
D

Data Mining On Text

7Text Mining

Data Preparation

Geoffrey I. Webb
Monash University, Victoria, Australia

Synonyms
Data preprocessing; Feature construction

Definition
Before data can be analyzed, they must be organized
into an appropriate form. Data preparation is the pro-
cess of manipulating and organizing data prior to
analysis.

Motivation and Background
Data are collected for many purposes, not necessarily
with machine learning in mind. Consequently, there is
o�en a need to identify and extract relevant data for the
given analytic purpose. Every learning system has spe-
ci�c requirements about howdatamust be presented for
analysis and hence, data must be transformed to ful�ll
those requirements. Further, the selection of the speci�c
data to be analyzed can greatly a�ect themodels that are
learned. For these reasons, data preparation is a critical
part of anymachine learning exercise. Data preparation
is o�en the most time-consuming part of any nontrivial
machine learning project.

Processes and Techniques
�e manner in which data are prepared varies greatly
depending upon the analytic objectives for which they

are required and the speci�c learning techniques and
so�ware bywhich they are to be analyzed.�e following
are a number of key processes and techniques.

Sourcing, Selecting, and Auditing Appropriate Data

It is necessary to review the data that are already avail-
able, assess their suitability to the task at hand, and
investigate the feasibility of sourcing new data collected
speci�cally for the desired task.
Much of the theory on which learning systems are

based assumes that the training data are a random sam-
ple of the population about which the user wishes to
learn a model. However, much historical data repre-
sent biased samples, for example, data that have been
easy to collect or that have been considered interest-
ing for some other purpose. It is desirable to consider
whether the available data are su�ciently representa-
tive of the future data to which a learned model is to be
applied.
It is important to assess whether there is su�cient

data to realistically obtain the desired machine learning
outcomes.
Data quality should be investigated. Much data is

of low quality. �ose responsible for manual data col-
lection may have little commitment to assuring data
accuracy and may take shortcuts in data entry. For
example, when default values are provided by a sys-
tem, these tend to be substantially overrepresented in
the collected data. Automated data collection processes
might be faulty, resulting in inaccurate or incorrect data.
�e precision of a measuring instrument may be lower
than desirable. Data may be out of date and no longer
correct.
Where the data contain 7noise, it may be desirable

to identify and remove outliers and other suspect data
points or take other remedial action.
Existing data may be augmented through data

enrichment. �is commonly involves sourcing of

Claude Sammut & Geoffrey I. Webb (eds.), Encyclopedia of Machine Learning, DOI ./----,
© Springer Science+Business Media LLC 



 D Data Preprocessing

additional information about the data points on which
data are already held. For example, customer datamight
be enriched by purchasing socioeconomic data about
individual customers.

Transforming Representation

It may be necessary to frequently transform data from
one representation to another. Reasons for doing so
include highlighting relevant distinctions and format-
ting data to satisfy the requirements of a speci�c learner.

7Discretization is a process whereby quantitative
data are transformed into qualitative.
Some systems cannot process multi-valued categor-

ical variables. �is limitation can be circumvented by
converting amulti-valued categorical variable intomul-
tiple binary variables, one new variable to represent
the presence or absence of each value of the original
variable. Conversely, multiplemutually exclusive binary
variables might be converted into a single multi-valued
categorical variable.
Some systems require the input to be numeric. Cate-

gorical variables must be converted into numeric form.
Multi-valued categorical variables should usually be
converted into multiple binary variables before conver-
sion to numbers, as projecting unordered values onto a
linear scale can greatly distort analytic outcomes.
It is important to select appropriate levels of gran-

ularity for analysis. For example, when distinguishing
products, should a gallon of low fat milk be described
as a diary product, and hence not distinguished from
any other type of dairy product, be described as low fat
milk, and hence not distinguished from other brands
and quantities, or uniquely distinguished from all other
products. Analysis at the lowest level of granularity
makes possible identi�cation of potentially valuable
�ne-detail regularities in the data, butmaymake itmore
di�cult to identify high-level relationships.
It is o�en desirable to create derived values. For

example, the available data might contain �elds for pur-
chase price, costs, and sale price. �e relevant quantity
for analysis might be pro�t, which must be computed
from the raw data.�e creation of new features is called
feature construction.
As many learning systems have di�culty with high

dimension data, it may be desirable to project the data
onto a lower dimensional space. Popular approaches to

doing so include7Principal Components Analysis and
7Kernel Methods.
Another approach to reducing dimensionality is

to select only a subset of the available features (see
7Feature Selection).
It is important to determine whether the data have

7Missing Values and, if so, to ensure that appropri-
ate measures are taken to allow the learning system to
handle this situation.

7Propositionalization. Somedata sets contain infor-
mation expressed in a relational form, i.e., describing
relationships between objects in the world. While some
learning systems can accept relations directly, most
operate only on attribute-value representations. �ere-
fore, a relational representation must be reexpressed in
attribute-value form. In other words, a representation
equivalent to �rst-order logic must be converted to a
representation equivalent only to propositional logic.

Cross References
7Data Set
7Discretization
7Entity Resolution
7Evolutionary Feature Selection and Construction
7Feature Construction in Text Mining
7Feature Selection
7Feature Selection in Text Mining
7Kernel Methods
7Measurement Scales
7Missing Values
7Noise
7Principal Component Analysis
7Propositionalization
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Morgan Kaufmann.
Witten, I. H., & Frank, E. (). Data mining: Practical machine

learning tools and techniques (nd ed.). San Francisco, Morgan
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Data Set

A data set is a collection of data used for some speci�c
machine learning purpose. A7training set is a data set
that is used as input to a 7learning system, which ana-
lyzes it to learn a7model. A7test set or7evaluation set
is a data set containing data that are used to 7evaluate
the model learned by a learning system. A training
set may be divided further into a 7growing set and a
7pruning set. Where the training set and the test set
contain disjoint sets of data, the test set is known as a
7holdout set.

DBN

Dynamic Bayesian Network. See 7Learning Graphical
Models

Decision Epoch

In a 7Markov decision process, decision epochs are
sequences of times at which the decision-maker is
required to make a decision. In a discrete time Markov
decision process, decision epochs occur at regular, �xed
intervals, whereas in a continuous time Markov deci-
sion process (or semi-Markov decision process), they
may occur at randomly distributed intervals.

Decision List

Johannes Fürnkranz
Fachbereich Informatik, Darmstadt, Germany

Synonyms
Ordered rule set

Definition
A decision list (also called an ordered rule set) is
a collection of individual Classi�cation Rules that
collectively formaClassi�er. In contrast to anunordered
Rule Set, decision lists have an inherent order, which

makes classi�cation quite straightforward. For classify-
ing a new instance, the rules are tried in order, and the
class of the �rst rule that covers the instance is predicted.
If no induced rule �res, a default rule is invoked, which
typically predicts the majority class.
Typically, decision lists are learnedwith a7Covering

Algorithm, which learns one rule at a time, appends
it to the list, and removes all covered examples before
learning the next one. Decision lists are popular in
7Inductive Logic Programming, because PROLOG
programs may be considered to be simple decision lists,
where all rules predict the same concept.
A formal de�nition of decision lists, a comparison

of their expressiveness to decision trees and rule sets in
disjunctive and conjunctive normal form, as well as the-
oretical results on the learnability of decision lists can be
found in Rivest ().

Cross References
7Classi�cation Rule
7Disjunctive Normal Form
7Rule Learning

Recommended Reading
Rivest, R.L. (). Learning decision lists. Machine Learning, ,

–.

Decision Lists and Decision Trees

Johannes Fürnkranz
Fachbereich Informatik, Darmstadt, Germany

Definition
7Decision Trees and 7Decision Lists are two popular
7Hypothesis Languages, which share quite a few simi-
larities. �e key di�erence is that decision trees may be
viewed as unordered Rule Sets, where each leaf of the
tree corresponds to a single rule with a condition part
consisting of the conjunction of all edge labels on the
path from the root to this leaf. �e hierarchical struc-
ture of the tree ensures that the rules in the set are
nonoverlapping, that is, each example can only be cov-
ered by a single rule. �is additional constraint makes
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classi�cation easier (no con�icts from multiple rules),
but may result in more complex rules. For example, it
has been shown that decision lists (ordered rule sets)
with at most k conditions per rule are strictly more
expressive than decision trees of depth k (Rivest, ).
A similar result has been proved in Boström ().
Moreover, the restriction of decision tree learn-

ing algorithms to nonoverlapping rules imposes strong
constraints on learnable rules. One problem resulting
from this constraint is the replicated subtree problem
(Pagallo and Haussler ); it o�en happens that iden-
tical subtrees have to be learned at various places in
a decision tree, because of the fragmentation of the
example space imposed by the restriction to nonover-
lapping rules. Rule learners do not make such a restric-
tion and are thus less susceptible to this problem. An
extreme example for this problem has been provided
by Cendrowska (), who showed that the minimal
decision tree for the concept x de�ned as

IF A = 3 AND B = 3 THEN Class = x
IF C = 3 AND D = 3 THEN Class = x

has  interior nodes and  leafs assuming that each
attribute A . . . D can be instantiated with three di�erent
values.
On the other hand, a key advantage of decision

tree learning is that not only a single rule is opti-
mized, but that conditions are selected in a way that
simultaneously optimizes the example distribution in
all successors of a node. Attempts to adopt this prop-
erty for rule learning have given rise to several hybrid
systems, the best known being PART (Frank & Witten,
), which learns a decision list of rules, each one
being the single best rule of a separate decision tree.
�is rule can be e�ciently found without learning the
full tree, by repeated expansion of its most promising
branch. Similarly, pruning algorithms can be used to
convert decision trees into sets of nonoverlapping rules
(Quinlan, ).

Cross References
7Covering Algorithm
7Decision Trees
7Divide-and-Conquer Learning
7Rule Learning
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Decision Rule

A decision rule is an element (piece) of knowledge,
usually in the form of a “if-then statement”:
if < Condition > then < Action >
If its Condition is satis�ed (i.e., matches a fact in

the corresponding database of a given problem) then
its Action (e.g., classi�cation or decision making) is
performed. See also7Markovian Decision Rule.

Decision Stump

Definition
A decision stump is a7Decision Tree, which uses only a
single attribute for splitting. For discrete attributes, this
typically means that the tree consists only of a single
interior node (i.e., the root has only leaves as succes-
sor nodes). If the attribute is numerical, the tree may
be more complex.
Decision stumps perform surprisingly well on some

commonly used benchmark datasets from the 7UCI
repository (Holte, ), which illustrates that learn-
ers with a high 7Bias and low 7Variance may per-
form well because they are less prone to 7Over�tting.
Decision stumps are also o�en used as weak learners
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in 7Ensemble Methods such as boosting (Freund &
Schapire, ).

Cross References
7Bias and Variance
7Decision Tree
7Over�tting

Recommended Reading
Freund, Y., & Schapire, R. E. (). Experiments with a new boost-

ing algorithm. In L. Saitta (Ed.), Proceedings of the th interna-
tional conference on machine learning; Bari, Italy (pp. –).
San Francisco: Morgan Kaufmann.
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–.

Decision Threshold

�e decision threshold of a binary classi�er that out-
puts scores, such as7decision trees or7naive Bayes, is
the value above which scores are interpreted as positive
classi�cations. Decision thresholds can be either �xed
if the classi�er outputs calibrated scores on a known
scale (e.g., . for a probabilistic classi�er), or learned
from data if the scores are uncalibrated. See 7ROC
Analysis.

Decision Tree

Johannes Fürnkranz
Fachbereich Informatik
Darmstadt
Germany

Synonyms
C.; CART; Classi�cation tree

Definition
A decision tree is a tree-structured 7classi�cation
7model, which is easy to understand, even bynonexpert
users, and can be e�ciently induced from data. �e
induction of decision trees is one of the oldest andmost

popular techniques for learning discriminatorymodels,
which has been developed independently in the statisti-
cal (Breiman, Friedman, Olshen, & Stone, ; Kass,
) and machine learning (Hunt, Marin, & Stone,
; Quinlan, , ) communities. An extensive
survey of decision tree learning can be found inMurthy
().

Representation
Figure  shows a sample decision tree for a well-known
sample dataset, in which examples are descriptions of
weather conditions (Outlook,Humidity,Windy, Temper-
ature), and the target concept is whether these condi-
tions are suitable for playing golf or not (Quinlan, ).
Classi�cation of a new example starts at the top node—
the root—and the value of the attribute that corresponds
to this node is considered (Outlook in the example).�e
example is then moved down the branch that corre-
sponds to a particular value of this attribute, arriving at
a newnodewith a new attribute.�is process is repeated
until one arrives at a terminal node—a so-called leaf—
which is not labeled with an attribute but with a value
of the target attribute (PlayGolf?). For all examples
that arrive at the same leaf, the same target value
will be predicted. Figure  shows leaves as rectangular
boxes.
Note that some of the attributes may not occur at

all in the tree. For example, the tree in Fig.  does not
contain a test on Temperature because the training data
can be classi�edwithoutmaking a reference to this vari-
able. More generally, one can say that the attributes in

Outlook

rainovercastsunny

yesHumidity Windy

true false

nono yesyes

highnormal

Decision Tree. Figure . A decision tree describing the

Golf dataset (Quinlan, )



 D Decision Tree

the upper parts of the tree (near the root) tend to have
a stronger in�uence on the value of the target variable
than the nodes in the lower parts of the tree (e.g., Out-
lookwill always be tested, whereasHumidity andWindy
will only be tested under certain conditions).

Learning Algorithm
Decision trees are learned in a top-down fashion, with
an algorithm known as Top-Down Induction of Deci-
sion Trees (TDIDT), recursive partitioning, or divide-
and-conquer learning. �e algorithm selects the best
attribute for the root of the tree, splits the set of exam-
ples into disjoint sets, and adds corresponding nodes
and branches to the tree. �e simplest splitting cri-
terion is for discrete attributes, where each test has
the form t ← (A = v) where v is one possible
value of the chosen attribute A. �e corresponding
set St contains all training examples for which the
attribute A has the value v. �is can be easily adapted
to numerical attributes, where one typically uses binary
splits of the form t ← (A < vt), which indicate
whether the attribute’s value is above or below a cer-
tain threshold value vt . Alternatively, one can trans-
form the data before-hand using a 7Discretization
algorithm.

function TDIDT(S)
Input: S, a set of labeled examples.

Tree = new empty node
if all examples have the same class c
or no further splitting is possible

then // new leaf
Label(Tree) = c

else // new decision node(A,T) = FindBestSplit(S)
for each test t ∈ T do
St = all examples that satisfy t
Nodet = TDIDT(St)
AddEdge(Tree t→Nodet)

endfor
endif
return Tree

A�er splitting the dataset according to the selected
attribute, the procedure is recursively applied to each
of the resulting datasets. If a set contains only exam-
ples from the same class, or if no further splitting is
possible (e.g., because all possible splits have already
been exhausted or all remaining splits will have the
same outcome for all examples), the corresponding
node is turned into a leaf node and labeled with the
respective class. For all other sets, an interior node is
added and associated with the best splitting attribute
for the corresponding set as described above. Hence,
the dataset is successively partitioned into nonover-
lapping, smaller datasets until each set only contains
examples of the same class (a so-called pure node).
Eventually, a pure node can always be found via suc-
cessive partitions unless the training data contains two
identical but contradictory examples, that is, exam-
ples with the same feature values but di�erent class
values.

Attribute Selection

�e crucial step in decision tree induction is the choice
of an adequate attribute. In the sample tree of Fig. ,
which has been generated from the same  training
examples as the tree of Fig. , most leaves contain only a
single training example, that is, with the selected split-
ting criteria, the termination criterion (all examples of a
node have to be of the same class) could, in many cases,
only trivially be satis�ed (only one example remained
in the node). Although both trees classify the training
data correctly, the former appears to be more trustwor-
thy, and in practice, one can o�en observe that simpler
trees aremore accurate thanmore complex trees. A pos-
sible explanation could be that labels that are based on
a higher number of training examples tend to be more
reliable. However, this preference for simple models is
a heuristic criterion known as 7Occam’s Razor, which
appears to work fairly well in practice, but is still the
subject of ardent debates within the machine learning
community.
Typical attribute selection criteria use a function

that measures the impurity of a node, that is, the degree
to which the node contains only examples of a sin-
gle class. Two well-known impurity measures are the
information-theoretic entropy (Quinlan, ), and the
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Temperature

hot mild

OutlookOutlook Outlook

sunnysunny sunnyrainrain rainovercastovercast overcast

yesyes

yesyes

yes

yesyes HumidityHumidityHumidity

cool

no

no ?

high high highnormal normal normal

Windy Windy

true truefalse false

no yesno

?

Decision Tree. Figure . A needlessly complex decision tree describing the same dataset

Gini index (Breiman et al., ) which are de�ned as

Entropy(S) = − c∑
i=

∣Si∣∣S∣ ⋅ log ( ∣Si∣∣S∣ )
Gini(S) =  − c∑

i=
( ∣Si∣∣S∣ )



where S is a set of training examples, and Si is the
set of training examples that belong to class ci. Both
functions have their maximum at the point where the
classes are equally distributed (i.e., where all Si have
the same size, maximum impurity), and their mini-
mum at the point where one Si contains all examples(Si = S) and all other Sj, j ≠ i are empty (minimum
impurity).
A good attribute divides the dataset into subsets that

are as pure as possible, ideally into sets so that each one
only contains examples from the same class. �us, one
wants to select the attribute that provides the highest
decrease in average impurity, the so-called gain:

Gain(S, A) = Impurity(S) −∑
t

∣St ∣∣S∣ ⋅ Impurity(St)
where t is one of the tests on attribute A which parti-
tions the set S is into nonoverlapping disjoint subsets
St , and Impurity can be any impurity measure. As the
�rst term, Impurity(S), is constant for all attributes, one
can also omit it and directlyminimize the average impu-
rity (which is typically done when Gini is used as an
impurity measure).

A commonproblem is that attributes withmany val-
ues have a higher chance of resulting in pure successor
nodes and are, therefore, o�en preferred over attributes
with fewer values. To counter this, the so-called gain
ratio normalizes the gained entropy with the intrinsic
entropy of the split:

GainRatio(S, A) = Gain(S, A)
∑t ∣St ∣∣S∣ ⋅ log ( ∣St ∣∣S∣ )

A similar phenomenon can be observed for numeri-
cal attributes, where the number of possible threshold
values determines the number of possible binary splits
for this attribute. Numerical attributes with many pos-
sible binary splits are o�en preferred over numerical
attributes with fewer splits because they have a higher
chance that one of their possible splits �t the data. A dis-
cussion of this problem and a proposal for a solution can
be found in Quinlan ().
Other attribute selection measures, which do not

conform to the gain framework laid out above, are also
possible, such as CHAID’s evaluation with a χ test
statistic (Kass, ). Experimental comparison of dif-
ferent measures can be found in Buntine and Niblett
() and Mingers (a).

�us, the �nal tree is constructed by a sequence
of local choices that each consider only those exam-
ples that end up at the node that is currently split. Of
course, such a procedure can only �nd local optima
for each node, but cannot guarantee convergence to
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a global optimum (the smallest tree). One of the key
advantages of this divide-and-conquer approach is its
e�ciency, which results from the exponential decrease
in the quantity of data to be processed at successive
depths in the tree.

Overfitting Avoidance

In principle, a decision treemodel can be �t to any train-
ing set that does not contain contradictions (i.e., there
are no examples with identical attributes but di�erent
class values). �is may lead to7Over�tting in the form
of overly complex trees.
For this reason, state-of-the-art decision tree induc-

tion techniques employ various 7Pruning techniques
for restricting the complexity of the found trees. For
example, C. has a 7pre-pruning parameter m that
is used to prevent further splitting unless at least two
successor nodes have at least m examples. �e cost-
complexity pruning method used in CART may be
viewed as a simple 7Regularization method, where a
good choice for the regularization parameter, which
trades o� the �t of the data with the complexity of the
tree, is determined via7Cross-validation.
More typically,7post-pruning is used for removing

branches and nodes from the learned tree. More pre-
cisely, this procedure replaces someof the interior nodes
of the tree with a new leaf, thereby removing the subtree
that was rooted at this node. An empirical compari-
son of di�erent decision-tree pruning techniques can be
found in Mingers (b).
It is important to note that the leaf nodes of the

new tree are no longer pure nodes, that is, they no
longer need to contain training examples that all belong
to the same class. Typically, this is simply resolved
by predicting the most frequent class at a leaf. �e
class distribution of the training examples within the
leaf may be used as a reliability criterion for this
prediction.

Well-known Decision Tree Learning
Algorithms
�e probably best-known decision tree learning algo-
rithm is C. (Quinlan, ) which is based upon

ID (Quinlan, ), which, in turn, has been derived
from an earlier concept learning system (Hunt et al.,
). ID realized the basic recursive partitioning algo-
rithm for an arbitrary number of classes and for discrete
attribute values. C. (Quinlan, ) incorporates sev-
eral key improvements that were necessary for tackling
real-world problems, including handling of numeric
and 7missing attribute values, 7over�tting avoidance,
and improved scalability. AC-implementation ofC. is
freely available from its author. A re-implementation is
available under the name J. in the Weka data mining
library. C. is a commercial successor of C., dis-
tributed by RuleQuest Research. CART (Breiman et al.,
) is the best-known system in the statistical learn-
ing community. It is integrated into various statistical
so�ware packages, such as R or S.
Decision trees are also o�en used as components in

7Ensemble Methods such as random forests (Breiman,
) or AdaBoost (Freund & Schapire, ).�ey can
also be modi�ed for predicting numerical target vari-
ables, in which case they are known as 7Regression
Trees. One can also put more complex prediction mod-
els into the leaves of a tree, resulting in 7Model
Trees.

Cross References
7Decision List
7Decision Lists and Decision Trees
7Decision Stump
7Divide-and-Conquer Learning
7Model Tree
7Pruning
7Regression Tree
7Rule Learning
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Deductive Learning

Synonyms
Analytical learning; Explanation-based learning

Definition
Deductive learning is a subclass of machine learning
that studies algorithms for learning provably correct
knowledge. Typically suchmethods are used to speedup
problem solvers by adding knowledge to them that is
deductively entailed by existing knowledge, but that
may result in faster solutions.

Deduplication
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Deep Belief Nets

Geoffrey Hinton
University of Toronto, Toronto, Canada

Synonyms
Deep belief networks

Definition
Deep belief nets are probabilistic generativemodels that
are composed of multiple layers of stochastic latent
variables (also called “feature detectors” or “hidden
units”). �e top two layers have undirected, symmetric
connections between them and form an associative
memory. �e lower layers receive top-down, directed
connections from the layer above. Deep belief nets have
two important computational properties. First, there is
an e�cient procedure for learning the top-down, gen-
erative weights that specify how the variables in one
layer determine the probabilities of variables in the layer
below.�is procedure learns one layer of latent variables
at a time. Second, a�er learning multiple layers, the val-
ues of the latent variables in every layer can be inferred
by a single, bottom-up pass that starts with an observed
data vector in the bottom layer and uses the generative
weights in the reverse direction.

Motivation and Background
�e perceptual systems of humans and other ani-
mals show that high-quality pattern recognition can
be achieved by using multiple layers of adaptive non-
linear features, and researchers have been trying to
understand how this type of perceptual system could
be learned, since the s (Selfridge, ). Perceptrons
(Rosenblatt, ) were an early attempt to learn a bio-
logically inspired perceptual system, but they did not
have an e�cient learning procedure for multiple lay-
ers of features. Backpropagation (Rumelhart, Hinton, &
Williams, ; Werbos, ) is a supervised learning
procedure that became popular in the s because it
provided a fairly e�cient way of learning multiple lay-
ers of nonlinear features by propagating derivatives of
the error in the output backward through themultilayer
network. Unfortunately, backpropagation has di�culty
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optimizing the weights in deep networks that contain
many layers of hidden units and it requires labeled
training data, which is o�en expensive to obtain. Deep
belief nets overcome the limitations of backpropagation
by using unsupervised learning to create layers of feature
detectors thatmodel the statistical structure of the input
data without using any information about the required
output. High-level feature detectors that capture com-
plicated higher-order statistical structure in the input
data can then be used to predict the labels.

Structure of the Learning System
Deep belief nets are learned one layer at a time by
treating the values of the latent variables in one layer,
when they are being inferred from data, as the data for
training the next layer. �is e�cient, greedy learning
can be followed by, or combined with, other learning
procedures that �ne-tune all of the weights to improve
the generative or discriminative performance of the
whole network. Discriminative �ne-tuning can be per-
formed by adding a �nal layer of variables that represent
the desired outputs and backpropagating error deriva-
tives. When networks with many hidden layers are
applied in domains that contain highly structured input
vectors, backpropagation learning works much better if
the feature detectors in the hidden layers are initialized
by learning a deep belief net thatmodels the structure in
the input data (Hinton & Salakhutdinov, ). Matlab
code for learning and �ne-tuning deep belief nets can
be found at http://cs.toronto.edu/∼hinton.
Composing Simple Learning Modules

Early deep belief networks could be viewed as a com-
position of simple learning modules, each of which is a
“restricted Boltzmann machine.” Restricted Boltzmann
machines contain a layer of “visible units” that repre-
sent the data and a layer of “hidden units” that learn
to represent features that capture higher-order corre-
lations in the data. �e two layers are connected by a
matrix of symmetrically weighted connections,W, and
there are no connections within a layer. Given a vec-
tor of activities v for the visible units, the hidden units
are all conditionally independent so it is easy to sample
a vector, h, from the posterior distribution over hid-
den vectors, p(h∣v,W). It is also easy to sample from

p(v∣h,W). By starting with an observed data vector on
the visible units and alternating several times between
sampling from p(h∣v,W) and p(v∣h,W), it is easy to get
a learning signal which is simply the di�erence between
the pairwise correlations of the visible and hidden units
at the beginning and end of the sampling (see Chapter
Boltzmann Machines for details).

The Theoretical Justification of the Learning Procedure

�e key idea behind deep belief nets is that the weights,
W, learned by a restricted Boltzmann machine de�ne
both p(v∣h,W) and the prior distribution over hid-
den vectors, p(h∣W), so the probability of generating a
visible vector, v, can be written as:

p(v) = ∑
h
p(h∣W)p(v∣h,W) ()

A�er learning W, we keep p(v|h,W) but we replace
p(h∣W) by a better model of the aggregated posterior
distribution over hidden vectors – i.e., the nonfacto-
rial distribution produced by averaging the factorial
posterior distributions produced by the individual data
vectors.�e better model is learned by treating the hid-
den activity vectors produced from the training data as
the training data for the next learning module. Hinton,
Osindero, and Teh () show that this replacement
improves a variational lower bound on the probability
of the training data under the composite model.

Deep Belief Nets with Other Types of Variable

Deep belief nets typically use the logistic function y =
/(+ exp(−x)) of the weighted input, x, received from
above or below to determine the probability that a
binary latent variable has a value of  during top-down
generation or bottom-up inference. Other types of vari-
able within the exponential family, such as Gaussian,
Poisson, or multinomial can also be used (Movellan &
Marks, ; Welling, Rosen-Zvi, & Hinton, ) and
the variational bound still applies. However, networks
withmultiple layers ofGaussian or Poisson units are dif-
�cult to train and can become unstable. To avoid these
problems, the function log( + exp(x)) can be used as
a smooth approximation to a recti�ed linear unit. Units
of this type o�en learn features that are easier to inter-
pret than those learned by logistic units. log(+exp(x))

http://cs.toronto.edu/~hinton.
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is not in the exponential family, but it can be approxi-
mated very accurately as a sum of a set of logistic units
that all share the same weight vector and adaptive bias
term, but di�er by having o�sets to the shared bias of−.,−.,−., ....
Using Autoencoders as the Learning Module

A closely related approach that is also called a “deep
belief net” uses the same type of greedy, layer-by-layer
learning with a di�erent kind of learning module – an
“autoencoder” that simply tries to reproduce each data
vector from the feature activations that it causes (Ben-
gio, Lamblin, Popovici, & Larochelle, ; Hinton,
; LeCun & Bengio, ). However, the variational
bound no longer applies, and an autoencoder module
is less good at ignoring random noise in its training
data (Larochelle, Erhan, Courville, Bergstra, & Bengio,
).

Applications of Deep Belief Nets

Deep belief nets have been used for generating and
recognizing images (Bengio, et al., ; Hinton et al.,
; Ranzato, Huang, Boureau, & LeCun, ), video
sequences (Sutskever & Hinton, ), and motion-
capture data (Taylor, Hinton, & Roweis, ). If the
number of units in the highest layer is small, deep
belief nets perform nonlinear dimensionality reduction
(Hinton & Salakhutdinov, ), and by pretraining
each layer separately it is possible to learn very deep
autoencoders that can then be �ne-tuned with back-
propagation (Hinton& Salakhutdinov, ). Such net-
works cannot be learned in reasonable time using back-
propagation alone. Deep autoencoders learn compact
representations of their input vectors that aremuch bet-
ter than those found by linearmethods such as Principal
Components Analysis, and if the highest level code is
forced to be binary, they allow extremely fast retrieval of
documents or images (Salakhutdinov & Hinton, ;
Torralba, Fergus, & Weiss, ).
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Density Estimation

Claude Sammut
University of New South Wales, Sydney, Australia

Synonyms
Kernel density estimation

Definition
Given a set of observations, x, . . . , xN , which is a ran-
dom sample from a probability density function fX (x),
density estimation attempts to approximate fX (x) by
f̂X (x).
A simple way of estimating a probability density

function is to plot a histogram from a random sample
drawn from the population. Usually, the range of data
values is subdivided into equally sized intervals or bins.
Howwell the histogram estimates the function depends
on the bin width and the placement of the boundaries of
the bins.�e latter can be somewhat improved by mod-
ifying the histogram so that �xed boundaries are not
used for the estimate. �at is, the estimate of the prob-
ability density function at a point uses that point as the
centre of a neighborhood. Following Hastie, Tibshirani
and Friedman (), the estimate can be expressed as:

f̂X (x) = #xi ∈ N (x)
Nλ

()

where x, . . . , xN is a random sample drawn from a
probability density function fX(x) and f̂X(x) is the esti-
mate of fX at point x. N(x) is a neighborhood of
width λ, around x. �at is, the estimate is the normal-
ized count of the number of values that fall within the
neighborhood of x.

�e estimate above is still bumpy, like the histogram.
A smoother approximation can be obtained by using
a kernel function. Each xi in the sample is associated
with a kernel function, usually Gaussian. �e count in
formula () above is replaced by the sum of the ker-
nel function applied to the points in the neighborhood
of x:

f̂X(x) = 
Nλ

N∑
i=
Kλ (x, xi) ()

whereK is the kernel function associatedwith sample xi
near x.�is is called theParzen estimate (Parzen, ).
�e bandwidth, λ, a�ects the roughness or smoothness
of the kernel histogram. �e kernel density estimate

is said to be under-smoothed if the bandwidth is too
small. �e estimate is over-smoothed if the bandwidth
is too large.
Density estimation is most o�en used in association

with memory-based classi�cation methods, which can
be thought of as weighted7nearest neighbor classi�ers.

7Mixture models and 7Locally weighted regres-
sion are forms of kernel density estimation.

Cross References
7Kernel Methods
7Locally Weighted Regression for Control
7Mixture Models
7Nearest Neighbor
7Support Vector Machine
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Density-Based Clustering

Joerg Sander
University of Alberta
Edmonton, AB, Canada

Synonyms
Estimation of density level sets; Mode analysis; Non-
parametric cluster analysis

Definition
Density-BasedClustering refers to7unsupervised learn-
ing methods that identify distinctive groups/clusters
in the data, based on the idea that a cluster in a data
space is a contiguous region of high point density, sep-
arated from other such clusters by contiguous regions
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of low point density. �e data points in the separat-
ing regions of low point density are typically considered
noise/outliers.

Motivation and Background
Clustering in general is an unsupervised learning task
that aims at �nding distinct groups in data, called
clusters. �e minimum requirements for this task are
that the data is given as some set of objects O for
which a dissimilarity-distance function d :O×O→R+
is given. O�en, O is a set of d-dimensional real valued
points, O⊂Rd, which can be viewed as a sample from
some unknown probability density p(x), with d as the
Euclidean or some other form of distance.

�ere are di�erent approaches to classifying what
characterizes distinct groups in the data.
From a procedural point of view, many cluster-

ing methods try to �nd a partition of the data into
k groups, so that within-cluster dissimilarities are min-
imized while the between-cluster dissimilarities are
maximized. �e notions of within-cluster dissimilar-
ity and between-cluster dissimilarity are de�ned using
the given distance function d. From a statistical point
of view, such methods correspond to a parametric
approach, where the unknown density p(x) of the data
is assumed to be a mixture of k densities pi(x), each
corresponding to one of the k groups in the data; the
pi(x) are assumed to come from some parametric fam-
ily (e.g., Gaussian distributions) with unknown param-
eters, which are then estimated from the data.
In contrast, density-based clustering is a non-

parametric approach, where the groups in the data are
considered to be the high density areas of the density
p(x). Density-based clustering methods do not require
the number of clusters as input parameters, nor do they
make assumptions about the underlying density p(x) or
the variancewithin the groups thatmay exist in the data.
Consequently, density-based clusters are not necessar-
ily groups of points with high within-cluster similarity
as measured by the distance function d, but can have
an “arbitrary shape” in the feature space; they are some-
times also referred to as “natural clusters.”�is property
makes density-based clustering particularly suitable for
applications where clusters cannot be well described as
distinct groups of low within-cluster dissimilarity, as,
for instance, in spatial data, where clusters of points
in the space may form along natural structures such

Density-Based Clustering. Figure . Illustration of a

density-based clustering, showing three distinguishable

groups

as rivers, roads, and seismic faults. Figure  illustrates
density-based clusters using a two-dimensional exam-
ple, where the assumed dissimilarity function between
the points is the Euclidean distance: there are three
clusters indicated by triangles, points, and rectangles, as
well as some noise points, indicated by diamond shapes.
Note that the distance between some points within the
clusters is much larger than the distance between some
points fromdi�erent clusters, yet the regions containing
the clusters clearly have a higher point density than the
region between them, and they can easily be separated.
Density-based clustering is one of the prominent

paradigms for clustering large data sets in the data
mining community. It has been extensively studied and
successfully used in many applications.

Structure of Learning System
Assuming that the data setO⊂Rd is a sample from some
unknown probability density p(x), there are di�erent
ways of determining high density areas of the density
p(x). Commonly, the notion of a high density area is
(implicitly or explicitly) based on a local density esti-
mate at each point (typically, some kernel or nearest
neighbor density estimate), and a notion of connec-
tion between objects (typically, points are connected if
they are within a certain distance ε from each other);
clusters are essentially constructed as maximal sets of
objects that are directly or transitively connected to
objects whose density exceeds some threshold λ.�e set{x∣p(x) > λ} of all high density objects is called the den-
sity level set of p at λ. Objects that are not part of such
clusters are called noise or outliers.
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Di�erent proposed density-based methods distin-
guish themselvesmainly by how the density p(x) is esti-
mated, how the notion of connectivity is de�ned, and
how the algorithm for �nding connected components
of the induced graph is implemented and supported by
suitable data structures to achieve scalability for large
data sets. Somemethods include in a cluster only objects
whose density exceeds the threshold λ, while others also
include objects with lower density if they are connected
to an object with density above the threshold λ.
Density-based clustering was probably introduced

for the �rst time by Wishart (). His algorithm for
one level mode analysis consists of six steps: “() Select
a distance threshold r, and a frequency (or density)
threshold k, () Compute the triangular similarity
matrix of all inter-point distances, () Evaluate the fre-
quency ki of each data point, de�ned as the number
of points which lie within a distance r of point i (. . .),
() Remove the “noise” or non-dense points, those for
which ki < k, () Cluster the remaining dense points
(ki > k) by single linkage, forming the mode nuclei,
() Reallocate each non-dense point to a suitable cluster
according to some criterion (. . .) (Wishart, ).
Hartigan () suggested a more general de�ni-

tion of a density-based cluster, a density contour cluster
at level λ, as a maximally connected set of points x
for which p(x)> λ, given a density p(x) at each point
x, a density threshold λ, and links speci�ed for some
pairs of objects. For instance, given a particular dis-
tance function, points can be de�ned as linked if the
distance between them is no greater than some thresh-
old r, or, if only direct links are available, one can de�ne
a “distance” for pairs of objects x and y in the following
way:

d(x, y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−min[p(x), p(y)], x and y are linked,

 otherwise.

To compute the density-contour clusters, Harti-
gan, like Wishart, suggest a version of single link-
age clustering, which will construct the maximal con-
nected sets of objects of density greater than the given
threshold λ.

�e DBSCAN algorithm (Ester et al., ) intro-
duced density-based clustering independently to the
Computer Science Community, also proposing the use

of spatial index structures to achieve a scalable cluster-
ing algorithm. Assuming a distance threshold r and a
density threshold k, DBSCAN, like Wishart’s method,
estimates the density for each point xi as the number ki
of points that lie inside a radius r around x. Core points
are de�ned as data points for which ki > k. Points are
considered directly connected if the distance between
them is no greater than r. Density-based clusters are
de�ned as maximally connected components of the set
of points that lie within distance r from some core object
(i.e., a cluster may contain points xi with ki < k, called
border objects, if they are within distance r of a core
object of that cluster). Objects not part of a cluster are
considered noise. �e algorithm DBSCAN constructs
clusters iteratively, starting a new cluster C with a non-
assigned core object x, and assigning all points to C
that are directly or transitively connected to x. To deter-
mine directly and transitively connected points for a
given point, a spatial index structure is used to per-
form range queries with radius r for each object that is
newly added to a current cluster, resulting in an e�cient
runtime complexity for moderately dimensional data of
O(N log N), where N is the total number of points in
the data set, and a worst case runtime of O(N), e.g., for
high-dimensional data when the performance of spatial
index structures deteriorates.
DENCLUE (Hinneburg and Keim, ) proposed

a notion of density-based clusters using a kernel den-
sity estimation. Each data point x is associated with
(“attracted by”) a local maximum (“density attractor”)
of the overall density function that lies in the direction
of maximum increase in density from x. Density-based
clusters are de�ned as connected components of density
attractors with their associated points, whose density
estimate is above a given threshold λ. In this formu-
lation, DBSCAN and Wishart’s method can be seen
as special cases of DENCLUE, using a uniform spher-
ical kernel and, for Wishart’s method, not including
attracted points whose density is below λ. DENCLUE
essentially uses a Gaussian kernel for the implemen-
tation, which is based on a clever data structure to
speed up local density estimation. �e data space is
partitioned into d-dimensional cells. Non-empty cells
are mapped to one-dimensional keys, which are stored,
together with some su�cient statistics about the cell
(number of points, pointers to points, and linear sum
of the points belonging to the cell), in a search tree for
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e�cient retrieval of neighboring cells, and local density
estimation (Hinneburg and Keim () reports that
in an experimental comparison on -dimensional data
sets of di�erent sizes, DENCLUE runs up to  times
faster than DBSCAN).
A large number of related methods and exten-

sions have been proposed, particularly in computer
science and application-oriented domains, some moti-
vated by algorithmic considerations that could improve
e�ciency of the computation of density-based clus-
ters, othersmotivated by special applications, proposing
essentially density based clustering algorithms using
speci�c density measures and notions of connectivity.
An algorithmic framework, called GDBSCAN, which
generalizes the topological properties of density-based
clusters, can be found in Sander et al. (). GDBSCAN
generalizes the notion of a density-based clustering
to that of a density-connected decomposition, assuming
only a re�exive and symmetric neighborhood relation
for pairs of objects (direct links between some objects),
and an arbitrary predicate, called “MinWeight,” that
evaluates to true for some neighborhood sets of objects
and false on others, so that a core object can be de�ned
as an object whose neighborhood satis�es the Min-
Weight predicate. �en, a density-connected decompo-
sition consists of the maximally connected components
of the set of objects that are in the neighborhood of
some core object, and they can be computed with the
same algorithmic scheme as density-based clusters by
DBSCAN.
One of the principal problems of �nding the

density-based clusters of a density level set for a sin-
gle level λ is how to determine a suitable level λ. �e
result of a density-based clustering method depends
critically on the choice of λ, which may be di�cult
to determine even in situations when a meaningful
level exists, depending on how well the clusters are
separated in the given sample. In other situations, it
may not even be possible to characterize the cluster
structure appropriately using a single density thresh-
old, when modes exist in di�erent regions of the data
space that have very di�erent local densities, or clus-
ters are nested within clusters. �e problem of selecting
suitable density threshold parameters has been already
observed by Wishart () who also proposed a hier-
archical algorithm to represent the clusters at di�er-
ent density levels. Hartigan () also observed that

density-based clusters at di�erent density levels have a
hierarchical structure, a density contour tree, based on
the fact that two clusters (i.e., connected components)
of di�erent density levels are either disjoint, or the clus-
ter of higher density is completely contained in the
cluster of lower density. Recent proposals for hierarchi-
cal clustering methods based on a density estimate and
a notion of linkage are, e.g., Ankerst et al. () and
Stuetzle (). �ese hierarchical methods are closely
related, and are essentially processing and rendering
a Minimum Spanning Tree of the data (with pairwise
distances or reachability distances as de�ned in Stuet-
zle () as edge weights), and are thus also closely
related to single linkage clustering. Hierarchical meth-
ods do not, in a strict sense, compute a partition of
the data, but compute a representation of the overall
hierarchical density structure of the data from which
particular density-based clusters at di�erent density lev-
els or a global density threshold (a “cut level”) could be
determined.
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Dependency Directed Backtracking

7Intelligent Backtracking

Detail

In 7Minimum Message Length, detail is the code or
language shared between sender and receiver that is
used to describe the data conditional on the asserted
model.

Deterministic Decision Rule

7Decision Rule

Digraphs

Synonyms
Directed graphs

Definition
A digraph D consists of a (�nite) set of vertices V(D)
and a set A(D) of ordered pairs, called arcs, of distinct
vertices. An arc (u, v) has tail u and head v, and it is said
to leave u and enter v.
Figure  shows a digraph D with vertex set

V(D)={u, v,w, x, y, z} and arc setA(D)={(u, v), (u,w),(v,w), (w, x), (x,w), (x, z), (y, x), (z, x)}. Digraphs can
be viewed as generalizations of7graphs.
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Definition
A digraph D consists of a (�nite) set of vertices V(D)
and a set A(D) of ordered pairs, called arcs, of distinct
vertices. An arc (u, v) has tail u and head v, and it is said
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Digraphs. Figure . A digraph

Figure ?? shows a digraph D with vertex set
V(D) ={u, v,w, x, y, z} and arc setA(D)={(u, v), (u,w),(v,w), (w, x), (x,w), (x, z), (y, x), (z, x)}. Digraphs can
be viewed as generalizations of7graphs.

Digraphs. Figure . A digraph

Dimensionality Reduction

Michail Vlachos
IBM Zürich Research Laboratory
Rüschlikon
Switzerland

Synonyms
Feature extraction

Definition
Every data object in a computer is represented and
stored as a set of features, for example, color, price,
dimensions, and so on. Instead of the term features one
can use interchangeably the term dimensions, because
an object with n features can also be represented as
a multidimensional point in an n-dimensional space.
�erefore, dimensionality reduction refers to the pro-
cess of mapping an n-dimensional point, into a lower
k-dimensional space.�is operation reduces the size for
representing and storing an object or a dataset gener-
ally; hence, dimensionality reduction can be seen as a
method for data compression. Additionally, this process
promotes data visualization, particularly when objects
aremapped onto twoor three dimensions. Finally, in the
context of classi�cation, dimensionality reduction can
be a useful tool for the following: (a) making tractable
classi�cation schemes that are super-linear with respect
to dimensionality, (b) reducing the variance of classi-
�ers that are plagued by large variance in higher dimen-
sionalities, and (c) removing the noise that may be
present, thus boosting classi�cation accuracy.

Motivation and Background
�ere are many techniques for dimensionality reduc-
tion. �e objective of dimensionality reduction tech-
niques is to appropriately select the k dimensions (and
also the number k) that would retain the important
characteristics of the original object. For example, when
performing dimensionality reduction on an image,
using a wavelet technique, then the desirable outcome is
for the di�erence between the original and �nal images
to be almost imperceptible.
When performing dimensionality reduction not on

a single object, but on a dataset, an additional require-
ment is for the method to preserve the relationship
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between the objects in the original space.�is is partic-
ularly important for reasons of classi�cation and visual-
ization in the new space.

�ere exist two important categories of dimension-
ality reduction techniques:

● Feature selection techniques, where only the most
important or descriptive features/dimensions are
retained and the remaining are discarded. More
details on such techniques can be found under the
entry7Feature Selection.

● Feature projectionmethodologies, which project the
existing features onto di�erent dimensions or axes.
�e aim here is again, to �nd these new data axes
that retain the dataset structure and its variance as
closely as possible.

Feature projection techniques typically exploit the
correlations between the various data dimensions, with
the goal of creating dimensions/axes that are uncorre-
lated and su�ciently describe the data.
One of the most popular dimensionality reduction

techniques is Principal Components Analysis or PCA. It
attempts to discover those axes (or components) onto
which the data can be projected, while maintaining the
original correlation between the dimensions. Consider,
for example, a dataset that contains records of envi-
ronmental measurements over a period of time, such
as humidity and temperature. �e two attributes can

Temperature

H
um

id
ity

First principal component

Dimensionality Reduction. Figure . Principal

components analysis (PCA)

be highly correlated, as shown in Fig. . By deploying
PCA this trend will be discovered and the original two-
dimensional points can be reduced to one-dimensional,
by projecting the original points on the �rst principal
component. In that way the derived dataset can be stored
in less space.
PCA uses the Euclidean distance as the measure

of dissimilarity among the objects. �e �rst principal
component (or axis) indicates the direction of maxi-
mum variance in the original dimensions. �e second
component shows the direction of next highest variance
(and is uncorrelated to the �rst component), etc.
Other dimensionality reduction techniques opti-

mize or preserve di�erent criteria than PCA. Mani-
fold inspired methods like ISOMAP (Tenenbaum et al.,
) preserve the geodesic distances between objects.
�e notion here is to approximate the distance between
objects “through” the remaining ones. �e result of
such dimensionality reduction techniques, is that when
the data lie on a manifold, the projected dimensions
e�ectively ‘unfold’ the underlying high-dimensional
manifold. An example of this mapping is portrayed in
Fig. , where it is also compared with the respective
PCA mapping.
Other recent dimensionality reduction techniques

include locally linear embeddings (LLE) (Roweis and
Saul, ) and Laplacian Eigenmaps (Belkin and
Niyogi, ). We also refer the interested practitioners
to (van der Maaten et al., ), for a detailed compar-
ison of various techniques and also for Matlab imple-
mentations on a variety of dimensionality reduction
algorithms.
In general, dimensionality reduction is a commonly

practiced and useful operation in database andmachine
learning systems because it generally o�ers the follow-
ing desirable properties:

● Data compression: the dataset objects are repre-
sented in fewer dimensions, hence saving important
disk storage space and o�ering faster loading of the
compressed data from the disk.

● Better data visualization: the relationships between
the original high-dimensional objects can be visual-
ized in two- or three-dimensional projections.

● Improved classi�cation accuracy: this can be attri-
buted to both variance reduction and noise removal
from the original high-dimensional dataset.
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Dimensionality Reduction. Figure . Nonlinear dimensionality reduction techniques produce a better

low-dimensional data mapping, when the original data lie on a high-dimensional manifold
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Dimensionality Reduction. Figure . Probability Pw(d)

against dimensionality d. The data becomes sparse in

higher dimensions

● More e�cient data retrieval: dimensionality reduc-
tion techniques can also assist in making faster
and more e�cient the retrieval of the original
uncompressed data, by o�ering very fast pre-
�ltering with the help of the compressed data rep-
resentation.

● Boosting index performance: more e�ective use of
indexing structures can be achieved by utilizing the
compressed data, since indexing techniques only
work e�ciently with lower-dimensional data (e.g.,
from  to  dimensions, depending on the type of
the index).

�e fact that indexing structures do not perform
e�ciently for higher-dimensional data is also known
as 7“curse of dimensionality.” Suppose that we are
interested in performing search operations on a set of
high-dimensional data. For simplicity let us assume that

the data lie in a unit hypercube C = [, ]d, where d is
the data dimensionality. Given a query point, the prob-
ability Pw that a match (neighbor) exists within radius
w in the data space of dimensionality d is given by
Pw(d) = wd.
Figure  illustrates this probability for various val-

ues of w. Evidently, at higher dimensionalities the data
becomes very sparse and even at large radii, only a
small portion of the entire space is covered. �is fact
is coined under the term ‘curse of dimensionality,’
which in simple terms translates into the following fact:
for large dimensionalities existing indexing structures
outperform sequential scan only when the dataset size
(number of objects) grows exponentially with respect to
dimensionality.

Dimensionality Reduction for Time-Series
Data
In this section we provide more detailed examples on
dimensionality reduction techniques for 7time-series
data. We chose time-series in order to convey more
visually the e�ect of dimensionality reduction particu-
larly for high-dimensional data such as time-series.
Later, we also show how dimensionality reduction

on large datasets can help speed up the search opera-
tions over the original uncompressed data.
Dimensionality reduction for one- and two-

dimensional signals is commonly accomplished using
the Fourier decomposition. Fourier decomposition was
�rst presented in the beginning of the nineteenth cen-
tury by Jean Baptiste Fourier (–), in his seminal
workOn the Propagation of Heat in Solid Bodies. Fourier
reached the conclusion that every function could be
expressed as a sum of trigonometrical series (i.e., sines
and cosines). �is original work was initially faced
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with doubt (even by famous mathematicians such as
Lagrange and Laplace), because of its unexpected result
and because the solution was considered impractical
due of the complex integration functions.
However, in the twentieth century no one can deny

the importance of Fourier’s �ndings.With the introduc-
tion of fast ways to compute the Fourier decomposi-
tion in the s (Fast Fourier Transform or FFT), the
barrier of the high computational complexity has been
li�ed. What the Fourier transform attempts to achieve
is, represent the original signal as a linear combination
of sinusoids. �erefore, each Fourier coe�cient is a
complex number that essentially encodes the amplitude
and phase of each of these sinusoids, a�er the original
signal is projected on them.
Formost signals, utilizing just few of the coe�cients

we can reconstruct with high accuracy the original
sequence. �is is where the great power of the Fourier
transformation lies; by neglecting the majority of the
coe�cients, we can essentially compress the signal or
describe it with fewer numbers. For stock market data
or other time-series that follow the pattern of a random
walk, the �rst few coe�cients, which capture the low
frequencies of the signal, are adequate to describe accu-
rately the signal (or capturemost of its energy). Figure 
depicts a signal of ,  points and its reconstruction
using seven Fourier coe�cients (i.e., using  ×  = 
numbers).

Time series

 Fourier components
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Dimensionality Reduction. Figure . Decomposition of a

signal into the first seven Fourier coefficients. We can see

that using only of few of the Fourier coefficients we can

achieve a good reconstruction of the original signal

Other popular dimensionality reduction techniques
for time-series data are the various wavelet transforms,
piecewise linear approximations, piecewise aggregate
approximation (PAA), which can be regarded as a
projection in time of the wavelet coe�cients, adap-
tive piecewise constant approximation (APCA (Keogh
et al., )), that utilizes the highest energy wavelet
coe�cients, Chebyshev Polynomial Approximation and
Symbolic Approximation of time-series (such as the
SAX representation (Lin et al., )).
No dimensionality reduction technique is univer-

sally better than all the rest. According to the dataset
characteristics, one methodmay provide better approx-
imation of a dataset compared to other techniques.
�erefore, the key is to carefully pick the representation
that better suits the speci�c application or the task at
hand. In Fig.  we demonstrate various dimensionality
reduction techniques and the quality of the time-series
approximation. For all of the methods, the same stor-
age space is allocated for the compressed sequences.�e
time-series reconstruction is shown in darker color, and
the approximation error to the original sequence is also
reported. In general, we can notice that dimensionality
reduction techniques based on the selection of the high-
est energy coe�cients can consistently provide a high
quality sequence approximation.

Dimensionality Reduction and Lower-Bounding

Dimensionality reduction can be a useful tool for speed-
ing up search operations. Figure  elucidates dimen-
sionality reduction for high-dimensional time-series
data. A�er dimensionality reduction, each object is rep-
resented using fewer dimensions (attributes), so it is
represented in a lower-dimensional space. Suppose that
a user poses another high-dimensional object as a query
and wishes to �nd all the objects closest to this query.
In order to avoid the search on the original high-

dimensional space, the query is also transformed into
a point in the low-dimensional space and its closest
matches can be discovered in the vicinity of the pro-
jected query point. However, when searching using the
compressed objects, one needs to provide an estimate
of the distance between the original objects. Typically,
it is preferable that the distance in the new space under-
estimates (or lower bounds) the distance in the original
high-dimensional space.�e reason for this is explained
as follows.
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Dimensionality Reduction. Figure . Comparison of various dimensionality reduction techniques for time-series data.

The darker series indicates the approximation using the indicated number of coefficients. Each figure also reports

the error e introduced by the dimensionality reduction technique. Lower errors indicate better low-dimensional

approximation of the original object
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Dimensionality Reduction. Figure . Search and dimen-

sionality reduction. Every object (time-series in this

case) is tranformed into a lower-dimensional point. User

queries are also projected into the new space. Similarity

search consists in finding the closest points to the query

projection

Suppose thatwe are seeking for the -NN (7Nearest-
Neighbor) of a query Q in a database D. By exam-
ining all the objects (linear scan) one can guarantee
that the best match will be found. Can one provide
the same guarantee (i.e., that the same best match will

be returned) when examining the compressed objects
(a�er dimensionality reduction)?

�e answer is positive, as long as the distance on
the compressed data underestimates or lower bounds the
distance on the rawdata. In otherwords, the dimension-
ality reduction (dR) that is performed on the raw data
must have the following property:

Having A ⊂ D dRÐ→ a and Q dRÐ→ q
then

∆(q, a) ≤ ∆(Q,A)
Since the computed distance ∆ between any two

compressed objects is underestimated, false alarmsmay
arise. Suppose, for example, that our database consists
of six two-dimensional point (Fig. ). If the user query
is “Find everything that lies within a radius of  around
A,” then B is the only result.
Let us assume for a minute that the dimensionality

reduction that is performed on the data is simply a pro-
jection on the x-axis (Fig. ). In this new space, seeking
for points within a range of  fromA, would also retrieve
pointC, which is called a false alarm.�is does not con-
stitute a problem, because in a post-processing phase,
the calculation of the exact distance will eliminate any
false alarms. Suppose now, that another dimensional-
ity reduction results in the projection of Fig. . Here, we
have a case of a false dismissal, since object B lies outside
the range of search.

�is generic framework for similarity search using
dimensionality reduction and lower-bounding distance



Directed Graphs D 

D

1 2 3 4 5

1

2

3

4

5

Query
A

F

D

C

E

B

Dimensionality Reduction. Figure . Range search in the

original space, returns only object B

1 2 3 4 5
Query

FA D EC B

False alarm

Dimensionality Reduction. Figure . Because of the

dimensionality reduction, false alarms may arise

1 2 3 4 5
Query

FA D EC B

False dismissal
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may happen when the lower bounding lemma is not

obeyed

functions was proposed in (Agrawal et al., ) and
is called GEMINI (GEneric Multimedia INdexIng).
One can show that orthonormal dimensionality reduc-
tion techniques (PCA, Fourier, Wavelets) satisfy the
lower bounding lemma when the distance used is the
Euclidean distance.
In conclusion, for search operations, by using

dimensionality reduction one can examine �rst the
compressed objects and eliminate many of the uncom-
pressed objects from examination using a lower-
bounding approximation of the distance function. �is

initial search will return a superset of the correct
answers (no false dismissals). False alarms can be �l-
tered out by computing the original distance between
the remaining uncompressed objects and the query.
�erefore, a signi�cant speedup is achieved by exam-
ining only a small subset of the original raw data.
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Definition
�e Dirichlet process (DP) is a stochastic process used
in 7Bayesian nonparametric models of data, particu-
larly in Dirichlet process mixture models (also known
as in�nite mixture models). It is a distribution over dis-
tributions, that is, each draw from a Dirichlet process
is itself a distribution. It is called a Dirichlet pro-
cess because it has Dirichlet distributed �nite dimen-
sional marginal distributions, just as the 7Gaussian
process, another popular stochastic process used for
Bayesian nonparametric regression, has Gaussian dis-
tributed �nite dimensional marginal distributions. Dis-
tributions drawn from a Dirichlet process are dis-
crete, but cannot be described using a �nite number of
parameters, thus the classi�cation as a nonparametric
model.

Motivation and Background
Probabilistic models are used throughout machine
learning to model distributions over observed data.
Traditional parametric models using a �xed and �nite
number of parameters can su�er from over- or under-
�tting of data when there is a mis�t between the com-
plexity of the model (o�en expressed in terms of the
number of parameters) and the amount of data avail-
able. As a result, model selection, or the choice of a
model with the right complexity, is o�en an important
issue in parametric modeling. Unfortunately, model
selection is an operation that is fraught with di�cul-
ties, whether we use 7cross validation or marginal
probabilities as the basis for selection. �e Bayesian
nonparametric approach is an alternative to paramet-
ric modeling and selection. By using a model with an
unbounded complexity, under�tting is mitigated, while
the Bayesian approach of computing or approximating
the full posterior over parameters mitigates over�tting.
For a general overview of Bayesian nonparametrics, see
7Bayesian Nonparametrics.

Nonparametric models are also motivated philo-
sophically by Bayesian modeling. Typically we assume
that we have an underlying and unknown distribu-
tion which we wish to infer given some observed data.
Say we observe x, . . . , xn, with xi ∼ F independent
and identical draws from the unknown distribution F.
A Bayesian would approach this problem by placing a
prior over F then computing the posterior over F given
data. Traditionally, this prior over distributions is given
by a parametric family. But constraining distributions
to lie within parametric families limits the scope and
type of inferences that can be made. �e nonparamet-
ric approach instead uses a prior over distributions with
wide support, typically the support being the space of
all distributions. Given such a large space over which
we make our inferences, it is important that posterior
computations are tractable.

�e Dirichlet process is currently one of the most
popular Bayesian nonparametric models. It was �rst
formalized in Ferguson () for general Bayesian sta-
tistical modeling, as a prior over distributions with
wide support yet tractable posteriors. (Note however
that related models in population genetics date back
to Ewens ()). Unfortunately the Dirichlet process
is limited by the fact that draws from it are discrete
distributions, and generalizations to more general pri-
ors did not have tractable posterior inference until the
development of MCMC (7Markov chain Monte Carlo)
techniques (Escobar & West, ; Neal, ). Since
then there has been signi�cant developments in terms
of inference algorithms, extensions, theory and appli-
cations. In the machine learning, community work on
Dirichlet processes date back to Neal () and Ras-
mussen ().

Theory
�eDirichlet process (DP) is a stochastic process whose
sample paths are probability measures with probability
one. Stochastic processes are distributions over func-
tion spaces, with sample paths being random functions
drawn from the distribution. In the case of the DP, it is a
distribution over probability measures, which are func-
tions with certain special properties, which allow them
to be interpreted as distributions over some probability
space Θ. �us draws from a DP can be interpreted as
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random distributions. For a distribution over probabil-
ity measures to be a DP, its marginal distributions have
to take on a speci�c form which we shall give below.
We assume that the user is familiar with a modicum of
measure theory and Dirichlet distributions.
Before we proceed to the formal de�nition, we will

�rst give an intuitive explanation of theDP as an in�nite
dimensional generalization of Dirichlet distributions.
Consider a Bayesian mixture model consisting of K
components:

π∣α ∼ Dir ( α
K , . . . ,

α
K ) θ∗k ∣H ∼ H

zi∣π ∼ Mult (π) xi∣zi,{θ∗k} ∼ F (θ∗zi) ()

where π is the mixing proportion, α is the pseudo-
count hyperparameter of the Dirichlet prior, H is the
prior distribution over component parameters θ∗k , and
F(θ) is the component distribution parametrized by θ.
It can be shown that for large K, because of the particu-
lar way we parametrized the Dirichlet prior over π, the
number of components typically used to model n data
items becomes independent of K and is approximately
O(α logn). �is implies that the mixture model stays
well de�ned as K → ∞, leading to what is known as an
in�nite mixture model (Neal, ; Rasmussen, ).
�is model was �rst proposed as a way to sidestep the
di�cult problem of determining the number of compo-
nents in a mixture, and as a nonparametric alternative
to �nite mixtures whose size can grow naturally with
the number of data items. �e more modern de�nition
of this model uses a DP and with the resulting model
called a DP mixture model. �e DP itself appears as the
K → ∞ limit of the random discrete probability mea-
sure∑Kk= πkδθ∗k , where δθ is a point mass centered at θ.
We will return to the DPmixture toward the end of this
entry.

Dirichlet Process

For a randomdistributionG to be distributed according
to a DP, its marginal distributions have to be Dirichlet
distributed (Ferguson, ). Speci�cally, letH be a dis-
tribution over Θ and α be a positive real number. �en
for any �nite measurable partition A, . . . ,Ar of Θ the
vector (G(A), . . . ,G(Ar)) is random since G is ran-
dom.We sayG is Dirichlet process distributedwith base
distribution H and concentration parameter α, written

G ∼ DP (α,H), if
(G(A), . . . ,G(Ar)) ∼ Dir (αH(A), . . . , αH(Ar))

()

for every �nite measurable partition A, . . . ,Ar of Θ.
�e parameters H and α play intuitive roles in

the de�nition of the DP. �e base distribution is basi-
cally the mean of the DP: for any measurable set
A ⊂ Θ, we have E[G(A)] = H(A). On the other hand,
the concentration parameter can be understood as an
inverse variance: V[G(A)] = H(A)(−H(A))/(α + ).
�e larger α is, the smaller the variance, and the DPwill
concentratemore of itsmass around themean.�e con-
centration parameter is also called the strength param-
eter, referring to the strength of the prior when using
the DP as a nonparametric prior over distributions in
a Bayesian nonparametric model, and the mass param-
eter, as this prior strength can be measured in units of
sample size (or mass) of observations. Also, notice that
α and H only appear as their product in the de�nition
() of the DP. Some authors thus treat H̃ = αH, as the
single (positive measure) parameter of the DP, writing
DP (H̃) instead of DP (α,H).�is parametrization can
be notationally convenient, but loses the distinct roles α
and H play in describing the DP.
Since α describes the concentration of mass around

the mean of the DP, as α → ∞, we will have G(A) →
H(A) for any measurable A, that is G → H weakly or
pointwise. However this not equivalent to saying that
G → H. As we shall see later, draws from a DP will be
discrete distributions with probability one, even if H is
smooth.�usG andH need not even be absolutely con-
tinuous with respect to each other.�is has not stopped
some authors from using the DP as a nonparametric
relaxation of a parametric model given by H. However,
if smoothness is a concern, it is possible to extend the
DP by convolving G with kernels so that the resulting
random distribution has a density.
A related issue to the above is the coverage of the DP

within the class of all distributions over Θ. We already
noted that samples from the DP are discrete, thus the
set of distributions with positive probability under the
DP is small. However it turns out that this set is also
large in a di�erent sense: if the topological support of
H (the smallest closed set S in Θ with H(S) = ) is all
of Θ, then any distribution over Θ can be approximated
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arbitrarily accurately in the weak or pointwise sense by
a sequence of draws from DP (α,H). �is property has
consequence in the consistency of DPs discussed later.
For all but the simplest probability spaces, the num-

ber of measurable partitions in the de�nition () of the
DP can be uncountably large. �e natural question to
ask here is whether objects satisfying such a large num-
ber of conditions as () can exist. �ere are a number
of approaches to establish existence. Ferguson ()
noted that the conditions () are consistent with each
other, and made use of Kolmogorov’s consistency the-
orem to show that a distribution over functions from
the measurable subsets of Θ to [, ] exists satisfying
() for all �nite measurable partitions of Θ. However
it turns out that this construction does not necessar-
ily guarantee a distribution over probability measures.
Ferguson () also provided a construction of the
DP by normalizing a gamma process. In a later sec-
tion we will see that the predictive distributions of the
DP are related to the Blackwell–MacQueen urn scheme.
Blackwell andMacQueen () made use of this, along
with de Finetti’s theorem on exchangeable sequences, to
prove existence of the DP. All the above methods made
use of powerful and general mathematical machinery to
establish existence, and o�en require regularity assump-
tions on H and Θ to apply these machinery. In a later
section,we describe a stick-breaking construction of the
DP due to Sethuraman (), which is a direct and ele-
gant construction of the DP, which need not impose
such regularity assumptions.

Posterior Distribution

Let G ∼ DP (α,H). Since G is a (random) distribution,
we can in turn draw samples fromG itself. Let θ, . . . , θn
be a sequence of independent draws from G. Note that
the θ i’s take values in Θ sinceG is a distribution over Θ.
We are interested in the posterior distribution ofG given
observed values of θ, . . . , θn. Let A, . . . ,Ar be a �nite
measurable partition of Θ, and let nk = #{i : θ i ∈ Ak}
be the number of observed values in Ak. By () and the
conjugacy between the Dirichlet and the multinomial
distributions, we have

(G(A), . . . ,G(Ar))∣θ, . . . , θn∼ Dir(αH(A) + n, . . . , αH(Ar) + nr) ()

Since the above is true for all �nite measurable
partitions, the posterior distribution over G must be a

DP as well. A little algebra shows that the posterior DP
has updated concentration parameter α+n and base dis-
tribution αH+∑ni= δθi

α+n , where δi is a point mass located at
θ i and nk = ∑ni= δi(Ak). In other words, the DP pro-
vides a conjugate family of priors over distributions that
is closed under posterior updates given observations.
Rewriting the posterior DP, we have

G∣θ, . . . , θn ∼ DP (α + n, α
α+nH + n

α+n
∑
n
i= δθi
n ) ()

Notice that the posterior base distribution is a weighted
average between the prior base distribution H and the
empirical distribution ∑

n
i= δθi
n . �e weight associated

with the prior base distribution is proportional to α,
while the empirical distribution has weight propor-
tional to the number of observations n. �us we can
interpret α as the strength or mass associated with the
prior. In the next section we will see that the posterior
base distribution is also the predictive distribution of
θn+ given θ, . . . , θn. Taking α → , the prior becomes
non-informative in the sense that the predictive distri-
bution is just given by the empirical distribution. On the
other hand, as the amount of observations grows large,
n≫ α, the posterior is simply dominated by the empir-
ical distribution, which is in turn a close approximation
of the true underlying distribution. �is gives a consis-
tency property of the DP: the posterior DP approaches
the true underlying distribution.

Predictive Distribution and the Blackwell–MacQueen

Urn Scheme

Consider again drawing G ∼ DP (α,H), and draw-
ing an i.i.d. (independently and identically distributed)
sequence θ, θ, . . . ∼ G. Consider the predictive dis-
tribution for θn+, conditioned on θ, . . . , θn and with
G marginalized out. Since θn+∣G, θ, . . . , θn ∼ G, for a
measurable A ⊂ Θ, we have

P(θn+ ∈ A∣θ, . . . , θn) = E[G(A)∣θ, . . . , θn]
= 

α + n (αH(A) + n∑
i=

δθ i(A)) ()

where the last step follows from the posterior base dis-
tribution of G given the �rst n observations. �us with
Gmarginalized out:

θn+∣θ, . . . , θn ∼ 
α + n (αH + n∑

i=
δθ i) ()
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�erefore the posterior base distribution given θ, . . . , θn
is also the predictive distribution of θn+.

�e sequence of predictive distributions () for
θ, θ, . . . is called theBlackwell–MacQueenurn scheme
(Blackwell & MacQueen, ). �e name stems from
a metaphor useful in interpreting (). Speci�cally, each
value in Θ is a unique color, and draws θ ∼ G are
balls with the drawn value being the color of the ball.
In addition we have an urn containing previously seen
balls. In the beginning there are no balls in the urn, and
we pick a color drawn from H, that is, draw θ ∼ H,
paint a ball with that color, and drop it into the urn.
In subsequent steps, say the n + st, we will either, with
probability α

α+n , pick a new color (draw θn+ ∼ H), paint
a ball with that color and drop the ball into the urn,
or, with probability n

α+n , reach into the urn to pick a
random ball out (draw θn+ from the empirical distri-
bution), paint a new ball with the same color, and drop
both balls back into the urn.

�e Blackwell–MacQueen urn scheme has been
used to show the existence of the DP (Blackwell &Mac-
Queen, ). Starting from (), which are perfectly well
de�ned conditional distributions regardless of the ques-
tion of the existence of DPs, we can construct a distri-
bution over sequences θ, θ, . . . by iteratively drawing
each θ i given θ, . . . , θ i−. For n ≥  let

P(θ, . . . , θn) = n∏
i=
P(θ i∣θ, . . . , θ i−) ()

be the joint distribution over the �rst n observations,
where the conditional distributions are given by (). It
is straightforward to verify that this random sequence is
in�nitely exchangeable. �at is, for every n, the proba-
bility of generating θ, . . . , θn using (), in that order, is
equal to the probability of drawing them in any alterna-
tive order. More precisely, given any permutation σ on
, . . . ,n, we have

P(θ, . . . , θn) = P(θσ(), . . . , θσ(n)) ()

Now de Finetti’s theorem states that for any in�nitely
exchangeable sequence θ, θ, . . . there is a random dis-
tribution G such that the sequence is composed of i.i.d.
draws from it:

P(θ, . . . , θn) = ∫ n∏
i=
G(θ i)dP(G) ()

In our setting, the prior over the random distribution
P(G) is precisely the Dirichlet process DP (α,H), thus
establishing existence.
A salient property of the predictive distribution

() is that it has point masses located at the previous
draws θ, . . . , θn. A �rst observation is that with positive
probability draws from G will take on the same value,
regardless of smoothness of H. �is implies that the
distribution G itself has point masses. A further obser-
vation is that for a long enough sequence of draws from
G, the value of any draw will be repeated by another
draw, implying that G is composed only of a weighted
sum of point masses, that is, it is a discrete distribu-
tion. We will see two sections below that this is indeed
the case, and give a simple construction for G called
the stick-breaking construction. Before that, we shall
investigate the clustering property of the DP.

Clustering, Partitions, and the Chinese Restaurant

Process

In addition to the discreteness property of draws from
a DP, () also implies a 7clustering property. �e dis-
creteness and clustering properties of the DP play cru-
cial roles in the use of DPs for clustering via DPmixture
models, described in the application section. For now
we assume that H is smooth, so that all repeated val-
ues are due to the discreteness property of the DP and
not due to H itself. (Similar conclusions can be drawn
when H has atoms, there is just more bookkeeping.)
Since the values of draws are repeated, let θ∗ , . . . , θ∗m be
the unique values among θ, . . . , θn, and nk be the num-
ber of repeats of θ∗k . �e predictive distribution can be
equivalently written as

θn+ ∣θ, . . . , θn ∼ 
α + n (αH + m∑

k=
nkδθ∗k ) ()

Notice that value θ∗k will be repeated by θn+ with prob-
ability proportional to nk, the number of times it has
already been observed. �e larger nk is, the higher the
probability that it will grow. �is is a rich-gets-richer
phenomenon, where large clusters (a set of θ i’s with
identical values θ∗k being considered a cluster) grow
larger faster.
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We can delve further into the clustering property of
the DP by looking at partitions induced by the cluster-
ing. �e unique values of θ, . . . , θn induce a partition-
ing of the set [n] = {, . . . ,n} into clusters such that
within each cluster, say cluster k, the θ i’s take on the
same value θ∗k . Given that θ, . . . , θn are random, this
induces a random partition of [n]. �is random parti-
tion in fact encapsulates all the properties of the DP, and
is a very well-studied mathematical object in its own
right, predating even theDP itself (Aldous, ; Ewens,
; Pitman, ). To see how it encapsulates the DP,
we simply invert the generative process. Starting from
the distribution over random partitions, we can recon-
struct the joint distribution () over θ, . . . , θn, by �rst
drawing a random partition on [n], then for each clus-
ter k in the partition draw a θ∗k ∼ H, and �nally assign
θ i = θ∗k for each i in cluster k. From the joint distribu-
tion () we can obtain theDP by appealing to de Finetti’s
theorem.

�edistribution over partitions is called theChinese
restaurant process (CRP) due to a di�erent metaphor.
(�e name was coined by Lester Dubins and Jim Pit-
man in the early s (Aldous, )) In this metaphor
we have a Chinese restaurant with an in�nite number
of tables, each of which can seat an in�nite number of
customers. �e �rst customer enters the restaurant and
sits at the �rst table. �e second customer enters and
decides either to sit with the �rst customer, or by her-
self at a new table. In general, the n+ st customer either
joins an already occupied table k with probability pro-
portional to the number nk of customers already sitting
there, or sits at a new table with probability propor-
tional to α. Identifying customers with integers , , . . .
and tables as clusters, a�er n customers have sat down
the tables de�ne a partition of [n] with the distribution
over partitions being the same as the one above. �e
fact that most Chinese restaurants have round tables
is an important aspect of the CRP. �is is because it
does not just de�ne a distribution over partitions of [n],
it also de�nes a distribution over permutations of [n],
with each table corresponding to a cycle of the permu-
tation.We do not need to explore this aspect further and
refer the interested reader to Aldous () and Pitman
().

�is distribution over partitions �rst appeared in
population genetics, where it was found to be a robust
distribution over alleles (clusters) among gametes

(observations) under simplifying assumptions on the
population, and is known under the name of Ewens
sampling formula (Ewens, ). Before moving on we
shall consider just one illuminating aspect, speci�cally
the distribution of the number of clusters among n
observations. Notice that for i ≥ , the observation θ i
takes on a new value (thus incrementingm by one) with
probability α

α+i− independently of the number of clus-
ters among previous θ’s. �us the number of cluster m
has mean and variance:

E[m∣n] = n∑
i=

α
α + i −  = α(ψ(α + n) − ψ(α))

≃ α log( + n
α
) for N, α ≫ , ()

V[m∣n] = α(ψ(α + n) − ψ(α))
+ α(ψ′(α + n) − ψ′(α))

≃ α log( + n
α
) for n > α ≫ , ()

whereψ(⋅) is the digamma function.Note that the num-
ber of clusters grows only logarithmically in the number
of observations.�is slow growth of the number of clus-
ters makes sense because of the rich-gets-richer phe-
nomenon: we expect there to be large clusters thus the
number of clusters m has to be smaller than the num-
ber of observations n. Notice that α controls the number
of clusters in a direct manner, with larger α implying
a larger number of clusters a priori. �is intuition will
help in the application of DPs to mixture models.

Stick-Breaking Construction

Wehave already intuited that draws from aDP are com-
posed of a weighted sum of point masses. Sethuraman
() made this precise by providing a constructive
de�nition of the DP as such, called the stick-breaking
construction. �is construction is also signi�cantly
more straightforward and general than previous proofs
of the existence of DPs. It is simply given as follows:

βk ∼ Beta (, α) θ∗k ∼ H
πk = βk

k−∏
l=

( − βk) G = ∞∑
k=

πkδθ∗k ()

�en G∼ DP (α,H). �e construction of π can be
understood metaphorically as follows. Starting with a
stick of length , we break it at β, assigning π to be the
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length of stick we just broke o�. Now recursively break
the other portion to obtain π, π, and so forth. �e
stick-breaking distribution over π is sometimes writ-
ten π ∼ GEM (α), where the letters stand for Gri�ths,
Engen, and McCloskey (Pitman, ). Because of its
simplicity, the stick-breaking construction has lead to
a variety of extensions as well as novel inference tech-
niques for the Dirichlet process (Ishwaran & James,
).

Applications
Because of its simplicity, DPs are used across a wide
variety of applications of Bayesian analysis in both
statistics and machine learning. �e simplest and most
prevalent applications include Bayesian model valida-
tion, density estimation, and clustering via mixture
models. We shall brie�y describe the �rst two classes
before detailing DP mixture models.
How does one validate that a model gives a good �t

to some observed data? �e Bayesian approach would
usually involve computing the marginal probability of
the observed data under the model, and comparing
this marginal probability to that for other models. If
the marginal probability of the model of interest is
highest we may conclude that we have a good �t. �e
choice of models to compare against is an issue in this
approach, since it is desirable to compare against as
large a class of models as possible. �e Bayesian non-
parametric approach gives an answer to this question:
use the space of all possible distributions as our com-
parison class, with a prior over distributions. �e DP
is a popular choice for this prior, due to its simplicity,
wide coverage of the class of all distributions, and recent
advances in computationally e�cient inference in DP
models. �e approach is usually to use the given para-
metricmodel as the base distribution of theDP, with the
DP serving as a nonparametric relaxation around this
parametric model. If the parametric model performs
as well or better than the DP relaxed model, we have
convincing evidence of the validity of the model.
Another application of DPs is in 7density estima-

tion (Escobar & West, ; Lo, ; Neal, ; Ras-
mussen, ). Here we are interested in modeling the
density fromwhich a given set of observations is drawn.
To avoid limiting ourselves to any parametric class, we
may again use a nonparametric prior over all densities.

Here again DPs are a popular. However note that distri-
butions drawn from a DP are discrete, thus do not have
densities. �e solution is to smooth out draws from the
DP with a kernel. Let G ∼ DP (α,H) and let f (x∣θ) be
a family of densities (kernels) indexed by θ. We use the
following as our nonparametric density of x:

p(x) = ∫ f (x∣θ)G(θ)dθ ()

Similarly, smoothing out DPs in this way is also useful
in the nonparametric relaxation setting above. Aswe see
below, this way of smoothing out DPs is equivalent to
DPmixturemodels, if the data distributions F(θ) below
are smooth with densities given by f (x∣θ).
Dirichlet Process Mixture Models

�e most common application of the Dirichlet process
is in clustering data using mixture models (Escobar &
West, ; Lo, ; Neal, ; Rasmussen, ).
Here the nonparametric nature of the Dirichlet pro-
cess translates to mixture models with a countably
in�nite number of components. We model a set of
observations {x, . . . , xn} using a set of latent parame-
ters {θ, . . . , θn}. Each θ i is drawn independently and
identically from G, while each xi has distribution F(θ i)
parametrized by θ i:

xi∣θ i ∼ F(θ i)
θ i∣G ∼ G

G∣α,H ∼ DP (α,H) ()

BecauseG is discrete, multiple θ i’s can take on the same
value simultaneously, and the above model can be seen
as a mixture model, where xi’s with the same value of
θ i belong to the same cluster. �e mixture perspective
can be made more in agreement with the usual repre-
sentation of mixture models using the stick-breaking
construction (). Let zi be a cluster assignment vari-
able, which takes on value k with probability πk. �en
() can be equivalently expressed as

π∣α ∼ GEM (α) θ∗k ∣H ∼ H
zi∣π ∼ Mult (π) xi∣zi,{θ∗k} ∼ F (θ∗zi) ()

with G = ∑∞k= πkδθ∗k and θ i = θ∗zi . In mixture model-
ing terminology, π is the mixing proportion, θ∗k are the
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cluster parameters, F (θ∗k ) is the distribution over data
in cluster k, and H the prior over cluster parameters.

�eDPmixturemodel is an in�nitemixturemodel –
a mixture model with a countably in�nite number of
clusters. However, because the πk’s decrease exponen-
tially quickly, only a small number of clusters will be
used to model the data a priori (in fact, as we saw previ-
ously, the expected number of components used a priori
is logarithmic in the number of observations). �is is
di�erent than a �nite mixture model, which uses a �xed
number of clusters tomodel the data. In the DPmixture
model, the actual number of clusters used tomodel data
is not �xed, and can be automatically inferred from data
using the usual Bayesian posterior inference framework
(seeNeal () for a survey ofMCMC inference proce-
dures forDPmixturemodels).�e equivalent operation
for �nite mixture models would be model averaging or
model selection for the appropriate number of com-
ponents, an approach that is fraught with di�culties.
�us in�nitemixturemodels as exempli�ed byDPmix-
ture models provide a compelling alternative to the
traditional �nite mixture model paradigm.

Generalizations and Extensions
�e DP is the canonical distribution over probability
measures and a wide range of generalizations have been
proposed in the literature. First and foremost is the
Pitman–Yor process (Ishwaran & James, ; Pitman
& Yor, ), which has recently seen successful appli-
cations modeling data exhibiting power-law properties
(Goldwater, Gri�ths, & Johnson, ; Teh, ).�e
Pitman–Yor process includes a third parameter d ∈[, ), with d=  reducing to the DP. �e various rep-
resentations of the DP, including the Chinese restau-
rant process and the stick-breaking construction, have
analogues for the Pitman–Yor process. Other gener-
alizations of the DP are obtained by generalizing one
of its representations. �ese include Pólya trees, nor-
malized random measure, Poisson–Kingman models,
species sampling models and stick-breaking priors.

�e DP has also been used in more complex models
involving more than one random probability measure.
For example, in nonparametric regression we might
have one probability measure for each value of a covari-
ate, and in multitask settings each task might be asso-
ciated with a probability measure with dependence

across tasks implemented using a hierarchical Bayesian
model. In the �rst situation, the class of models is typ-
ically called dependent Dirichlet processes (MacEach-
ern, ), while in the second the appropriate model
is a hierarchical Dirichlet process (Teh, Jordan, Beal, &
Blei, ).

Future Directions
�e Dirichlet process, and Bayesian nonparametrics
in general, is an active area of research within both
machine learning and statistics. Current research trends
span a number of directions. Firstly, there is the issue
of e�cient inference in DP models. Reference Neal
() is an excellent survey of the state-of-the-art in
, with all algorithms based on Gibbs sampling
or small-step Metropolis–Hastings MCMC sampling.
Since then there has been much work, including split-
and-merge and large-step auxiliary variable MCMC
sampling, sequential Monte Carlo, expectation prop-
agation, and variational methods. Secondly, there has
been interest in extending the DP, both in terms of
new random distributions, as well as novel classes of
nonparametric objects inspired by the DP. �irdly, the-
oretical issues of convergence and consistency are being
explored to provide frequentist guarantees for Bayesian
nonparametricmodels. Finally, there are applications of
such models, to clustering, transfer learning, relational
learning, models of cognition, sequence learning, and
regression and classi�cation among others. We believe
DPs and Bayesian nonparametrics will prove to be rich
and fertile grounds for research for years to come.

Cross References
7Bayesian Methods
7Bayesian Nonparametrics
7Clustering
7Density Estimation
7Gaussian Process
7Prior Probabilities

Further Reading
In addition to the references embedded in the text
above, we recommend the book (Hjort, Holmes,Müller,
& Walker, ) on Bayesian nonparametrics.
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Discrete Attribute

A discrete attribute assumes values that can be
counted. �e attribute cannot assume all values on the
number line within its value range. See 7Attribute and
7Measurement Scales.

Discretization

Ying Yang
Australian Taxation O�ce, Australia

Synonyms
Binning

Definition
Discretization is a process that transforms a 7numeric
attribute into a7categorical attribute. Under discretiza-
tion, a new categorical attribute X′ is formed from and
replaces an existing numeric attribute X. Each value x′

of X′ corresponds to an interval (a,b] of X. Any original
numeric value x of X that belongs to (a,b] is replaced by
x′. �e boundary values of formed intervals are o�en
called “cut points.”

Motivation and Background
Many learning systems require categorical data, while
many data are numeric. Discretization allows numeric
data to be transformed into categorical form suited
to processing by such systems. Further, in some cases
e�ective discretization can improve either computa-
tional or prediction performance relative to learning
from the original numeric data.

Taxonomy

�e following taxonomy identi�es many key dimen-
sions along which alternative discretization techniques
can be distinguished.

7Supervised vs. 7Unsupervised (Dougherty, Kohavi,
& Sahami, ). Supervised methods use the class
information of the training instances to select dis-
cretization cut points. Methods that do not use the class
information are unsupervised.
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Global vs. Local (Dougherty et al., ). Global meth-
ods discretize with respect to the whole training data
space. �ey perform discretization only once, using a
single set of intervals throughout a single classi�cation
task. Local methods allow di�erent sets of intervals to
be formed for a single attribute, each set being applied
in a di�erent classi�cation context. For example, di�er-
ent discretizations of a single attribute might be applied
at di�erent nodes of a decision tree (Quinlan, ).

Eager vs. Lazy (Hsu, Huang, & Wong, ). Eager
methods perform discretization prior to classi�cation
time. Lazy methods perform discretization during the
process of classi�cation.

Disjoint vs. Nondisjoint (Yang & Webb, ). Dis-
joint methods discretize the value range of a numeric
attribute into disjoint intervals. No intervals overlap.
Nondisjoint methods discretize the value range into
intervals that can overlap.

Parameterized vs. Unparameterized. Parameterized
discretization requires input from the user, such as the
maximum number of discretized intervals. Unparame-
terized discretization uses information only from data
and does not need input from the user, for instance, the
entropy minimization discretization (Fayyad & Irani,
).

Univariate vs.Multivariate (Bay, ). Methods that
discretize each attribute in isolation are univariate.
Methods that take into consideration relationships
among attributes during discretization are multivariate.

Split vs.Merge (Kerber, ) vs. Single-scan (Yang &
Webb, ). Split discretization initially has the whole
value range as an interval and then continues split-
ting it into subintervals until some threshold is met.
Merge discretization initially puts each value into an
interval and then continues merging adjacent intervals
until some threshold is met. Single-scan discretization
uses neither split nor merge process. Instead, it scans
the ordered values only once, sequentially forming the
intervals.

Recommended Reading
Bay, S. D. (). Multivariate discretization of continuous vari-
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Kononenko, I. (). Naive Bayesian classifier and continuous
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Quinlan, J. R. (). C.: Programs for machine learning. San
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Discriminative Learning

Definition
Discriminative learning refers to any 7classi�cation
learning process that classi�es by using a 7model or
estimate of the probability P(y ∣ x) without reference
to an explicit estimate of any of P(x), P(y, x), or P(x∣ y), where y is a class and x is a description of an
object to be classi�ed. Discriminative learning con-
trasts to 7generative learning which classi�es by using
an estimate of the joint probability P(y, x) or of the
prior probability P(y) and the conditional probability
P(x ∣ y).
It is also common to categorize as discriminative

any approaches that are directly based on a decision
risk function (such as 7Support Vector Machines,
7Arti�cial Neural Networks, and 7Decision Trees),
where the decision risk is minimized without estima-
tion of P(x), P(y, x), or P(x ∣ y).
Cross References
7Generative and Discriminative Learning
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Disjunctive Normal Form

Bernhard Pfahringer
University of Waikato, Hamilton, New Zealand

Disjunctive normal form is an important normal form
for propositional logic. A logic formula is in disjunctive
normal form if it is a single disjunction of conjunctions
of (possibly negated) literals. No more nesting and no
other negations are allowed. Examples are:

a¬b
a ∨ b(a ∧ ¬b) ∨ (c ∧ d)¬a ∨ (b ∧ ¬c ∧ d) ∨ (a ∧ ¬d)
Any arbitrary formula in propositional logic can be

transformed into disjunctive normal form by applica-
tion of the laws of distribution, De Morgan’s laws, and
by removing double negations. It is important to note
that this process can lead to exponentially larger for-
mulas which implies that the process in the worst case
runs in exponential time. An example for this behavior
is the following formula given in 7conjunctive normal
form (CNF), which is linear in the number of propo-
sitional variables in this form. When transformed into
disjunctive normal form (DNF), its size is exponentially
larger.

CNF: (a ∨ a) ∧ (a ∨ a) ∧ ⋅ ⋅ ⋅ ∧ (an ∨ an+)
DNF: (a ∧ a ∧ ⋅ ⋅ ⋅ ∧ an) ∨ (a ∧ a ∧ ⋅ ⋅ ⋅ ∧ an)∨ ⋅ ⋅ ⋅ ∨ (a ∧ a ∧ ⋅ ⋅ ⋅ ∧ an+)

Recommended Reading
Mendelson, E. (). Introduction to mathematical logic (th ed.)

(p.). Chapma & Hall.

Distance

7Similarity Measures

Distance Functions

7Similarity Measures

Distance Measures

7Similarity Measures

Distance Metrics

7Similarity Measures

Distribution-Free Learning

7PAC Learning

Divide-and-Conquer Learning

Synonyms
Recursive partitioning; TDIDT strategy

Definition
�e divide-and-conquer strategy is a learning algorithm
for inducing 7Decision Trees. Its name re�ects its key
idea, which is to successively partition the dataset into
smaller sets (the divide part), and recursively call itself
on each subset (the conquer part). It should not be con-
fused with the separate-and-conquer strategy which is
used in the7Covering Algorithm for rule learning.

Cross References
7Covering Algorithm
7Decision Tree

Document Classification

Dunja Mladeni, Janez Brank, Marko Grobelnik
Jožef Stefan Institute, Ljubljana, Slovenia

Synonyms
Document categorization; Supervised learning on text
data

Definition
Document classi�cation refers to a process of assigning
one or more7labels for a document from a prede�ned
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set of labels. �e main issues in document classi�cation
are connected to classi�cation of free text giving docu-
ment content. For instance, classifying Web documents
as being about arts, education, science, etc. or classifying
news articles by their topic. In general, one can con-
sider di�erent properties of a document in document
classi�cation and combine them, such as document
type, authors, links to other documents, content, etc.
Machine learning methods applied to document clas-
si�cation are based on general classi�cation methods
adjusted to handle some speci�cs of text data.

Motivation and Background
Documents and text data provide for valuable sources
of information and their growing availability in elec-
tronic form naturally led to application of di�erent
analytic methods. One of the common ways is to take
a whole vocabulary of the natural language in which
the text is written as a feature set, resulting in several
tens of thousands of features. In a simple setting, each
feature gives a count of the word occurrences in a doc-
ument. In this way, text of a document is represented
as a vector of numbers. �e representation of a par-
ticular document contains many zeros, as most of the
words from the vocabulary do not occur in a partic-
ular document. In addition to the already mentioned
two common speci�cs of text data, having a large num-
ber of features and a sparse data representation, it was
observed that frequency of words in text generally fol-
lows Zipf ’s law – a small subset of words occur very
frequently in texts while a large number of words occur
only rarely. Document classi�cation takes these and
some other data speci�cs into account when developing
the appropriate classi�cation methods.

Structure of Learning System
Document classi�cation is usually performed by repre-
senting documents as word-vectors, usually referred to
as the “bag-of-words” or “vector spacemodel” represen-
tation, and using documents that have been manually
classi�ed to generate a model for document classi�-
cation (Cohen & Singer, , Mladenić & Grobelnik,
; Sebastiani, ; Yang, ).

Data Representation

In the word-vector representation of a document, a
vector of word weights is formed taking all the words

occurring in all the documents. Most researchers have
used single words when representing text, but there is
also research that proposes using additional information
to improve classi�cation results. For instance, the
feature set might be extended with various multi-
word features, e.g., n-grams (sequences of n adjacent
words), loose phrases (n-grams in which word order
is ignored), or phrases based on grammatical analysis
(noun phrases, verb phrases, etc.). Information exter-
nal to the documentsmight also be used if it is available;
for example, when dealing with Web pages, their graph
organization can be a source of additional features (e.g.,
features corresponding to the adjacency matrix; fea-
tures based on graph vertex statistics such as degree or
PageRank; or features taken from the documents that
are adjacent to the current document in theWeb graph).

�e commonly used approach to weighting words
is based on TF–IDF weights where the number of
occurrences of the word in the document, referred to
as term frequency (TF), is multiplied by the importance
of the word with regards to the whole corpus (IDF –
inverse document frequency). �e IDF weight for the
ith word is de�ned as IDFi= log(N/DFi), where N is
total number of documents and DFi is the document
frequency of the ith word (the number of documents
from the whole corpus in which the ith word appears).
�e IDF weight decreases the in�uence of common
words (which are not as likely to be useful for dis-
criminating between classes of documents) and favors
the less common words. However, the least frequently
occurring words are o�en deleted from the documents
as a preprocessing step, based on the notion that if a
word that does not occur o�en enough in the train-
ing set cannot be useful for learning and generaliza-
tion, and would e�ectively be perceived as noise by the
learning algorithm. A stopword list is also o�en used
to delete some of the most common and low-content
words (such as “the,” “of,” “in,” etc.) during preprocess-
ing. For many purposes, the vectors used to represent
documents should be normalized to unit length so that
the vector re�ects the contents and themes of the docu-
ment but not its length (which is typically not relevant
for the purposes of document categorization).
Even in a corpus of just a few thousand docu-

ments, this approach to document representation can
easily lead to a feature space of thousands, possibly tens
of thousands, of features. �erefore, feature selection
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is sometimes used to reduce the feature set before
training. Such questions as whether feature selection is
needed and/or bene�cial, and which feature selection
method should be used, depend considerably on the
learning algorithm used; the number of features to be
retained depends both on the learning algorithm and on
the feature selection method used. For example, naive
Bayes tends to bene�t, indeed require, heavy feature
selection while support vector machines (SVMs) tend
to bene�t little or nothing from it. Similarly, odds ratio
tends to value (some) rare features highly and therefore
requires a lot of features to be kept, while information
gain tends to score some of the more frequent features
highly and thus o�en works better if a smaller number
of features is kept (see also 7Feature Selection in Text
Mining).
Due to the large number of features in the original

data representation, some of the more computationally
expensive feature selection methods from traditional
machine learning cannot be usedwith textual data. Typ-
ically, simple feature scoringmeasures, such as informa-
tion gain, odds ratio, and chi-squared are used to rank
the features and the features whose score falls below
a certain threshold are discarded. A better, but com-
putationally more expensive feature scoring method is
to train a linear classi�er on the full feature set �rst
(e.g., using linear SVM, see below) and rank the features
by the absolute value of their weights in the resulting
linear model (see also 7Feature Construction in Text
Mining).

Classification

Di�erent classi�cation algorithms have been adjusted
and applied on text data. A few more popular are
described here.

7Naive Bayes based on the multinomial model,
where the predicted class for document d is the one
that maximizes the posterior probability P(c ∣d) ∝
P(c)ΠtP(t ∣ c) TF(t,d), where P(c) is the prior proba-
bility that a document belongs to class c, P(t ∣ c) is the
probability that a word chosen randomly in a docu-
ment from class c equals t, and TF(t, d) is the “term
frequency,” or the number of occurrences of word t in
a document d. Where there are only two classes, say c+
and c−, maximizing P(c ∣d) is equivalent to taking the
sign of ln P(c+ ∣d)/P(ct ∣d), which is a linear combina-
tion of TF(w, d). �us, the naive Bayes classi�er can be

seen as a linear classi�er as well. �e training consists
simply of estimating the probabilities P(t ∣ c) and P(c)
from the training documents.

7Perceptron trains a linear classi�er in an incre-
mental way as a neural unit using an additive update
rule. �e prediction for a document represented by
the vector x is sgn(wTx), where w is a vector of
weights obtained during training. Computation starts
with w = , then considers each training example xi in
turn. If the present w classi�es document xi correctly
it is le� unchanged, otherwise it is updated according
to the additive rule: w ← w + yixi, where yi is the cor-
rect class label of the document xi, namely yi = + for a
positive document, yi =  for a negative one.

7SVM trains a linear classi�er of the form sgn
(wTx + b). Learning is posed as an optimization prob-
lem with the goal of maximizing the margin, i.e., the
distance between the separating hyperplanewTx+b = 
and the nearest training vectors. An extension of this
formulation, known as the so� margin, also allows for
a wider margin at the cost of misclassifying some of
the training examples. �e dual form of this optimiza-
tion task is a quadratic programing problem and can be
solved numerically.
Results of numerous experiments reported in

research papers suggest that among the classi�cation
algorithms that have been adjusted to text data SVM,
Naive Bayes and k-Nearest Neighbor are among the
best performing (Lewis, Schapire, Callan, & Ron Papka,
). Moreover, experimental evaluation on some
standard Reuters news datasets shows that SVM tends
to outperform other classi�ers including Naive Bayes
and Perceptron (Mladenic, Brank, Grobelnik, & Milic-
Frayling, ).

Evaluation Measures

A characteristic property of machine learning problems
arising in document classi�cation is a very unbalanced
class distribution. In a typical dataset there may be tens
(or sometimes hundreds or thousands) of categories,
most of which are very small. When we train a binary
(two-class) classi�cation model for a particular cate-
gory, documents belonging to that category are treated
as the positive class while all other documents are
treated as the negative class. �us, the negative class is
typically vastly larger as the positive one.�ese circum-
stances are not well suited to some traditional machine
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learning evaluation measures, such as 7accuracy (if
almost all documents are negative, then a useless clas-
si�er that always predicts the negative class will have
very high accuracy). Instead, evaluation measures from
information retrieval are more commonly used, such
as 7precision, 7recall, the F-measure, the breakeven
point (BEP), and the area under the receiver operating
characteristic (ROC) curve (see also7ROC Analysis).

�e evaluation of a binary classi�er for a given cat-
egory c on a given test set can be conveniently summa-
rized in a contingency table. We can divide documents
into four groups depending on whether they belong to
c and whether our classi�er predicted them as positive
(i.e., supposedly belonging to c) or not:

Belongs to c Not in c

Predicted
negative

TP (true positives) FP (false positives)

Predicted
negative

FN (false negatives) TN (true negatives)

Given the number of documents in each of the four
groups (TP, FP, TN, and FN), we can compute various
evaluation measures as follows:

Precision = TP/(TP + FP)
Recall = TPrate = TP/(TP + FN)
FPrate = FP/(TN + FP)
F = •precision •recall/(precision + recall)

�us, precision is the proportion of documents pre-
dicted positive that are really positive, while recall is the
proportion of positive documents that have been cor-
rectly predicted as positive.�eF is the harmonicmean
of precision and recall; thus, it lies between precision
and recall, but is closer to the lower of these two values.
�is means that a classi�er with high F has both good
precision and good recall. In practice, there is usually
a tradeo� between precision and recall; by making the
classi�er more liberal (i.e., more likely to predict posi-
tive), we can increase recall at the expense of precision,
while by making it more conservative (less likely to pre-
dict positive) we can usually increase precision at the
expense of recall. O�en the classi�cationmodel involves
a threshold which can be varied at will to obtain various⟨precision, recall⟩ pairs. �ese can be plotted on a chart,

resulting in the precision–recall curve. As we decrease
the threshold (thus making the classi�er more liberal),
precision decreases and recall increases until at some
point precision and recall are equal; this value is known
as the (precision–recall) BEP (Lewis, ). Instead of⟨precision, recall⟩ pairs, one canmeasure ⟨TPrate, FPrate⟩
pairs, resulting in a ROC curve (see ROC analysis). �e
area under the ROC curve is another valuable measure
of the classi�er quality.
Document classi�cation problems are typically

multi-class, multi-label problems, which are treated by
regarding each category as a separate two-class clas-
si�cation problem. A�er training a two-class classi�er
for each category and evaluating it, the question arises
how to combine these evaluation measures into an
overall evaluation measure. One way is macroaverag-
ing, which means that the values of precision, recall,
F, or whatever other measure we are interested in are
simply averaged over all the categories. Since small cate-
gories tend to be muchmore numerous than large ones,
macroaveraging tends to emphasize the performance of
our learning algorithm on small categories. An alter-
native approach is microaveraging, in which the con-
tingency tables for individual two-class classi�ers are
summed up and measures such as precision, recall, and
F computed from the resulting aggregated table. �is
approach emphasizes the performance of our learning
algorithm on larger categories.
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Document Clustering

Ying Zhao, George Karypis
Tsinghua University, Beijing, China
University of Minnesota, Minneapolis, USA

Synonyms
High-dimensional clustering; Text clustering; Unsuper-
vised learning on document datasets

Definition
At a high-level, the problem of document clustering
is de�ned as follows. Given a set S of n documents,
we would like to partition them into a predetermined
number of k subsets S, S, . . . , Sk, such that the doc-
uments assigned to each subset are more similar to
each other than the documents assigned to di�erent
subsets. Document clustering is an essential part of
text mining and has many applications in information
retrieval and knowledge management. Document clus-
tering faces twobig challenges: the dimensionality of the
feature space tends to be high (i.e., a document collec-
tion o�en consists of thousands or tens of thousands
unique words) and the size of a document collection
tends to be large.

Motivation and Background
7Clustering is an essential component of data mining
and a fundamental means of knowledge discovery in

data exploration. Fast and high-quality document clus-
tering algorithms play an important role in providing
intuitive navigation and browsing mechanisms as well
as in facilitating knowledge management. In recent
years, we have witnessed a tremendous growth in
the volume of text documents available on the Inter-
net, digital libraries, news sources, and company-wide
intranets. �is has led to an increased interest in devel-
oping methods that can help users e�ectively navi-
gate, summarize, and organize this information with
the ultimate goal of helping them �nd what they are
looking for. Fast and high-quality document cluster-
ing algorithms play an important role toward this goal
as they have been shown to provide both an intuitive
navigation/browsing mechanism by organizing large
amounts of information into a small number of mean-
ingful clusters as well as to greatly improve the retrieval
performance either via cluster-driven dimensionality
reduction, term-weighting, or query expansion.

Structure of Learning System
Figure  shows the three procedures of transferring
a document collection to clustering results that are
valuable to users. Original documents are o�en plain
text �les, html �les, xml �les, or a mixture of them.
However, most clustering algorithms cannot operate

Text
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Document
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Clustering Results and
Evaluation 

......
Partitional
Clustering 

Aggemorative
Clustering 

Model-based
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Document Clustering. Figure . Structure of document

clustering learning system
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on such textual �les directly. Hence, document rep-
resentation is needed to prepare original documents
into the data model on which clustering algorithms
can operate. �e actual clustering process can choose
clustering algorithms of various kinds: partitional clus-
tering, agglomerative clustering, model-based cluster-
ing, etc., depending on the characteristics of the dataset
and requirements of the application. We focus on two
kinds of clustering algorithms that have been widely
used in document clustering: partitional clustering and
agglomerative clustering. Finally, clustering results need
to be presented with proper quality evaluation to users.

Structure of Document Clustering
In the section, we describe document representation,
partitional document clustering, agglomerative docu-
ment clustering, and clustering evaluation in details.

Document Representation

We introduce here the most widely used document
model for clustering and information retrieval: term
frequency-inverse document frequency (tf-idf) vector-
space model (Salton, ). In this model, each docu-
ment d is considered to be a vector in the term-space
and is represented by the vector

dtfidf = (tf log(n/df), tf log(n/df), . . . ,× tfm log(n/dfm)),
where tfi is the frequency of the ith term (i.e., term fre-
quency), n is the total number of documents, and dfi
is the number of documents that contain the ith term
(i.e., document frequency). To account for documents
of di�erent lengths, the length of each document vector
is normalized so that it is of unit length.

Similarity Measures

We need to de�ne similarity between two documents
under tf-idf model, which is essential to a clustering
algorithm. Two prominent ways have been proposed to
compute the similarity between two documents di and
dj. �e �rst method is based on the commonly-used
(Salton, ) cosine function

cos(di,dj) = dtidj/(∥di∥ ∥dj∥),
and since the document vectors are of unit length, it
simpli�es to dtidj. �e second method computes the

similarity between the documents using the Euclidean
distance dis(di,dj) = ∥di − dj∥. Note that besides the
fact that onemeasures similarity and the othermeasures
distance, these measures are quite similar to each other
because the document vectors are of unit length.

Partitional Document Clustering

Partitional algorithms, such as K-means (MacQueen,
), K-medoids (Jain & Dubes, ), probabilistic
(Dempster, Laird, & Rubin, ), graph-partitioning-
based (Zahn, ), or spectral-based (Boley, ), �nd
the clusters by partitioning the entire dataset into either
a predetermined or an automatically derived number of
clusters. A key characteristic of many partitional clus-
tering algorithms is that they use a global criterion
function whose optimization drives the entire cluster-
ing process. For some of these algorithms the criterion
function is implicit (e.g., PDDP, Boley, ), whereas
for other algorithms (e.g., K-means, MacQueen, )
the criterion function is explicit and can be easily stated.
�is latter class of algorithms can be thought of as
consisting of two key components. First is the crite-
rion function that the clustering solution optimizes,
and second is the actual algorithm that achieves this
optimization.

Criterion Function Criterion functions used in the par-
titional clustering re�ect the underlying de�nition of
the “goodness” of clusters.�e partitional clustering can
be considered as an optimization procedure that tries
to create high quality clusters according to a particu-
lar criterion function. Many criterion functions have
been proposed and analyzed (Duda,Hart, & Stork, ;
Jain & Dubes, ; Zhao & Karypis, ). We list
in Table  a total of seven di�erent clustering criterion
functions. �ese functions optimize various aspects of
intra-cluster similarity, inter-cluster dissimilarity, and
their combinations, and represent some of the most
widely used criterion functions for document cluster-
ing. �ese criterion functions utilize di�erent views
of the underlying collection, by modeling either the
objects as vectors in a high-dimensional space, or the
collection as a graph.

�e I criterion function () maximizes the sum
of the average pairwise similarities (as measured by
the cosine function) between the documents assigned
to each cluster weighted according to the size of each
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Document Clustering. Table  The mathematical

definition of various clustering criterion functions

Criterion
function

Optimization function

I maximize
k

∑

i=


ni

⎛

⎝
∑

v,u∈Si

sim(v,u)
⎞

⎠

()

I
maximize

k

∑

i=

√

∑

v,u∈Si

sim(v,u) ()

E minimize
k

∑

i=

ni
∑v∈Si ,u∈S sim(v,u)
√

∑v,u∈Si sim(v,u)
()

G minimize
k

∑

i=

∑v∈Si ,u∈S sim(v,u)

∑v,u∈Si sim(v,u)
()

G minimize
k

∑

r=

cut(Vr ,V − Vr)
W(Vr)

()

H maximize
I

E
()

H maximize
I

E
()

The notation in these equations are as follows: k is the total number
of clusters, S is the total objects to be clustered, Si is the set of objects
assigned to the ith cluster, ni is the number of objects in the ith
cluster, v and u represent two objects, and sim(v, u) is the similarity
between two objects

cluster. �e I criterion function () is used by the
popular vector-space variant of the K-means algorithm
(Cutting, Pedersen, Karger, & Tukey, ). In this algo-
rithm each cluster is represented by its centroid vector
and the goal is to �nd the solution that maximizes the
similarity between each document and the centroid of
the cluster that is assigned to. Comparing I and I, we
see that the essential di�erence between them is that I
scales the within-cluster similarity by the ∥Dr∥ term as
opposed to the nr term used by I. ∥Dr∥ is the square-
root of the pairwise similarity between all the document
in Sr and will tend to emphasize clusters whose docu-
ments have smaller pairwise similarities compared to
clusters with higher pairwise similarities.

�eE criterion function () computes the clustering
by �nding a solution that separates the documents of

each cluster from the entire collection. Speci�cally, it
tries to minimize the cosine between the centroid vec-
tor of each cluster and the centroid vector of the entire
collection. �e contribution of each cluster is weighted
proportionally to its size so that larger clusters will be
weighted higher in the overall clustering solution. E
was motivated by multiple discriminant analysis and is
similar to minimizing the trace of the between-cluster
scatter matrix (Duda et al., ).

�e H and H criterion functions () and () are
obtained by combining criterion I with E, and I withE, respectively. Since E is minimized, bothH andH
need to bemaximized as they are inversely related to E.

�e criterion functions that we described so far view
each document as a multidimensional vector. An alter-
nate way of modeling the relations between documents
is to use graphs. Two types of graphs are commonly
used in the context of clustering. �e �rst corresponds
to the document-to-document similarity graph Gs and
the second to the document-to-term bipartite graphGb
(Dhillon, ; Zha, He, Ding, Simon, & Gu, ). Gs
is obtained by treating the pairwise similarity matrix of
the dataset as the adjacency matrix of Gs, whereas Gb is
obtained by viewing the documents and the terms as the
two sets of vertices (Vd and Vt) of a bipartite graph. In
this bipartite graph, if the ith document contains the jth
term, then there is an edge connecting the correspond-
ing ith vertex of Vd to the jth vertex of Vt . �e weights
of these edges are set using the tf-idfmodel.
Viewing the documents in this fashion, edge-cut-

based criterion functions can be used to cluster doc-
ument datasets. G and G (() and ()) are two such
criterion functions that are de�ned on the similarity and
bipartite graphs, respectively. �e G function (Ding,
He, Zha, Gu, & Simon, ) views the clustering pro-
cess as that of partitioning the documents into groups
that minimize the edge-cut of each partition. How-
ever, because this edge-cut-based criterion function
may have trivial solutions the edge-cut of each cluster is
scaled by the sum of the cluster’s internal edges (Ding et
al., ). Note that, cut(Sr, S−Sr) in () is the edge-cut
between the vertices in Sr and the rest of the vertices S−
Sr and can be re-written asDtr(D −Dr) because the sim-
ilarity between documents is measured using the cosine
function. �e G criterion function (Dhillon, ; Zha
et al., ) views the clustering problem as a simultane-
ous partitioning of the documents and the terms so that
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it minimizes the normalized edge-cut of the partition-
ing. Note that, Vr is the set of vertices assigned to the
rth cluster andW(Vr) is the sum of the weights of the
adjacency lists of the vertices assigned to the rth cluster.

Optimization Method �ere are many techniques that
can be used to optimize the criterion functions
described above. �ey include relatively simple greedy
schemes, iterative schemes with varying degree of hill-
climbing capabilities, and powerful but computation-
ally expensive spectral-based optimizers (Boley, ;
Dhillon, ; Fisher, ; MacQueen, ; Zha et
al., ). We introduce here a simple yet very pow-
erful greedy strategy that has been shown to produce
comparable results to those produced bymore sophisti-
cated optimization algorithms. In this greedy straggly, a
k-way clustering of a set of documents can be computed
either directly or via a sequence of repeated bisections.
A direct k-way clustering is computed as follows. Ini-
tially, a set of k objects is selected from the datasets to
act as the seeds of the k clusters.�en, for each object, its
similarity to these k seeds is computed, and it is assigned
to the cluster corresponding to its most similar seed.
�is forms the initial k-way clustering. �is clustering
is then repeatedly re�ned so that it optimizes a desired
clustering criterion function. A k-way partitioning via
repeated bisections is obtained by recursively applying
the above algorithm to compute -way clustering (i.e.,
bisections). Initially, the objects are partitioned into two
clusters, then one of these clusters is selected and is fur-
ther bisected, and so on. �is process continues k − 
times, leading to k clusters. Each of these bisections
is performed so that the resulting two-way clustering
solution optimizes a particular criterion function.

Agglomerative Document Clustering

Hierarchical agglomerative algorithms �nd the clusters
by initially assigning each object to its own cluster and
then repeatedly merging pairs of clusters until a certain
stopping criterion is met. Consider an n-object dataset
and the clustering solution that has been computed a�er
performing l merging steps. �is solution will contain
exactly n − l clusters as each merging step reduces the
number of clusters by one. Now, given this (n − l)-way
clustering solution, the pair of clusters that is selected
to be merged next is the one that leads to an (n− l − )-
way solution that optimizes a particular criterion func-
tion. �at is, each one of the (n − l) × (n − l − )/

pairs of possible merges is evaluated, and the one that
leads to a clustering solution that has the maximum
(or minimum) value of the particular criterion func-
tion is selected. �us, the criterion function is locally
optimized within each particular stage of agglomera-
tive algorithms. Depending on the desired solution, this
process continues until either there are only k clus-
ters le� or when the entire agglomerative tree has been
obtained.

�e three basic criteria to determine which pair of
clusters to be merged next are single-link (Sneath &
Sokal, ), complete-link (King, ), and group
average (i.e., unweighed pair group method with arith-
meticmean, UPGMA) (Jain&Dubes, ).�e single-
link criterion function measures the similarity of two
clusters by the maximum similarity between any pair
of objects from each cluster, whereas the complete-
link uses the minimum similarity. In general, both the
single- and the complete-link approaches do not work
very well because they either base their decisions to a
limited amount of information (single-link), or assume
that all the objects in the cluster are very similar to each
other (complete-link). On the other hand, the group
average approachmeasures the similarity of two clusters
by the average of the pairwise similarity of the objects
from each cluster and does not su�er from the problems
arising with single- and complete-link.

Evaluation of Document Clustering

Clustering results are hard to be evaluated, especially
for high dimensional data and without a priori knowl-
edge of the objects’ distribution, which is quite com-
mon in practical cases. However, assessing the quality
of the resulting clusters is as important as generating
the clusters. Given the same dataset, di�erent clustering
algorithmswith various parameters or initial conditions
will give very di�erent clusters. It is essential to know
whether the resulting clusters are valid and how to com-
pare the quality of the clustering results, so that the
right clustering algorithm can be chosen and the best
clustering results can be used for further analysis.
In general, there are two types of metrics for

assessing clustering results: metrics that only utilize
the information provided to the clustering algorithms
(i.e., internal metrics) and metrics that utilize a pri-
ori knowledge of the classi�cation information of the
dataset (i.e., external metrics).
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�e basic idea behind internal quality measures is
rooted from the de�nition of clusters. A meaningful
clustering solution should group objects into various
clusters, so that the objects within each cluster are more
similar to each other than the objects from di�erent
clusters. �erefore, most of the internal quality mea-
sures evaluate the clustering solution by looking at how
similar the objects are within each cluster and how well
the objects of di�erent clusters are separated. In partic-
ular, the internal similarity measure, ISim, is de�ned as
the average similarity between the objects of each clus-
ter, and the external similaritymeasure, ESim, is de�ned
as the average similarity of the objects of each cluster
and the rest of the objects in the data set. �e ratio
between the internal and external similarity measure is
also a good indicator of the quality of the resultant clus-
ters.�e higher the ratio values, the better the clustering
solution is. One of the limitations of the internal qual-
ity measures is that they o�en use the same information
both in discovering and in evaluating the clusters.

�e approaches based on external quality measures
require a priori knowledge of the natural clusters that
exist in the dataset, and validate a clustering result by
measuring the agreement between the discovered clus-
ters and the known information. For instance, when
clustering document datasets, the known categorization
of the documents can be treated as the natural clusters,
and the resulting clustering solution will be considered
correct if it leads to clusters that preserve this catego-
rization. A key aspect of the external qualitymeasures is
that they utilize information other than that used by the
clustering algorithms. �e entropy measure is one such
metric that looks how the various classes of documents
are distributed within each cluster.
Given a particular cluster, Sr, of size nr, the entropy

of this cluster is de�ned to be

E(Sr) = − 
log q

q∑
i=

nir
nr
log
nir
nr
, ()

where q is the number of classes in the data set, and nir
is the number of documents of the ith class that were
assigned to the rth cluster. �e entropy of the entire
clustering solution is then de�ned to be the sum of the
individual cluster entropies weighted according to the
cluster size. �at is,

Entropy = k∑
r=

nr
n
E(Sr). ()

A perfect clustering solution will be the one that leads
to clusters that contain documents from only a single
class, in which case the entropy will be zero. In general,
the smaller the entropy values, the better the clustering
solution is.

Programs and Data
An illustrative example of a so�ware package for clus-
tering low- and high-dimensional datasets and for
analyzing the characteristics of the various clusters is
Cluto(Karypis, ). Cluto has implementations of
the various clustering algorithms and evaluation met-
rics described in previous sections. It was designed
by the University of Minnesota’s data mining’s group
and is available at www.cs.umn.edu/~karypis/cluto.
Cluto has been developed as a general purpose
clustering toolkit. Cluto’s distribution consists of
both stand-alone programs (vcluster and scluster)
for clustering and analyzing these clusters, as well
as a library through which an application program
can access directly the various clustering and anal-
ysis algorithms implemented in Cluto. Utility tools
for preprocessing documents into vector matrices and
some sample document datasets are also available at
www.cs.umn.edu/~karypis/cluto.
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Dynamic Memory Model
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Synonyms
Dynamic memory model; Memory organization
packets

Definition
Schank’s dynamic memory model (Schank, ) was
designed to capture knowledge of speci�c experiences.
Schank’s memory organization packets (MOPs) and
Kolodner’s E-MOPs (episodic MOPS) (Kolodner, )
provide templates about typical scenes. For a restaurant
scene these might identify “being seated,” “ordering,”
and “paying.”
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and learning in computers and people. New York: Cambridge
University Press.

Dynamic Programming

Martin L. Puterman, Jonathan Patrick
University of British Columbia, Vancouver, Canada
University of Ottawa, Ottawa, Canada

Definition
Dynamic programming is a method for modeling a
sequential decision process in which past decisions
impact future possibilities. Decisions can be made at
�xed discrete time intervals or at random time intervals
triggered by some change in the system. �e decision
process can last for a �nite period of time or run indef-
initely – depending on the application. Each time a
decision needs to bemade, the decision-maker (referred

http://www.cs.umn.edu/~cluto
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to as “he” in this chapter with no sexist connotation
intended) views the current 7state of the system and
chooses from a known set of possible 7actions. As a
result of the state of the system and the action cho-
sen, the decision-maker receives a 7reward (or pays
a 7cost) and the system evolves to a new state based
on known probabilities. �e challenge faced by the
decision-maker is to choose a sequence of actions that
will lead to the greatest reward over the length of the
decision-making horizon. To do this, he needs to con-
sider not only the current reward (or cost) for taking a
given action but the impact such an action might have
on future rewards. A 7policy is a complete sequence
of decisions that dictates what action to take in any
given state and at any given time. Dynamic program-
ming �nds the optimal policy by developing mathe-
matical recursions that decompose the multi-decision
problem into a series of single-decision problems that
are analytically or computationally more tractable.

Background and Motivation
�e earliest concepts that later developed into dynamic
programming can be traced back to the calculus of vari-
ations problems in the seventeenth century. However,
the modern investigation of stochastic sequential deci-
sion problems arguably dates back to work by Wald
in  on sequential statistical analysis. At much the
same time, Pierre Masse was analyzing similar prob-
lems applied to water resource management in France.
However, themajor name associated with dynamic pro-
gramming is that of Richard Bellman who established
the optimality equations that form the basis of dynamic
programming.
It is not hard to demonstrate the potential scope

of dynamic programming. Table  gives a sense of
the breadth of application as well as highlighting the
stochastic nature of most instances.

Structure of the Learning System
A dynamic program is a general representation of a
sequential decision problem under uncertainty about
the future and is one of the main methods for solv-
ingMarkov Decision Problems (see7Markov Decision
Process). Like a decision tree, it models a process where
the decision we make “today” impacts where we end up
tomorrow and therefore what decisions are available to

us tomorrow. It has distinct advantages over a decision
tree in that:

● It is a more compact representation of a decision
process

● It enables e�cient calculation
● It allows exploration of the structural properties of
optimal decisions

● It can analyze and solve problems with in�nite or
inde�nite time horizons

The Finite Horizon Setting
A �nite horizon MDP, is a decision process with a
known end date.�us, the decision-maker is faced with
the task of making a �nite sequence of decisions at �xed
intervals. �e MDP model is based on �ve elements:
7Decision epochs: Sequences of decision times
n = , . . . ,N (in the in�nite horizon we set N = ∞). In a
discrete time MDP, these decision times happen at reg-
ular, �xed intervals while in a continuous time model
they occur at random times triggered by a change in
the system. �e time between decision epochs is called
a period.
7State space: States represent the possible system con-
�gurations facing the decision-maker at each decision
epoch. �ey contain all information available to the
decision-maker at each decision epoch.�e state space,
S, is the set of all such states (o�en assumed to be �nite).
In choosing the state space, it is important to include all
the information that may be relevant in determining a
decision and that may change from decision epoch to
decision epoch.
7Actions: Actions are the available choices for the
decision-maker at any given decision epoch, in any
given state.A(s) is the set of all actions available in state
s (usually assumed to be �nite for all s). No action is
taken in the �nal decision epoch N.
7Transition probabilities: �e probability of being in
state s′ at time t+, given you take action a from state s at
time t, is written as pt(s′∣s, a). It clearly makes sense to
allow the transition probabilities to be conditional upon
the current state and the action taken.
7Rewards/costs: In most MDP applications, the deci-
sion-maker receives a reward each period. �is reward
can depend on the current state, the action taken, and
the next state and is denoted by rt(s, a, s′). Since a deci-
sionmust be made before knowing the next state, s′, the
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Dynamic Programming. Table  Dynamic programming applications

Application System state Actions Rewards Stochastic aspect

Capacity Size of plant Maintain or add
capacity

Costs of expansion
and production at
current capacity

Demand for a product

Cash mgt Cash available Borrow or invest Transaction costs and
less interest

External demand for
cash

Catalog mailing Customer purchase
record

Type of catalog to
send, if any

Purchases in current
period less mailing
costs

Customer purchase
amount

Clinical trials Number of successes
with each treatment

Stop or continue the
trial

Costs of treatment
and incorrect
decisions

Response of a subject
to treatment

Economic
growth

State of the economy Investment or
consumption

Utility of consumption Effect of investment

Fisheries mgt Fish stock in each age
class

Number of fish to to
harvest

Value of the catch Population size

Forest mgt Size and condition of
stand

Harvesting and
reforestation activities

Revenues and less
harvesting costs

Stand growth and
price fluctuation

Gambling Current wealth Stop or continue
playing

Cost of playing Outcome of the game

Inventory
control

Stock on hand Order additional stock Revenue per item sold
and less ordering,
holding, and penalty
costs

Demand for items

Project
selection

Status of each project Project to invest in at
present

Return from investing
in project

Change in project
status

Queueing con-
trol

Number in the queue Accept/reject new
customers or control
service rate

Revenue from serving
customers and less
delay costs

Interarrival times and
service times

Reliability Age or status of
equipment

Inspect and repair or
replace if necessary

Inspection, repair, and
failure costs

Failure and
deterioration

Reservations Number of confirmed
reservations

Accept, wait-list, or
reject new reservation

Profit from satisfied
reservations and less
overbooking
penalties

Number of arrivals
and the demand for
reservations

Scheduling Activities completed Next activity to
schedule

Cost of activity Length of time to
complete activity

Selling an asset Current offer Accept or reject the
offer

The offer is less than
the cost of holding the
asset for one period

Size of the offer

Water resource
management

Level of water in each
reservoir

Quantity of water to
release

Value of power
generated

Rainfall and run-off
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MDP formulation deals with the expected reward:

rt(s, a) = ∑
s′∈S
rt(s, a, s′)pt(s′∣s, a).

We also de�ne the terminal rewards as rN(s) for being in
state s at the �nal decision epoch.�ese are independent
of the action since no action is taken at that point.

�e objective in the �nite horizon model is to max-
imize total expected reward:

max{E[ N∑
t=
rt(st , at , st+) + rN(sN)∣s = s]}. ()

At any given time t, the decision-maker has
observed the history up to time t, represented by
ht = (s, a, s, a, . . . , at−, st), and needs to choose at in
such a way as to maximize (). A 7decision rule, dt ,
determines what action to take, based on the history
to date at a given decision epoch and for any possible
state. It is 7deterministic if it selects a single member
of A(s) with probability  for each s ∈ S and for a given
ht , and it is7randomized (7randomized decision rule)
if it selects a member of A(s) at random with prob-
ability qdt(ht)(a). It is Markovian (7Markovian deci-
sion rule) if it depends on ht only through st . �at is,
dt(ht) = dt(st).
A 7policy, π = (d, . . . ,dN−), denotes a complete

sequence of decision rules over the whole horizon. It
can be viewed as a “contingency plan” that determines
the action for each possible state at each decision epoch.
One of the major results in MDP theory is that, under
reasonable conditions, it is possible to prove that there
exists a Markovian, deterministic policy that attains the
maximum total expected reward.�us, for the purposes
of this chapter we will concentrate on this subset of all
policies.
If we de�ne, vt(s) as the expected total reward from

time t to the end of the planning horizon, given that
at time t the system occupies state s, then a recursion
formula can be built that represents vt in terms of vt+.
Speci�cally,

vt(s) = max
a∈A(s)

{rt(s, a) + ∑
s′∈S
p(s′∣s, a)vt+(s′)} ()

�is is o�en referred to as the 7Bellman equation,
named a�er Richard Bellman who was responsible for

the seminal work in this area. It breaks the total reward
at time t, into the immediate reward rt(s, a) and the total
future expected reward, ∑s′∈S p(s′∣s, a)vt+(s′). De�ne
A∗s,t as the set of actions that attain the maximum in ()
for a given state s and decision epoch t. �en the �nite
horizon discrete time MDP can be solved through the
following backward induction algorithm.

Backward Induction Algorithm

● Set t = N and vt(s) = rN(s) ∀s ∈ S (since there is
no decision at epoch N and no future epochs, it fol-
lows that the optimal reward-to-go function is just
the terminal reward).

● Let t = t −  and compute for each s ∈ St
vt(s) = max

a∈A(s)
{rt(s, a) + ∑

s′∈S
p(s′∣s, a)vt+(s′)} .

● For each s ∈ St , compute A∗s,t by solving
argmaxa∈A(s) {rt(s, a) + ∑

s′∈S
p(s′∣s, a)vt+(s′)} .

● If t =  then stop else return to step .
�e function v(s) is themaximum expected reward

over the entire planning horizon given the system starts
in state s. �e optimal policy is constructed by choos-
ing a member of A∗s,t for each s ∈ S and t ∈ {, . . . ,N}.
In essence, the algorithm solves a complex N-period
decision problem by solvingN simple -period decision
problems.
Example – inventory control: Periodically (daily,

weekly, or monthly), an inventory manager must deter-
mine howmuch of a product to stock in order to satisfy
random external demand for the product. If too lit-
tle is in stock, potential sales are lost. Conversely, if
too much is on hand, a cost for carrying inventory is
incurred. �e objective is to choose an ordering rule
that maximizes expected total pro�t (sales minus hold-
ing and ordering costs) over the planning horizon. To
formulate anMDPmodel of this system requires precise
assumptions such as:

● �edecision regarding the quantity to order is made
at the beginning of each period and delivery occurs
instantaneously.
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● Demand for the product arrives throughout the
period, but all orders are �lled on the last day of the
period.

● If demand exceeds the stock on hand, potential sales
are lost.

● �e revenues, costs and demand distribution are the
same each period.

● �e product can only be sold in whole units.
● �e warehouse has a capacity forM units.

(�ese assumptions are not strictly necessary but
removing them leads to a di�erent formulation.) Deci-
sions epochs correspond to the start of a period.
�e state, st ∈ {, . . . ,M}, represents the inventory on
hand at the start of period t and the action, at ∈{, , , . . . ,M − s}, is the number of units to order
that period; the action  corresponds to not placing an
order. LetDt represent the random demand throughout
period t and assume that the distribution of demand is
given by pt(d) = P(Dt = d),d = , , , . . . . �e cost
of ordering u units is O(u) = K + c(u) (a �xed cost
plus variable cost) and the cost of storing u units is h(u),
where c(u) and h(u) are increasing functions in u. We
will assume that le�-over inventory at the end of the
planning horizon has value g(u) and that the sale of u
units yields a revenue of f (u). �us, if there are u units
on hand at decision epoch t, the expected revenue is

Ft(u) = u−∑
j=
f (j)pt(j) + f (u)P(Dt ≥ u).

�e expected reward is therefore

rt(s, a) = F(s + a) −O(a) − h(s + a)
and the terminal rewards are rN(s, a) = g(s). Finally, the
transition probabilities depend on whether or not there
is enough stock on hand, s + a, to meet the demand for
that month, Dt . Speci�cally,

pt(j∣s, a) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

 if j > s + a,

pt(j) if j = s + a −Dt , s + a ≤M,

s + a > Dt ,

∑
∞

d=s+a pt(d) if j = , s + a ≤M, s + a ≤ Dt .

Solving the �nite horizon version of this problem
through backward induction reveals a simple form to

the optimal policy referred to as an (s, S) policy. Specif-
ically, if at time t, the inventory is below some number
st then it is optimal to order a quantity that raises the
inventory level to St . It has been shown that a struc-
tured policy of this type is optimal for several variants
of the inventory management problem with a �xed
ordering cost. Many variants of this problem have been
studied; these models underly the �eld of supply chain
management.

The Infinite Horizon Setting
In the in�nite (or inde�nite) horizon setting, the back-
ward induction algorithm described above no longer
su�ces as there are no terminal rewards with which to
begin the process.
In most �nite horizon problems, the optimal policy

begins to look the same at each decision epoch as the
horizon is pushed further and further into the future.
For instance, in the inventory example above, st = st+
and St = St+ if t is su�ciently removed from the end
of the horizon. �e form of the optimal policy only
changes as the end of the time horizon approaches.
�us, if there is no �xed time horizon, we should expect
the optimal policy to be stationary inmost cases.We call
a policy stationary if the same decision rule is applied
at each decision epoch (i.e., dt =d∀ t). One necessary
assumption for this to be true is that the rewards and
transition probabilities are independent of time (i.e.,
rt(s, a)= r(s, a) and pt(s′∣s, a)= p(s′∣s, a)∀ s,′ s ∈ S and
a ∈ A(s)). For the in�nite horizon MDP, the theory
again proves that under mild assumptions there exists
an optimal policy that is stationary, deterministic, and
Markovian. �is fact greatly simpli�es the process of
�nding the optimal policy as we can concentrate on a
small subset of all potential policies.

�e set up for the in�nite horizon MDP is entirely
analogous to the �nite horizon setting with the same
7decision epochs, 7states, 7actions, 7rewards, and
7transition probabilities (with the last two assumed to
be independent of time).

�e most obvious objective is to extend the �nite
horizon objective to in�nity and seek to �nd the policy,
π, that maximizes the total expected reward:

vπ(s) = lim
N→∞

{Eπ
s [ N∑

t=
r(st , at)]} . ()
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�is, however, is problematic since

. �e sum may be in�nite for some or all policies
. �e sum may not even exist, or
. Even if the sum exists, there may be no maximizing
policy

In the �rst case, just because all (or a subset of all) poli-
cies lead to in�nite reward in the long run does not
mean that they are all equally bene�cial. For instance,
one may give a reward of $ each epoch and the
other $ per epoch. Alternatively, one may give large
rewards earlier on while another gives large rewards
only much later. Generally speaking, the �rst is more
appealing but the above objective function will not dif-
ferentiate between them. Secondly, the limit may not
exist if, for instance, the reward each decision epoch
oscillates between  and −. �irdly, there may be no
maximizing policy simply because there is an in�nite
number of policies and thus there may be an in�nite
sequence of policies that converges to a maximum limit
but never reaches it. �us, instead we look to maxi-
mize either the total expected discounted reward or the
expected long run average reward depending on the
application.
Let λ ∈ (, ) be a discount factor. Assuming the

rewards are bounded (i.e., there exists an M such that∣r(s, a)∣ < M ∀(s, a) ∈ S × A(s)), the total expected
discounted reward for a given policy π is de�ned as

vπ
λ(s) = limN→∞Eπ

s { N∑
t=

λt−r(st ,dt(st))}
= Eπ

s {∞∑
t=

λt−r(st ,dt(st))} .
Since, λ <  and the rewards are bounded, this

limit always exists. �e second objective is the expected
average reward which, for a given policy π, is de�ned as

gπ(s) = lim
N→∞


N
Eπ
s { N∑

t=
r(st ,dt(st))}.

Once again, we are dealing with a limit that may or may
not exist. As we will see later, whether the above limit
exists depends on the structure of the Markov chain
induced by the policy.

Let us, at this point, formalize what we mean by
an optimal policy. Clearly, that will depend on which
objective function we choose to use. We say that

● π∗ is total reward optimal if vπ∗(s) ≥ vπ(s) ∀s ∈ S
and ∀π.

● π∗ is discount optimal if vπ∗
λ (s) ≥ vπ

λ(s) ∀s ∈ S
and ∀π.

● π∗ is average optimal if gπ∗(s) ≥ gπ(s)∀s ∈ S and∀π.

For simplicity, we introducematrix and vector notation.
Let rd(s) = r(s,d(s)) and pd(j∣s) = p(j∣s,d(s)). �us rd
is the vector of rewards for each state under decision
rule d, and Pd is the transition matrix of states under
decision rule d. We will now take a more in-depth look
at the in�nite horizon model with the total expected
discounted reward as the optimality criterion.

Solving the Infinite Horizon Discounted MDP

Given a Markovian, deterministic policy π = (d,d,
d, . . .) and de�ning πk = (dk,dk+, . . .) we can
compute

vπ
λ(s) = E

π
s [

∞

∑

t=
λt−r(st ,dt(st))]

= Eπ
s [r(s,d(s)) + λ

∞

∑

t=
λt−r(st ,dt(st))]

= r(s,d(s)) + λ∑
j∈S
pd(j∣s)E

π
j [

∞

∑

t=
λt−r(st ,dt(st))]

= r(s,d(s)) + λ∑
j∈S
pd(j∣s)v

π
λ (j).

In matrix notation,

vπ
λ = rd + λPdv

π
λ .

If we follow our supposition that we need to only con-
sider stationary policies (so that the same decision rule
is applied to every decision epoch), π =d∞ = (d,d, . . .),
then this results in

vd
∞

λ = rd + λPdvd
∞

λ .

�is implies that the value function generated by a
stationary policy satis�es the equation:

v = rd + λPdv⇒ v = (I − λPd)−rd.
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�e inverse above always exists since Pd is a probability
matrix (so that its spectral radius is less than or equal
to ) and λ ∈ (, ). Moving to the maximization prob-
lem of �nding the optimal policy, we get the recursion
formula

v(s) = max
a∈A(s)

{r(s, a) + λ∑
j∈S
p(s∣s, a)v(j)}. ()

Note that the right hand side can be viewed as a function
of a vector v (given r, p, λ). We de�ne a vector-valued
function

Lv = max
d∈DMD

{rd + λPdv},
where DMD is the set of all Markovian, 7deterministic
decision rules. �ere are three methods for solving the
above optimization problem in order to determine the
optimal policy. �e �rst method, called value iteration,
creates a sequence of approximations to the value func-
tion that eventually converges to the value function
associated with the optimal policy.

Value Iteration

. Start with an arbitrary ∣S∣-vector v. Let n =  and
choose є >  to be small.

. For every s ∈ S, compute vn+(s) as
vn+(s) = max

a∈A(s)
{r(s, a) +∑

j∈S
λp(j∣s, a)vn(j)}.

. If maxs∈S ∣vn+(s)−vn(s)∣ ≥ є( − λ)/λ let n→ n+
and return to step .

. For each s ∈ S, choose
dє(s) ∈ argmaxa∈A(s){r(s, a)+∑

j∈S
λp(j∣s, a)vn+(j)}.

It has been shown that value iteration identi�es a policy
with expected total discounted reward within є of opti-
mality in a �nite number of iterations. Many variants
of value iteration are available such as using di�erent
stopping criteria to accelerate convergence or combin-
ing value iteration with the policy iteration algorithm
described below.
A second algorithm, called policy iteration, iterates

through a sequence of policies eventually converging to
the optimal policy.

Policy Iteration

. Set d ∈ D to be an arbitrary policy. Let n = .
. (Policy evaluation) Obtain vn by solving

vn = (I − λPdn)−rdn .
. (Policy improvement) Choose dn+ to satisfy

dn+ ∈ argmaxd∈D{rd + λPdvn}
componentwise. If dn is in this set, then choose
dn+ = dn.

. If dn+ = dn, set d∗ = dn and stop. Otherwise, let
n→ n +  and return to ().
Note that value iteration and policy iteration have

di�erent conceptual underpinnings. Value iteration
seeks a �xed point of the operator L using successive
approximations while policy iteration can be viewed as
using Newton’s Method to solve Lv − v = .
Finally, a third method for solving the discounted

in�nite horizon MDP takes advantage of the fact that,
because L is monotone, if Lv ≤ v then Lv ≤ Lv and
more generally, Lkv ≤ v. �us, induction implies that
the value function of the optimal policy, v∗λ is less than
or equal to v for any v, where Lv ≤ v. We de�ne the set
U := {v ∈ V ∣Lv ≤ v}. �en, not only is v∗λ in the set U,
it is also the smallest element of U. �erefore, we can
solve for v∗λ by solving the following linear program:

min
v
∑
s∈S

α(s)v(s)
subject to

v(s) ≥ r(s, a) + λ∑
j∈S
p(j∣s, a)v(j) ∀s ∈ S, a ∈ As.

(Note that the above set of constraints is equivalent to
Lv ≤ v.) We call this the primal LP. �e coe�cients
α(s) are arbitrarily chosen. �e surprising fact is that
the solution to the above LP will be v∗λ for any strictly
positive α.
We can construct the dual to the above primal to get

max
X
∑
s∈S
∑
a∈As
r(s, a)X(s, a)
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subject to

∑
a∈Aj
X(j, a) −∑

s∈S
∑
a∈As

λp(j∣s, a)X(s, a) = α(j) ∀j ∈ S
X(s, a) ≥  ∀s ∈ S, a ∈ As.

Let (X(s, a) : s ∈ S, a ∈ As) be a feasible solu-
tion for the dual (i.e., satis�es the constraints but not
necessarily optimal). Every such feasible solution cor-
responds to a randomized Markov policy d∞ and vice
versa. Furthermore, for a given feasible solution, X,
and the corresponding policy d∞,X(s, a) represents the
expected total number of times you will be in state s and
take action a following policy d∞ before stopping in the
inde�nite horizon problem. �us, the objective in the
dual can be interpreted as the total expected reward over
the length of the inde�nite horizon. �e strong law of
duality states that at the optimal solution the objective
functions in the primal and dual will be equal. But we
already know that at the optimal, the primal objective
will correspond to a weighted sum of v∗λ(s), s ∈ S, which
is the total expected discounted reward over the in�nite
(or inde�nite) horizon given you start in state s. �us
our interpretations for the primal and dual variables
coincide.

Solving the Infinite Horizon Average Reward MDP

Recall that in the average reward model, the objective
is to �nd the policy that has the maximum average
reward, o�en called the gain. �e gain of a policy can
be written as

gπ(s) = lim
n→∞


N
vπ
N+ = limn→∞ 

N

N∑
n=

[Pn−π rds](s). ()

As mentioned earlier, the major drawback is that for
a given policy π, the gainmay not even exist. An impor-
tant result, however, states that if we con�ne ourselves
to stationary policies, we can in fact be assured that the
gain is well de�ned. Our ability to solve a given in�-
nite horizon average reward problem depends on the
form of the Markov chains induced by the determin-
istic, stationary policies available in the problem. �us,
we divide the set of average reward MDPs according to
the structure of the underlying Markov chains. We say
that an MDP is

● Unichain if the transition matrix corresponding to
every deterministic stationary policy is unichain,
that is, it consists of a single recurrent class plus a
possibly empty set of transient states, or

● Multichain if the transition matrix corresponding to
at least one stationary policy contains two or more
closed irreducible recurrent classes

If an MDP is unichain, then the gain for any given
stationary, deterministic policy can be de�ned by a sin-
gle number (independent of starting state). �is makes
intuitive sense since if we assume that it is possible to
visit every state from every other one (possibly minus
some set of transient states that may be visited ini-
tially but will eventually be abandoned) then it would
seem reasonable to assume that over the in�nite horizon
the initial starting state would not impact the average
reward. However, if the initial state impacts what set of
states can be visited in the future (i.e., the MDP is mul-
tichain) then clearly it is likely that the expected average
reward will be dependent on the initial state.
If the average rewardMDP is unichain then the gain

can be uniquely determined by solving

v(s) = max
a∈A(s)

{r(s, a) − g + ∑
s′∈S
p(s′∣s, a)v(s′)}. ()

Notice that the above equation has ∣S∣ +  unknowns but
only ∣S∣ equations. �us, v is not uniquely determined.
To specify v uniquely, it is su�cient to set v(s′) =  for
some s′ ∈ S. If this is done, then v(s) is called the rela-
tive value function and v(j) − v(k) is the di�erence in
expected total reward obtained in using an optimal pol-
icy and starting in state j as opposed to state k. It is also
o�en represented by the letter h and called the bias.
As in the discounted in�nite horizonMDP, there are

three potential methods for solving the average reward
case. We present only policy iteration here and refer the
reader to the recommended readings for value iteration
and linear programming.

Policy Iteration

. Set n = , and choose an arbitrary decision dn.
. (Policy evaluation) Solve for gn, vn:

 = rdn − ge + (Pdn − I)v.
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. Choose dn+ to satisfy

dn+ ∈ argmaxd∈D{rd + Pdvn}.
Setting dn+ = dn if possible.

. If dn+ = dn, stop, set d∗ = dn. Else, increment n by
 and return to step .

As mentioned earlier, the equation in step  fails to
provide a unique vn since we have ∣S∣ +  unknowns
and only ∣S∣ equations. We therefore need an addi-
tional equation. Any one of the following three will
su�ce:

. Set vn(s) =  for some �xed s ∈ S.
. Choose vn to satisfy P∗dnvn = .
. Choose vn to satisfy −vn + (Pd − I)w =  for some
w ∈ V .

Continuous Time Models
So far, we have assumed that decision epochs occur at
regular intervals but clearly in many applications this
is not the case. Consider, for instance, a queueing con-
trol model where the service rate can be adjusted in
response to the size of the queue. It is reasonable to
assume, however, that changing the service rate is only
possible following the completion of a service. �us, if
the service time is random then the decision epochs will
occur at random time intervals. We will therefore turn
our attention now to systems in which the state changes
and decision epochs occur at random times. At themost
general level, decisions can bemade at any point in time
but we will focus on the subset of models for which
decision epochs only occur at state transitions. It turns
out that this is usually su�cient as the added bene-
�t of being able to change decisions apart from state
changes does not generally improve performance.�us,
the models we study generalize the discrete time MDP
models by:

. Allowing, or requiring, the decision-maker to
choose actions whenever the system changes state

. Modeling the evolution of the system in continuous
time, and

. Allowing the time spent in a particular state to
follow an arbitrary probability distribution

Semi-Markov decision processes (SMDP) are continuous
time models where decisions are made at some but
not necessarily all state transitions. �e most com-
mon subset of these, called exponential SMDPs, are
SMDPs where the intertransition times are exponen-
tially distributed.
We distinguish between two processes:

. �e natural process that monitors the state of the
system as if it were observed continually through
time and

. �e embeddedMarkov chain thatmonitors the evo-
lution of the system at the decision epochs only

For instance, in a queueing control model one may
decide only to change the rate of service every time there
is an arrival. �en the embedded Markov chain would
only keep track of the system at each arrival while the
natural process would keep track of all state changes –
including both arrivals and departures.
While the actions are generally only going to depend

on the state of the system at each decision epoch, it
is possible that the rewards/costs to the system may
depend on the natural process. Certainly, in the queue-
ing control model the cost to the systemwould go down
as soon as a departure occurs. In discrete models it
was su�cient to let the reward depend on the current
state s and the current action a and possibly the next
state s′. However, in an SMDP, the natural process may
change between now and the next decision epoch and
moreover, the time the process stays in a given state is
no longer �xed. �us we need to consider two types
of rewards/costs. First, a lump sum reward, k(s, a), for
taking action a when in state s. Second, a reward rate,
c(j, s, a), paid out for each time unit that the natural
process spends in state j until the next decision epoch
when the state at the last decision epoch was s and the
action taken was a. Note that if we insist that every state
transition triggers a decision epoch, we can reduce this
to c(s, a) since the system remains in s until the next
decision epoch.
Before we can state our objective we need to deter-

mine what we mean by discounting. Again, because
we are dealing with continuous time so that decision
epochs are not evenly spaced, it is not su�cient to have a
�xed discount factor λ. Instead, we will discount future
rewards at rate e−αt , for some α > . If we let λ = e−α
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(the discount rate for one time unit) then α = . cor-
responds to λ = .. �us an α around . is commonly
used.
We can now state our objective. We look to �nd

a policy that maximizes the total expected discounted
reward over the in�nite horizon. �ere is an average
reward model for continuous time models as well but
we will not discuss that here. Given a policy π we can
write its total expected discounted reward as:

vπ
α(s) = Eπ

s [ ∞∑
n=
e−ασn(K(Xn,Yn)

+ ∫ σn+

σn
e−α(t−σn)c(Wt ,Xn,Yn)dt)], ()

where Xn and Yn are the random variables that repre-
sent the state and action at time n respectively,Wt is the
random variable that represents the state of the natu-
ral process at time t, and σn is the random time of the
nth decision epoch. Again, if we assume that each state
transition triggers a decision epoch, Xn = Wt for all
t ∈ [σn, σn+). We seek to �nd a policy π such that

vπ
α(s) = v∗α(s) = max

π∈ΠHR
vπ

α(s) ()

for all s ∈ S. Perhaps surprisingly, () can be reduced
to one that has the same form as in the discrete time
case for any SMDP. As a consequence, all the theory and
the algorithms that worked in the discrete version can
be transferred to the continuous model! Again, we refer
the reader to the recommended readings for the details.

Extensions
7Partially Observed MDPs

In some instances, the state of the system may not
be directly observable but instead, the decision-maker
receives a signal from the system that provides infor-
mation about the state. For example, in medical deci-
sion making, the health care provider will not know
the patient’s true health status but will have on hand
some diagnostic information that may be related to the
patient’s true health. �ese problems are modeled from
aBayesian perspective.�edecision-maker uses the sig-
nal to update his estimate of the probability distribution
of the system state. He then bases his decision on this
probability distribution. �e computational methods
for solving partially observed MDPs are signi�cantly

more complex than in the fully observable case and only
small problems have been solved numerically.

Parameter-Adaptive Dynamic Programming

O�en the transition probabilities in anMDP are derived
from a system model, which is determined by a few
parameters. Examples include demand distributions in
inventory control and arrival and/or service distribu-
tions in queueing systems. In these cases the forms of
the distributions are known (for example, Poisson for
demand models and exponential for arrival or service
models) but their parameter values are not. Herein, the
decision-maker seeks a policy that combines learning
with control. A Bayesian approach is used. �e param-
eter is related to the system state through a likelihood
function and a�er observing the system state, the prob-
ability distribution on the parameter is updated. �is
updated probability distribution provides the basis for
choosing a policy.

Approximate Dynamic Programming

Arguably the greatest challenge to implementing MDP
theory in practice is “the curse of dimensionality.”
As the complexity of a problem grows, the amount
of information that needs to be stored in the state
space quickly reaches a point where the MDP is no
longer computationally tractable. �ere now exist sev-
eral methods for dealing with this problem, all of which
are grouped under the title of approximate dynamic
programming or neuro-dynamic programming. �ese
potential methods begin by restricting the value func-
tion to a certain class of functions and then seeking
to �nd the optimal value function within this class. A
typical approximation scheme is based on the linear
architecture:

v∗(s) ≈ ṽ(s, r) = k∑
i=
riϕi(s),

where ϕi(s), i = , . . . , k are pre-de�ned basis func-
tions that attempt to characterize the state space and
r is a set of weights applied to the basis functions.
�is reduces the problem from one with ∣S∣-dimensions
to one with ∣k∣-dimensions. �e questions are () how
do you determine what class of functions (determined
by ϕ) to choose and () how to �nd the best approx-
imate value function within the chosen class (i.e., the
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best values for r)? �e �rst question is still very much
wide open.
Answers to the second question fall into two main

camps. On the one hand, there are a number of meth-
ods that seek to iteratively improve the approximation
through the simulation of sample paths of the decision
process. �e second method uses linear programming
but restricts the value function to the approximate form.
�is reduces the number of variables in the primal to
a reasonable number (equal to the number of basis
functions chosen). One can then determine the opti-
mal set of weights, r, through column generation. One
of the major challenges facing approximate dynamic
programming is that it is di�cult to determine how
close the approximate value function is to its true value.
In other words, how much more reward might have
been accumulated had the original MDP been solved
directly? �ough there are some attempts in the liter-
ature to answer this question, it remains a signi�cant
challenge.

Cross References
7Markov Decision Processes
7Partially Observable Markov Decision Processes

Recommended Reading
Bertsekas, D. (). Dynamic programming and optimal control.

Belmont: Athena Scientific.
Bertsekas, D., & Tsitsiklis, J. (). Neuro-dynamic programming.

Belmont: Athena Scientific.
Feinberg, E., & Shwartz, A. (). Handbook of Markov decision

processes. Boston, MA: Kluwer Academic Publishers.
Puterman, M. (). Markov decision processes. New York: Wiley.
Sutton, R., & Barto, A. (). Reinforcement learning. Cambridge,

MA: MIT Press.

Dynamic Programming For
Relational Domains

7Symbolic Dynamic Programming

Dynamic Systems

�e dynamic systems approach emphasizes the human,
and animal, interaction with the environment. Inter-
actions are described by partial di�erential equa-
tions. Attractors and limit cycles represent stable states
which may be analogous to attribute-values.
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