation (line ) are applied to

the individuals in the population – as done in a typ-

ical genetic algorithm. �e process stops when a ter-

mination criterion is met (line ), usually when an

appropriate solution is found.

�e design of Pittsburgh classi�er systems follows

the typical steps of genetic algorithm design, which

means deciding how a rule set should be represented,

what genetic operators should be applied, and how

the �tness of a set of rules should be calculated. In

addition, Pittsburgh classi�er systems need to address

the bloat phenomenon (Tackett, ) that arises with
any variable-sized representation, like the rule sets

evolved by Pittsburgh classi�er systems. Bloat can be

de�ned as the growth of individuals without an actual

�tness improvement. In Pittsburgh classi�er systems,

bloat increases the size of candidate solutions by adding

useless rules to individuals, and it is typically limited

by introducing a parsimony pressure that discourages

large rule sets (Bassett & de Jong, ). Alterna-

tively, Pittsburgh classi�er systems can be combined

with multi-objective optimization, so as to separate the

maximization of the rule set performance and the min-

imization of the rule set size.

Examples of Pittsburgh classi�er systems include

SAMUEL (Grefenstette, Ramsey, & Schultz, ), the

GeneticAlgorithmBatch-Incremental Concept Learner

(GABIL) (de Jong & Spears, ), GIL (Janikow, ),

GALE (Llorà, ), and GAssist (Bacardit, ).

1. t := 0
2. Initialize the population P(t)
3. Evaluate the rules sets in P(t)
4. While the termination condition is not satisfied
5. Begin
6. Select the rule sets in P(t) and generate Ps(t)
7. Recombine and mutate the rule sets in Ps(t)
8. P(t+1) := Ps(t)
9. t := t+1
10. Evaluate the rules sets in P(t)
11. End

Classifier Systems. Figure . Pseudo-code of a Pittsburgh classifier system

Classifier Systems C 

C

Applications
Classi�er systems have been applied to a large vari-

ety of domains, including computational economics

(e.g., Arthur, Holland, LeBaron, Palmer, & Talyer,

), autonomous robotics (e.g., Dorigo & Colom-

betti, ), classi�cation (e.g., Barry, Holmes, & Llora,

), �ghter aircra� maneuvering (Bull, ; Smith,

Dike, Mehra, Ravichandran, & El-Fallah, ), and

many others. Reviews of classi�er system applications

are available in Lanzi et al. (), Lanzi and Riolo

(), and Bull ().

Programs and Data
�e major sources of information about classi�er sys-

tems are the LCSWeb maintained by Alwyn Barry,

which can be reached through, and www.learning-

classi�er-systems.org_maintained by Xavier Llorà.

Several implementations of classi�er systems are

freely available online. �e �rst standard implemen-

tation of Holland’s classi�er system in Pascal was

described in Goldberg (), and it is available at

http://www.illigal.org/; a C version of the same imple-

mentation, developed by Robert E. Smith, is available

at http://www.etsimo.uniovi.es/�p/pub/EC/CFS/src/.

Another implementation of an extension of Holland’s

classi�er system in C by Rick L. Riolo is avail-

able at http://www.cscs.umich.edu/So�ware/Contents.

html. Implementations of Wilson’s XCS () are dis-

tributed by Alwyn Barry at the LCSWeb, by Martin

V. Butz (at www.illigal.org), and by Pier Luca Lanzi

(at xcslib.sf.net). Among the implementations of Pitts-

burgh classi�er systems, the Samuel system is avail-

able from Alan C. Schultz at http://www.nrl.navy.mil/;

Xavier Llorà distributes GALE (Genetic and Arti�cial

Life Environment) a �ne-grained parallel genetic algo-

rithm for data mining at www.illigal.org/xllora.

Cross References
7Credit Assignment
7Genetic Algorithms
7Reinforcement Learning
7Rule Learning

Recommended Reading
Arthur, B. W., Holland, J. H., LeBaron, B., Palmer, R., & Talyer, P.

(). Asset pricing under endogenous expectations in an arti-
ficial stock market. Technical Report, Santa Fe Institute.

Bacardit i Peñarroya, J. (). Pittsburgh genetic-based machine
learning in the data mining era: Representations, generaliza-
tion, and run-time. PhD thesis, Computer Science Department,
Enginyeria i Arquitectura La Salle Universitat Ramon Llull,

Barcelona.

Barry, A. M., Holmes, J., & Llora, X. (). Data mining using learn-

ing classifier systems. In L. Bull (Ed.), Applications of learning
classifier systems, studies in fuzziness and soft computing (Vol.
, pp. –). Pagg: Springer.

Bassett, J. K., & de Jong, K. A. (). Evolving behaviors for

cooperating agents. In Proceedings of the twelfth international
symposium on methodologies for intelligent systems, LNAI (Vol.
). Berlin: Springer.

Booker, L. B. (). Triggered rule discovery in classifier systems.

In J. D. Schaffer (Ed.), Proceedings of the rd international con-
ference on genetic algorithms (ICGA). San Francisco: Morgan
Kaufmann.

Bull, L. (Ed.). (). Applications of learning classifier systems, stud-
ies in fuzziness and soft computing (Vol. ). Berlin: Springer,
ISBN ----.

Bull, L., & Kovacs, T. (Eds.). (). Foundations of learning classi-
fier systems, studies in fuzziness and soft computing (Vol. ).
Berlin: Springer, ISBN ----.

Butz, M. V. (). Anticipatory learning classifier systems. Genetic
algorithms and evolutionary computation. Boston, MA: Kluwer

Academic Publishers.

Clark, P., & Niblett, T. (). The CN induction algorithm.

Machine Learning, (), –.
de Jong, K. (). Learning with genetic algorithms: An overview.

Machine Learning, (–), –.
de Jong, K. A., & Spears, W. M. (). Learning concept classifica-

tion rules using genetic algorithms. In Proceedings of the inter-
national joint conference on artificial intelligence (pp. –).
San Francisco: Morgan Kaufmann.

Dorigo, M., & Bersini, H. (). A comparison of Q-learning and

classifier systems. In D. Cliff, P. Husbands, J.-A. Meyer, &

S. W. Wilson (Eds.), From animals to animats : Proceedings
of the third international conference on simulation of adaptive
behavior (pp. –). Cambridge, MA: MIT Press.

Dorigo, M., & Colombetti, M. (). Robot shaping: An experiment
in behavior engineering. Cambridge, MA: MIT Press/Bradford
Books.

Goldberg, D. E. (). Genetic algorithms in search, optimization,
and machine learning. Reading, MA: Addison-Wesley.

Grefenstette, J. J., Ramsey, C. L., & Schultz, A. () Learning

sequential decision rules using simulation models and compe-

tition. Machine Learning, (), –.
Holland, J. () Escaping brittleness: The possibilities of general-

purpose learning algorithms applied to parallel rule-based sys-

tems. In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell

(Eds.), Machine learning, an artificial intelligence approach
(Vol. II, Chap. ) (pp. –). San Francisco: Morgan

Kaufmann.

Holland, J. H. (). Adaptation in natural and artificial systems.
Ann Arbor, MI: University of Michigan Press (Reprinted by the

MIT Press in ).

Holland, J. H. (). Adaptation. Progress in Theoretical Biology, ,
–.

Holland, J. H., & Reitman, J. S. (). Cognitive systems based on

adaptive algorithms. In D. A. Waterman & F. Hayes-Roth (Eds.),

Pattern-directed inference systems. New York: Academic Press.

http://www.illigal.org/
http://www.etsimo.uniovi.es/ftp/pub/EC/ CFS/src/
http://www.cscs.umich.edu/Software/Contents.html
http://www.cscs.umich.edu/Software/Contents.html
www.illigal.org
http://www.nrl.navy.mil/
www.illigal.org/xllora
www.learning-classi�er-systems.org_
www.learning-classi�er-systems.org_

 C Clause

(Reprinted from Evolutionary computation. The fossil record.

D. B. Fogel (Ed.), IEEE Press ()).

Janikow, C. Z. (). A knowledge-intensive genetic algo-

rithm for supervised learning. Machine Learning, (–),
–.

Lanzi, P. L. (). Mining interesting knowledge from data with the

XCS classifier system. In L. Spector, E. D. Goodman, A. Wu,

W. B. Langdon, H.-M. Voigt, M. Gen, et al. (Eds.), Proceedings of
the genetic and evolutionary computation conference (GECCO-
) (pp. –). San Francisco: Morgan Kaufmann.

Lanzi, P. L. (). Learning classifier systems: A reinforcement

learning perspective. In L. Bull & T. Kovacs (Eds.), Founda-
tions of learning classifier systems, studies in fuzziness and soft
computing (pp. –). Berlin: Springer.

Lanzi, P. L., & Perrucci, A. (). Extending the representation

of classifier conditions part II: From messy coding to S-

expressions. In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon,

V. Honavar, M. Jakiela, & R. E. Smith (Eds.), Proceedings of the
genetic and evolutionary computation conference (GECCO )
(pp. –). Orlando, FL: Morgan Kaufmann.

Lanzi, P. L., & Riolo, R. L. (). Recent trends in learning classifier

systems research. In A. Ghosh & S. Tsutsui (Eds.), Advances in
evolutionary computing: Theory and applications (pp. –).
Berlin: Springer.

Lanzi, P. L., Stolzmann, W., & Wilson, S. W. (Eds.). (). Learn-
ing classifier systems: From foundations to applications. Lecture
notes in computer science (Vol. ). Berlin: Springer.

Llorá, X. (). Genetics-based machine learning using fine-grained
parallelism for data mining. PhD thesis, Enginyeria i Arquitec-
tura La Salle, Ramon Llull University, Barcelona.

Mellor, D. (). A first order logic classifier system. In H. Beyer

(Ed.), Proceedings of the  conference on genetic and evolu-
tionary computation (GECCO ’), (pp. –). New York:
ACM Press.

Quinlan, J. R., & Cameron-Jones, R. M. (). Induction of logic

programs: FOIL and related systems. New Generation Comput-
ing, (&), –.

Samuel, A. L. (). Some studies in machine learning using the

game of checkers. In E. A. Feigenbaum & J. Feldman (Eds.),

Computers and thought. New York: McGraw-Hill.
Smith, R. E., Dike, B. A., Niehra, R. K., Ravichandran, B., & El-

Fallah, A. (). Classifier systems in combat: Two-sided

learning of maneuvers for advanced fighter aircraft. Com-
puter Methods in Applied Mechanics and Engineering, (–),
–.

Smith, S. F. () A learning system based on genetic adaptive
algorithms. Doctoral dissertation, Department of Computer
Science, University of Pittsburgh.

Smith, S. F. (). Flexible learning of problem solving heuristics

through adaptive search. In Proceedings of the eighth interna-
tional joint conference on artificial intelligence (pp. –).
Los Altos, CA: Morgan Kaufmann.

Sutton, R. S. (). Learning to predict by the methods of temporal

differences. Machine Learning, , –.
Sutton, R. S., & Barto, A. G. (). Reinforcement learning: An

introduction. Cambridge, MA: MIT Press.
Tackett, W. A. (). Recombination, selection, and the genetic

construction of computer programs. Unpublished doctoral dis-
sertation, University of Southern California.

Watkins, C. (). Learning from delayed rewards. PhD thesis,

King’s College.

Wilson, S. W. (). Classifier fitness based on accuracy. Evolution-
ary Computation, (), –.

Wilson, S. W. (). Classifiers that approximate functions. Natural
Computing, (–), –.

Wilson, S. W. (). “Three architectures for continuous action”

learning classifier systems. International workshops, IWLCS

–, revised selected papers. In T. Kovacs, X. Llorà,

K. Takadama, P. L. Lanzi, W. Stolzmann, & S. W. Wilson (Eds.),

Lecture notes in artificial intelligence  Vol. (pp. –).
Berlin: Springer.

Clause

A clause is a logical rule in a7logic program. Formally,
a clause is a disjunction of (possibly negated) literals,

such as

grandfather(x, y) ∨ ¬father(x, z) ∨ ¬parent(z, y).

In the logic programming language7Prolog this clause
is written as

grandfather(X,Y) :- father(X,Z),
parent(Z,Y).

�e part to the le� of :- (“if ”) is the head of the clause,
and the right part is its body. Informally, the clause
asserts the truth of the head given the truth of the body.

A clause with exactly one literal in the head is called

a Horn clause or de�nite clause; logic programs mostly
consist of de�nite clauses. A clause without a body is

also called a fact; a clause without a head is also called
a denial, or a query in a proof by refutation. �e clause
without head or body is called the empty clause: it signi-
�es inconsistency or falsehood and is denoted ◻. Given
a set of clauses, the resolution inference rule can be used
to deduce logical consequences and answer queries (see

7First-Order Logic).
In machine learning, clauses can be used to express

classi�cation rules for structured individuals. For exam-

ple, the following de�nite clause classi�es a molecular

compound as carcinogenic if it contains a hydrogen

atom with charge above a certain threshold.

carcinogenic(M) :- atom(M,A1),
element(A1,h),
charge(A1,C1),
geq(C1,0.168).

Cluster Optimization C 

C

Cross References
7First-Order Logic
7Inductive Logic Programming
7Learning from Structured Data
7Logic Program
7Prolog

Clause Learning

In 7speedup learning, clause learning is a 7deductive
learning technique used for the purpose of7intelligent
backtracking in satis�ability solvers. �e approach ana-

lyzes failures at backtracking points and derives clauses

that must be satis�ed by the solution. �e clauses are

added to the set of clauses from the original satis�abil-

ity problem and serve to prune new search nodes that

violate them.

Click-Through Rate (CTR)

CTRmeasures the success of a ranking of search results,

or advertisement placing. Given the number of impres-
sions, the number of times a web result or ad has been
displayed, and the number of clicks, the number of users
who clicked on the result/advertisement, CTR is the

number of clicks divided by the number of impressions.

Clonal Selection

�e clonal selection theory (CST) is the theory used

to explain the basic response of the adaptive immune

system to an antigenic stimulus. It establishes the idea

that only those cells capable of recognizing an antigenic

stimulus will proliferate, thus being selected against

those that do not. Clonal selection operates on both

T-cells and B-cells. When antibodies on a B-cell bind

with an antigen, the B-cell becomes activated and begins

to proliferate. New B-cell clones are produced that are

an exact copy of the parent B-cell, but then they undergo

somatic hypermutation and produce antibodies that are

speci�c to the invading antigen.�e B-cells, in addition

to proliferating or di�erentiating into plasma cells, can
di�erentiate into long-lived Bmemory cells. Plasma cells
produce large amounts of antibody which will attach

themselves to the antigen and act as a type of tag for
T-cells to pick up on and remove from the system. �is

whole process is known as a�nity maturation.�is pro-
cess forms the basis of many arti�cial immune system

algorithms such as AIRS and aiNET.

Closest Point

7Nearest Neighbor

Cluster Editing

�e Cluster Editing problem is almost equivalent to

Correlation Clustering on complete instances. �e idea

is to obtain a graph that consists only of cliques.

Although Cluster Deletion requires us to delete the

smallest number of edges to obtain such a graph, in

Cluster Editing we are permitted to add as well as

remove edges. �e �nal variant is Cluster Completion

in which edges can only be added: each of these prob-

lems can be restricted to building a speci�ed number of

cliques.

Cluster Ensembles

Cluster ensembles are an unsupervised 7ensemble
learning method.�e principle is to create multiple dif-

ferent clusterings of a dataset, possibly using di�erent

algorithms, then aggregate the opinions of the di�erent

clusterings into an ensemble result. �e �nal ensemble

clustering should be in theory more reliable than the

individual clusterings.

Cluster Optimization

7Evolutionary Clustering

 C Clustering

Clustering

Clustering is a type of7unsupervised learning in which
the goal is to partition a set of 7examples into groups
called clusters. Intuitively, the examples within a clus-

ter are more similar to each other than to examples

from other clusters. In order to measure the similar-

ity between examples, clustering algorithms use various

distortion or 7distance measures. �ere are two major
types clustering approaches: generative and discrimi-

native. �e former assumes a parametric form of the

data and tries to �nd the model parameters that max-

imize the probability that the data was generated by

the chosen model.�e latter represents graph-theoretic

approaches that compute a similarity matrix de�ned

over the input data.

Cross References
7Categorical Data Clustering
7Cluster Editing
7Cluster Ensembles
7Clustering from Data Streams
7Constrained Clustering
7Consensus Clustering
7Correlation Clustering
7Cross-Language Document Clustering
7Density-Based Clustering
7Dirichlet Process
7Document Clustering
7Evolutionary Clustering
7Graph Clustering
7k-Means Clustering
7k-Mediods Clustering
7Model-Based Clustering
7Partitional Clustering
7Projective Clustering
7Sublinear Clustering

Clustering Aggregation

7Consensus Clustering

Clustering Ensembles

7Consensus Clustering

Clustering from Data Streams

João Gama

University of Porto, Porto, Portugal

Definition
7Clustering is the process of grouping objects into dif-
ferent groups, such that the common properties of data

in each subset is high, and between di�erent subsets is

low. �e data stream clustering problem is de�ned as

to maintain a consistent good clustering of the sequence
observed so far, using a small amount of memory and
time. �e issues are imposed by the continuous arriv-
ing data points, and the need to analyze them in real

time. �ese characteristics require incremental clus-

tering, maintaining cluster structures that evolve over

time. Moreover, the data stream may evolve over time

and new clusters might appear, others disappear re�ect-

ing the dynamics of the stream.

Main Techniques
Major clustering approaches in data stream cluster anal-

ysis include:

● Partitioning algorithms: construct a partition of a
set of objects into k clusters, that minimize some
objective function (e.g., the sum of squares distances

to the centroid representative). Examples include

k-means (Farnstrom, Lewis, & Elkan, ), and
k-medoids (Guha, Meyerson, Mishra, Motwani, &
O’Callaghan, )

● Microclustering algorithms: divide the clustering
process into two phases, where the �rst phase is

online and summarizes the data stream in local

models (microclusters) and the second phase gen-

erates a global cluster model from the micro-

clusters. Examples of these algorithms include

BIRCH (Zhang, Ramakrishnan, & Livny, ) and

CluStream (Aggarwal, Han, Wang, & Yu, )

Basic Concepts
A powerful idea in clustering from data streams is the

concept of cluster feature,CF. A cluster feature, ormicro-
cluster, is a compact representation of a set of points.
A CF structure is a triple (N,LS, SS), used to store the
su�cient statistics of a set of points:

Clustering from Data Streams C 

C

● N is the number of data points
● LS is a vector, of the same dimension of data points,
that store the linear sum of the N points

● SS is a vector, of the same dimension of data points,
that store the square sum of the N points

�e properties of cluster features are:

● Incrementality
If a point x is added to the cluster, the su�cient
statistics are updated as follows:

LSA ← LSA + x,

SSA ← SSA + x,

NA ← NA + .

● Additivity
If A and A are disjoint sets, merging them is equal
to the sum of their parts. �e additive property

allows us to merge subclusters incrementally.

LSC ← LSA + LSB,
SSC ← SSA + SSB,
NC ← NA +NB.

A CF entry has su�cient information to calculate

the norms

L =
n

∑
i=

∣xai − xbi ∣,

L =

¿
ÁÁÀ

n

∑
i=

(xai − xbi)

and basic measures to characterize a cluster.

● Centroid, de�ned as the gravity center of the cluster:

X⃗ = LS
N
.

● Radius, de�ned as the average distance from mem-
ber points to the centroid:

R =

√
∑N (x⃗i − X⃗)

N
.

Partitioning Clustering
k-means is the most widely used clustering algorithm.
It constructs a partition of a set of objects into k clus-
ters that minimize some objective function, usually a

squared error function, which imply round-shape clus-

ters. �e input parameter k is �xed and must be given
in advance that limits its real applicability to streaming

and evolving data.

Farnstrom et al. () proposed a single pass
k-means algorithm. �e main idea is to use a bu�er
where points of the dataset are kept compressed. �e

data stream is processed in blocks. All available space

on the bu�er is �lled with points from the stream. Using

these points, �nd k centers such that the sum of dis-
tances from data points to their closest center is mini-

mized. Only the k centroids (representing the clustering
results) are retained, with the corresponding k cluster
features. In the following iterations, the bu�er is initial-

ized with the k-centroids, found in previous iteration,
weighted by the k cluster features, and incoming data
points from the stream.�eVery Fast k-means (VFKM)
algorithm (Domingos & Hulten, ) uses the Hoe�d-

ing bound to determine the number of examples needed

in each step of a k-means algorithm. VFKM runs as a
sequence of k-means runs, with increasing number of
examples until the Hoe�ding bound is satis�ed.

Guha et al. () present an analytical study on

k-median clustering data streams. �e proposed algo-
rithmmakes a single pass over the data stream and uses

small space. It requires O(nk) time and O(nє) space
where k is the number of centers, n is the number of
points, and є < . �ey have proved that any k-median
algorithm that achieves a constant factor approximation

cannot achieve a better run time than O(nk).

Micro Clustering
�e idea of dividing the clustering process into two lay-

ers, where the �rst layer generates local models (micro-

clusters) and the second layer generates global models

from the local ones, is a powerful idea that has been used

elsewhere.

�eBIRCH system (Zhang et al., ) builds a hier-

archical structure of data, the CF-tree, where each node

contains a set of cluster features. �ese CF’s contain the

su�cient statistics describing a set of points in the data

set, and all information of the cluster features below in

 C Clustering from Data Streams

the tree. �e system requires two user de�ned param-

eters: B the branch factor or the maximum number
of entries in each non-leaf node; and T the maximum
diameter (or radius) of any CF in a leaf node. �e max-

imum diameter T de�nes the examples that can be
absorbed by a CF. Increasing T, more examples can be
absorbed by a micro-cluster and smaller CF-Trees are

generated (Fig. ).

When an example is available, it traverses down the

current tree from the root it �nds the appropriate leaf.

At each non-leaf node, the example follow the closest-
CFpath,with respect to normsL orL. If the closest-CF
in the leaf cannot absorb the example, make a new

CF entry. If there is no room for new leaf, split the par-

ent node. A leaf node might be expanded due to the

constraints imposed by B and T. �e process consists
of taking the two farthest CFs and creates two new leaf

nodes. When traversing backup the CFs are updated.

Monitoring the Evolution of the Cluster Structure

�e CluStream Algorithm (Aggarwal et al., ) is
an extension of the BIRCH system designed for data

streams. Here, the CFs include temporal information:

the time-stamp of an example is treated as a feature. CFs

are initialized o�ine, using a standard k-means, with a
large value for k. For each incoming data point, the dis-
tance to the centroids of existing CFs are computed.�e

data point is absorbed by an existing CF if the distance

to the centroid falls within the maximum boundary of
the CF. �e maximum boundary is de�ned as a factor
t of the radius deviation of the CF; otherwise, the data
point starts a new micro-cluster.

CluStream can generate approximate clusters for

any user de�ned time granularity. �is is achieved by

storing the CFT at regular time intervals, referred to as

snapshots. Suppose the user wants to �nd clusters in

the stream based on a history of length h, the o�-line

Root node
CF2

CF2
CF2 CF2

CF3

CF2

CFb

CFb

CFb

CF1

CF1
CF1 CF1

CF1

Noon-root node

Leaf nodes

Clustering from Data Streams. Figure . The clustering feature tree in BIRCH. B is the maximum number of CFs in a level

of the tree

Natural tilted time window

1 Year
12 Months

1 Month
 31 days

1 Day
24 Hours

1Hour
4 Quar

t

Clustering from Data Streams. Figure . The figure presents anatural tilted timewindow. The most recent data is stored

with high-detail, older data is stored in a compressed way. The degree of detail decreases with time

Coevolution C 

C

component can analyze the snapshots stored at the

snapshots t, the current time, and (t − h) by using the
addictive property of CFT. An important problem is

when to store the snapshots of the current set of micro-

clusters. For example, the natural time frame (Fig. )

stores snapshots each quarter, four quarters are aggre-

gated in hours,  h are aggregated in days, etc. �e

aggregation level is domain-dependent and explores the

addictive property of CFT.

Tracking the Evolution of the Cluster Structure

Promising research lines are tracking change in clus-

ters. Spiliopoulou, Ntoutsi, �eodoridis, and Schult

() present system MONIC, for detecting and track-
ing change in clusters. MONIC assumes that a cluster is

an object in a geometric space. It encompasses changes

that involve more than one cluster, allowing for insights

on cluster change in the whole clustering. �e tran-

sition tracking mechanism is based on the degree of

overlapping between the two clusters. �e concept of

overlap between two clusters, X and Y, is de�ned as the
normed number of common records weighted with the

age of the records. Assume that cluster X was obtained

at time t and cluster Y at time t. �e degree of over-
lapping between the two clusters is given by: overlap
(X,Y) = ∑a∈X∩Y age(a, t)/∑x∈X age(x, t). �e degree
of overlapping allows inferring properties of the under-

lying data stream. Cluster transition at a given time

point is a change in a cluster discovered at an ear-

lier timepoint.MONIC considers transitions as Internal

and external transitions, that re�ect the dynamics of the

stream. Examples of cluster transitions include: the clus-

ter survives, the cluster is absorbed; a cluster disappears;

a new cluster emerges (Fig. ).

Recommended Reading
Aggarwal, C., Han, J., Wang, J., & Yu, P. (). A framework for

clustering evolving data streams. In Proceedings of the th
international conference on very large data bases (pp. –). San
Mateo, MA: Morgan Kaufmann.

Domingos, P., & Hulten, G. (). A general method for scaling up

machine learning algorithms and its application to clustering.

In Proceedings of international conference on machine learning
(pp. –). San Mateo, MA: Morgan Kaufmann.

Farnstrom, F., Lewis, J., & Elkan, C. (). Scalability for clustering

algorithms revisited. SIGKDD Explorations, (), –.
Guha, S., Meyerson, A., Mishra, N., Motwani, R., & O’Callaghan, L.

(). Clustering data streams: Theory and practice. IEEE
Transactions on Knowledge and Data Engineering, (),
–.

Spiliopoulou, M., Ntoutsi, I., Theodoridis, Y., & Schult, R. ().

Monic: Modeling and monitoring cluster transitions. In Pro-
ceedings of ACM SIGKDD international conference on knowledge
discovery and data mining (pp. –). New York: ACM Press.

Zhang, T., Ramakrishnan, R., & Livny, M. (). Birch: An efficient

data clustering method for very large databases. In Proceedings
of ACM SIGMOD international conference on management of
data (pp. –). New York: ACM Press.

Clustering of Nonnumerical Data

7Categorical Data Clustering

Clustering with Advice

7Correlation Clustering

Clustering with Constraints

7Correlation Clustering

Clustering with Qualitative
Information

7Correlation Clustering

Clustering with Side Information

7Correlation Clustering

CN

7Rule Learning

Co-Training

7Semi-Supervised Learning

Coevolution

7Coevolutionary Learning

 C Coevolutionary Computation

Coevolutionary Computation

7Coevolutionary Learning

Coevolutionary Learning

R. Paul Wiegand

University of Central Florida, Orlando, FL, USA

Synonyms
Coevolution; Coevolutionary computation

Definition
Coevolutionary learning is a form of evolutionary

learning (see 7Evolutionary Algorithms) in which the
�tness evaluation is based on interactions between

individuals. Since the evaluation of an individual is

dependent on interactions with other evolving entities,

changes in the set of entities used for evaluation can

a�ect an individual’s ranking in a population. In this

sense, coevolutionary �tness is subjective, while �tness
in traditional evolutionary learning systems typically

uses an objective performance measure.

Motivation and Background
Ideally, coevolutionary learning systems focus on rele-

vant areas of a search space bymaking adaptive changes

between interacting, concurrently evolving parts. �is

can be particularly helpful when problem spaces are

very large – in�nite search spaces in particular. Addi-

tionally, coevolution is useful when applied to problems

when no intrinsic objective measure exists.�e interac-

tive nature of evaluation makes them natural methods

to consider for problems such as the search for game-

playing strategies (Fogel, ). Finally, some coevolu-

tionary systems appear natural for search spaces which

contain certain kinds of complex structures (Potter,

; Stanley, ), since search on smaller compo-

nents in a larger structure can be emphasized. In fact,

there is reason to believe that coevolutionary systems

may be well suited for uncovering complex structures

within a problem (Bucci & Pollack, ).

Still, the dynamics of coevolutionary learning can

be quite complex, and a number of pathologies o�en

plague naïve users. Indeed, because of the subjective

nature of coevolution, it can be easy to apply a par-

ticular coevolutionary learning system without a clear

understanding of what kind of solution one expects a

coevolutionary algorithm to produce. Recent theoreti-

cal analysis suggests that a clear concept of solution and

a careful implementation of an evaluation process con-

sistent with this concept can produce a coevolutionary

system capable of addressing many problems (de Jong

& Pollack, ; Ficici, ; Panait, ; Wiegand,

). Accordingly, a great deal of research in this area

focuses on evaluation and progress measurement.

Structure of Learning System
Coevolutionary learning systems work in much the

same way that an evolutionary learning system works:

individuals encode some aspect of potential solutions

to a problem, those representatives are altered during

search using genetic-like operators such as mutation

and crossover, and the search is directed by select-

ing better individuals as determined by some kind of

�tness assessment. �ese heuristic methods gradually

re�ne solutions by repeatedly cycling through such

steps, using the ideas of heredity and survival of the

�ttest to produce new generations of individuals, with

increased quality of solution. Just as in traditional evo-

lutionary computation, there aremany choices available

to the engineer in designing such systems.�e reader is

referred to the chapters relating to evolutionary learning

for more details.

However, there are some fundamental di�erences

between traditional evolution and coevolution. In

coevolution, measuring �tness requires evaluating the

interaction between multiple individuals. Interacting

individuals may reside in the same population or in

di�erent populations; the interactive nature of coevo-

lution evokes notions of cooperation and competition

in entirely new ways; the choices regarding how to

best conduct evaluation of these interactions for the

purposes of selection are particularly important; and

there are unique coevolutionary issues surrounding

representation. In addition, because of its interactive

nature, the dynamics of coevolution can lead to some

well-known pathological behaviors, and particularly

careful attention to implementation choices to avoid

such conditions is generally necessary.

Multiple Versus Single Population Approaches

Coevolution can typically be broadly classi�ed as to

whether interacting individuals reside in di�erent pop-

ulations or in the same population.

Coevolutionary Learning C 

C

In the case of multipopulation coevolution, mea-

suring �tness requires evaluating how individuals in

one population interact with individuals in another.

For example, individuals in each population may rep-

resent potential strategies for particular players of a

game, they may represent roles in a larger ecosystem

(e.g., predators and prey), or they may represent com-

ponents that are �tted into a composite assembly with

other component then applied to a problem. �ough

individuals in di�erent populations interact for the pur-

poses of evaluation, they are typically otherwise inde-

pendent of one another in the coevolutionary search

process.

In single population coevolution, an individual in

the population is evaluated based on his or her inter-

action with other individuals in the same population.

Such individuals may again represent potential strate-

gies in a game, but evaluation may require them to

trade o� roles as to which player they represent in that

game. Here, individuals interact not only for evalua-

tion, but also implicitly compete with one another as

resources used in the coevolutionary search process

itself.

�ere is some controversy in the �eld as to whether

this latter type quali�es as “coevolution.” Evolution-

ary biologists o�en de�ne coevolution exclusively in

terms of multiple populations; however, in biologi-

cal systems, �tness is always subjective, while the vast

majority of computational approaches to evolutionary

learning involve objective �tness assessment – and this

subjective/objective �tness distinction creates a useful

classi�cation.

To be sure, there are fundamental di�erences

between how single population and multipopulation

learning systems behave (Ficici, ). Still, single

population systems that employ subjective �tness

assessment behave a lot more like multipopulation

coevolutionary systems than like objective �tness based

evolution. Moreover, historically, the �eld has used the

term coevolution whenever �tness assessment is based

on interactions between individuals, and a large amount

of that research has involved systems with only one

population.

Competition and Cooperation

�e terms cooperative and competitive have been used to
describe aspects of coevolution learning in at least three

ways.

First and less commonly, these adjectives can

describe qualitatively observed behaviors of poten-

tial solutions in coevolutionary systems, the results of

some evolutionary process (e.g., “tit-for-tat” strategies,

Axelrod, ).

Second, problems are sometimes considered to be

inherently competitive or cooperative. Indeed, game

theory provides some guidance for making such dis-

tinctions. However, since in many kinds of problems

little may be known about the actual structure of the

payo� functions involved, we may not actually be able

to classify the problem as de�nitively competitive or

cooperative.

�e �nal and by far most common use of the term

is to distinguish algorithms themselves. Cooperative

algorithms are those in which interacting individuals

succeed or fail together, while competitive algorithms

are those in which individuals succeed at the expense of

other individuals.

Because of the ambiguity of the terms, some

researchers advocate abandoning them altogether,

instead focusing distinguishing terminology on the

form a potential solution takes. For example, using the

term 7compositional coevolution to describe an algo-
rithm designed to return a solution composed of mul-

tiple individuals (e.g., a multiagent team) and using the

term7test-based coevolution to describe an algorithm
designed to return an individual who performs well

against an adaptive set of tests (e.g., sorting network).

�is latter pair of terms is a slightly di�erent, though

probably more useful distinction than the cooperative

and competitive terms.

Still, it is instructive to survey the algorithms based

on how they have been historically classi�ed.

Examples of competitive coevolutionary learning

include simultaneously learning sorting networks and

challenging data sets in a predator–prey type relation-

ship (Hillis, ). Here, individuals in one population

representing potential sorting networks are awarded a

�tness score based on how well they sort opponent

data sets from the other population. Individuals in the

second population represent potential data sets whose

�tness is based on how well they distinguish opponent

sorting networks.

Competitive coevolution has also been applied to

learning game-playing strategies (Fogel, ; Rosin &

Belew, ). Additionally, competition has played a

vital part in the attempts to coevolve complex agent

 C Coevolutionary Learning

behaviors (Sims, ). Finally, competitive approaches

have been applied to a variety of more traditional

machine learning problems, for example, learning clas-

si�ers in one population and challenging subsets of

exemplars in the other (Paredis, ).

Potter developed a relatively general framework for

cooperative coevolutionary learning, applying it �rst to

static function optimization and later to neural network

learning (Potter, ). Here, each population contains

individuals representing a portion of the network, and

evolution of these components occurs almost indepen-

dently, in tandem with one another, interacting only

to be assembled into a complete network in order to

obtain �tness. �e decomposition of the network can

be static and a priori, or dynamic in the sense that com-

ponents may be added or removed during the learning

process.

Moriarty et al. take a di�erent, somewhat more

adaptive approach to cooperative coevolution of neu-

ral networks (Moriarty & Miikkulainen, ). In this

case, one population represents potential network plans,
while a second is used to acquire node information.

Plans are evaluated based on how well they solve a

problem with their collaborating nodes, and the nodes

receive a share of this �tness. �us, a node is rewarded

for participating more with successful plans, and thus

receives �tness only indirectly.

Evaluation

Choices surrounding how interacting individuals in

coevolutionary systems are evaluated for the purposes

of selection are perhaps themost important choices fac-

ing an engineer employing these methods. Designing

the evaluation method involves a variety of practical

choices, as well as a broader eye to the ultimate purpose

of the algorithm itself.

Practical concerns in evaluation include determin-

ing the number of individuals with whom to interact,

how those individuals will be chosen for the interaction,

and how the selection will operate on the results of mul-

tiple interactions (Wiegand, ). For example, one

might determine the �tness of an individual by pairing

him or her with all other individuals in the other pop-

ulations (or the same population for single population

approaches) and taking the average or maximum value

of such evaluations as the �tness assessment. Alterna-

tively, one may simply use the single best individual as

determined by a previous generation of the algorithm,

or a combination of those approaches. Randompairings

between individuals is also common. �is idea can be

extended to use tournament evaluation where success-

ful individuals from pairwise interactions are promoted

and further paired, assigning �tness based on how far an

individual progresses in the tournament. Many of these

methods have been evaluated empirically on a variety of

types of problems (Angeline & Pollack, ; Bull, ;

Wiegand, ).

However, the designing of the evaluation method

also speaks to the broader issue of how to best

implement the desired 7solution concept, (a crite-
rion specifying which locations in the search space

are solutions and which are not) (Ficici, ). �e

key to successful application of coevolutionary learn-

ing is to �rst elicit a clear and precise solution con-

cept and then design an algorithm (an evaluation

method in particular) that implements such a concept

explicitly.

A successful coevolutionary learner capable of

achieving reliable progress toward a particular solution

concept o�enmakes use of an archive of individuals and

an update rule for that archive that insists the distance

to a particular solution concept decrease with every

change to the archive. For example, if one is interested

in �nding game strategies that satisfy Nash equilibrium

constraints, one might consider comparing new indi-

viduals to an archive of potential individual strategies

found so far that together represent a potential Nash

mixed strategy (Ficici, ). Alternatively, if one is

interested inmaximizing the sum of an individual’s out-

comes over all tests, onemay likewise employ an archive

of discovered tests that candidate solutions are able to

solve (de Jong, ).

It is useful to note that many coevolutionary

learning problems are multiobjective in nature. �at

is, 7underlying objectives may exist in such prob-
lems, each creating a di�erent ranking for individuals

depending on the set of tests being considered during

evaluation (Bucci & Pollack, ). �e set of all possi-

ble underlying objectives (were it known) is su�cient to

determine the outcomes on all possible tests. A careful

understanding of this can yield approaches that create

Coevolutionary Learning C 

C

ideal andminimal evaluation sets for such problems (de

Jong & Pollack, ).

By acknowledging the link between multiobjective

optimization and coevolutionary learning, a variety of

evaluation and selection methods based on notions of

multiobjective optimization have been employed. For

example, there are selection methods that use Pareto

dominance between candidate solutions and their tests

as their basis of comparison (Ficici, ). Addition-

ally, suchmethods can be combined with archive-based

approaches to ensuremonotonicity of progress toward a

Pareto dominance solution concept (de Jong & Pollack,

).

Representation

Perhaps the core representational question in coevolu-

tion is the role that an individual plays. In test-based

coevolution, an individual typically represents a poten-

tial solution to the problem or a test for a potential

solution, whereas in compositional coevolution indi-

viduals typically represent a candidate component for

a composite or ensemble solution.

Even in test-based approaches, the true solution to

the problem may be expressed as a population of indi-

viduals, rather than a single individual. �e population

may represent a mixed strategy while individuals rep-

resent potential pure strategies for a game. Engineers

using such approaches should be clear of the form of the

�nal solution produced by the algorithm, and that this

form is consistent with the prescribed solution concept.

In compositional approaches, the key issues tend

to surround about how the problem is decomposed.

In some algorithms, this decomposition is performed

a priori, having di�erent populations represent explicit

components of the problem (Potter, ). In other

approaches, the decomposition is intended to be some-

what more dynamic (Moriarty & Miikkulainen, ;

Potter, ). Still more recent approaches seek to har-

ness the potential of compositional coevolutionary sys-

tems to search open-ended representational spaces by

gradually complexifying the representational space dur-
ing the search (Stanley, ).

In addition, a variety of coevolutionary systems

have successfully dealt with some inherent patholo-

gies by representing populations in spatial topologies,

and restricting selection and interaction using geo-

metric constraints de�ned by those topologies (Pagie,

). Typically, these systems involve overlayingmulti-

ple grids of individuals, applying selection within some

neighborhood in a given grid, and evaluating interac-

tions between individuals in di�erent grids using a simi-

lar type of cross-population neighborhood.�e bene�ts

of these systems are in part due to their ability to natu-

rally regulate loss of diversity and spread of interaction

information by explicit control over the size and shape

of these neighborhoods.

Pathologies and Remedies

Perhaps the most commonly cited pathology is the so-

called loss of gradient problem, in which one population
comes to severely dominate the others, thus creating a

situation in which individuals cannot be distinguished

from one another. �e populations become disengaged

and evolutionary progress may stall or dri� (Watson &
Pollack, ). Disengagement most commonly occurs

when distinguishing individuals are lost in the evolu-

tionary process (forgetting), and the solution to this
problem typically involves somehow retaining poten-

tially informative, though possibly inferior quality indi-

viduals (e.g., archives).

Intransitivities in the reward system can cause some
coevolutionary systems to exhibit cycling dynamics
(Watson & Pollack, ), where reciprocal changes

force the system to orbit some part of a potential search

space. �e remedy to this problem o�en involves creat-

ing coevolutionary systems that change in response to

traits in several other populations. Mechanisms intro-

duced to produce such e�ects include competitive �tness
sharing (Rosin & Belew, ).
Another challenging problem occurs when indi-

viduals in a coevolutionary systems overspecialize on
one underlying objective at the expense of other nec-

essary objectives (Watson & Pollack, ). In fact,

overspecialization can be seen as a form of disengage-

ment on some subset of underlying objectives, and

likewise the repair to this problem o�en involves retain-

ing individuals capable of making distinctions in as

many underlying objectives as possible (Bucci & Pol-

lack, ).

 C Coevolutionary Learning

Finally, certain kinds of compositional coevolution-

ary learning algorithms can be prone to relative over-
generalization, a pathology in which components that
perform reasonably well in a variety of composite solu-

tions are favored over those that are part of an optimal

solution (Wiegand, ). In this case, it is typically

possible to bias the evaluation process toward optimal

values by evaluating an individual in a variety of com-

posite assemblies and assigning the best objective value

found as the �tness (Panait, ).

In addition to pathological behaviors in coevolu-

tion, the subjective nature of these learning systems

creates di�culty in measuring progress. Since �tness is

subjective, it is impossible to determine whether these

relative measures indicate progress or stagnation when

the measurement values do not change much. With-

out engaging some kind of external or objective mea-

sure, it is di�cult to understand what the system is

really doing. Obviously, if an objective measure exists

then it can be employed directly to measure progress

(Watson & Pollack, ).

A variety of measurement methodologies have been

employed when objective measurement is not possible.

One method is to compare current individuals against

all ancestral opponents (Cli� & Miller, ). Another

predator/prey based method holdsmaster tournaments
between all the best predators and all the best prey

found during the search (Nol� & Floreano, ).

A similar approach suggests maintaining the best indi-

viduals from each generation in each population in a

hall of fame for comparison purposes (Rosin & Belew,
). Still other approaches seek to record the points

during the coevolutionary search in which a new dom-

inant individual was found (Stanley, ). A more

recent approach advises looking at the population dif-
ferential, examining all the information from ances-
tral generations rather than simply selecting a biased

subset (Bader-Natal & Pollack, ). Conversely, an

alternative idea is to consider how well the dynamics
of the best individuals in di�erent populations re�ect

the fundamental best response curves de�ned by the
problem (Popovici, ).

With a clear solution concept, an appropriate evalu-

ationmechanism implementing that concept, and prac-

tical progress measures in place, coevolution can be an

e�ective and versatile machine learning tool.

Cross References
7Evolutionary Algorithms

Recommended Reading
Angeline, P., & Pollack, J. (). Competitive environments

evolve better solutions for complex tasks. In S. Forest

(Ed.), Proceedings of the fifth international conference on
genetic algorithms (pp. –). San Mateo, CA: Morgan
Kaufmann.

Axelrod, R. (). The evolution of cooperation. New York: Basic
Books.

Bader-Natal, A., & Pollack, J. (). Towards metrics and visual-

izations sensitive to Coevolutionary failures. In AAAI technical
report FS-- coevolutionary and coadaptive systems. AAAI
Fall Symposium, Washington, DC.

Bucci, A., & Pollack, J. B. (). A mathematical framework for

the study of coevolution. In R. Poli, et al. (Eds.), Foundations
of genetic algorithms VII (pp. –). San Francisco: Morgan
Kaufmann.

Bucci, A., & Pollack, J. B. (). Focusing versus intransitivity geo-

metrical aspects of coevolution. In E. Cantú-Paz, et al. (Eds.),

Proceedings of the  genetic and evolutionary computation
conference (pp. –). Berlin: Springer.

Bull, L. (). Evolutionary computing in multi-agent environ-

ments: Partners. In T. Bäck (Ed.), Proceedings of the seventh
international conference on genetic algorithms (pp. –).
San Mateo, CA: Morgan Kaufmann.

Cliff, D., & Miller, G. F. (). Tracking the red queen: Measure-

ments of adaptive progress in co-evolutionary simulations. In

Proceedings of the third European conference on artificial life
(pp. –). Berlin: Springer.

de Jong, E. (). The maxsolve algorithm for coevolution. In

H. Beyer, et al. (Eds.), Proceedings of the  genetic and evo-
lutionary computation conference (pp. –). New York, NY:
ACM Press.

de Jong, E., & Pollack, J. (). Ideal evaluation from coevolution.

Evolutionary Computation, , –.
Ficici, S. G. (). Solution concepts in coevolutionary algorithms.

PhD thesis, Brandeis University, Boston, MA.

Fogel, D. (). Blondie: Playing at the edge of artificial intelli-
gence. San Francisco: Morgan Kaufmann.

Hillis, D. (). Co-evolving parasites improve simulated evolution

as an optimization procedure. Artificial life II, SFI studies in the
sciences of complexity (Vol. , pp. –).

Moriarty, D., & Miikkulainen, R. (). Forming neural networks

through efficient and adaptive coevolution. Evolutionary Com-
putation, , –.

Nolfi, S., & Floreano, D. (). Co-evolving predator and prey

robots: Do “arm races” arise in artificial evolution? Artificial
Life, , –.

Pagie, L. (). Information integration in evolutionary processes.

PhD thesis, Universiteit Utrecht, the Netherlands.

Panait, L. (). The analysis and design of concurrent learning algo-
rithms for cooperative multiagent systems. PhD thesis, George
Mason University, Fairfax, VA.

Paredis, J. (). Steps towards co-evolutionary classification net-

works. In R. A. Brooks & P. Maes (Eds.), Artificial life IV,

Collective Classification C 

C

proceedings of the fourth international workshop on the synthesis
and simulation of living systems (pp. –). Cambridge, MA:
MIT Press.

Popovici, E. (). An analysis of multi-population co-evolution.
PhD thesis, George Mason University, Fairfax, VA.

Potter, M. (). The design and analysis of a computational model of
cooperative co-evolution. PhD thesis, George Mason University,
Fairfax, VA.

Rosin, C., & Belew, R. (). New methods for competitive coevo-

lution. Evolutionary Computation, , –.
Sims, K. (). Evolving D morphology and behavior by com-

petition. In R. A. Brooks & P. Maes (Eds.), Artificial life IV,
proceedings of the fourth international workshop on the synthe-
sis and simulation of living systems (pp. –). Cambridge, MA:
MIT Press.

Stanley, K. (). Efficient evolution of neural networks through
complexification. PhD thesis, The University of Texas at Austin,
Austin, TX.

Watson, R., & Pollack, J. (). Coevolutionary dynamics in a min-

imal substrate. In L. Spector, et al. (Eds.), Proceedings from the
 genetic and evolutionary computation conference (pp. –
). San Francisco: Morgan Kaufmann.

Wiegand, R. P. (). An analysis of cooperative coevolutionary
algorithms. PhD thesis, George Mason University, Fairfax, VA.

Collaborative Filtering

Collaborative Filtering (CF) refers to a class of tech-
niques used in that recommend items to users that

other users with similar tastes have liked in the past. CF

methods are commonly sub-divided into neighborhood-
based and model-based approaches. In neighborhood-
based approaches, a subset of users are chosen based on

their similarity to the active user, and aweighted combi-

nation of their ratings is used to produce predictions for

this user. In contrast, model-based approaches assume

an underlying structure to users’ rating behavior, and

induce predictive models based on the past ratings of

all users.

Collection

7Class

Collective Classification

Prithviraj Sen, Galileo Namata, Mustafa Bilgic,

Lise Getoor

University of Maryland, MD, USA

Synonyms
Iterative classi�cation; Link-based classi�cation

Definition
Many real-world 7classi�cation problems can be best
described as a set of objects interconnected via links

to form a network structure. �e links in the network

denote relationships among the instances such that the

class labels of the instances are o�en correlated. �us,

knowledge of the correct label for one instance improves

our knowledge about the correct assignments to the

other instances it connects to. �e goal of collective

classi�cation is to jointly determine the correct label
assignments of all the objects in the network.

Motivation and Background
Traditionally, a major focus of machine learning is to

solve classi�cation problems: given a corpus of docu-

ments, classify each according to its topic label; given

a collection of e-mails, determine which are spam;

given a sentence, determine the part-of-speech tag for

each word; given a hand-written document, determine

the characters, etc. However, much of the work in

machine learning makes an independent and identically
distributed (IID) assumption, and focuses on predict-
ing the class label of each instance in isolation. In many

cases, however, the class labels whose values need to be

determined can bene�t if we know the correct assign-

ments to related class labels. For example, it is easier to

predict the topic of a webpage if we know the topics of

the webpages that link to it, the chance of a particular

word being a verb increases if we know that the previ-

ous word in the sentence is a noun, knowing the rest

of the characters in a word can make it easier to iden-

tify an unknown character, etc. In the last decade, many

researchers have proposed techniques that attempt to

classify samples in a joint or collective manner instead

of treating each sample in isolation, and reported signif-

icant gains in classi�cation accuracy.

 C Collective Classification

Theory/Solution
Collective classi�cation is a combinatorial optimiza-

tion problem, in which we are given a set of nodes,

V = {v, . . . , vn}, and a neighborhood function N ,
where Ni ⊆ V/{vi}, which describes the underlying
network structure. Each node in V is a random vari-
able that can take a value from an appropriate domain,

L = {l, . . . , lq}. V is further divided into two sets of
nodes: X , the nodes for which we know the correct
values (observed variables) and, Y , the nodes whose
values need to be determined. Our task is to label the

nodes yi ∈ Y with one of a small number of prede�ned
labels in L.
Even though it is only in the last decade that collec-

tive classi�cation has entered the collective conscience

of machine learning researchers, the general idea can be

traced further back (Besag, ). As a result, a num-

ber of approaches have been proposed. �e various

approaches to collective classi�cation di�er in the kinds

of information they aim to exploit to arrive at the correct

classi�cation, and their mathematical underpinnings.

We discuss each in turn.

Relational Classification
Traditional classi�cation concentrates on using the

observed attributes of the instance to be classi�ed.

Relational classi�cation (Slattery & Craven, )

attempts to go a step further by classifying the instance

using not only the instance’s own attributes but also

the instance’s neighbors’ attributes. For example, in a

hypertext classi�cation domain where we want to clas-

sify webpages, not only would we use the webpage’s own

words but we would also look at the webpages link-

ing to this webpage using hyperlinks and their words to

arrive at the correct class label. Results obtained using

relational classi�cation have been mixed. For exam-

ple, even though there have been reports of classi�ca-

tion accuracy gains using such techniques, in certain

cases, these techniques can harm classi�cation accuracy

(Chakrabarti, Dom, & Indyk, ).

Iterative Collective Classification with
Neighborhood Labels
A second approach to collective classi�cation is to use

the class labels assigned to the neighbor instead of using

the neighbor’s observed attributes. For example, going

back to our hypertext classi�cation example, instead of

using the linking webpage’s words we would, in this

case, use its assigned labels to classify the current web-

page. Chakrabarti et al. () illustrated the use of this

approach and reported impressive classi�cation accu-

racy gains. Neville and Jensen () further developed

the approach, and referred to the approach as iterative

classi�cation, and studied the conditions under which

it improved classi�cation performance (Jensen, Neville,

& Gallagher, ). Techniques for feature construc-

tion from the neighboring labels were developed and

studied (Lu & Getoor, ), along with methods that

make use of only the label information (Macskassy &
Provost, ), as well as a variety of strategies for when

to commit the class labels (McDowell, Gupta, & Aha,

).

Algorithm  depicts pseudo-code for a simple ver-

sion of the Iterative Classi�cation Algorithm (ICA).�e

basic premise behind ICA is extremely simple. Con-

sider a node Yi ∈ Y whose value we need to deter-
mine and suppose we know the values of all the other

nodes in its neighborhoodNi (note thatNi can contain
both observed and unobserved variables). �en, ICA

assumes that we are given a local classi�er f that takes
the values ofNi as arguments and returns a label value
for Yi from the class label set L. For local classi�ers f
that do not return a class label but a goodness/likelihood

value given a set of attribute values and a label, we

Algorithm  Iterative classi�cation algorithm
IterativeClassi�cationAlgorithm (ICA)

for each node Yi ∈ Y do {bootstrapping}
{compute label using only observed nodes inNi}
compute a⃗i using only X ∩Ni
yi ← f (a⃗i)

end for
repeat {iterative classi�cation}
generate orderingO over nodes in Y
for each node Yi ∈ O do
{compute new estimate of yi}
compute a⃗i using current assignments toNi
yi ← f (a⃗i)

end for
until all class labels have stabilized or a threshold
number of iterations have elapsed

Collective Classification C 

C

simply choose the label that corresponds to the max-

imum goodness/likelihood value; in other words, we

replace f with argmaxl∈L f . �is makes the local classi-
�er f extremely �exible andwe canuse anything ranging
from a decision tree to a 7support vector machine
(SVM).Unfortunately, it is rare in practice that we know

all values inNi, which is why we need to repeat the pro-
cess iteratively, in each iteration, labeling each Yi using
the current best estimates of Ni and the local classi�er
f , and continuing to do so until the assignments to the
labels stabilize.

Most local classi�ers are de�ned as functions whose

argument consists of a �xed-length vector of attribute

values. A common approach to circumvent such a

situation is to use an aggregation operator such as

count, mode, or prop, which measures the proportion

of neighbors with a given label. In Algorithm , we

use a⃗i to denote the vector encoding the values in Ni
obtained a�er aggregation. Note that in the �rst ICA

iteration, all labels yi are unde�ned and to initialize
themwe simply apply the local classi�er to the observed

attributes in the neighborhood of Yi, this is referred to
as “bootstrapping” in Algorithm .

Researchers in collective classi�cation (Macskassy&

Provost, ; McDowell et al., ; Neville & Jensen,

) have extended the simple algorithm described

above, and developed a version of Gibbs sampling that

is easy to implement and faster than traditional Gibbs

sampling approaches. �e basic idea behind this algo-

rithm is to assume, just like in the case of ICA, that we

have access to a local classi�er f that can sample for
the best label estimate for Yi given all the values for
the nodes in Ni. We keep doing this repeatedly for a
�xed number of iterations (a period known as “burn-

in”). A�er that, not only dowe sample for labels for each

Yi ∈ Y but we also maintain count statistics as to how
many times we sampled label l for node Yi. A�er col-
lecting a prede�ned number of such samples we output

the best label assignment for node Yi by choosing the
label that was assigned the maximum number of times

to Yi while collecting samples.
One of the bene�ts of both variants of ICA is

fairly simple to make use of any local classi�er. Some

of the classi�ers used included the following: naïve

Bayes (Chakrabarti et al., ; Neville & Jensen, ),

7logistic regression (Lu & Getoor, ), 7decision
trees, (Jensen et al., ) and weighted-vote relational

neighbor (Macskassy & Provost, ). �ere is some

evidence to indicate that discriminately trained local

classi�ers such as logistic regression tend to produce

higher accuracies than others; this is consistent with

results in other areas.

Other aspects of ICA that have been the subject of

investigation include the ordering strategy to determine

in which order to visit the nodes to relabel in each ICA

iteration. �ere is some evidence to suggest that ICA is

fairly robust to a number of simple ordering strategies

such as random ordering, visiting nodes in ascending

order of diversity of its neighborhood class labels, and

labeling nodes in descending order of label con�dences

(Getoor, ). However, there is also some evidence

that certain modi�cations to the basic ICA procedure

tend to produce improved classi�cation accuracies. For

example, both (Neville & Jensen, ) and (McDowell

et al., ) propose a strategy where only a subset

of the unobserved variables are utilized as inputs for

feature construction. More speci�cally, in each itera-

tion, they choose the top-k most con�dent predicted

labels and use only those unobserved variables in the

following iteration’s predictions, thus ignoring the less

con�dent predicted labels. In each subsequent itera-

tion they increase the value of k so that in the last

iteration all nodes are used for prediction. McDowell

et al. report that such a “cautious” approach leads to

improved accuracies.

Collective Classification with Graphical
Models
In addition to the approaches described above, which

essentially focus on local representations and propaga-

tion methods, another approach to collective classi�ca-

tion is by �rst representing the problem with a high-

level global 7graphical model and then using learning
and inference techniques for the graphical modeling

approach to arrive at the correct classi�cations. �ese

proposals include the use of both directed 7graphical
models (Getoor, Segal, Taskar, &Koller, ) and undi-

rected graphicalmodels (La�erty,McCallum,&Pereira,

; Taskar, Abbeel, & Koller, ). See 7statistical
relational learning and Getoor and Taskar () for a
survey of various graphical models that are suitable for

collective classi�cation. In general, these techniques can

use both neighborhood labels and observed attributes

 C Collective Classification

of neighbors. On the other hand, due to their general-

ity, these techniques also tend to be less e�cient than

the iterative collective classi�cation techniques.

One common way of de�ning such a global model

uses a pairwise Markov random �eld (pairwise MRF)
(Taskar et al., ). Let G = (V ,E) denote a graph
of random variables as before where V consists of two
types of random variables, the unobserved variables,Y ,
which need to be assigned domain values from label

set L, and observed variables X whose values we know
(see 7Graphical Models). Let Ψ denote a set of clique
potentials. Ψ contains three distinct types of functions:

● For each Yi ∈ Y , ψi ∈ Ψ is a mapping ψi : L → R≥,
where R≥ is the set of nonnegative real numbers.

● For each (Yi,Xj) ∈ E, ψij ∈ Ψ is a mapping ψij : L →
R≥.

● For each (Yi,Yj) ∈ E, ψij ∈ Ψ is a mapping ψij : L ×
L → R≥.

Let x denote the values assigned to all the observed
variables in V and let xi denote the value assigned
to Xi. Similarly, let y denote any assignment to all
the unobserved variables in V and let yi denote a
value assigned to Yi. For brevity of notation we will
denote by ϕi the clique potential obtained by computing
ϕi(yi) = ψi(yi)∏(Yi ,Xj)∈E ψij(yi). We are now in a
position to de�ne a pairwise MRF.

De�nition  A pairwise Markov random �eld (MRF)
is given by a pair ⟨G,Ψ⟩ where G is a graph and Ψ is a
set of clique potentials with ϕi and ψij as de�ned above.
Given an assignment y to all the unobserved variables Y ,
the pairwiseMRF is associatedwith the probability distri-
bution P(y∣x) = 

Z(x) ∏Yi∈Y ϕi(yi)∏(Yi ,Yj)∈E ψij(yi, yj)
where x denotes the observed values of X and Z(x) =
∑y′∏Yi∈Y ϕi (y

′
i)∏(Yi ,Yj)∈E ψij (y′i , y′j).

Given a pairwise MRF, it is conceptually simple to

extract the best assignments to each unobserved vari-

able in the network. For example, we may adopt the

criterion that the best label value for Yi is simply the
one corresponding to the highest marginal probabil-

ity obtained by summing over all other variables from

the probability distribution associated with the pair-

wise MRF. Computationally, however, this is di�cult

to achieve since computing one marginal probability

requires summing over an exponentially large number

of terms, which is why we need approximate inference

algorithms. Hence, approximate inference algorithms

are typically employed, the two most common being

loopy belief propagation (LBP) andmean-�eld relaxation
labeling.

Applications
Due to its general applicability, collective classi�ca-

tion has been applied to a number of real-world prob-

lems. Foremost in this list is document classi�cation.

Chakrabarti et al. () was one of the �rst to apply

collective classi�cation to corpora of patents linked

via hyperlinks and reported that considering attributes

of neighboring documents actually hurts classi�cation

performance. Slattery and Craven () also consid-

ered the problem of document classi�cation by con-

structing features from neighboring documents using

an 7inductive logic programming rule learner. Yang,
Slattery, & Ghani () conducted an in-depth inves-

tigation over multiple datasets commonly used for

document classi�cation experiments and identi�ed dif-

ferent patterns. Other applications of collective classi-

�cation include object labeling in images (Hummel &

Zucker, ), analysis of spatial statistics (Besag, ),

iterative decoding (Berrou, Glavieux, &�itimajshima,

), part-of-speech tagging (La�erty et al., ),

classi�cation of hypertext documents using hyperlinks

(Taskar et al., ), link prediction (Getoor, Friedman,

Koller, & Taskar, ; Taskar, Wong, Abbeel, & Koller,

), optical character recognition (Taskar, Guestrin,

& Koller, ), entity resolution in sensor networks

(Chen, Wainwright, Cetin, & Willsky, ), predict-

ing disulphide bonds in protein molecules (Taskar,

Chatalbashev, Koller, & Guestrin, ), segmentation

of D scan data (Anguelov et al., ), and classi�ca-

tion of e-mail speech acts (Carvalho & Cohen, ).

Recently, there have also been attempts to extend col-

lective classi�cation techniques to the semi-supervised

learning scenario (Lu & Getoor, b; Macskassy,

; Xu, Wilkinson, Southey, & Schuurmans, ).

Cross References
7Decision Trees
7Inductive Logic Programming
7Learning From Structured Data

Community Detection C 

C

7Relational Learning
7Semi-Supervised Learning
7Statistical Relational Learning

Recommended Reading
Anguelov, D., Taskar, B., Chatalbashev, V., Koller, D., Gupta. D.,

Heitz, G., et al. (). Discriminative learning of Markov ran-

dom fields for segmentation of d scan data. In IEEE computer
society conference on computer vision and pattern recognition.
IEEE Computer Society, Washington D.C.

Berrou, C., Glavieux, A., & Thitimajshima, P. (). Near Shannon

limit error-correcting coding and decoding: Turbo codes. In

Proceedings of IEEE international communications conference,
Geneva, Switzerland, IEEE.

Besag, J. (). On the statistical analysis of dirty pictures. Journal
of the Royal Statistical Society, B-, –.

Carvalho, V., & Cohen, W. W. (). On the collective classification

of email speech acts. In Special interest group on information
retrieval, Salvador, Brazil, ACM.

Chakrabarti, S., Dom, B., & Indyk, P. (). Enhanced hypertext

categorization using hyperlinks. In International conference on
management of data, Seattle, Washington New York: ACM.

Chen, L., Wainwright, M., Cetin, M., & Willsky, A. (). Mul-

titargetmultisensor data association using the tree-reweighted

max-product algorithm. In SPIE Aerosense conference. Orlando,
Florida.

Getoor, L. (). Link-based classification. In Advanced methods
for knowledge discovery from complex data. New York: Springer.

Getoor, L., & Taskar, B. (Eds.). (). Introduction to statistical
relational learning. Cambridge, MA: MIT Press.

Getoor, L., Segal, E., Taskar, B., & Koller, D. (). Probabilistic

models of text and link structure fro hypertext classification.

In Proceedings of the IJCAI workshop on text learning: Beyond
supervision, Seattle, WA.

Getoor, L., Friedman, N., Koller, D., & Taskar, B. (). Learn-

ing probabilistic models of link structure. Journal of Machine
Learning Research, , –.

Hummel, R., & Zucker, S. (). On the foundations of relaxation

labeling processes. IEEE Transactions on Pattern Analysis and
Machine Intelligence, , –.

Jensen, D., Neville, J., & Gallagher, B. (). Why collective infer-

ence improves relational classification. In Proceedings of the
th ACM SIGKDD international conference on knowledge dis-
covery and data mining, Seattle, WA. ACM.

Lafferty, J. D., McCallum, A., & Pereira, F. C. N. (). condi-

tional random fields: Probabilistic models for segmenting and

labeling sequence data. In Proceedings of the international con-
ference on machine learning, Washington DC. San Francisco,
CA: Morgan Kaufmann.

Lu, Q., & Getoor, L. (a). Link based classification. In Proceedings
of the international conference on machine learning. AAAI Press,
Washington, D.C.

Lu, Q., & Getoor, L. (b). Link-based classification using labeled

and unlabeled data. In ICML workshop on the continuum from
labeled to unlabeled data in machine learning and data mining.
Washington, D.C.

Macskassy, S., & Provost, F. (). Classification in networked

data: A toolkit and a univariate case study. Journal of Machine
Learning Research, , –.

Macskassy, S. A. (). Improving learning in networked data

by combining explicit and mined links. In Proceedings of the
twenty-second conference on artificial intelligence. AAAI Press,
Vancouver, Canada.

McDowell, L. K., Gupta, K. M., & Aha, D. W. (). Cautious infer-

ence in collective classification. In Proceedings of AAAI. AAAI
Press, Vancouver, Canada.

Neville, J., & Jensen, D. (). Relational dependency networks.

Journal of Machine Learning Research, , –.
Neville, J., & Jensen, D. (). Iterative classification in relation

data. In Workshop on statistical relational learning, AAAI.
Slattery, S., & Craven, M. (). Combining statistical and rela-

tional methods for learning in hypertext domains. In Inter-
national conferences on inductive logic programming. Springer-
Verlag, London, UK.

Taskar, B., Abbeel, P., & Koller, D. (). Discriminative probabilis-

tic models for relational data. In Proceedings of the annual con-
ference on uncertainty in artificial intelligence. Morgan Kauff-
man, San Francisco, CA.

Taskar, B., Guestrin, C., & Koller, D. (a). Max-margin markov

networks. In Neural information processing systems. MIT Press,
Cambridge, MA.

Taskar, B., Wong, M. F., Abbeel, P., & Koller, D. (b). Link pre-

diction in relational data. In Natural information processing
systems. MIT Press, Cambridge, MA.

Taskar, B., Chatalbashev, V., Koller, D., & Guestrin, C. (). Learn-

ing structured prediction models: A large margin approach. In

Proceedings of the international conference on machine learning.
ACM, New York, NY.

Xu, L., Wilkinson, D., Southey, F., & Schuurmans, D. (). Dis-

criminative unsupervised learning of structured predictors. In

Proceedings of the international conference on machine learning.
ACM, New York, NY.

Yang, Y., Slattery, S., & Ghani, R. (). A study of approaches

to hypertext categorization. Journal of Intelligent Information
Systems. (–), –.

Commercial Email Filtering

7Text Mining for Spam Filtering

Committee Machines

7Ensemble Learning

Community Detection

7Group Detection

 C Comparable Corpus

Comparable Corpus

A comparable corpus (pl. corpora) is a document col-

lection composed of two or more disjoint subsets, each

written in a di�erent language, such that documents in

each subset are on a same topic as the documents in the

others. �e prototypical example of a comparable cor-

pora is a collection of newspaper article written in dif-

ferent languages and reporting about the same events:

while they will not be, strictly speaking, the translation

of one another, theywill sharemost of the semantic con-

tent. Some methods for 7cross-language text mining
rely, totally or partially, on the statistical properties of

comparable corpora.

Competitive Coevolution

7Test-Based Coevolution

Competitive Learning

Competitive learning is an 7arti�cial neural network
learning process where di�erent neurons or processing

elements compete on who is allowed to learn to repre-

sent the current input. In its purest form competitive

learning is in the so-called winner-take-all networks

where only the neuron that best represents the input is

allowed to learn. Since all neurons learn to better repre-

sent the kinds of inputs they already are good at repre-

senting, they become specialized to represent di�erent

kinds of inputs. For vector-valued inputs and represen-

tations, the input becomes quantized to the unit having

the closest representation (model), and the representa-

tions are adapted to minimize the representation error

using stochastic gradient descent.

Competitive learning networks have been studied

as models of how receptive �elds and feature detectors,

such as orientation-selective visual neurons, develop

in neural networks. �e same process is at work in

online7K-means clustering, and variants of it in7Self-
OrganizingMaps (SOM) and the EM algorithm of mix-

ture models.

Complex Adaptive System

7Complexity in Adaptive Systems

Complexity in Adaptive Systems

Jun He

Aberystwyth University, Wales, UK

Synonyms
Adaptive system; Complex adaptive system

Definition
An 7adaptive system, or complex adaptive system, is a
special case of complex systems, which is able to adapt

its behavior according to changes in its environment or

in parts of the system itself. In this way, the system can

improve its performance through a continuing interac-

tion with its environment. �e concept of7complexity
in an adaptive system is used to analyze the interactive

relationship between the system and its environment,

which can be classi�ed into two types: 7internal com-
plexity formodel complexity, and7external complexity
for data complexity. �e internal complexity is de�ned

by the amount of input, information, or energy that

the system receives from its environment. �e external

complexity refers to the complexity of how the system

represents these inputs through its internal process.

Motivation and Background
Adaptive systems range from natural systems to arti-

�cial systems (Holland, , ; Waldrop, ).

Examples of natural systems include ant colonies,

ecosystem, the brain, neural network and immune

system, cell and developing embryo; examples of arti-

�cial systems include stock market, social system, man-

ufacturing businesses, and human social group-based

Complexity in Adaptive Systems C 

C

endeavor in a cultural and social system such as polit-

ical parties or communities. All these systems have a

common feature: they can adapt to their environment.

An adaptive system is adaptive in that way it has

the capacity to change its internal structure for adapt-

ing the environment. It is complex in the sense that

it is interactive with its environment. �e interaction

between an adaptive system and its environment is

dynamic and nonlinear. Complexity emerges from the

interaction between the system and environment, the

elements of the system, where the emergent macro-

scopic patterns are more complex than the sum of the

these low-level (microscopic) elements encompassed in

the system. Understanding the evolution and develop-

ment of adaptive systems still faces many mathematical

challenges (Levin, ).

�e concepts of external and internal complexities

are used to analyze the relation between an adaptive sys-

tem and its environment. �e description given below

is based on Jürgen Jost’s () work, which introduced

these two concepts and applied the theoretical frame-

work to the construction of learning models, e.g., to

design neural network architectures. In the following,

the concepts are mainly applied to analyze the inter-

action between the system and its environment. �e

interaction among individual elements of the system is

less discussed however, the concepts can be explored in

that situation too.

Theory
Adaptive System Environment and Regularities

�eenvironment of an adaptive system ismore complex

than the system itself and its changes cannot be com-

pletely predictable for the system. However, the changes

of the environment are not purely random and noisy;

there exist regularities in the environment. An adaptive

system can recognize these regularities, and depend-

ing on these regularities the system will express them

through its internal process in order to adapt to the

environment.

�e input that an adaptive system receives or

extracts from its environment usually includes two

parts: one is the part with regularities; and another is

that appears random to the system.�e part of regular-

ities is useful and meaningful. An adaptive system will

represent these regularities by internal processes. But

the part of random input is useless, and even at theworst

it will be detrimental for an adaptive system.However, it

will depend on the adaptive system’s internal model of

the external environment for how to determine which

part of input is meaningful and regular, and which part

is random and devoid of meaning and structure.

An adaptive system will translate the external reg-

ularities into its internal ones, and only the regularities

are useful to the system. �e system tries to extract as

many regularities as possible, and to represent these

regularities as e�ciently as possible in order to make

optimal use of its capacity.

�e notions of external complexity and internal

complexity are used to investigate these two comple-

mentary aspects conceptually and quantitatively. In

terms of these notions, an adaptive system aims to

increase its external complexity and reduce its internal

complexity.

�e two processes operate on their own time scale

but are intricately linked and mutually dependent on

each other. For example, the internal complexity will

be only reduced if the external complexity is �xed.

Under �xed inputs received from the external environ-

ment, an adaptive system can represent these inputs

systems more e�ciently and optimize its internal struc-

ture. If the external complexity is increased, e.g., if

additional new input is required to handle by the

system, then it is necessary to increase its internal

complexity.

�e increase of internal complexity may occur

through the creation of redundancy in the existing

adaptive system, e.g., to duplicate some internal struc-

tures, and then enable the system to handle more exter-

nal input. Once the input is �xed, the adaptive system

then will represent the input as e�ciently as possible

and reduce the internal input. �e decrease of internal

complexity can be achieved through discarding some

input as meaningless and irrelevant, e.g., leaving some

regularities out for the purpose.

Since the inputs relevant to the systems are those

which can be re�ected in the internal model, the exter-

nal complexity is not equivalent to the amount of raw

data received from the environment. In fact, it is only

relevant to the inputs which can be processed in the

internal model, or observations in some adaptive sys-

tems.�us the external complexity ultimately is decided

by the internal model constructed by the system.

 C Complexity in Adaptive Systems

External and Internal Complexities

External complexity means data complexity, which is

used to measure the amount of input received from the

environment for the system to handle and process. Such

a complexity can be measured by entropy in the term of

information theory.

Internal complexity is model complexity, which is

used to measure the complexity of a model for repre-

senting the input or information received by the system.

�e aim of the adaptive system is to obtain an e�-

cient model as simple as possible, with the capacity to

handle as much input as possible. On one hand, the

adaptive system will try to maximize its external com-

plexity and then to adapt to its environment in a max-

imal way; on the other hand, to minimize its internal

complexity and then to construct amodel to process the

input in a most e�cient way.

�ese two aims sometimes seem con�icting, but

such a con�ict can be avoided when these two processes

operate on di�erent time scales. If given a model, the

systemwill organize the input data and try to increase its

ability to deal with the input from its environment, and

then increase its external complexity. If given the input,

conversely, it tries to simplify itsmodelwhich represents

that input and thus to decrease the internal complexity.

�e meaning of the input is relevant to the time scale

under investigation. On a short time scale, for example,

the inputmay consist of individual signals, but on a long

time scale, it will be a sequence of signals which satis�es

a probability distribution. A good internal model tries

to express regularities in the input sequence, rather than

several individual signals. And the decrease of internal

complexity will happen on this time scale.

A formal de�nition of the internal and exter-

nal complexities concepts is based on the concept of

entropy from statistical mechanics and information

theory. Given a model θ, the system can model data as
with X(θ) = (X, . . . ,Xk), which is assumed to have
an internal probability distribution P(X(θ)) so that
entropy can be computed. �e external complexity is

de�ned by

−
k

∑
i=
P(Xi(θ)) log


P(Xi(θ)). ()

An adaptive system tries to maximize the above

external complexity.

�e probability distribution P(X(θ)) is for quanti-
fying the information value of the data X(θ). �e value

of information can be described in other approaches,

e.g., the length of the representation of the data in the

internal code of the system (Rissanen, ). In this case,

the optimal coding is a consequence of the minimiza-

tion of internal complexity, and then the length of the

representation of data Xi(θ) behaves like log

P(X(θ))

(Rissanen, ).

On a short time scale, for a given model θ, the sys-
tem tries to increase the amount of meaningful input

informationX(θ). On a long time scale, when the input
is given, e.g., when the system has gathered a set of

inputs on a time scale with a stationary probability dis-

tribution of input patterns Ξ, then the model should

be improved to handle the input as e�ciently as pos-

sible and reduce the complexity of the model. �is

complexity, or internal complexity, is de�ned by

−
k

∑
i=
P(Ξi ∣ θ) log


P(Ξi ∣ θ) − log


P(θ), ()

with respect to the model θ.
If Rissanen’s () 7minimum description length

principle is applied to the above formula, then the opti-

mal model will satisfy the variation problem

min
θ

(− log

P(Ξ ∣ θ) − log


P(θ)) . ()

Here in the above minimization problem, there are

two objectives to minimize. �e �rst term is to mea-

sure how e�ciently themodel represents or encodes the

data; and the second one is tomeasure how complicated

themodel is. In computer science, this latter term corre-

sponds to the length of the program required to encode

the model.

�e concepts of external and internal complexities

can be applied into a system divided into subsystems.

In this case, some internal part of the original whole

system will become external to a subsystem. �us the

internal input of a subsystem consists of original exter-

nal input and also input from the rest of the system, i.e.,

other subsystems.

Application: Learning
�e discussion of these two concepts, external and

internal complexities, can be put into the background

of learning. In statistical learning theory (Vapnik, ),

the criterion for evaluating a learning process is the

expected prediction error of future data by the model

Complexity in Adaptive Systems C 

C

based on training data set with partial and incom-

plete information. �e task is to construct a probability

distribution drawn from an a-priori speci�c class for

representing the distribution underlying the input data

received. Usually, if a higher error is produced by a

model on the training data, then a higher error will be

expected on the future data. �e error will depend on

two factors: one is the accuracy of the model on the

training data set, another is the simplicity of the model

itself. �e description of the data set can be split into

two parts, the regular part, which is useful in construct-

ing the model; and the random part, which is a noise to

the model.

�e learning process �ts very well into the theory

framework of internal and external complexities. If the

model is too complicated, it will bring the risk of over-

�tting the training data. In this case, some spurious

or putative regularity is incorporated into the model,

which will not appear in the future data. �e model

should be constrained within some model class with

bounded complexity. �is complexity in this context of

statistical learning theory is measured by the Vapnik-

Chervonenkis dimension (see7VC Dimension) (Vap-
nik, ). Under the simplest form of statistical learn-

ing theory, the system aims at �nding a representa-

tion with smallest error in a class with given complex-

ity constraints; and then the model should minimize

the expected error on future data and also over-�tting

error.

�e two concepts of over-�tting and leaving out reg-

ularities can be distinguished in the following sense.�e

former is caused by the noise in the data, i.e., the ran-

dom part of the data, and this leads to putative regulari-

ties, which will not appear in the future data. �e latter,

leaving out regularities, means that the system can forgo

some part of regularities in the data, or it is possible

to make data compression. �us, leaving out regulari-

ties can be used to simplify the model and reduce the

internal complexity. However, a problem is still wait-

ing for answer here, that is, what regularities in the data

set are useful for data compression and also meaningful

for future prediction; and what parts are random to the

model.

�e internal complexity is the model complexity. If

the internal complexity is chosen too small, then the

model does not have enough capacity to represent all

the important features of the data set. If the internal

complexity is too large, on the other hand, then the

model does not represent the data e�ciently. �e inter-

nal complexity is preferablyminimized under appropri-

ate constraints on the adequacy of the representation

of data. �is is consistent with Rissanen’s principle of

Minimum Description Length (Rissanen, ) to rep-

resent a given data set in the most e�cient way. �us a

good model is both to simplify the model itself and to

represent the data e�ciently.

�e external complexity is the data complexity

which should be large to represent the input accu-

rately. �is is related to Jaynes’ principle of maximizing

the ignorance (Jaynes, ), where a model for repre-

senting data should have the maximal possible entropy

under the constraint that all regularities can be repro-

duced. In this way, putative regularities could be elim-

inated in the model. However, this principle should be

applied with some conditions as argued by Gell-Mann

and Lloyd (); it cannot eliminate the essential reg-

ularities in the data, and an overlying complex model

should be avoided.

For some learning system, only a selection of data

is gathered and observed by the system. �us a mid-

dle term, observation, is added between model and

data. �e concept of observation refers to the extrac-

tion of value of some speci�c quantity from a given

data or data pool. What a system can observe depends

on its internal structure and its general model of the

environment. �e system does not have direct access

to the raw data, but through constructing a model of

the environment solely on the basis of the values of its

observation.

For such kind of learning system, Jaynes’ princi-

ple (Jaynes, ) is still applicable for increasing the

external complexity. For the given observationmade on

a data set, the maximum entropy representation should

be selected. However, this principle is still subject to

the modi�cation of Gell-Mann and Lloyd () to a

principle where the model should not lose the essential

regularities observed in the data.

By contrast, the observations should be selected to

reduce the internal complexity. Given a model, if the

observation can be made on a given data set, then these

observations should be selected so as to minimize the

resulting entropy of the model, with the purpose of

minimizing the uncertainty le� about the data. �us it

leads to reduce the complexity.

In most of the cases, the environment is dynamic,

i.e., the data set itself can be varied, then the external

 C Complexity of Inductive Inference

complexity should bemaximized again.�us the obser-

vation should be chosen for maximal information gain

extracted from the data to increase the external com-

plexity. Jaynes’ principle (Jaynes, ) can be applied

as the same as in previous discussion. But on a longer

time scale, when the inputs reach some stationary dis-

tribution, the model should be simpli�ed to reduce its

internal complexity.

Recommended Reading
Gell-Mann, M., & Lloyd, S. (). Information measures, effective

complexity, and total information. Complexity, (), –.
Holland, J. (). Adaptation in natural and artificial systems.

Cambridge, MA: MIT Press.

Holland, J. (). Hidden order: How adaptation builds complexity.
Reading, MA: Addison-Wesley.

Jaynes, E. (). Information theory and statistical mechanics.

Physical Review, (), –.
Jost, J. (). External and internal complexity of complex adaptive

systems. Theory in Biosciences, (), –.
Levin, S. (). Complex adaptive systems: Exploring the known,

the unknown and the unknowable. Bulletin of the American
Mathematical Society, (), –.

Rissanen, J. (). Stochastic complexity in statistical inquiry.
Singapore: World Scientific.

Vapnik, V. (). Statistical learning theory. New York: John Wiley
& Sons.

Waldrop, M. (). Complexity: The emerging science at the edge of
order and chaos. New York: Simon & Schuster.

Complexity of Inductive Inference

Sanjay Jain, Frank Stephan

National University of Singapore,

Singapore, Republic of Singapore

Definition
In 7inductive inference, the complexity of learning
can be measured in various ways: by the number of

hypotheses issued in the worst case until the correct

hypothesis is found; by the number of data items to be

consumed or to be memorized in order to learn in the

worst case; by the Turing degree of oracles needed to

learn the class under a certain criterion; by the intrinsic

complexity which is – like the Turing degrees in recur-

sion theory – a way tomeasure the complexity of classes

by using reducibilities between them.

Detail
We refer the reader to the article 7Inductive Infer-
ence for basic de�nitions in inductive inference and the

notations used below. Let N denote the set of nat-

ural numbers. Let φ,φ, . . . denote a �xed accept-
able programming system (Rogers, ). Let Wi =
domain(φi).

Mind Changes and Anomalies
�e �rst measure of complexity of learning can be con-

sidered as the number of mind changes needed before

the learner converges to its �nal hypothesis in theTxtEx
model of learning. �e number of mind changes by a

learnerM on a text T can be counted as card ({m : ? ≠
M(T[m]) ≠M(T[m+])}). A learnerMTxtExn learns
a class L of languages i� M TxtEx learns L and for all
L ∈ L, for all texts T for L, M makes at most n mind
changes on T.TxtExn is de�ned as the collection of lan-
guage classes which can be TxtExn identi�ed (see Case
& Smith () for details).

Consider the class of languages Ln ={L : card(L)
≤n}. It can be shown that Ln+ ∈ TxtExn+ − TxtExn.
Now consider anomalous learning. A class C is

TxtExab-learnable i� there is a learner, which makes at
most b mind changes (where b = ∗ denotes that the
number of mind changes is �nite on each text for a

language in the class, but not necessarily bounded by

a constant) and whose �nal hypothesis is allowed to

make up to a errors (where a = ∗ denotes �nitely
many errors). For these learning criteria, we get a two-

dimensional hierarchy on what can be learnt. Let Cn =
{f : φf () =n f }. For a total function f , let Lf =
{⟨x, f (x)⟩ : x ∈ N}, where ⟨⋅, ⋅⟩ denotes a computable
pairing function: a bijective mapping from N × N to
N. Let LC = {Lf : f ∈ C}. �en, one can show that
LCn+ ∈ TxtEx

n+
 −TxtExn. Similarly, if we consider the

class Sn = {f : card({m : f (m) ≠ f (m + )}) ≤ n}, then
one can show that LSn+ ∈ TxtEx


n+ −TxtEx∗n (we refer

the reader to Case and Smith () for a proof of the

above).

Data and Time Complexity
Wiehagen () considered the complexity of number

of data needed for learning. Regarding time complex-

ity, one should note the result by Pitt () that any

TxtEx-learnable class of languages can be TxtEx-learnt
by a learner that has time complexity (with respect to

Complexity of Inductive Inference C 

C

the size of the input) bounded by a linear function.�is

result is achieved by a delaying trick, where the learner

just repeats its old hypothesis unless it has enough time

to compute its later hypothesis. �is seriously e�ects

what one can say about time complexity of learning.

One proposal made by Daley and Smith () is to

consider the total time used by the learner until its

sequence of hypotheses converges, resulting in a possi-

bly more reasonable measure of time in the complexity

of learning.

Iterative and Memory-Bounded Learning
Another measure of complexity of learning can be con-

sideredwhen one restricts howmuch past data a learner

can remember. Wiehagen introduced the concept of

iterative learning in which the learner cannot remem-
ber any past data. Its new hypothesis is based only on

its previous conjecture and the new datum it receives.

In other words, there exists a recursive function F such
that M(T[n + ]) = F(M(T[n]),T(n)), for all texts T
and for all n. Here, M(T[]) is some �xed value, say the
symbol ‘?’ which is used by the learner to denote the

absence of a reasonable conjecture. It can be shown that

being iterative restricts the learning capacity of learn-

ers. For example, let Le = {x : x ∈ N} and let L =
{Le}∪{{S∪{n+ }} : n ∈ N, S ⊆ Le, and max(S) ≤ n};
then L can be shown to be TxtEx-learnable but not
iteratively learnable.

Memory-bounded learning (see Lange & Zeug-

mann, ) is an extension of memory-limited learn-

ing, where the learner is allowed to memorize upto

some�xednumber of elements seen in the past.�us,M

is anm-memory-bounded learner if there exists a func-
tionmem and two computable functionsmF and F such
that, for all texts T and all n:

– mem(T[]) = /;
– M(T[n + ]) = F(M(T[n]),mem(T[n]),T(n + ));
– mem(T[n + ]) = mF(M(T[n]),mem(T[n]),
T(n + ));

– mem(T[n + ]) −mem(T[n]) ⊆ {T(n + )};
– card(mem(T[n])) ≤ m.

It can be shown that the criteria of inference based on

TxtEx-learning by m-memory-bounded learners form
a proper hierarchy.

Besides memorizing some past elements seen,

another way to address this issue is by giving feed-

back to the learner (see Case, Jain, Lange, & Zeugmann,

) onwhether some element has appeared in the past

data. A feedback learner is an iterative learner, which

is additionally allowed to query whether certain ele-

ments appeared in earlier data. An n-feedback learner
is allowed to make n such queries at each stage (when
it receives the new input datum). �us, M is an m-
feedback learner if there exist computable functions Q
and a F such that, for all texts T and all n:

– Q(M(T[n]),T(n)) is de�ned and is a set of m
elements;

– If Q(M(T[n]),T(n)) = (x, x, . . . , xm) then
M(T[n + ]) = F(M(T[n]),T(n), y, y, . . . , ym),
where yi =  i� xi ∈ ctnt(T[n]).

Again, it can be shown that allowing more feed-

back gives greater learning power, and thus one can

get a hierarchy based on the amount of feedback

allowed.

Complexity of Final Hypothesis
Another possibility on complexity of learning is to

consider the complexity or size of the �nal grammar

output by the learner. Freivalds () considered the

case when the �nal program/grammar output by the

learner is minimal: that is, there is no smaller index

that accepts/generates the same language. He showed

that this severely restricts the learning capacity of learn-

ers. Not only that, the learning capacity depends on

the acceptable programming system chosen, unlike

the case for most other criteria of learning such as

TxtEx or TxtBc, which are independent of the accept-
able programming system chosen. In particular, there

are acceptable programming systems in which only

classes containing �nitely many in�nite languages can

be learnt using minimal �nal grammars (see Freivalds,

; Jain and Sharma, ). Chen () considered a

modi�cation of such a paradigm where one considers

convergence to nearly minimal grammars rather than

minimal. �at is, instead of requiring that the �nal

grammars are minimal, one requires that they are

within a recursive function h of minimal. Here h may
depend on the class being learnt. Chen showed that this

allows one to have the criteria of minimal learnability

 C Complexity of Inductive Inference

to be independent of the acceptable programming sys-

tem chosen. However, one can show that some simple

classes are not minimally learnable. An example of such

a class is the class LC which is derived from C = {f :
∀∞ × [f (x) = ]}, the class of all functions which are
almost everywhere .

Intrinsic Complexity
Another way to consider complexity of learning is to

consider relative complexity in a way similar to how one

considers Turing reductions in computability theory.

Such a notion is called intrinsic complexity of the class.

�is was �rst considered by Freivalds et al. () for

function learning. Jain and Sharma () considered

it for language learning, and the following discussion is

from there.

An enumeration operator (see Rogers, ), Θ, is an
algorithmic mapping from SEQ into SEQ such that the

following two conditions are satis�ed:

– for all σ , τ ∈ SEQ, if σ ⊆ τ, then Θ(σ) ⊆ Θ(τ);
– for all texts T, limn→∞ ∣Θ(T[n])∣ = ∞.

By extension, we think of Θ as also mapping texts to

texts such that Θ(T) = ⋃n Θ(T[n]). Furthermore,
we de�ne Θ(L) = {ctnt(Θ(T)) : T is a text for L}.
Intuitively, Θ(L) denotes the set of languages to whose
texts Θ maps texts of L. �e reader should note the
overloading of this notation because the type of the

argument to Θ could be a sequence, a text or a

language.

One says that a sequence of grammars g, g, . . . is
an acceptable TxtEx-sequence for L if the sequence of
grammars converges to a grammar for L.
L ≤weak L i� there are two operators Θ and Ψ

such that for all L ∈ L, for all texts T for L, Θ(T)
is a text for some L′ ∈ L such that if g, g, . . . is an
acceptable TxtEx-sequence for L′ then Ψ(g, g, . . .) is
an acceptable TxtEx-sequence for L.
Note that di�erent texts for the same language L

may be mapped by Θ to texts for di�erent languages

in L above. If we require that di�erent texts for L are
mapped to texts for the same language L′ inL, then we
get a stronger notion of reduction called strong reduc-

tion: L ≤strong L i� L ≤weak L and for all L ∈ L,
Θ(L) contains only one language, where Θ is as in the
de�nition for ≤weak reduction.

It can be shown that FIN is a complete class for
TxtEx-identi�cation with respect to ≤weak reduction
(see Jain & Sharma, ). Interestingly it was shown

that the class of pattern languages (Angluin, ), the

class SD = {L : Wmin(L) = L} and the class COINIT =
{{x : x ≥ n} : n ∈ N} are all equivalent under ≤strong . Let
code be a bijective mapping from non-negative ratio-
nal numbers to natural numbers. �en, one can show

that the class RINIT = {{code(x) :  ≤ x ≤ r, x is
a rational number} :  ≤ r ≤ , r is a rational num-
ber } is ≤strong complete for TxtEx (see Jain, Kinber, &
Wiehagen, ).

Interestingly every �nite directed acyclic graph can

be embedded into the ≤strong degree structure (Jain &
Sharma, ). On the other hand the degree structure

is non-dense in the sense that there exist classes L and
L such that L <strong L, but for any class L such that
L ≤strong L ≤strong L, either L ≡strong L or L ≡strong
L. Similar result holds for ≤weak reducibility (see Jain
& Sharma, ).

Interesting connections between learning of ele-

mentary formal systems (Shinohara, ), intrinsic

complexity and ordinal mind changes (Freivalds &

Smith, ) were shown in (Jain & Sharma, ).

Learning Using Oracles
Another method to measure complexity of learning

is to see how powerful an oracle (given to the learn-

ing machine) has to be to make a class learnable. It

can be shown that an oracle A permits to explanato-
rily learn the class of all recursive functions i� A is
high (Adleman & Blum, ). Furthermore, an ora-

cle is trivial, that is, does not give additional learning

power for explanatory learning of function classes i�

the oracle has -generic Turing degree and is Turing

reducible to the halting problem (Slaman & Solovay,

). �e picture is a bit di�erent in the general case of

learning languages. For every oracle A there is an ora-
cle B and a class, which is TxtEx-learnable using the
oracle B but not using the oracle A (Jain & Sharma,
). Note that there are also classes of languages like

Gold’s class of all �nite languages plus the set of natural

numbers which are not TxtEx-learnable using any ora-
cle. Furthermore, for oracles above the halting problem,

TxtEx-learning and TxtBc-learning using these oracles
coincide.

Computational Complexity of Learning C 

C

Recommended Reading
Adleman, L., & Blum, M. (). Inductive inference and unsolvabil-

ity. Journal of Symbolic Logic, , –.
Angluin, D. (). Finding patterns common to a set of strings.

Journal of Computer and System Sciences, , –.
Case, J., Jain, S., & Lange, S., & Zeugmann, T. (). Incremen-

tal concept learning for bounded data mining. Information and
Computation, (), –.

Case, J., & Smith, C. H. (). Comparison of identification criteria

for machine inductive inference. Theoretical Computer Science,
, –.

Daley, R. P., & Smith, C. H. (). On the complexity of inductive

inference. Information and Control, , –.
Chen, K.-J. (). Tradeoffs in inductive inference of nearly mini-

mal sized programs. Information and Control, , –.
Freivalds, R. (). Minimal Gödel numbers and their identifi-

cation in the limit. Lecture Notes in Computer Science, ,
–.

Freivalds, R., Kinber, E., & Smith, C. H. (). On the intrin-

sic complexity of learning. Information and Computation, ,
–.

Freivalds, R., & Smith, C. H. (). On the role of procrastina-

tion in machine learning. Information and Computation, (),
–.

Jain, S., Kinber, E., & Wiehagen, R. (). Language learning

from texts: Degrees of intrinsic complexity and their char-

acterizations. Journal of Computer and System Sciences, ,
–.

Jain, S., & Sharma, A. (). On the non-existence of maximal infer-

ence degrees for language identification. Information Processing
Letters, , –.

Jain, S., & Sharma, A. (). Program size restrictions in

computational learning. Theoretical Computer Science, ,
–.

Jain, S., & Sharma, A. (). The intrinsic complexity of language

identification. Journal of Computer and System Sciences, ,
–.

Jain, S., & Sharma, A. (). The structure of intrinsic complexity

of learning. Journal of Symbolic Logic, , –.
Jain, S., & Sharma, A. (). Elementary formal systems, intrinsic

complexity and procrastination. Information and Computation,
, –.

Lange, S., & Zeugmann, T. (). Incremental learning from

positive data. Journal of Computer and System Sciences, ,
–.

Pitt, L. (). Inductive inference, DFAs, and computational com-

plexity. Analogical and inductive inference, second international
workshop, AII , LNAI. (Vol. , pp. –) Heidelberg:
Springer.

Rogers, H. (). Theory of recursive functions and effec-
tive computability. New York: McGraw-Hill (Reprinted, MIT
Press ).

Shinohara, T. (). Rich classes inferable from positive data:

Length–bounded elementary formal systems. Information and
Computation, , –.

Slaman, T. A. & Solovay, R. (). When oracles do not help.

Proceedings of the Fourth Annual Workshop on Computational
Learning Theory, (pp. –), Morgan Kaufmann.

Wiehagen, R. (). Limes-Erkennung rekursiver Funktionen

durch spezielle Strategien. Journal of Information Processing and
Cybernetics (EIK), , –.

Wiehagen, R. (). On the complexity of effective program syn-

thesis. In: K. Jantke (Ed.). Analogical and Inductive Inference.

Proceedings of the International Workshop, Springer LNCS, (Vol.
, pp. –).

Compositional Coevolution

Synonyms
Cooperative coevolution

Definition
A coevolutionary system constructed to learn compos-

ite solutions in which individuals represent di�erent

candidate components and must be evaluated together

with other individuals in order to form a complete

solution. �ough not precisely the same as cooperative
coevolution, there is a signi�cant overlap.

Cross References
7Coevolutionary Learning

Computational Complexity of
Learning

Sanjay Jain, Frank Stephan

National University of Singapore, Singapore, Republic

of Singapore

Definition
Measures of the complexity of learning have been devel-

oped for a number of purposes including 7Inductive
Inference, 7PAC Learning, and 7Query-Based Learn-
ing. �e complexity is usually measured by the largest

possible usage of ressources that can occur during the

learning of a member of a class. Depending on the con-

text, onemeasures the complexity of learning either by a

single number/ordinal for the whole class or by a func-

tion in a parameter n describing the complexity of the
target to be learnt. �e actual measure can be the num-

ber of mind changes, the number of queries submitted

to a teacher, the number of wrong conjectures issued,

the number of errors made or the number of exam-

ples processed until learning succeeds. In addition to

this, one can equip the learner with an oracle and deter-

mine the complexity of the oracle needed to perform

 C Computational Discovery of Quantitative Laws

the learning process. Alternatively, in complexity the-

ory, instead of asking for anNP-complete oracle to learn

a certain class, the result can also be turned into the

form “this class is unlearnable unless RP=NP” or some-

thing similar. (Here RP is the class of decision problems

solvable by a randomized polynomial time algorithm

and NP is the class of decision problems solvable by a

nondeterministic polynomial time algorithm and both

algorithms never give “yes” answer for an instance of the

problem with “no” answer.)

Detail
In 7PAC Learning, one usually asks how many exam-
ples are needed to learn the concept, where the num-

ber of examples needed mainly depends on the Vapnik

Chervonenkis dimension of the class to be learnt, the

error permitted, and the con�dence required. Further-

more, for certain classes of �nite Vapnik Chervonenkis

dimension, learnability can still fail when the learner is

required to be computable in polynomial time; hence

there is, besides the dimension, also a restriction stem-

ming from the computational complexity of problems

such as the complexity of �nding concepts consistent

with all data observed so far.

For 7Query-Based Learning, one common crite-
rion to be looked at is the number of queries made

during the learning process. If a class contains n di�er-

ent {, }-valued functions f and one is required to learn
the class using membership-queries, that is, by asking

queries of the form whether f (x) =  or f (x) = , then
there is a function f on which the learner needs at least
n queries until it knows which of the given functions f
is; for some classes consisting of n functions the num-

ber of queries needed can be much worse – as much

as n − . A well-known result of Angluin is that one
can learn the class of all regular languages with polyno-

miallymany equivalence andmembership queriesmea-

suredwith respect to the number of states of the smallest

deterministic �nite automaton accepting the language

to be learnt. Further research has been done dealing

with which query algorithms can be implemented by a

polynomial time learner andwhich need for polynomial

time learning, in addition to the teacher informing on

the target concept, also some oracle supplying informa-

tion that cannot be computed in polynomial time. See

the entry 7Query-Based Learning for an overview of
these results.

For 7Inductive Inference, most complexity mea-
sures are measures applying to the overall class and not

just a parameterized version. When learning the class

of all sets with up to n elements, the learner might �rst
issue the conjecture / and then revise (up to n times)
its hypothesis when a new datum is observed; such a

measure is called the mind change complexity of learn-

ing. Mind change complexity has been generalized to

measure the complexity by recursive ordinals or the

notation of these. Furthermore, one can measure the

long termmemory of past data observed either by a cer-

tain number of examples remembered or by the number

of bits stored on a tape describing the long-term mem-

ory of the learner. Besides these quantitative notions,

a further frequently studied question is the following:

Which oracles support the learning process in away that

some classes become learnable using the oracle, but are

unlearnable without using any oracle? An example of

such a type of result is that the class of all recursive func-

tions can be learnt if and only if the learner has access

to a high oracle, that is, an oracle that permits to com-

pute a functionwhich dominates (i.e., grows faster than)

every recursive function. See the entry7Complexity of
Inductive Inference for more information.

Computational Discovery of
Quantitative Laws

7Equation Discovery

Concept Drift

Claude Sammut, Michael Harries

�e University of New South Wales,

Sydney, Australia
Advanced Products Group, Citrix Labs,

North Ryde, NSW, Australia

Synonyms
Context-sensitive learning; Learning with hidden

context

Definition
Concept dri� occurs when the values of hidden vari-

ables change over time. �at is, there is some unknown

Concept Drift C 

C

context for 7concept learning and when that context
changes, the learned conceptmay no longer be valid and

must be updated or relearned.

Motivation and Background
Prediction in real-world domains is complicated by

potentially unstable phenomena that are not known in

advance to the learning system. For example, �nancial

market behavior can change dramatically with changes

in contract prices, interest rates, in�ation rates, bud-

get announcements, and political and world events.

�us, concept de�nitions that may have been learned

in one context become invalid in a new context. �is

concept dri� can be due to changes in context and
is o�en directly re�ected by one or more attributes.

When changes in context are not re�ected by any known

attributes they can be said to be hidden. Hidden changes
in context cause problems for any predictive approach

that assumes concept stability.

Structure of the Learning System
Machine learning approaches can be broadly catego-

rized as either 7batch learning or 7incremental learn-
ing. Batch systems learn o�-line by examining a large

collection of instances en masse and form a single con-
cept. Incremental systems evolve and change a concept

de�nition as new observations are processed (Schlim-

mer&Granger a; Aha et al., ; Koltzer &Maloof,

).

�emost common approach to learning in domains

with hidden changes in context has been to use an incre-

mental learning approach in which the importance of

older items is progressively decayed. A popular imple-

mentation of this, originally presented in Kubet (),

is to use a window of recent instances from which

concept updates are derived. Other examples of this

approach includeWidmer and Kubat (), Kubat and

Widmer (), Kilander and Jansson (), and Sal-

ganiko� (). Swi� adaptation to changes in context

can be achieved by dynamically varying the window

size in response to changes in accuracy and concept

complexity (Widmer & Kubat, ).

�ere are many domains in which the context can

be expected not only to change but for earlier con-

texts to hold again at some time in the future. �at is,

contexts can repeat in domains such as �nancial pre-

diction, dynamic control, and underrepresented data

mining tasks. In these domains, prediction accuracy can

be improved by storing knowledge about past contexts

for reuse. FLORA (Widmer & Kubat, ) addresses

domains in which contexts recur by storing and retriev-

ing concepts that appear stable as the learner traverses

the series of input data.

In many situations, there is no constraint to learn

incrementally. For example, many organizations main-

tain large data bases of historical data that are suitable

for data mining. �ese data bases may hold instances

that belong to a number of contexts but do not have this

context explicitly recorded. Many of these data bases

may incorporate time as an essential attribute, for exam-

ple, �nancial records and stockmarket price data. Inter-

est in mining datasets of this nature suggests the need

for systems that can learn global concepts and are sen-

sitive to changing and hidden contexts. Systems such as

FLORA also imply that an o�-line recognition of stable

concepts can be useful for7on-line prediction.
An alternative to on-line learning for domains with

hidden changes in context is to examine the data en
masse in an attempt to directly identify concepts associ-
ated with stable, hidden contexts. Some potential bene-

�ts of such an approach are:

. Context speci�c (known as local) concepts could be

used as part of a multiple model on-line predictive

system.

. Local concepts could be veri�ed by experts, or used

to improve domain understanding.

. A model of the hidden context could be induced

using context characteristics such as context dura-

tion, order, and stability. �e model could also use

existing attributes and domain feedback if available.

. Stable contexts identi�ed could be used as tar-

get characteristics for selecting additional attributes

from the outside world as part of an iterative data

mining process.

Splice (Harries, Sammut, & Horn, ) is a 7meta-
learning system that implements a context sensitive

batch learning approach. Splice is designed to identify

intervals with stable hidden context, and to induce and

re�ne local concepts associated with hidden contexts.

Identifying Context Change
In many domains with hidden changes in context,

time can be used to di�erentiate hidden contexts. Most

 C Concept Drift

machine learning approaches to these domains do not

explicitly represent time as they assume that current

context can be captured by focusing on recent examples.

�e implication is that hidden context will be re�ected

in contiguous intervals of time. For example, an attempt

to build a system to predict changes in the stock market

could produce the following7decision tree:

Year > 
Year < 

Attribute A = true : Market Rising
Attribute A = false : Market Falling

Year ≥ 
Attribute B = true : Market Rising
Attribute B = false : Market Falling

�is tree contains embedded knowledge about two

intervals of time: in one of which, –, attribute

A is predictive; in the other,  onward, attribute B is

predictive. As time (in this case, year) is amonotonically

increasing attribute, future classi�cation using this deci-

sion tree will only use attribute B. If this domain can be

expected to have recurring hidden context, information

about the prior interval of time could be valuable.

�e decision tree in the example above contains

information about changes in context. We de�ne con-

text as:

▸ Context is any attribute whose values are largely inde-

pendent but tend to be stable over contiguous inter-

vals of another attribute known as the environmental

attribute.

�e ability of decision trees to capture context is asso-

ciated with the fact that decision tree algorithms use

a form of context-sensitive feature selection (CSFS).

A number of machine learning algorithms can be

regarded as using CSFS including decision tree algo-

rithms (Quinlan, ), 7rule induction algorithms
(Clark & Niblett, ), and 7ILP systems (Quinlan,
). All of these systems produce concepts containing

local information about context.

When contiguous intervals of time re�ect a hid-

den attribute or context, we call time the environmental

attribute. �e environmental attribute is not restricted

to time alone as it could be any ordinal attribute over

which instances of a hidden context are liable to be con-

tiguous. �ere is also no restriction, in principle, to one

dimension. Some alternatives to time as environmen-

tal attributes are dimensions of space, and space–time

combinations.

Given an environmental attribute, we can utilize

a CSFS machine learning algorithm to gain informa-

tion on likely hidden changes in context. �e accuracy

of the change points found will be dependent upon

at least hidden context duration, the number of dif-

ferent contexts, the complexity of each local concept,

and noise.

�e CSFS identi�ed context change points can be

expected to contain errors of the following types:

. 7Noise or serial correlation errors. �ese would
take the form of additional incorrect change points.

. Errors due to the repetition of tests on time in di�er-

ent parts of the concept. �ese would take the form

of a group of values clustered around the actual

point where the context changed.

. Errors of omission, change points that are missed

altogether.

�e initial set of identi�ed context changes can be

re�ned by contextual7clustering.
�is process combines similar intervals of the

dataset, where the similarity of two intervals is based

upon the degree to which a partial model is accurate on

both intervals.

Recent Advances
With the increasing amount of data being generated

by organizations, recent work on concept dri� has

focused on mining from high volume 7data streams
Hulten, Spencer, & Domingos, ; Wang, Fan, Yu, &

Han, ; Koltzer & Maloof, , Mierswa, Wurst,

Klinkenberg, Scholz, & Euler, ; Chu & Zaniolo,

; Gaber, Zaslavsky, & Krishnaswamy, . Meth-

ods such as Hulten et al’ s, combine decision tree learn-
ingwith incrementalmethods for e�cient updates, thus

avoiding relearning large decision trees. Koltzer and

Maloof also use incremental methods combined in an

7ensemble.

Concept Learning C 

C

Cross References
7Decision Trees
7Ensemble Methods
7Incremental Learning
7Inductive Logic Programming
7Lazy Learning

Recommended Reading
Aha, D. W., Kibler, D., & Albert, M. K. (). Instance-based

learning algorithms. Machine Learning, , –.
Chu, F., & Zaniolo, C. (). Fast and light boosting for adap-

tive mining of data streams. In Advances in knowledge discovery
and data mining. Lecture notes in computer science (Vol. ,
pp. –). Springer.

Clark, P., & Niblett, T. (). The CN induction algorithm.

Machine Learning, , –.
Clearwater, S., Cheng, T.-P., & Hirsh, H. (). Incremental batch

learning. In Proceedings of the sixth international workshop on
machine learning (pp. –). Morgan Kaufmann.

Domingos, P. (). Context-sensitive feature selection for lazy

learners. Artificial Intelligence Review, , –. [Aha, D.
(Ed.). Special issue on lazy learning.]

Gaber, M. M., Zaslavsky, A., & Krishnaswamy, S. (). Mining data

streams: A review. SIGMOD Rec., (), –.
Harries, M., & Horn, K. (). Learning stable concepts in domains

with hidden changes in context. In M. Kubat & G. Wid-

mer (Eds.), Learning in context-sensitive domains (workshop
notes). th international conference on machine learning, Bari,
Italy.

Harries, M. B., Sammut, C., & Horn, K. (). Extracting hidden

context. Machine Learning, (), –.
Hulten, G., Spencer, L., & Domingos, P. (). Mining time-

changing data streams. In KDD ’: Proceedings of the seventh
ACM SIGKDD international conference on knowledge discovery
and data mining (pp. –). New York: ACM.

Kilander, F., & Jansson, C. G. (). COBBIT – A control procedure

for COBWEB in the presence of concept drift. In P. B. Brazdil

(Ed.), European conference on machine learning (pp. –).
Berlin: Springer.

Kolter, J. Z., & Maloof, M. A. (). Dynamic weighted majority:

A new ensemble method for tracking concept drift. In Third
IEEE international conference on data mining ICDM- (pp.
–). IEEE CS Press.

Kubat, M. (). Floating approximation in time-varying knowl-

edge bases. Pattern Recognition Letters, , –.
Kubat, M. (). A machine learning based approach to load bal-

ancing in computer networks. Cybernetics and Systems Journal.
Kubat, M. (). Second tier for decision trees. InMachine learning:

Proceedings of the th international conference (pp. –).
California: Morgan Kaufmann.

Kubat, M., & Widmer, G. (). Adapting to drift in continuous

domains. In Proceedings of the eighth European conference on
machine learning (pp. –). Berlin: Springer.

Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., & Euler, T.

(). Yale: Rapid prototyping for complex data mining tasks.

In KDD ’: Proceedings of the th ACM SIGKDD inter-
national conference on knowledge discovery and data mining
(pp. –). New York: ACM.

Quinlan, J. R. (). Learning logical definitions from relations.

Machine Learning, , –.
Quinlan, J. R. (). C.: Programs for machine learning. Morgan

Kaufmann: San Mateo.

Salganicoff, M. (). Density adaptive learning and forgetting. In

Machine learning: Proceedings of the tenth international confer-
ence (pp. –). San Mateo: Morgan Kaufmann.

Schlimmer, J. C., & Granger, R. I., Jr. (a). Beyond incremen-

tal processing: Tracking concept drift. In Proceedings AAAI-
(pp. –). Los Altos: Morgan Kaufmann.

Schlimmer, J., & Granger, R., Jr. (b). Incremental learning from

noisy data. Machine Learning, (), –.
Turney, P. D. (a). Exploiting context when learning to classify.

In P. B. Brazdil (Ed.), European conference on machine learning

(pp. –). Berlin: Springer.

Turney, P. D. (b). Robust classification with context sensitive

features. In Paper presented at the industrial and engineering
applicatións of artificial intelligence and expert systems.

Turney, P., & Halasz, M. (). Contextual normalization applied

to aircraft gas turbine engine diagnosis. Journal of Applied
Intelligence, , –.

Wang, H., Fan, W., Yu, P. S., & Han, J. (). Mining concept-

drifting data streams using ensemble classifiers. In KDD ’:
Proceedings of the ninth ACM SIGKDD international conference
on knowledge discovery and data mining (pp. –). New
York: ACM.

Widmer, G. (). Recognition and exploitation of contex-

tual clues via incremental meta-learning. In L. Saitta (Ed.),

Machine learning: Proceedings of the th international workshop
(pp. –). San Francisco: Morgan Kaufmann.

Widmer, G., & Kubat, M. (). Effective learning in dynamic envi-

ronments by explicit concept tracking. In P. B. Brazdil (Ed.),

European conference on machine learning (pp. –). Berlin:
Springer.

Widmer, G., & Kubat, M. (). Learning in the presence of

concept drift and hidden contexts. Machine Learning, ,
–.

Concept Learning

Claude Sammut

�e University of New South Wales, Sydney, NSW,

Australia

Synonyms
Categorization; Classi�cation learning

Definition
�e term concept learning is originated in psychology,
where it refers to the human ability to learn categories

for object and to recognize new instances of those cate-

gories. In machine learning, concept is more formally

 C Concept Learning

de�ned as “inferring a boolean-valued function from

training examples of its inputs and outputs” (Mitchell,

).

Background
Bruner, Goodnow, and Austin () published their

book A Study of �inking, which became a landmark
in psychology and would later have a major impact on

machine learning.�e experiments reported by Bruner,

Goodnow, and Austin were directed toward under-

standing a human’s ability to categorize and how cate-

gories are learned.

▸ We begin with what seems a paradox. The world

of experience of any normal man is composed of a

tremendous array of discriminably different objects,

events, people, impressions. . . But were we to uti-

lize fully our capacity for registering the differences in

things and to respond to each event encountered as

unique, we would soon be overwhelmed by the com-

plexity of our environment. . . The resolution of this

seeming paradox. . . is achieved by man’s capacity to

categorize. To categorize is to render discriminably dif-

ferent things equivalent, to group objects and events

and people around us into classes. . . The process of

categorizing involves. . . an act of invention. . . If we

have learned the class “house” as a concept, new exem-

plars can be readily recognised. The category becomes

a tool for further use. The learning and utilization of

categories represents one of the most elementary and

general forms of cognition by which man adjusts to his

environment.

�e �rst question that they had to deal with was that

of representation: what is a concept? �ey assumed

that objects and events could be described by a set

of attributes and were concerned with how inferences

could be drawn from attributes to class membership.

Categories were considered to be of three types: con-

junctive, disjunctive, and relational.

▸ . . .when one learns to categorize a subset of events in a

certain way, one is doing more than simply learning to

recognise instances encountered. One is also learning a

rule that may be applied to new instances. The concept

or category is basically, this “rule of grouping” and it is

such rules that one constructs in forming and attaining

concepts.

�e notion of a rule as an abstract representation of a

concept in�uenced research in machine learning. For

example, 7decision tree learning was used as a means
of creating a cognitivemodel of concept learning (Hunt,

Martin, & Stone, ).�is model later inspired Quin-

lan’s development of ID (Quinlan, ).

�e learning experiencemay be in the formof exam-

ples from a trainer or the results of trial and error.

In either case, the program must be able to repre-

sent its observations of the world, and it must also be

able to represent hypotheses about the patterns it may

�nd in those observations. �us, we will o�en refer to

the 7observation language and the 7hypothesis lan-
guage. �e observation language describes the inputs

and outputs of the program and the hypothesis language

describes the internal state of the learning program,

which corresponds to its theory of the concepts or

patterns that exist in the data.

�e input to a learning program consists of descrip-

tions of objects from the universe and, in the case of

7supervised learning, an output value associated with
the example. �e universe can be an abstract one, such

as the set of all natural numbers, or the universe may

be a subset of the real world. No matter which method

of representation we choose, descriptions of objects in

the real world must ultimately rely on measurements of

some properties of those objects.�ese may be physical

properties such as size, weight, and color or they may

be de�ned for objects, for example, the length of time a

person has been employed for the purpose of approv-

ing a loan. �e accuracy and reliability of a learned

concept depends on the accuracy and reliability of the

measurements.

A program is limited in the concepts that it can

learn by the representational capabilities of both obser-

vation and hypothesis languages. For example, if an

attribute/value list is used to represent examples for

an induction program, the measurement of certain

attributes and not others clearly places bounds on the

kinds of patterns that the learner can �nd. �e learner

is said to be biased by its observation language (see
7Language Bias). �e hypothesis language also places
constraints on what may and may not be learned. For

Concept Learning C 

C

example, in the language of attributes and values, rela-

tionships between objects are di�cult to represent.

Whereas, amore expressive language, such as �rst-order

logic, can easily be used to describe relationships.

Unfortunately, representational power comes at a

price. Learning can be viewed as a search through the

space of all sentences in a language for a sentence that

best describes the data. �e richer the language, the

larger is the search space. When the search space is

small, it is possible to use “brute force” search methods.

If the search space is very large, additional knowledge is

required to reduce the search.

Rules, Relations, and Background
Knowledge
In the early s, there was no discipline called

“machine learning.” Instead, learning was considered to

be part of “pattern recognition,” which had not yet split

from AI. One of the main problems addressed at that

timewas how to represent patterns so that they could be

recognized easily. Symbolic description languages were

developed to be expressive and learnable.

Banerji (, ) �rst devised a language, which

he called a “description list,” which utilized an object’s

attributes to perform pattern recognition. Pennypacker,

a masters student of Banerji at the Case Institute of

Technology, implemented the recognition procedure

and also used Bruner, Goodnow, and Austin’s Conser-
vative Focussing Strategy to learn conjunctive concepts
(Pennypacker, ). Bruner, Goodnow, and Austin

describe the strategy as follows:

▸ . . . this strategy may be described as finding a positive

instance to serve as a focus, then making a sequence

of choices each of which alters but one attribute value

[of the focus] and testing to see whether the change

yields a positive or negative instance. Those attributes

of the focus which, when changed, still yield positive

instance are not part of the concept. Those attributes of

the focus that yield negative instances when changed

are features of the concept.

�e strategy is only capable of learning conjunctive con-
cepts, that is, the concept description can only consist
of a simple conjunction of tests on attribute values.

Recognizing the limitations of simple attribute/value

representations, Banerji () introduced the use of

predicate logic as a description language. �us, Banerji

was one of the earliest advocates of what would, many

years later, become Inductive Logic Programming.
In the s, a series of algorithms emerged that

developed concept learning further. Winston’s ARCH

program (Winston, ) was in�uential as one of

the �rst widely known concept learning programs.

Michalski (, ) devised the Aq family of learn-

ing algorithms that set some of the early benchmarks for

learning programs. Early relational learning programs

were developed by Hayes-Roth (), Hayes-Roth and

McDermott (), and Vere (, ).

Banerji emphasized the importance of a description

language that could “grow.”�at is, its descriptive power

should increase as new concepts are learned.�ese con-

cepts become background knowledge for future learn-

ing. A simple example from Banerji () illustrates

the use of background knowledge. �ere is a language

for describing instances of a concept and another for

describing concepts. Suppose we wish to represent the

binary number, , by a le�-recursive binary tree of

digits “” and “”:

[head : [head : ; tail : nil]; tail : ]

“head” and “tail” are the names of attributes. �eir val-

ues follow the colon. �e concepts of binary digit and

binary number are de�ned as

x ∈ digit ≡ x =  ∨ x = 
x ∈ num ≡ (tail(x) ∈ digit ∧ head(x) = nil)

∨ (tail(x) ∈ digit ∧ head(x) ∈ num)

�us, an object belongs to a particular class or concept

if it satis�es the logical expression in the body of the

description. Note that the concept above is disjunctive.
Predicates in the expression may test the membership

of an object in a previously learned concept and can

express relations between objects. Cohen and Sammut
() devised a learning systembased onBanerji’s ideas

of a growing concept description language and this was

further extended by Sammut and Banerji ().

Concept Learning and Noise
One of the most severe drawbacks of early concept

learning systems was that they assumed that data sets

 C Conditional Random Field

were not noisy. �at is, all attribute values and class

labels in the training data are assumed to be correct.

�is is unrealistic in most real applications. �us, con-

cept learning systems began incorporating statistical

measures to minimize the e�ects of noise and to esti-

mate error rates (Breiman, Friedman, Olshen, & Stone,

; Cohen, ; Quinlan, , ).

Learning to classify objects from training examples

has gone on to become one of the central themes of

machine learning research. As the robustness of classi-

�cation systems has increased, they have found many

applications, particularly in data mining but in a broad

range of other areas.

Cross References
7Data Mining
7Decision Tree Learning
7Inductive Logic Programming
7Learning as Search
7Relational Learning
7Rule Learning

Recommended Reading
Banerji, R. B. (). An information processing program for object

recognition. General Systems, , –.
Banerji, R. B. (). The description list of concepts. Commu-

nications of the Association for Computing Machinery, (),
–.

Banerji, R. B. (). A Language for the Description of Concepts.

General Systems, , –.
Banerji, R. B. (). Artificial intelligence: A theoretical approach.

New York: North Holland.

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. ().

Classification and regression trees. Belmont, CA: Wadsworth.
Bruner, J. S., Goodnow, J. J., & Austin, G. A. (). A study of

thinking. New York: Wiley.
Cohen, B. L., & Sammut, C. A. (). Object recognition and con-

cept learning with CONFUCIUS. Pattern Recognition Journal,
(), –.

Cohen, W. W. (). In fast effective rule induction. In Proceedings
of the twelfth international conference on machine learning, Lake
Tahoe, California. Menlo Park: Morgan Kaufmann.

Hayes-Roth, F. (). A structural approach to pattern learning

and the acquisition of classificatory power. In First interna-
tional joint conference on pattern recognition (pp. –).
Washington, D.C.

Hayes-Roth, F., &McDermott, J. (). Knowledge acquisition from

structural descriptions. In Fifth international joint conference
on artificial intelligence (pp. –). Cambridge, MA.

Hunt, E. B., Marin, J., & Stone, P. J. (). Experiments in induction.
New York: Academic.

Michalski, R. S. (). Discovering classification rules using

variable valued logic system VL. In Third international
joint conference on artificial intelligence (pp. –).

Stanford, CA.

Michalski, R. S. (). A theory and methodology of inductive

learning. In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell

(Eds.), Machine learning: An artificial intelligence approach.
Palo Alto: Tioga.

Mitchell, T. M. (). Machine learning. New York: McGraw-Hill.
Pennypacker, J. C. (). An elementary information processor

for object recognition. SRC No. -I--. Case Institute of

Technology.

Quinlan, J. R. (). Learning efficient classification procedures

and their application to chess end games. In R. S. Michalski,

J. G. Carbonell, & T. M. Mitchell (Eds.), Machine learning: An
artificial intelligence approach. Palo Alto: Tioga.

Quinlan, J. R. (). The effect of noise on concept learning. In

R. S. Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.),Machine
learning: An artificial intelligence approach (Vol. ). Los Altos:
Morgan Kaufmann.

Quinlan, J. R. (). C.: Programs for machine learning. San
Mateo, CA: Morgan Kaufmann.

Sammut, C. A., & Banerji, R. B. (). Learning concepts by asking

questions. In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell

(Eds.), Machine learning: An artificial intelligence approach
(Vol. , pp. –). Los Altos, CA: Morgan-Kaufmann.

Vere, S. (). Induction of concepts in the predicate calculus. In

Fourth international joint conference on artificial intelligence
(pp. –). Tbilisi, Georgia, USSR.

Vere, S. A. (). Induction of relational productions in the pres-

ence of background information. In Fifth international joint
conference on artificial intelligence. Cambridge, MA.

Winston, P. H. (). Learning structural descriptions from exam-

ples. Unpublished PhD Thesis, MIT Artificial Intelligence

Laboratory.

Conditional Random Field

A Conditional Random Field is a form of 7Graphical
Model for segmenting and7classifying sequential data.
It is the 7discriminative learning counterpart to the
7generative learning Markov Chain model.

Recommended Reading
Lafferty, J., McCallum, A., & Pereira, F. (). Conditional ran-

dom fields: Probabilistic models for segmenting and labeling

sequence data. In Proceedings of the th international confer-
ence on machine learning (pp. –). San Francisco, Morgan
Kaufmann.

Conjunctive Normal Form C 

C

Confirmation Theory

�e branch of philosophy concerned with how (and

indeed whether) evidence can con�rm a hypothesis,

even though typically it does not entail it. A distinc-

tion is sometimes drawn between total con�rmation:
how well con�rmed a hypothesis is, given all avail-

able evidence and weight-of-evidence: the amount of
extra con�rmation added to the total con�rmation of a

hypothesis by a particular piece of evidence. Con�rma-

tion is o�enmeasured by the probability of a hypothesis

conditional on evidence.

Confusion Matrix

Kai Ming Ting

Monash University, Australia

Definition
A confusion matrix summarizes the classi�cation per-

formance of a 7classi�er with respect to some 7test
data. It is a two-dimensional matrix, indexed in one

dimension by the true class of an object and in the other

by the class that the classi�er assigns. Table  presents an

example of confusion matrix for a three-class classi�ca-

tion task, with the classes A, B, and C.
�e �rst row of the matrix indicates that  objects

belong to the class A and that  are correctly classi�ed
as belonging to A, two misclassi�ed as belonging to B,
and one as belonging to C.
A special case of the confusion matrix is o�en uti-

lized with two classes, one designated the positive class
and the other the negative class. In this context, the four
cells of thematrix are designated as7true positives (TP),
7false positives (FP), 7true negatives (TN), and 7false
negatives (FN), as indicated in Table .
A number of measures of classi�cation perfor-

mance are de�ned in terms of these four classi�cation

outcomes.

7Speci�city =7True negative rate = TN/(TN + FP)
7Sensitivity = 7True positive rate = 7Recall = TP/

(TP + FN)

Confusion Matrix. Table  An example of three-class

confusion matrix

Assigned Class

A B C

A   

B   

A
ct

ua
lC

la
ss

C   

Confusion Matrix. Table  The outcomes of classification

into positive and negative classes

Assigned Class

Positive Negative

Positive TP FN

A
ct

ua
l

C
la

ss
Negative FP TN

7Positive predictive value = 7Precision = TP/(TP +
FP)

7Negative predictive value = TN/(TN + FN)

Conjunctive Normal Form

Bernhard Pfahringer

University of Waikato, Hamilton, New Zealand

Conjunctive normal form (CNF) is an important nor-

mal form for propositional logic. A logic formula is in

conjunctive normal form if it is a single conjunction

of disjunctions of (possibly negated) literals. No more

nesting and no other negations are allowed. Examples

are:

a
¬b
a ∧ b
(a ∨ ¬b) ∧ (c ∨ d)
¬a ∧ (b ∨ ¬c ∨ d) ∧ (a ∨ ¬d)

 C Connection Strength

Any arbitrary formula in propositional logic can be

transformed into conjunctive normal form by applica-

tion of the laws of distribution, De Morgan’s laws, and

by removing double negations. It is important to note

that this process can lead to exponentially larger formu-

las which implies that the process in the worst case runs

in exponential time. An example for this behavior is the

following formula given in 7disjunctive normal form
(DNF), which is linear in the number of propositional

variables in this form. When transformed into con-

junctive normal form (CNF), its size is exponentially

larger.

DNF: (a ∧ a) ∨ (a ∧ a) ∨ . . . ∨ (an ∧ an+)

CNF: (a ∨ a ∨ . . . ∨ an) ∧ (a ∨ a ∨ . . . ∨ an)
∧ . . . ∧ (a ∨ a ∨ . . . ∨ an+)

Recommended Reading
Russell, S., & Norvig, P. (). Artificial intelligence: A modern

approach (p. ). Prentice Hall

Connection Strength

7Weight

Connections Between Inductive
Inference and Machine Learning

John Case, Sanjay Jain

University of Delaware, Newark, USA
National University of Singapore, Singapore, Republic

of Singapore

Definition
Inductive inference is a theoretical framework to model

learning in the limit. Here we will discuss some results

in inductive inference, which have relevance tomachine

learning community.

�emathematical/theoretical area called7Inductive
Inference, is also known as computability theoretic learn-
ing and learning in the limit (Jain, Osherson, Royer, &

Sharma, ; Odifreddi, ) typically but, as will be
seen below, not always involves a situation depicted in ()
just below.

Data d,d,d, . . .
InÐ→M OutÐ→ Programs e, e, e,

()

Let N = the set of nonnegative integers. Strings,
including program strings, computer reals, and other

data structures, inside computers, are �nite bit strings

and, hence, can be coded intoN.�erefore, mathemati-
cally at least, it is without loss ofmathematical generality

that we sometimes use the data type N where standard
practice would use a di�erent type.

In (), d,d,d, . . . can be, e.g., the successive values
of a function f : N → N or the elements of a (for-
mal) language L ⊆ N in some order; M is a machine;
the ei’s are from some hypothesis space of programs;
and, for M’s successful learning, later ei’s exactly or
approximately compute the f or L.
Such learning is o�-line: in successful cases, one

comes away with programs for past and future data.

For the related problem of online extrapolation of
next values for a function f , suitable ei’s may be the
values of f (i)’s based on having seen strictly prior
values of f .

Detail
We will discuss the o�-line case until we say otherwise.

It is typical in applied machine learning to present to a

learner whatever data one has and to obtain one corre-
sponding program hopefully for predicting these data

and future data. In inductive inference the case where

only one program is output is called one-shot learn-
ing. More typically, in inductive inference, one allows

for mind-changes, i.e., for a succession of output pro-
grams, as one receives successively more input data,

with the later programs hopefully eventually being use-

ful for predictions. Typically, one does not get success

on one’s �rst conjecture/output program, but rather, one

may achieve success eventually, or, as it is said, in the
limit a�er some sequence of trial and error. It is help-
ful at this juncture to present a problem for which this

latter approach makes more sense than the one-shot

approach.

Wewill consider some di�erent criteria of successful

learning of f or L by M. For example, Ex-style criteria

Connections Between Inductive Inference and Machine Learning C 

C

will require that all but �nitely many of the ei’s are syn-
tactically the same and do a reasonable job of computing
the f or L.Bc-style criteria are more relaxed, more pow-
erful, but less useful (Bārzdiņš, ; Case&Lynes, ;

Case & Smith, ): they do not require almost all ei’s
be the same syntactically.

Here is a well-known regression technique from,

e.g., (Hildebrand, ), for exactly “curve-�tting” poly-

nomials. It is the method involving calculating forward
di�erences. We express it as a learning machineM and
illustrate with its being fed an example data sequence
generated by a cubic polynomial

x − x + x + . ()

See (Hildebrand, ), for how to recover the poly-

nomials themselves.

M, fed a �nite data sequence of natural numbers,
�rst looks for iterated forward di�erences to become

(apparently) constant, then outputs a rule/program,

which uses the (apparent) constant to extrapolate the

data sequence for any desired prediction. For exam-

ple, were M given the data sequence in the top row
of Table , it would calculate  to be the apparent con-

stant a�er three di�erencings, so M then outputs the
following informal rule/program.

▸ To generate the level  sequence, at level , start with ;

at level , start with ; at level , start with ; add

the apparent constant  from level  to get succes-

sive level  data items; add successive level  items to

get successive level  data items; finally, add successive

level  items to get as many successive level  data items

as needed for prediction.

�is program, eventually output by M when its
input the whole top row of Table , correctly predicts

Connections Between Inductive Inference and Machine

Learning. Table  Example Sequence and Its Iterated

Forward Differences

Sequence:     

st Diffs:    

nd Diffs:   

rd Diffs:  

the elements of the cubic polynomial, on successive val-

ues inN – the whole sequence , , , , , , ,
Along the way, though, just a�er the �rst data point,

M thinks the apparent constant is ; just a�er the sec-
ond that it is ; just a�er the third that it is ; and only

a�er more of the data points does it converge for this

cubic polynomial to the apparent (and, on this exam-
ple, actual) constant . In general,M, on a polynomial
of degree m, changes its mind up to m times until con-
verging to its �nal program (of course on f (x) = x,M
never converges, and each level of forward di�erences is

just the sequence f again.).
Hence, M above Ex-learns, e.g., the integer poly-

nomials f : N → N, but it does not in general one-shot
learn these polynomials – since the data alone do not

disclose the degree of a generating polynomial.

In this entry we survey some results from inductive

inference but with an eye to topics having something to

say regarding or to applied machine learning. In some

cases, the theoretical results lend mathematical support

to preexisting empirical observations about the e�cacy

of known machine learning techniques. In other cases,

the theoretical results provide some, typically abstract,

suggestions for the machine learning practitioner. In

some of these cases, some of the suggestions apparently

pay o� in others, intriguingly, we do not know yet.

Multi-Task or Context Sensitive Learning
In empirical, applied machine learning, multitask or
context sensitive learning involves trying to learn Y by
�rst (de Garis, a, b; Fahlman, ; �run, ;

�run & Sullivan, ; Tsung & Cottrell, ; Waibel,

a, b) or simultaneously (Caruana, , ; Diet-
terich, Hild, & Bakiri, ; Matwin & Kubat, ;

Mitchell, Caruana, Freitag, McDermott, & Zabowski,

; Pratt,Mostow,&Kamm, ; Sejnowski&Rosen-

berg, ; Bartlmae, Gutjahr, & Nakhaeizadeh, )

trying to learn also X – even in cases where there may
be no inherent interest in learningX (see also7Transfer
Learning). �ere is, in many cases, an apparent empiri-
cal advantage in doing this for some X,Y . It can happen
thatY is not apparently or easily learnable by itself, but is
learnable if one learns X �rst or simultaneously in some
case X itself can be a sequence of tasks X, . . . ,Xn. Here
the Xis may need to be learned sequentially or simulta-
neously to learnY . For example, to teach a robot to drive

 C Connections Between Inductive Inference and Machine Learning

a car, it is useful to train it also to predict the center of

the road markings (see, e.g., Baluja & Pomerleau, ;

Caruana, ). For another example: an experimental

system to predict the value of German Daimler stock
performed better when it wasmodi�ed to track simulta-

neously the German stock-index DAX (Bartlmae et al.,

). �e value of the Daimler stock here was the pri-

mary or target concept and the value of the DAX – a

related concept – provided useful auxiliary context.

Angluin, Gasarch, and Smith () shows mathe-
matically that, in e�ect, there are (mathematical) learn-
ing scenarios for which it was provable that Y could
not be learned without learning X �rst – and, in other
scenarios (Angluin et al., ; Kinber, Smith, Velau-

thapillai, & Wiehagen, ), Y could not be learned
without simultaneously learning X. �ese mathemati-
cal results provide a kind of evidence that the empirical
observations as to the apparent usefulness of multitask
or context sensitive learning may not be illusionary,
luck, or a mere accident of happening to use some data

sets but not others.

For illustration, here is a particularly simple theoret-

ical example needing to be learned simultaneously and
similar to examples in Angluin et al. (). Let R be
the set of all computable functions mappingN toN. We
use numerical names in N for programs. Let

S = {(f , g) ∈ R ×R ∣ f () is a program for
g ∧ g() is a program for f }. ()

We say (p, q) is a program for (f , g) ∈ R × R i�
p is a program for f and q is a program for g.
Consider a machine M which, if, as in (), M is

fed d,d, . . ., but where each di is (f (i), g(i)), then
M outputs each ei = (g(), f ()). Clearly, M one-

shot learns S . It can be easily shown that the compo-
nent f ’s and g’s for (f , g) ∈ S are not separately even
Bc-learnable. It is important to note that, perhaps quite
unlike real-world problems, the de�nition of this exam-

ple S employs a simple self-referential coding trick:
useful programs are coded into values of the functions at

argument zero. A number of inductive inference results

have been proved by means of (sometimes more com-

plicated) self-referential coding tricks (see, e.g., Case,

). Bārzdiņš indirectly (see Zeugmann, ) pro-

vided a kind of informal robustness idea in his attempt

to be rid of such coding tricks in inductive inference.

More formally, Fulk () considered a learnability

result involving a witnessing class C of (tuples of) func-
tions to be robust i� each computable scrambling of C
also witnesses the learnability result (the allowed com-

putable scramblers are the general recursive operators of
(Rogers, ), but we omit the formal details herein.)

Example: A simple shi� scrambler converting each f to
f ′, where f ′(x) = f (x + ), would eliminate the cod-
ing tricks just above – since the values of f at argument
zero would be lost in this scrambling. Some inductive

inference results hold robustly and some not (see, e.g.,

Fulk, ; Jain, ; Jain, Smith, & Wiehagen, ;

Jain et al., ; Case, Jain, Ott, Sharma, & Stephan,

). Happily, the S ⊆ R × R above (that is, learn-
able, but its components not) can be replaced by a more

complicated class S ′ that robustly witnesses the same
result. �is is better theoretical evidence that the empir-
ically noticed e�cacy of multitask or context sensitive

learning is not just an accident. It is residually impor-

tant to note that (Jain et al., ) shows, though, that

the computable scramblers can not get rid of more

sophisticated coding tricks they called topological.

S ′ mentioned just above turns out to employ this latter
kind of coding trick. It is hypothesized in (Case et al.,

) that nature likely employs some sophisticated

coding tricks itself. For a separate informal argument

about coding tricks of nature, see (Case, ). Ott and

Stephan () introduces a �nite invariance constraint

on top of robustness. �is so-called hyperrobustness

does destroy all coding tricks, and the result about

the theoretical e�cacy of multitask or context sensitive
learning is not hyperrobust. However, hyperrobustness,
perhaps, leaves unrealistically sparse structure.

Final note: Machine learning is an engineering

endeavor. However, philosophers of science as well as

practitioners in classical scienti�c disciplines should

likely be considering the relevance of multitask or con-

text sensitive inductive inference to their endeavors.

Special Cases of Inductive Logic
Programming
In this section we discuss some learning in the limit
results for elementary formal systems (EFSs) (Smullyan,
). Essentially, EFSs are programs in a string rewrit-

ing system. It is well known (Arikawa, Shinohara, &

Yamamoto, ) that EFSs are essentially (pure) logic

Connections Between Inductive Inference and Machine Learning C 

C

programs over strings. Hence, the results have possi-

ble relevance for 7inductive logic programming (ILP)
(Bratko & Muggleton, ; Lavrač & Džeroski, ;

Mitchell, ; Muggleton & De Raedt, ).

First we will discuss some important special cases

based on Angulin’s pattern languages (Angluin, ).
A pattern language is (by de�nition) one generated

by all the positive length substitution instances in a

pattern, such as,
abXYcbbZXa ()

— where the variables (for substitutions) are depicted

in upper case and the constants/terminals in lower case

and are from, say, the alphabet {a,b,c}. Just below is an

EFS or logic program based on this example pattern.

abXYcbbZXa← . ()

It must be understood, though, that in () and in the

next example EFS below, only positive length strings are

allowed to be substituted for the variables.

Angluin () showed the Ex-learnability of the
class of pattern languages from positive data. For these

results, in the paradigm of () above d,d,d, . . . is a
listing or presentation of some formal language L over
a �nite nonempty alphabet and the ei’s are programs
that generate languages. In particular, for Angluin’s M,
for L a pattern language, the ei’s are patterns, and, for
each presentation of L, all but �nitely many of the
corresponding ei’s are the same correct pattern for L.
Much work has been done on the learnability

of pattern languages, e.g., Salomaa (a, b); Case,

Jain, Kaufmann, Sharma, and Stephan (), and on

bounded �nite unions thereof, e.g., Shinohara ();

Wright (); Kilpeläinen, Mannila, and Ukkonen

(); Brazma, Ukkonen, and Vilo (); Case, Jain,

Lange, and Zeugmann ().

Regarding bounded �nite unions of pattern lan-

guages: an n-pattern language is the union of the pattern
languages for somenpatternsP, . . . ,Pn. Eachn-pattern
language is also Ex-learnable from positive data (see
Wright ()). An EFS or logic program corresponding

to the n-patterns P, . . . ,Pn and generating the corre-
sponding n-pattern language is just below.

P ← .
⋮

Pn ← .

Pattern language learning algorithms have been suc-

cessfully applied toward some problems in molecular

biology, see, e.g., Shimozono et al. (), Shinohara and

Arikawa ().

Lange and Wiehagen () presents an interest-

ing iterative (Wiehagen, ) algorithm learning the
class of pattern languages – from positive data only and

with polynomial time constraints. Iterative learners are
Ex-learners for which each output depends only on its
just prior output (if any) and the input data element

currently seen. �eir algorithm works in polynomial

time (actually quadratic time) in the length of the lat-

est data item and the previous hypothesis. Furthermore,

the algorithm has a linear set of good examples, in the

sense that if the input data contains these good exam-

ples, then the algorithm already converges to the correct

hypothesis. �e number of good examples needed is at

most ∣P∣ + , where P is a pattern generating the data
d,d,d, . . . for the language being learned. �is algo-
rithm may be useful in practice due to its fast run time,

and being able to converge quickly, if enough good data
is available early. Furthermore, due to iterativeness, it

does not need to store previous data!

Zeugmann () considers total learning time up
to convergence of the algorithm just discussed in the

just prior paragraph. Note that, for arbitrary presen-

tations, d,d,d, . . ., of a pattern language, this time
can be unbounded. In the best case it is polynomial in

the length of a generating pattern P, where d,d,d, . . .
is based on using P to get good examples early – in
fact the time taken in the best case is Θ(∣P∣logs(s +
k)), where P is the pattern, s is the alphabet size, and
k is the number of variables in P. Much more inter-
esting is the case of average time taken up to con-
vergence. �e probability distribution (called uniform
by Zeugmann) considered is as follows. A variable

X is replaced by a string w with probability 

(s)∣w∣
(i.e., all strings of length r together have probabil-
ity −r, and the distribution is uniform among strings

of length r). Di�erent variables are replaced indepen-
dently of each other. In this case the average total

time up to convergence is O(kks∣P∣logs(ks)). �e
main thing is that for average case on probabilistic data

(as can be expected in real life, though not necessar-

ily with this kind of uniform distribution), the algo-

rithm converges pretty fast and computations are done

e�ciently.

 C Connections Between Inductive Inference and Machine Learning

A number of papers consider Ex-learning of EFSs
(Krishna Rao, ; Krishna Rao, , , ;

Krishna Rao & Sattar, ) including with various

bounds on the number of mind-changes until syntactic

convergence to correct programs (Jain & Sharma, ,

). �e EFSs considered are patterns, n-patterns,

those with a constant bound on the length of clauses,

and some with constant bounds on search trees. �e

mind-change bounds are typically more dynamic than

those given by constants: they involve counting down

from�nite representations (called notations) for in�nite
constructive ordinals.An example of this kind of bound:
one can algorithmically, based on some input parame-

ters, decide how many mind-changes will be allowed.

In other examples, the decision as to how many mind-
changes will be allowed can be algorithmically revised

some constant number of times. It is possible that not

yet created special cases of some of these algorithms

could be made feasible enough for practice.

Learning Drifting Concepts
A dri�ing concept to be learned is one which is a

moving target (see 7Concept Dri�). In some machine
learning applications, concept dri� must be dealt with

(Bartlett, Ben-David, & Kulkarni, ; Blum & Cha-

lasani, ; Devaney & Ram, ; Freund &Mansour,

; Helmbold and Long, ; Kubat, ; Widmer

& Kubat, ; Wrobel, ). An inductive inference

contribution is (Case et al., ) in which it is shown,

for online extrapolation by computable martingale bet-
ting strategies, upper bounds on the “speed” of the

moving target that permit success at all. Here success

is to make unbounded amounts of “money” betting

on correctness of ones extrapolations. Here is an illus-

trative result from (Case et al., ). For the pattern

languages considered in the previous section, only pos-
itive length strings of terminals can be substituted for
a variable in an associated pattern. �e (di�cult to

learn) pattern languages with erasing are just the lan-
guages obtained by also allowing the substitution of

the empty string for variables in a pattern. For our

example, we restrict the terminal alphabet to be {,}.

With each pattern language with erasing L (over this
terminal alphabet) we associate its characteristic func-

tion χL, which is  on terminal strings in L and 
on those not in L. For ε denoting the empty string,

and for the terminal strings in length-lexicographical

order, ε, , , , , , , , . . ., we would input a χL
itself to a potential extrapolating machine as the bit

string, χL(ε), χL(), χL(), χL(), χL(), Let E be
the class of these characteristic functions. Pick a posi-

tive integer constant p. To model dri� with permanence
p, we imagine that a potential extrapolator for E receives
successive bits from a member of E but keeps switching
to the next bits of another, etc., but it must see at least p
bits in a row of eachmember of E it sees before it can see
the next bits of another. p is, then, a speed limit on dri�.
�e result is that some suitably clever computable mar-

tingale betting strategy is successful at extrapolating E
with dri� permanence (speed limit on dri�) of p = .

Behavioral Cloning
Kummer and Ott (); Case, Ott, Sharma, and

Stephan () studied learning in the limit of winning

control strategies for closed computable games. �ese
games nicely model reactive process-control problems.
Included are such example process-control games as

regulating temperature of a room to be in a desired

interval, forever a�er no more than some �xed number
ofmoves between the thermostat and processes disturb-

ing the temperature (Roughly, closed computable games
are those so that one can tell algorithmically when one

has lost. A temperature control game that requires sta-

bility forever a�er some undetermined �nite number of
moves is not a closed computable game. For a more for-
mal treatment, see Cenzer and Remmel (); Maler,

Pnueli, and Sifakis ();�omas (); Kummer and

Ott ()).

In machine learning, there are cases where one

wants to teach amachine somemotor skill possessed by

human experts and where these human experts do not

have access to verbalizable knowledge about how they

perform expertly. Piloting an aircra� or expert opera-

tion of a swinging shipyard crane provide examples, and

machine learning employs, in these cases, 7behavioral
cloning, which uses direct performance data from the
experts (Bain & Sammut, ; Bratko, Urbančič, &

Sammut, ; Šuc, ).

Case et al. () studies the e�ects on learning in

the limit closed computable games where the learning
procedures also had access to the behavioral perfor-
mance (but not the algorithms) ofmasters/experts at the

Connections Between Inductive Inference and Machine Learning C 

C

games. For example, it is showed that, in some cases,

there is better performance cloning n+  disparate mas-
ters over cloning only n. For a while it was not known
in machine learning how to clone multiple experts even
a�er Case et al. () was known to some; however,

independently of Case et al., , and later, Dorian

Šuc (Šuc, ) found a way to clone behaviorally more

than one human expert simultaneously (for the free-

swinging shipyard crane problem) – by having more

than one level of feedback control, and he got enhanced
performance from cloning the multiple experts!

Learning To Coordinate
Montagna and Osherson () begins the study of

learning in the limit to coordinate (digital) moves
between at least two agents.

�e machines of Montagna and Osherson ()

are, in e�ect, general extrapolating devices (Montagna

& Osherson, ; Case et al., ). Technically, and

without loss of generality of the results, we restrict the

moves of each coordinator to bits, i.e., zeros and ones.

Coordination is achieved between two coordinators i�
each, reacting to the bit sequence of the other, eventually

(in the limit)matches it bit for bit.Montagna andOsher-

son () gives an example of two people who show up

in a park each day at one of noon (bit ) or pm (bit );

each silently watches the other’s past behavior; and each
tries, based on the past behavior of the other, to show
up eventually exactly when the other shows up. If they

manage it, they have learned to coordinate.

A blind coordinator is one that reacts only to the
presence of a bit from another process, not to which bit
the other process has played (Montagna and Osherson,

).

In Case et al. () is developed and studied the

notion of probabilistically correct algorithmic coor-

dinators. Next is a sample of theorems to the e�ect

that just a few random bits can enhance learning to

coordinate.

�eorem  (Case et al., ) Suppose  ≤ p < .�ere
exists a class of deterministic algorithmic coordinators

C such that

() No deterministic algorithmic coordinator can
coordinate with all of C; and

() For k chosen so that  − −k ≥ p, there exists
a blind, probabilistic algorithmic coordinator PM,
such that:

(i) For each member of C, PM can coordinate
with with probability  − −k ≥ p; and

(ii) PM is k-memory limited in the sense of
(Osherson, Stob, & Weinstein, , P. );

more speci�cally, PM needs to remember

whether it is outputting one of its �rst

k bits — which are its only random bits (e.g.,
for p = 


, a mere k =  random bits

su�ce.).

Regarding possible eventual applicability: Maye,

Hsieh, Sugihara, and Brembs () cites �nding deter-

ministic chaos but not randomness in the behavior of
animals. Hence, animals may not be exploiting random
bits in learning anything, including to coordinate. How-

ever, one might build artifactual devices to exploit ran-

domness, say, from radioactive decay, including, then,

for enhancing learning to coordinate.

Learning Geometric Clustering
Case, Jain, Martin, Sharma, and Stephen () showed

that learnability in the limit of 7clustering, with or
without additional information, depends strongly on

geometric constraints on the shape of the clusters. In

this approach the hypothesis space of possible clusters is

pre-given in each setting. It was hoped to obtain thereby

insight into the di�culty of clustering when the clus-

ters are restricted to preassigned geometrically de�ned
classes.

�is is interestingly complementary to the con-
ceptual clustering approach (see, e.g., Mishra, Ron, &
Swaminathan, ; Pitt & Reinke, ) where one

restricts the possible clusters to have good “verbal”

descriptions in some language.

Clustering of many of the geometric classes investi-

gated was shown to require information in addition to a
presentation, d,d,d, . . ., of the set of points to be clus-
tered. For example, for clusters as convex hulls of �nitely

many points in a rational vector space, clustering can

be done – but with the number of clusters as additional

information. Let S consist of all polygons including
their interiors – in the rational two-dimensional plane

without intersections and degenerated angles (Attention
was restricted to spaces of rationals since: . computer

 C Connections Between Inductive Inference and Machine Learning

reals are rationals, . this avoids the uncountability

of the set of reals, and . this avoids dealing with

uncomputable real points.) �e class S can be clus-
tered – but with the number of vertices of the polygons

of the clusters involved as additional information.

Correspondingly, then, it was shown that the class

S ′ containingS together with all such polygons but with
one hole (the nondegenerate di�erences of two mem-

bers in S) cannot be clustered with the number of ver-
tices as additional information, yet S ′ can be clustered
with area as additional information – and this even in
higher dimensions and with any number of holes (Case

et al., ).

It remains to be seen if some forms of geometrically

constrained clustering can be usefully complementary

to, say, conceptually/verbally constrained clustering.

Insights for Limitations of Science
We brie�y treat below in some problems regarding par-

simonious, refutable, and consistent hypotheses.

It is common wisdom in science that one should

�t parsimonious explanations, hypotheses, or programs

to data. In machine learning, this has been successfully

applied, e.g., (Wallace, ; Wallace & Dowe, ).

Curiously, though, there are many results in induc-

tive inference in which we see sometimes severe

degradations of learning power caused by demanding
parsimonious predictive programs (see, e.g., Freivalds
(); Kinber (); Chen (); Case, Jain, and

Sharma (); Ambainis, Case, Jain, and Suraj ()).

It is an interesting problem to resolve the seeming,

likely not actual contradiction between the just prior

two paragraphs.

Popper’s Refutability (Popper, ) asserts that

hypotheses in science should be subject to refutation.

Besides the well-known di�culties of Duhem–Quine

(Harding, ) of knowing which component hypoth-

esis to throw out when a compound hypothesis badly

fails to make correct predictions, inductive inference

theorems have provided very di�erent di�culties. Case

and Smith () outlines cases of usefully incomplete
(hence wrong) hypothesis that cannot be refuted, and

Case and Suraj () (see also Case, ) provides

cases of inductively inferable higher order hypothesis

not totally subject to refutation in cases where ordi-

nary hypotheses subject to full refutation cannot be

inductively inferred.

While Duhem–Quine may impact machine learn-

ing eventually, it remains to be seen about the inductive

inference results of the just prior paragraph.

Requiring 7inductive inference procedures always
to output an hypothesis in various senses consistent
with (e.g., not ignoring) the data on which that hypoth-

esis is based seems like mere common sense. How-

ever, from Bārzdiņš (a); Blum and Blum ();

Wiehagen (), Case, Jain, Stephan, and Wiehagen

() we see that strict adherence to various con-

sistency principles can severely attenuate the learning

power of inductive inference machines. Furthermore,

interestingly, even when inductive inference is polytime
constrained, we see similar counterintuitive results to
the e�ect that a kind of consistency can strictly attenuate

learning power (Wiehagen & Zeugmann, ).

A machine learning analog might be Breiman’s bag-

ging (Breiman, ) and random forests (Breiman,

), where data is purposely ignored. However, in

these cases, the purpose of ignoring data is to avoid

over�tting to noise.

It remains to be seen, whether, in applied machine

learning involving cases of practically noiseless data,

one can also obtain some advantage in ignoring some

consistency principles. Again the potential lesson from

inductive inference is abstract and provides only a hint

of something to work out in real machine learning

problems.

Cross References
7Behavioural Cloning
7Clustering
7Concept Dri�
7Inductive Logic Programming
7Transfer Learning

Recommended Reading
Ambainis, A., Case, J., Jain, S., & Suraj, M. (). Parsimony hier-

archies for inductive inference. Journal of Symbolic Logic, ,
–.

Angluin, D., Gasarch, W., & Smith, C. (). Training sequences.

Theoretical Computer Science, (), –.
Angluin, D. (). Finding patterns common to a set of strings.

Journal of Computer and System Sciences, , –.
Arikawa, S., Shinohara, T., & Yamamoto, A. (). Learning ele-

mentary formal systems. Theoretical Computer Science, ,
–.

Bain, M., & Sammut, C. (). A framework for behavioural

cloning. In K. Furakawa, S. Muggleton, & D. Michie (Eds.),

Machine intelligence . Oxford: Oxford University Press.

Connections Between Inductive Inference and Machine Learning C 

C

Baluja, S., & Pomerleau, D. (). Using the representation in a neu-

ral network’s hidden layer for task specific focus of attention.

Technical Report CMU-CS--, School of Computer Science,
CMU, May . Appears in Proceedings of the  IJCAI.

Bartlett, P., Ben-David, S., & Kulkarni, S. (). Learning changing

concepts by exploiting the structure of change. In Proceedings
of the ninth annual conference on computational learning theory,
Desenzano del Garda, Italy. New York: ACM Press.

Bartlmae, K., Gutjahr, S., & Nakhaeizadeh, G. (). Incorporating

prior knowledge about financial markets through neural multi-

task learning. In Proceedings of the fifth international conference
on neural networks in the capital markets.

Bārzdiņš, J. (a). Inductive inference of automata, functions

and programs. In Proceedings of the international congress of
mathematicians, Vancouver (pp. –).

Bārzdiņš, J. (b). Two theorems on the limiting synthesis of

functions. In Theory of algorithms and programs (Vol. ,
pp. –). Latvian State University, Riga.

Blum, L., & Blum, M. (). Toward a mathematical theory of

inductive inference. Information and Control, , –.
Blum, A., & Chalasani, P. (). Learning switching concepts. In

Proceedings of the fifth annual conference on computational
learning theory, Pittsburgh, Pennsylvania, (pp. –). New
York: ACM Press.

Bratko, I., & Muggleton, S. (). Applications of inductive logic

programming. Communications of the ACM, (), –.
Bratko, I., Urbančič, T., & Sammut, C. (). Behavioural cloning

of control skill. In R. S. Michalski, I. Bratko, & M. Kubat (Eds.),

Machine learning and data mining: Methods and applications,
(pp. –). New York: Wiley.

Brazma, A., Ukkonen, E., & Vilo, J. (). Discovering unbounded

unions of regular pattern languages from positive examples.

In Proceedings of the seventh international symposium on algo-
rithms and computation (ISAAC’), Lecture notes in computer
science, (Vol. , pp. –), Berlin: Springer-Verlag.

Breiman, L. (). Bagging predictors. Machine Learning, (),
–.

Breiman, L. (). Random forests. Machine Learning, (), –.
Caruana, R. (). Multitask connectionist learning. In Proceedings

of the  connectionist models summer school (pp. –).
NJ: Lawrence Erlbaum.

Caruana, R. (). Algorithms and applications for multitask

learning. In Proceedings th international conference on
machine learning (pp. –). San Francisco, CA: Morgan
Kaufmann.

Case, J. (). Infinitary self-reference in learning theory. Journal
of Experimental and Theoretical Artificial Intelligence, , –.

Case, J. (). The power of vacillation in language learning. SIAM
Journal on Computing, (), –.

Case, J. (). Directions for computability theory beyond pure

mathematical. In D. Gabbay, S. Goncharov, &M. Zakharyaschev

(Eds.), Mathematical problems from applied logic II. New log-
ics for the XXIst century, International Mathematical Series,
(Vol. ). New York: Springer.

Case, J., & Lynes, C. (). Machine inductive inference and lan-

guage identification. In M. Nielsen & E. Schmidt, (Eds.), Pro-
ceedings of the th International Colloquium on Automata, Lan-
guages and Programming, Lecture notes in computer science,
(Vol. , pp. –). Berlin: Springer-Verlag.

Case, J., & Smith, C. (). Comparison of identification criteria for

machine inductive inference. Theoretical Computer Science, ,
–.

Case, J., & Suraj, M. (). Weakened refutability for machine

learning of higher order definitions, . (Working paper for

eventual journal submission).

Case, J., Jain, S., Kaufmann, S., Sharma, A., & Stephan, F. ().

Predictive learning models for concept drift (Special Issue for

ALT’). Theoretical Computer Science, , –.
Case, J., Jain, S., Lange, S., & Zeugmann, T. (). Incremental

concept learning for bounded data mining. Information and
Computation, , –.

Case, J., Jain, S., Montagna, F., Simi, G., & Sorbi, A. (). On learn-

ing to coordinate: Random bits help, insightful normal forms,

and competency isomorphisms (Special issue for selected learn-

ing theory papers from COLT’, FOCS’, and STOC’).

Journal of Computer and System Sciences, (), –.
Case, J., Jain, S., Martin, E., Sharma, A., & Stephan, F. (). Iden-

tifying clusters from positive data. SIAM Journal on Computing,
(), –.

Case, J., Jain, S., Ott, M., Sharma, A., & Stephan, F. (). Robust

learning aided by context (Special Issue for COLT’). Journal
of Computer and System Sciences, , –.

Case, J., Jain, S., & Sharma, A. (). Machine induction with-

out revolutionary changes in hypothesis size. Information and
Computation, , –.

Case, J., Jain, S., Stephan, F., & Wiehagen, R. (). Robust learn-

ing – rich and poor. Journal of Computer and System Sciences,
(), –.

Case, J., Ott, M., Sharma, A., & Stephan, F. (). Learning to win

process-control games watching gamemasters. Information and
Computation, (), –.

Cenzer, D., & Remmel, J. (). Recursively presented games and

strategies. Mathematical Social Sciences, , –.
Chen, K. (). Tradeoffs in the inductive inference of nearly

minimal size programs. Information and Control, , –.
de Garis, H. (a). Genetic programming: Building nanobrains

with genetically programmed neural network modules. In

IJCNN: International Joint Conference on Neural Networks,
(Vol. , pp. –). Piscataway, NJ: IEEE Service Center.

deGaris,H. (b).Geneticprogramming:Modularneuralevolution

for Darwinmachines. InM. Caudill (Ed.), IJCNN--WASHDC;
International joint conference on neural networks (Vol. , pp.
–). Hillsdale, NJ: Lawrence Erlbaum Associates.

de Garis, H. (). Genetic programming: Building artificial ner-

vous systems with genetically programmed neural network

modules. In B. Soušek, & The IRIS group (Eds.), Neural and
intelligenct systems integeration: Fifth and sixth generation inte-
gerated reasoning information systems (Chap. , pp. –).
New York: Wiley.

Devaney, M., & Ram, A. (). Dynamically adjusting concepts

to accommodate changing contexts. In M. Kubat, G. Widmer

(Eds.), Proceedings of the ICML- Pre-conference workshop
on learning in context-sensitive domains, Bari, Italy (Journal
submission).

Dietterich, T., Hild, H., & Bakiri, G. (). A comparison of ID and

backpropogation for English text-tospeech mapping. Machine
Learning, (), –.

Fahlman, S. (). The recurrent cascade-correlation architecture.

In R. Lippmann, J. Moody, and D. Touretzky (Eds.), Advances in
neural information processing systems (Vol. , pp. –). San
Mateo, CA: Morgan Kaufmann Publishers.

Freivalds, R. (). Minimal Gödel numbers and their identification

in the limit. In Lecture notes in computer science (Vol. , pp.
–). Berlin: Springer-Verlag.

 C Connections Between Inductive Inference and Machine Learning

Freund, Y., & Mansour, Y. (). Learning under persistent drift. In

S. Ben-David, (Ed.), Proceedings of the third European confer-
ence on computational learning theory (EuroCOLT’), Lecture
notes in artificial intelligence, (Vol. , pp. –). Berlin:
Springer-Verlag.

Fulk, M. (). Robust separations in inductive inference. In Pro-
ceedings of the st annual symposium on foundations of com-
puter science (pp. –). St. Louis, Missouri. Washington,
DC: IEEE Computer Society.

Harding, S. (Ed.). (). Can theories be refuted? Essays on the
Duhem-Quine thesis. Dordrecht: Kluwer Academic Publishers.

Helmbold, D., & Long, P. (). Tracking drifting concepts by

minimizing disagreements. Machine Learning, , –.
Hildebrand, F. (). Introduction to numerical analysis. New York:

McGraw-Hill.

Jain, S. (). Robust behaviorally correct learning. Information
and Computation, (), –.

Jain, S., & Sharma, A. (). Elementary formal systems, intrinsic

complexity, and procrastination. Information and Computation,
, –.

Jain, S., & Sharma, A. (). Mind change complexity of learning

logic programs. Theoretical Computer Science, (), –.
Jain, S., Osherson, D., Royer, J., & Sharma, A. (). Systems that

learn: An introduction to learning theory (nd ed.). Cambridge,
MA: MIT Press.

Jain, S., Smith, C., & Wiehagen, R. (). Robust learning is rich.

Journal of Computer and System Sciences, (), –.
Kilpeläinen, P., Mannila, H., & Ukkonen, E. (). MDL learning of

unions of simple pattern languages from positive examples. In P.

Vitányi (Ed.), Computational learning theory, second European
conference, EuroCOLT’, Lecture notes in artificial intelligence,
(Vol. , pp. –). Berlin: Springer-Verlag.

Kinber, E. (). On a theory of inductive inference. In Lecture notes
in computer science (Vol. , pp. –). Berlin: Springer-
Verlag.

Kinber, E., Smith, C., Velauthapillai, M., & Wiehagen, R. (). On

learning multiple concepts in parallel. Journal of Computer and
System Sciences, , –.

Krishna Rao, M. (). A class of prolog programs inferable from

positive data. In A. Arikawa & A. Sharma (Eds.), Seventh inter-
national conference on algorithmic learning theory (ALT’ ),
Lecture notes in artificial intelligence (Vol. , pp. –).
Berlin: Springer-Verlag.

Krishna Rao, M. (). Some classes of prolog programs infer-

able from positive data (Special Issue for ALT’). Theoretical
Computer Science A, , –.

Krishna Rao, M. (). Inductive inference of term rewriting sys-

tems from positive data. In S. Ben-David, J. Case, & A. Maruoka

(Eds.), Algorithmic learning theory: Fifteenth international con-
ference (ALT’ ), Lecture notes in artificial intelligence (Vol.
, pp. –). Berlin: Springer-Verlag.

Krishna Rao, M. (). A class of prolog programs with non-

linear outputs inferable from positive data. In S. Jain, H. U.

Simon, &E. Tomita (Eds.),Algorithmic learning theory: Sixteenth
international conference (ALT’ ), Lecture notes in artificial
intelligence, (Vol. , pp. –). Berlin: Springer-Verlag.

Krishna Rao, M., & Sattar, A. (). Learning from entailment of

logic programs with local variables. In M. Richter, C. Smith,

R. Wiehagen, & T. Zeugmann (Eds.), Ninth international confer-
ence on algorithmic learning theory (ALT’ ), Lecture notes in

artificial intelligence (Vol. , pp. –). Berlin: Springer-
Verlag.

Kubat, M. (). A machine learning based approach to load bal-

ancing in computer networks. Cybernetics and Systems, ,
–.

Kummer, M., & Ott, M. (). Learning branches and learning to

win closed recursive games. In Proceedings of the ninth annual
conference on computational learning theory, Desenzano del
Garda, Italy. New York: ACM Press.

Lange, S., & Wiehagen, R. (). Polynomial time inference of arbi-

trary pattern languages. New Generation Computing, , –.
Lavrač, N., & Džeroski, S. (). Inductive logic programming:

Techniques and applications. New York: Ellis Horwood.
Maler, O., Pnueli, A., & Sifakis, J. (). On the synthesis of discrete

controllers for timed systems. In Proceedings of the annual sym-
posium on the theoretical aspects of computer science, LNCS (Vol.
, pp. –). Berlin: Springer-Verlag.

Matwin, S., & Kubat, M. (). The role of context in concept

learning. In M. Kubat & G. Widmer (Eds.), Proceedings of
the ICML- pre-conference workshop on learning in context-
sensitive domains, Bari, Italy, (pp. –).

Maye, A., Hsieh, C., Sugihara, G., & Brembs, B. (). Order in

spontaneous behavior. PLoS One, May, . See: http://brembs.
net/spontaneous/

Mishra, N., Ron, D., & Swaminathan, R. (). A new conceptual

clustering framework. Machine Learning, (–), –.
Mitchell, T. (). Machine learning. New York: McGraw Hill.
Mitchell, T., Caruana, R., Freitag, D., McDermott, J., & Zabowski, D.

(). Experience with a learning, personal assistant. Commu-
nications of the ACM, , –.

Montagna, F., & Osherson, D. (). Learning to coordinate: A

recursion theoretic perspective. Synthese, , –.
Muggleton, S., & De Raedt, L. (). Inductive logic programming:

Theory and methods. Journal of Logic Programming, /, –
.

Odifreddi, P. (). Classical recursion theory (Vol. II). Amsterdam:
Elsivier.

Osherson, D., Stob, M., & Weinstein, S. (). Systems that learn:

An introduction to learning theory for cognitive and computer

scientists. Cambridge, MA: MIT Press.

Ott, M., & Stephan, F. (). Avoiding coding tricks by hyperrobust

learning. Theoretical Computer Science, (), –.
Pitt, L., & Reinke, R. (). Criteria for polynomial-time (concep-

tual) clustering. Machine Learning, , –.
Popper, K. (). Conjectures and refutations: The growth of sci-

entific knowledge. New York: Basic Books.

Pratt, L., Mostow, J., & Kamm, C. (). Direct transfer of learned

information among neural networks. In Proceedings of the th
national conference on artificial intelligence (AAAI-), Ana-
heim, California. Menlo Park, CA: AAAI press.

Rogers, H. (). Theory of recursive functions and effective com-
putability. New York: McGraw Hill (Reprinted, MIT Press,
).

Salomaa, A. (a). Patterns (The formal language theory column).

EATCS Bulletin, , –.
Salomaa, A. (b). Return to patterns (The formal language theory

column). EATCS Bulletin, , –.
Sejnowski, T., & Rosenberg, C. (). NETtalk: A parallel network

that learns to read aloud. Technical Report JHU-EECS--,
Johns Hopkins University.

http://brembs.net/spontaneous/
http://brembs.net/spontaneous/

Consensus Clustering C 

C

Shimozono, S., Shinohara, A., Shinohara, T., Miyano, S., Kuhara, S.,

& Arikawa, S. (). Knowledge acquisition from amino acid

sequences by machine learning system BONSAI. Transactions
of Information Processing Society of Japan, , –.

Shinohara, T. (). Inferring unions of two pattern languages.

Bulletin of Informatics and Cybernetics, , –.
Shinohara, T., & Arikawa, A. (). Pattern inference. In

K. P. Jantke & S. Lange (Eds.), Algorithmic learning for
knowledge-based systems, Lecture notes in artificial intelligence
(Vol. , pp. –). Berlin: Springer-Verlag.

Smullyan, R. (). Theory of formal systems. In Annals of Math-
ematics Studies (Vol. ). Princeton, NJ: Princeton University
Press.

Šuc, D. (). Machine reconstruction of human control strate-

gies. Frontiers in artificial intelligence and applications (Vol. ).
Amsterdam: IOS Press.

Thomas, W. (). On the synthesis of strategies in infinite games.

In Proceedings of the annual symposium on the theoretical aspects
of computer science, LNCS (Vol. , pp. –). Berlin: Springer-
Verlag.

Thrun, S. (). Is learning the n-th thing any easier than learning

the first? In Advances in neural information processing systems,
. San Mateo, CA: Morgan Kaufmann.

Thrun, S., & Sullivan, J. (). Discovering structure in multi-

ple learning tasks: The TC algorithm. In Proceedings of the
thirteenth international conference on machine learning (ICML-
) (pp. –). San Francisco, CA: Morgan Kaufmann.

Tsung, F., & Cottrell, G. (). A sequential adder using recurrent

networks. In IJCNN--WASHINGTON DC: International joint
conference on neural networks June – (Vol. , pp. –).
Piscataway, NJ: IEEE Service Center.

Waibel, A. (a). Connectionist glue: Modular design of neural

speech systems. In D. Touretzky, G. Hinton, & T. Sejnowski

(Eds.), Proceedings of the  connectionist models summer
school (pp. –). San Mateo, CA: Morgan Kaufmann.

Waibel, A. (b). Consonant recognition by modular con-

struction of large phonemic time-delay neural networks. In

D. S. Touretzky (Ed.), Advances in neural information processing
systems I (pp. –). San Mateo, CA: Morgan Kaufmann.

Wallace, C. (). Statistical and inductive inference by minimum
message length. (Information Science and Statistics). New York:
Springer (Posthumously published).

Wallace, C., & Dowe, D. (). Minimum message length and

kolmogorov complexity (Special Issue on Kolmogorov Com-

plexity). Computer Journal, (), –. http://comjnl.
oxfordjournals.org/cgi/reprint///.

Widmer, G., & Kubat, M. (). Learning in the presence of concept

drift and hidden contexts. Machine Learning, , –.
Wiehagen, R. (). Limes-Erkennung rekursiver Funktionen

durch spezielle Strategien. Electronische Informationverar-
beitung und Kybernetik, , –.

Wiehagen, R., & Zeugmann, T. (). Ignoring data may be the only

way to learn efficiently. Journal of Experimental and Theoretical
Artificial Intelligence, , –.

Wright, K. (). Identification of unions of languages drawn from

an identifiable class. In R. Rivest, D. Haussler, & M. Warmuth

(Eds.), Proceedings of the second annual workshop on compu-
tational learning theory, Santa Cruz, California, (pp. –).
San Mateo, CA: Morgan Kaufmann Publishers.

Wrobel, S. (). Concept formation and knowledge revision. Dor-

drecht: Kluwer Academic Publishers.

Zeugmann, T. (). On Bārzdiņš’ conjecture. In K. P. Jantke (Ed.),

Analogical and inductive inference, Proceedings of the interna-
tional workshop, Lecture notes in computer science, (Vol. ,
pp. –). Berlin: Springer-Verlag.

Zeugmann, T. (). Lange and Wiehagen’s pattern language learn-

ing algorithm: An average case analysis with respect to its total

learning time. Annals of Mathematics and Artificial Intelligence,
, –.

Connectivity

7Topology of a Neural Network

Consensus Clustering

Synonyms
Clustering aggregation; Clustering ensembles

Definition
In Consensus Clustering we are given a set of n
objects V , and a set of m clusterings {C,C, . . . ,Cm}
of the objects in V . �e aim is to �nd a single clustering
C that disagrees least with the input clusterings, that is,
Cminimizes

D(C) = ∑
Ci
d(C,Ci),

for somemetric d on clusterings ofV . Meilă () pro-
posed the principled variation of informationmetric on
clusterings, but it has been di�cult to analyze theoret-

ically. �e Mirkin metric is the most widely used, in

which d(C,C′) is the number of pairs of objects (u, v)
that are clustered together in C and apart in C′, or vice
versa; it can be calculated in time O(mn).
We can interpret each of the clusterings Ci in Con-

sensus Clustering as evidence that pairs ought be put

together or separated. �at is, w+uv is the number of Ci
in which Ci[u] = Ci[v] and w−uv is the number of Ci in
which Ci[u] ≠ Ci[v]. It is clear that w+uv + w−uv = m and

http://comjnl.oxfordjournals.org/cgi/reprint/42/4/270
http://comjnl.oxfordjournals.org/cgi/reprint/42/4/270

 C Constrained Clustering

that Consensus clustering is an instance of Corre-

lation clustering in which the w−uv weights obey the
triangle inequality.

Constrained Clustering

Kiri L. Wagstaff

Pasadena, CA, USA

Definition
Constrained clustering is a semisupervised approach to
7clustering data while incorporating domain knowl-
edge in the form of constraints. �e constraints are

usually expressed as pairwise statements indicating that

two items must, or cannot, be placed into the same

cluster. Constrained clustering algorithms may enforce

every constraint in the solution, or they may use the

constraints as guidance rather than hard requirements.

Motivation and Background
7Unsupervised learning operates without any domain-
speci�c guidance or preexisting knowledge. Supervised

learning requires that all training examples be associ-

ated with labels. Yet it is o�en the case that existing

knowledge for a problem domain �ts neither of these

extremes. Semisupervised learningmethods �ll this gap

bymaking use of both labeled and unlabeled data. Con-

strained clustering, a form of semisupervised learning,

was developed to extend clustering algorithms to incor-

porate existing domain knowledge, when available.�is

knowledge may arise from labeled data or from more

general rules about the concept to be learned.

One of the original motivating applications was

noun phrase coreference resolution, in which noun

phrases in a text must be clustered together to represent

distinct entities (e.g., “Mr. Obama” and “the President”

and “he”, separate from “Sarah Palin” and “she” and “the

Alaska governor”). �is problem domain contains sev-

eral natural rules for when noun phrases should (such

as appositive phrases) or should not (such as a mis-

match on gender) be clustered together.�ese rules can

be translated into a collection of pairwise constraints on

the data to be clustered.

Constrained clustering algorithms have now been

applied to a rich variety of domain areas, including

hyperspectral image analysis, road lane divisions from

GPS data, gene expression microarray analysis, video

object identi�cation, document clustering, and web

search result grouping.

Structure of the Learning System
Constrained clustering arises out of existing work with

unsupervised clustering algorithms. In this description,

we focus on clustering algorithms that seek a partition

of the data into disjoint clusters, using a distance or

similarity measure to place similar items into the same

cluster. Usually, the desired number of clusters, k, is
speci�ed as an input to the algorithm. �e most com-

mon clustering algorithms are k-means (MacQueen,

) and expectation maximization or EM (Dempster,

Laird, & Rubin, ) (Fig. ).

A constrained clustering algorithm takes the same

inputs as a regular (unsupervised) clustering algorithm

and also accepts a set of pairwise constraints. Each

constraint is a 7must-link or 7cannot-link constraint.
�e must-link constraints form an equivalence rela-

tion, which permits the inference of additional transi-

tively implied must-links as well as additional entailed

cannot-link constraints between items from distinct

must-link cliques. Specifying a signi�cant number of

pairwise constraintsmight be tedious for large data sets,

so o�en they may be generated from amanually labeled

subset of the data or from domain-speci�c rules.

�e algorithm may interpret the constraints as hard

constraints that must be satis�ed in the output or as

so� preferences that can be violated, if necessary. �e

former approach was used in the �rst constrained clus-

tering algorithms, COP-COBWEB (Wagsta� & Cardie,

Constraints

Output clustersInput data

=

Domain
knowledge

Constrained
clustering

Constrained Clustering. Figure . The constrained clus-

tering algorithm takes in nine items and two pairwise

constraints (one must-link and one cannot-link). The out-

put clusters respect the specified constraints

Constraint-Based Mining C 

C

) and COP-kmeans (Wagsta�, Cardie, Rogers, &

Schroedl, ). COP-kmeans accommodates the con-

straints by restricting item assignments to exclude any

constraint violations. If a solution that satis�es the con-

straints is not found, COP-kmeans terminates without

a solution. Later, algorithms such as PCK-means and

MPCK-means (Bilenko, Basu, & Mooney, ) per-

mitted the violation of constraints when necessary by

introducing a violation penalty. �is is useful when

the constraints may contain noise or internal incon-

sistencies, which are especially relevant in real-world

domains. Constrained versions of other clustering

algorithms such as EM (Shental, Bar-Hillel, Hertz,

& Weinshall, ) and spectral clustering (Kam-

var, Klein, & Manning, ) also exist. Penalized

probabilistic clustering (PPC) is a modi�ed version

of EM that interprets the constraints as (so�) prob-

abilistic priors on the relationships between items

(Lu & Leen, ).

In addition to constraining the assignment of indi-

vidual items, constraints can be used to learn a better

distance metric for the problem at hand (Bar-Hillel,

Hertz, Shental, & Weinshall, ; Klein, Kamvar, &

Manning, ; Xing, Ng, Jordan, & Russell, ).

Must-link constraints hint that the e�ective distance

between those items should be low, while cannot-

link constraints suggest that their pairwise distance

should be high. Modifying the metric accordingly per-

mits the subsequent application of a regular cluster-

ing algorithm, which need not explicitly work with the

constraints at all. �e MPCK-means algorithm fuses

these approaches together, providing both constraint

satisfaction and metric learning simultaneously (Basu,

Bilenko, & Mooney, ; Bilenko et al., ).

More information about subsequent advances in

constrained clustering algorithms, theory, and novel

applications can be found in a compilation edited by

Basu, Davidson, and Wagsta� ().

Programs and Data

�e MPCK-means algorithm is available in a modi�ed

version of the Weka machine learning toolkit (Java) at

http://www.cs.utexas.edu/users/ml/risc/code/.

Recommended Reading
Bar-Hillel, A., Hertz, T., Shental, N., & Weinshall, D. (). Learn-

ing a Mahalanobis metric from equivalence constraints. Journal
of Machine Learning Research, , –.

Basu, S., Bilenko, M., & Mooney, R. J. (). A probabilistic frame-

work for semi-supervised clustering. In Proceedings of the Tenth
ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining (pp. –). Seattle, WA.

Basu, S., Davidson, I., & Wagstaff, K. (Eds.). (). Constrained
Clustering: Advances in Algorithms, Theory, and Applications.
Boca Raton, FL: CRC Press.

Bilenko, M., Basu, S., & Mooney, R. J. (). Integrating constraints

and metric learning in semi-supervised clustering. In Proceed-
ings of the Twenty-first International Conference on Machine
Learning (pp. –). Banff, AB, Canada.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (). Maximum like-

lihood from incomplete data via the EM algorithm. Journal of
the Royal Statistical Society, (), –.

Kamvar, S., Klein, D., & Manning, C. D. (). Spectral learning.

In Proceedings of the International Joint Conference on Artificial
Intelligence (pp. –). Acapulco, Mexico.

Klein, D., Kamvar, S. D., & Manning, C. D. (). From instance-

level constraints to space-level constraints: Making the most

of prior knowledge in data clustering. In Proceedings of
the Nineteenth International Conference on Machine Learning
(pp. –). Sydney, Australia.

Lu, Z. & Leen, T. (). Semi-supervised learning with penal-

ized probabilistic clustering. In Advances in Neural Information
Processing Systems (Vol. , pp. –). Cambridge, MA: MIT
Press.

MacQueen, J. B. (). Some methods for classification and

analysis of multivariate observations. In Proceedings of the
Fifth Symposium on Math, Statistics, and Probability (Vol. ,
pp. –). California: University of California Press.

Shental, N., Bar-Hillel, A., Hertz, T., & Weinshall, D. (). Com-

puting Gaussian mixture models with EM using equivalence

constraints. In Advances in Neural Information Processing Sys-
tems (Vol. , pp. –). Cambridge, MA: MIT Press.

Wagstaff, K. & Cardie, C. (). Clustering with instance-level

constraints. In Proceedings of the Seventeenth International Con-
ference on Machine Learning (pp. –). San Francisco:
Morgan Kaufmann.

Wagstaff, K., Cardie, C., Rogers, S., & Schroedl, S. (). Constrained

k-means clustering with background knowledge. In Proceedings
of the Eighteenth International Conference on Machine Learning
(pp. –). San Francisco: Morgan Kaufmann.

Xing, E. P., Ng, A. Y., Jordan, M. I., & Russell, S. (). Dis-

tance metric learning, with application to clustering with

side-information. In Advances in Neural Information Processing
Systems (Vol. , pp. –). Cambridge, MA: MIT Press.

Constraint-Based Mining

Siegfried Nijssen

Katholieke Universiteit Leuven, Leuven, Belgium

Definition
Constraint-based mining is the research area studying

the development of data mining algorithms that search

http://www.cs.utexas.edu/users/ml/risc/code/

 C Constraint-Based Mining

through a pattern or model space restricted by con-

straints. �e term is usually used to refer to algorithms

that search for patterns only. �e most well-known

instance of constraint-based mining is the mining of

7frequent patterns. Constraints are needed in pattern
mining algorithms to increase the e�ciency of the

search and to reduce the number of patterns that are

presented to the user, thusmaking knowledge discovery

more e�ective and useful.

Motivation and Background
Constraint-based pattern mining is a generalization

of frequent itemset mining. For an introduction to

frequent itemset mining, see 7Frequent Patterns.
A constraint-based mining problem is speci�ed by pro-

viding the following elements:

● A database D, usually consisting of independent
transactions (or instances)

● A7hypothesis space L of patterns
● A constraint q(θ,D) expressing criteria that a pat-
tern θ in the hypothesis space should ful�ll on the
database

�e general constraint-based mining problem is to �nd

the set

�(D,L, q) = {θ ∈ L∣q(θ,D) = true}.

Alternative problem settings are obtained by making

di�erent choices forD, L and q. For instance,

● If the database and hypothesis space consist of item-

sets, and the constraint checks if the support of a

pattern exceeds a prede�ned threshold in data, the

frequent itemset mining problem is obtained (see

7Frequent Patterns)
● If the database and the hypothesis space consist of

graphs or trees instead of itemsets, a graphmining or

a tree mining problem is obtained. For more infor-

mation about these topics, see 7Graph Mining and
7Tree Mining

● Additional syntactic constraints can be imposed

An overview of important types of constraints is given

below.

One can generalize the constraint-based mining

problem beyond pattern mining. Also models, such as

7Decision Trees, could be seen as languages of inter-
est. In the broadest sense, topics such as 7Constrained
Clustering, 7Cost-Sensitive Learning, and even learn-
ing 7Support Vector Machines (SVMs) may be seen
as constraint-based mining problems. However, it is

currently not common to categorize these topics as

constraint-based mining; in practice, the term refers to
constraint-based patternmining.
From the perspective of constraint-based mining,

the knowledge discovery process can be seen as a pro-

cess in which a user repeatedly speci�es constraints

for data mining algorithms; the data mining system is

a solver that �nds patterns or models that satisfy the

constraints.

�is approach to data mining is very similar

to querying relational databases. Whereas relational

databases are usually queried using operations such

as projections, selections, and joins, in the constraint-

based mining framework data is queried to �nd pat-

terns or models that satisfy constraints that cannot be

expressed in these primitives. A database which sup-

ports constraint-based mining queries, stores patterns

and models, and allows later reuse of patterns and

models, is sometimes also called an inductive database
(Imielinski & Mannila, ).

Structure of the Learning System
Constraints

Frequent pattern mining algorithms can be generalized

along several dimensions.

One way to generalize pattern mining algorithms

is to allow them to deal with arbitrary 7coverage rela-
tions, which determine when a patternmatches a trans-

action in the data. In the example of mining itemsets,

the subset relation determines the coverage relation.

�e coverage relation is at the basis of constraints such

as minimum support; an alternative coverage relation

would be the superset relation.

From the coverage relation follows a generality rela-

tionship. A pattern θ is de�ned to be more speci�c
than a pattern θ (denoted by θ ≻ θ) if any transac-
tion that is covered by θ is also covered by θ (see
7Generalization). In frequent itemset mining, itemset
I is more general than itemset I if and only I ⊆ I.
Generalization and coverage relationships can be

used to identify the following types of constraints.

Constraint-Based Mining C 

C

Monotonic and Anti-Monotonic Constraints An essen-

tial property which is exploited in 7frequent pattern
mining, is that all subsets of a frequent pattern are also

frequent. �is is a property that can be generalized:

● Aconstraint is calledmonotonic if any generalization
of a pattern that satis�es the constraint, also satis�es

the constraint

● A constraint is called anti-monotonic if any special-
ization of a pattern that satis�es the constraint, also

satis�es the constraint

In some publications, the de�nitions of monotonic and

anti-monotonic are used reversely.

�e following are examples of monotonic

constraints:

● Minimum support

● Syntactic constraints, for instance: a constraint that

requires that patterns specializing a given pattern x
are excluded a constraint requiring patterns to be

small given a de�nition of pattern size

● Disjunctions or conjunctions of monotonic con-

straints

● Negations of anti-monotonic constraints

�e following are examples of anti-monotonic

constraints:

● Maximum support

● Syntactic constraints, for instance, a constraint that

requires that patterns generalizing a given pattern x
are excluded

● Disjunctions or conjunctions of anti-monotonic

constraints

● Negations of monotonic constraints

Succinct Constraints Constraints that can be pushed

in the mining process by adapting the pattern space

or data, are called succinct constraints. An example of

a succinct constraint is the monotonic constraint that

an itemset should contain the item A. �is constraint
could be dealt with by deleting all transactions that do

not contain A. For any frequent itemset found in the
new dataset, it is now known that the item A can be
added to it.

Convertible Constraints Some constraints that are not

monotonic, can still be convertible monotonic (Pei &

Han, ). A constraint is convertible monotonic if

for every pattern θ one least general generalization
θ′ can be identi�ed such that if θ satis�es the con-
straint, then θ′ also satis�es the constraint. An example
of a convertible constraint is a maximum average cost

constraint. Assume that every item in an itemset has

a cost as de�ned by a function c(i). �e constraint
c(I)= ∑i∈I c(i)/∣I∣ ≤maxcost is not monotonic. How-
ever, for every itemset I with c(I)≤maxcost, if an item
i is removed with c(i)= maxi∈I c(i), an itemset with
c(I − {i}) ≤ c(I)≤maxcost is obtained.
Maximum average cost has the desirable property

that no access to the data is needed to identify the gen-

eralization that should satisfy the constraints. If it is not

possible to identify the necessary least general general-

ization before accessing the data, the convertible con-

straint is also sometimes called weak (anti-)monotone

(Zhu, Yan, Han, & Yu, ).

Boundable Constraints Constraints on non-monotonic

measures for which amonotonic bound exist, are called

boundable. An example of such a constraint is a mini-

mumaccuracy constraint in a databasewith binary class

labels. Assume that every itemset is interpreted as a rule

if I then  else  (thus, class label  is predicted if a trans-
action contains itemset I, or class label  otherwise; see
7Supervised Descriptive Rule Discovery). A minimum
accuracy constraint can be formalized by the formula

(fr(I,D) + ∣D∣ − fr(I,D))/∣D∣ ≥ minacc, where Dk is
the database containing only the examples labeled with

class label k. It can be derived from this that

fr(I,D) ≥ ∣D∣minacc−∣D∣+fr(I,D) ≥ ∣D∣minacc−∣D∣.

In other words, if a high accuracy is desirable, a min-

imum number of examples of class  is required to be

covered, and a minimum frequency constraint can thus

be derived.�erefore, minimum support can be used as

a bound for minimum accuracy.

�eprinciple of deriving bounds for non-monotonic

measures can be applied widely (Bayardo, Agrawal, &

Gunopulos, ; Morishita & Sese, ).

Borders If constraints are not restrictive enough, the

number of patterns can be huge. Ignoring statistics

about patterns such as their exact frequency, the set of

patterns can be represented more compactly only by

 C Constraint-Based Mining

listing the patterns in the border(s) (Mannila & Toivo-
nen, ), similar to the idea of 7version spaces. An
example of a border is the set of maximal frequent

itemsets (see7Frequent Patterns). Borders can be com-
puted for other types of both monotonic and anti-

monotonic constraints as well.�ere are several compli-

cations compared to the simple frequent patternmining

setting:

● If there is an anti-monotonic constraint, such as

maximum support, not only is it needed to compute

a border for the most speci�c elements in the set (S-

Set), but also a border for the least general elements

in the set (G-Set)

● If the formula is a disjunction of conjunctions,

the result of a query becomes a union of version

spaces, which is called a multi-dimensional version

space (see Fig. ) (De Raedt, Jaeger, Lee, & Man-

nila, ); the G-Set of one version space may

be more general than the G-Set of another version

space

Both the S-Set and the G-Set can be represented by list-

ing elements just within the version space (the positive

border), or elements just outside the version space (the

negative border). For instance, the positive border of

the G-Set consists of those patterns which are part of

the version space, and for which no generalizations exist

which are part of the version space.

Similarly, there may exist several representations of

multi-dimensional version spaces; optimizing the rep-

resentation ofmulti-dimensional version spaces is anal-

ogous to optimizing queries in relational databases (De

Raedt et al., ).

Borders form a condensed representations, that
is, they compactly represent the solution space; see

7Frequent Patterns.

Algorithms For many of the constraints speci�ed in

the previous section specialized algorithms have been

developed in combination with speci�c hypothesis

spaces. It is beyond the scope of this chapter to discuss

all these algorithms; only the most common ideas are

provided here.

�emain idea is that7Apriori can easily be updated
to deal with general monotonic constraints in arbi-

trary hypothesis spaces. �e concept of a specializa-

tion 7re�nement operator is essential to operate on

other hypothesis spaces than itemsets. A specializa-

tion operator ρ(θ) computes a set of specializations in
the hypothesis space for a given input pattern. In pat-

tern mining, this operator should have the following

properties:

● Completeness: every pattern in the hypothesis space

should be reachable by repeated application of the

re�nement operator starting from the most general

pattern in the hypothesis space

● Nonredundancy: every pattern in the hypothesis

space should be reachable in only one way start-

ing from the most general pattern in the hypothesis

space

In itemset mining, optimal re�nement is usually obta-

ined by �rst ordering the items (for instance, alpha-

betically, or by frequency), and then adding items

that are higher in the chosen order to a set than the

items already in the set. For instance, for the itemset

{A,C}, the specialization operator returns ρ({A,C}) =
{{A,C,D},{A,C,E}}, assuming that the domain of
items {A,B,C,D,E} is considered. Other re�nement
operators are needed while dealing with other hypoth-

esis spaces, such as in7graph mining.
�e search in Apriori proceeds7breadth-�rst. Each

level, the specialization operator is applied on pat-

terns satisfying the monotonic constraints to gener-

ate candidates for the next level. For every new can-

didate it is checked whether its generalizations sat-

isfy the monotonic constraints. To create a set of

generalizations, a generalization re�nement operator

can be used. In frequent itemset mining, usually sin-

gle items are removed from the itemset to generate

generalizations.

More changes are required to deal with anti-
monotonic constraints. A simple way of dealing with
both monotonic and anti-monotonic constraints is to

�rst compute all patterns that satisfy the monotonic

constraints, and then to prune the patterns that fail to

satisfy the anti-monotonic constraints. More challeng-

ing is to “push” anti-monotonic constraints in the min-

ing process. An observation which is o�en exploited

is that generalizations of patterns that do not satisfy

the anti-monotonic constraint need not be considered.

Well-known strategies are:

Constructive Induction C 

C

Top element of the partial order

Version
Space (1)

G-Border (1)

S-Border (1)

Version Space (2)

G-Border (2)

S-Border (2)

Top element of the partial order

S-Border

G-Border

Version Space

M
ore general

M
ore specific

(b) A 2-dimensional version space(a) A 1-dimensional version space

Constraint-Based Mining. Figure . Version spaces

● In a breadth-�rst setting: traverse the lattice in

reverse order for monotonic constraints, a�er the

patterns have been determined satisfying the anti-

monotonic constraints (De Raedt et al., )

● In a depth-�rst setting: during the search for pat-

terns, try to guess the largest pattern that can still

be reached, and prune a branch in the search if the

pattern does not satisfy themonotonic constraint on

this pattern (Bucila, Gehrke, Kifer, & White, ;

Kifer, Gehrke, Bucila, & White, )

It is beyond the scope of this chapter to discuss how to

deal with other types of constraints; however, it should

be pointed out that not all combinations of constraints

and hypothesis spaces have been studied; it is not obvi-

ous whether all constraints can be pushed usefully in

a pattern search for any hypothesis space, for instance,

when boundable constraints in more complex hypothe-

sis spaces (such as graphs) are involved. Research in this

area is ongoing.

Cross References
7Constrained Clustering
7Frequent Pattern Mining
7Graph Mining
7Tree Mining

Recommended Reading
Bayardo, R. J., Jr., Agrawal, R., & Gunopulos, D. (). Constraint-

based rule mining in large, dense databases. In Proceedings of
the th international conference on data engineering (ICDE)
(pp. –). Sydney, Australia.

Bucila, C., Gehrke, J., Kifer, D., & White, W. M. (). DualMiner:

A dual-pruning algorithm for itemsets with constraints. Data
Mining and Knowledge Discovery, (), –.

De Raedt, L., Jaeger, M., Lee, S. D., & Mannila, H. (). A theory

of inductive query answering (extended abstract). In Proceed-
ings of the second IEEE international conference on data mining
(ICDM) (pp. –). Los Alamitos, CA: IEEE Press.

Imielinski, T., & Mannila, H. (). A database perspective

on knowledge discovery. Communications of the ACM, ,
–.

Kifer, D., Gehrke, J., Bucila, C., & White, W. M. (). How to

quickly find a witness. In Proceedings of the twenty-second ACM
SIGACT-SIGMOD-SIGART symposium on principles of database
systems (pp. –). San Diego, CA: ACM Press.

Mannila, H., & Toivonen, H. (). Levelwise search and borders of

theories in knowledge discovery. Data Mining and Knowledge
Discovery, (), –.

Morishita, S., & Sese, J. (). Traversing itemset lattices with

statistical metric pruning. In Proceedings of the nineteenth
ACM SIGACT-SIGMOD-SIGART symposium on database sys-
tems (PODS) (pp. –). San Diego, CA: ACM Press.

Pei, J., & Han, J. (). Constrained frequent pattern mining: A

pattern-growth view. SIGKDD Explorations, (), –.
Zhu, F., Yan, X., Han, J., & Yu, P. S. (). gPrune: A constraint

pushing framework for graph pattern mining. In Proceedings
of the sixth Pacific-Asia conference on knowledge discovery and
data mining (PAKDD). Lecture notes in computer science (Vol.
, pp. –). Berlin: Springer.

Constructive Induction

Constructive induction is any form of 7induction that
generates new descriptors not present in the input data

(Dietterich & Michalski, ).

Recommended Reading
Dietterich, T. G., & Michalski, R. S. (). A comparative review

of selected methods for learning from examples. In Michalski,

R. S., Carbonell, J. G., &Mitchell, T. M. (Eds.).Machine learning:
An artificial intelligence approach, pp. –. Tioga.

 C Content Match

Content Match

7Text Mining for Advertising

Content-Based Filtering

Synonyms
Content-based recommending

Definition
Content-based �ltering is prevalent in 7Information
Retrieval, where the text and multimedia content of

documents is used to select documents relevant to a

user’s query. In the context this refers to content-based

recommenders, that provide recommendations by com-

paring representations of content describing an item to

representations of content that interests a user.

Content-Based Recommending

7Content-Based Filtering

Context-Sensitive Learning

7Concept Dri�

Contextual Advertising

7Text Mining for Advertising

Continual Learning

Synonyms
Life-Long Learning

Definition
A learning system that can continue adding new data

without the need to ever stop or freeze the updating.

Usually continual learning requires incremental and

7online learning as a component, but not every incre-
mental learning systemhas the ability to achieve contin-

ual learning, i.e., the learning may deterioate a�er some

time.

Cross References
7Cumulative Learning

Continuous Attribute

A continuous attribute can assume all values on the
number line within the value range. See7Attribute and
7Measurement Scales.

Contrast Set Mining

Definition
Contrast set mining is an area of 7supervised descrip-
tive rule induction. �e contrast set mining problem

is de�ned as �nding contrast sets, which are conjunc-

tions of attributes and values that di�er meaningfully

in their distributions across groups (Bay & Pazzani,

). In this context, groups are the properties of

interest.

Recommended Reading
Bay, S.D., & Pazzani, M. J. (). Detecting group differences: Min-

ing contrast sets. Data Mining and Knowledge Discovery, (),
–.

Cooperative Coevolution

7Compositional Coevolution

Co-Reference Resolution

7Entity Resolution

Correlation Clustering C 

C

Correlation Clustering

AnthonyWirth

�e University of Melbourne, Victoria, Australia

Synonyms
Clustering with advice; Clustering with constraints;

Clustering with qualitative information; Clustering

with side information

Definition
In its rawest form, correlation clustering is graph opti-
mization problem. Consider a 7clustering C to be a
mapping from the elements to be clustered, V , to the
set {, . . . , ∣V ∣}, so that u and v are in the same cluster if
and only if C[u] = C[v]. Given a collection of items in
which each pair (u, v) has two weights w+uv and w−uv, we
must �nd a clustering C that minimizes

∑
C[u]=C[v]

w−uv + ∑
C[u]≠C[v]

w+uv , ()

or, equivalently, maximizes

∑
C[u]=C[v]

w+uv + ∑
C[u]≠C[v]

w−uv . ()

Note that although w+uv and w−uv may be thought of as
positive and negative evidence towards coassociation,

the actual weights are nonnegative.

Motivation and Background
�e notion of clustering with advice, that is nonmetric-
driven relations between items, had been studied in

other communities (Ferligoj & Batagelj, ) prior to

its appearance in theoretical computer science. Tra-

ditional clustering problems, such as k-median and
k-center, assume that there is some type of distance
measure (metric) on the data items, and o�en specify

the number of clusters that should be formed. In the

clustering with advice framework, however, the num-

ber of clusters to be built need not be speci�ed in

advance: it can be an outcome of the objective func-

tion. Furthermore, instead of, or in addition to, a dis-

tance function, we are given advice as to which pairs of

items are similar. �e two weights w+uv and w−uv corre-
spond to external advice about whether the pair should

be clustered together or separately. Bansal, Blum, and

Chawla () introduced the problem to the theoret-

ical computer science and machine-learning commu-

nities. �ey were motivated by database consistency

problems, in which the same entity appeared in di�er-

ent forms in various databases. Given a collection of

such records frommultiple databases, the aim is to clus-

ter together the records that appear to correspond to

the same entity. From this viewpoint, the log odds ratio

from some classi�er,

log(Pr(same)
Pr(di�erent)

) ,

corresponds to a label wuv for the pair. In many appli-
cations only one of the + and − weights for the pair is
nonzero, that is

(w+uv,w−uv) =
⎧⎪⎪⎨⎪⎪⎩

(wuv, ) for wuv ≥ 
(,−wuv) for wuv ≤  .

In addition, if every pair hasweight±, then the instance
is called complete, otherwise it is referred to as general.
Demaine, Emanuel, Fiat, and Immorlica () sug-

gest the following motivation. Suppose we have a set of

guests at a party. Each guest has preferences for whom

they would like to sit with, and for whom they would

like to avoid. We must group the guests into tables in a

way that enhances the amicability of the party.

�e notion of producing good clusterings when

given inconsistent advice �rst appeared in the work

of Ben-Dor, Shamir, and Yakhini (). A canonical

example of inconsistent advice is this: items u and v are
similar, items v and y are similar, but u and y are dis-
similar. It is impossible to �nd a clustering that satis�es

all the advice. Figure  shows a very simple example of

inconsistent advice. In addition, although Correlation

clustering is an NP-hard problem, recent algorithms for

clustering with advice guarantee that their solutions are
only a speci�ed factor worse than the optimal: that is,

they are approximation algorithms.

Theory
In setting out the correlation clustering framework,

Bansal et al. () noted that the following algorithm

 C Correlation Clustering

Correlation Clustering. Figure . Top left is a toy cluster-

ingwith advice example showing three similar pairs (solid

edges) and three dissimilar pairs (dashed edges). Bottom

left is a clustering solution for this example with four sin-

gleton clusters, while bottom right has one cluster. Top

right is a partitioning into two clusters that appears to

best respect the advice

produces a -approximation for the maximization

problem:

▸ If the total of the positive weights exceeds the total of

the negative weights then, place all the items in a single

cluster; otherwise, make each item a singleton cluster.

�ey then showed that complete instances are NP-hard

to optimize, and how to minimize the penalty () with

a constant factor approximation. �e constant for this

combinatorial algorithm was rather large. �e algo-

rithm relied heavily on the completeness of the instance;

it iteratively cleans clusters until every cluster is δ-clean.
�at is, for each item at most a fraction δ ( < δ < )
of the other items in its cluster have a negative relation

with it, and at most δ outside its cluster a positive rela-
tion. Bansal et al. also demonstrated that the minimiza-

tion problem on general instances is APX-hard: there

is some constant, larger than , below which approxi-

mation is NP-hard. Finally, they provided a polynomial

time approximation scheme (PTAS) for maximizing ()

in complete instances.

�e constant factor for minimizing () on complete

instances was improved to  by Charikar, Guruswami,

and Wirth (). �ey employed a region-growing

type procedure to round the solution of a linear pro-

gramming relaxation of the problem:

minimize

∑
ij
w+ij ⋅ xij +w−ij ⋅ ( − xij)

subject to ()

xik ≤ xij + xjk for all i, j, k

xij ∈ [, ] for all i, j

In this setting, xij =  implies i and j’s separation, while
xij =  implies coclustering, with values in between
representing partial evidence. In practice solving this

linear program is very slow and has huge memory

demands (Bertolacci&Wirth, ). Charikar et al. also

showed that this version of problem is APX-hard.

For the maximization problem (), they showed

that instances with general weights were APX-hard and

provided a rounding of the following semide�nite pro-

gram (SDP) that yields a . factor approximation

algorithm.

maximize

∑
+(ij)

wij(vi ⋅ vj) + ∑
−(ij)

wij( − vi ⋅ vj)

subject to ()

vi ⋅ vi =  for all i

vi ⋅ vj ≥  for all i, j

In this case we interpret vi ⋅vj =  as evidence that i and j
are in the same cluster, but vi ⋅ vj =  as evidence toward
separation.

Emanuel and Fiat () extended the work of

Bansal et al. by drawing a link between Correlation

Clustering and the Minimum Multicut problem. �is

reduction to Multicut provided an O(logn) approxi-
mation algorithm for minimizing general instances of

Correlation Clustering. Interestingly, Emanuel and Fiat

also showed that there was reduction in the opposite

direction: an optimal solution to Correlation Clustering

induced an optimal solution to MinimumMulticut.

Demaine and Immorlica () also drew the link

from Correlation Clustering to Minimum multicut

and its O(logn) approximation algorithm. In addition,
they described an O(r)-approximation algorithm for
graphs that exclude the complete bipartite graph Kr,r as
a minor.

Correlation Clustering C 

C

Swamy (), using the same SDP () as Charikar

et al., but di�erent rounding techniques, showed how to

maximize () within factor . in general instances.

�e factor  approximation for minimization ()

of complete instances was lowered to . by Ailon,

Charikar, and Newman (). Using the distances
obtained by solving the linear program (), they repeat

the following steps:

▸ form a cluster around random item i by including each

(unclustered) j with probability  − xij ; set the cluster

aside.

Since solving the linear program is highly resource hun-

gry, Ailon et al. provided a combinatorial alternative:

add j to i’s cluster if w+ij > w−ij . Not only is this algorithm
very fast, it is actually a factor  approximation.

Recently, Tan () has shown that the / + є
inapproximability for maximizing () on general

weighted graphs extends to general unweighted graphs.

A further variant in the Correlation Clustering fam-

ily of problems is the maximization of ()–(), known

as maximizing correlation. Charikar and Wirth ()
proved an Ω(/ logn) approximation for the general
problem of maximizing

n

∑
i=

n

∑
j=
aijxixj, s.t. xi ∈ {−, } for all i, ()

for a matrix A with null diagonal entries, by rounding
the canonical SDP relaxation. �is e�ectively max-

imized correlation with the requirement that two

clusters be formed; it was not hard to extend this to gen-

eral instances.�e gap between the vector SDP solution

and the integral solution to maximizing the quadratic

program () was in fact shown to be Θ(/ logn) in gen-
eral (Alon, Makarychev, Makarychev, & Naor, ).

However, in other instances such as those with a

bounded number of nonzero weights for each item,

a constant factor approximation was possible. Arora,

Berger, Hazan, Kindler, and Safra () went further

and showed that it is quasi-NP-hard to approximate
the maximization to a factor better than Ω(/ logγ n)
for some γ > .
Shamir, Sharan, and Tsur () showed that

7Cluster Editing and p-Cluster Editing, in which p
clusters must be formed, are NP-complete (for p ≥ ).
Gramm, Guo, Hü�ner, and Niedermeier () took

an innovative approach to solving the Clustering Edit-

ing problem exactly. �ey had previously produced an

O(.k + n) time hand-made search tree algorithm,
where k is the number of edges that need to be mod-
i�ed. �is “awkward and error-prone work” was then

replaced with a computer program that itself designed

a search tree algorithm, involving automated case anal-

ysis, that ran in O(.k + n) time.
Kulis, Basu, Dhillon, and Mooney () unify var-

ious forms of clustering, correlation clustering, spec-

tral clustering, and clustering with constraints in their

kernel-based approach to k-means. In this, they have
a general objective function that includes penalties for

violating pairwise constraints and for having points

spread far apart from their cluster centers, where the

spread is measured in some high-dimensional space.

Applications
�e work of Demaine and Immorlica () on Corre-

lation Clustering was closely linked with that of Bejer-

ano et al. on Location Area Planning. �is problem is

concerned with the allocation of cells in a cellular net-

work to clusters known as location areas.�ere are costs
associated with tra�c between the location areas (cuts

between clusters) and with the size of clusters them-

selves (related to paging phones within individual cells).

�ese costs drive the clustering solution in opposite

directions, on top of which there are constraints on

cells that must (or cannot) be in the same cluster. �e

authors show that the same O(logn) region-growing
algorithm for minimizing Correlation Clustering and

Multicut applies to Location Area Planning.

Correlation clustering has been directly applied to

the coreference problem in natural language processing

and other instances in which there are multiple ref-

erences to the same object (Daume, ; McCallum

& Wellner, ). Assuming some sort of undirected

graphical model, such as a Conditional Random Field,

algorithms for correlation clustering are used to parti-

tion a graph whose edge weights corresponding to log-

potentials between node pairs. �e machine learning

community has applied some of the algorithms for Cor-

relation clustering to problems such as email clustering

and image segmentation. With similar applications in

mind, Finley and Joachims () explore the idea of

adapting the pairwise input information to �t example

 C Correlation Clustering

clusterings given by a user. �eir objective function is

the same as Correlation Clustering (), but their main

tool is the7Support Vector Machine.
�ere has been considerable interest in the

7consensus clustering problem, which is an excel-
lent application of Correlation clustering techniques.

Gionis, Mannila, and Tsaparas () note several

sources of motivation for the Consensus Clustering;

these include identifying the correct number of clusters

and improving clustering robustness. �ey adapt

Charikar et al.’s region-growing algorithm to create a

three-approximation that performs reasonably well in

practice, though not as well as local search techniques.

Gionis et al. also suggest using sampling as a tool for

handling large data sets. Bertolacci and Wirth ()

extended this study by implementing Ailon et al.’s

algorithms with sampling, and therefore a variety of

ways of developing a full clustering from the clustering

of the sample. �ey noted that LP-based methods

performed best, but placed a signi�cant strain on

resources.

Applications of Clustering with Advice
�e 7k-means clustering algorithm is perhaps the

most-used clustering technique: Wagsta� et al. incor-

porated constraints into a highly cited k-means variant
called COP-KMEANS. �ey applied this algorithm to

the task of identifying lanes of tra�c based on input

GPS data.

In the constrained-clustering framework, the

constraints are usually assumed to be consistent

(noncontradictory) and hard. In addition to the

usual must- and cannot-link constraints, Davidson

and Ravi () added constraints enforcing various

requirements on the distances between points in

particular clusters. �ey analyzed the computational

feasibility of the problem of establishing the (in)

feasibility of a set of constraints, for various constraint

types. �eir constrained k-means algorithms were used
to help a robot discover objects in a scene.

Recommended Reading
Ailon, N., Charikar, M., & Newman, A. (). Aggregating incon-

sistent information: Ranking and clustering. In Proceedings of
the Thirty-Seventh ACM Symposium on the Theory of Computing
(pp. –). New York: ACM Press.

Alon, N., Makarychev, K., Makarychev, Y., & Naor, A. ().

Quadratic forms on graphs. Inventiones Mathematicae, (),
–.

Arora, S., Berger, E., Hazan, E., Kindler, G., & Safra, S. ().

On non-approximability for quadratic programs. In Pro-
ceedings of Forty-Sixth Symposium on Foundations of Com-
puter Science. (pp. –). Washington DC: IEEE Computer
Society.

Bansal, N., Blum, A., & Chawla, S. (). Correlation clustering.

In Correlation clustering (pp. –). Washington, DC: IEEE
Computer Society.

Ben-Dor, A., Shamir, R., & Yakhini, Z. (). Clustering gene

expression patterns. Journal of Computational Biology, ,
–.

Bertolacci, M., & Wirth, A. (). Are approximation algorithms

for consensus clustering worthwhile? In Proceedings of Seventh
SIAM International Conference on Data Mining. (pp. –).
Philadelphia: SIAM.

Charikar, M., Guruswami, V., & Wirth, A. (). Clustering with

qualitative information. In Proceedings of forty fourth FOCS
(pp. –).

Charikar, M., & Wirth, A. (). Maximizing quadratic programs:

Extending Grothendieck’s inequality. In Proceedings of forty
fifth FOCS (pp. –).

Daume, H. (). Practical structured learning techniques for nat-

ural language processing. PhD thesis, University of Southern

California.

Davidson, I., & Ravi, S. (). Clustering with constraints: Feasi-

bility issues and the k-means algorithm. In Proceedings of Fifth
SIAM International Conference on Data Mining.

Demaine, E., Emanuel, D., Fiat, A., & Immorlica, N. (). Corre-

lation clustering in general weighted graphs. Theoretical Com-
puter Science, (), –.

Demaine, E., & Immorlica, N. (). Correlation clustering

with partial information. In Proceedings of Sixth Workshop
on Approximation Algorithms for Combinatorial Optimization
Problems. (pp. –).

Emanuel, D., & Fiat, A. (). Correlation clustering – mini-

mizing disagreements on arbitrary weighted graphs. In Pro-
ceedings of Eleventh European Symposium on Algorithms
(pp. –).

Ferligoj, A., & Batagelj, V. (). Clustering with relational con-

straint. Psychometrika, (), –.
Finley, T., & Joachims, T. (). Supervised clustering with support

vector machines. In Proceedings of Twenty-Second International
Conference on Machine Learning.

Gionis, A., Mannila, H., & Tsaparas, P. (). Clustering aggrega-

tion. In Proceedings of Twenty-First International Conference on
Data Engineering. To appear.

Gramm, J., Guo, J., Hüffner, F., & Niedermeier, R. ().

Automated generation of search tree algorithms for

hard graph modification problems. Algorithmica, (),
–.

Kulis, B., Basu, S., Dhillon, I., & Mooney, R. (). Semi-supervised

graph clustering: A kernel approach. In Proceedings of Twenty-
Second International Conference on Machine Learning (pp.
–).

McCallum, A., & Wellner, B. (). Conditional models of identity

uncertainty with application to noun coreference. In L. Saul,

Cost-Sensitive Learning C 

C

Y. Weiss, & L. Bottou, (Eds.), Advances in neural informa-
tion processing systems  (pp. –). Cambridge, MA:
MIT Press.

Meilă, M. (). Comparing clusterings by the variation of infor-

mation. In Proceedings of Sixteenth Conference on Learning
Theory (pp. –).

Shamir, R., Sharan, R., & Tsur, D. (). Cluster graph modification

problems. Discrete Applied Mathematics, , –.
Swamy, C. (). Correlation Clustering: Maximizing agreements

via semidefinite programming. In Proceedings of Fifteenth
ACM-SIAM Symposium on Discrete Algorithms (pp. –).

Tan, J. (). A Note on the inapproximability of correlation

clustering. Technical Report ., eprint arXiv, .

Correlation-Based Learning

7Biological Learning: Synaptic Plasticity, Hebb Rule
and Spike Timing Dependent Plasticity

Cost

In 7Markov decision processes, negative rewards are
o�en expressed as costs. A reward of −x is expressed as
a cost of x. In 7supervised learning, cost is used as a
synonym for7loss.

Cross References
7Loss

Cost Function

7Loss Function

Cost-Sensitive Classification

7Cost-Sensitive Learning

Cost-Sensitive Learning

Charles X. Ling, Victor S. Sheng

�e University of Western Ontario, Canada

Synonyms
Cost-sensitive classi�cation; Learning with di�erent

classi�cation costs

Definition
Cost-Sensitive Learning is a type of learning that takes
the misclassi�cation costs (and possibly other types of

cost) into consideration.�e goal of this type of learning

is tominimize the total cost.�e key di�erence between

cost-sensitive learning and cost-insensitive learning is

that cost-sensitive learning treats di�erentmisclassi�ca-

tions di�erently. �at is, the cost for labeling a positive

example as negative can be di�erent from the cost for

labeling a negative example as positive. Cost-insensitive

learning does not take misclassi�cation costs into con-

sideration.

Motivation and Background
Classi�cation is an important task in inductive learn-

ing and machine learning. A classi�er, trained from a

set of training examples with class labels, can then be

used to predict the class labels of new examples. �e

class label is usually discrete and �nite. Many e�ective

classi�cation algorithms have been developed, such as

7naïve Bayes, 7decision trees, 7neural networks, and
7support vector machines. However, most classi�ca-
tion algorithms seek to minimize the error rate: the

percentage of the incorrect prediction of class labels.

�ey ignore the di�erence between types of misclassi�-

cation errors. In particular, they implicitly assume that

all misclassi�cation errors have equal cost.

In many real-world applications, this assumption is

not true. �e di�erences between di�erent misclassi�-

cation errors can be quite large. For example, inmedical

diagnosis of a certain cancer (where having cancer is

regarded as the positive class, and non-cancer (healthy)

as negative), misdiagnosing a cancer patient as healthy

(the patient is actually positive but is classi�ed as nega-

tive; thus it is also called “false negative”) is much more

serious (thus expensive) than a false-positive error. �e

patient could lose his/her life because of a delay in cor-

rect diagnosis and treatment. Similarly, if carrying a

bomb is positive, then it is much more expensive to

miss a terrorist who carries a bomb onto a �ight than

searching an innocent person.

Cost-sensitive learning takes costs, such as the mis-

classi�cation cost, into consideration. Turney ()

provides a comprehensive survey of a large variety of

di�erent types of costs in data mining and machine

 C Cost-Sensitive Learning

learning, including misclassi�cation costs, data acqui-

sition cost (instance costs and attribute costs), 7active
learning costs, computation cost, human–computer

interaction cost, and so on. �e misclassi�cation cost

is singled out as the most important cost, and it has

received the most attention in recent years.

Theory
�e theory of cost-sensitive learning (Elkan, ;

Zadrozny and Elkan, ) describes how the misclas-

si�cation cost plays its essential role in various cost-

sensitive learning algorithms.

Without loss of generality, binary classi�cation is

assumed (i.e., positive and negative class) in this paper.

In cost-sensitive learning, the costs of false positive

(actual negative but predicted as positive; denoted as

FP), false negative (FN), true positive (TP), and true
negative (TN) can be given in a cost matrix, as shown
in Table . In the table, the notation C(i, j) is also used
to represent the misclassi�cation cost of classifying an

instance from its actual class j into the predicted class i
( is used for positive, and  for negative).�esemisclas-

si�cation cost values can be given by domain experts,

or learned via other approaches. In cost-sensitive learn-

ing, it is usually assumed that such a cost matrix is

given and known. For multiple classes, the cost matrix

can be easily extended by adding more rows and more

columns.

Note that C(i, i) (TP and TN) is usually regarded
as the “bene�t” (i.e., negated cost) when an instance is

predicted correctly. In addition, cost-sensitive learning

is o�en used to deal with datasets with very imbal-

anced class distributions (see 7Class Imbalance Prob-
lem) (Japkowicz& Stephen, ). Usually (andwithout

loss of generality), the minority or rare class is regarded

as the positive class, and it is o�en more expensive

to misclassify an actual positive example into negative,

Cost-Sensitive Learning. Table  An Example of Cost

Matrix for Binary Classification

Actual negative Actual positive

Predict
negative

C(, ), or TP C(, ), or FN

Predict positive C(, ), or FP C(, ), or TP

than an actual negative example into positive. �at is,

the value of FN =C(, ) is usually larger than that of FP
=C(, ).�is is true for the cancer examplementioned
earlier (cancer patients are usually rare in the popula-

tion, but predicting an actual cancer patient as negative

is usually very costly) and the bomb example (terrorists

are rare).

Given the cost matrix, an example should be clas-

si�ed into the class that has the minimum expected

cost. �is is the minimum expected cost principle. �e

expected cost R(i ∣ x) of classifying an instance x into
class i (by a classi�er) can be expressed as:

R (i ∣ x) = ∑
j
P (j ∣ x)C (j, i), ()

where P(j ∣ x) is the probability estimation of classifying
an instance into class j. �at is, the classi�er will classify
an instance x into positive class if and only if:

P ( ∣ x)C (, ) + P ( ∣ x)C (, ) ≤ P ( ∣ x)C (, )
+ P ( ∣ x)C (, )

�is is equivalent to:

P ( ∣ x) (C (, ) − C (, )) ≤ P ( ∣ x)
(C (, ) − C (, ))

�us, the decision (of classifying an example into

positive) will not be changed if a constant is added

into a column of the original cost matrix. �us, the

original cost matrix can always be converted to a

simpler one by subtracting C(, )to the �rst col-
umn, and C(, ) to the second column. A�er such
conversion, the simpler cost matrix is shown in

Table . �us, any given cost-matrix can be converted

to one with C(, ) = C(, ) = . (Here it is

assumed that the misclassi�cation cost is the same for

Cost-Sensitive Learning. Table  A Simpler Cost Matrix

with an Equivalent Optimal Classification

True negative True positive

Predict
negative

 C(, ) – C(, )

Predict positive C(, ) – C(, ) 

Cost-Sensitive Learning C 

C

all examples. �is property is a special case of the one

discussed in Elkan ().) In the rest of the paper, it

will be assumed that C(, ) = C(, ) = . Under this
assumption, the classi�er will classify an instance x into
positive class if and only if:

P ( ∣ x)C (, ) ≤ P ( ∣ x)C (, )

As P( ∣ x) = − P( ∣ x), a threshold p∗ can be obtained
for the classi�er to classify an instance x into positive if
P( ∣ x) ≥ p∗, where

p∗ = C(, )
C(, ) + C(, )

. ()

�us, if a cost-insensitive classi�er can produce a poste-

rior probability estimation p( ∣ x) for each test example
x, one can make the classi�er cost-sensitive by sim-
ply choosing the classi�cation threshold according to

(), and classify any example to be positive whenever

P( ∣ x) ≥ p∗. �is is what several cost-sensitive meta-
learning algorithms, such as Relabeling, are based on
(see later for details). However, some cost-insensitive

classi�ers, such as C., may not be able to produce

accurate probability estimation; they return a class label

without a probability estimate. Empirical �resholding
(Sheng & Ling, ) does not require accurate estima-

tion of probabilities – an accurate ranking is su�cient.

It simply uses 7cross-validation to search for the best
probability value p∗ to use as a threshold.
Traditional cost-insensitive classi�ers are designed

to predict the class in terms of a default, �xed thresh-

old of .. Elkan () shows that one can “rebalance”

the original training examples by sampling, such that

the classi�ers with the . threshold is equivalent to the

classi�ers with the p* threshold as in (), in order to
achieve cost-sensitivity. �e rebalance is done as fol-

lows. If all positive examples (as they are assumed as the

rare class) are kept, then the number of negative exam-

ples should be multiplied by C(,)/C(,) = FP/FN.
Note that as usually FP < FN, the multiple is less than .
�is is, thus, o�en called “under-sampling the majority

class.”�is is also equivalent to “proportional sampling,”

where positive and negative examples are sampled by

the ratio of:

p ()FN : p ()FP ()

where p() and p() are the prior probability of the
positive and negative examples in the original train-

ing set. �at is, the prior probabilities and the costs

are interchangeable: doubling p() has the same e�ect
as doubling FN, or halving FP (Drummond & Holte,
). Most sampling meta-learning methods, such as

costing (Zadrozny, Langford, & Abe, ), are based

on () above (see later for details).

Almost all meta-learning approaches are either

based on () or () for the thresholding- and sampling-

based meta-learning methods, respectively, to be dis-

cussed in the next section.

Structure of Learning System
Broadly speaking, cost-sensitive learning can be catego-

rized into two categories.�e�rst one is to design classi-

�ers that are cost-sensitive in themselves.�ey are called

the direct method. Examples of direct cost-sensitive

learning are ICET (Turney, ) and cost-sensitive

decision tree (Drummond & Holte, ; Ling, Yang,

Wang, & Zhang, ). �e other category is to design

a “wrapper” that converts any existing cost-insensitive

(or cost-blind) classi�ers into cost-sensitive ones. �e

wrapper method is also called cost-sensitive meta-

learning method, and it can be further categorized into

thresholding and sampling. Here is a hierarchy of the

cost-sensitive learning and some typical methods. �is

paper will focus on cost-sensitive meta-learning that

considers the misclassi�cation cost only.

Cost-Sensitive learning

– Direct methods

● ICET (Turney, )

● Cost-sensitive decision trees (Drummond &

Holte, ; Ling et al., )

– Meta-learning

● �resholding

� MetaCost (Domingos, )

� CostSensitiveClassi�er (CSC in short) (Wit-

ten & Frank, )

� Cost-sensitive naïve Bayes (Chai, Deng, Yang,

& Ling, )

� Empirical �resholding (ET in short) (Sheng

& Ling, )

● Sampling

� Costing (Zadrozny et al., )

� Weighting (Ting, )

 C Cost-Sensitive Learning

Direct Cost-Sensitive Learning

�e main idea of building a direct cost-sensitive learn-

ing algorithm is to directly introduce and utilize mis-

classi�cation costs into the learning algorithms. �ere

are several works on direct cost-sensitive learning algo-

rithms, such as ICET (Turney, ) and cost-sensitive

decision trees (Ling et al., ).

ICET (Turney, ) incorporates misclassi�cation

costs in the �tness function of genetic algorithms. On

the other hand, cost-sensitive decision tree (Ling et al.,

), called CSTree here, uses the misclassi�cation

costs directly in its tree building process.�at is, instead

of minimizing entropy in attribute selection as in C.,

CSTree selects the best attribute by the expected total

cost reduction. �at is, an attribute is selected as a root

of the (sub) tree if it minimizes the total misclassi�ca-

tion cost.

Note that as both ICET and CSTree directly take

costs into model building, they can also take easily

attribute costs (and perhaps other costs) directly into

consideration, while meta cost-sensitive learning algo-

rithms generally cannot.

Drummond and Holte () investigate the cost-

sensitivity of the four commonly used attribute selec-

tion criteria of decision tree learning: accuracy, Gini,

entropy, and DKM. �ey claim that the sensitivity of

cost is highest with the accuracy, followed by Gini,

entropy, and DKM.

Cost-Sensitive Meta-Learning

Cost-sensitive meta-learning converts existing cost-

insensitive classi�ers into cost-sensitive ones without

modifying them. �us, it can be regarded as a mid-

dleware component that preprocesses the training data,

or post-processes the output, from the cost-insensitive

learning algorithms.

Cost-sensitive meta-learning can be further classi-

�ed into twomain categories: thresholding and sampling,
based on () and () respectively, as discussed in the

theory section.

�resholding uses () as a threshold to classify exam-
ples into positive or negative if the cost-insensitive clas-

si�ers can produce probability estimations. MetaCost
(Domingos, ) is a thresholdingmethod. It �rst uses
bagging on decision trees to obtain reliable probability

estimations of training examples, relabels the classes of

training examples according to (), and then uses the

relabeled training instances to build a cost-insensitive

classi�er. CSC (Witten & Frank, ) also uses () to
predict the class of test instances. More speci�cally,CSC
uses a cost-insensitive algorithm to obtain the proba-

bility estimations P(j ∣ x) of each test instance. (CSC is a
meta-learning method and can be applied to any classi-

�ers.)�en it uses () to predict the class label of the test

examples. Cost-sensitive naïve Bayes (Chai et al., )

uses () to classify test examples based on the posterior

probability produced by the naïve Bayes.

As seen, all thresholding-based meta-learning meth-
ods rely on accurate probability estimations of p( ∣ x) for
the test example x. To achieve this, Zadrozny and Elkan
() propose several methods to improve the cali-

bration of probability estimates. ET (Empirical �resh-
olding) (Sheng and Ling, ) is a thresholding-based

meta-learningmethod. It does not require accurate esti-

mation of probabilities – an accurate ranking is su�-

cient. ET simply uses cross-validation to search the best
probability from the training instances as the threshold,

and uses the searched threshold to predict the class label

of test instances.

On the other hand, sampling �rst modi�es the class
distribution of the training data according to (), and

then applies cost-insensitive classi�ers on the sampled

data directly. �ere is no need for the classi�ers to pro-

duce probability estimations, as long as they can clas-

sify positive or negative examples accurately. Zadrozny

et al. () show that proportional sampling with

replacement produces duplicated cases in the training,

which in turn produces over�tting in model building.

Instead, Zadrozny et al. () proposes to use “rejec-

tion sampling” to avoid duplication. More speci�cally,

each instance in the original training set is drawn once,

and accepted into the sample with the accepting prob-

ability C(j, i)/Z, where C(j, i) is the misclassi�cation
cost of class i, and Z is an arbitrary constant such that
Z ≥max C(j,i). When Z =maxijC(j, i), this is equivalent
to keeping all examples of the rare class, and sam-

pling the majority class without replacement accord-

ing to C(, )/C(, ) – in accordance with (). Bag-
ging is applied a�er rejection sampling to improve

the results further. �e resulting method is called

Costing.
Weighting (Ting, ) can also be viewed as a

sampling method. It assigns a normalized weight to

each instance according to the misclassi�cation costs

Covariance Matrix C 

C

speci�ed in ().�at is, examples of the rare class (which

carries a highermisclassi�cation cost) are assigned, pro-

portionally, high weights. Examples with high weights

can be viewed as example duplication – thus over-

sampling. Weighting then induces cost-sensitivity by
integrating the instances’ weights directly into C.,

as C. can take example weights directly in the

entropy calculation. It works whenever the original

cost-insensitive classi�ers can accept example weights

directly. (�us, it can be said that Weighting is a semi
meta-learning method.) In addition, Weighting does
not rely on bagging as Costing does, as it “utilizes” all
examples in the training set.

Recommended Reading
Chai, X., Deng, L., Yang, Q., & Ling, C. X. (). Test-cost sensi-

tive naïve Bayesian classification. In Proceedings of the fourth
IEEE international conference on data mining. Brighton: IEEE
Computer Society Press.

Domingos, P. (). MetaCost: A general method for making clas-

sifiers cost-sensitive. In Proceedings of the fifth international
conference on knowledge discovery and data mining, San Diego
(pp. –). New York: ACM.

Drummond, C., & Holte, R. (). Exploiting the cost

(in)sensitivity of decision tree splitting criteria. In Proceed-
ings of the th international conference on machine learning
(pp. –).

Elkan, C. (). The foundations of cost-sensitive learning. In Pro-
ceedings of the th international joint conference of artificial
intelligence (pp. –). Seattle: Morgan Kaufmann.

Japkowicz, N., & Stephen, S. (). The class imbalance prob-

lem: A systematic study. Intelligent Data Analysis, (),
–.

Ling, C. X., Yang, Q., Wang, J., & Zhang, S. (). Decision trees

with minimal costs. InProceedings of  international confer-
ence on machine learning (ICML’).

Sheng, V. S., & Ling, C. X. (). Thresholding for making classi-

fiers cost-sensitive. In Proceedings of the st national conference
on artificial intelligence (pp. –), – July , Boston,
Massachusetts.

Ting, K. M. (). Inducing cost-sensitive trees via instance weight-

ing. In Proceedings of the second European symposium on prin-
ciples of data mining and knowledge discovery (pp. –).
Heidelberg: Springer.

Turney, P. D. (). Cost-sensitive classification: Empirical eval-

uation of a hybrid genetic decision tree induction algorithm.

Journal of Artificial Intelligence Research, , –.
Turney, P. D. (). Types of cost in inductive concept learn-

ing. In Proceedings of the workshop on cost-sensitive learning at
the th international conference on machine learning, Stanford
University, California.

Witten, I. H., & Frank, E. (). Data mining – Practical machine
learning tools and techniques with Java implementations. San
Francisco: Morgan Kaufmann.

Zadrozny, B., & Elkan, C. (). Learning and making decisions

when costs and probabilities are both unknown. In Proceedings

of the seventh international conference on knowledge discovery
and data mining (pp. –).

Zadrozny, B., Langford, J., & Abe, N. (). Cost-sensitive learning

by cost-proportionate instance weighting. In Proceedings of the
third International conference on data mining.

Cost-to-Go Function Approximation

7Value Function Approximation

Covariance Matrix

Xinhua Zhang

Australian National University,

Canberra, Australia

Definition
It is convenient to de�ne a covariance matrix by using

multi-variate randomvariables (mrv):X = (X, . . . ,Xd)⊺.
For univariate random variablesXi andXj, their covari-
ance is de�ned as:

Cov(Xi,Xj) = E [(Xi − µi)(Xj − µj)] ,

where µi is themean ofXi : µi = E[Xi]. As a special case,
when i = j, then we get the variance of Xi, Var(Xi) =
Cov(Xi,Xi). Now in the setting of mrv, assuming that
each component random variable Xi has �nite variance
under its marginal distribution, the covariance matrix

Cov(X,X) can be de�ned as a d-by-d matrix whose
(i, j)-th entry is the covariance:

(Cov(X,X))ij = Cov(Xi,Xj) = E [(Xi − µi)(Xj − µj)] .

And its inverse is also called precision matrix.

Motivation and Background
�e covariance between two univariate random vari-

ables measures how much they change together, and

as a special case, the covariance of a random variable

with itself is exactly its variance. It is important to

note that covariance is an unnormalized measure of the

correlation between the random variables.

As a generalization to multi-variate random vari-

ables X=(X, . . . ,Xd)⊺, the covariance matrix is a

 C Covariance Matrix

d-by-d matrix whose (i, j)-th component is the covari-
ance between Xi and Xj.
In many applications, it is important to character-

ize the relations between a set of factors, hence the

covariance matrix plays an important role in practice,

especially in machine learning.

Theory
It is easy to rewrite the element-wise de�nition into the

matrix form:

Cov(X,X) = E [(X −E[X])(X −E[X])⊺] , ()

which naturally generalizes the variance of univariate

random variables: Var(X) = E[(X −E[X])].
Moreover, it is also straightforward to extend the

covariance of a single mrv X to two mrv ’s X (d
dimensional) and y (s dimensional), under the name
cross-covariance. It quanti�es howmuch the component
random variables inX and y change together.�e cross-
covariance matrix is de�ned as a d× smatrix Cov(X, y)
whose (i, j)-th entry is

(Cov(X, y))ij = Cov(Xi,Yj)
= E [(Xi −E[Xi])(Yj −E[Yj])] .

Cov(X, y) can also be written in the matrix form as

Cov(X, y) = E [(X −E[X])(y −E[y])⊺] ,

where the expectation is with respect to the joint

distribution of (X, y). Obviously, Cov(X, y) becomes
Cov(X,X) when y = X.

Properties

Covariance Cov(X,X) has the following properties:

. Positive semi-de�niteness. It follows from () that

Cov(X,X) is positive semi-de�nite. Cov(X,X) = 
if, and only if, X is a constant almost surely, i.e.,
there exists a constant x such that Pr(X ≠ x) = .
Cov(X,X) is not positive de�nite if, and only if,
there exists a constant α such that ⟨α,X⟩ is constant
almost surely.

. Relating cumulant to moments: Cov(X,X) =
E[XX⊺] −E[X]E[X]⊺.

. Linear transform: If y = AX+bwhereA ∈ Rs×d and
b ∈ Rs, then Cov(y, y) = ACov(X,X)A⊺.

Cross-covariance Cov(X, y) has the following pro-
perties.

. Symmetry: Cov(X, y) = Cov(y,X).
. Linearity: Cov(X + X, y) = Cov(X, y) + Cov

(X, y).
. Relating to covariance: If X and y have the same
dimension, then Cov(X + y,X + y) = Cov(X,X) +
Cov(y, y) + Cov(y,X).

. Linear transform: Cov(AX,By) = ACov(X, y)B.

It is highly important to note that Cov(X, y) =  is a
necessary but not su�cient condition for X and y to be
independent.

Correlation Coefficient

Entries in the covariance matrix are sometimes pre-

sented in a normalized form by dividing each entry by

its corresponding standard deviations. �is quantity is

called the correlation coe�cient, represented as ρXi ,Xj ,
and de�ned as

ρXi ,Xj =
Cov(Xi,Xj)

Cov(Xi,Xi)/Cov(Xj,Xj)/
.

�e corresponding matrix is called the correlation

matrix, and for ΓX set to Cov(X,X) with all non-
diagonal entries zeroed, and ΓY likewise, then the cor-

relation matrix is given by

Corr(X, y) = Γ−/X Cov(X, y)Γ−/Y .

�e correlation coe�cient takes on values between

[−, ].

Parameter Estimation

Given observations x, . . . , xn of a mrv X, an unbiased
estimator of Cov(X,X) is:

S = 

n − 

n

∑
i=

(xi − x̄)(xi − x̄)⊺,

where x̄ = 

n ∑
n
i= xi. �e denominator n −  re�ects the

fact that the mean is unknown and the sample mean is

used in place. Note the maximum likelihood estimator

in this case replaces the denominator n −  by n.

Covariance Matrix C 

C

Conjugate Priors

A covariance matrix is used to de�ne the Gaussian dis-

tribution. In this case, the inverse Wishart distribution

is the conjugate prior for the covariance matrix. Since

the Gamma distribution is a -D version of the Wishart

distribution, in the -D case the Gamma is the conjugate

prior for precision matrix.

Applications
Several key uses of the covariance matrix are reviewed

here.

Correlation and Kernel Methods

In many machine learning problems, we o�en need to

quantify the correlation of two mrv s which may be
from two di�erent spaces. For example, we may want

to study how much the image stream of a movie is cor-

related with the comments it receives. For simplicity, we

consider a r-dimensional mrv X and a s-dimensional
mrv y. To study their correlation, suppose we have n
pairs of observations {(xi, yi)}

n
i= drawn iid from cer-

tain underlying joint distribution of (X, y). Let x̄ =


n ∑
n
i= xi and ȳ = 

n ∑
n
i= yi, and stack {xi} and {yi} into

x̃ = (x, . . . , xn)⊺ and Ỹ = (y

, . . . , yn)⊺ respectively.

�en the cross-covariancematrix Cov(X, y) can be esti-
mated by n ∑

n
i=(xi − x̄)(yi − ȳ)⊺. To quantify the cross-

correlation by a real number, we need to apply some

norm of the cross-covariance matrix, and the simplest

one is the Frobenius norm, ∥A∥F = ∑ij Aij. �erefore,
we obtain a measure of cross-correlation,

∥ 
n

n

∑
i=

(xi − x̄)(yi − ȳ)⊺∥


F
= 
n
Hx̃x̃⊺HỸỸ⊺, ()

where Hij = δij − 

n , and δij =  if i = j and  otherwise.
It is important to notice that () in this measure,

inner product is performed only in the space of X
and y separately, i.e., no transformation between X
and y is required, () the data points a�ect the mea-
sure only via inner products x⊺i xj as the (i, j)-th entry
of x̃x̃⊺ (and similarly for yi). Hence we can endow
new inner products on X and y, which eventually
allows us to apply kernels, e.g., Gretton, Herbrich,

Smola, Bousquet, & Schölkopf (). In a nutshell, ker-

nel methods (Schölkopf & Smola, ) rede�ne the

inner product x⊺i xj by mapping xi to a richer feature
space via ϕ(xi) and then compute the inner product

there: k(xi, xj) := ϕ(xi)⊺ϕ(xj). Since the measure in
() only needs inner products, one can even directly

de�ne k(,) without explicitly specifying ϕ. �is allows
us to

● Implicitly use a rich feature space whose dimension

can be in�nitely high.

● Apply this measure of cross correlation to non-

Euclidean spaces as long as a kernel k(xi, xj) can be
de�ned on it.

Correlation and Least Squares Approximation

�e measure of () can be equivalently motivated by

least square 7linear regression. �at is, we look for a
linear transform T : Rd → Rs which minimizes



n

n

∑
i=

∥(yi − ȳ) − T(xi − x̄)∥ .

And one can show that its minimum objective value is

exactly equal to () up to a constant, as long as all yi − ȳ
and xi − x̄ have unit length. In practice, this can be
achieved by normalization. Or, the measure in () itself

can be normalized by replacing the covariance matrix

with the correlation matrix.

Principal Component Analysis

�e covariance matrix plays a key role in principal

component analysis (PCA). Assume that we are given

n iid observations x, . . . , xn of a mrv X, and let x̄ =


n ∑i xi. PCA tries to �nd a set of orthogonal directions
w,w, . . ., such that the projection ofX to the direction
w, w⊺ X, has the highest variance among all possible
directions in the d-dimensional space. A�er subtract-
ing from X the projection to w, w is chosen as the
highest variance projection direction for the remain-

der. �is procedure goes on for the required number of

components.

To �ndw := argmax wVar(w⊺X), we need an empi-
rical estimate of Var(w⊺X). Estimating E[(w⊺X)] by
w⊺ (n ∑i xix

⊺
i)w, and E[w⊺X] by n ∑i w

⊺xi, we get

w = argmaxw : ∥w = ∥w⊺Sw,

where S = 
n

n

∑
i=

(xi − x̄)(xi − x̄)⊺,

i.e., S is n
n− times the unbias empirical estimate of the

covariance of X, based on samples x, . . . , xn. w turns

 C Covering Algorithm

out to be exactly the eigenvector of S corresponding to
the greatest eigenvalue.

Note that PCA is independent of the distribution of

X. More details on PCA can be found at Jolli�e ().

Gaussian Processes

Gaussian processes are another important framework

in machine learning that rely on the covariance matrix.

It is a distribution over functions f (⋅) from certain space
X to R, such that for any n ∈ N and any n points
{xi ∈ X}ni=, the set of values of f evaluated at {xi}i,
{f (x), . . . , f (xn)}, will have an n-dimensional Gaus-
sian distribution. Di�erent choices of the covariance

matrix of the multi-variate Gaussian lead to di�erent

stochastic processes such as Wiener process, Brown-

ian motion, Ornstein–Uhlenbeck process, etc. In these

cases, it makes more sense to de�ne a covariance func-

tion C : X ×X ↦ R, such that given any set {xi ∈ X}ni=
for any n ∈ N, the n-by-n matrix (C(xi, xj))ij is pos-
itive semi-de�nite and can be used as the covariance

matrix. �is further allows straightforward kerneliza-

tion of a Gaussian process by using the kernel function

as the covariance function.

Although the space of functions is in�nite dimen-

sional, the marginalization property of multi-variate

Gaussian distributions guarantees that the user of the

model only needs to consider the observed xi, and
ignore all the other possible x ∈ X .�is important prop-
erty says that for a mrv X = (X⊺

 ,X
⊺
)⊺ ∼ N(µ, Σ), the

marginal distribution of X is N(µ

, Σ), where Σ is

the submatrix of Σ corresponding to X (and similarly
for µ


). So taking into account the random variable X

will not change the marginal distribution of X.
For a complete treatment of covariance matrix

from a statistical perspective, see Casella and Berger

(), and Mardia, Kent, and Bibby () provides

details for the multi-variate case. PCA is comprehen-

sively discussed in Jolli�e (), and kernel meth-

ods are introduced in Schölkopf and Smola ().

Williams & Rasmussen () gives the state of the art

on how Gaussian processes can be utilized for machine

learning.

Cross References
7Gaussian Distribution
7Gaussian Processes
7Kernel Methods

Recommended Reading
Casella, G., & Berger, R. (). Statistical inference (nd ed.). Pacific

Grove, CA: Duxbury.

Gretton, A., Herbrich, R., Smola, A., Bousquet, O., & Schölkopf, B.

(). Kernel methods for measuring independence. Journal
of Machine Learning Research, , –.

Jolliffe, I. T. () Principal component analysis (nd ed.). Springer
series in statistics. New York: Springer.

Mardia, K. V., Kent, J. T., & Bibby, J. M. ().Multivariate analysis.
London: Academic Press.

Schölkopf, B., & Smola, A. (). Learning with kernels. Cambridge,
MA: MIT Press.

Williams, C. K. I., & Rasmussen, C. E. (). Gaussian processes for
regression. Cambridge, MA: MIT Press.

Covering Algorithm

7Rule Learning

Credit Assignment

Claude Sammut

�e University of New South Wales

Synonyms
Structural credit assignment; Temporal credit

assignment

Definition
When a learning system employs a complex decision

process, it must assign credit or blame for the out-

comes to each of its decisions. Where it is not possi-

ble to directly attribute an individual outcome to each

decision, it is necessary to apportion credit and blame

between each of the combinations of decisions that con-

tributed to the outcome. We distinguish two cases in

the credit assignment problem. Temporal credit assign-
ment refers to the assignment of credit for outcomes to
actions. Structural credit assignment refers to the assign-
ment of credit for actions to internal decisions. �e

�rst subproblem involves determining when the actions

that deserve credit were taken and the second involves

assigning credit to the internal structure of actions (Sut-

ton, ).

Credit Assignment C 

C

Motivation
Consider the problem of learning to balance a pole

that is hinged on a cart (Michie & Chambers, ,

Anderson &Miller, ).�e cart is constrained to run

along a track of �nite length and a �xed force can be

applied to push the cart le� or right. A controller for the

pole and cart system must make a decision whether to

push le� or right at frequent, regular time intervals, for

example,  times a second. Suppose that this controller

is capable of learning from trial-and-error. If the pole

falls over, then it must determine which actions it took

helped or hurt its performance.Determining that action

is the problem of temporal credit assignment. Although
the actions are directly responsible for the outcome of a

trial, the internal process for choosing the action indi-

rectly a�ects the outcome. Assigning credit or blame

to those internal processes that lead to the choice of

action is the structural credit assignment problem. In the
case of pole balancing, the learning systemwill typically

keep statistics such as how long, on average, the pole

remained balanced a�er taking a particular action in a

particular state, or a�er a failure, it may count back and

determine the average amount of time to failure a�er

taking a particular action in a particular state. Using

these statistics, the learner attempts to determine the

best action for a given state.

�e above example is typical of many problems in

7reinforcement learning (Sutton & Barto, ), where
an agent interacts with its environment and through

that interaction, learns to improve its performance in

a task. Although Samuel () was the �rst to use a

form of reinforcement learning in his checkers play-

ing program, Minksy () �rst articulated the credit

assignment, as follows:

▸ Using devices that also learn which events are asso-

ciated with reinforcement, i.e., reward, we can build

more autonomous “secondary reinforcement” systems.

In applying such methods to complex problems, one

encounters a serious difficulty – in distributing credit

for success of a complex strategy among the many

decisions that were involved.

�e BOXES algorithm of Michie and Chambers ()

learned to control a pole balancer and performed credit

assignment but the problem of credit assignment later

became central to reinforcement learning, particularly

following the work of Sutton (). Although credit

assignment has become most strongly identi�ed with

reinforcement learning, it may appear in any learning

system that attempts to assess and revise its decision-

making process.

Structural Credit Assignment
�e setting for our learning system is that we have an

agent that interacts with an environment. �e environ-

ment may be a virtual one, as in game playing, or it may

be physical, as in a robot performing some task. �e

agent receives input, possibly through sensing devices,

that allows it to characterize the state of the world.

Somehow, the agent must map these inputs to appro-

priate responses. �ese responses may change the state

of the world. In reinforcement learning, we assume that

the agent will receive some reward signal a�er an action

or sequence of actions. Its job is to maximize these

rewards over time.

Structural credit assignment is associated with gen-

eralization over the input space of the agent. For exam-

ple, a game player may have to respond to a very large

number of potential board positions or a robot may

have to respond to a streamof camera images. It is infea-

sible to learn a complete mapping from every possible

input to every possible output. �erefore, a learning

agent will typically use some means of grouping input

signals. In the case of the BOXES pole balancer, Michie

and Chambers discretized the state space. �e state is

characterized by the cart’s position and velocity and the

pole’s angle and angular velocity. �ese parameters cre-

ate a four-dimensional space, which was broken into

three regions (le�, center, right) for the pole angle, �ve

for the angular velocity, and three for the cart posi-

tion and velocity.�ese choiceswere arbitrary and other

combinations also worked.

Having divided the input space into non-overlapping

regions, Michie and Chambers associated a push-le�

and push-right action with each region, or box. �e

learning algorithm maintains a score for each action

and chooses the next action based on that score. BOXES

was an early, and simple example, of creating an internal

representation formapping inputs to outputs.�e prob-

lem with this method is that the structure of the

decision-making system is �xed at the start and the

learner is incapable of changing the representation.

�is may be needed if, for example, the subdivisions

 C Credit Assignment

that were chosen do not correspond to a real deci-

sion boundary. A learning system that could adapt its

representation has an advantage, in this case.

�e BOXES representation can be thought of

as a lookup table that implements a function that

maps an input to an output. �e �xed lookup table

can be replaced by a 7function approximator that,
given examples from the desired function, general-

izes from them to construct an approximation of

that function. Di�erent function approximation tech-

niques can be used. For example, Moore’s () func-

tion approximator was a7nearest-neighbor algorithm,
implemented using 7kd-tree to improve e�ciency.
Other function approximation methods may also be

used, e.g., Albus’ CMAC algorithm (), 7locally
weighted regression (Atkeson, Schaal, & Moore, ),

7perceptrons (Rosenblatt, ), 7multi-layer net-
works (Hinton, Rumelhart, & Williams, ), 7radial
basis functions, etc. Structural credit assignment is also

addressed in the creation of hierarchical representa-

tions. See 7hierarchical reinforcement learning. Other
approaches to structural credit assignment include

7Value function approximation (Bertsekas & Tsitsik-
lis, ) and automatic basis generation (Mahade-

van, ). See the entry on 7Gaussian Processes
for examples of recent Bayesian and kernel method

based approaches to solving the credit assignment

problem.

Temporal Credit Assignment
In the pole balancing example described above, the

learning system receives a signal when the pole has

fallen over. How does it know which actions leading

up to the failure contributed to the fall? �e system

will receive a high-level punishment in the event of a

failure or a reward in tasks where there is a goal to

be achieved. In either case, it makes sense to assign

the greatest credit or blame to the most recent actions

and assign progressively less to the preceding actions.

Each time a learning trial is repeated, the value of an

action is updated so that if it leads to another action of

higher value, its weight is increased. �us, the reward

or punishment propagates back through the sequence

of decisions taken by the system. �e credit assign-

ment problem was addressed by Michie and Cham-

bers, in the BOXES, algorithm butmany other solutions

have subsequently been proposed. See the entries on

7Q-learning (Watkins, ; Watkins & Dayan, )
and 7temporal di�erence learning (Barto, Sutton, &
Anderson, ; Sutton, ).

Although temporal credit assignment is usually

associated with reinforcement learning, it also appears

in other forms of learning. In7learning by imitation or
7behavioral cloning, an agent observes the actions of
another agent and tries to learn from traces of behav-

iors. In this case, the learner must judge which actions

of the other agent should receive credit or blame. Plan

learning also encounters the same problem (Benson

& Nilsson, ; Wang, Simon, & Lehman, ), as

does 7explanation-based learning (Mitchell, Keller, &
Kedar-Cabelli, ; Dejong & Mooney, ; Laird,

Newell, & Rosenbloom, ).

To illustrate the connection with explanation-based

learning, we use one of the earliest examples of this

kind of learning, Mitchell and Utgo� ’s, LEX pro-

gram (Mitchell, Utgo�, & Banerji, ). �e program

was intended to learn heuristics for performing sym-

bolic integration. Given a mathematical expression that

included an integral sign, the program tried to trans-

form the expression into one they did not.�e standard

symbolic integration operators were known to the pro-

gram but not when it is best to apply them. �e task

of the learning system was to learn the heuristics for

when to apply the operators. �is was done by exper-

imentation. If no heuristics were available, the program

attempted a brute force search. If the search was suc-

cessful, all the operators applied, leading to the success

were assumed to be positive examples for a heuris-

tic, whereas operators applied during a failed attempt

became negative examples. �us, LEX performed a

simple form of credit assignment, which is typical of

any system that learns how to improve sequences of

decisions.

7Genetic algorithms can also be used to evolve
rules that perform sequences of actions (Holland, ).

When situation-action rules are applied in a sequence,

we have a credit assignment problem that is similar to

when we use a reinforcement learning. �at is, how do

we know which rules were responsible for success or

failure and to what extent? Grefenstette () describes

a bucket brigade algorithm in which rules are given
strengths that are adjusted to re�ect credit or blame.

Credit Assignment C 

C

�is is similar to temporal di�erence learning except

that in the bucket brigade the strengths apply to rules

rather than states. See Classi�er Systems and for a more

comprehensive survey of bucket brigade methods, see

Goldberg ().

Transfer Learning
A�er a person has learned to perform some task, learn-

ing a new, but related, task is usually easier because

knowledge of the �rst learning episode is transferred to
the new task. Transfer Learning is particularly useful for
acquiring new concepts or behaviors when given only

a small amount for training data. It can be viewed as

a form of credit assignment because successes or fail-

ures in previous learning episodes bias future learning.

Reid (, ) identi�es three forms of 7inductive
bias involved in transfer learning for rules: language

bias, which determines what kinds of rules can be con-

structed by the learner; the search bias, which deter-

mines the order in which rules will be searched; and

the evaluation bias, which determines how the qual-

ity of the rules will be assessed. Note that learning

language bias is a form of structural credit assign-

ment. Similarly, where rules are applied sequentially,

evaluation bias becomes temporal credit assignment.

Taylor and Stone () give a comprehensive sur-

vey of transfer in 7reinforcement learning, in which
they describe a variety of techniques for transferring

the structure of an RL task from one case to another.

�ey also survey methods for transferring evaluation

bias.

Transfer learning can be applied in many di�er-

ent settings. Caruana () developed a system for

transferring inductive bias in 7neural networks per-
forming multitask learning and more recent research

has been directed toward transfer learning in7Bayesian
Networks (Niculescu-mizil & Caruana, ).

See 7Transfer Learning and Silver et al. () and
Banerjee, Liu, and Youngblood () for recent work

on transfer learning.

Cross References
7Bayesian Network
7Classi�er Systems
7Genetic Algorithms

7Hierarchical Reinforcement Learning
7Inductive Bias
7kd-Trees
7Locally Weighted Regression
7Nearest-Neighbor
7Perceptrons
7Radial Basis Function
7Reinforcement Learning
7Temporal Di�erence Learning
7Transfer Learning

Recommended Reading
Albus, J. S. (). A new approach to manipulator control:

The cerebellar model articulation controller (CMAC). Journal
of Dynamic Systems, Measurement and Control, Transactions
ASME, (), –.

Anderson, C. W., & Miller, W. T. (). A set of challeng-

ing control problems. In W. Miller, R. S. Sutton, & P.

J. Werbos (Eds.), Neural Networks for Control. Cambridge:
MIT Press.

Atkeson, C., Schaal, S., & Moore, A. (). Locally weighted learn-

ing. AI Review, , –.
Banerjee, B., Liu, Y., & Youngblood, G. M. (Eds.), (). Proceed-

ings of the ICML workshop on “Structural knowledge transfer for
machine learning.” Pittsburgh, PA.

Barto, A., Sutton, R., & Anderson, C. (). Neuron-like adap-

tive elements that can solve difficult learning control problems.

IEEE Transactions on Systems, Man, and Cybernetics, SMC-,
–.

Benson, S., & Nilsson, N. J. (). Reacting, planning and learn-

ing in an autonomous agent. In K. Furukawa, D. Michie, &

S. Muggleton (Eds.), Machine Intelligence . Oxford: Oxford
University Press.

Bertsekas, D. P., & Tsitsiklis, J. (). Neuro-dynamic programming.
Nashua, NH: Athena Scientific.

Caruana, R. (). Multitask learning. Machine Learning, ,
–.

Dejong, G., & Mooney, R. (). Explanation-based

learning: An alternative view. Machine Learning, ,
–.

Goldberg, D. E. (). Genetic algorithms in search, optimiza-
tion and machine learning. Boston: Addison-Wesley Longman
Publishing.

Grefenstette, J. J. (). Credit assignment in rule discovery sys-

tems based on genetic algorithms. Machine Learning, (–),
–.

Hinton, G., Rumelhart, D., & Williams, R. (). Learning internal

representation by back-propagating errors. In D. Rumelhart, J.

McClelland, & T. P. R. Group (Eds.), Parallel distributed com-
puting: Explorations in the microstructure of cognition (Vol. .,
pp. –). Cambridge: MIT Press.

 C Cross-Language Document Categorization

Holland, J. (). Escaping brittleness: The possibilities of general-

purpose learning algorithms applied to parallel rule-based

systems. In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell

(Eds.), Machine learning: An artificial intelligence approach
(Vol. ). Los Altos: Morgan Kaufmann.

Laird, J. E., Newell, A., & Rosenbloom, P. S. (). SOAR: An archi-

tecture for general intelligence. Artificial Intelligence, (),
–.

Mahadevan, S. (). Learning representation and control in

Markov decision processes: New frontiers. Foundations and
Trends in Machine Learning, (), –.

Michie, D., & Chambers, R. (). Boxes: An experiment in adaptive

control. In E. Dale & D. Michie (Eds.), Machine Intelligence .
Edinburgh: Oliver and Boyd.

Minsky, M. (). Steps towards artificial intelligence. Proceedings
of the IRE, , –.

Mitchell, T. M., Keller, R. M., & Kedar-Cabelli, S. T. (). Explana-

tion based generalisation: A unifying view. Machine Learning,
, –.

Mitchell, T. M., Utgoff, P. E., & Banerji, R. B. (). Learning

by experimentation: Acquiring and refining problem-solving

heuristics. In R. Michalski, J. Carbonell, & T. Mitchell (Eds.),

Machine kearning: An artificial intelligence approach. Palo Alto:
Tioga.

Moore, A. W. (). Efficient memory-based learning for robot con-
trol. Ph.D. Thesis, UCAM-CL-TR-, Computer Laboratory,
University of Cambridge, Cambridge.

Niculescu-mizil, A., & Caruana, R. (). Inductive transfer for

Bayesian network structure learning. In Proceedings of the th
International Conference on AI and Statistics (AISTATS ).
San Juan, Puerto Rico.

Reid, M. D. (). Improving rule evaluation using multitask

learning. In Proceedings of the th International Confer-
ence on Inductive Logic Programming (pp. –). Porto,
Portugal.

Reid, M. D. (). DEFT guessing: Using inductive transfer to
improve rule evaluation from limited data. Ph.D. thesis, School
of Computer Science and Engineering, The University of New

South Wales, Sydney, Australia.

Rosenblatt, F. (). Principles of Neurodynamics: Perceptrons and
the Theory of Brain Mechanics. Washington, DC: Spartan
Books.

Samuel, A. (). Some studies in machine learning using the game

of checkers. IBM Journal on Research and Development, (),
–.

Silver, D., Bakir, G., Bennett, K., Caruana, R., Pontil, M., Russell, S.,

et al. (). NIPS workshop on “Inductive transfer:  years

later”. Whistler, Canada.

Sutton, R. (). Temporal credit assignment in reinforcement learn-
ing. Ph.D. thesis, Department of Computer and Information
Science, University of Massachusetts, Amherst, MA.

Sutton, R., & Barto, A. (). Reinforcement learning: An introduc-
tion. Cambridge: MIT Press.

Taylor, M. E., & Stone, P. (). Transfer learning for reinforce-

ment learning domains: A survey. Journal of Machine Learning
Research, , –.

Wang, X., Simon, H. A., Lehman, J. F., & Fisher, D. H. (). Learn-

ing planning operators by observation and practice. In Pro-
ceedings of the Second International Conference on AI Planning
Systems, AIPS- (pp. –). Chicago, IL.

Watkins, C. (). Learning with delayed rewards. Ph.D. thesis,
Psychology Department, University of Cambridge, Cambridge.

Watkins, C., & Dayan, P. (). Q-learning. Machine Learning,
(–), –.

Cross-Language Document
Categorization

Document Categorization is the task consisting in

assigning a document to zero, one or more categories

in a prede�ned taxonomy.Cross-language document cat-
egorization describes the speci�c case in which one is
interested in automatically categorize a document in a

same taxonomy regardless of the fact that the docu-

ment is written in one of several languages. For more

details on the methods used to perform this task see

7cross-lingual text mining.

Cross-Language Information
Retrieval

Cross-language information retrieval (CLIR) is the task
consisting in recovering the subset of a document col-

lection D relevant to a query q, in the special case in
which D contains documents written in more than one
language. Generally, it is additionally assumed that the

subset of relevant documents must be returned as an

ordered list, in decreasing order of relevance. For more

details on methods and applications see7cross-lingual
text mining.

Cross-Language Question
Answering

Question answering is the task consisting in �nding in

a document collection the answer to a question. CLCat

is the speci�c case in which the question and the doc-

uments can be in di�erent languages. For more details

on the methods used to perform this task see 7cross-
lingual text mining.

Cross-Lingual Text Mining C 

C

Cross-Lingual Text Mining

Nicola Cancedda, Jean-Michel Renders

Xerox Research Centre Europe, Meylan,

France

Definition
Cross-lingual text mining is a general category denot-

ing tasks and methods for accessing the information

in sets of documents written in several languages, or

whenever the language used to express an information

need is di�erent from the language of the documents.

A distinguishing feature of cross-lingual text mining

is the necessity to overcome some language translation

barrier.

Motivation and Background
Advances in mass storage and network connectivity

make enormous amounts of information easily accessi-

ble to an increasingly large fraction of the world popu-

lation. Such information is mostly encoded in the form

of running text which, in most cases, is written in a lan-

guage di�erent from the native language of the user.�is

state of a�airs createsmany situations inwhich themain

barrier to the ful�llment of an information need is not

technological but linguistic. For example, in some cases

the user has some knowledge of the language in which

the text containing a relevant piece of information is

written, but does not have a su�cient control of this

language to express his/her information needs. In other

cases, documents in many di�erent languages must be

categorized in a same categorization schema, but man-

ually categorized examples are available for only one

language.

While the automatic translation of text from a nat-

ural language into another (machine translation) is

one of the oldest problems on which computers have

been used, a palette of other tasks has become relevant

only more recently, due to the technological advances

mentioned above. Most of them were originally moti-

vated by needs of government Intelligence commu-

nities, but received a strong impulse from the di�u-

sion of the World-Wide Web and of the Internet in

general.

Tasks and Methods
A number of speci�c tasks fall under the term of Cross-

lingual text mining (CLTM), including:

● Cross-language information retrieval
● Cross-language document categorization
● Cross-language document clustering
● Cross-language question answering

�ese tasks can in principle be performed using

methods which do not involve any 7Text Mining, but
as a matter of fact all of them have been successfully

approached relying on the statistical analysis of mul-

tilingual document collections, especially parallel cor-
pora. While CLTM tasks di�er in many respect, they
are all characterized by the fact that they require to reli-

ably measure the similarity of two text spans written in

di�erent languages.�ere are essentially two families of

approaches for doing this:

. In translation-based approaches one of the two text
spans is �rst translated into the language of the

other. Similarity is then computed based on any

measure used in mono-lingual cases. As a variant,

both text spans can be translated in a third pivot
language.

. In latent semantics approaches, an abstract vector
space is de�ned based on the statistical properties

of a parallel corpus (or, more rarely, of a compara-
ble corpus). Both text spans are then represented
as vectors in such latent semantic space, where any
similarity measure for vector spaces can be used.

�e rest of this entry is organized as follows: �rst

Translation-related approaches will be introduced, fol-

lowed by Latent-semantic approaches. Finally, each of

the speci�c CLTM tasks will be discussed in turn.

Translation-Based Approaches
�e simplest approach consists in using a manually-

written machine-readable bilingual dictionary: words

from the �rst span are looked up and replaced with

words in the second language (see e.g., Zhang & Vines,

). Since typically dictionaries contain entries for

“citation forms” only (e.g., the singular for nouns, the

in�nitive for verbs etc.), words in both spans are prelim-

inarily lemmatized, i.e., replacedwith the corresponding

 C Cross-Lingual Text Mining

citation form. In all cases when the lexica and morpho-

logical analyzers required to perform lemmatization are

not available, a frequently adopted crude alternative

consists in stemming (i.e., truncating by taking away a
su�x) both the words in the span to be translated and in

the corresponding side in the lexicon. Some languages

(e.g., Germanic languages) are characterized by a very

productive compounding: simpler words are connected
together to form complex words. Compound words are

rarely in dictionaries as such: in order to �nd them it

is �rst necessary to break compounds into their ele-

ments. �is can be done based on additional linguistic

resources or by means of heuristics, but in all cases it

is a challenging operation in itself. If the method used

a�erward to compare the two spans in the target lan-

guage can take weights into account, translations are

“normalized” in such a way that the cumulative weight

of all translations of a word is the same regardless of

the number of alternative translations. Most o�en, the

weight is simply distributed uniformly among all alter-

native translations. Sometimes, only the �rst translation

for each word is kept, or the �rst two or three.

A second approach consists in extracting a bilin-

gual lexicon from a parallel corpus instead of using a
manually-written one. Methods for extracting proba-

bilistic lexica look at the frequencieswithwhich aword s
in one language was translated with a word t to estimate
the translation probability p(t∣s). In order to determine
which word is the translation of which other word in

the available examples, these examples are preliminarily

aligned, �rst at the sentence level (to know what sen-

tence is the translation of what other sentence) and then

at theword level. Severalmethods for aligning sentences

at the word level have been proposed, and this prob-

lem is a lively research topic in itself (see Brown, Della

Pietra, Della Pietra, &Mercer,  for a seminal paper).

Once a probabilistic bilingual dictionary is available,

it can be used much in the same way as human-written

dictionaries, with the notable di�erence that the esti-

mated conditional probabilities provide a natural way to

distribute weight across translations.When the example

documents used for extracting the bilingual dictionar-

ies are of the same style and domain as the text spans to

be translated, this can result in a signi�cant increase in

accuracy for the �nal task, whatever this is.

It is o�en the case that a parallel corpus su�ciently

similar in topic and style to the spans to be translated

is unavailable, or it is too small to be used for reliably

estimating translation probabilities. In such cases, it can

be possible to replace or complement the parallel cor-

pus with a “comparable” corpus. A comparable corpus

is a pair of collections of documents, one in each of the

languages of interest, which are known to be similar in

content, although not the translation of one another.

A typical case might be two sets of articles from cor-

responding sections of di�erent newspapers collected

during a same period of time. If some additional bilin-

gual seed dictionary (human-written or extracted from
a parallel corpus) is also available, then the compara-

ble corpus can be leveraged as well: a word t is likely
to be the translation of a word s if it turns out that
the words o�en appearing near s are translations of the
words o�en appearing near t. Using this observation it
is thus possible to estimate the probability that t is a
valid translation of s even though they are not contained
in the original dictionary. Most approaches proceed by

associating with s a context vector. �is vector, with one
component for each word in the source language, can

simply be formed by summing together the count his-

tograms of the words occurring within a �xed window

centered in all occurrences of s in the corpus, but is o�en
constructed using statistically more robust association

measures, such as mutual information. A�er a possible

normalization step, the context vector CV(s) is trans-
lated using the seed dictionary into the target language.

A context vector is also extracted from the corpus for all

target words t. Eventually, a translation score between s
and t is computed as ⟨Tr(CV(s)),CV(t)⟩:

S(s, t) = ⟨CV(s),Tr(CV(t))⟩
= ∑

(s′ ,t′)∈D
a(s, s′)a(t, t′),

where a is the association score used to construct
the context vector. While e�ective in many cases, this

approach can provide inaccurate similarity values when

polysemous words and synonyms appear in the corpus.

To deal with this problem,Gaussier, Renders,Matveeva,

Goutte, and Déjean () propose the following

extension:

S(s, t) = ∑
(s′ ,t′)∈D

(∑
s′
a(s′, s′′)a(s, s′′))

(∑
t′′
a(t′, t′′)a(t, t′′)),

which is more robust in cases when the entries in

the seed bilingual dictionary do not cover all senses

Cross-Lingual Text Mining C 

C

actually present in the two sides of the comparable

corpus.

Although these methods for building bilingual dic-

tionaries can be (and o�en are) used in isolation, it can

be more e�ective to combine them.

Using a bilingual dictionary directly is not the

only way for translating a span from one language

into another. A second alternative consists in using a

machine translation (MT) system. While the MT sys-
tem, in turn, relies on a bilingual dictionary of some

sort, it is in general in the position of leveraging con-

textual clues to select the correct words and put them

in the right order in the translation. �is can be more

or less useful depending on the speci�c task. MT sys-

tems fall, broadly speaking, into two classes: rule-based

and statistical. Systems in the �rst class rely on sets of

hand-written rules describing how words and syntactic

structures should be translated. Statistical machine

translation (SMT) systems learn this mapping by per-

forming a statistical analysis of a parallel corpus. Some

authors (e.g., Savoy & Berger, ) also experimented

with combining translation from multiple machine

translation systems.

Latent Semantic Approaches
In CLTM, Latent Semantic approaches rely on some
interlingua (language-independent) representation.

Most of the time, this interlingua representation is

obtained by linear or non-linear statistical analysis tech-

niques and more speci�cally 7dimensionality reduc-
tion methods with ad-hoc optimization criterion and

constraints. But, others adopt a more manual approach

by exploiting multilingual thesauri or evenmultilingual

ontologies in order to map textual objects towards a

list – possibly weighted – of interlingua concepts.

For any textual object (typically a document or a

section of document), the interlingua concept represen-
tation is derived from a sequence of operations that

encompass:

. Linguistic preprocessing (as explained in previous

sections, this step amounts to extract the rele-

vant, normalized “terms” of the textual objects, by

tokenisation, word segmentation/decompounding,

lemmatisation/stemming, part-of-speech tagging,

stopword removal, corpus-based term �ltering,

Noun-phrase extractions, etc.).

. Semantic enrichment and/or monolingual dimen-

sionality reduction.

. Interlingua semantic projection.

A typical semantic enrichment method is the gen-
eralized vector space model, that adds related terms –
or neighbour terms – to each term of the textual

object, neighbour terms being de�ned by some co-

occurrence measures (for instance, mutual infor-

mation). Semantic enrichment can alternatively be

achieved by using (monolingual) thesaurus, exploit-

ing relationships such as synonymy, hyperonymy and

hyponymy.Monolingual dimensionality reduction con-

sists typically in performing some latent semantic
analysis (LSA), some form of principal component

analysis on the textual object/term matrix. Dimension-

ality reduction techniques such as LSA or their dis-

crete/probabilistic variants such as probabilistic seman-
tic analysis (PLSA) and latent dirichlet allocation (LDA)
o�er to some extent a semantic robustness to deal with

the e�ects of polysemy/synonymy, adopting a language-

dependent concept representation in a space of dimen-

sion much smaller than the size of the vocabulary in a

language.

Of course, steps () and () are highly language-

dependent. Textual objects written in di�erent lan-

guages will not follow the same linguistic processing

or semantic enrichment/ dimensionality reduction.�e

last step (), however, aims at projecting textual objects

in the same language-independent concept space, for

any source language. �is is done by �rst extracting

these common concepts, typically from a parallel cor-

pus that o�ers a natural multiple-view representation

of the same objects. Starting from these multiple-view

observations, common factors are extracted through

the use of canonical correlation analysis (CCA), cross-

language latent semantic analysis, their kernelized

variants (eg. Kernel-CCA) or their discrete, probabilis-

tic extensions (cross-language latent dirichlet alloca-

tion, multinomial CCA, …). All these methods try to

discover latent factors that simultaneously explain as

much as possible the “intra-language” variance and the

“inter-language” correlation. �ey di�er in the choice

of the underlying distributions and how they precisely

de�ne and combine these two criteria. �e following

subsections will describe them in more details.

As already emphasized, CLTM mainly relies on

de�ning appropriate similarities between textual objects

 C Cross-Lingual Text Mining

expressed in di�erent languages. Numerous catego-

rization, clustering and retrieval algorithms focus on

de�ning e�cient and powerful measures of similar-

ity between objects, as strengthened recently by the

development of kernel methods for textual informa-

tion access. We will see that the (linear) statistical

algorithms used for performing steps () and () can

most of the time be embedded into one valid (Mercer)

kernel, so that we can very easily obtain non-linear vari-

ants of these algorithms, just by adopting some standard

non-linear kernels.

Cross-Language Semantic Analysis

�is amounts to concatenate the vectorial representa-

tion of each view of the objects of the parallel collec-

tion (typically, objects are aligned sentences), and then

to perform standard singular value decomposition of

the global object/term matrix. Equivalently, de�ning

the kernel similarity matrix between all pairs of multi-

view objects as the sum of the mono-lingual textual

similarity matrices, this amounts to perform the eigen-

value decomposition of the corresponding kernel Gram

matrix, if a dual formulation is adopted. �e number

of eigenvalues/eigenvectors that are retained to de�ne

the latent factors and the corresponding projections is

typically from several hundreds of components to sev-

eral thousands, still much fewer than the original sizes

of the vocabulary. Note that this process does not really

control the formation of interlingua concepts: nothing
prevents the method from extracting factors that are

linear combination of terms in one language only.

Cross-Language Latent Dirichlet Allocation

�e extraction of interlingua components is realised by
using LDA tomodel the set of parallel objects, by impos-

ing the same proportion of components (topics) for all

views of the same object. �is is represented in Fig. .

LDA is performing some form of clustering, with

a prede�ned number of components (K) and with the
constraint that the two views of the same object belongs

to the clusters with the same membership values. �is

results in .K component pro�les that are then used for
“folding in” (projecting) new documents by launching

some form of EM to derive their posterior probabilities

to belong to each of the language-independent compo-

nent. �e similarity between two documents written in

di�erent languages is obtained by comparing their pos-

terior distribution over these latent classes. Note that

this approach could easily integrate supervised topic

information and provides a nice framework for semi-

supervised interlingua concept extraction.

Cross-Language Canonical Correlation Analysis

The Primal Formulation CCA is a standard statistical

method to perform multi-block multivariate analysis,

the goal being to �nd linear combinations of variables

for each block (i.e., each language) that are maximally

correlated. In other words, CCA is able to enforce the

commonality of latent concept formations by extract-

ing maximally correlated projections. Starting from a

set of paired views of the same objects (typically, aligned

sentences of a parallel corpus) in languages L and L,

the algebraic formulation of this optimization prob-

lem leads to a generalized eigenvalue problem of size

(n + n), where n and n are the sizes of the vocab-
ularies in L and L respectively. For obvious scalability

reasons, the dual – or kernel – formulation (of size N,
the number of paired objects in the training set) is o�en

preferred.

Kernel Canonical Correlation Analysis Basically, Kernel

Canonical Correlation Analysis amounts to do CCA on

some implicit, but more complex feature space and to

express the projection coe�cients as linear combination

of the training paired objects. �is results in the dual

formulation, which is a generalized eigenvalue/vector

N1 N2

Nseg

W2W1

Z1 Z2

α

β1 β2

θ

Cross-Lingual Text Mining. Figure . Latent dirichlet

allocation of a parallel corpus

Cross-Lingual Text Mining C 

C

problem of size N, that involves only the monolingual
kernel gram matrices K and K (matrices of mono-
lingual textual similarities between all pairs of objects

in the training set in language L and L respectively).

Note that it is easy to show that the eigenvalues go by

pairs: we always have two symmetrical eigenvalues +λ
and −λ. �is kernel formulation has the advantage to
include any text speci�c prior properties in the kernel

(e.g., use of N-gram kernels, word-sequence kernels,

and any semantically-smoothed kernel). A�er extrac-

tion of the �rst k generalized eigenvalues/eigenvectors,
the similarity between any pair of test objects in lan-

guages L and L can be computed by using projection

matrices composed of extracted eigenvector as well as

the (monolingual) kernels of the test objects with the

training objects.

Regularization and Partial Least Squares Solution When

the number of training examples (N) is less than n and
n (the dimensions of the monolingual feature spaces),
the eigenvalue spectrum of the KCCA problem has

generally two null eigenvalues (due to data centering),

(N−) eigenvalues in+ and (N−) eigenvalues in−, so
that, as such, the KCCA problem only results in trivial

solutions and is useless. When using kernel methods,

the case (N < n,n) is frequent, so that some regu-
larization scheme is needed. One way of realizing this

regularization is to resort to �nding the directions of

maximum covariance (instead of correlation): this can

be considered as a partial least squares (PLS) problem,

whose formulation is very similar to the CCA prob-

lem. Adopting a mixed criterion CCA/PLS (trying to

maximize a combination of covariance and correla-

tion between projections) turns out to both avoid over-

�tting (or spurious solutions) and to enhance numerical

stability.

Approximate Solutions Both CCA and KCCA su�er

from a lack of scalability, due to the fact the complex-

ity of generalized eigenvalue/vector decomposition is

O(N) forKCCAorO(min(n,n)) forCCA.As it can
be shown that performing a complete KCCA (or KPLS)

analysis amounts to do �rst complete PCA’s, and then a

linear CCA (or PLS) on the resulting new projections,

it is obvious that we could reduce the complexity by

working on a reduced-rank approximation (incomplete

KPCA) of the kernel matrices. However, the implicit

projections derived from incomplete KPCAmay be not

optimal with respect to cross-correlation or covariance

criteria. Another idea to decrease the complexity is to

perform some incomplete Cholesky decomposition of

the (monolingual) kernel matrices K and K (that is
equivalent to partial Gram-Schmit orthogonalisation in

the feature space): K = G.Gt and K = G.Gt, with Gi
of rank k ≪ N. Considering Gi as the new representa-
tion of the training data, KCCA now reduces to solving

a generalized eigenvalue problem of size .k.

Specific Applications
�e previous sections illustrated a number of di�erent

ways of solving the core problem of cross-language text

mining: quantifying the similarity between two spans

of text in di�erent languages. In this section we turn

to describing some actual applications relying on these

methods.

Cross-Language Information Retrieval (CLIR)

Given a collection of documents in several languages

and a single query, the CLIR problem consists in pro-

ducing a single ranking of all documents according to

their relevance to the query. CLIR is in particular useful

whenever a user has some knowledge of the languages

in which documents are written, but not enough to

express his/her information needs in those languages

by means of a precise query. Sometimes CLIR engines

are coupled with translation tools to help the user

access the content of relevant documents written in lan-

guages unknown to him/her. In this case document

collections in an even larger number of languages can

be e�ectively queried.

It is probably fair to say that the vast majority of

the CLIR systems use a translation-based approach. In

most cases it is the query which is translated in all lan-

guages before being sent tomonolingual search engines.

While this limits the amount of translation work that

needs be done, it requires doing it on-line at query

time. Moreover, when queries are short it can be dif-

�cult to translate them correctly, since there is little

context to help identifying the correct sense in which

words are used. For these reasons several groups also

proposed translating all documents at indexing time

instead. Regardless of whether queries or documents

 C Cross-Lingual Text Mining

are translated, whenever similarity scores between (pos-

sibly translated) queries and (possibly translated) doc-

uments are not directly comparable, all methods then

face the problem of merging multiple monolingual

rankings in a single multilingual ranking.

Research in CLIR and cross-language question

answering (see below) has been signi�cantly stimu-

lated by at least three government-sponsored evaluation

campaigns:

● �e NII Test Collection for IR Systems (NTCIR)

(http://research.nii.ac.jp/ntcir/), running yearly since

, focusing on Asian languages (Japanese,

Chinese, Korean) and English.

● �e Cross-Language Evaluation Forum (CLEF)

(http://www.clef-campaign.org), running yearly since

, focusing on European languages.

● A cross-language track at the Text Retrieval Con-

ference (TREC) (http://trec.nist.gov/), which was

run until , focused on querying documents in

Arabic using queries in English.

�e respective websites are ideal starting points for any

further exploration on the subject.

Cross-Language Question Answering (CLQA)

Question answering is the task of automatically �nding

the answer to a speci�c question in a document col-

lection. While in practice this vague description can be

instantiated in many di�erent ways, the sense in which

the term is mostly understood is strongly in�uenced by

the task speci�cation formulated by the National Insti-

tute of Science and Technology (NIST) of the United

States for its TREC evaluation conferences (see above).

In this sense, the task consists in identifying a text snip-
pet, i.e., a substring, of a prede�ned maximal length
(e.g.,  characters, or  characters) within a docu-

ment in the collection containing the answer. Di�erent

classes of questions are considered:

● Questions around facts and events.

● Questions requiring the de�nition of people, things

and organizations.

● Questions requiring as answer lists of people, objects

or data.

Most proposals for solving the QA problem proceed

by �rst identifying promising documents (or document

segments) by using information retrieval techniques

treating the question as a query, and then performing

some �ner-grained analysis to converge to a su�ciently

short snippet. Questions are classi�ed in a hierarchy of

possible “question types.” Also, documents are prelimi-

narily indexed to identify elements (e.g., person names)

that are potential answers to questions of relevant types

(e.g., “Who” questions).

Cross-language question answering (CLQA) is the

extension of this task to the case where the collection

contains documents in a language di�erent than the lan-

guage of the question. In this task a CLIR step replaces

the monolingual IR step to shortlist promising docu-

ments. �e classi�cation of the question is generally

done in the source language.

Both CLEF and NTCIR (see above) organize cross-

language question answering comparative evaluations

on an annual basis.

Cross-Language Categorization (CLCat) and Clustering

(CLCLu)

Cross-language categorization tackles the problem of

categorizing documents in di�erent languages in a same

categorization scheme.

�e vast majority of document categorization sys-

tems rely on machine learning techniques to automat-

ically acquire the necessary knowledge (o�en referred

to as a model) from a possibly large collection of man-
ually categorized documents. Most o�en the model is

based on frequency counts of words, and is thus intrin-

sically language-dependent.�emost direct way to per-

formcategorization in di�erent languageswould consist

in manually categorizing a su�cient amount of docu-

ments in all languages of interest and then train a set

of independent categorizer. In some cases, however, it

is impractical to manually categorize a su�cient num-

ber of documents to ensure accurate categorization in

all languages, while it can be easier to identify bilingual

dictionaries or parallel (or comparable) corpora for the

language pairs and in the application domain of inter-

est. In such cases it is then preferable to obtainmanually

categorized documents only for a single languageA and
use them to train a monolingual categorizer. Any of

the translation-based approaches described above can

then be used to translate a document originally in lan-

guage B – or most o�en its representation as a bag of

http://research.nii.ac.jp/ntcir/
http://www.clef-campaign.org
http://trec.nist.gov/

Cumulative Learning C 

C

words– into language A. Once the document is trans-
lated, it can be categorized using the monolingual A
system.

As an alternative, latent-semantics approaches can

be used as well. An existing parallel corpus can be used

to identify an abstract vector space common toA and B.
�e manually categorized documents in A can then be
represented in this space, and a model can be learned

which operates directly on this latent-semantic repre-

sentation. Whenever a document in B needs be catego-
rized, it is �rst projected in the common semantic space

and then categorized using the same model.

All these considerations carry unchanged to the

cross-language clustering task, which consists in identi-

fying subsets of documents in a multilingual document

collection which are mutually similar to one another

according to some criterion. Again, this task can be

e�ectively solved by either translating all documents

into a single language or by learning a common seman-

tic space and performing the clustering task there.

While CLCat and Clustering are relevant tasks in

many real-world situations, it is probably fair to say that

less e�ort has been devoted to them by the research

community than to CLIR and CLQA.

Recommended Reading
Brown, P. E., Della Pietra, V. J., Della Pietra, S. A., & Mercer, R. L.

(). The mathematics of statistical machine translation:

Parameter estimation. Computational Linguistics, (), –
.

Gaussier, E., Renders, J.-M., Matveeva, I., Goutte, C., & Déjean, H.

(). A geometric view on bilingual lexicon extraction from

comparable corpora. In Proceedings of the nd annual meeting
of the association for computational linguistics, Barcelona, Spain.
Morristown, NJ: Association for Computational Linguistics.

Savoy, J., & Berger, P. Y. (). Report on CLEF- evalua-

tion campaign: Monolingual, bilingual and GIRT information

retrieval. In Proceedings of the cross-language evaluation forum
(CLEF) (pp. –). Heidelberg: Springer.

Zhang, Y., & Vines, P. (). Using the web for translation dis-

ambiguation. In Proceedings of the NTCIR- workshop meeting,
Tokyo, Japan.

Cross-Validation

Definition
Cross-validation is a process for creating a distribu-

tion of pairs of 7training and 7test sets out of a single

7data set. In cross validation the data are partitioned
into k subsets, S…Sk, each called a fold. �e folds are
usually of approximately the same size. �e learning

algorithm is then applied k times, for i =  to k, each
time using the union of all subsets other than Si as the
7training set and using Si as the7test set.

Cross References
7Algorithm Evaluation
7Leave-One-Out Cross-Validation

Cumulative Learning

Pietro Michelucci, Daniel Oblinger

Strategic Analysis, Inc., Arlington, VA, USA
DARPA/IPTO, Arlington, VA , USA

Synonyms
Continual learning; Lifelong learning; Sequential induc-

tive transfer

Definition
Cumulative learning (CL) exploits knowledge acquired
on prior tasks to improve learning performance on

subsequent related tasks. Consider, for example, a CL

system that is learning to play chess. Here, one might

expect the system to learn from prior games concepts

(e.g., favorable board positions, standard openings, end

games, etc.) that can be used for future learning. �is

is in contrast to base learning (Vilalta & Drissi, )

in which a �xed learning algorithm is applied to a sin-

gle task and performance tends to improve only with

more exemplars. So, in CL there tends to be explicit

reuse of learned knowledge to constrain new learn-

ing, whereas base learning depends entirely upon new

external inputs.

Relevant techniques for CL operate over multiple

tasks, o�en at higher levels of abstraction, such as

new problem space representations, task-based selec-

tion of learning algorithms, dynamic adjustment of

learning parameters, and iterative analysis and modi-

�cation of the learning algorithms themselves. �ough

actual usage of this term is varied and evolving, CL typi-

cally connotes sequential7inductive transfer. It should
be noted that the word “inductive” in this connotation

 C Cumulative Learning

quali�es the transfer of knowledge to new tasks, not the

underlying learning algorithms.

Related Terminology
�e terms “meta-learning” and “learning to learn”

are sometimes used interchangeably with CL. How-

ever each of these concepts has a speci�c relationship

to CL.

7Meta-learning (Brazdil et al., ; Vilalta &
Drissi, ) involves the application of learning algo-

rithms to meta-data, which are abstracted represen-

tations of input data or learning system knowledge.

In the case that abstractions of system knowledge are

themselves learning algorithms, meta-learning involves

assessing the suitability of these algorithms for previ-

ous tasks and, on that basis, selecting algorithms for

new tasks (see entry on “meta-learning”). In general,

the sharing of abstracted knowledge across tasks in a

CL system implies the use of meta-learning techniques.

However, the converse is not true. Meta-learning can

and does occur in learning systems that do not accu-

mulate and transfer knowledge across tasks.

Learning to learn is a synonym for inductive trans-

fer. �us, learning to learn is more general than CL.

�ough it speci�es the application of knowledge learned

in one domain to another, it does not stipulate whether

that knowledge is accumulated and applied sequentially

or shared in a parallel learning context.

Motivation and Background
Traditional 7supervised learning approaches require
large datasets and extensive training in order to gener-

alize to new inputs in a single task. Furthermore, tra-

ditional (non-CL)7reinforcement learning approaches
require tightly constrained environments to ensure a

tractable state space. In contrast, humans are able to

generalize across tasks in dynamic environments from

brief exposure to small datasets. �e human advantage

seems to derive from the ability to draw upon prior

task and context knowledge to constrain hypothesis

development for new tasks. Recognition of this dispar-

ity between human learning and traditional machine

learning had led to the pursuit of methods that seek

to emulate the accumulation and exploitation of task-

based knowledge that is observed in humans. A coarse

evolution of this work is depicted in Fig. .

History
Advancements in CL have resulted from two classes

of innovation: the development of techniques for

7inductive transfer and the integration of those tech-
niques into autonomous learning systems.

Alan Turing () was the �rst to propose a cumu-

lative learning system. His  paper is best remem-

bered for the imitation game, later known as the Turing

test. However, the �nal sections of the paper address the

question of how a machine could be made su�ciently

complex to be able to pass the test. He posited that

programming it would be too di�cult a task. �ere-

fore, it should be instructed as one might teach a child,

starting with simple concepts and working up to more

complex ones.

Banerji () introduced the use of predicate logic

as a description language for machine learning. �us,

Banerji was one of the earliest advocates of what would

later become 7ILP. His concept description language
allowed the use of background knowledge and there-

fore was an extensible language. �e �rst implementa-

tion of a cumulative learning system based on Baner-

ji’s ideas was Cohen’s CONFUCIUS (Cohen, ;

Sequential/
Hybrid:

CUMULATIVE
LEARNING

Sequential/
Hybrid:

CUMULATIVE
LEARNING

Supervised LearningSupervised Learning

Inductive
Bias

Inductive
Bias

Inductive
Transfer
Inductive
Transfer

Parallel:
MULTI-TASK LEARNING

Reinforcement LearningReinforcement Learning

Supervised LearningSupervised Learning

Parallel:
MULTI-TASK LEARNING

Cumulative Learning. Figure . Evolution of cumulative learning

Cumulative Learning C 

C

Cohen & Sammut, ). In this work, an instructor

teaches the system concepts that are stored in a long-

term memory. When examples of a new concept are

seen, their descriptions are matched against stored con-

cepts, which allow the system to re-describe the exam-

ples in terms of the background knowledge. �us, as

more concepts are accumulated, the system is capa-

ble of describing complex objects more compactly than

if it had not had the background knowledge. Com-

pact representations generally allow complex concepts

to be learned more e�ciently. In many cases, learning

would be intractable without the prior knowledge. See

the entries on 7Inductive Logic Programming, which
describe the use of background knowledge further.

Independent of the research in symbolic learn-

ing, much of the 7inductive transfer research that
underlies CL took root in 7arti�cial neural network
research, a traditional approach to 7supervised learn-
ing. For example, Abu-Mostafa () introduced the

notion of reducing the hypothesis space of a neural

network by introducing “hints” either as hard-wired

additions to the network or via examples designed

to teach a particular invariance. �e task of a neu-

ral network can be thought of as the determination

of a function that maps exemplars into a classi�cation

space. So, in this context, hints constitute an artic-

ulation of some aspect of the target mapping func-

tion. For example, if a neural network is tasked with

mapping numbers into primes and composites, one

“hint” would be that all even numbers (besides )

are composite. Leveraging such a priori knowledge

about the mapping function may facilitate conver-

gence on a solution. An inherent limitation to neu-

ral networks, however, is their immutable architecture,

which does not lend itself to the continual accumu-

lation of knowledge. Consequently, Ring () intro-

duced a neural network that constructs new nodes on

demand in a reinforcement learning context in order

to support ongoing hierarchical knowledge acquisi-

tion and transfer. In this model, nodes called “bions”

correspond simultaneously to the enactment and per-

ception of a single behavior. If two bions are acti-

vated in sequence repeatedly, a new bion is created to

join the coincident pair and represent their collective

functionality.

Contemporaneously, Pratt, Mostow, and Kamm

() investigated the hypothesis that knowledge

acquired by one neural network could be used to assist

another neural network learn a related task. In the

speech recognition domain, they trained three separate

networks, each corresponding to speech segments of a

di�erent length, such that each network was optimized

to learn certain types of phonemes. �ey then demon-

strated that a direct transfer of information encoded

as network weights from these three specialized net-

works to a single, combined speech recognition net-

work resulted in a tenfold reduction in training epochs

for the combined network compared with the number

of training epochs required when no knowledge was

transferred. �is was one of the �rst empirical results

in neural network-based transfer learning. Caruana

() extended this work to demonstrate the perfor-

mance bene�ts associated with the simultaneous trans-

fer of7inductive bias in a “Multitask Learning” (MTL)
methodology. In this work, Caruana hypothesized that

training the same neural network simultaneously on

related tasks would naturally induce additional con-

straints on learning for each individual task. �e intu-

ition was that converging on a mapping in support of

multiple tasks with shared representations might best

reveal aspects of the input that are invariant across

tasks, thus obviating within-task regularities, which

might be less relevant to classi�cation. �ose empiri-

cal results are supported by Baxter () who proved

that the number of examples required by a representa-

tion learner for learning a single task is an inverse linear

function of the number of simultaneous tasks being

learned.

�ough the innovative underpinnings of induc-

tive transfer that critically underlie CL evolved in a

supervised learning context, it was the integration of

those methods with classical reinforcement learning

that has led to current models of CL. Early integra-

tion of this type comes from�run andMitchell (),

who applied an extension of explanation-based learn-

ing (EBL), called explanation-based neural networks

(EBNN) (Mitchell & �run, ), to an agent-based

“lifelong learning framework.”�is framework provides

for the acquisition of di�erent control policies for dif-

ferent environments and reward functions. Since the

robot actuators, sensors, and the environment (largely)

remain invariant, this framework supports the use of

knowledge acquired from one control problem to be

applied to another. By using EBNN to allow learning

 C Cumulative Learning

from previous control problems to constrain learning

on new control problems, learning is accelerated over

the lifetime of the robot.

More recently, Silver and Mercer () introduced

a hybrid model that involves a combination of paral-

lel and sequential inductive transfer in an autonomous

agent framework. �e so-called task rehearsal method

(TRM) uses MTL to combine new training inputs with

relevant exemplars that are generated from prior task

knowledge. �us, inductive bias is achieved by training

the neural networks on new tasks while simultaneously

rehearsing learned task knowledge.

Structure of the Learning System
CL is characterized by systems that use prior knowl-

edge to bias future learning. �e canonical interpre-

tation is that knowledge transfer occurs at the task

level. Although this description encompasses a broad

research space, it is not boundless. In particular, CL sys-

tems must be able to () retain knowledge and () use

that knowledge to restrict the hypothesis space for new

learning. Nonetheless, learning systems can vary widely

across numerous orthogonal dimensions and still meet

these criteria.

Toward a CL Specification
Recognizing the empirical utility of a more speci�c

delineation of CL systems, Silver and Poirier ()

introduced a set of functional requirements, classi�ca-

tion criteria, and performance speci�cations that char-

acterizemore precisely the scope ofmachines capable of

lifelong learning. Any system that meets these require-

ments is considered a machine lifelong learning (ML)

system. A general CL architecture that conforms to the

ML standard is depicted in Fig. .

Two basic memory constructs are typical of CL sys-

tems. Long term memory (LTM) is required for storing

domain knowledge (DK) that can be used to bias new

learning. Short term memory (STM) provides a work-

ing memory for building representations and testing

hypotheses associated with new task learning. Most of

the ML requirements specify the interplay of these

constructs.

LTM and STM are depicted in Fig. , along with

a comparison process, an assessment process, and the

learning environment. In this model, the comparison

process evaluates the training input in the context of

LTM to determine the most relevant domain knowl-

edge that can be used to constrain short term learning.

�e comparison process also determines the weight

assigned to domain knowledge that is used to bias short

term learning. Once the rate of performance improve-

ment on the primary task falls below a threshold the

assessment process compares the state of STM to the

environment to determine which domain knowledge to

extract and store in LTM.

Classification of CL Systems
�e simplicity of the architecture shown in Fig.  belies

the richness of the feature space for CL systems. �e

following classi�cation dimensions are derived largely

from theML speci�cation.�is list includes both qual-

itative and quantitative dimensions. �ey are presented

in three overlapping categories: architectural features,

characteristics of the knowledge base, and learning

capabilities.

Architecture

�e following architectural dimensions for a CL sys-

tem range from paradigm choices to low-level interface

considerations.

Learning paradigm –�e learning paradigm(s) may
include supervised learning (e.g., neural network, SVM,

ILP, etc.), unsupervised learning (e.g., clustering), rein-

forcement learning (e.g., automated agent), or some

combination thereof. Figure  depicts a general archi-

tecture with processes that are common across these

Assessment EngineAssessment Process

STMSTMLTMLTM EnvironmentEnvironment

State

State

Extracted
DK

Relevant DK

Comparison EngineComparison Process

Cumulative Learning. Figure . Typical CL system

Cumulative Learning C 

C

learning paradigms, and which could be elaborated to

re�ect the details of each.

Task order – CL systems may learn tasks sequen-
tially (�run & Mitchell, ), in parallel (e.g., MTL

(Caruana, )), or via a hybrid methodology (e.g.,

TRM (Silver & Mercer, )). One hybrid approach is

to engage in practice (i.e., revisiting prior learned tasks).

Transferring knowledge between learned tasks through

practice may serve to improve generalization accuracy.

Task order would be re�ected in the sequence of events

within and among process arrows in the Fig.  archi-

tecture. For example, a system may alternate between

processing new exemplars and “practicing” with old,

stored exemplars.

Transfer method – Knowledge transfer can also be
representational or functional. Functional transfer pro-

vides implicit pressure from related training exemplars.

For example, the environmental input in Fig. may take

the form of training exemplars drawn randomly from

data representing two related tasks, such that learning

to classify exemplars from one task implicitly constrains

learning on the other task. Representational knowledge

transfer involves the direct or indirect (Pratt et al., )

assignment of a hypothesis representation. A direct

inductive transfer entails the assignment of an original

hypothesis representation, such as a vector of trained

neural network activation weights. �is might take the

form of a direct injection to LTM in Fig. . Indirect

transfer implies that some level of abstraction analysis

has been applied to the hypothesis representation prior

to assignment.

Learning stages – A learning system may imple-
ment learning in a single stage or in a series of stages.

An example of a two-stage system is one that waits

to initiate the long-term storage of domain knowledge

until a�er primary task learning in short-termmemory

is complete. Like task order, learning stages would be

re�ected in the sequence of events within and among

process arrows in the Fig.  architecture. But in this case,

ordering pertains to the manner in which learning is

staged across encoding processes.

Interface cardinality – �e interface cardinality can
be �xed or variable. Fixing the number of inputs and

outputs has the advantage of providing a consistent

interface without posing restrictions on the growth of

the internal representation.

Data type – �e input and output data types can
be �xed or variable. A type-�exible system can produce

both categorical and scalar predictions.

Scalability – CL systems may or may not scale on a
variety of dimensions including inputs, outputs, train-

ing examples, and tasks.

Knowledge

�is category pertains to the long-term storage of

learned knowledge. �us, the following CL dimen-

sions characterize knowledge representation, storage,

and retrieval.

Knowledge representation – Stored knowledge can
manifest as functional or representational. Functional

knowledge retention involves the storage of speci�c

exemplars or parameter values, which tends to be more

accurate, whereas representational knowledge retention

involves the storage of hypotheses derived from train-

ing on exemplars, which has the advantage of storage

economy.

Retention e�cacy – �e e�cacy of long term

retention varies across CL systems. E�ective retention

implies that only domain knowledge with an accept-

able level of accuracy is retained so that errors aren’t

propagated to future hypotheses. A related considera-

tion is whether or not the consolidation of new domain

knowledge degrades the accuracy of current or prior

hypotheses.

Retention e�ciency –�e retention e�ciency of long
term memory can vary according to both economy of

representation and computationally e�ciency.

Indexingmethod –�e input to the comparison pro-
cess used to select appropriate knowledge for biasing

new learning may simply be exemplars (as provided by

LTM in Fig. ) ormay take a representational form (e.g.,

a vector of neural network weights).

Indexing e�ciency – CL systems vary in terms of the
speed and accuracy with which they can identify related

prior knowledge that is suitable for inductive transfer

during short term learning. �e input to this selection

process is the indexing method.

Meta-knowledge – CL systems di�erentially exhibit
the ability to abstract, store, andutilizemeta-knowledge,

such as characteristics of the input space, learning sys-

tem parameter values, etc.

 C Cumulative Learning

Cumulative Learning. Table  CL System Dimensions

Category Dimension Values (ML guidance is indicated by ✓)

Architecture Learning paradigm Supervised learning

Reinforcement learning

Unsupervised learning

✓ Hybrid

Task order Sequential

Parallel

✓ Revisit (practice)

Hybrid

Transfer method Functional

Representational – direct

Representational – indirect

Learning stages ✓ Single (computational retention efficiency)

Multiple

Interface cardinality ✓ Fixed

Variable

Data type Fixed

Variable

Scalability ✓ Inputs

✓ Outputs

✓ Exemplars

✓ Tasks

Knowledge Representation Functional

Representational – disjoint

✓ Representational – continuous

Retention efficacy ✓ Improves prior task performance

✓ Improves new task performance

Retention efficiency ✓ Space (memory usage)

✓ Time (computational processing)

Indexing method ✓ Deliberative – functional

✓ Deliberative – representational

Reflexive

Cumulative Learning C 

C

Cumulative Learning. Table  (Continued)

Category Dimension Values (ML guidance is indicated by ✓)

Indexing efficiency ✓ Time < O(nc
), c >  (n = tasks)

Meta-knowledge ✓ Probability distribution of input space

Learning curve

Error rate

Learning Agency Single learning method

Task-based selection of learning method

Utility Single learning method

Task-based selection of learning method

Task awareness Task boundary identification (begin/end)

Bias modulation ✓ Estimated sample complexity

✓ Number of task exemplars

✓ Generalization accuracy of retained
knowledge

✓ Relatedness of retained knowledge

Learning efficacy ✓ Generalization ∣ bias ≥ generalization ∣ no
bias

Learning efficiency ✓ Time ∣ bias ≤ time ∣ no bias

Learning

While all of the dimensions listed herein impact learn-

ing, the following dimensions correspond to speci�c

learning capabilities or learning performance metrics.

Agency – �e agency of a learning system is the
degree of sophistication exhibited by its top-level con-

troller. For example a learning system may be on the

low end of the agency continuum if it always applies

one predetermined learning method to one task or on

the high end if it selects among many learning methods

as a function of the learning task. One might imag-

ine, for example, two process diagrams such as the one

depicted in Fig. , that share the same LTM, but are

otherwise distinct and di�erentially activated by a gov-

erning controller as a function of qualitative aspects of

the input.

Utility – Domain knowledge acquisition can be
deliberative in the sense that the learning system

decides which hypotheses to incorporate based upon

their estimated utility, or re�exive, in which case all

hypotheses are stored irrespective of utility

considerations.

Task awareness – Task awareness characterizes the
system’s ability to identify the beginning and end of a

new task.

Bias modulation – A CL system may have the abil-
ity to determine the extent towhich short-term learning

would bene�t from inductive transfer and, on that basis,

assign a relevant weight. �e depth of this analysis can

vary and might consider factors such as the estimated

sample complexity, number of exemplars, the general-

ization accuracy of retained knowledge, and relatedness

of retained knowledge.

Learning e�cacy – A measure of learning e�cacy
is derived by comparing generalization performance in

the presence and absence of an inductive bias. Learn-

ing is considered e�ective when the application of an

inductive bias results in greater generalization perfor-

mance on the primary task than when the bias is

absent.

 C Cumulative Learning

Learning e�ciency – Similarly, learning e�ciency is
assessed by comparing the computational time needed

to generate a hypothesis in the presence and absence

of an inductive bias. Lower computational time in the

presence of bias signi�es greater learning e�ciency.

The Research Space
Table  summarizes the classi�cation dimensions, pro-

viding an overview of the research space, an eval-

uative framework for assessing and contrasting CL

approaches, and a generative framework for identifying

new areas of exploration. In addition, checked items in

the Values column indicate ML guidance. Speci�cally,

an ideal ML system would correspond functionally to

the called-out items and performance criteria. How-

ever, Silver and Poirier () allude to the fact that it

would be nigh impossible to generate a strictly com-

pliant ML system since some of the recommended

criteria do not coexist easily. For example, e�ective and

e�cient learning are mutually incompatible because

they require di�erent forms of knowledge transfer.

Nonetheless, a CL system that falls within scope of the

majority of the ML criteria would be well-positioned

to exhibit lifelong learning behavior.

Future Directions
Emergent work (Oblinger, ; Swarup, Lakkaraju,

Ray, & Gasser, ) in instructable computing has

given rise to a new CL paradigm that is largely ML

compliant and involves high degrees of task aware-

ness and agency sophistication. Swarup et al. ()

describe an approach in which domain knowledge is

represented in the form of structured graphs. Short

term (primary task) learning occurs via a genetic algo-

rithm, a�er which domain knowledge is extracted by

mining frequent subgraphs. �e accumulated domain

knowledge forms an ontology towhich the learning sys-

tem grounds symbols as a result of structured interac-

tions with instructional agents. Subsequent interactions

occur using the symbol system as a shared lexicon for

communication between the instructor and the learn-

ing system.Knowledge acquired from these interactions

bootstrap future learning.

�e Bootstrapped Learning framework proposed

by Oblinger () provides for hierarchical, domain-

independent learning that, like the e�ort described

above, is also premised on a model of building concepts

from structured lessons. In this case, however, there is

no a priori knowledge acquisition. Instead, some “com-

mon” knowledge about the world is provided explicitly

to the learning system, and then lessons are taught by

a human teacher using the same natural instruction

methods that would be used to teach another human.

Rather than requiring a speci�c learning algorithm,

this framework provides a context for evaluating and

comparing learning algorithms. It includes a knowledge

representation language that supports syntactic, logical,

procedural, and functional knowledge, an interaction

language for communication among the learning sys-

tem, instructor, and environment, and an integration

architecture that evaluates, processes, and responds to

interaction language communiqués in the context of

existing knowledge and through the selective utilization

of available learning algorithms.

�e learning performance advantages anticipated by

these proposals for instructional computing seem to

stem from the economy of representation a�orded by

hierarchical knowledge combined with the tremendous

learning bias imposed by explicit instruction.

Recommended Reading
Abu-Mostafa, Y. (). Learning from hints in neural networks

(invited). Journal of Complexity, (), –.
Banerji, R. B. (). A Language for the Description of Concepts.

General Systems, , –.
Baxter, J. (). Learning internal representations. In (COLT): Pro-

ceeding of the workshop on computational learning theory, Santa
Cruz, California. Morgan Kaufmann.

Brazdil P., Giraud-Carrier, C., Soares, C., & Vilalta, R. ().

Metalearning – Applications to Data Mining, Springer.
Caruana, R. (). Multitask learning: A knowledge-based source of

inductive bias. In Proceedings of the tenth international confer-
ence on machine learning, University of Massachusetts, Amherst
(pp. –).

Caruana, R. (). Algorithms and applications for multitask

learning. In Machine learning: Proceedings of the th interna-
tional conference on machine learning (ICML ), Bari, Italy
(pp. –). Morgan Kauffmann.

Cohen, B. L. (). A Theory of Structural Concept Formation and
Pattern Recognition. Ph.D. Thesis, Department of Computer
Science, The University of New South Wales.

Cohen, B. L., & Sammut, C. A. (). Object Recognition and Con-

cept Learning with CONFUCIUS. Pattern Recognition Journal,
(), –.

Mitchell, T. (). The need for biases in learning generalizations.
Rutgers TR CBM-TR-.

Mitchell, T. M., & Thrun, S. B. (). Explanation-based neu-

ral network learning for robot control. In Hanson, Cowan, &

Curse of Dimensionality C 

C

Giles (Eds.), Advances in neural information processing systems
 (pp. –). San Francisco, CA: Morgan-Kaufmann.

Nilsson, N. J. (). Introduction to machine learning: An early draft
of a proposed textbook (p. ). Online at http://ai.stanford.edu/
\simnilsson/MLBOOK.pdf. Accessed on July , .

Oblinger, D. (). Bootstrapped learning proposer information
pamphlet for broad agency announcement -. Online
at http://fs.fbo.gov/EPSData/ODA/Synopses//BAA-

/BLPIPfinal.pdf.

Pratt, L. Y., Mostow, J., & Kamm, C. A. (). Direct transfer of

learned information among neural networks. In Proceedings of
the ninth national conference on artificial intelligence (AAAI-),
Anaheim, CA (pp. –).

Ring, M. (). Incremental development of complex behaviors

through automatic construction of sensory-motor hierarchies.

In Proceedings of the eighth international workshop (ML), San
Mateo, California.

Silver, D., & Mercer, R. (). The task rehearsal method of life-

long learning: Overcoming impoverished data. In R. Cohen &

B. Spencer (Eds.), Advances in artificial intelligence, th con-
ference of the Canadian society for computational studies of
intelligence (AI ), Calgary, Canada, May –, . Lec-
ture notes in computer science (Vol. , pp. –). London:
Springer.

Silver, D., & Poirier, R. (). Requirements for machine life-

long learning. JSOCS Technical Report TR--, Acadia

University.

Swarup, S., Lakkaraju, K., Ray, S. R., & Gasser, L. (). Symbol

grounding through cumulative learning. In P. Vogt et al. (Eds.),

Symbol grounding and beyond: Proceedings of the third inter-
national workshop on the emergence and evolution of linguistic
communication, Rome, Italy (pp. –). Berlin: Springer.

Swarup, S., Mahmud, M. M. H., Lakkaraju, K., & Ray, S. R. ().

Cumulative learning: Towards designing cognitive architec-

tures for artificial agents that have a lifetime. Tech. Rep.

UIUCDCS-R--.

Thrun, S. (). Lifelong learning algorithms. In S. Thrun & L. Y.

Pratt (Eds.), Learning to learn. Norwell, MA: Kluwer Academic.
Thrun, S., & Mitchell, T. (). Lifelong robot learning. Robotics

and Autonomous Systems, , –.
Turing, A. M. (). Computing Machinery and Intelligence. Mind

Mind, (), –.
Vilalta, R., & Drissi, Y. (). A perspective view and survey of

meta-learning. Artificial Intelligence Review, , –.

Curse of Dimensionality

Eamonn Keogh, Abdullah Mueen

University California-Riverside,

Riverside, CA, USA

Definition
�e curse of dimensionality is a term introduced by

Bellman to describe the problem caused by the expo-

nential increase in volume associated with adding extra

dimensions to Euclidean space (Bellman, ).

For example,  evenly-spaced sample points suf-

�ce to sample a unit interval with no more than .

distance between points; an equivalent sampling of a

-dimensional unit hypercube with a grid with a spac-

ing of . between adjacent points would require 

sample points: thus, in some sense, the D hypercube

can be said to be a factor of  “larger” than the unit

interval.

Informally, the phrase curse of dimensionality is
o�en used to simply refer to the fact that one’s intu-

itions about how data structures, similarity measures,

and algorithms behave in low dimensions do typically

generalize well to higher dimensions.

Background
Another way to envisage the vastness of high-dimensi-

onal Euclidean space is to compare the size of the unit

sphere with the unit cube as the dimension of the space

increases: as the dimension increases. As we can see in

Fig. , the unit sphere becomes an insigni�cant volume

relative to that of the unit cube. In other words, almost

all of the high-dimensional space is far away from the
center.

In research papers, the phrase curse of dimensional-
ity is o�en used as shorthand for one of its many impli-
cations for machine learning algorithms. Examples of

these implications include:

● 7Nearest neighbor searches can be made signi�-
cantly faster for low-dimensional data by indexing

the data with an R-tree, a KD-tree, or a similar spa-

tial access method. However, for high-dimensional

data all such methods degrade to the performance

of a simple linear scan across the data.

● For machine learning problems, a small increase in

dimensionality generally requires a large increase in

the numerosity of the data, in order to keep the same

level of performance for regression, clustering, etc.

● In high-dimensional spaces, the normally intuitive

concept of proximity or similarity may not be qual-

itatively meaningful. �is is because the ratio of

an object’s nearest neighbor over its farthest neigh-

bor approaches one for high-dimensional spaces

(Aggarwal, Hinneburg, & Keim, ). In other

http://ai.stanford.edu/$\sim $nilsson/MLBOOK.pdf
http://ai.stanford.edu/$\sim $nilsson/MLBOOK.pdf

 C Curse of Dimensionality

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Dimension

r =
Volume of the hypersphere
Volume of the hypercube r

Curse of Dimensionality. Figure . The ratio of the volume of the hypersphere enclosed by the unit hypercube. The

most intuitive example, the unit square and unit circle, are shown as an inset. Note that the volume of the hypersphere

quickly becomes irrelevant for higher dimensionality

words, all objects are approximately equidistant

from each other.

�ere are many ways to attempt to mitigate the curse
of dimensionality, including 7feature selection and
7dimensionality reduction. However, there is no single
solution to the many di�culties caused by the e�ect.

Recommended Reading
The major database (SIGMOD, VLDB, PODS), data mining

(SIGKDD, ICDM, SDM), and machine learning (ICML, NIPS)

conferences typically feature several papers which explicitly

address the curse of dimensionality each year.
Aggarwal, C. C., Hinneburg, A., & Keim, D. A. (). On the sur-

prising behavior of distance metrics in high dimensional spaces.

In ICDT (pp. –). London, England.
Bellman, R. E. (). Dynamic programming. Princeton, NJ: Prince-

ton University Press.

Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., & Keogh, E.

(). Querying and mining of time series data: Experimen-

tal comparison of representations and distance measures. In

Proceedings of the VLDB endowment (Vol. , pp. –).
Auckland, NewZealand.

	C
	C4.5
	Cannot-Link Constraint
	Candidate-EliminationAlgorithm
	Recommended Reading
	Cascade-Correlation
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	The Algorithm
	Performance
	Variants of Cascade-Correlation
	Flat Cascade-Correlation
	Sibling-Descendant Cascade-Correlation (SDCC)
	Recurrent Cascade-Correlation (RCC)
	Knowledge-Based Cascade-Correlation (KBCC)
	Software

	Applications
	CC
	SDCC
	KBCC

	Future Directions
	Cross References
	Recommended Reading

	CART
	Cascor
	Case
	Case-Based Learning

	Case-Based Reasoning
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Knowledge Containers
	CBR Cycle
	Retrieval
	Reuse and Revision
	Retention and Maintenance
	CBR Tools
	Applications

	Future Directions
	Cross References
	Recommended Reading

	Categorical Attribute
	Synonyms

	Categorical Data Clustering
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Generic Data Clustering System
	Categorical Data Clustering System
	Overlap-Based Similarity Measures
	Context-Based Similarity Measures
	Information-Theoretic Clustering Criteria
	Categorical Clustering as Clustering Aggregation

	Cross References
	Recommended Reading

	Categorization
	Category
	Causal Discovery
	Causality
	Definition
	Motivation and Background
	Structure of the Learning System
	Structure of Causal Inference
	Languages and Assumptions for Causal Inference

	Representing Interventions
	Calculating Distributions under Interventions
	Learning Causal Structure
	Confidence Intervals

	Other Languages and Tasks in Causal Learning

	Cross References
	Recommended Reading

	CBR
	CC
	Certainty Equivalence Principle
	Characteristic
	City Block Distance
	Class
	Synonyms
	Definition
	Motivation and Background
	Recommended Reading

	Class Imbalance Problem
	Definition
	Motivation and Background
	Recommended Reading

	Classification
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Applications
	Future Directions
	Limitations
	Recommended Reading

	Classification Algorithms
	Recommended Reading

	Classification Learning
	Classification Tree
	Classifier Systems
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Michigan Classifier Systems
	Knowledge Representation
	Performance Component
	Credit Assignment
	Rule Discovery Component
	Pittsburgh Classifier Systems
	Applications
	Programs and Data
	Cross References
	Recommended Reading

	Clause
	Cross References

	Clause Learning
	Click-Through Rate (CTR)
	Clonal Selection
	Closest Point
	Cluster Editing
	Cluster Ensembles
	Cluster Optimization
	Clustering
	Cross References

	Clustering Aggregation
	Clustering Ensembles
	Clustering from Data Streams
	Definition
	Main Techniques
	Basic Concepts
	Partitioning Clustering
	Micro Clustering
	Monitoring the Evolution of the Cluster Structure
	Tracking the Evolution of the Cluster Structure

	Recommended Reading

	Clustering of Nonnumerical Data
	Clustering with Advice
	Clustering with Constraints
	Clustering with QualitativeInformation
	Clustering with Side Information
	CN2
	Co-Training
	Coevolution
	Coevolutionary Computation
	Coevolutionary Learning
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	Multiple Versus Single Population Approaches
	Competition and Cooperation
	Evaluation
	Representation
	Pathologies and Remedies

	Cross References
	Recommended Reading

	Collaborative Filtering
	Collection
	Collective Classification
	Synonyms
	Definition
	Motivation and Background
	Theory/Solution
	Relational Classification
	Iterative Collective Classification with Neighborhood Labels
	Collective Classification with Graphical Models
	Applications
	Cross References
	Recommended Reading

	Commercial Email Filtering
	Committee Machines
	Community Detection
	Comparable Corpus
	Competitive Coevolution
	Competitive Learning
	Complex Adaptive System
	Complexity in Adaptive Systems
	Synonyms
	Definition
	Motivation and Background
	Theory
	Adaptive System Environment and Regularities
	External and Internal Complexities

	Application: Learning
	Recommended Reading

	Complexity of Inductive Inference
	Definition
	Detail
	Mind Changes and Anomalies
	Data and Time Complexity
	Iterative and Memory-Bounded Learning
	Complexity of Final Hypothesis
	Intrinsic Complexity
	Learning Using Oracles
	Recommended Reading

	Compositional Coevolution
	Synonyms
	Definition
	Cross References

	Computational Complexity of Learning
	Definition
	Detail

	Computational Discovery of Quantitative Laws
	Concept Drift
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Identifying Context Change
	Recent Advances
	Cross References
	Recommended Reading

	Concept Learning
	Synonyms
	Definition
	Background
	Rules, Relations, and Background Knowledge
	Concept Learning and Noise
	Cross References
	Recommended Reading

	Conditional Random Field
	Recommended Reading

	Confirmation Theory
	Confusion Matrix
	Definition

	Conjunctive Normal Form
	Recommended Reading

	Connection Strength
	Connections Between Inductive Inference and Machine Learning
	Definition
	Detail
	Multi-Task or Context Sensitive Learning
	Special Cases of Inductive Logic Programming
	Learning Drifting Concepts
	Behavioral Cloning
	Learning To Coordinate
	Learning Geometric Clustering
	Insights for Limitations of Science
	Cross References
	Recommended Reading

	Connectivity
	Consensus Clustering
	Synonyms
	Definition

	Constrained Clustering
	Definition
	Motivation and Background
	Structure of the Learning System
	Programs and Data

	Recommended Reading

	Constraint-Based Mining
	Definition
	Motivation and Background
	Structure of the Learning System
	Constraints
	Monotonic and Anti-Monotonic Constraints
	Succinct Constraints
	Convertible Constraints
	Boundable Constraints
	Borders
	Algorithms

	Cross References
	Recommended Reading

	Constructive Induction
	Recommended Reading

	Content Match
	Content-Based Filtering
	Synonyms
	Definition

	Content-Based Recommending
	Context-Sensitive Learning
	Contextual Advertising
	Continual Learning
	Synonyms
	Definition
	Cross References

	Continuous Attribute
	Contrast Set Mining
	Definition
	Recommended Reading

	Cooperative Coevolution
	Co-Reference Resolution
	Correlation Clustering
	Synonyms
	Definition
	Motivation and Background
	Theory
	Applications
	Applications of Clustering with Advice
	Recommended Reading

	Correlation-Based Learning
	Cost
	Cross References

	Cost Function
	Cost-Sensitive Classification
	Cost-Sensitive Learning
	Synonyms
	Definition
	Motivation and Background
	Theory
	Structure of Learning System
	Direct Cost-Sensitive Learning
	Cost-Sensitive Meta-Learning

	Recommended Reading

	Cost-to-Go Function Approximation
	Covariance Matrix
	Definition
	Motivation and Background
	Theory
	Properties
	Correlation Coefficient
	Parameter Estimation
	Conjugate Priors

	Applications
	Correlation and Kernel Methods
	Correlation and Least Squares Approximation
	Principal Component Analysis
	Gaussian Processes

	Cross References
	Recommended Reading

	Covering Algorithm
	Credit Assignment
	Synonyms
	Definition
	Motivation
	Structural Credit Assignment
	Temporal Credit Assignment
	Transfer Learning
	Cross References
	Recommended Reading

	Cross-Language Document Categorization
	Cross-Language Information Retrieval
	Cross-Language QuestionAnswering
	Cross-Lingual Text Mining
	Definition
	Motivation and Background
	Tasks and Methods
	Translation-Based Approaches
	Latent Semantic Approaches
	Cross-Language Semantic Analysis
	Cross-Language Latent Dirichlet Allocation
	Cross-Language Canonical Correlation Analysis
	The Primal Formulation
	Kernel Canonical Correlation Analysis
	Regularization and Partial Least Squares Solution
	Approximate Solutions

	Specific Applications
	Cross-Language Information Retrieval (CLIR)
	Cross-Language Question Answering (CLQA)
	Cross-Language Categorization (CLCat) and Clustering (CLCLu)

	Recommended Reading

	Cross-Validation
	Definition
	Cross References

	Cumulative Learning
	Synonyms
	Definition
	Related Terminology
	Motivation and Background
	History
	Structure of the Learning System
	Toward a CL Specification
	Classification of CL Systems
	Architecture
	Knowledge
	Learning

	The Research Space
	Future Directions
	Recommended Reading

	Curse of Dimensionality
	Definition
	Background
	Recommended Reading

