" EBL

»Explanation-Based Learning

|
Echo State Network

»Reservoir Computing

" Ecoc

»Error Correcting Output Codes

! Edge Prediction

» Link Prediction

" Efficient Exploration in
Reinforcement Learning

JoHN LANGFORD

Synonyms
PAC-MDP learning

Definition

An agent acting in a world makes observations, takes
actions, and receives rewards for the actions taken.
Given a history of such interactions, the agent must
make the next choice of action so as to maximize
the long-term sum of rewards. To do this well, an
agent may take suboptimal actions which allow it to
gather the information necessary to later take optimal
or near-optimal actions with respect to maximizing the
long-term sum of rewards. These information gathering
actions are generally considered exploration actions.

Motivation

Since gathering information about the world generally
involves taking suboptimal actions compared with a
later learned policy, minimizing the number of infor-
mation gathering actions helps optimize the standard
goal in reinforcement learning. In addition, under-
standing exploration well is key to understanding rein-
forcement learning well, since exploration is a key
aspect of reinforcement learning which is missing from
standard supervised learning settings (Fig. 1).

Efficient Exploration in Markov Decision
Processes

One simplification of reinforcement learning is the
»Markov decision process setting. In this setting, an
agent repeatedly takes an action g, resulting in a tran-
sition to a state according to a conditional probability
transition matrix P(s'[s,a), and a (possibly probabilis-
tic) reward R(s',a,s) € [0,1]. The goal is to efficiently
output a policy 7 which is e-optimal over T timesteps.
The value of policy 7 in a start state s is defined as

T
11(”’5) = E(a,s,r)T~(n,P,R)T Z Tt
=1

which should be read as the expectation over T-length
sequences drawn from the interaction of the policy 7
with the world as represented by P and R. An e-optimal
policy 7 therefore satisfies:

max (7', s) - n(m,s) <e.
T[’

There are several notable results in this setting, typically
expressed in terms of the dependence on the number
of actions A, and the number of states S. The first is
for the $-greedy strategy commonly applied when using
»Q-learning (Watkins & Dayan, 1992) which explores
randomly with probability S.

Claude Sammut & Geoffrey I. Webb (eds.), Encyclopedia of Machine Learning, DOI10.1007/978-0-387-30164-8,

© Springer Science+Business Media LLC 2011



310

Efficient Exploration in Reinforcement Learning

A Key Lock Structure MDP

Zarl,

()
NN

@

Efficient Exploration in Reinforcement Learning. Figure 1.
An example of a keylock MDP. The state are arranged in
a chain. In each state, one of the two actions leads to the
next state while the other leads back to the beginning.
The only reward is in the transition to the last state in
the chain. Keylock MDPs defeat simple greedy strategies,
because the probability of randomly reaching the last
transition is exponentially small in the length of the
chain

Theorem 1 There exists MDPs such that with probabil-
ity at least 1/2, f-greedy requires ®(AS) explorations to

find an e-optimal policy.

This is essentially a negative result, saying that a
greedy exploration strategy cannot quickly discover a
good policy in some settings. The proof uses an MDP
with a key-lock like structure where for each state
all actions but one take the agent back to the begin-
ning state, and the reward is at the end of a chain of
states.

It turns out that there exists algorithms capa-
ble of finding a near-optimal policy in an MDP
with only a polynomial number of exploratory tran-
sitions.

Theorem 2  For all MDPs, for any § > 0, with probabil-
ity 1 - 6, the algorithm Explicit-Explore-or-Exploit finds
an e-optimal policy after O(S*A) explorations.

In other words, E° (Kearns & Singh, 1998) requires
exploration steps at most proportional to the size of
the probability table driving the dynamics of the agent’s
world. The algorithm works in precisely the manner
which might be expected: it builds a model of the world

based on its observations and solves the model to deter-
mine whether to explore or exploit. The basic approach
was generalized to stochastic games and reformulated
as an “optimistic initialization” style algorithm named
R-MAX (Brafman & Tennenholtz, 2002).

It turns out that an even better dependence is possi-
ble using the delayed Q-learning (Strehl, Li, Wiewiora,
Langford, & Littman, 2006) algorithm.

Theorem 3  For all MDPs, for any § > 0, with prob-
ability 1 — 6, the algorithm delayed Q-learning finds an
e-optimal policy after O(SA) explorations.

The delayed Q-learning algorithm requires explo-
rations proportional to the size of the solution pol-
icy rather than proportional to the size of world
dynamics. At a high level, delayed Q-learning oper-
ates by keeping values for exploration and exploita-
tion of observed state-actions, uses these values to
decide between exploration and exploitation, and care-
fully updates these values. Delayed Q-learning does not
obsolete E°, because the (nonvisible) dependence on e
and T are worse (Strehl, 2007).

This is a best possible result in terms of the depen-
dence on § and A (up to log factors), as the following
theorem (Kakade, 2003) states:

Theorem 4 For all algorithms, there exists an MDP
such that with Q(SA) explorations are required to find
an e optimal policy with probability at least 5.

Since even representing a policy requires a lookup
table of size SA, this algorithm-independent lower
bound is relatively unsurprising.

There are several minor variations in the setting and
goal definitions which do not qualitatively impact the
set of provable results. For example, if rewards are in a
bounded range, they can be offset and rescaled to the
interval [0,1].

It’s also common to use a soft horizon (or discount-
ing) where the policy evaluation is changed to:

77)/(7'[7 5) = E(u,s,r)mN(n,P,R)"" Z ytrf
t=1



Embodied Evolutionary Learning

31

for some value y < 1. This setting is not precisely
equivalent to the hard horizon, but since

Sumto:(ln(l/e)+ln(l/l—y))/l—yytrt <e

similar results are provable with 1/(1 - y) taking the role
of T and slightly altered algorithms.

One last variation changes the goal. Instead of out-
putting an e-optimal policy for the next T timesteps, we
could have an algorithm to handle both the exploration
and exploitation, then retrospectively go back over a
trace of experience and mark a subset of the actions
as “exploration actions,” with a guarantee that the
remainder of the actions are according to an e-optimal
policy (Kakade, 2003). Again, minor alterations to
known algorithms in the above setting appear to
work here.

There are several known analyzed variants of the basic
setting formed by making additional assumptions about
the world. This includes Factored MDPs (Kearns &
Koller, 1999), Metric MDPs (Kakade, Kearns, & Lang-
ford, 2003), Continuous MDPs (Brunskill, Leffler, Li,
Littman, & Roy, 2008), MDPs with a Bayesian prior
(Poupart, Vlassis, Hoey, & Regan, 2006), and appren-
ticeship learning where there is access to a teacher for an
MDP (Abbeel & Ng, 2005). The structure of these results
are all similar at a high level: with some additional
information, it is possible to greatly ease the difficulty
of exploration allowing tractable application to much
larger problems.

Cross References
»k Armed Bandit
» Reinforcement Learning

Recommended Reading

Abbeel, P., & Ng, A. (2005). Exploration and apprenticeship learning
in reinforcement learning. In ICML 2005, Bonn, Germany.
Brafman, R. I., & Tennenholtz, M. (2002). R-MAX - A general poly-

nomial time algorithm for near-optimal reinforcement learn-
ing. Journal of Machine Learning Research, 3, 213-231.
Brunskill, E., Leffler, B. R., Li, L., Littman, M. L., & Roy, N.
(2008). CORL: A continuous-state offset-dynamics reinforce-
ment learner. In UAI-08, Helsinki, Finland, July 2008.
Kakade, S. (2003). Thesis at Gatsby Computational Neuroscience
Unit.

Kakade, S., Kearns, M., & Langford, J. (2003). Exploration in metric
state spaces. In ICML 2003.

Kearns, M., & Koller, D. (1999). Efficient reinforcement learning in
factored MDPs. In Proceedings of the 16th international joint
conference on artificial intelligence (pp. 740-747). San Francisco:
Morgan Kaufmann.

Kearns, M., & Singh, S. (1998). Near-optimal reinforcement learning
in polynomial time. In ICML 1998 (pp. 260-268). San Francisco:
Morgan Kaufmann.

Poupart, P.,, Vlassis, N., Hoey, J., & Regan, K. (2006). An analytic
solution to discrete Bayesian reinforcement learning. In ICML
2006 (pp. 697-704). New York: ACM Press.

Strehl, A. (2007). Thesis at Rutgers University.

Strehl, A. L., Li, L., Wiewiora, E., Langford, J., & Littman, M. L.
(2006). PAC model-free reinforcement learning. In Proceedings
of the 23rd international conference on machine learning (ICML
2006) (pp. 881-888).

Watkins, C., & Dayan, P. (1992). Q-learning. Machine Learning
Journal, 8, 279-292.

" EFSC

»Evolutionary Feature Selection and Construction

|
Elman Network

»Simple Recurrent Network

! EM Algorithm

»Expectation-Maximization Algorithm

! EM Clustering

» Expectation Maximization Clustering

! Embodied Evolutionary Learning

» Evolutionary Robotics




312

Emerging Patterns

! Emerging Patterns

Definition

Emerging pattern mining is an area of »supervised
descriptive rule induction. Emerging patterns are
defined as itemsets whose support increases signifi-
cantly from one data set to another (Dong & Li, 1999).
Emerging patterns are said to capture emerging trends
in time-stamped databases, or to capture differentiating
characteristics between classes of data.

Recommended Reading

Dong, G., & Li, J. (1999). Efficient mining of emerging patterns: Dis-
covering trends and differences. In Proceedings of the 5th ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD-99) (pp. 43-52).

! Empirical Risk Minimization

XINHUA ZHANG

Australian National University
NICTA London Circuit
Canberra, Australia

Definition

The goal of learning is usually to find a model
which delivers good generalization performance over
an underlying distribution of the data. Consider an
input space X and output space ). Assume the pairs
(XxY) € Xx) are random variables whose (unknown)
joint distribution is Pxy. It is our goal to find a predictor
f:+ X = Y which minimizes the expected risk:

P(f(X) #Y) =Eqx,y)~py [6(f(X) # V)],

where 8(z) =1if z is true, and 0 otherwise.

However, in practice we only have n pairs of training
examples (X;, Y;) drawn identically and independently
from Pyy. Since Pyy is unknown, we often use the risk
on the training set (called empirical risk) as a surrogate
of the expected risk on the underlying distribution:

n

LY (/) % V)

i=1

Empirical risk minimization (ERM) refers to the idea
of choosing a function f by minimizing the empir-
ical risk. Although it is often effective and efficient,
ERM is subject to »overfitting, i.e., finding a model
which fits the training data well but predicts poorly
on unseen data. Therefore, »regularization is often
required.

More details about ERM can be found in Vapnik
(1998).

Recommended Reading
Vapnik, V. (1998). Statistical learning theory. New York: Wiley.

! Ensemble Learning

GAVIN BROWN
The University of Manchester
Manchester, UK

Synonyms
Committee machines; Multiple classifier systems

Definition

Ensemble learning refers to the procedures employed
to train multiple learning machines and combine
their outputs, treating them as a “‘committee” of deci-
sion makers. The principle is that the decision of
the committee, with individual predictions combined
appropriately, should have better overall »accuracy,
on average, than any individual committee mem-
ber. Numerous empirical and theoretical studies have
demonstrated that ensemble »models very often attain
higher accuracy than single models.

The members of the ensemble might be predict-
ing real-valued numbers, class labels, posterior prob-
abilities, rankings, clusterings, or any other quantity.
Therefore, their decisions can be combined by many
methods, including averaging, voting, and probabilistic
methods. The majority of ensemble learning methods
are generic, applicable across broad classes of model
types and learning tasks.



Ensemble Learning

313

Motivation and Background

If we could build the “perfect” machine learning device,
one which would give us the best possible answer
every time, there would be no need for ensemble learn-
ing methods - indeed, there would be no need for
this encyclopedia either. The underlying principle of
ensemble learning is a recognition that in real-world
situations, every model has limitations and will make
errors. Given that each model has these “limitations,”
the aim of ensemble learning is to manage their
strengths and weaknesses, leading to the best possi-
ble decision being taken overall. Several theoretical and
empirical results have shown that the accuracy of an
ensemble can significantly exceed that of a single model.

The principle of combining predictions has been
of interest to several fields over many years. Over 200
years ago, a controversial question had arisen, on how
best to estimate the mean of a probability distribution
given a small number of sample observations. Laplace
(1818) demonstrated that the sample mean was not
always optimal: under a simple condition, the sam-
ple median was a better combined predictor of the
population mean. The financial forecasting community
has analyzed model combination for several decades,
in the context of stock portfolios. The contribution of
the machine learning (ML) community emerged in the
1990s - automatic construction (from data) of both
the models and the method to combine them. While
the majority of the ML literature on this topic is from
1990 onward, the principle has been explored briefly
by several independent authors since the 1960s. See
Kuncheva (2004b) for historical accounts.

The study of ensemble methods, with model out-
puts considered for their abstract properties rather than
the specifics of the algorithm which produced them,
allows for a wide impact across many fields of study. If
we can understand precisely why, when, and how par-
ticular ensemble methods can be applied successfully,
we would have made progress toward a powerful new
tool for Machine Learning: the ability to automatically
exploit the strengths and weaknesses of different learning
systems.

Methods and Algorithms
An ensemble consists of a set of models and a method
to combine them. We begin this section by assuming

that we have a set of models, generated by any of the
learning algorithms in this encyclopedia; we explore
popular methods of combining their outputs, for clas-
sification and regression problems. Following this, we
review some of the most popular ensemble algorithms,
for learning a set of models given the knowledge that
they will be combined, including extensive pointers for
further reading. Finally, we take a theoretical perspective,
and review the concept of ensemble diversity, the funda-
mental property which governs how well an ensemble
can perform.

There exist numerous methods for model combination,
far too many to fully detail here. The linear combiner,
the product combiner, and the voting combiner are by
far the most commonly used in practice. Though a com-
biner could be specifically chosen to optimize perfor-
mance in a particular application, these three rules have
shown consistently good behavior across many prob-
lems, and are simple enough that they are amenable to
theoretical analysis.

The linear combiner is used for models that output
real-valued numbers, so is applicable for »regression
ensembles, or for »classification ensembles producing
class probability estimates. Here, notation for the latter
case is only shown. We have a model f;(y|x), an estimate
of the probability of class y given input x. For a set of
these, t = {1,..., T}, the ensemble probability estimate
is,

fOhx) = ; wifi (y[x). o))

If the weights w, = 1/T, V¢, this is a simple uniform aver-
aging of the probability estimates. The notation clearly
allows for the possibility of a nonuniformly weighted
average. If the classifiers have different accuracies on the
data, a nonuniform combination could in theory give
a lower error than a uniform combination. However,
in practice, the difficulty of estimating the w param-
eters without overfitting, and the relatively small gain
that is available (see Kuncheva, 2004b, p. 282), have
meant that in practice the uniformly weighted average
is by far the most commonly used. A notable exception,
to be discussed later in this article, is the mixture of
experts paradigm - in MoE, weights are nonuniform,



314

Ensemble Learning

but are learnt and dependent on the input value x. An
alternative combiner is the product rule:

7o) = 5 TTAGW™, @

where Z is a normalization factor to ensure f is a
valid distribution. Note that Z is not required to make
a valid decision, as the order of posterior estimates
remain unchanged before/after normalization. Under
the assumption that the class-conditional probability
estimates are independent, this is the theoretically opti-
mal combination strategy. However, this assumption is
highly unlikely to hold in practice, and again the weights
w are difficult to reliably determine. Interestingly, the
linear and product combiners are in fact special cases of
the generalized mean (Kuncheva, 2004b) allowing for a
continuum of possible combining strategies.

The linear and product combiners are applicable
when our models output real-valued numbers. When
the models instead output class labels, a majority (or
plurality) vote can be used. Here, each classifier votes
for a particular class, and the class with the most votes
is chosen as the ensemble output. For a two-class prob-
lem the models produce labels, h;(x) € {-1, +1}. In this
case, the ensemble output for the voting combiner can
be written as

T
H(x) = sign( > Wtht(X)). (3)
t=1
The weights w can be uniform for a simple majority
vote, or nonuniform for a weighted vote.

We have discussed only a small fraction of the possi-
ble combiner rules. Numerous other rules exist, includ-
ing methods for combining rankings of classes, and
unsupervised methods to combine clustering results.
For details of the wider literature, see Kuncheva (2004b)
or Polikar (2006).

If we had a committee of people taking decisions, it is
self-evident that we would not want them all to make
the same bad judgments at the same time. With a com-
mittee of learning models, the same intuition applies:
we will have no gain from combining a set of identi-
cal models. We wish the models to exhibit a certain
element of “diversity” in their group behavior, though
still retaining good performance individually.

We therefore make a distinction between two types
of ensemble learning algorithms, those which encour-
age diversity implicitly, and those which encourage it
explicitly. The vast majority of ensemble methods are
implicit, in that they provide different random sub-
sets of the training data to each learner. Diversity is
encouraged “implicitly” by random sampling of the
data space: at no point is a measurement taken to
ensure diversity will emerge. The random differences
between the datasets might be in the selection of exam-
ples (the »Bagging algorithm), the selection of features
(»Random Subspace Method, Ho, 1998 or »Rotation
Forests, Rodriguez, Kuncheva, & Alonso, 2006), or
combinations of the two (the Random Forests algo-
rithm, Breiman, 2001). Many other “randomization”
schemes are of course possible.

An alternative is to explicitly encourage diversity,
constructing each ensemble member with some mea-
surement ensuring that it is substantially different from
the other members. »Boosting algorithms achieve this
by altering the distribution of training examples for
each learner such that it is encouraged to make more
accurate predictions where previous predictors have
made errors. The DECORATE algorithm (Melville &
Mooney, 2005) explicitly alters the distribution of class
labels, such that successive models are forced to learn
different answers to the same problem. PNegative
correlation learning (see Brown, 2004; Brown, Wyatt,
Harris, & Yao, 2005), includes a penalty term when
learning each ensemble member, explicitly managing
the accuracy-diversity trade-off.

In general, ensemble methods constitute a large class
of algorithms - some based on heuristics, and some
on sound learning-theoretic principles. The three algo-
rithms that have received the most attention in the
literature are reviewed here. It should be noted that we
present only the most basic form of each; numerous
modifications have been proposed for a variety of learn-
ing scenarios. As further study the reader is referred to
the many comprehensive surveys of the field (Brown et
al., 2005; Kuncheva, 2004b; Polikar, 2006).

In the Bagging algorithm (Breiman, 1996), each mem-
ber of the ensemble is constructed from a different
training dataset, and the predictions combined either



Ensemble Learning

315

by uniform averaging or voting over class labels. Each
dataset is generated by sampling from the total N
data examples, choosing N items uniformly at random
with replacement. Each sample is known as a boot-
strap; the name Bagging is an acronym derived from
Bootstrap AGGregatING. Since a bootstrap samples N
items uniformly at random with replacement, the prob-
ability of any individual data item not being selected is
p = (1-1/N)N. Therefore with large N, a single boot-
strap is expected to contain approximately 63.2% of
the original set, while 36.8% of the originals are not
selected.

Like many ensemble methods, Bagging works best
with unstable models, that is those that produce dif-
fering generalization behavior with small changes to
the training data. These are also known as high vari-
ance models, examples of which are »decision trees and
»neural networks. Bagging therefore tends not to work
well with very simple models. In effect, Bagging samples
randomly from the space of possible models to make up
the ensemble — with very simple models the sampling
produces almost identical (low diversity) predictions.

Despite its apparent capability for variance reduc-
tion, situations have been demonstrated where Bag-
ging can converge without affecting variance (see Brown
et al,, 2005). Several other explanations have been pro-
posed for Bagging’s success, including links to Bayesian
model averaging. In summary, it seems that several
years from its introduction, despite its apparent simplic-
ity, Bagging is still not fully understood.

Algorithm 1 Bagging

Input: Required ensemble size T
Input: Training set  S={(x1, ), (x2,¥2),---,
(N> yn)}
fort=1to T do
Build a dataset Sy, by sampling N items, randomly
with replacement from S.
Train a model 4, using S;, and add it to the ensem-
ble.
end for
For a new testing point (x',5"),
If model outputs are continuous, combine them by
averaging.
If model outputs are class labels, combine them by
voting.

Adaboost (Freund & Schapire, 1996) is the most well
known of the Boosting family of algorithms (Schapire,
2003). The algorithm trains models sequentially, with a
new model trained at each round. At the end of each
round, mis-classified examples are identified and have
their emphasis increased in a new training set which is
then fed back into the start of the next round, and a new
model is trained. The idea is that subsequent models
should be able to compensate for errors made by earlier
models.

Adaboost occupies somewhat of a special place in
the history of ensemble methods. Though the proce-
dure seems heuristic, the algorithm is in fact grounded
in a rich learning-theoretic body of literature. Schapire
(1990) addressed a question posed by Kearns and
Valiant (1988) on the nature of two complexity classes
of learning problems. The two classes are strongly learn-
able and weakly learnable problems. Schapire showed
that these classes were equivalent; this had the corollary
that a weak model, performing only slightly better than
random guessing, could be “boosted” into an arbitrarily
accurate strong model. The original Boosting algorithm
was a proof by construction of this equivalence, though
had a number of impractical assumptions built-in. The
Adaboost algorithm (Freund & Schapire, 1996) was the
first practical Boosting method. The authoritative his-
torical account of the development can be found in
Schapire (1999), including discussion of numerous vari-
ants and interpretations of the algorithm. The procedure
is shown in Algorithm 2. Some similarities with Bag-
ging are evident; a key differences is that at each round ¢,
Bagging has a uniform distribution D;, while Adaboost
adapts a nonuniform distribution.

The ensemble is constructed by iteratively adding
models. Each time a model is learnt, it is checked to
ensure it has at least ¢, < 0.5, that is, it has performance
better than random guessing on the data it was sup-
plied with. If it does not, either an alternative model is
constructed, or the loop is terminated.

After each round, the distribution D; is updated to
emphasize incorrectly classified examples. The update
causes half the distribution mass of D,,; to be over the
examples incorrectly classified by the previous model.
More precisely, ¥, (x,)+y, De+1(i) = 0.5. Thus, if h; hasan
error rate of 10%, then examples from that small 10% will
be allocated 50% of the next model’s training “effort,”



316

Ensemble Learning

Algorithm 2 Adaboost
Input: Required ensemble size T
Input: Training set S = {(x,3),(x2,%2),---,

(xn,yn)}, where y; € {-1,+1}
Define a uniform distribution D;(i) over elements
of S.
fort=1to T'do
Train a model h; using distribution D;.
Calculate ¢; = Pp, (h:(x) # )
If ¢, > 0.5 break
Set ay = l In (ﬂ)

€t
Update Dy (i) = DespCouyibia))
where Z; is a normahzatlon factor so that D;,; is a
valid distribution.
end for
For a new testing point (x',5"),
H(x') = sign(¥; ache(x'))

while the remaining examples (those correctly classi-
fied) are underemphasized. An equivalent (and simpler)
writing of the distribution update scheme is to multi-
ply D;(i) by 1/2(1 - €;) if hy(x;) is correct, and by 1/2¢;
otherwise.

The updates cause the models to sequentially min-
imize an exponential bound on the error rate. The
training error rate on a data sample S drawn from the
true distribution D obeys the bound,

T
Py,.s(yH(x) <0) H 2\ e (1-¢). (4)

This upper bound on the training error (though not the
actual training error) is guaranteed to decrease mono-
tonically with T, given ¢; < 0.5.

In an attempt to further explain the performance of
Boosting algorithms, Schapire also developed bounds
on the generalization error of voting systems, in terms
of the voting margin, the definition of which was given
in (10). Note that, this is not the same as the geomet-
ric margin, optimized by »support vector machines.
The difference is that the voting margin is defined using
the one-norm ||w||; in the denominator, while the geo-
metric margin uses the two-norm ||w||,. While this
is a subtle difference, it is an important one, form-
ing links between SVMs and Boosting algorithms -
see Ritsch, Mika, Schélkopf, and Miiller (2002) for

details. The following bound holds with probability
1-9,

Pyyp(H(X) #y) < Pyyos(yH(x) < 0)+O(\ / % —In 5), (5)

where the O notation hides constants and logarith-
mic terms, and d is the »VC-dimension of the model
used. Roughly, this states that the generalization error
is less than or equal to the training error plus a term
dependent on the voting margin. The larger the mini-
mum margin in the training data, the lower the testing
error. The original bounds have since been significantly
improved, see Koltchinskii and Panchenko (2005) as a
comprehensive recent work. We note that this bound
holds generally for any voting system, and is not specific
to the Boosting framework.

The margin-based theory is only one explanation of
the success of Boosting algorithms. Mease and Wyner
(2008) present a discussion of several questions on why
and how Adaboost succeeds. The subsequent 70 pages
of discussion demonstrate that the story is by no means
simple. The conclusion is, while no single theory can
fully explain Boosting, each provides a different part of
the still unfolding story.

The mixtures of experts architecture is a widely inves-
tigated paradigm for creating a combination of mod-
els (Jacobs, Jordan, Nowlan, & Hinton, 1991). The prin-
ciple underlying the architecture is that certain models
will be able to “specialize” to particular parts of the
input space. It is commonly implemented with a neu-
ral network as the base model, or some other model
capable of estimating probabilities. A Gating network
receives the same inputs as the component models,
but its outputs are used as the weights for a linear
combiner. The Gating network is responsible for learn-
ing the appropriate weighted combination of the spe-
cialized models (“experts”) for any given input. Thus,
the input space is “carved-up” between the experts,
increasing and decreasing their weights for particu-
lar examples. In effect, a mixture of experts explic-
itly learns how to create expert ensemble members in
different portions of the input space, and select the
most appropriate subset for a new testing example
(Fig. 1).



Ensemble Learning

317

Expert 1

Input > Expert 2

Output

Expert 3

Gating net

Ensemble Learning. Figure 1. The mixtures of experts architecture

The architecture has received wide attention, and
has a strong following in the probabilistic modeling
community, where it may go under the pseudonym of
a “mixture model” A common training method is the
»expectation-maximization algorithm.

Theoretical Perspectives: Ensemble
Diversity

We have seen that all ensemble algorithms in some way
attempt to encourage “diversity.” In this section, we take
a more formalized perspective, to understand what is
meant by this term.

The optimal “diversity” is fundamentally a credit assign-
ment problem. If the committee as a whole makes an
erroneous prediction, how much of this error should be
attributed to each member? More precisely, how much
of the committee prediction is due to the accuracies of
the individual models, and how much is due to their
interactions when they were combined? We would ide-
ally like to reexpress the ensemble error as two distinct
components: a term for the accuracies of the individ-
ual models, plus a term for their interactions, i.e., their
diversity.

It turns out that this so-called accuracy-diversity
breakdown of the ensemble error is not always possi-
ble, depending on the type of error function, and choice
of combiner rule. It should be noted that when “diver-
sity” is referred to in the literature, it is most often
meant to indicate classification with a majority vote
combiner, but for completeness we address the general
case here. In the following sections, the existing work to
understand diversity in three distinct cases is described:
for regression tasks (a linear combiner), and classifi-
cation tasks, with either a linear combiner or a voting
combiner.

In aregression problem, it is common to use the squared
error criterion. The accuracy-diversity breakdown for
this case (using a linear combiner) is called the ambigu-
ity decomposition (Krogh & Vedelsby, 1995). The result
states that the squared error of the linearly combined

ensemble, f(x), can be broken into a sum of two
components:

. 1 I 1 I .
(f(x) -d)* = T ;(ft(x) -d)? - T ;(ﬁ(X) -f(x)%.
(6)




318

Ensemble Learning

The first term on the right hand side is the average
squared error of the individual models, while the sec-
ond term quantifies the interactions between the pre-
dictions. Note that this second term, the “ambiguity;”
is always positive. This guarantees that, for an arbitrary
data point, the ensemble squared error is always less
than or equal to the average of the individual squared
errors.

The intuition here can be understood as follows.
Imagine five friends, playing “guess the weight of the
cake” (an old English fairground game): if a player’s
guess is close enough to the true weight, they win the
cake. Just as they are about to play, the fairground man-
ager states that they can only submit one guess. The
dilemma seems to be in whose guess they should sub-
mit - however, the ambiguity decomposition shows us
that taking the average of their guesses, and submitting
that, will always be closer (on average) than choosing
a person at random and submitting their guess. Note
that this is qualified with “on average” - it may well be
that one of the predictions will in fact be closer than
the average prediction, but we presume that we have
no way of identifying which prediction to choose, other
than random. It can be seen that greater diversity in
the predictions (i.e., a larger ambiguity term) results in
a larger gain over the average individual performance.
However, it is also clear that there is a trade-off to be had:
too much diversity and the average error is extremely
large.

The idea of a trade-off between these two terms
is reminiscent of the Pbias-variance decomposition
(Geman, Bienenstock, & Doursat, 1992); in fact, there
is a deep connection between these results. Taking the
expected value of (6) over all possible training sets gives
us the ensemble analogy to the bias-variance decom-
position, called the »bias-variance-covariance decom-
position (Ueda & Nakano, 1996). This shows that the
expected squared error of an ensemble f(x) from a
target d is:

Ep{(f(x)-d)*} = %Z+%W+ (1—;)cowar, @)

where the expectation is with respect to all possible
training datasets D. While the bias and variance terms
are constrained to be positive, the covariance between

models can become negative — thus the definition of
diversity emerges as an extra degree of freedom in the
bias-variance dilemma. This extra degree of freedom
allows an ensemble to approximate functions that are
difficult (if not impossible) to find with a single model.
See Brown et al. (2005) for extensive further discussion
of this concept.

In a classification problem, our error criterion is the
misclassification rate, also known as the zero-one loss
function. For this type of loss, it is well known there
is no unique definition of bias-variance; instead there
exist multiple decompositions each with advantages
and disadvantages (see Kuncheva, 2004b, p. 224). This
gives us a clue as to the situation with an ensemble -
there is also no simple accuracy-diversity separation of
the ensemble classification error. Classification prob-
lems can of course be addressed either by a model
producing class probabilities (where we linearly com-
bine), or directly producing class labels (where we use
majority vote). Partial theory has been developed for
each case.

For linear combiners, there exist theoretical results
that relate the correlation of the probability estimates
to the ensemble classification error. Tumer and Ghosh
(1996) showed that the reducible classification error
(i.e., above the Bayes rate) of a simple averaging ensem-
ble, e,ve, can be written as

6(T -
€ave = eadd(H(Tl))> (8)

where e,qq is the classification error of an individual
model. The § is a correlation coefficient between the
model outputs. When the individual models are iden-
tical, the correlation is § = 1. In this case, the ensem-
ble error is equal to the individual error, eye = €444.
When the models are statistically independent, § =0,
and the ensemble erroris a fraction 1/ T of the individual
error, eaye =1/T x e,99. When § is negative, the mod-
els are negatively correlated, and the ensemble error is
lower than the average individual error. However, (8)



Ensemble Learning

319

is derived under quite strict assumptions, holding only
for alocal area around the decision boundary, and ulti-
mately resting on the bias-variance-covariance theory
from regression problems. Further details, includ-
ing recent work to lift some of the assumptions
(Kuncheva, 2004b).

The case of a classification problem with a majority
vote combiner is the most challenging of all. In general,
there is no known breakdown of the ensemble clas-
sification error into neat accuracy and diversity com-
ponents. The simplest intuition to show that correla-
tion between models does affect performance is given
by the Binomial theorem. If we have T models each
with identical error probability p = P(h(x) # y),
assuming they make statistically independent errors, the
following error probability of the majority voting com-
mittee holds,

T

P(H(x)#y)= 3

(Z)p"(l S RO
k>(T/2)

For example, in the case of T = 21 ensemble mem-
bers, each with error p = 0.3, the majority voting error
will be 0.026, an order of magnitude improvement over
the individual error. However, this only holds for sta-
tistically independent errors. The correlated case is an
open problem. Instead, various authors have proposed
their own heuristic definitions of diversity in majority
voting ensembles. Kuncheva (2004b) conducted exten-
sive studies of several suggested diversity measures; the
conclusion was that “no measure consistently correlates
well with the majority vote accuracy.” In spite of this,
some were found useful as an approximate guide to
characterize performance of ensemble methods, though
should not be relied upon as the “final word” on diver-
sity. Kunchevas recommendation in this case is the
Q-statistic (Kuncheva, 2004b, p. 299), due to its simplic-
ity and ease of computation.

Breiman (2001) took an alternative approach, deriv-
ing not a separation of error components, but a bound
on the generalization error of a voting ensemble,
expressed in terms of the correlations of the models. To
understand this, we must introduce concept of voting

margin. The voting margin for a two-class problem, with
y € {-1,+1}, is defined,

m=2t S wihi(x)

Zthl ] = yH(x). (10)

If the margin is positive, the example is correctly classi-
fied, if it is negative, the example is incorrectly classified.
The expected margin s = £p {m} measures the extent to
which the average number of votes for the correct class
exceeds the average vote for any other class, with respect
to the data distribution D. The larger the voting mar-
gin, the more confidence in the classification. Breiman’s
bound shows,
5 2

Po(H(x) + y) = Pp(yH(x) < 0) < ’)(157;5) a
Here p is the average pairwise correlation between the
errors of the individual models. Thus, the generaliza-
tion error is minimized by a small p, and an s as close
to 1 as possible. The balance between a high accu-
racy (large s) and a high diversity (low p) constitutes
the tradeoff in this case, although the bound is quite
loose.

In summary, the definition of diversity depends on the
problem. In a regression problem, the optimal diversity
is the trade-off between the bias, variance and covari-
ance components of the squared error. In a classification
problem, with a linear combiner, there exists partial
theory to relate the classifier correlations to the ensem-
ble error rate. In a classification problem with a voting
combiner, there is no single theoretical framework or
definition of diversity. However, the lack of an agreed
definition of diversity has not discouraged researchers
from trying to achieve it, nor has it stalled the progress
of effective algorithms in the field.

Conclusions & Current Directions

in the Field

Ensemble methods constitute some of the most robust
and accurate learning algorithms of the past decade
(Caruana & Niculescu-Mizil, 2006). A multitude of
heuristics have been developed for randomizing the
ensemble parameters, to generate diverse models. It




320

Entailment

is arguable that this line of investigation is nowa-
days rather oversubscribed, and the more interesting
research is now in methods for nonstandard data.
» Cluster ensembles (Strehl & Ghosh, 2003) are ensem-
ble techniques applied to unsupervised learning prob-
lems. Problems with nonstationary data, also known
as concept drift, are receiving much recent attention
(Kuncheva, 2004a). The most up to date innovations are
to be found in the biennial International Workshop on
Multiple Classifier Systems (Roli et al., 2000).

Recommended Reading

Kuncheva (2004b) is the standard reference in the field, which
includes references to many further recommended readings.
In addition, Brown et al. (2005) and Polikar (2006) provide
extensive literature surveys. Roli et al. (2000) is an international
workshop series dedicated to ensemble learning.

Breiman, L. (1996). Bagging predictors. Machine Learning 24(2),
123-140.

Breiman, L. (2001). Random forests. Machine Learning 45(1), 5-32.

Brown, G. (2004). Diversity in neural network ensembles. PhD thesis,
University of Birmingham.

Brown, G., Wyatt, J. L., Harris, R., & Yao, X. (2005). Diversity
creation methods: A survey and categorisation. Journal of Infor-
mation Fusion 6(1), 5-20.

Caruana, R., & Niculescu-Mizil, A. (2006). An empirical compari-
son of supervised learning algorithms. In Proceedings of the 23rd
international conference on machine learning (pp. 161-168). New
York: ACM.

Freund, Y., & Schapire, R. (1996). Experiments with a new boost-
ing algorithm. In Proceedings of the thirteenth international
conference on machine learning (ICML'96) (pp. 148-156). San
Francisco: Morgan Kauffman Publishers.

Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural networks
and the bias/variance dilemma. Neural computation 4(1), 1-58.

Ho, T. K. (1998). The random subspace method for constructing
decision forests. IEEE Transactions on Pattern Analysis and
Machine Intelligence 20(8), 832-844.

Jacobs, R. A., Jordan, M. 1., Nowlan, S. J., & Hinton, G. E. (1991).
Adaptive mixtures of local experts. Neural Computation 3(1),
79-87.

Kearns, M., & Valiant, L. G. (1988). Learning Boolean formulae or
finite automata is as hard as factoring. Technical report TR-14-
88, Harvard University Aiken Computation Laboratory.

Koltchinskii, V., & Panchenko, D. (2005). Complexities of con-
vex combinations and bounding the generalization error in
classification. Annals of Statistics 33(4), 1455.

Krogh, A., & Vedelsby, J. (1995). Neural network ensembles, cross-
validation and active learning. In Advances in neural informa-
tion processing systems (pp. 231-238). Cambridge, MA: MIT
Press.

Kuncheva, L. I. (2004a). Classifier ensembles for changing environ-
ments. In International workshop on multiple classifier systems.
Lecture Notes in Computer Science 3007. Berlin: Springer.

Kuncheva, L. I. (2004b). Combining pattern classifiers: Methods and
algorithms. New York: Wiley.

Laplace, P. S. (1818). Deuxieme supplement a la theorie analytique des
probabilites. Paris: Gauthier-Villars.

Mease, D., & Wyner, A. (2008). Evidence contrary to the statisti-
cal view of Boosting. Journal of Machine Learning Research 9,
131-156.

Melville, P., & Mooney, R. J. (2005). Creating diversity in ensembles
using artificial data. Information Fusion 6(1), 99-111.

Polikar, R. (2006). Ensemble based systems in decision making. IEEE
Circuits and Systems Magazine, 6(3), 21-45.

Ritsch, G., Mika, S., Schélkopf, B., & Miiller, K. R. (2002). Con-
structing Boosting algorithms from SVMs: An application to
one-class classification. IEEE Transactions on Pattern Analysis
and Machine Intelligence 24(9), 1184-1199.

Rodriguez, J., Kuncheva, L., & Alonso, C. (2006). Rotation forest: A
new classifier ensemble method. IEEE Transactions on Pattern
Analysis and Machine Intelligence 28(10), 1619-1630.

Roli, E, Kittler, J., Windridge, D., Oza, N., Polikar, R., Haindl,
M., et al. (Eds.). Proceedings of the international workshop
on multiple classifier systems 2000-2009. Lecture notes in
computer science. Berlin: Springer. Available at: http://www.
informatik.uni-trier.de/ley/db/conf/mcs/index.html

Schapire, R. E. (1990). The strength of weak learnability. Machine
Learning 5,197-227.

Schapire, R. E. (1999). A brief introduction to Boosting. In Pro-
ceedings of the 16th international joint conference on artificial
intelligence (pp. 1401-1406). San Francisco, CA: Morgan Kauf-
mann.

Schapire, R. E. (2003). The boosting approach to machine learning:
An overview. In D. D. Denison, M. H. Hansen, C. Holmes, B.
Mallick, & B. Yu (Eds.), Nonlinear estimation & classification
Lecture notes in statistics (pp. 149-172). Berlin: Springer.

Strehl, A., & Ghosh, J. (2003). Cluster ensembles - A knowledge
reuse framework for combining multiple partitions. The Journal
of Machine Learning Research 3, 583-617.

Tumer, K., & Ghosh, J. (1996). Error correlation and error reduction
in ensemble classifiers. Connection Science 8(3-4), 385-403.

Ueda, N., & Nakano, R. (1996). Generalization error of ensemble
estimators. In Proceedings of IEEE international conference on
neural networks (Vol. 1, pp. 90-95). ISBN: 0-7803-3210-5

Entailment

Synonyms
Implication; Logical consequence

Definition

The term entailment is used in the context of logical rea-
soning. Formally, a logical formula T entails a formula ¢
ifand only if all models of T are also a model of ¢. This is
usually denoted as T = ¢ and means that ¢ is a logical
consequence of T or that ¢ is implied by T.


http://www.informatik.uni-trier.de/ley/db/conf/mcs/index.html
http://www.informatik.uni-trier.de/ley/db/conf/mcs/index.html

Entity Resolution

321

Let us elaborate this definition for propositional
clausal logic, where the formulae T could be the follow-
ing expression:

flies :- bird, normal.
bird :- blackbird.
bird :—- ostrich.

Here, the first clause or rule can be read as flies if nor-
mal and bird, that is, normal birds fly, the second and
third one as stating that blackbirds, resp. ostriches, are
birds. An interpretation is then an assignment of truth-
values to the propositional variables. For instance, for
the above domain

{ostrich, bird}
{blackbird, bird, normal}

are interpretations, specified through the set of proposi-
tional variables that are true. This means that in the first
interpretation, the only true propositions are ostrich
and bi rd. An interpretation specifies a kind of possible
world. An interpretation I is then a model for a clause
h : =by,.., by if and only if {by,...b,} €I - h eI
and it is model for a clausal theory if and only if it is
a model for all clauses in the theory. Therefore, the first
interpretation above is a model for the theory, but the
second one is not because the interpretation is not a
model for the first clause (as {bird,
but £1ies ¢ I). Using these notions, it can now be ver-
ified that the clausal theory T above logically entails the
clause

normal} c¢1

flies :- ostrich, normal.
because all models of the theory are also a model for this
clause.

In machine learning, the notion of entailment is
used as a covers relation in »inductive logic program-
ming, where hypotheses are clausal theories, instances
are clauses, and an example is covered by the hypothesis

when it is entailed by the hypothesis.

Cross References
» Inverse Entailment
» Learning from Entailment
»Logic of Generality

Recommended Reading

Russell, S., & Norvig, P. Artificial intelligence: A modern approach
(2nd ed.). Prentice Hall.

I . .
Entity Resolution

INDRAJIT BHATTACHARYA!, LISE GETOOR?
'IBM India Research Laboratory, New Delhi, India
2University of Maryland, College Park, MD, USA

Synonyms

Co-reference resolution; Deduplication; Duplicate
detection; Identity uncertainty; Merge-purge; Object
consolidation; Record linkage; Reference reconcili-
ation

Definition

A fundamental problem in data cleaning and integra-
tion (see »Data Preparation) is dealing with uncertain
and imprecise references to real-world entities. The goal
of entity resolution is a take a collection of uncertain
entity references (or references, in short) from a sin-
gle data source or multiple data sources, discover the
unique set of underlying entities, and map each refer-
ence to its corresponding entity. This typically involves
two subproblems - identification of references with dif-
ferent attributes to the same entity, and disambiguation
of references with identical attributes by assigning them
to different entities.

Motivation and Background

Entity resolution is a common problem that comes
up in different guises (and is given different names)
in many computer science domains. Examples include
computer vision, where we need to figure out when
regions in two different images refer to the same under-
lying object (the correspondence problem); natural lan-
guage processing when we would like to determine
which noun phrases refer to the same underlying entity
(co-reference resolution); and databases, where, when
merging two databases or cleaning a database, we would



322

Entity Resolution

like to determine when two tuple records are referring
to the same real-world object (deduplication and data
integration). Deduplication is important for remov-
ing redundancy and for accurate analysis. In infor-
mation integration, determining approximate joins is
important for consolidating information from multiple
sources; most often there will not be a unique key that
can be used to join tables across databases.

Such ambiguities in entity references can occur due
to multiple reasons. Often times, data may have data
entry errors, such as typographical errors. Multiple rep-
resentations, such as abbreviations, are also possible.
Different databases typically have different keys — one
person database may use social security numbers while
another uses name and address.

Traditional entity resolution approaches focus on
matching attributes of different references for resolv-
ing entities. However, many data sources have explicit
or implicit relationships present among the entity
references. These relations are indicative of relation-
ships between the underlying entities themselves. For
example, person records in census data are linked by
family relationships such as sibling, parent, and spouse.
Researchers collaborate mostly within their organiza-
tion, or their research community, as a result of which
references to related researchers tend to occur closely
together. Recent entity resolution approaches in sta-
tistical relational learning make use of relationships
between references to improve entity resolution accu-
racy, and additionally to discover relationships between
the underlying entities.

Theory/Solution
As an illustration of the entity resolution problem, con-
sider the task of resolving the author references in

a database of academic publications similar to DBLP,
CiteSeer or PubMed. Let us take as an example the
following set of four papers:

1. W. Wang, C. Chen, A. Ansari, “A mouse immunity

model”

2. W. Wang, A. Ansari, “A better mouse immunity
model”

3. L.Li, C. Chen, W. Wang, “Measuring protein-bound
fluxetine”

4. W. W. Wang, A. Ansari, “Autoimmunity in biliary
cirrhosis”

Now imagine that we would like to find out, given
these four papers, which of these author names refer
to the same author entities. This process involves deter-
mining whether paper 1 and paper 2 are written by the
same author named Wang, or whether they are different
authors. We need to answer similar questions about all
such similar author names in the database.

In this example, it turns out there are six under-
lying author entities, which we will call Wangl and
Wang2, Chenl and Chen2, Ansari and Li. The three
references with the name “A. Ansari” correspond to
author Ansari and the reference with name “L. Li” to
author Li. However, the two references with name “C.
Chen” map to two different authors Chenl and Chen2.
Similarly, the four references with name “W. Wang” or
“W. W. Wang” map to two different authors. The “Wang”
references from the first, second, and fourth papers cor-
respond to author Wangl, while that from the third
paper maps to a different author Wang2. This infer-
ence illustrates the twin problems of identifying “W.
Wang” and “W. W. Wang” as the same author, and
disambiguating two references with name “W. Wang”
as different authors. This is shown pictorially in Fig. 1,

A mouse immunity model

D conen CBD

A better mouse immunity model

an @

Paper 1

Paper 2

Measuring protien-bound fluxetine

Autoimmunity in biliary cirrhosis

SRR« nr)

Paper 3

Paper 4

Entity Resolution. Figure 1. The references in different papers in the bibliographic example. References to the same

entity are identically shaded



Entity Resolution

323

where references that correspond to the same authors
are shaded identically. In the entity resolution pro-
cess, all those and only those author references that are
shaded identically should be resolved as corresponding
to the same underlying entity.

Formally, in the entity resolution problem, we are
given a set of references R = {r;}, where each reference
r has attributes r.A;,r.A,,...,r.Ag, such as observed
names and affiliations for author references, as in our
example above. The references correspond to some set
of unknown entities £ = {e;}. We introduce the nota-
tion r.E to refer to the entity to which reference r corre-
sponds. The goal is to recover the hidden set of entities
& = {e;} and the entity labels r.E for individual refer-
ences given the observed attributes of the references.
In addition to the attributes, in some data sources we
have information in the form of relationships between
the references, such as coauthor relationships between
author references in publication databases. We can
capture the relationships with a set of hyper-edges
H = {h;}. Each hyper-edge h may have attributes as
well to capture the attributes of relationships, which we
denote h.A;,h.A,,...,h.A;, and we use h.R to denote
the set of references that it connects. In our exam-
ple, each rectangle denotes one hyper-edge correspond-
ing to one paper in the database. The first hyper-edge
corresponding to Paperl has as its attribute the title
“A mouse immunity model” and connects the three ref-
erences having name attributes “W. Wang,” “C. Chen,’
and “A. Ansari” A reference r can belong to zero or more
hyper-edges and we use r.H to denote the set of hyper-
edges in which r participates. For example, if we have
paper, author, and venue references, then a paper ref-
erence may be connected to multiple author references
and also to a venue reference. In general, the under-
lying references can refer to entities of different types,
as in a publication database, or in newspaper articles,
which contain references to people, places, organiza-
tions, etc. When the type information is known for each
reference, resolution decisions are restricted within ref-
erences of the same type. Otherwise, the types may need
to be discovered as well as part of the entity resolution
process.

Traditional entity resolution approaches pose entity
resolution as a pair-wise decision problem over refer-
ences based on their attribute similarity. It can also be
posed as a -graph clustering problem, where references

are clustered together based on their attribute similari-
tiesand each cluster is taken to represent one underlying
entity. Entity resolution approaches differ in how the
similarities between references are defined and com-
puted and how the resolution decisions are made based
on these similarities. Traditionally, each pair-wise deci-
sion is made independently of the others. For example,
the decision to resolve the two Wang references from
papers 1 and 3 would be made independently of the
decision to resolve the two Chen references from the
same papers.

The first improvement is to account for the simi-
larity of the coauthor names when such relationships
are available. However, this still does not consider the
“entities” of the related references. For the two “Wang”
references in the earlier example, the two “C. Chen”
coauthors match regardless of whether they refer to
Chenl or Chen2. The correct evidence to use here is
that the “Chen’s” are not co-referent. In such a setting,
in order to resolve the “W. Wang” references, it is nec-
essary to resolve the “C Chen” references as well, and
not just consider their name similarity. In the collec-
tive relational entity resolution approach, resolutions
are not made independently, but instead one resolution
decision affects other resolutions via hyper-edges.

Below, we discuss the different entity resolution
approaches in greater detail.

Attribute-Based Entity Resolution

As discussed earlier, exact matching of attributes does
not suffice for entity resolution. Several sophisticated
similarity measures have been developed for tex-
tual strings (Cohen, Ravikumar, & Fienberg, 2003;
Chaudhuri, Ganjam, Ganti, & Motwani, 2003) that may
be used for unsupervised entity resolution. Finally, a
weighted combination of the similarities over the differ-
ent attributes for each reference is used to compute the
attribute similarity between two references. An alterna-
tive is to use adaptive supervised algorithms that learn
string »similarity metrics from labeled data (Bilenko
& Mooney, 2003). In the traditional entity resolution
approach (Fellegi & Sunter, 1969; Cohen et al., 2003),
similarity is computed for each pair of references r;, 7
based on their attributes and only those pairs that
have similarity above some threshold are considered
co-referent.




324

Entity Resolution

Efficiency

Even the attribute-only approach to entity resolution
is known to be a hard problem computationally, since
it is infeasible to compare all pairs of references using
expensive similarity measures. Therefore, efficiency
issues have long been a focus for data cleaning, the
goal being the development of inexpensive algorithms
for finding approximate solutions. The key mechanisms
for doing this involve computing the matches efficiently
and employing techniques commonly called “block-
ing” to quickly find potential duplicates (Hernandez &
Stolfo, 1995; Monge & Elkan, 1997), using cheap and
index-based similarity computations to rule out non-
duplicate pairs. Sampling approaches can quickly com-
pute cosine similarity between tuples for fast text-joins
within an SQL framework (Gravano, Ipeirotis, Koudas,
& Srivastava, 2003). Error-tolerant indexes can also
be used in data warehousing applications to efficiently
look up a small but “probabilistically safe” set of refer-
ence tuples as candidates for matching for an incoming
tuple (Chaudhuri et al,, 2003). Generic entity reso-
lution frameworks also exist for resolving and merg-
ing duplicates as a database operator and minimize
the number of record-level and feature-level operations
(Menestrina, Benjelloun, & Garcia-Molina, 2006).

Probabilistic Models for Pairwise
Resolution

The groundwork for posing entity resolution as a prob-
abilistic »classification problem was done by Fellegi
and Sunter (1969), who studied the problem of labeling
pairs of records from two different files to be merged
as “match” (M) or “non-match” (U) on the basis of
agreement y among their different fields or attributes.
Given an agreement pattern y, the conditional prob-
abilities P(y|M) and P(y|U) of y given matches and
non-matches are computed and compared to decide
whether the two references are duplicates or not. Fellegi
and Sunter showed that the probabilities P(y|M) and
P(y|U) of field agreements can be estimated without
requiring labeled training data if the different fields
agreements are assumed to be independent. Winkler
(2002) used the EM algorithm to estimate the proba-
bilities without making the independence assumption.

Probabilistic Models for Relational Entity
Resolution

Probabilistic models that take into account inter-
action between different entity resolution decisions
through hyper-edges have been proposed for named-
entity recognition in natural language processing and
for citation matching (McCallum & Wellner, 2004;
Singla & Domingos, 2004). Such P relational learn-
ing approaches introduce a decision variable y;; for
every pair of references r; and r;, but instead of infer-
ring the y;’s independently, use conditional random
fields for joint reasoning. For example, the decision
variables for the “Wang” references and the “Chen”
references in papers 1 and 3 would be connected to
each other features functions would be defined to
ensure that they are more likely to take up identical
values.

Such relational models are supervised and require
labeled data to train the parameters. One of the
difficulties in using a supervised method for resolu-
tion is constructing a good training set that includes a
representative collection of positive and negative exam-
ples. Accordingly, unsupervised relational models have
also been developed (Bhattacharya & Getoor, 2006; Li,
Morie, & Roth, 2005; Pasula, Marthi, Milch, Russell, &
Shpitser, 2003). Instead of introducing pairwise deci-
sion variables, this category of approaches use genera-
tive models for references using latent entity labels. Note
that, here, the number of entities is unknown and needs
to be discovered automatically from the available ref-
erences. Relationships between the references, such as
co-mentions or co-occurrences, are captured using joint
distributions over the entity labels.

All of these probabilistic models have been shown
to perform well in practice and have the advantage
that the match/non-match decisions do not depend
on any user-specified similarity measures and thresh-
olds but are learned directly from data. However, this
benefit comes at a price. Inference in relational prob-
abilistic models is an expensive process. Exact infer-
ence is mostly intractable and approximate strategies
such as loopy belief propagation and Monte Carlo sam-
pling strategies are employed. Even these approximate
strategies take several iterations to converge and extend-
ing such approaches to large datasets is still an open
problem.



Entity Resolution

325

Other Approaches for Relational Entity
Resolution

Alternative approaches (Dong, Halevy, & Madha-
van, 2005; Bhattacharya & Getoor, 2007; Kalashnikov,
Mehrotra, & Chen, 2005) consider relational structure
of the entities for data integration but avoid the com-
plexity of probabilistic inference. By avoiding a formal
probabilistic model, these approaches can handle com-
plex and longer-range relationships between different
entity references and the resolution process is signifi-
cantly faster as well. Such approaches also create pair-
wise decision nodes between references and create a
dependency graph over them to capture the relation-
ships in the data. But instead of performing probabilistic
inference, they keep updating the value associated with
each decision node by propagating relational evidence
from one decision node to another over the dependency
graph.

When the relationships between the references and
the entities can be captured in a single graph, the match-
ing entity for a specific reference may be identified using
path-based similarities between their corresponding
nodes in the graph. The connection strength associ-
ated with each edge in the graph can be determined
in the unsupervised fashion given all the references,
their candidate entity choices, and the relationships
between them, by solving a set of nonlinear equations
(Kalashnikov et al., 2005). This approach is useful for
incremental data cleaning when the set of entities cur-
rently in the database is known and an incoming refer-
ence needs to be matched with one of these entities.

An alternative approach to performing collective
entity resolution using relational evidence is to perform
collective relational clustering (Bhattacharya & Getoor,
2007). The goal here is to cluster the references into enti-
ties by taking into account the relationships between
the references. This is achieved by defining a similar-
ity measure between two clusters of references that take
into account not only the attribute similarity of the ref-
erences in the two clusters, but also the neighboring
clusters of each cluster. The neighboring clusters of any
reference cluster ¢ are defined by considering the ref-
erences r’ connected to references r belonging to ¢ via
hyper-edges, and the clusters to which these related ref-
erences belong. If the r.C represents the current cluster
for reference c, then N(c¢) = Ur'.C, where r.H = . H

and r.C = c. For instance, the neighboring clusters for a
Wang cluster in our example containing the Wang ref-
erences from papers 1,2 and 4 are the Ansari cluster and
the Chen clusters containing the other references from
the same papers. The relational similarity between two
clusters is then computed by comparing their neighbor-
hoods. This relational similarity complements attribute
similarity in the combined similarity between two clus-
ters. Intuitively, two entities are likely to be the same if
they are similar in attributes and are additionally con-
nected to the same other entities. Collective relational
clustering can be efficiently implemented by maintain-
ing a priority queue for merge-able cluster pairs and
updating the “neighboring” queue elements with every
merge operation.

Applications

Data cleaning and reference disambiguation approaches
have been applied and evaluated in a number of
domains. The earliest applications were on medical data.
Census data is an area where detection of duplicates
poses a significant challenge and Winkler (Winkler,
2002) has successfully applied his research and other
baselines to this domain. A great deal of work has
been done making use of bibliographic data (Pasula
et al,, 2003; Singla & Domingos, 2004; Bhattacharya
& Getoor, 2007). Almost without exception, the focus
has been on the matching of citations. Work in coref-
erence resolution and disambiguating entity mentions
in natural language processing (McCallum & Wellner,
2004) has been applied to text corpora and newswire
articles like the TREC corpus. There have also been
significant applications in information integration in
data-warehouses (Chaudhuri et al., 2003).

Cross References

» Classification

» Data Preparation

» Graph Clustering

»Similarity Metrics

»Statistical Relational Learning

Recommended Reading

Bhattacharya, I., & Getoor, L. (2006). A latent dirichlet model
for unsupervised entity resolution. In The SIAM international
conference on data mining (SIAM-SDM), Bethesda, MD, USA.




326

EP

Bhattacharya, I., & Getoor, L. (2007). Collective entity resolution in
relational data. ACM transactions on knowledge discovery from
data, 1(1), 5.

Bilenko, M., & Mooney, R. J. (2003). Adaptive duplicate detection
using learnable string similarity measures. In Proceedings of
the ninth ACM SIGKDD international conference on knowledge
discovery and data mining (KDD-2003), Washington, DC.

Chaudhuri, S., Ganjam, K., Ganti, V., & Motwani, R. (2003). Robust
and efficient fuzzy match for online data cleaning. In Pro-
ceedings of the 2003 ACM SIGMOD international conference on
management of data (pp. 313-324). San Diego, CA.

Cohen, W. W,, Ravikumar, P., & Fienberg, S. E. (2003). A comparison
of string distance metrics for name-matching tasks. In Proceed-
ings of the IJCAI-2003 workshop on information integration on
the web (pp. 73-78). Acapulco, Mexico.

Dong,X.,Halevy,A.,&Madhavan,].(2005).Referencereconciliationin
complexinformationspaces.InTheACMinternationalconference
on management of data (SIGMOD), Baltimore, MD, USA.

Fellegi, I. P, & Sunter, A. B. (1969). A theory for record linkage.
Journal of the American Statistical Association, 64, 1183-1210.

Gravano, L., Ipeirotis, P., Koudas, N., & Srivastava, D. (2003). Text
joins for data cleansing and integration in an rdbms. In 19th
IEEE international conference on data engineering.

Hernandez, M. A., & Stolfo, S. J. (1995). The merge/purge problem
for large databases. In Proceedings of the 1995 ACM SIGMOD
international conference on management of data (SIGMOD-95)
(pp. 127-138). San Jose, CA.

Kalashnikov, D. V., Mehrotra, S., & Chen, Z. (2005). Exploiting
relationships for domain-independent data cleaning. In SIAM
international conference on data mining (SIAM SDM), April
21-23 2005, Newport Beach, CA, USA.

Li, X., Morie, P.,, & Roth, D. (2005). Semantic integration in text:
From ambiguous names to identifiable entities. AI Magazine.
Special issue on semantic integration, 26(1).

McCallum, A., & Wellner, B. (2004). Conditional models of iden-
tity uncertainty with application to noun coreference. In NIPS,
Vancouver, BC.

Menestrina, D., Benjelloun, O., & Garcia-Molina, H. (2006). Generic
entity resolution with data confidences. In First Int’l VLDB
workshop on clean databases, Seoul, Korea.

Monge, A. E., & Elkan, C. P. (1997). An efficient domain-
independent algorithm for detecting approximately duplicate
database records. In Proceedings of the SIGMOD 1997 workshop
on research issues on data mining and knowledge discovery (pp.
23-29). Tuscon, AZ.

Pasula, H., Marthi, B., Milch, B., Russell, S., & Shpitser, I. (2003).
Identity uncertaintyandcitation matching.In Advancesin neural
information processing systems 15. Cambridge, MA: MIT Press.

Singla, P., & Domingos, P. (2004). Multi-relational record linkage.
In Proceedings of 3rd workshop on multi-relational data mining
at ACM SI GKDD, Seattle, WA.

Winkler, W. E. (2002). Methods for record linkage and Bayesian
networks. Technical Report, Statistical Research Division, U.S.
Census Bureau, Washington, DC.

" EP

»Expectation Propagation

! Epsilon Covers

THOMAS ZEUGMANN
Hokkaido University
Sapparo, Japan

Definition
Let (M, p) be a metric space, let SCM, and let ¢ > 0.
A set ECM is an e-cover for S, if for every s € S there is
an e € E such that p(s,e) < e.

An e-cover E is said to be proper, if ECS.

Application
The notion of an e-cover is frequently used in kernel-
based learning methods.

For further information, we refer the reader to
Herbrich (2002).

Cross References
» Statistical Machine Learning
»Support Vector Machines

Recommended Reading

Herbrich, R. (2002). Learning kernel classifiers: Theory and algo-
rithms. Cambridge, MA: MIT Press.

! Epsilon Nets

THOMAS ZEUGMANN
Hokkaido University
Sapparo, Japan

Definition

Epsilon nets were introduced by Haussler and Welz
(1987) and their usefulness for computational learning
theory has been discovered by Blumer, Ehrenfeucht,
Haussler, & Warmuth (1989).

Let X # & be any learning domain and let C<p(X)
be any nonempty concept class. For the sake of sim-
plicity, we also use C here as hypothesis space. In order
to guarantee that all probabilities considered below
do exist, we restrict ourselves to well-behaved concept
classes (> PAC Learning).



Equation Discovery

327

Furthermore, let D be any arbitrarily fixed probabil-
ity distribution over the learning domain X andletc € C
be any fixed concept.
A hypothesis h € C is said to be bad for c iff

d(ch)= > D(x)>e

x € cAh

Furthermore, we use
A(c) =qp {h & c|heC}

to denote the set of all possible error regions of ¢ with
respect to C and D. Moreover, let

Ac(c) =ar {h & c|heC, d(c,h)> e}

denote the set of all bad error regions of ¢ with respect
toC and D.

Now we are ready to formally define the notion of
an e-net.

Let € € (0,1) and let SCX. The set S is said to be an ¢-net
for A(c) iff Snr+ @ forallre A.(c).

Conceptually, a set S constitutes an e-net for A(c) iff
every bad error region is hit by at least one point in S.

Consider the one-dimensional Euclidean space E and
let X = [0,1]<E. Furthermore, let C be the set of all
closed intervals [a,b]<[0,1]. Consider any fixed ¢ € C
and let D be the uniform distribution, i.e., D([a,b]) =
1/(b - a) for all [a,b] € C. Furthermore, let h € C; then
we may write c A h = Jul,,where I;,I; € C.Let e € (0,1)
be arbitrarily fixed and let

S={ke/2|0<k<[2/e], ke N}

Then, S forms an e-net for A(c). This can be seen as
follows. Assume r € A.(c). Then, D(I;) > ¢/2 or
D(I;) > ¢/2. Now, by the definition of S it is obvious
that D(I;) > ¢/2 implies ; n S + &, i =1,2.

Application
Recall that in »PAC Learning, the general strategy to
design a learner has been to draw a sufficiently large
finite sample and then to find a hypothesis that is con-
sistent with it. For showing that this strategy is always
successful, the notion of an e-net plays an important
role. This can be expressed by the following observation.

Observation. Let S = {xj,...,x,,} be an ¢e-net
for A(c), and let h € C be any hypothesis such that
h(x;) = ¢(x;) for all1 < i < m, i.e., his consistent. Then
we have d(c,h) < e.

It then remains to show that the »VC Dimension of
C and of A(c) are the same and to apply Sauer’s Lemma
to complete the proof.

For further information, we refer the reader to
Blumer, Ehrenfeucht, Haussler, & Warmuth (1989) as
well as to Kearns and Vazirani (1994).

Cross References
»PAC Learning
» VC Dimension

Recommended Reading

Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. K. (1989).
Learnability and the Vapnik-Chervonenkis dimension. Journal
of the ACM, 36(4), 929-965.

Haussler, D., & Welz, E. (1987). Epsilon nets and simplex range
queries. Discrete & Computational Geometry, 2, 127-151.

Kearns, M. J., & Vazirani, U. V. (1994). An introduction to computa-
tional learning theory. Cambridge, MA: MIT Press.

! Equation Discovery

Lyupco TODOROVSKI
University of Ljubljana
Ljubljana, Slovenia

Synonyms
Computational discovery of quantitative laws; Symbolic
regression

Definition

Equation discovery is a machine learning task that
deals with the problem of learning quantitative laws
and models, expressed in the form of equations, in



328

Equation Discovery

collections of measured numeric data. Equation dis-
covery methods take at input a »data set consisting
of measured values of a set of numeric variables of
an observed system or phenomenon. At output, equa-
tion discovery methods provide a set of equations,
such that, when used to calculate the values of sys-
tem variables, the calculated values closely match the
measured ones.

Motivation and Background

Equation discovery methods can be used to solve
complex modeling tasks, ie., establishing a mathe-
matical model of an observed system. Modeling tasks
are omnipresent in many scientific and engineering
domains.

Equation discovery is strongly related to system
identification, another approach to mathematical mod-
eling. System identification methods work under the
assumption that the structure of the model (the form
of the model equations) is known or comes from a
well-defined class of model structures, such as polyno-
mials or neural networks. Therefore, they are mainly
concerned with the parameter estimation task, that
is, the task of determining the values of the model
parameters that minimize the discrepancy between
measured data and data obtained by simulating the
model. Equation discovery methods, on the other hand,
aim at identifying both, an adequate structure of the
model equations and appropriate values of the model
parameters.

»Regression also deals with building predictive
models from numeric data. The focus of regression
methods is on building descriptive black-box models
that can reconstruct the training data with high accu-
racy. In contrast, equation discovery methods focus on
establishing explanatory models that, beside accurate
predictions, provide explanations of the mechanisms
that govern the behavior of the modeled system.

Early equation discovery methods dealt with redis-
covering empirical laws from the history of science
(this is where the synonym “computational discov-
ery of quantitative laws” comes from). Through the
years, the focus of the equation discovery methods has
shifted from discovering quantitative laws to modeling
real-world systems.

The task of equation discovery can be decomposed into
two closely coupled subtasks of structural identification
and parameter estimation. The first task of structural
identification deals with the problem of finding the
optimal structure of an equation. The second task of
parameter estimation deals with the problem of find-
ing the optimal values of the constant parameters in the
equation. General approaches to and specific methods
for equation discovery use different techniques to solve
these two subtasks.

There are two general and fundamentally different
approaches to equation discovery. The first approach
relies on a definition of a space of candidate equa-
tion structures. Following this definition, a generate-
and-test (or »learning as search) approach is used to
generate different equation structures, solve the param-
eter estimation task for each of them, and report those
equations that most closely approximate the data. The
second approach relies on heuristics, used by scientists
and engineers in the discovery or modeling processes,
to establish an appropriate equation structure.

The first equation discovery system, Bacon (Langley,
1981), follows the second approach described above.
It incorporates a set of data-driven heuristics for
detecting regularities (constancies and trends) in mea-
sured data and for formulating hypotheses based on
them. An example heuristic would, when faced with
a situation where the values of two observed vari-
ables increase/decrease simultaneously, introduce a
new equation term by multiplying them. Furthermore,
Bacon builds equation structure at different levels of
description. At each level of description, all but two
variables are held constant and hypotheses connecting
the two changing variables are considered. Using a rela-
tively small set of data-driven heuristics, Bacon is able to
rediscover a number of physical laws including the ideal
gas law, the law of gravitation, the law of refraction, and
BlacK’s specific heat law.

An alternative set of heuristics for equation discov-
ery can be derived from dimensional analysis that is
routinely used to check the plausibility of equations by
using rules that specify the proper ways to combine
variables and terms with different measurements units,



Equation Discovery

329

different measurement scales, or types thereof. Fol-
lowing these rules, equation discovery method Coper
(Kokar, 1986) considers only equation structures that
properly combine variables and constants, given the
knowledge about their exact measurement units. Equa-
tion discovery method SDS (Takashi & Hiroshi, 1998)
extends Coper to cases, where the exact measurement
units of the variables and constants involved in the
equation are not known, but only knowledge about the
types of the »measurement scales is available.

Finally, the heuristics and design of the equation
discovery method E* (Schaffer, 1993) is based on a
systematic survey of more than a hundred laws and
models published in the Physical Review journal. The
review shows that many of the published laws and mod-
els follow one of five different equation structures. By
including only these five structures as its main heuristic
for solving the structure identification task (implement-
ing it as a »language bias), E* was able to reconstruct
the correct laws and models in about a third of the test
cases collected from the same journal.

Abacus (Falkenhainer & Michalski, 1990) was the
first equation discovery method that followed the
generate-and-test (or Plearning as search) approach,
mentioned above. Abacus experimented with different
search strategies within a fixed space of candidate equa-
tion structures. Other methods that follow the generate-
and-test approach differ in the ways they define the
space of candidate equation structures and solve the
parameter estimation task.

Equation discovery methods EF (Zembowitz &
Zytkow, 1992) and Lagrange (DZeroski & Todorovski,
1995) explore the space of polynomial equation struc-
tures that are linear in the constant parameters, so they
apply »linear regression to estimate parameters. The
user can shape the space of candidate structures by
specifying parameters, such as, the maximal polynomial
degree, the maximal number of multiplicative terms
included in a polynomial, and a set of functions that
can be used to transform the original variables before
combining them into multiplicative terms.

While all of the above methods assume a fixed pre-
defined »language bias (via specification of the class
of candidate equation structures or via heuristics for
establishing appropriate structure), equation discov-
ery method Lagramge (Todorovski & Dzeroski, 1997)
employs dynamic declarative »language bias, that is,

let the user of the equation discovery method choose
or specify the space of candidate equation structures.
In its first version, Lagramge uses the formalism of
context-free grammars for specifying the space of equa-
tion structures. The formalism has been shown to be
general enough to allow users to build their specifi-
cation upon many different types of modeling knowl-
edge, from measurement units to very specific knowl-
edge about building models in a particular domain of
interest (Todorovski & Dzeroski, 2007). For solving the
structure identification task, Lagramge defines a refine-
ment operator that orders the search space of candi-
date equation structures, defined by the user-specified
grammar, from the simplest ones to more complex.
Exhaustive and »beam search strategies are then being
employed to the search space and for each structure
considered during the search, Lagramge uses gradient-
descent methods for nonlinear optimization to solve the
parameter estimation task. The heuristic function that
guides the search is based on the »mean squared error
that measures the discrepancy between the measured
and simulated values of the observed system variables.
Alternatively, Lagramge can use heuristic function that
takes into account the complexity of the equation and is
based on the »minimum description length principle.
Successors of Lagramge, equation discovery meth-
ods, Lagramge 2 (Todorovski & Dzeroski, 2007),
IPM (Bridewell, Langley, Todorovski, & Dzeroski,
2008), and HIPM (Todorovski, Bridewell, Shiran, &
Langley, 2005), primarily focus on the improvement of
the knowledge representation formalism used to for-
malize the modeling knowledge and transform it to
»language bias for equation discovery. All of them
follow the paradigm of »-inductive process modeling.

At first, equation discovery methods dealt with the
problem of learning algebraic equations from data.
Equation discovery method Lagrange (DZzeroski &
Todorovski, 1995) extended the scope of equation dis-
covery to modeling dynamics from Ptime series data
with ordinary differential equations. It took a naive
approach based on transforming the task of discover-
ing ordinary differential equations to the simpler task
of discovering algebraic equations, by extending the set
of observed system variables with numerically calcu-
lated time derivatives thereof. By doing so, any of the




330

Error

existing equation discovery methods could be, in prin-
ciple, used to discover differential equations. However,
the naive approach has a major drawback of introduc-
ing large numerical errors, due to instability of meth-
ods for numerical differentiation. Equation discovery
method GoldHorn (Krizman, DzZeroski, & Kompare,
1995) replaced the instable numerical differentiation
with the stable numerical methods for the inverse prob-
lem of integration. Goldhorn also upgrades Lagrange
with filtering methods to cope with measurement errors
and noisy data.

While ordinary differential equations can model
systems that change their state along a single dimen-
sion, time, partial differential equations can be used to
model systems that change along many (temporal and
spatial) dimensions. The naive approach of introduc-
ing numerically calculated partial derivatives has been
used in the Paddles (Todorovski, DZeroski, Srinivasan,
Whiteley, & Gavaghan, 2000) method for discovery of
partial differential equations. The method first slices the
measurement data into narrow spatial subsets, induces
ordinary differential equations in each of them, and uses
most frequently obtained equation structures to extend
them with partial derivatives and to obtain a relatively
small class of partial differential equation structures to
explore. All the equation discovery tasks in Paddles are
solved using Lagramge (Todorovski & DZeroski, 1997).

Applications

Equation discovery methods have been applied to
various tasks of discovering equation-based laws and
models from measured and/or simulation data. Appli-
cation domains range from physics (mechanical and
electrical engineering, fluid dynamics) (Takashi &
Hiroshi, 1998; Todorovski & DzZeroski, 1997, 2007),
through ecology (population dynamics) (Todorovski &
Dzeroski, 2007; Todorovski et al., 2005) to biochemistry
(chemical kinetics) (DZeroski & Todorovski, 2008; Lan-
gley, Shiran, Shrager, Todorovski, & Pohorille, 2006).

Cross References
»Inductive Process Modeling
»Language Bias

»Learning as Search

» Linear Regression

> Measurement Scales

> Regression
»System Identification

Recommended Reading

Bridewell, W., Langley, P., Todorovski, L., & Dzeroski, S. (2008).
Inductive process modeling. Machine Learning, 71(1), 1-32.
Dzeroski, S., & Todorovski, L. (1995). Discovering dynamics: From
inductive logic programming to machine discovery. Journal of

Intelligent Information Systems, 4(1), 89-108.

Dzeroski, S., & Todorovski, L. (2008). Equation discovery for sys-
tems biology: Finding the structure and dynamics of biological
networks from time course data. Current Opinion in Biotechnol-
ogy, 19, 1-9.

Falkenhainer, B., & Michalski, R. (1990). Integrating quantita-
tive and qualitative discovery in the ABACUS system. In
Y. Kodratoff & R. Michalski (Eds.), Machine learning: An artifi-
cial intelligence approach. San Mateo: Morgan Kaufmann.

Kokar, M. M. (1986). Determining arguments of invariant functional
descriptions. Machine Learning, 1(4), 403-422.

Krizman, V., Dzeroski, S., & Kompare, B. (1995). Discover-
ing dynamics from measured data. Electrotechnical Review,
62(3-4), 191-198.

Langley, P. (1981). Data-driven discovery of physical laws. Cognitive
Science, 5(1), 31-54.

Langley, P., Shiran, O., Shrager, J., Todorovski, L., & Pohorille, A.
(2006). Constructing explanatory process models from biologi-
cal data and knowledge. Artificial Intelligence in Medicine, 37(3),
191-201.

Schaffer, C. (1993). Bivariate scientific function finding in a sampled,
real-data testbed. Machine Learning, 12(1-3), 167-183.

Takashi, W., & Hiroshi, M. (1998). Discovery of first-principle equa-
tions based on scale-type-based and data-driven reasoning.
Knowledge-Based Systems, 10(7), 403-411.

Todorovski, L., Bridewell, W., Shiran, O., & Langley, P. (2005).
Inducing hierarchical process models in dynamic domains. In
M.M. Veloso & S. Kambhampati (Eds.), Proceedings of the twen-
tieth national conference on artificial intelligence, Pittsburgh,
PA, USA.

Todorovski, L., & Dzeroski, S. (1997). Declarative bias in equation
discovery. In D.H. Fisher (Ed.), Proceedings of the fourteenth
international conference on machine learning, Nashville, TN,
USA.

Todorovski, L., & Dzeroski, S. (2007). Integrating domain knowl-
edge in equation discovery. In S. Dzeroski & L. Todorovski
(Eds.), Computational discovery of scientific knowledge. LNCS
(Vol. 4660). Berlin: Springer.

Todorovski, L., Dzeroski, S., Srinivasan, A., Whiteley, J., & Gav-
aghan, D. (2000). Discovering the structure of partial differen-
tial equations from example behaviour. In P. Langley (Ed.), Pro-
ceedings of the seventeenth international conference on machine
learning, Stanford, CA, USA.

Zembowitz, R., & Zytkow, J. (1992). Discovery of equations: Experi-
mental evaluation of convergence. In W. R. Swartout (Ed.), Pro-
ceedings of the tenth national conference on artificial intelligence,
San Jose, CA, USA.

|
Error

»Error Rate



Evaluation

331

| Error Correcting Output Codes

Synonyms
ECOC

Definition

Error correcting output codes are an »ensemble learn-
ing technique. It is applied to a problem with multiple
classes, decomposing it into several binary problems.
Each class is first encoded as a binary string of length
T, assuming we have T models in the ensemble. Each
model then tries to separate a subset of the original
classes from all the others. For example, one model
might learn to distinguish “class A” from “not class A”
After the predictions, with T' models we have a binary
string of length T. The class encoding that is closest to
this binary string (using Hamming distance) is the final
decision of the ensemble.

Recommended Reading

Kong, E. B., & Dietterich, T. G. (1995). Error-correcting output cod-
ing corrects bias and variance. In International conference on
machine learning.

|
Error Curve

»Learning Curves in Machine Learning

! Error Rate

Ka1 MinG TING

Synonyms
Error

Definition

Error rate refers to a measure of the degree of predic-
tion error of a »model made with respect to the true
model.

The term error rate is often applied in the context
of »classification models. In this context, error rate =
P(A(X) # Y), where XY is a joint distribution and the
classification model A is a function X — Y. Sometimes

this quantity is expressed as a percentage rather than a
value between 0.0 and 1.0.

Two common measures of error rate for »regression
models are »mean squared error and »mean absolute
error.

The error rate of a model is often assessed or esti-
mated by applying it to test data for which the »class
labels (Y values) are known. The error rate of a classifier
on test data may be calculated as number of incorrectly
classified objects/total number of objects. Alternatively, a
smoothing function may be applied, such as a »Laplace
estimate or an Pm-estimate.

Error rate is directly related to »accuracy, such that
error rate = 1.0 — accuracy (or when expressed as a
percentage, error rate = 100 — accuracy).

Cross References
» Accuracy

» Confusion matrix

» Mean absolute error
» Mean squared error

| Error Squared

Synonyms
Squared error

Definition

Error squared is a common »loss function used with
»regression. This is the square of the difference between
the predicted and true values.

. .. .
Estimation of Density Level Sets

» Density-Based Clustering

[
Evaluation

Evaluation is a process that assesses some property
of an artifact. In machine learning, two types of
artifacts are most commonly evaluated, »models and
algorithms. »Model evaluation often focuses on the
predictive efficacy of the model, but may also assess fac-
tors such as its complexity, the ease with which it can




332

Evaluation Data

be understood, or the computational requirements for
its application. > Algorithm evaluation often focuses on
evaluation of the models an algorithm produces, but
may also appraise its computational efficiency.

[
Evaluation Data

» Test Data
» Test Set

»Evolutionary Feature Selection and Construction
»Evolutionary Fuzzy Systems

» Evolutionary Games

»Evolutionary Kernel Learning

» Evolutionary Robotics

» Neuroevolution

»Nonstandard Criteria in Evolutionary Learning
» Test-Based Coevolution

[
Evaluation Set

» Test Set

I . .
Evolution of Agent Behaviors

» Evolutionary Robotics

[
Evolution of Robot Control

» Evolutionary Robotics

! Evolutionary Algorithms

Synonyms
Evolutionary computation; Evolutionary computing;
Genetic and evolutionary algorithms

Definition

Generic term subsuming all machine learning and opti-
mization methods inspired by neo-Darwinian evolu-
tion theory.

Cross References

»Coevolutionary Learning

» Compositional Coevolution

» Evolutionary Clustering

» Evolutionary Computation in Economics

» Evolutionary Computation in Finance
»Evolutionary Computational Techniques in
Marketing

I . .
Evolutionary Clustering

Davip CornE!, JuLia HANDL?,

JosHUA KNOWLES?

"Heriot-Watt University, Edinburgh, UK
*University of Manchester

Synonyms
Cluster optimization; Evolutionary grouping; Genetic
clustering; Genetic grouping

Definition

Evolutionary clustering refers to the application of
»evolutionary algorithms (also known as genetic
algorithms) to data Pclustering (or cluster analy-
sis), a general class of problems in machine learning,
with numerous applications throughout science and
industry. Different definitions of data clustering exist,
but it generally concerns the identification of homo-
geneous groups of data (clusters) within a given data
set. That is, data items that are similar to each other
should be grouped together in the same cluster or group,
while (usually) dissimilar items should be placed in sep-
arate clusters. The output of any clustering method is
therefore a specific collection of clusters. If we have
a specific way to evaluate (calculate the quality of) a
given grouping into clusters, then we can consider the
clustering task as an optimization problem. In gen-
eral, this optimization problem is NP hard, and it is
common to address it with advanced heuristic or meta-
heuristic methods. Evolutionary algorithms are promi-
nent among such methods, and have led to a vari-
ety of promising and successful techniques for cluster
optimization.



Evolutionary Clustering

333

Motivation and Background

In many problem-solving scenarios, we have large
amounts of data. We need to cluster those data sensibly
into groups in order to help us understand the problem
and decide how to proceed further (see »clustering).
It is common, in fact, for this initial “cluster analy-
sis” stage to be the most important (or only) stage in
the investigation. In bioinformatics, for example, a fre-
quent activity is the clustering of gene expression data
(data that indicate, for a specific cell, how active each
of several thousands of genes are at different points
in time, or under different experimental conditions).
A very important current challenge is to understand
the role of each gene; by clustering such data, which
means arranging genes into groups such that genes in
the same group have similar patterns of activity, we
find important clues about genes whose role is cur-
rently unknown, simply by assigning their putative role
as being related to that of genes (whose role is known)
that are in the same cluster. Meanwhile, a ubiquitous
situation in industry and commerce is the clustering of
data about customers or clients. Here, the role of clus-
tering is all about identifying what types of clients (for
example, based on age, income, postcode, and many
other attributes that may make up a customer’s pro-
file) buy or use certain kinds of products and services.
Effective ways to identify groups enable companies to
better target their products and their direct marketing
campaigns, and/or make more effective decisions about
loans, credit and overdrafts. Many machine learning
techniques can be used to predict things about cus-
tomers, or predict things about genes, and so forth.
However, the value of clustering (in a similar way
to visualization of the data) is that it can lead to a
much deeper understanding of the data, which in turn
informs the continuing process of applying machine
learning methods to it. In this general context, there are
many well-known and well-used clustering methods,
such as k-means, hierarchical agglomerative clustering,
neighbor-joining, and so forth. However, there are also
well-known difficulties with these methods; specifically,
there is often a need to choose in advance the number of
clusters to find in the data, and: they tend to be strongly
biased towards finding certain types of groupings. For
these reasons, methods that are more flexible have been
recently investigated, and evolutionary clustering tech-
niques are prominent among these. They are flexible in

that (unlike k-means, for example), the choice of the
number of clusters does not have to be made a priori,
and the method is not tied to any particular way of
identifying the distance between two items of data, nor
is there any a priori »inductive bias concerning what
counts as a good clustering. That is, in broad terms,
an evolutionary clustering algorithm allows a user to
decide in advance on a definition of cluster quality that
is suitable for the problem at hand, and to decide in
advance how many clusters are sought, or to leave that
decision open; these decisions are then “plugged in to”
the algorithm which then proceeds to search for good
clusterings.

Structure of Learning System

Given a dataset to be clustered, the concept of evolu-
tionary clustering covers two distinct ways in which
we can address the problem of finding the best clus-
tering. Each of these approaches is under continuing
research, and has proven successful under different con-
ditions. The first approach is to use an evolutionary
algorithm to search the space of candidate groupings of
the data; this is the most straightforward approach, and
perhaps the most flexible in the sense discussed above.
The second approach is to “wrap” an evolutionary algo-
rithm around a simpler clustering algorithm (such as
k-means), and either use the evolutionary algorithm to
search the space of features for input to the cluster-
ing algorithm (i.e., the evolutionary algorithm is doing
»feature selection in this case), or to search a space
of parameters, such as the number of clusters, feature
weights, and/or other parameters of the clustering algo-
rithm in use. Central in all of these approaches is a way
to measure the quality of a clustering, which in turn
depends on some given metric that provides a distance
between any pair of data items. Although some applica-
tions often come with pre-identified ways to measure
distance and cluster quality, in the following we will
assume the most common approach, in which distance
is the Euclidean distance between the data items (per-
haps Hamming distance, in cases where the data are not
numeric), and the measure of quality for a given clus-
tering is the ratio of within-cluster and between-cluster,
where within-cluster is the mean distance between pairs
of items that are in the same cluster, and between-cluster



Evolutionary Clustering

Direct evolutionary clustering Start Indirect evolutionary clustering
l o |

Initialise a population of clusters

l

Evaluate the quality of each
clusters in the population

l

Has a termination condition Yes

been reached?

No

Initialise a population of
parameter vectors for a specific
clustering algorithm C

l

Evaluate the quality of each
vector, by running C on the data, —
and evaluating the quality of the
resulting clustering

l

Yes | Has a termination condition

Via, selection and variation,
generate a new population of
clusters

Stop generate a new population of

been reached?

No

Via, selection and variation,

parameter vectors.

Evolutionary Clustering. Figure 1. The two main approaches to evolutionary clustering; direct (left) and indirect (right)

is the mean distance between pairs of items that are in
different clusters.

We illustrate the two main approaches to evolution-
ary clustering in Fig. 1.

On the left in Fig. 1, we see the direct approach, in
which the evolutionary algorithm searches the space of
clusterings of the data. The key features in this approach
are the encoding and »genetic operators. After evalu-
ating the quality of each of a population of clusterings,
a new population is generated from the old one via
selection and variation. Essentially, some individuals
from the current population are treated as “parents,’
and new ones are produced from these by using genetic
operators. The encoding specifies precisely how a spe-
cific data clustering is represented; while the operators
specify how new clusterings are derived from the old
ones. To take a simple example, suppose we needed to
cluster 10 items (A, B, C,..., ]) into an arbitrary number
of groups. In a simple encoding, we might represent a
clustering as a vector of 10 labels, independently chosen
from 1 to 10, in which the ith element gives the group
label of the ith item. Hence, the following individual in
our population of clusterings:

2355157327

represents the following grouping:

(A,1) (B,H) (C,D,F) (E) (G, ])

Given such a representation, a typical genetic operator
might be to randomly change a single label in a single
parent. For example, we may choose the fifth element
in the above vector and change it randomly to 7, effec-
tively placing item E in the same group as items G and L.
Further notes about operators for this and other encod-
ings are given in a special subsection below.

There are several examples of the second type of
approach, called “indirect” evolutionary clustering in
the Fig. 1 (right). This approach is often used where the
“internal” clustering method (“C,” in the figure) is very
sensitive to initialization conditions and/or parameters
of the metric in use to measure distance between items.
For example, if C is the k-means algorithm, then, for
each application of C, we need choices for the parame-
ter k, and for each of k initial cluster center positions in
the data space. The parameter vectors referred to in the
figure would be precisely these; the evolutionary algo-
rithm searches this parameter space, finding those that
lead to an optimized clustering from k-means.

Figure 2 illustrates why this will often be a more
effective approach than k-means alone. In this case, it
is entirely unclear whether these data form two, four,
or even five clusters. There are two widely separated
groups of points, and this two-cluster solution may be



Evolutionary Clustering

335

O
@

C P
o0 g 00
'

0% o
00
0e®

e
O

Evolutionary Clustering. Figure 2. An example with many potential interpretations of the number of clusters

easily found by a 2-means algorithm. However, to the
human eye there is also a clear four-cluster solution,
further analysis of which may lead to better understand-
ing of these data. This four-cluster solution is difficult
for a 4-means algorithm to find, depending on very
fortunate initial settings for the cluster centers. Mean-
while, it is worth noting that there are potentially five
clusters, as the group on the right can be perceived as
a central group of two items, surrounded by a single
backward-C-shaped group. The “backward-C” cluster is
an example that simply cannot be reliably detected (as
a distinct cluster from the group of two items contained
within it), with most standard cluster analysis meth-
ods. Traditional approaches invariably incorporate the
assumption that clusters will be centered around a par-
ticular position, with the likelihood of a point belonging
to that cluster depending monotonically on distance
from that position. However, on of the strengths of evo-
lutionary clustering is that it provides the flexibility to
work effectively with arbitrary definitions of what may
constitute a valid cluster.

The more frequently researched style of evolutionary
clustering is the direct approach, and the development
of this approach in recent years is essentially charac-
terized by certain key ideas for the encoding method.
Encodings range from the straightforward representa-
tion noted above (with the ith gene coding for the clus-
ter membership of the ith data item), to more complex
representations, such as matrix-based or permutation-
based representations.

Before providing a brief description of other encod-
ings it is worth briefly examining a well-known disad-
vantage of the simple encoding. Given that they have
a population, evolutionary algorithms offer the oppor-
tunity to use multi-parent genetic operators - that is,
we can design operators that produce a new candidate
clustering given two or more “parent” clusterings. Such
operators are neither mandatory nor necessarily benefi-
cial in evolutionary algorithms, and there is much litera-
ture discussing their merits and how this depends on the
problem at hand. However, they are often found help-
ful, especially in cases where we can see some intuitive
merit in combining different aspects of parent solutions,
resulting in a new solution that seems to have a chance at
being good, but which we would have been immensely
unlikely to obtain from single-parent operators given
the current population. In this context, we can see, as
follows, that the opposite seems to be the case when
we use standard multi-parent operators with the sim-
ple encoding. Suppose the following are both very good
clusterings of ten items:

Clustering1:1111122222
Clustering 2: 2222211111

Clearly, a good clustering of these items places items 1-5
together, and items 6-10 together, in separate groups. It
is also clear, however, that using a standard crossover
operator between these two parents (e.g., producing
a child by randomly choosing between clusterings for
each item in turn) will lead to a clustering that mixes
items from these two groups, perhaps even combining




336

Evolutionary Clustering

them all into one group. The main point is that a
crossover operation destroys the very relationships
between the items that underpinned the fitness of the
parents.

One of the more prominent and influential rep-
resentations for clustering, incorporating a design for
far more effective multi-parent operators, was that of
Falkenauer’s “Grouping Genetic Algorithm,” which also
provides a general template for the implementation of
evolutionary algorithms for grouping problems. The
essential element of Falkenauer’s method is that multi-
parent operators recombine entire groups rather than
item labels. For example, suppose we encode two clus-
terings explicitly as follows:

Clustering 3: (A, I, B, H) (C,G) (D, E,E ])
Clustering 4: (A, I, B, H) (C,D,]) (E,E G)

A Falkenauer-style crossover operator works as follows.
First, we randomly choose some entire groups from the
first parent and some entire groups from the second
parent; the child in this case might then be:

(A,1,B,H) (C,G) (E,E G)

in which the groups that come from the first parent are
underlined. Typically, we will now have some repeated
items; we remove the entire groups that contain these
items and came from the first parent, in this case leaving
us with:

(A,I,B,H) (E,EG)

The final step is to add back the missing items, plac-
ing them one by one into one of the existing groups, or
perhaps forming one or more new groups. The applica-
tion in hand will often suggest heuristics to use for this
step. In clustering, for example, we could make use of
the mean Euclidean distance from items in the groups
so far. Whatever the end result in this case, note that the
fact that A, I, B, and H were grouped together in both
parents will be preserved in the child. Similarly, the E,
E G grouping is inherited directly from a parent.

A more recent and effective approach, specifi-
cally for clustering, is one first proposed in Park
and Song (1998) called a link-based encoding. In this
approach, the encoding is simply a list of item indices,
and is interpreted as follows. If the ith element in the
permutation is j, then items i and jare in the same group.
So, for example,

BCEEAEGCBG
represents the following grouping:
(A,B,C,D,E,H,) (EG,])

Standard crossover operators may be used with this
encoding, causing (intuitively) a reasonable degree of
exploration of the space of possible clusterings, yet pre-
serving much of the essential “same-group” relation-
ships between items that were present in the parents.
In Handl and Knowles (2007) it is shown why this
encoding is effective compared with some alternatives.

We also briefly note other encodings that have been
prominent in the history of this subfield. An early
approach was that of Jones and Beltramo, who intro-
duced a “permutation with separators” encoding. In this
approach, a clustering is encoded by a permutation of
the items to be clustered, with a number of separators
indicating cluster boundaries. For example, if we have
ten items to cluster (A-J) and use S as the separator, the
following is a candidate clustering:

AIBHSCGSDEF]

representing the same grouping as that of “Clustering
3” above. Jones and Beltramo offered a variant of this
encoding that is a cross between the direct and indi-
rect approaches. In their greedy permutation encoding,
a clustering is represented by a permutation (with no
separator characters), with the following interpretation:
the first k items in the permutation become the centers
of the first kclusters. The remaining items, in the order
they appear, are added to whichever cluster is best for
that item according to the objective function (clustering
quality metric) in use.

It can be strongly argued that the clustering problem
is inherently multiobjective, yet most methods employ
only a single performance criterion to optimize. In fact,
there are at least three groups of criteria commonly
used (but usually one at a time) in clustering (both
evolutionary clustering and other methods). These are:
compactness, connectedness, and spatial separation.
When an algorithm optimizes for compactness, the idea
is that clusters should consist of highly homogeneous
data items only - that is, the distance (or other measure
of variation) between items in the same cluster should



Evolutionary Computation in Economics

337

be small. In contrast, if we optimize the degree of con-
nectedness, then we are increasing the extent to which
neighboring data items should share the same cluster.
This can deal with arbitrarily-shaped clusters, but can
lack robustness when there is little spatial separation
between clusters. Finally, spatial separation is usually
used as a criterion in combination with compactness,
or with a measure of the balance of cluster sizes.

In multiobjective clustering, the idea is to explicitly
explore the solutions that are trade-offs between the
conflicting criteria, exploiting the fact that these trade-
off solutions are often the ones that most appeal as
intuitively “correct” solutions to a clustering problem.
Handl and Knowles make use of Park and Song’s link-
based encoding in their multiobjective evolutionary
algorithm, MOCK, which treats a clustering problem as
a two-objective problem, using measures of compact-
ness and connectedness for the two objectives. MOCK’s
multiobjective search process is based on the PESA-II
evolutionary multiobjective optimizer (Corne, Jerram,
Knowles & Oates, 2001). Following use of MOCK for
a clustering problem, an intermediate result (inherent
in multiobjective optimization methods) is a (possi-
bly large) collection of different clusterings. These will
range from clusterings that score very well on compact-
ness but poorly on connectedness, through to cluster-
ings that achieve excellent connectedness at the expense
of poor compactness. It is useful to note that the number
of clusters tends to increase as we go from poor con-
nectedness to high-connectedness clusters. Arguably, in
many applications such a collection of alternative solu-
tions is useful for the decision-maker. Nevertheless, the
MOCK approach incorporates an automated model-
selection process that attempts to choose an ideal
clustering from the discovered approximate Pareto
front. This process is oriented around the notion of
determining the “right” number of clusters, and makes
use of Tibshirani, Walther, and Hastie (2001) gap statis-
tic (full details are in Handl & Knowles, 2007). Extensive
comparison studies, using a wide variety of clustering
problems and comparing with many alternative cluster-
ing methods, show consistent performance advantages
for the MOCK’s approach.

Cross References

» Clustering

» Feature Selection
»Semi-Supervised Learning

»Supervised Learning
» Unsupervised Learning

Recommended Reading

Cole, R. M. (1998). Clustering with genetic algorithms. Masters
dissertation, Department of Computer Science, University of
Western Australia.

Corne, D. W, Jerram, N. R., Knowles, J. D., & Oates, M. J. (2001).
PESA-II: Region-based selection in evolutionary multiobjective
optimization. In Proceedings of the GECCO (pp. 283-290).

Delattre, M., & Hansen, P. (1980). Bicriterion cluster analysis. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2(4),
277-291.

Falkenauer, E. (1998). Genetic algorithms and grouping problems.
New York: Wiley.

Handl, J., & Knowles, J. (2007). An evolutionary approach to mul-
tiobjective clustering. IEEE Transactions on Evolutionary Com-
putation, 11(1), 56-76.

Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: A
review. ACM Computing Surveys, 31(3), 264-323.

Jones, D. R., & Beltramo, M. A. (1991). Solving partitioning problems
with genetic algorithms. In R. K. Belew & L. B. Booker (Eds.),
Proceedings of the fourth international conference on genetic
algorithms (pp. 442-449). Morgan Kaufmann.

Park, Y.-J., & Song, M.-S. (1998). A genetic algorithm for cluster-
ing problems. In Proceedings of the third annual conference on
genetic programming (pp. 568-575). Morgan Kaufman.

Tibshirani, R., Walther, G., & Hastie, T. (2001). Estimating the num-
ber of clusters in a dataset via the Gap statistic. Journal of
the Royal Statistical Society: Series B (Statistical Methodology),
63(2), 411-423.

Evolutionary Computation

»Evolutionary Algorithms

! Evolutionary Computation in

Economics

SERAFIN MARTINEZ-JARAMILLO, BILIANA
ALEXANDROVA-KABADJOVA,

ALMA LiL1A GARCIA-ALMANZA,
ToNaTIUH PENA CENTENO

Bank of Mexico,

Mexico, D.E

Definition

Evolutionary computation (EC) in economics is an area
of knowledge which involves the use of any of the
EC techniques, also known as evolutionary algorithms
(EAs), in order to approach the topics within the eco-
nomic sciences. This area of knowledge is different from




338

Evolutionary Computation in Economics

the Evolutionary Economics field which does not neces-
sarily apply EC techniques to study economic problems.
The use of EC in economics pursues different purposes
mainly to overcome some of the limitations of the clas-
sical economic models and to relax some of the strong
assumptions made in such models.

Motivation and Background

Evolutionary computation (EC) is a branch of Machine
Learning which is inspired in many forms by the prin-
ciple of evolution. EC techniques, among many other
machine learning techniques, have proven to be quite
flexible and powerful tools in many different fields and
disciplines. Economics-affine fields are by no means the
exception for this widespread use of these evolutionary
inspired techniques.

In addition to the undeniable necessity of com-
puting in almost every aspect of our modern lives,
numerous problems in economics possess algorithmic
nature. Therefore, economists must consider computa-
tional complexity as an important analysis tool due to
the fact that some of such problems belong to the dislik-
able class of NP-complete (The NP-complete computa-
tional complexity class is a subset of “harder” problems
from the NP computational class, which is the set of
all the decision problems which can be solved using a
Nondeterministic Turing Machine in polynomial time).
problems. Having said so, EC has been intensively used
as an alternative approach to analytical methods in
order to tackle numerous NP-complete problems with
relative good success.

The first work in economics (Clarifying: such first
work approached a classic game known as the Pris-
oners Dilemma), which involved the use of EC dates
back to the 1980s, in Axelrod and Hamilton (1981)
and Axelrod (1987) the authors used Genetic Algo-
rithms (GAs) to derive strategies for the Iterated Pris-
oner’s Dilemma (IPD). From then, EC techniques in
economics had been used in areas such as macroe-
conomics, econometrics, game theory, auctions, learn-
ing and agent-based models. There is even a school
of thought in economics known as “Evolutionary
Economics” (See for example Witt (2008) for an
introduction), whose approach to the study of eco-
nomics involves concepts in evolution but does not
necessarily rely on EC techniques.

One of the most relevant concepts in the economics
science is the concept of rationality. This concept is at
the core of most of the economic models, since it is
frequently assumed that economic agents behave in a
fully rational way. Unfortunately, it is not clear if such
assumption holds after the irrational behavior observed
during the recurrent financial crises.

Herbert A. Simon is probably the best known scien-
tist to claim that “decision-making” under uncertainty
is not a fully rational process. He developed his theory
based on the concept of “bounded rationality” (Simon,
1957), and he was one of the pioneers in the field of artifi-
cial intelligence (AI) as well as a highly reputed psychol-
ogist and economist. Later, in Arthur (1991), the author
made important contributions to the development of
agents with bounded rationality, using computational
tools. In addition, recent ideas about rationality from
a computer scientist’s point of view are found in Tsang
(2008). In this context to be more precise about the
meaning of bounded rationality, let us quote Herbert A.
Simon:

» ...boundedly rational agents experience limits in formu-
lating and solving complex problems and in process-
ing (receiving, storing, retrieving, transmitting) informa-
tion...

Some other common assumptions behind the clas-
sical economic theory are that the participants of the
model have homogeneous preferences and they interact
globally (Axtell, 2000). In other words, having limited
number of participants in the model, the theorists
assume that those individuals exhibit the same prefer-
ences and all of them interact with each other. These
agents are called “representative agents” Moreover, the
analysis is focused only at the point of equilibrium,
and aspects such as asymmetric information, imper-
fect competition and network externalities are not
considered.

Departing from the assumption of full rational-
ity and homogeneous expectations, the horizon (and
the design issues) opens widely. The modeling of the
learning behavior of the agents is a central part of the
research agenda in computational economics. Regard-
ing the agents’ learning process, in Lucas (1986), the
author provided an interpretation of adaptive behavior
from the economics point of view:



Evolutionary Computation in Economics

339

» In general terms, we view or model an individual as a
collection of decision rules (rules that dictate the action
to be taken in given situations) and a set of preferences
used to evaluate the outcomes arising from particular
situation-action combinations. These decision rules are
continuously under review and revision; new decision
rules are tried and tested against experience, and rules
that produce desirable outcomes supplant those that
do not.

There are many useful techniques to implement
what Lucas defined as adaptive learning, like »genetic
algorithms (GAs), as has been done in Bullard and
Dufty (1999), and »genetic programming (GP) as has
been done in Martinez-Jaramillo and Tsang (2009b).
GP has been previously described as a suitable way to
model economic learning in Edmonds (1999). In Bren-
ner (2006), the author provides us a summary of the
available options to model agent behavior and learning
in economics.

Nevertheless, the more traditional economists are
still reluctant to accept an approach in which there is
not a rational expectations type of agent, where instead
there are inductive, boundedly rational heterogeneous
agents (Arthur, 1994).

Two of the most relevant areas in economics are
macroeconomics and econometrics. Macroeconomics
is the branch of economics which analyzes the national
economy and its relations with the international econ-
omy. Macroeconomic analysis tries to understand the
relationships between the broad sectors of the economy
by making use of aggregated economic variables such
as inflation, unemployment, interest rates, total output,
etc. EC has been used in order to analyze some of such
macroeconomic variables, a field which is dominated by
econometric analysis. Econometrics is a field within the
wider area of economics which involves the use of statis-
tics and its tools for the measurement of relationships
postulated by economic theory (Greene, 2003).

Many methods in econometrics involve an opti-
mization process, and it is well known that EC is
particularly suitable for optimization problems. Prob-
ably one of the first applications of GP in econo-
metrics was done by the creator of GP himself in
Koza (1992). Additionally, in Agapie and Agapie (2001)

the authors use GAs and simulated annealing (SA)
for econometric modeling. They found that the per-
formance of the evolutionary algorithms (EAs) is
better than the performance of traditional gradient
techniques on the specific models in which they per-
formed the comparison. Finally, Ostermark (1999) uses
a Hybrid GA in several ill-conditioned econometric
and mathematical optimization problems with good
results.

In addition to the usage of EC in econometrics, some
classical economic models such as the Cobweb model
and exchange rate models had been also approached
with EC techniques. For instance, in Arifovic (1994) and
Chen and Yeh (1996) to approach the Cobweb model,
in the former work the author uses GAs, whereas in
the latter the authors use GP. Furthermore, Arifovic
explores the use of GAs in foreign exchange markets in
Arifovic (1996). The GA mechanism developed in such
works evolved decision rules that were used to deter-
mine the composition of the agents’ portfolios in a for-
eign exchange market. Arifovic made two observations
rarely seen in the standard overlapping generations
(OLG) model with two currencies. First, she evidenced
that the returns and exchanges rates were gener-
ated endogenously, and second, she observed that the
model’s equilibrium dynamics is not stable and shows
bounded oscillations (the theoretical model implies a
constant exchange rate).

The use of GAs in economic modeling is not
restricted to the above mentioned works. In Bullard,
Arifovic, and Dufty (1995), the authors studied a ver-
sion of the growth model in which the physical capital
is accumulated in a standard form, but the human cap-
ital accumulation is subject to increasing returns. In
their model, the agents take two decisions when they
are young: how much to save by renting physical capital
to the companies and how much to invest in training.
Returns on training depend on the average level of the
human capital of the economy. The authors introduce
the agents’ learning by means of GAs. In Marimon,
McGrattan, and Sargent (1990), Marimon develops
an economic model in which the agents adapt by
means of a GA.

Game Theory is a branch of applied mathematics that
attempts to model the individual’s strategic behavior.




340

Evolutionary Computation in Economics

The first study considered to establish the fundamentals
of the field is the book “Theory of Games and Economic
Behavior” (von Neumann & Morgenstern, 1944). The
idea behind this theory is that the success of the indi-
vidual’s decisions depends on the decisions of others.
While originally, the aim of the theory was to study the
competition in which the agent does better at another’s
expense (zero sum games), now it has been extended
to study a wider class of interactions among individu-
als. Furthermore, it is extensively used in economics,
biology, and political science among some other
disciplines.

A well-defined mathematical object, the game con-
sists of a set of players and a set of strategies (decisions)
available to those players. In addition, for each combi-
nation of strategies a specification of payoffs is provided.
The aim of the traditional applications of the game
theory was to find a Nash equilibrium, a solution con-
cept, in which each player of the game adopts a strategy
that is unlikely to be changed. This solution concept
was named after John Nash, whose work was published
in the early 1950s (Nash, 1950). Nevertheless, it took
almost 20 years to fully realize what a powerful tool
Nash has created. Nowadays, Game Theory is one of the
best established theories in economics and it has been
extensively used to model the interactions between the
economic agents. However, games typically have many
Nash equilibria and one of the main assumptions is
that the agents behave in a rational way. In more real-
istic games, the equilibrium selection problem does not
have an easy solution though, and the human behavior
observed in real life is frequently irrational.

Given the above mentioned constraints, in order to
go further, the Evolutionary Game Theory was orig-
inated as an application of the mathematical theory
of games to biological contexts (see »Evolutionary
Games). In this field, Maynard Smith is considered
to be the first one to define the concept of Evolu-
tionary Stable Strategy in Maynard Smith (1972). Fur-
thermore, the possibility of using computer modeling
as an extension of the theory of games was first explored
in Axelrod and Hamilton (1981). Since then, computer
science has been used in traditional game theory prob-
lems, like the strategic behavior of agents in auctions,
auction mechanism design, etc. By providing approxi-
mate solutions in such complex problems this approach
can be useful where analytical solutions have not been

found. For instance, the iterative prisoners’ dilemma is
one of the most studied games by researchers in com-
puter science (Axelrod, 1987). The prisoners’ dilemma
is a classic game that consists of the decision-making
process by two prisoners who can choose to cooperate
or to defect. In the case that the two prisoners choose to
cooperate they get a payoff of three each, in the case that
both choose to defect they get a payoft of one each, and
in the case that any of them decides to defect and the
other to cooperate, the former gets a payoff of five and
the latter a payoft of zero. In equilibrium, both players
decide to defect despite the fact that would be better for
them to cooperate.

Axelrod organized a tournament on the iterated
prisoners’ dilemma in which he asked people from game
theory and amateurs to provide him with strategies.
The surprising result was that a very simple strategy
(Tit for Tat) won the tournament (Axelrod, 1987). After
the reporting of the results from such tournament,
Axelrod was able to provide some mathematical results
on how cooperation can emerge in a population of
egoists. The previous example clearly illustrates how
beneficial was the use of computer science to obtain the-
oretical results in a problem where analytical methods
alone have not delivered the desired outcomes.

Game theory is one of the most important areas in
economics because it has applications to many fields,
such as corporate decision making, microeconomics,
market modeling, public policy analysis, environmen-
tal systems, etc. We can find more applications of EC to
game theory than the IPD. For example, another work
related to game theory and EC is the one done by Dufty
and Engle-Warnick (2002), which deals with the well-
known two-player, repeated ultimatum game. In this
work they used GP as a means of inferring the strate-
gies that were played by subjects in economic decision-
making experiments. Other works, within the field of
EC and game theory, are the duopoly and oligopoly
games (Chen & Ni, 2000). References regarding coop-
eration, coalition, and coordination are also made often
and usually driven by EC techniques, Vriend (1995). In
Jin and Tsang (2006), the authors applied GP to find
strategies for sequential bargaining procedure and con-
firmed that equilibria can be approximated by GP. This
gives opportunity to find approximate solutions to more
complex situations for which theoretical solutions are
yet to be found.



Evolutionary Computation in Economics

341

The interesting research by Riechmann (2002) pro-
poses to study the foundations of the GAs by means
of game theory. Riechmann interprets the GA as an
N-players repeated game in which an individual of the
GA represents a player with a different strategy. Once
the author achieves the interpretation of the learning
process of a GA as an evolutionary game, he attempts
to shed some light on the fundamentals of GAs.

Auction theory studies the behavior of the participants
in auction markets. The study of auctions is relevant
because they define the protocol which is followed by
the participants in some important markets; for exam-
ple, some stock markets, such as the New York Stock
Exchange, operate under a double auction-like mech-
anism. There are many different types of auctions: the
English auction, the Dutch auction, the Vickrey auc-
tions, etc. In Klemperer (2004), there is a good intro-
duction to the field.

EC techniques, particularly GAs, have been inten-
sively used in auctions to derive bidding strategies in
simulated auctions. In Andreoni and Miller (1995), the
author uses adaptive learning, modelled with a GA, in
order to capture patterns which arise in experimental
auctions with humans. Such bidding patterns cannot
be explained by the theoretical models, something that
allowed the exploration of alternative methods such as
adaptive behavior by means of EC. Some other relevant
examples of the study of auctions using EC techniques
are Anthony and Jennings (2003), Byde (2003), Cliff
(2003), Dawid (1999), Mochon, Quintana, Sdez, and
Isasi (2005), and Saez, Quintana, Isasi, and Mochon
(2007).

Agent-based computational economics (ACE) can be
thought of as a branch of a wider area: Agent-based
Modeling (ABM) (Wooldridge, 2002). The field of
agent-based modeling is not restricted to economics,
it has been applied in social sciences in general (Axel-
rod, 2003), in some classical and not so classical prob-
lems in computer science, and in some other disci-
plines. Axelrod provides an account of his experience
using the agent-based methodology for several prob-
lems and he suggests that the ABM can be seen as
a bridge between disciplines. Axelrod and Tesfatsion

provide a good guide to the relevant literature of the
ABM in Axelrod and Tesfatsion (2006). In Chen (2007),
there is a good introduction to agents in economics and
finance; in such work, Chen conceives the agents not
just as economic agents but as computational intelligent
units.

Most of the economic and finance theory is based on
what is known as investor homogeneity or the represen-
tative agent. In ACE the researchers can depart from the
assumptions of homogeneous expectations and perfect
rationality by means of computational-based economic
agents. In 2006, Tesfatsion surveys some of the most
important works and topics on this area of research.

In ACE one of the main goals is to explain
the macrodynamics of the economy by means of
the microinteractions of the economic agents. This
approach to the study of the economy has been called
a “bottom-up” approach in opposition to the more tra-
ditional approaches in economics. An additional pur-
pose of ACE is to handle real-world issues, which has
become possible due to the technological advances in
computational tools. With the use of programming lan-
guages, the agent-based approach allows us to represent
explicitly agents with bounded rationality and hetero-
geneous preferences. Given a specific social structure,
the simulation of the interaction among agents is the
strength and the heart of the ABM. Even in its early
stage of development, ABM is a promising area of
research, which has opened the opportunity to social
scientists to look for new insights in resolving rele-
vant real-world issues. Considered “the third way of
doing science” (Axelrod, 2003), modeling the behav-
ior of the autonomous decision-making entities allows
researchers to simulate the emergence of certain phe-
nomena in order to gain better understanding of the
object of study (Axtell, 2000). In this sense ACE, defined
as “the computational study of economic processes
modelled as dynamic systems of interacting agents”
(Tesfatsion, 2006), is a growing area in the field of ABM.
ACE research is developing rapidly, by using machine
learning techniques, the researchers model the agents as
software programs able to take autonomous decisions.
Consequently, the interactions among the individuals at
the microlevel give rise to regularities at the macrolevel
(globally). The intention is to observe the emerging self-
organizing process for a certain period of time, in order
to study the presence of patterns or the lack of them.




342

Evolutionary Computation in Economics

Currently, the study of this self-organizing capability is
one of the most active areas of ACE research.

One of the most crucial tasks in representing explic-
itly the market participants is the simulation of their
autonomous decisions. Nowadays, advances in AI have
opened possibilities of tackling this issue. In particu-
lar, techniques such as neural networks (NNs), genetic
algorithms (GAs), genetic programming (GP), and
other population-based algorithms are widely used in
the field.

There are some interesting works in which the
agent-based methodology is compared with experi-
ments performed with human beings (Chan, LeBaron,
Lo, & Poggio, 2001; Duffy, 2006). In both the works,
the benefits that each type of research has on each
other are identified. For instance, experimental research
can be used as an important method to calibrate an
agent-based model. On the other hand, agent-based
simulations can be used to explain certain phenomena
present in human experiments. To summarize, there are
many beneficial ways in which both types of research
influence each other.

According to Tesfatsion, the economic research
being done with the ACE methodology can pursue
one of two main objectives: the first one is the con-
structive explanation of macrophenomena and the
second is the design of new economic mechanisms.
In Tesfatsion (2006), Tesfatsion updates the classifica-
tion of the research being made in ACE into four main
categories: empirical understanding, normative under-
standing, methodological advancement, and finally,
qualitative insight and theory generation.

EAs have been used for the modeling of the agents’
learning in multiagent simulations. In multiagent sim-
ulations of economics systems, it is possible to find very
different approaches and topics, just to illustrate some
few examples of the immense amount of works, let us
take a look at the following list:

o Electricity markets (Amin, 2002) (Learning Classi-
fier System).

e Payment card markets (Alexandrova-Kabadjova,
2008) (Population Based Incremental Learning).

e Retail petrol markets (Heppenstall, Evans, & Birkin,
2006) (Genetic Algorithms).

o Stock markets (Arthur et al,, 1997) (Learning Clas-
sifier Systems) and (Martinez-Jaramillo & Tsang,
2009b) (GP).

o Foreign exchange markets (Arifovic, 1996; Izumi &
Ueda, 2001) (Genetic Algorithms).

Related to payment methods and systems, another
economic phenomena characterized with complex
social interaction suitable for ABM is the mar-
ket dynamics of some electronic payment instru-
ments, such as payment cards. In this field, the first
evolutionary computation model was introduced in
Alexandrova-Kabadjova (2008). This paper studies the
competition among payment card scheme. The authors
apply a Generalized Population Based Incremental
Learning Algorithm (GPBIL), an extended version of
the PBIL algorithm, in order to find an optimal price
strategy for the electronic payment instrument.

Cross References

»Evolutionary Algorithms

»Evolutionary Computation in Finance

» Evolutionary Computational Techniques in
Marketing

» Genetic Algorithms

»Genetic Programming

Recommended Reading

Agapie, A., & Agapie, A. (2001). Evolutionary computation for
econometric modeling. Advanced Modeling and Optimization,
3, 1-5.

Alexandrova-Kabadjova, B. (2008). Evolutionary learning of the opti-
mal pricing strategy in an artificial payment card market, Studies
in computational intelligence (Vol. 100). Berlin: Springer.

Amin, M. (2002). Restructuring the electric enterprise: Simulating
the evolution of the electric power industry with intelligent
adaptive agents. In A. Faruqui, & K. Eakin, (Eds.), Market
analysis and resource management (Chap. 3). Boston: Kluwer
Publishers.

Andreoni, J., & Miller, J. H. (1995). Auctions with artificial adaptive
agents. Games and Economic Behavior, 10, 39-64.

Anthony, P., & Jennings, N. R. (2003). Developing a bidding agent for
multiple heterogeneous auctions. ACM Transactions on Internet
Technology, 3, 185-217.

Arifovic, J. (1994). Genetic algorithm learning and the cobweb
model. Journal of Economic Dynamics and Control, 18, 3-28.

Arifovic, J. (1996). The behavior of the exchange rate in the genetic
algorithm and experimental economics. Journal of Political
Economy, 104, 510-541.



Evolutionary Computation in Economics

343

Arthur, W. B. (1991). Learning and adaptiver economic behavior.
Designing economic agents that act like human agents: A behav-
ioral approach to bounded rationality. American Economic
Review, 81, 353-359.

Arthur, W. B. (1994). Inductive reasoning and bounded rationality:
The El Farol problem. American Economic Review, 84, 406-411.

Arthur, W. B., Holland, J. H., LeBaron, B., Palmer, R. G., & Talyer, P.
(1997). Asset pricing under endogenous expectations in an arti-
ficial stock market. In W. Brian Arthur, S. Durlauf, & D. Lane,
(Eds.), The economy as an evolving complex system II. Menlo
Park: Addison-Wesley.

Axelrod, R. (1987). The evolution of strategies in the iterated pris-
oner’s dilemma. In L. Davis (Ed.), Genetic algorithms and sim-
ulated annealing, Research notes in AI (Chap. 3, pp. 32-41). Los
Altos, CA: Morgan Kaufmann.

Axelrod, R. (2003). Advancing the art of simulation in the social
sciences. Japanese Journal for Management Information System,
Special Issue on Agent-Based Modeling, 12 (3).

Axelrod, R., & Hamilton, W. D. (1981). The evolution of cooperation.
Science, 211,1390-1396.

Axelrod, R., & Tesfatsion, L. (2006). A guide for newcomers to
agent-based modeling in the social sciences. In K. L. Judd, &
L. Tesfatsion, (Eds.), Handbook of computational economics,
Volume 2: Agent-based computational economics, Handbooks
in economics (Appendix A, pp. 1647-1656). Amsterdam:
North-Holland.

Axtell, R. (2000). Why agents? on the varied motivations for agent
computing in the social sciences. Working Paper 17, Center on
Social and Economic Dynamics.

Brenner, T. (2006). Agent learning representation — advice in mod-
elling economic learning. In K. L. Judd, & L. Tesfatsion, (Eds.),
Handbook of computational economics, Volume 2: Agent-based
computational economics, Handbooks in economics (Chap. 18,
pp- 895-948). Amsterdam: North-Holland.

Bullard, J., Arifovic, J., & Duffy, J. (1995). Learning in a model of
economic growth and development. Working Paper 1995-017A,
Federal Reserve Bank Of St. Louis.

Bullard, J., & Duffy, J. (1999). Using genetic algorithms to model the
evolution of heterogeneous beliefs. Computational Economics,
13, 41-60.

Byde, A. (2003). Applying evolutionary game theory to auction
mechanism design. In ACM conference on electronic commerce
(pp- 192-193). New York: ACM.

Chan, N. T, LeBaron, B., Lo, A. W,, & Poggio, T. (2001). Agent-based
models of financial markets: A comparison with experimen-
tal markets. MIT Sloan Working Paper 4195-01, Massachusetts
Institute of Technology.

Chen, S.-H. (2007). Editorial: Computationally intelligent agents
in economics and finance. Information Science, 177(5),
1153-1168.

Chen, S.-H., &Ni, C. C. (2000). Simulating the ecology of oligopolis-
tic competition with genetic algorithms. Knowledge Information
Systems, 2(2), 285-309.

Chen, S.-H., & Yeh, C.-H. (1996). Genetic programming learning
in the cobweb model with speculators. In International com-
puter symposium (ICS’96). Proceedings of international confer-
ence on artificial intelligence (pp. 39-46), National Sun Yat-Sen
University, Kaohsiung, Taiwan, R.O.C.

Cliff, D. (2003). Explorations in evolutionary design of online auc-
tion market mechanisms. Electronic Commerce Research and
Applications, 2, 162-175.

Dawid, H. (1999). On the convergence of genetic learning in a double
auction market. Journal of Economic Dynamics and Control, 23,
1545-1567.

Duffy, J. (2006). Agent-based models and human subject exper-
iments. In K. L. Judd, & L. Tesfatsion, (Eds.), Handbook of
computational economics, Volume 2: Agent-based computational
economics, Handbooks in economics (Chap. 19, pp. 949-1012).
Amsterdam: North-Holland.

Duffy, J., & Engle-Warnick, J. (2002). Using symbolic regression to
infer strategies from experimental data. In S.-H. Chen (Ed.),
Evolutionary computation in economics and finance (pp. 61-82).
New York: Physica-Verlag.

Edmonds, B. (1999). Modelling bounded rationality in agent-based
simulations using the evolution of mental models. In T. Brenner
(Ed.), Computational techniques for modelling learning in eco-
nomics (pp. 305-332). Dordrecht: Kluwer.

Greene, W. H. (2003). Econometric analysis (5th ed.). Upper Saddle
River, NJ: Prentice Hall.

Heppenstall, A., Evans, A., & Birkin, M. (2006). Using hybrid agent-
based systems to model spatially-influenced retail markets.
Journal of Artificial Societies and Social Simulation, 9, 3.

Izumi, K., & Ueda, K. (2001). Phase transition in a for-
eign exchange market-analysis based on an artificial market
approach. IEEE Transactions of Evolutionary Computation, 5(5),
456-470.

Jin, N., & Tsang, E. P. K. (2006). Co-adaptive strategies for sequential
bargaining problems with discount factors and outside options.
In Proceedings of the IEEE congress on evolutionary computation
(pp. 7913-7920). Washington, DC: IEEE Press.

Klemperer, P. (2004). Auctions: Theory and practice. The Toulouse
lectures in economics. Princeton, NJ: Princeton University Press.

Koza, J. (1992). A genetic approach to econometric modelling. In
P. Bourgine, & B. Walliser, (Eds.), Economics and cognitive
science (pp. 57-75). Oxford: Pergamon Press.

Lucas, R. E. (1986). Adaptive behavior and economic theory. In
R. M. Hogarth, & M. W. Reder, (Eds.), Rational choice: The con-
trast between economics and psychology (pp. 217-242). Chicago:
University of Chicago Press.

Marimon, R., McGrattan, E., & Sargent, T. J. (1990). Money as a
medium of exchange in an economy with artificially intelli-
gent agents. Journal of Economic Dynamics and Control, 14,
329-373.

Martinez-Jaramillo, S., & Tsang, E. P. K. (2009). An hetero-
geneous, endogenous and coevolutionary gp-based financial
market. IEEE Transactions on Evolutionary Computation, 13,
33-55.

Mochon, A., Quintana, D., Sdez, Y., & Isasi, P. (2005). Analy-
sis of ausubel auctions by means of evolutionary computa-
tion. In IEEE congress on evolutionary computation (CEC 2005)
(pp. 2645-2652). Edinburgh, Scotland.

Nash, J. (1950). The barganing problem. Econometrica, 18,
155-162.

Ostermark, R. (1999). Solving irregular econometric and mathemat-
ical optimization problems with a genetic hybrid algorithm.
Computational Economics, 13(2), 103-115.




344

Evolutionary Computation in Finance

Riechmann, T. (2002). Genetic algorithm learning and economic evo-
lution. Studies in fuzziness and soft computing (pp. 45-59).
Heidelberg: Physica-Verlag.

Saez, Y., Quintana, D., Isasi, P., & Mochon, A. (2007). Effects
of a rationing rule on the ausubel auction: A genetic
algorithm implementation. Computational Intelligence, 23(2),
221-235.

Simon, H. A. (1957). Models of man: Social and rational. New York:
John Wiley.

Maynard Smith, J. (1972). Game theory and the evolution of fighting
(pp- 8-28). Edinburgh: Edinburgh University Press.

Tesfatsion, L. (2006). Agent-based computational economics: A
constructive approach to economic theory. In K. L. Judd &
L. Tesfatsion, (Eds.), Handbook of computational economics,
Volume 2: Agent-based computational economics, Handbooks in
economics (Chap. 16, pp. 831-880). Amsterdam: North-Holland.

Tsang, E. P. K. (2008). Computational intelligence determines effec-
tive rationality. International Journal of Automation and Com-
puting, 5, 63-66.

von Neumann, J., & Morgenstern, O. (1944). Theory of games
and economic behavior. Princeton, NJ: Princeton University
Press.

Vriend, N. J. (1995). Self-organization of markets: An example
of a computational approach. Computational Economics, 8,
205-231.

Witt, U. (2008). Evolutionary economics (2nd ed.). Basingstoke, UK:
Palgrave Macmillan.

Wooldridge, M. (2002). An Introduction to multiagent systems.
Chichester: Wiley.

! Evolutionary Computation in
Finance

SERAFIN MARTINEZ-JARAMILLO, ALMA LILIA
GARCIA-ALMANZA,

BILIANA ALEXANDROVA-KABADJOVA,
TonNaTIUH PENA CENTENO

Bank of Mexico,

Mexico, D.F

Definition

Evolutionary computation (EC) in finance is an area
of research and knowledge which involves the use of
techniques, known as evolutionary algorithms (EAs), to
approach topics in finance. This area of knowledge is
similar to EC in economics, in fact such areas frequently
overlap regarding some of the topics approached. The
application of EC in finance pursues two main goals:
first, to overcome the limitations of some theoretical
models (and the strong assumptions being made by

such models) and second, to innovate in this extremely
competitive area of research.

Motivation and Background

Evolutionary computation is a field in Machine Learn-
ing in which the developed techniques apply the
principle of Evolution in several different ways. The
application of EC in finance includes portfolio opti-
mization, financial forecasting, asset pricing, just to
mention some examples.

In finance, competition is at the center of the
everyday activities by the individuals and compa-
nies that participate in this field. For example, in the
stock markets everybody is trying to beat the mar-
ket in order to make more profits than the other
participants.

As a result of this fierce competition, there is
a constant need to innovate and machine learning
has provided novel and competitive tools in financial
research. Therefore, it is natural to find numerous prob-
lems in finance being approached by any of the exis-
tent EC techniques like »Genetic Programming (GP),
»Genetic Algorithms (GAs), Evolutionary Strategies
(EAs), etc. This field has been called in many different
ways like computational finance, computational intel-
ligence in finance, etc. Research in this area is still
evolving; therefore, it is difficult to define it clearly or
to establish its limits. Moreover, nowadays it is almost
impossible to provide a full account of all the rele-
vant work that involves any form of EC in finance. It
is also hard to organize this vast amount of human
knowledge.

Nowadays, computing in finance is an almost
unavoidable tool, from Monte Carlo simulation and
optimization to computer intensive methods to valuate
complex derivatives; in fact, some of the most criti-
cal processes in finance make heavy use of computers.
Moreover, this research and professional practices have
been known as computational finance and the appli-
cation of evolutionary techniques in finance fit within
such definition. Computational finance is now a fre-
quently mentioned term and is frequently associated
with financial engineering. However, in this context we
refer to computational finance as the use of noncon-
ventional computational techniques, like EC or other
machine learning techniques, to tackle problems in



Evolutionary Computation in Finance

345

finance. See for example, Tsang and Martinez-Jaramillo
(2004) for a good introduction to the field.

Financial forecasting is one of the most important
fields in the computational finance area (Tsang &
Martinez-Jaramillo, 2004) and EC has been used to
solve a great variety of financial forecasting problems,
such as, detection of stock price movements, volatil-
ity prediction, forecasting of foreign exchange markets,
and so on.

Machine learning classifiers, like other forecasting
techniques, extend past experience into the future. The
aim is to analyze past data in order to identify patterns in
the interest of creating a model to predict future events.
In this section we will introduce some important works
in the financial forecasting area, which take advantage
of some of the EC distinctive features. First, the rel-
evance of the interpreatability of the solution is illus-
trated; after that, some examples about the usefulness of
genetating multiple solutions for the same problem are
given. Then, some works that use EC as an optimization
approach to solve forecasting problems are presented.
Finally, the use of a great variety of representations is
highlighted. Evolutionary techniques are able to pro-
duce interpretable solutions, this property is especially
important for predictions, since the main goals of classi-
fication are: to generate an accurate classification model
that is be able to predict unseen cases and to discover
the predictive structure of the problem (Breiman, Fried-
man, Olshen, & Stone, 1984). Models for understand-
ing provide information about the structural patterns
in data that can be useful to recognize the variables’
interactions. There are classification models that have
good predictive power, however, these provide a poor
representation of the solution; for example, P Artificial
Neural Networks (ANNs). Since EC techniques pro-
vide not just a good prediction but an interpretable
solution, these have been used in financial problems to
acquire knowledge of the event to predict. For exam-
ple, Tsang, Yung, and Li (2004) trained a GP using past
data from the financial stock markets to predict price
movements of at least r% in a period of at most # times.
The attributes used to train the GP were indicators from
technical analysis. Due to the interpretability of the
solution, the authors were able to analyze the most suc-
cessful indicators in the result. In fact, some researchers

have used EC in order to discover new financial indica-
tors such as Allen and Karjalainen (1999), who made use
of a GP system to infer technical trading rules from past.
In the same vein, Bhattacharyya, Pictet, and Zumbach
(2002) used GP to discover trading decision models
from high-frequency foreign exchange (FX) markets
data. In other research, Bhattacharyya et al. (2002)
used GA for mining financial »time-series to iden-
tify patterns, with the aim to discover trading decision
models. In a different approach, Potvin, Soriano, and
Vallée (2004) applied GP to automatically generate
short-term trading rules on the stock markets, the
authors used historical pricing and transaction vol-
ume data reported for 14 Canadian companies from the
Toronto stock exchange market. Other approach called
grammatical evolution (GE) (Brabazon & O’Neill,
2004) was applied to discover new technical trading
rules, which can be used to trade foreign exchange mar-
kets. In that approach, each of the evolved programs
represents a market trading system.

As it was mentioned earlier, EC techniques are able
to generate a set of solutions for a single problem, this
quality has been used to collect a set of results, with the
aim of applying the most suitable solution according
to the situation, for instance Lipinski (2004) analyzed
high-frequency data, from the Paris Stock Exchange
Market. In that model, stock market trading rules were
combined into stock market trading experts, which
defined the trading expertise. The author used a sim-
ple GA, a population-based incremental learning, the
compact genetic algorithm, and the extended compact
genetic algorithm to discover optimal trading experts in
a specific situation, the author argues that the optimal
solution depends on the specific situation on the stock
market, which varies with time. EC plays an impor-
tant role in the learning and continual adaptation to the
changing environment.

Taking advantage of the EC’s ability to generate
multiple solutions, Garcia-Almanza and Tsang (2008)
proposed an approach, called evolving comprehensible
rules (ECR), to discover patterns in financial data sets
to detect investment opportunities. ECR was designed
to classify the minority class in imbalanced environ-
ments, which is particularly useful in financial forecast-
ing because the number of profitable chances is scarce.
The approach offers a range of solutions to suit the
investor’s risk guidelines and so, the user can choose




346

Evolutionary Computation in Finance

the best trade-off between miss-classification and false
alarm costs according to the investor’s requirements.
Another approach proposed by Ghandar et al. (2008)
was designed to generate trading rules, the authors
implemented an adaptive computational intelligent sys-
tem by using an evolutionary algorithm and a fuzzy
logic rule base representation. The data to train the
system was composed just by volume and price. The
authors’ objective was to create a system to generate
rules for buy recommendations in dynamic market con-
ditions. An analysis of the results was provided by
applying the system for portfolio construction in his-
torical data for companies listed as part of the MSCI
Europe Index from 1990 to 2005. The results showed
that their approach was able to generate trading rules
that beat traditional, fixed rule-based strategies, as the
price momentum and alpha portfolios, but this also beat
the market index.

Given that EC can be used as an optimization tech-
nique, it has been combined with other approaches.
As an instance, Chen, Wang, and Zhang (1999) used
a genetic algorithm to determine the number of input
variables and the number of hidden layers in an ANN
for forecasting foreign exchange rates of the Dollar/
Deutsche mark. Chen and Lu (1999) used GP to opti-
mize an ANN, this approach is called evolutionary
neural trees (ENT). The objective was to forecast the
high-frequency stock returns of the Heng—Sheng stock
index. Schoreels, Logan, and Garibaldi (2004) investi-
gated the effectiveness of an agent based trading system.
The system employs a simple GA to optimize the trad-
ing decisions for every agent, the knowledge was based
on a range of technical indicators generating trading
signals. In Dempster, Payne, Romahi, and Thompson
(2001) the authors aim to detect buy and sell signals
in the exchange (FX) markets. The authors analyzed
and compare the performance of a GP combined with
a reinforcement learning system to a simple linear pro-
gram characterizing a »Markov decision process and a
heuristic in high-frequency (intraday) foreign exchange
trading. The authors considered eight popular techni-
cal indicators used by intraday FX traders, Based on
simple trend-indicators such as moving averages as well
as more complex rules. From experimental results the
authors found that all methods were able to create
significant in-sample and out-of-sample profits when
transaction costs are zero. The GP approach generated

profits for nonzero transaction costs, although none
of the methods produce significant profits at realistic
transaction costs.

As it can be seen from the previous paragraphs,
EC techniques allow representing the solutions using
different structures, such as, decision trees (Potvin et
al. (2004)), finite states automats, graphs, grammar
(Brabazon & O’Neill, 2004), networks, binary vectors
(Lipinski, 2004) among may others. In fact, this charac-
teristic lets us to choose the best representation for the
problem.

Portfolio optimization is probably the most important
task in finance. The most relevant aspects in finance
are involved in such task: the determination of the
price, the estimation of the volatility, the correlation
among stocks, etc. The portfolio selection problem can
be described in a simple way as the problem of choos-
ing the assets and the proportion of such assets in an
investor’s portfolio that wants to maximize his profits
and minimize the risk.

As its name suggest, Portfolio Optimization is an
optimization problem and EC has proven to be very
useful in difficult (sometimes intractable) optimiza-
tion problems. In (Maringer, 2005), the author explains
extensively the portfolio optimization problem and the
possible heuristic approaches, including ant systems
(AS), memetic algorithms (MAs), GAs, and ESs.

Multi-objective evolutionary optimization is an
important field within EC and the portfolio optimiza-
tion problem is one its more important applications
in finance. Being a multi-objective optimization prob-
lem, EC provides plenty of opportunities and different
approaches can be used for the portfolio optimization
problem. For example, Hassan and Clack (2008) use a
multi-objective GP to approach this problem. In Diosan
(2005), the author compares different multi-objective
evolutionary algorithms for the portfolio optimization
problem.

The number of papers on portfolio optimization
using any form of EC techniques is huge and still grow-
ing. For example, in (Loraschi et al,, 1995) the authors
use distributed genetic algorithms to approach the port-
folio optimization problem, whereas in (Loraschi and
Tettamanzi, 1995) and (Streichert, Ulmer, and Zell,
2004) the authors use EAs.



Evolutionary Computation in Finance

347

Financial markets are mechanisms where buyers and
sellers exchange goods like bonds, gold, options,
currencies, etc. Some examples of such markets are
the New York Stock Exchange, the Chicago Mercantil
Exchange, and the NASDAQ Stock Market.

Financial markets are essential for financial systems
and for the overall economy. Such markets represent
one of the most efficient ways to allocate financial
resources into companies, due to the low transaction
costs and the public information available for buyers
and sellers. However, bubbles and crashes are recur-
rent phenomena which have enormous repercussions
to global economy. In fact, nowadays we can see as
never before that one single crash in one market could
lead to a worldwide slump on most of the remain-
ing stock markets. Crises in financial markets could
affect other aspects of the (real) economy; for exam-
ple, interest rates, inflation, unemployment, etc. This,
in turn could cause even more instability on the finan-
cial markets as we have witnessed recently. Moreover,
market crashes occur with an unpleasant higher fre-
quency than is predicted by the standard economic
theory.

One of the most important research issues in finan-
cial markets is the explanation of the process that
determines the asset prices and as a result the rate of
return. There are many models that can be used to
explain such process, like the capital asset pricing model
(CAPM), the arbitrage pricing theory (APT) or the
black-scholes option pricing. Unfortunately, such mod-
els do not explain, as one would expect, the behavior of
prices in real markets. The contradictions between the
existing theory and the empirical properties of the stock
market returns are one of the motivations for some
researchers to develop and use different approaches to
study financial markets. An additional aspect on the
study of financial markets is the complexity of the ana-
lytical models of such markets. Financial markets are
also very complex to analyze the wide variety of partic-
ipants and their ever-changing nature. Previous to the
development of some new simulation techniques, very
important simplifying (unrealistic) assumptions had to
be made in order to allow tractability of the theoretical
models.

Behavioral finance, agent-based computational eco-
nomics (ACE) (Tesfatsion, 2002) and computational

finance (Tsang & Martinez-Jaramillo, 2004) have risen
as alternative ways to overcome some of the problems
of the analytical models. Al and in particular EC have
been used in the past to study some financial and eco-
nomic problems. However, the development of a well
established community, known as the ACE community,
facilitates the study of phenomena in financial markets
that was not possible in the past. Within such commu-
nity, a vast number of works and a different number
of approaches are being produced by numbers in order
to solve or gain more understanding of some economic
and financial problems.

The influential work of Arthur, Holland, LeBaron,
Palmer, & Talyer, (1997) and previously the develop-
ment of the concept of bounded rationality (Arthur,
1991; Simon, 1982) changed the way in which we con-
ceive and model the economic agents. This change in
conception, modified dramatically the possibilities to
study some economic phenomena and in particular
the Financial Markets. The new models of economic
agents have changed, there is no need any more of
fully rational representative agents, there is no need of
homogeneous expectations and information symmetry.
Furthermore, the development of artificially adapted
agents (Holland & Miller, 1991) gives to the economics
science a way forward into the study of economic
systems.

Agent-based financial markets of different charac-
teristics have been developed for the study of such mar-
kets in the last decade since the influential Santa Fe
Artificial Market. (The Santa Fe Artificial Stock Market
is a simulated stock market developed at the Santa Fe
Institute. Such market was developed by team of highly
reputed researchers, among them John Holland, the
inventor of genetic algorithms (Holland, 1975).) (Arthur
et al,, 1997). Some of them differ from the original
Santa Fe market on the type of agents used like Chen
and Yeh (2001), Gode and Sunder (1992), Martinez-
Jaramillo and Tsang (2009b); on market mechanism
like Bak, Paczuski, and Shubik (1997), Gode and Sun-
der (1992). Other markets borrow ideas from statistical
mechanics like Levy, M., Levy, H., and Solomon (1994)
and Lux (1998). Some important research has been done
modelling stock markets inspired on the minority game.
(The Minority Game was first proposed by Yi-Cheng
Zhang and Damien Challet (1997) inspired by El Farol
bar problem introduced by Brian Arthur (1994).) like




348

Evolutionary Computation in Finance

Challet, Marsili, and Zhang (2000). There are financial
simulated markets in which several stocks are traded
like in Cincotti, Ponta, and Raberto (2005). However,
there are some criticisms to this approach like the prob-
lem of calibration, the numerous parameters needed for
the simulation program, the complexity of the simula-
tion, etc.

Although they all differ in the sort of assumptions
made, methodology and tools; these markets share the
same essence: the macro behavior of such market (usu-
ally the price) should emerge endogenously as a result
of the micro-interactions of the (heterogeneous) mar-
ket participants. This approach is in opposition with
the traditional techniques being used in Economics and
Finance.

One of the most crucial aspects on the modelling
of financial markets is the modelling of the market
participants also known as “agents” Unfortunatelly, for
the sake of mathematical tractability, theoretical models
assume that all the market participants can be modelled
by a representative agent. The representative agent is a
common, yet very strong, assumption in the modeling
of financial markets. This concept has been the source
of controversy and strong criticisms. For example, in
Kirman (1992), the author criticizes the representative
individual approach in economics. Moreover, Lux and
Ausloos (2002) declare:

» Unfortunately, standard modelling practices in eco-
nomics have rather tried to avoid heterogeneity and
interaction of agents as far as possible. Instead, one
often restricted attention to the thorough theoretical
analysis of the decisions of one (or few) representative
agents

In order to overcome the limitations of such an
assumption, some researchers has opted for less ortho-
dox techniques like GAs and GPs to model the
participants in financial markets. Such evolutionary
techniques have been widely used to model the agents’
behaviour and adaptation in financial markets. In order
to understand the different approaches of the variety
of artificial (simulated) financial markets, it is useful
to describe the different types of markets on the basis
of the framework proposed in LeBaron (2001). In such
work, LeBaron identifies the key design issues present in
every artificial financial market and describes some of

the most important works until then. The main design
issues identified in LeBaron (2001) are:

e Agents

e Market mechanism
o Assets

e Learning

e Calibration

e Time

In addition to the description of the different
approaches in artificial financial markets by using the
above described framework, there is a fairly detailed
extension of it in Grothmann (2002) that is worth look-
ing at. In such work the basic design issues proposed in
LeBaron (2001) are extended and detailed. For a more
complete and detailed guide to the application of EC
techniques in artificial financial markets, see Martinez-
Jaramillo and Tsang (2009).

Derivatives (See Hull, 2008 for an introduction.) are
financial instruments whose main purpose is to hedge
risk; however, they can also be used with specula-
tion purposes with potentially negative effects on the
financial health of the companies. Derivatives markets
are having an important expansion in recent years;
futures, forwards, swaps, and options are the best
known types of derivatives. Having said so, option
pricing is an extremely important task in finance. The
Black-Scholes model for option pricing is the refer-
ence analytical model as it has an important theoretical
framework behind it. However, in practice prices show
that there is a departure from the prices obtained with
such model. One possible reason that could explain
such departure is the assumptions being made in such
model (the assumption of constant volatility and the
assumption that prices follow a geometric Brownian
motion). This is why GP has been used as an alterna-
tive to perform option pricing in Chen, Yeh, and Lee
(1998), Fan, Brabazon, O’Sullivan, and O’Neill (2007),
Yin, Brabazon, and O’Sullivan (2007). Interestingly,
not only GP has been used to perform option pric-
ing but also ACO has been explored to approach this
important problem in finance (Kumar, Thulasiram, &
Thulasiraman, 2008).



Evolutionary Computation in Finance

349

Credit rating and credit scoring are two examples
of financial problems that have been traditionally
approached through statistical analyzes. Credit rating is
an estimate of a corporation’s worthiness to be given a
credit and is generally expressed in terms of an ordinal
value; whereas credit scoring is a technique used express
the potential risk of lending money to a given consumer
in terms of a probability measure. Both techniques are
therefore similar in their ends but applied to different
domains.

The seminal work in the field of credit scoring is
that of Altman (1968), who proposed the application
of linear discriminant analysis (Fisher, 1936) to a set
of measurements known as financial ratios, i.e., indica-
tors of a corporation’s financial health, that are obtained
from the corporation’s financial statements. One of the
main applications of Altmans’ method, also known as
Z-score, is bankruptcy prediction. Understandably, a
series of improvements have been achieved by means
of applying more powerful classifiers, such as deci-
sion trees, genetic programming, neural networks and
support vector machines, among others. References
that apply such techniques or that make a literature
review of their application are Atiya (2001), Huang,
Chen, and Wang (2007), Ong, Huang, and Tzeng
(2005), Shin and Lee (2002), and Martens, Baesens,
Gestel, and Vanthienen (2007).

Another method to evaluate credit worthiness is
the one provided by specialized agencies. The so-called
credit ratings are nothing more than ordinal values
expressing the financial history, current assets, and lia-
bilities of entities such as individuals, organizations,
or even sovereign countries, such that they represent
their risk of defaulting a loan. Although each rat-
ing agency uses its own methodology and scale these
are usually not disclosed, nevertheless, on the aca-
demic realm, several superseding techniques to ordi-
nal regression have been applied. For example, Huang,
Chen, H., Hsu, Chen, W. H., and Wu (2004) and
Paleologo, Elisseeff, and Antonini (2010) have pro-
posed computationally oriented methods to solve this
problem.

Related to bankruptcy prediction, NNs have been
the standard selection apart from the traditional
statistical methods (discriminant analysis, logit and

probit models). Quintana, Saez, Mochon, and Isasi
(2008) explore the feasibility of using the evolutionary
nearest neighbor classifier algorithm (ENPC) suggested
by (Fernandez & Isasi, 2004) in the domain of early
bankruptcy prediction. They assess its performance
comparing it to six other alternatives, their results sug-
gest that this algorithm might be considered as a good
choice. Another relevant work is Turku, Back, Laitinen,
Sere, and Wezel (1996) in which the authors compare
discriminant analysis, logit analysis, and GAs for the
selection of the independent variables used for the pre-
diction model. Finally, in Lensberg, Eilifsen, and McKee
(2006), the authors use GP to study bankruptcy in
Norwegian companies and find acceptable accuracy in
addition to information about the usefulness of the
variables used for the prediction task.

Cross References

»Evolutionary Algorithms

»Evolutionary Computation in Economics
»Evolutionary Computational Techniques in
Marketing

» Genetic Algorithms

»Genetic Programming

Recommended Reading

Allen, F, & Karjalainen, R. (1999). Using genetic algorithms to
find technical trading rules. Journal of Financial Economics, 51,
245-271.

Altman, E. I. (1968). Financial ratios, discriminant analysis and the
prediction of corporate bankruptcy. Journal of Finance, 23(4),
589-609.

Arthur, W. B. (1991). Learning and adaptive economic behavior.
Designing economic agents thatact like human agents: A behav-
ioral approach to bounded rationality. American Economic
Review, 81, 353-359.

Arthur, W. B. (1994). Inductive reasoning and bounded rationality:
The El Farol problem. American Economic Review, 84, 406-411.

Arthur, W. B., Holland, J. H., LeBaron, B., Palmer, R. G., & Talyer, P.
(1997). Asset pricing under endogenous expectations in an arti-
ficial stock market. In W. B. Arthur, S. Durlauf, & D. Lane (Eds.),
The economy as an evolving complex system II. Reading, MA:
Addison-Wesley.

Atiya, A. F. (2001). Bankruptcy prediction for credit risk using neu-
ral networks: A survey and new results. IEEE Transactions on
Neural Networks, 12(4), 929-935.

Bak, P., Paczuski, M., & Shubik, M. (1997). Price variations in a stock
market with many agents. Physica A, 246, 430-453.

Bhattacharyya, S., Pictet, O. V., & Zumbach, G. (2002). Knowledge-
intensive genetic discovery in foreign exchange markets. IEEE
Transactions on evolutionary computation, 6(2), 169-181.



350

Evolutionary Computation in Finance

Brabazon, A., & O’Neill, M. (2004). Evolving technical trading rules
for spot foreign-exchange markets using grammatical evolu-
tion. Computational Management Science, 1(3), 311-327.

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984).
Classification and regression trees. Wadsworth, CA: Wadsworth
International Group.

Challet, D., Marsili, M., & Zhang, Y. C. (2000). Modeling market
mechanism with minority game. Physica A, 276, 284-315.

Challet, D., & Zhang, Y. C. (1997). Emergence of cooperation and
organization in an evolutionary game. Physica A, 246, 407.

Chen, S. H., & Lu, C. E (1999). Would evolutionary computation
help in designs of artificial neural nets in forecasting financial
time series? In IEEE Proceedings of 1999 congress on evolutionary
computation, (pp. 275-280). New Jersey: IEEE Press.

Chen, S. H., Wang, H. S., & Zhang, B. T. (1999). Forecasting high-
frequency financial time series with evolutionary neural trees:
The case of hang-seng stock index. In H. R. Arabnia (Ed.),
Proceedings of the international conference on artificial intelli-
gence, IC-AI 99 (Vol. 2, pp. 437-443). Las Vegas, NV: CSREA
Press.

Chen, S. H., & Yeh, C. H. (2001). Evolving traders and the busi-
ness school with genetic programming: A new architecture of
the agent-based artificial stock market. Journal of Economic
Dynamics and Control, 25(3-4), 363-393.

Chen, S. H., Yeh, C. H., & Lee, W. C. (1998). Option pricing with
genetic programming. In J. R. Koza, W. Banzhaf, K. Chellapilla,
K. Deb, M. Dorigo, D. B. Fogel, et al. (Eds.), Proceedings of the
third annual conference, genetic programming 1998: (pp. 32-37).
San Francisco: Morgan Kaufmann.

Cincotti, S., Ponta, L., & Raberto, M. (2005). A multi-assets artifcial
stock market with zero-intelligence traders. In WEHIA 2005,
Essex, UK.

Dempster, M. A. H., Payne, T. W,, Romahi, Y., & Thompson, G. W. P.
(2001). Computational learning techniques for intraday fx trad-
ing using popular technical indicators. IEEE Transactions on
Neural Networks, 12, 744-754.

Diosan, L. (2005). A multi-objective evolutionary approach to the
portfolio optimization problem. In CIMCA ’05: Proceedings of
the international conference on computational intelligence for
modelling, control and automation and international conference
on intelligent agents, web technologies and internet commerce
Vol. 2 (CIMCA-IAWTIC’06) (pp. 183-187). Washington DC:
IEEE Computer Society.

Fan, K., Brabazon, A., O’Sullivan, C., & O’'Neill, M. (2007). Option
pricing model calibration using a real-valued quantum-inspired
evolutionary algorithm. In GECCO ’07: Proceedings of the 9th
annual conference on genetic and evolutionary computation
(pp- 1983-1990). New York: ACM.

Fernandez, F., & Isasi, P. (2004). Evolutionary design of nearest
prototype classifiers. Journal of Heuristics, 10(4), 431-454.
Fisher, R. A. (1936). The use of multiple measurements in taxonomic

problems. Annals of Eugenics, 7, 179.

Garcia-Almanza, A. L., & Tsang, E. P. K. (2008). Evolving decision
rules to predict investment opportunities. International Journal
of Automation and Computing, 5(1), 22-31.

Ghandar, A., Michalewicz, Z., Schmidt, M., To, T. D., & Zurbrugg,
R. (2008). Computational intelligence for evolving trading
rules. IEEE Transactions on Evolutionary Computation, 13(1),
71-86.

Gode, D. K., & Sunder, S. (1992). Allocative efficiency of markets
with zero intelligence (z1) traders: Market as a partial substi-
tute forindividual rationality. GSIA working papers 1992-16,
Carnegie Mellon University, Tepper School of Business.

Grothmann, R. (2002). Multi-agent market modeling based on neural
networks. PhD thesis, University of Bremen, Germany.

Hassan, G., & Clack, C. D. (2008). Multiobjective robustness for
portfolio optimization in volatile environments. In GECCO
’08: Proceedings of the 10th annual conference on Genetic
and evolutionary computation (pp. 1507-1514). New York:
ACM.

Holland, J. H. (1975). Adaptation in natural and artificial systems.
Ann Arbor, MI: University of Michigan Press.

Holland, J. H., & Miller, J. H. (1991). Artificial adaptive agents
in economic theory. The American Economic Review, 8l,
365-370.

Huang, C. L., Chen, M. C., & Wang, C. J. (2007). Credit scoring
with a data mining approach based on support vector machines.
Expert Systems with Applications, 33(4), 847-856.

Huang, Z., Chen, H., Hsu, C.]., Chen, W. H., & Wu, S. (2004). Credit
rating analysis with support vector machines and neural net-
works: A market comparative study. Decision Support Systems,
37(4), 543-558.

Hull, J. (2008). Options, futures and other derivatives. Prentice Hall
Series in Finance. New Jersey: Prentice Hall. 7th Edition.

Kirman, A. P. (1992). Whom or what does the representative indi-
vidual represents? The Journal of Economic Perspectives, 6,
117-136.

Kumar, S., Thulasiram, R. K., & Thulasiraman, P. (2008). A bioin-
spired algorithm to price options. In C3S2E ’08: Proceedings of
the 2008 C3S2E conference (pp. 11-22). New York: ACM.

LeBaron, B. (2001). A builder’s guide to agent based financial mar-
kets. Quantitative Finance, 1, 254-261.

Lensberg, T., Eilifsen, A., & McKee, T. E. (2006). Bankruptcy theory
development and classification via genetic programming. Euro-
pean Journal of Operational Research, 169(2), 677-697; Feature
cluster on scatter search methods for optimization.

Levy, M., Levy, H., & Solomon, S. (1994). A microscopic model of
the stock market: cycles, booms and crashes. Economics Letters,
45,103-111.

Lipinski, P. (2004). Evolutionary data-mining methods in discover-
ing stock market expertise from financial time series. PhD thesis,
University of Wroclaw, Wroclaw, Poland.

Loraschi, A., & Tettamanzi, A. (1995). An evolutionary algorithm for
portfolio selection in a downside risk framework. The European
Journal of Finance, 1994.

Loraschi, A., Tettamanzi, A., Tomassini, M., Svizzero, C., Scientifico,
C., & Verda, P. (1995). Distributed genetic algorithms with an
application to portfolio selection. In Artificial neural nets and
genetic (pp. 384-387). Berlin: Springer.

Lux, T. (1998). The socio-economic dynamics of speculative markets:
Interacting agents, chaos, and the fat tails of return distri-
butions. Journal of Economic Behavior and Organization, 33,
143-165.

Lux, T., & Ausloos, M. (2002). Market fluctuations I: Scaling, multi-
scaling and their possible origins. In A. Bunde, J. Kropp, & H. J.
Schellnhuber (Eds.), Theories of disaster - scaling laws governing
weather, body, and stock market dynamics (pp. 373-409). Berlin:
Springer.



Evolutionary Computational Techniques in Marketing

351

Maringer, D. (2005). Portfolio management with heuristic optimiza-
tion. Advances in computational management science (Vol. 8).
Berlin: Springer.

Martens, D., Baesens, B., Gestel, T. V., & Vanthienen, J. (2007).
Comprehensible credit scoring models using rule extraction
from support vector machines. European Journal of Operational
Research, 183(3), 1466-1476.

Martinez-Jaramillo, S., & Tsang, E. P. K. (2009a). Evolutionary com-
putation and artificial financial markets. Studies in computa-
tional intelligence (Vol. 185, pp. 137-179). Berlin: Springer.

Martinez-Jaramillo, S., & Tsang, E. P. K. (2009b). An heterogeneous,
endogenous and coevolutionary gp-based financial market.
IEEE Transactions on Evolutionary Computation, 13, 33-55.

Ong, C. S., Huang, J. J., & Tzeng, G. H. (2005). Building credit scor-
ing models using genetic programming. Expert Systems with
Applications, 29(1), 41-47.

Paleologo, G., Elisseeff, A., & Antonini, G. (2010). Subagging
for credit scoring models. European Journal of Operational
Research. 201(2), 490-499.

Potvin, J. Y., Soriano, P., & Vallée, M. (2004). Generating trad-
ing rules on the stock markets with genetic programming.
Computers and Operations Research, 31(7), 1033-1047.

Quintana, D., Saez, Y., Mochon, A., & Isasi, P. (2008). Early
bankruptcy prediction using enpc. Applied Intelligence, 29(2),
157-161.

Schoreels, C., Logan, B., & Garibaldi, J. M. (2004). Agent based
genetic algorithm employing financial technical analysis for
making trading decisions using historical equity market data.
In IAT °04: Proceedings of the intelligent agent technol-
ogy, IEEE/WIC/ACM international conference (pp. 421-424).
Washington, DC: IEEE Computer Society.

Shin, K. S., & Lee, Y. J. (2002). A genetic algorithm application in
bankruptcy prediction modeling. Expert Systems with Applica-
tions, 23(3), 321-328.

Simon, H. A. (1982). Models of bounded rationality (Vol. 2). Cam-
bridge, MA: MIT Press.

Streichert, F,, Ulmer, H., & Zell, A. (2004). Evaluating a hybrid
encoding and three crossover operators on the constrained
portfolio selection problem. In Proceedings of the 2004 congress
on evolutionary computation (pp. 932-939). New Jersey: IEEE
Press.

Tesfatsion, L. (2002). Agent-based computational economics: Grow-
ing economies from the bottom up. Artificial Life, 8, 55-82.
Tsang, E. P. K., & Martinez-Jaramillo, S. (2004). Computational
finance. In IEEE computational intelligence society newsletter

(pp- 3-8). New Jersey: IEEE Press.

Tsang, E. P. K., Yung, P., & Li, J. (2004). Eddie-automation, a decision
support tool for financial forecasting. Journal of Decision Sup-
port Systems, Special Issue on Data Mining for Financial Decision
Making, 37(4), 559-565.

Turku, B. B., Back, B., Laitinen, T., Sere, K., & Wezel, M. V. (1996).
Choosing bankruptcy predictors using discriminant analysis,
logit analysis, and genetic algorithms. In Proceedings of the
first international meeting on artificial intelligence in accounting,
finance and tax (pp. 337-356). Huelva: Spain.

Yin, Z., Brabazon, A., & O’Sullivan, C. (2007). Adaptive genetic pro-
gramming for option pricing. In GECCO ’07: Proceedings of the
2007 GECCO conference companion on genetic and evolutionary
computation (pp. 2588-2594). New York: ACM.

! Evolutionary Computational
Techniques in Marketing

ALMA LiL1A GARCIA-ALMANZA, BILIANA
ALEXANDROVA-KABADJOVA,

SERAFIN MARTINEZ-JARAMILLO

Bank of Mexico, Mexico, D.F.

Definition

Evolutionary Computation (EC) in marketing is a
field that uses evolutionary techniques to extract and
gather useful patterns with the objective of designing
marketing strategies and discovering products and ser-
vices of superior value which satisfy the customers’
necessities. Due to the fierce competition by some
companies for attracting more customers and the
necessity of innovation, it is common to find numer-
ous marketing problems being approached by EC
techniques.

Motivation and Background

The objective of marketing is to identify the customers’
needs and desires in order to guide the entire orga-
nization to serve best by designing products, services,
and programs which satisfy customers (Kotler & Arm-
strong, 1996). Nowadays, the market competition is
very strong, since customers can choose from several
alternatives. For that reason, marketing teams are facing
the necessity of creating intelligent business strategies.
Thus, new artificial intelligent approaches for market-
ing have emerged; especially, evolutionary algorithms
have been used to solve a variety of marketing problems
such as the design of more attractive products and ser-
vices for consumers, the analysis of populations to target
potential clients, the design of new marketing strategies,
and more.

Applications

Nowadays, it is very easy to capture and store large sets
of data. However, such data must be processed and ana-
lyzed in order to obtain useful information to make
marketing decisions. Since EC techniques can be used
to extract patterns from data, these have been used in
marketing for multiple purposes. In order to illustrate



352

Evolutionary Computational Techniques in Marketing

the application of EC in marketing, let us introduce
some important works in this field.

Bhattacharyya (2000) proposed a Genetic Algorithm
(GA) in combination with a case-based reasoning sys-
tem to predict customer purchasing behavior. The
objective was to identify potential customers for a spe-
cific product or service. This approach was developed
and tested with real cases from a worldwide insurance
direct marketing company. An optimization mecha-
nism was integrated into the classification system to
select those customers who were most likely to acquire
an insurance.

As it was mentioned previously, one of the goals of
marketing is to discover products of superior value
and quality. To achieve this goal, Fruchter et al. (2006)
resolved to design a product line rather than a single
product. The authors argued that by offering a prod-
uct line, the manufacturer can customize the products
according to the necessities of different segments of the
population, which would satisfy more customers. Since
the amount of data about customer preferences was
large, the optimization of the product line became very
difficult. The authors used a GA to optimize the prob-
lem and the performance of the solutions was valued
by measuring the manufacturer’s profits. In the same
vein, Liu and Ong (2008) used a GA to solve a prob-
lem of marketing segmentation, this approach was used
to make strategy decisions for reaching effectively all
customers. In other approach proposed by Balakrish-
nan and Jacob (1996), a GA was used to optimize the
customer’s preferences in new products’ design. The
authors explained that, to design a new product it is
important to determine its attributes, such as color or
shape. A study to gather the customers’ preferences had
to be carried out. Finally, a GA was used to select those
attributes that satisfied a bigger number of customers.

Advertising is an important area of marketing; this is
defined as the activity of attracting public attention to a
product or business. Since personalized advertisement
improves marketing efficiency, Kwon and Moon (2001)
proposed a personalized prediction model to be used

in email marketing. A circuit model combined with
Genetic Programming (GP) was proposed to analyze
customers’ information. The result was a set of rec-
ommendation rules, which was tested over a general
mass marketing. According to the authors, the model
achieved a significant improvement in sales. In Naik,
Mantrala, and Sawyer (1998), the authors used a GA
combined with a Kalman filter procedure to determine
the best media schedule for advertisement, which was
constrained by a budget. This approach evaluated alarge
number of alternative media schedules to decide the
best media planning solution.

Internet has become a very popular and conve-
nient media to make businesses. Many products and
services can be found easily in a very short time, increas-
ing the competition between those providers. Since
this kind of sales does not involve human interac-
tion directly, it is essential to design new and better
strategies to personalize the Web pages in order to
contend in this media. As an instance, Abraham and
Ramos (2003) proposed an ant clustering algorithm
to discover Web usage patterns and a linear genetic
program to analyze the visitor trends. The objective
was to discover useful knowledge from interactions
of the users with the Web. The knowledge was used
to design adaptive Web sites, business and support
services, personalization, network traffic flow analysis,
and more.

According to Scanlon (2008), the company Sta-
ples used a software called IDDEA to redesign and
relaunch its paper brand. This software was developed
by Affinova Inc, and uses a GA to simulate the evolu-
tion of consumer markets where strong products sur-
vive and weak ones die out. The strongest possible
design emerges after several generations. A panel of 750
consumers select their favorite options from each
generation. The software analyze customers choices
over multiple generations to identify preference pat-
terns. Surveys include consumer profiles that comprised
basic demographic information, customer beliefs and
consumer habits. This allow them to understand
how different designs attract different consumers. In
another project, IDDEA was used to identify imagery
and messaging that would be of interest to con-
sumers. As can be seen from previous paragraphs,
EC has been used to solve a variety of marketing
problems.



Evolutionary Feature Selection and Construction

353

Since EC is able to dcal with optimization, forecast-
ing and data mining problems, among others, there is a
great potential of usage in the field of marketing to opti-
mize processes, to extract patterns of customers from
large amount of data, to forecast purchasing tendencies,
and many others.

Cross References

»Evolutionary Algorithms

»Evolutionary Computation in Economics
» Evolutionary Computation in Finance

» Genetic Algorithms

»Genetic Programming

Recommended Reading

Abraham, A., & Ramos, V. (2003). Web Usage mining using arti-
ficial ant colony clustering and linear genetic programming,
Genetic programming, Congress on Evolutionary Computation
(CEC), IEEE, 2003, 1384-1391.

Balakrishnan, P. V. S., & Jacob, V. S. (1996). Genetic algorithms for
product design. Management Science, 42(8), 1105-1117.

Bhattacharyya, S. (2000). Evolutionary algorithms in data mining:
Multi-objective performance modeling for direct marketing. In
KDD °00: Proceedings of the sixth ACM SIGKDD international
conference on knowledge discovery and data mining (pp. 465—
473). New York: ACM.

Fruchter, G.E., Fligler, A., Winer, R. S. (2006). Optimal product line
design: A genetic algorithm approach to mitigate cannibaliza-
tion. Journal of Optimization Theory and Applications, 131(2),
(pp. 227-244), Springer Netherlands.

Kotler, P, & Armstrong, G. (1996), Principles of marketing, 7 ed.,
Prentice Hall, Englewood Cliffs NJ.

Kwon, Y.-K., & Moon, B.-R. (2001). Personalized email marketing
with a genetic programming circuit model. In L. Spector, E. D.
Goodman, A. Wu, W. B. Langdon, H.-M. Voigt, M. Gen (Eds.),
Proceedings of the genetic and evolutionary computation con-
ference (GECCO-2001) (pp. 1352-1358). San Francisco: Morgan
Kaufmann.

Liu, H.-H., & Ong, C.-S. (2008). Variable selection in clustering
for marketing segmentation using genetic algorithms. Expert
Systems Applications, 34(1), 502-510.

Naik, P. A., Mantrala, M. K., & Sawyer, A. G. (1998). Planning
media schedules in the presence of dynamic advertising quality.
Marketing Science, 17(3), 214-235.

Scanlon, Jessie. “Staples’ Evolution.” BusinessWeek 29 Dec. 2008:
1-2.  Web, http://www.businessweek.com/innovate/content/
dec2008/id20081229_162381.htm

| Evolutionary Computing

» Evolutionary Algorithms

[ - . .
Evolutionary Constructive Induction

» Evolutionary Feature Selection and Construction

[ . .
Evolutionary Feature Selection

»Evolutionary Feature Selection and Construction

| Evolutionary Feature Selection and
Construction

KrzyszTOF KRAWIEC
Poznan University of Technology
Poznan, Poland

Synonyms

EFSC; Evolutionary constructive induction; Evolu-
tionary feature selection; Evolutionary feature syn-
thesis; Genetic attribute construction; Genetic feature
selection

Definition

Evolutionary feature selection and construction (EFSC)
is a bio-inspired methodology for explicit modification
of input data of a learning system. It uses evolutionary
computation (EC) to find a mapping from the original
data representation space onto a secondary represen-
tation space. In evolutionary feature selection (EFS),
that mapping consists in dropping off some of the fea-
tures (P-attributes) from the original representation,
so the dimensionality of the resulting representation
space is not greater than that of the original space. In
evolutionary feature construction (EFC), evolutionary
algorithm creates (synthesizes) new features (derived
attributes) that complement and/or replace the original
ones. Therefore, EFS may be considered as special case
of EFC.

A typical EFSC algorithm maintains a population
of solutions, each of them encoding a specific map-
ping. The best mapping found in evolutionary search
becomes the data preprocessor for the classifier. Usu-
ally, EFSC takes place in training phase only, and the
evolved mapping does not undergo further changes in
the testing phase.



http://www.businessweek.com/innovate/content/dec2008/id20081229_162381.htm
http://www.businessweek.com/innovate/content/dec2008/id20081229_162381.htm

354

Evolutionary Feature Selection and Construction

Though EFSC is technically a form of data pre-
processing (see »Data Preparation), some of its vari-
ants may as well involve an internal inductive pro-
cess in the fitness function. Also, EFS and EFC
may be considered as special cases of MFeature
Selection and MFeature Construction, respectively.
EFC is also partially inspired by »Constructive
Induction.

Motivation and Background

Real-world machine learning problems often involve
a multitude of attributes, which individually have low
informative content and cannot provide satisfactory
performance of the learning system. This applies in
particular to data-abundant domains like image anal-
ysis and signal processing. When faced with many
low-quality attributes, induction algorithms tend to
build classifiers that perform poorly in terms of clas-
sification accuracy. This problem may be alleviated
by removing some features from the original rep-
resentation space (feature selection) or introducing
new features defined as informative expressions (arith-
metic, logical, etc.) built of multiple attributes ( feature
construction).

Unfortunately, many learning algorithms lack the
ability of discovering intricate dependencies between
attributes, which is a necessary precondition for suc-
cessful feature selection and construction. This gap is
filled out by EFSC, which uses EC to get rid of super-
fluous attributes and to construct new features. To this
extent, anticipated benefits from EFSC are similar to
those of general »Feature Selection and »Feature Con-
struction, and include reduced dimensionality of the
input space, better predictive accuracy of the learn-
ing system, faster training and querying, and better
readability of the acquired knowledge.

In general, both feature selection and feature con-
struction may be conveniently formulated as an opti-
mization problem with each solution corresponding to
a particular feature subset (for feature selection) or to
a particular definition of new features (for feature con-
struction). The number of such solutions grows expo-
nentially with the number of original features, which
renders the exact search methods infeasible. There-
fore, EC techniques with their ability of performing
global parallel search with low risk of being trapped in

local optima are particularly predisposed to solve these
types of problems. Moreover, EC algorithms can opti-
mize arbitrary function without demanding assump-
tions concerning solution space and objective function
(like, for instance, the branch-and-bound algorithm).
This is extremely important in the context of EFSC,
where the so-called fitness landscape (the objective
function spanned over the space of solutions) heavily
depends on the training data, and it is therefore difficult
to predict its properties.

The other strength of EC is the ease of adapta-
tion to a specific task that usually boils down to the
choice of solution representation and implementation
of the fitness function. For instance, a subset of fea-
tures in EFS may be directly encoded as a bit string
solution in genetic algorithm (GA), where a bit at a
particular position determines the selection or exclu-
sion of the corresponding feature (Vafaie & Imam,
1994; Yang & Honavar, 1998). In EFC, definitions of
constructed features may be conveniently represented
as genetic programming (GP) expressions/procedures
(Rizki, Zmuda, & Tamburino, 2002; Teller & Veloso,
1997). Also, unlike many other search algorithms, evo-
lutionary algorithm can easily produce many solu-
tions. This makes it a natural tool for, e.g., a parallel
construction of multiple representations (feature sub-
sets) that may be subsequently used in a compound
classifier.

Structure of Learning System

Typically, EFSC uses a variant of evolutionary algorithm
(usually GA for EFS or genetic programming for EFC)
to maintain a population of solutions (individuals), each
of them encoding a particular subset of features (for
EFS) or definition of new features (for EFC). Solutions
undergo mutations, crossing-over, and selective pres-
sure that promotes the well-performing ones. Selective
pressure is exerted by fitness function, which estimates
solution’s quality by measuring some properties of the
secondary representation space (see Fig. 1). This usually
involves three steps:

1. Decoding of solution (retrieving mapping from the
encoded solution).

2. Transforming the training set into the secondary
representation space according to the mapping.



Evolutionary Feature Selection and Construction

355

¥
Selection ]

}:_ i Fitness function

Solution | Solution | Mapping

‘ Input: Training data 7 ‘

b

4 ]
Termination criteria ]7
3 i

Parent selection J

{
4-( Evaluation
t
|
(

Fitness |

decoding

Applying
mapping to T

T in derived representation space

[ Parent recombination J
¥

—( Offspring mutation ]

N
| Quality estimation J

ﬁ—+ Output: Best solution (mapping) found ‘

Evolutionary Feature Selection and Construction. Figure 1. Evolutionary feature selection and construction

3. Estimating the quality of the secondary representa-
tion space which, after appropriate conversion (e.g.,
scaling), becomes solution’s fitness.

Technically, step 3 usually boils down to one of two
methods. Filter approach relies on measures that charac-
terize the desired properties of training data in the sec-
ondary space (e.g., class separability), abstracting from
any particular induction algorithm. Wrapper approach
estimates the predictive ability that may be attained in
the secondary representation space by a specific induc-
tion algorithm, usually by partitioning the training set
into several subsets and performing multiple train-and-
test experiment (e.g., cross-validation). In both cases,
the particular implementation depends on the type of
task being solved (classification or regression, predom-
inantly the former one). Wrapper approach, though
computationally more expensive, takes into account
inductive and representational biases specific for induc-
tion algorithm, and often prove superior in terms of
classification accuracy.

The result of a typical EFSC procedure is the best
solution found in the evolutionary run, i.e., the superior
representation mapping with respect to fitness function.
This mapping serves as a preprocessor of input data and
is subsequently used to induce the final classifier from
the training set. The trained classifier together with the
preprocessing provided by the mapping is the final out-
come of the EFSC-enriched training process and may
be used for classification of new examples.

EFS and EFC are predominantly applied to super-
vised learning from examples and attribute-value rep-
resentation of training data. The above scheme remains
relatively unchanged across various EFS and EFC app-
roaches reported in literature, with main differences
discussed in following.

EFS is the simplest variant of EFSC. In this case, a
solution encodes the indices of attributes that should
be removed from the original representation (or, alter-
natively, which should be left in the resulting sec-
ondary representation). This leads to straightforward
encoding characteristic for GA, with each solution
being a bit string as long as the number of original
attributes. EFS may be thus easily implemented using
off-shelf generic software packages and involves rela-
tively straightforward fitness function. However, more
sophisticated approaches have been also considered,
like evolving GP individuals to asses the quality of and
rank feature subsets (Neshatian & Zhang, 2009).

Evolutionary feature weighting (EFW) is a direct
generalization of EFS, where the evolutionary search
weighs features instead of selecting them. Solutions in
EFW are real-valued vectors evolved by evolutionary
algorithm or evolutionary strategy. EFW requires use of
a special wrapper fitness function that can take attribute
weights into account. In (Komosinski & Krawiec, 2000),
EFW has been used with a nearest neighbor-based
wrapper fitness function to weigh features for a medical
diagnosing problem.




356

Evolutionary Feature Selection and Construction

EFC requires sophisticated evolutionary representation
of solutions to encode definitions of new features, and
usually employs genetic programming for that purpose.
Each GP solution encodes an expression tree that uses
the original attributes and numeric constants as leaves
(terminals), and functions from a predefined vocabu-
lary as internal tree nodes (nonterminals). The value
returned by such an expression when applied to an
example is interpreted as the new feature. Function
set usually encompasses simple arithmetics (typically
+, —, *, [) and elementary functions (like sin, cos, log,
exp). The evolved features replace or extend the original
ones. As a single new feature is usually insufficient to
provide satisfactory discriminative ability, it is common
to encode several GP trees within each solution.

EFC may be conveniently adopted to image anal-
ysis or computer vision problems, or any other type
of machine learning task that involves a large num-
bers of attributes. Commonly, an EFC algorithm evolves
GP solutions that construct higher-level features from
low-level image attributes (Krawiec & Bhanu, 2005)
or implement advanced feature detectors (Howard,
Roberts, & Ryan, 2006; Puente, 2009; Quintana, Poli,
& Claridge, 2006). Alternatively, solutions encode
chains of operations that process the entire image
globally according to the goal specified by the fit-
ness function. Many other variants of this approach
have been studied in literature, involving, e.g., solu-
tions represented as graphs (Teller & Veloso, 1997) or
sequences of operations (linear genetic programming,
(Bhanu et al., 2005)).

Applications
Real-world applications of EFSC are numerous and
include medical and technical diagnosing, computer
network intrusion detection, genetics, air quality fore-
casting, seismography,
robotics, face recognition, handwriting recognition,
vehicle detection in visual, infrared, and radar modality,
image segmentation, satellite imaging, and stereovision.
The conceptually simpler EFS has been implemented in
several machine learning and neural-network software
packages (WEKA, Statistica Neural Networks). EFC
usually requires a more sophisticated and application-
specific implementation. However, for

brain-computer interfaces,

standard

learning-from-example tasks, it may be conveniently
implemented by extending off-shelf libraries, like
WEKA (Waikato Environment for Knowledge Anal-
ysis, http://www.cs.waikato.ac.nz/ml/weka/) and EC]
(Evolutionary Computation in Java, http://cs.gmu.edu/
~eclab/projects/ecj/). More examples of real-world
applications of EFSC may be found in (Langdon,
Gustafson, & Koza, 2009).

Future Directions

Recent work on EFC employs various extensions of
EC. It has been demonstrated that an EFC task may
be decomposed into several semi-independent subtasks
using cooperative coevolution, a variant of evolution-
ary algorithm that maintains several populations with
solutions encoding partial solutions to the problem
(Krawiec & Bhanu, 2005). Other recent work demon-
strates that fragments of GP expressions encoding fea-
ture definitions may help to discover good features in
other learning tasks (Jaskowski, Krawiec, & Wieloch,
2007). With time, EFC becomes more and more uni-
fied with GP-based classification, where solutions are
expected to perform the complete classification or
regression task rather than to implement only feature
definitions.

The online genetic programming bibliography
(Langdon et al., 2009) provides quite complete cover-
age of state of the art in evolutionary feature selection
and construction. A concise review of contemporary
genetic programming research involving feature con-
struction for image analysis and object detection may
be found in (Krawiec, Howard, & Zhang, 2007). A more
extensive and systematic study of different evolution-
ary approaches to feature construction is presented in
(Bhanu et al., 2005).

Cross References

» Constructive Induction
» Data Preparation

» Feature Selection

Recommended Reading

Bhanu, B., Lin, Y., & Krawiec, K. (2005). Evolutionary synthesis of
pattern recognition systems. New York: Springer-Verlag.

Howard, D., Roberts, S. C., & Ryan, C. (2006). Pragmatic genetic
programming strategy for the problem of vehicle detection in


http://www.cs.waikato.ac.nz/ml/weka/
http://cs.gmu.edu/
~eclab/projects/ecj/

Evolutionary Fuzzy Systems

357

airborne reconnaissance. Pattern Recognition Letters, 27(11),
1275-1288.

Jaskowski, W., Krawiec, K., & Wieloch, B. (2007). Knowledge
reuse in genetic programming applied to visual learning.
In Dirk Thierens et al. (eds.), GECCO ’07: In Proceed-
ings of the 9th annual conference on Genetic and evolu-
tionary computation, (Vol 2, pp. 1790-1797), London, 2007.
ACM Press.

Komosinski, M., & Krawiec, K. (2000). Evolutionary weighting of
image features for diagnosing of CNS tumors. Artificial Intelli-
gence in Medicine, 19(1), 25-38.

Krawiec, K., & Bhanu, B. (2005). Visual learning by coevolution-
ary feature synthesis. IEEE Transactions on System, Man, and
Cybernetics - Part B, 35(3), 409-425.

Krawiec, K., Howard, D., & Zhang, M. (2007). Overview of object
detection and image analysis by means of genetic program-
ming techniques. In Proceedings of frontiers in the convergence
of bioscience and information technologies 2007 (fbit2007), Jeju,
Korea, october 11-13, 2007 (pp. 779-784). IEEE CS Press.

Langdon, W.,, Gustafson, S., & Koza, J. (2009). The genetic
programming bibliography. ([online] http://www.cs.bham.ac.
uk/ wbl/biblio/)

Neshatian, K., & Zhang, M. (2009). Genetic programming for
feature subset ranking in binary classification problems. In
L. Vanneschi, S. Gustafson, A. Moraglio, I. vanoe De Falco,
& M. Ebner (Eds.), Genetic programming (pp. 121-132).
Springer.

Puente, C., Olague, G., Smith, S. V., Bullock, S. H., Gonzélez-Botello,
M. A., & Hinojosa-Corona, A. (2009). A novel GP approach to
synthesize vegetation indices for soil eros ion assessment. In
M. Giacobini et al. (Eds.), Applications of evolutionary comput-
ing (pp. 375-384). Springer.

Quintana, M. I., Poli, R., & Claridge, E. (2006) Morphologi-
cal algorithm design for binary images using genetic pro-
gramming. Genetic Programming and Evolvable Machines, 7(1),
81-102.

Rizki, M. M., Zmuda, M. A., & Tamburino, L. A. (2002). Evolving
pattern recognition systems. IEEE Transactions on Evolutionary
Computation, 6(6), 594-609.

Teller, A., & Veloso, M. (1997). PADO: A new learning archi-
tecture for object recognition. In K. Ikeuchi & M. Veloso
(Eds.), Symbolic visual learning (pp. 77-112). New York: Oxford
Press.

Vafaie, H., & Imam, I. F. (1994). Feature selection methods:
genetic algorithms vs. greedy-like search. In Proceedings
of international conference on fuzzy and intelligent control
systems.

Yang, J., & Honavar, V. (1998). Feature subset selection using a
genetic algorithm. IEEE Transactions on Intelligent Systems,
13(2), 44-49.

[ . .
Evolutionary Feature Synthesis

» Evolutionary Feature Selection and Construction

! Evolutionary Fuzzy Systems

CArLOs Kavka
University of Trieste
Trieste

Italy

Definition

An evolutionary fuzzy system is a hybrid automatic
learning approximation that integrates »fuzzy systems
with P»evolutionary algorithms, with the objective of
combining the optimization and learning abilities of
evolutionary algorithms together with the capabilities
of fuzzy systems to deal with approximate knowledge.
Evolutionary fuzzy systems allow the optimization of
the knowledge provided by the expert in terms of lin-
guistic variables and fuzzy rules, the generation of some
of the components of fuzzy systems based on the partial
information provided by the expert, and in some cases
even the generation of fuzzy systems without expert
information. Since many evolutionary fuzzy systems are
based on the use of genetic algorithms, they are also
known as genetic fuzzy systems. However, many models
presented in the scientific literature also use genetic pro-
gramming, evolutionary programming, or evolution
strategies, making the term evolutionary fuzzy systems
more adequate. Highly related is the concept of evolu-
tionary neuro-fuzzy systems, where the main difference
is that the representation is based on neural networks.
Recently, the related concept of evolving fuzzy systems
has been introduced, where the main objective is to
apply evolutionary techniques to the design of fuzzy sys-
tems that are adequate to the control of nonstationary
processes, mainly on real-time applications.

Motivation and Background

One of the most interesting properties of a fuzzy sys-
tem is its ability to represent expert knowledge by using
linguistic terms of everyday common use, allowing the
description of uncertainty, vagueness, and imprecision
in the expert knowledge. The linguistic terms, which
are imprecise by their own nature, are, however, defined
very precisely by using fuzzy theory concepts.



http://www.cs.bham.ac.uk/wbl/biblio/
http://www.cs.bham.ac.uk/wbl/biblio/

358

Evolutionary Fuzzy Systems

The usual approach to build a fuzzy system consists
in the definition of the membership functions and the
rule base in terms of expert knowledge. Compared with
other rule-based approaches, the process of extracting
knowledge from experts and representing it formally is
simpler, since linguistic terms can be defined to match
the terms used by the experts. In this way, rules are
defined establishing relations between the input and
output variables using these linguistic terms. However,
even if there is a clear advantage of using the terms
defined as »fuzzy sets, the knowledge extraction pro-
cess is still difficult and time consuming, usually requir-
ing a very difficult manual fine tuning process. It should
be noted that no automatic framework to determine
the parameters of the components of the fuzzy system
exists yet, generating the need for methods that provide
adaptability and learning ability for the design of fuzzy
systems.

Since it is very easy to map a fuzzy system into
a feedforward neural network structure, it is not
surprising that many methods based on neural net-
work learning have been proposed to automate the
fuzzy system building process (Hoffmann, 2001; Karr &
Gentry, 1993) The combined approach provides advan-
tages from both worlds: the low level learning and com-
putational power of neural networks is joined together
with the high level human-like thinking and reasoning
of fuzzy systems. However, this approach can still face
some problems, such as the potential risk of its learning
algorithms to get trapped in local minimum, the pos-
sible need for restriction of the membership functions
to follow some mathematical properties (like differen-
tiability), and the difficulties of inserting or extracting
knowledge in some approaches, where the obtained lin-
guistic terms can exhibit a poor semantic due to the
usual black-box processing of many neural networks
models.

Evolutionary algorithms provide a set of properties
that make them ideal candidates for the optimization
and design of fuzzy systems, and in fact, there are many
methods that have been proposed in the literature to
design or tune the different components of fuzzy sys-
tems. Evolutionary systems exhibit robust performance
and global search characteristics, while requiring only a
simple quality measure from the environment. There is
no need for gradient information or input/output pat-
terns. Other strengths come from its parallel nature:

instead of selecting a single solution and refining it, in
most evolutionary methods, a set of alternative solu-
tions is considered and evolved in parallel.

Structure of the Learning System

The learning process defined by an evolutionary fuzzy
system starts from the knowledge provided by the
expert, which can include all or just some of the com-
ponents of the knowledge base of a fuzzy system.
The evolutionary algorithm that is behind this learn-
ing approach can perform the optimization of all the
parameters that are provided by the expert, plus the
generation of the missing components of the fuzzy
system based on the partial specifications provided by
the expert.

The model shown in Fig. 1 presents a general archi-
tecture of the learning and optimization process in
evolutionary fuzzy systems. An initial knowledge base
KB; is built based on the knowledge provided by the
expert. Note that KB; could be (and usually is) a incom-
pletely specified knowledge base. Based on this initial
expert knowledge, the evolutionary algorithm creates
a population of individuals, which can represent com-
plete fuzzy systems or just a few components of them.
The evaluation of the individuals is performed by creat-
ing a temporary knowledge base KB;, which can also be
complete or not. By using the information in KB;, com-
bined with the initial knowledge base KB;, the individu-
als are evaluated by determining the error in the approx-
imation of patterns if there are examples available, com-
puting the reinforcement signal (typical situation in
control problems), or in any other way depending on
the problem characteristics (Babuska, 1998; Cordon,
Gomide, Herrera, Hoffmann, & Magdalena, 2004). The

v

Evaluation

KB, 4
]

Fitness

Expert
knowledge|

- KB;

Population

[

evolutionary algorithm final product

Evolutionary Fuzzy Systems. Figure 1. The general mo-
del of the evolutionary fuzzy systems learning and opti-
mization



Evolutionary Fuzzy Systems

359

result of the evaluation is typically a single fitness mea-
sure, which provides the necessary information for the
selection and the variational operators of the evolution-
ary algorithm. These operators, which can be standard
or defined specifically for the problem, combine and
mute the individuals based on the fitness value and their
specific parameters. The process is repeated till a prede-
fined criterion is fulfilled, obtaining as a final result the
fuzzy system FS.

Depending on the information provided by the
expert, the learning or optimization process performed
by the evolutionary fuzzy system can be applied to the
database, the fuzzy rule base or both of them. These
three approaches are described below.

In this case, it is assumed that the fuzzy rule base is
known and provided by the expert. The initial knowl-
edge base KB; contains the fuzzy rule base, and if pro-
vided, the initial approximation of the parameters of
antecedents and/or consequents. Since the expert has
to define the rule base, and in order to do that, he/she
needs to know the labels of the linguistic terms used
for the antecedents and consequents, it is usual that the
number of fuzzy sets is predefined and kept constant
during the evolution.

The representation of the individuals contains only
the parameters of the fuzzy sets associated to the input
linguistic variables, and the fuzzy sets associated to the
output variables in the case of a Mamdani fuzzy system,
or the associated lineal approximators in the case of a
Takagi-Sugeno fuzzy system. Other parameters could
also be specified if necessary (scale factors, etc.). Usu-
ally, individuals are represented as a fixed length string
that is defined as the concatenation of all parameters of
the input and output fuzzy sets or approximators. Of
course, the representation for the fuzzy sets depends
on their particular class: for example, three values are
required to represent triangular fuzzy sets, four values
to represent trapezoidal fuzzy sets, and two for sig-
moidal fuzzy sets. As an example, Fig. 2 shows that three
values are necessary to represent a triangular fuzzy set:
the center, the left width, and the right width, labeled as
¢, ol, and od, respectively. From this example, it can be
seen that 15 values are required in order to represent the
5 fuzzy sets associated to this single linguistic variable.

:
%
£

Ly L, Ly Ly Ls
+——t——>
ol c or

Evolutionary Fuzzy Systems. Figure 2. A linguistic vari-
able represented with five fuzzy sets

However, it is usual to apply fuzzy logic concepts
(Zadeh, 1988) to simplify the representation, with the
implied reduction in the search space, and also, to en-
hance the interpretability (Casillas, Cordon, Herrera, &
Magdalena, 2003) of the resulting fuzzy system. As an
example, it is desirable that the partition associated
to a linguistic variable fulfills the completeness prop-
erty, which establishes that for each point in the input
domain, the summation of the membership values of
all membership functions must be equal to 1. It is also
desirable that the position of the fuzzy sets remains
always the same during the evolution, for example in
Fig. 2, it means that it is expected that the fuzzy set L;
will be always at the left of L,, L, always at the left of
L, and so on. A representation that considers these
two requirements can be defined by representing the
whole partition specifying the distance from the center
of a fuzzy set to the center of the next one (Hoffmann,
2001). The representation of five fuzzy sets then requires
only five values (labeled in the figure as A;), which
reduces largely the search space and keeps the order of
fuzzy sets, while fulfilling the completeness property.
Most implementations use real values to represent the
parameters.

The operators of the evolutionary algorithm can be
standard operators or can be defined specifically based
on the selected representation. As an example, opera-
tors that modify the width of fuzzy sets, shift the centers,
or perform other operations on the fuzzy set represen-
tations, linear approximators, or other parameters have
been defined in the scientific literature.

In this case, the fuzzy rule base is not known, or
only an initial approximation to it is provided. The
other parameters of the knowledge base are known and




360

Evolutionary Fuzzy Systems

provided by the expert. The three most usual approxi-
mations are

1. Michigan approximation: Each individual of the
population codifies a single rule (Bonarini, 1996),
which means that each individual by itself cannot
represent a complete solution to the problem. The
knowledge base for evaluation KB; is built based on
the information defined in KB, and the rules defined
by all the individuals from the population com-
bined together (see Fig. 3a). Rules are penalized or
rewarded based on its performance during the eval-
uation. The fuzzy system is then built through the
competition of a set of independent rules that have
to be learned to collaborate during the evolution.

2. Pittsburgh approximation: Each individual repre-
sents the complete rule base. If dynamic creation
and removal of rules is allowed, it is necessary to
define special variational operators to deal with
variable length individuals. Compared with the
Michigan approach the evaluation is simpler, since
by just combining each individual with KB; it is
possible to build KB, for evaluation (see Fig. 3b).
However, usually, the search space is larger when
compared with the Michigan approach.

3. Iterative approximation: Each individual codifies a
single rule (Cordon, Herrera, & Hoftmann, 2001)
like in the Michigan approach. However, in each
iteration of the algorithm, only the best rule is
selected discarding all the others. This selection is
based by considering the properties of the rule,
such as for example, its covering degree on a set
of examples. The algorithm is then competitive and
not cooperative. It is usually necessary to apply

KBj| + CIITI—T31 |KB;

T Al \ i
H —
— —
—  ——
— —

Population Population
a b

Evolutionary Fuzzy Systems. Figure 3. The evaluation of
individuals in the (a) Michigan and (b) Pittsburgh
approaches

algorithms to refine the fuzzy rule set obtained
at the end of the evolutionary process, which can
include operations, such as for example, the removal
of similar rules.

The representation in all of these approximations
usually consists of individuals that contain references to
the fuzzy sets already defined in KB;. The representation
of each individual can be a sequence of integers where
each one is an index to the fuzzy sets associated to the
corresponding linguistic variable. As an example, the
fuzzy rule base could be represented as a matrix where
each cell corresponds to the intersection of the input
fuzzy sets, containing the index of the output fuzzy set
associated to the rule. It is also possible to represent the
fuzzy rule base as a decision table or simply as a list
of rules. In these last two cases, the representation can
have variable length, allowing to represent fuzzy rule
sets with variable size.

The fitness calculation depends on the selected
approximation. On a Pittsburgh approximation, the fit-
ness corresponds to the evaluation of the complete fuzzy
system on the corresponding problem. It is also pos-
sible to include in the fitness calculation other factors,
such as for example, penalization for fuzzy rule bases
that contains many rules or fuzzy rules with superposed
application areas, etc. On a Michigan or Iterative model,
the fitness indicates the degree of adequacy of the
rule measured independently, considering also in the
Michigan model its degree of cooperation with the
other rules in the population.

The definition of the variational operators depends
of course on the selected approximation. If the repre-
sentation allows it, standard operators of crossover and
mutation can be used. However, it can be convenient
(or necessary) to define specific operators. As an exam-
ple, variational operators can consider factors such as
the time period since the rule has been used for the
last time, its overall contribution to the final result, its
performance when evaluated on the set of examples, etc.

This case is a combination of the two models described
before. The knowledge base KB; contains the initial
approximation to the definition of the antecedents and
consequents, and the initial approximation to the fuzzy



Evolutionary Fuzzy Systems

361

rule base as provided by the expert. Note that KB; can
also be empty if it is expected that the algorithm must
generate all the parameters of the fuzzy system by itself.

The representation of the individuals contains all the
parameters that define a knowledge base in order to
allow its learning or optimization. The three most used
representation schemes are shown in Fig. 4. In the first
scheme, each individual contains the representation of
all fuzzy sets, and the representation of all fuzzy rules
using indexes to refer to the corresponding fuzzy sets.
In the second scheme, each individual is structured as a
set of rules, where each one specifies its own input and
output fuzzy sets by directly including the parameters
that define them. The representation (a) is adequate for
descriptive fuzzy systems, since the rules contain ref-
erences to the fuzzy sets used in their definition and
can be shared by all of them. The representation (b) is
adequate for approximative fuzzy systems, where each
rule defines its own fuzzy sets. These two representa-
tions are adequate for the Pittsburgh approximation,
while the third one (c) is adequate for the Michigan
and the Iterative approximation. Of course, there can
be many variations of this representations. For example,
the input space partition can be predefined or obtained
through fuzzy clustering algorithms, and if this parti-
tion is not expected to go under optimization, then it
is not necessary to include the parameters of the input
fuzzy sets in the representation.

Since this model is a combination of the two
previous models, everything that was mentioned before
concerning the fitness function and the variational
operators also applies in this context. However, the fact
that all parameters of the knowledge base are included
in the representation allows to define more power-
ful variational operators. As an example, it is possible
to define operators that decide the creation of new

Rules Rule

fuzzy sets, the elimination of some of them, and at
the same time, the adaptation of the associated fuzzy
rules, when for example, it is detected that there are
areas in the input space that are not well covered, many
rules with superimposed areas, etc. It is also possible to
apply genetic programming techniques (Pedrycz, 2003),
which are usually used to modify the structure of the
fuzzy system, adding, removing, or combining sections
of the fuzzy system with the objective of generating the
most adequate structure.

Clearly, the integration of fuzzy systems with evolu-
tionary algorithms allows to overcome the limitations
of each model considered independently, obtaining a
powerful hybrid approach, which allows to learn and
optimize fuzzy systems based on expert knowledge.
Previous sections have discussed in general terms the
evolutionary learning model. However, in order to get
more details about particular implementations, it is rec-
ommended to read the publications referenced in the
next section. The presentation from Karr & Gentry
(1993) is interesting, not only because it provides a nice
introduction and application of evolutionary fuzzy sys-
tems, but it has the additional value of being one of
the first publications in the area. The presentation of
Hoffmann (2001) is an excellent introduction to evo-
lutionary fuzzy systems used for control applications.
The other publications present details on evolutionary
fuzzy systems (Babuska 1998; Bonarini 1996; Cordon
et al., 2001; Juang Lin & Lin 2000; Lee & Takagi 1993),
including representations based on neural networks
(Hoffmann, 2001; Karr & Gentry, 1993), evolution
strategies (Alpaydtn, Dundar, & Balktr, 2002), genetic
programming (Pedrycz, 2003) and applications of evo-
lutionary fuzzy systems to the domain of recurrent

Rule
Rule

= = I

ant con ant  con
DB RB

a b

=0 [ =]

ant con

[--1]

ant con

KB

C

Evolutionary Fuzzy Systems. Figure 4. Representations for the complete knowledge base adequate for (a) descriptive
and (b) approximative fuzzy systems in the Pittsburgh approximation, and (c) representation of a single independent

rule adequate for Michigan and Iterative approximations




362

Evolutionary Games

fuzzy systems (Kavka, Roggero, & Schoenauer, 2005).
The paper by Cordon et al. (2004) provides a very com-
prehensive reference list about the main developments
on evolutionary fuzzy systems.

It should be stressed that a very important aspect
to consider in the definition of evolutionary fuzzy sys-
tems is the interpretability of the resulting fuzzy systems
(Casillas et al., 2003). Even if it has been mentioned
that it is possible to design an evolutionary fuzzy system
without expert information, by allowing the evolution-
ary algorithm to define all the components of the knowl-
edge base by itself, it must always be considered that
the interpretability of the results is essential. Designing
a system that solves the problem, but that works as a
black box, can be adequate in other contexts, but it is
not desirable at all in the context of evolutionary fuzzy
systems. An evolutionary fuzzy system algorithm must
provide the means so that the expert knowledge defined
in fuzzy terms can be considered and used appropri-
ately during the evolution, and also, it must guarantee an
adequate interpretability degree of the resulting fuzzy
system.

Recommended Reading

Alpaydtn, G., Dundar, G., & Balktr, S. (2002). Evolution-based
design of neural fuzzy networks using self-adapting genetic
parameters. IEEE Transactions of Fuzzy Systems, 10(2), 211-221.

Babuska, R. (1998). Fuzzy modeling for control. Norwell, MA: Kluwer
Academic Press.

Bonarini, A. (1996). Evolutionary learning of fuzzy rules: Compe-
tition and cooperation. In W. Pedrycz (Ed.), Fuzzy modeling:
Paradigms and practice. Norwell, MA: Kluwer Academic Press.

Casillas, J., Cordon, O., Herrera, F., & Magdalena, L. (Eds.). (2003).
Interpretability issues in fuzzy modeling. Series: Studies in fuzzi-
ness and soft computing (Vol. 128)

Cordon, O., Gomide, F, Herrera, F., Hoffmann, F., & Magdalena, L.
(2004). Ten years of genetic fuzzy systems: Current framework
and new trends. Fuzzy Sets and Systems, 141, 5-31.

Cordon, O., Herrera, F., & Hoffmann, F. (2001). Genetic fuzzy sys-
tems. Singapore: World Scientific Publishing.

Hoffmann, F. (2001). Evolutionary algorithms for fuzzy control
system design. Proceedings of the IEEE, 89(9), 1318-1333.

Juang C. F, Lin, J. Y., & Lin, C. T. (2000). Genetic reinforce-
ment learning through symbiotic evolution for fuzzy controller
design. IEEE Transactions on Systems, Man and Cybernetics,
30(2), 290-302.

Karr, C. L., & Gentry, E. J. (1993). Fuzzy control of PH using genetic
algorithms. IEEE Transactions on Fuzzy Systems, 1(1), 46-53.

Kavka, C., Roggero, P., & Schoenauer, M. (2005). Evolution of
Voronoi based fuzzy recurrent controllers. In Proceedings of
GECCO (pp. 1385-1392). NeW York: ACM Press.

Lee, M., & Takagi, H. (1993). Integrating design stages of fuzzy sys-
tems using genetic algorithms. In Proceedings of the second IEEE
international conference on fuzzy systems (pp. 612-617).

Pedrycz, W. (2003). Evolutionary fuzzy modeling. IEEE Transactions
of Fuzzy Systems, 11(5), 652-665.

Zadeh, L. (1988). Fuzzy logic. IEEE Computer, 21(4), 83-93.

[ .
Evolutionary Games

MOSHE SIPPER
Ben-Gurion University
Beer-Sheva, Israel

Definition

Evolutionary algorithms are a family of algorithms
inspired by the workings of evolution by natural selec-
tion, whose basic structure is to

1. Produce an initial population of individuals, these
latter being candidate solutions to the problem at
hand

2. Evaluate the fitness of each individual in accordance
with the problem whose solution is sought

3.  While termination condition not met do

a. Select fitter individuals for reproduction

b. Recombine (crossover) individuals

¢. Mutate individuals

d. Evaluate fitness of modified individuals
4. End while

Evolutionary games is the application of evolu-
tionary algorithms to the evolution of game-playing
strategies for various games, including chess, backgam-
mon, and Robocode.

Motivation and Background

Ever since the dawn of artificial intelligence in the 1950s,
games have been part and parcel of this lively field.
In 1957, a year after the Dartmouth Conference that
marked the official birth of AI, Alex Bernstein designed
a program for the IBM 704 that played two amateur
games of chess. In 1958, Allen Newell, J.C. Shaw, and
Herbert Simon introduced a more sophisticated chess
program (beaten in thirty-five moves by a ten-year-
old beginner in its last official game played in 1960).



Evolutionary Games

363

Arthur L. Samuel of IBM spent much of the 1950s work-
ing on game-playing Al programs, and by 1961 he had a
checkers program that could play at the master’s level.
In 1961 and 1963, Donald Michie described a simple
trial-and-error learning system for learning how to play
Tic-Tac-Toe (or Noughts and Crosses) called MENACE
(for Matchbox Educable Noughts and Crosses Engine).
These are but examples of highly popular games that
have been treated by AI researchers since the field’s
inception.

Why study games? This question was answered by
Susan L. Epstein, who wrote:

» There are two principal reasons to continue to do
research on games... First, human fascination with game
playing is long-standing and pervasive. Anthropolo-
gists have cataloged popular games in almost every cul-
ture... Games intrigue us because they address impor-
tant cognitive functions... The second reason to con-
tinue game-playing research is that some difficult
games remain to be won, games that people play very
well but computers do not. These games clarify what
our currentapproach lacks. They set challenges for us to
meet, and they promise ample rewards (Epstein, 1999).

Studying games may thus advance our knowledge
in both cognition and artificial intelligence, and, last
but not least, games possess a competitive angle which
coincides with our human nature, thus motivating both
researcher and student alike.

Even more strongly, Laird and van Lent proclaimed
that,

» ..interactive computer games are the killer application
for human-level Al. They are the application that will
soon need human-level Al, and they can provide the
environments for research on the right kinds of prob-
lems that lead to the type of the incremental and
integrative research needed to achieve human-level Al
(Laird & van Lent, 2000).

Recently, evolutionary algorithms have proven a
powerful tool that can automatically “design” successful
game-playing strategies for complex games (Azaria &
Sipper, 2005a,b; Hauptman & Sipper, 2005b, 2007a,b;
Shichel et al., 2005; Sipper et al., 2007).

Structure of the Learning System

Genetic Programming is a subclass of evolutionary
algorithms, wherein a population of individual pro-
grams is evolved, each program comprising functions
and terminals. The functions are usually arithmetic and
logic operators that receive a number of arguments as
input and compute a result as output; the terminals are
zero-argument functions that serve both as constants
and as sensors, the latter being a special type of function
that queries the domain environment.

The main mechanism behind genetic programming
is precisely that of a generic evolutionary algorithm
(Sipper, 2002; Tettamanzi & Tomassini, 2001), namely,
the repeated cycling through four operations applied to
the entire population: evaluate-select-crossover-mutate.
Starting with an initial population of randomly gen-
erated programs, each individual is evaluated in the
domain environment and assigned a fitness value rep-
resenting how well the individual solves the problem
at hand. Being randomly generated, the first-generation
individuals usually exhibit poor performance. However,
some individuals are better than others, that is, (as in
nature) variability exists, and through the mechanism
of natural (or, in our case, artificial) selection, these
have a higher probability of being selected to parent the
next generation. The size of the population is finite and
usually constant.

Specifically, first a genetic operator is chosen at ran-
dom; then, depending on the operator, one or two indi-
viduals are selected from the current population using
a selection operator, one example of which is tourna-
ment selection: Randomly choose a small subset of indi-
viduals, and then select the one with the best fitness.
After the probabilistic selection of better individuals the
chosen genetic operator is used to construct the next
generation. The most common operators are

e Reproduction (unary): Copy one individual to the
next generation with no modifications. The main
purpose of this operator is to preserve a small num-
ber of good individuals.

e Crossover (binary): Randomly select an internal
node in each of the two individuals and swap the
subtrees rooted at these nodes. An example is shown
in Fig. 1.




Evolutionary Games

Before After
Crossover
@ O, O,
ONO (jg ® @
ONO ® @ ONO
@ 6
Mutation
® ®
® ® ®
QN6 ONO.
®

Evolutionary Games. Figure 1. Genetic operators in gen-
etic programming. LISP programs are depicted as trees.
Crossover (top): Two subtrees (marked in bold) are
selected from the parents and swapped. Mutation (bot-
tom): A subtree (marked in bold) is selected from the
parent individual and removed. A new subtree is grown
instead

e Mutation (unary): Randomly select a node from the
tree, delete the subtree rooted at that node, and
then “grow” a new subtree in its stead. An exam-
ple is shown in Fig. 1 (the growth operator as well
as crossover and mutation are described in detail in
Koza, 1992).

The generic genetic programming flowchart is
shown in Fig. 2. When one wishes to employ genetic
programming, one needs to define the following six
desiderata:

Program architecture

Set of terminals

Set of functions

Fitness measure

Control parameters

Manner of designating result and terminating run

A

Recently, we have shown that complex and success-
ful game-playing strategies can be attained via genetic

programming. We focused on three games (Azaria &
Sipper, 2005a,b; Hauptman & Sipper, 2005b, 2007a,b;
Shichel et al., 2005; Sipper et al., 2007):

1. Backgammon. Evolves a full-fledged player for the
non-doubling-cube version of the game (Azaria &
Sipper, 2005a,b; Sipper et al., 2007).

2. Chess (endgames). Evolves a player able to play
endgames (Hauptman & Sipper, 2005b, 2007a,b;
Sipper et al., 2007). While endgames typically con-
tain but a few pieces, the problem of evaluation is
still hard, as the pieces are usually free to move all
over the board, resulting in complex game trees —
both deep and with high branching factors. Indeed,
in the chess lore much has been said and written
about endgames.

3. Robocode. A simulation-based game in which
robotic tanks fight to destruction in a closed
arena (robocode.alphaworks.ibm.com). The pro-
grammers implement their robots in the Java
programming language, and can test their cre-
ations either by using a graphical environment in
which battles are held, or by submitting them to a
central Web site where online tournaments regu-
larly take place. Our goal here has been to evolve
Robocode players able to rank high in the inter-
national league (Shichel et al., 2005; Sipper et al.,
2007).

A strategy for a given player in a game is a way of
specifying which choice the player is to make at every
point in the game from the set of allowable choices at
that point, given all the information that is available
to the player at that point (Koza, 1992). The problem
of discovering a strategy for playing a game can be
viewed as one of seeking a computer program. Depend-
ing on the game, the program might take as input the
entire history of past moves or just the current state of
the game. The desired program then produces the next
move as output. For some games one might evolve a
complete strategy that addresses every situation tack-
led. This proved to work well with Robocode, which is a
dynamic game, with relatively few parameters and little
need for past history.

In a two-player game, such as chess or backgammon,
players move in turn, each trying to win against the
opponent according to specific rules (Hong, Huang, &



Evolutionary Games

365

Create initial

random population

Gen =Gen + 1

Reproduction

Select one
individuals based
on fitness

Termination Yes Designate
criterion
o results
satisfied?
END
Evaluate fitness of
each individual
in population
Individuals = 0
Individuals
Select genetic Mutation
operation
probabilistically
Crossover
Select two Select one
individuals based individuals based
on fitness on fitness

Perform reproduction |

| Perform crossover |

l

l

Copy into new
population

Insert two offspring
into new population

Individuals =
individuals + 1

Individuals =
individuals + 2

I

Perform mutation

l

Insert mutant into
new population

Individuals =
individuals + 1

Evolutionary Games. Figure 2. Generic genetic programming flowchart (based on Koza, 1992). M is the population size,

and Gen is the generation counter. The termination criterion can be the completion of a fixed number of generations

or the discovery of a good-enough individual

Lin, 2001). The course of the game may be modeled
using a structure known as an adversarial game tree (or
simply game tree), in which nodes are the positions in
the game and edges are the moves. By convention, the
two players are denoted as MAX and MIN, where MAX
is the player who moves first. Thus, all nodes at odd-
numbered tree levels are game positions where MAX

moves next (labeled MAX nodes). Similarly, nodes on
even levels are called MIN nodes, and represent posi-
tions in which MIN (opponent) moves next.

The complete game tree for a given game is the tree
starting at the initial position (the root) and containing
all possible moves (edges) from each position. Terminal
nodes represent positions where the rules of the game




366

Evolutionary Games

determine whether the result is a win, a draw, or a loss.
Although the game tree for the initial position is an
explicit representation of all possible paths of the game,
therefore theoretically containing all the information
needed to play perfectly, for most (nontrivial) games it
is extremely large, and constructing it is not feasible.
For example, the complete chess game tree consists of
roughly 10*’ nodes (Shannon, 1950).

When the game tree is too large to be generated
completely, only a partial tree (called a search tree)
is generated instead. This is accomplished by invok-
ing a search algorithm, deciding which nodes are to be
developed at any given time and when to terminate the
search (typically at nonterminal nodes due to time con-
straints). During the search, some nodes are evaluated
by means of an evaluation function according to given
heuristics. This is done mostly at the leaves of the tree.
Furthermore, search can start from any position and not
just at the beginning of the game.

Because we are searching for a winning strategy, we
need to find a good next move for the current player,
such that no matter what the opponent does thereafter,
the player’s chances of winning the game are as high
as possible. A well-known method called the minimax
search (Campbell & Marsland, 1983; Kaindl, 1988) has
traditionally been used, and it forms the basis for most
methods still in use today. This algorithm performs a
depth-first search (the depth is usually predetermined),
applying the evaluation function to the leaves of the tree,
and propagating these values upward according to the
minimax principal: at MAX nodes, select the maximal
value, and at MIN nodes - the minimal value. The value
is ultimately propagated to the position from which the
search had started.

With games such as backgammon and chess
one can couple a current-state evaluator (e.g., board
evaluator) with a next-move generator. One can then
go on to create a minimax tree, which consists of
all possible moves, counter moves, counter counter-
moves, and so on; for real-life games, such a tree’s size
quickly becomes prohibitive. The approach we used
with backgammon and chess is to derive a very shallow,
single-level tree, and evolve “smart” evaluation func-
tions. Our artificial player is thus created by combin-
ing an evolved board evaluator with a simple program
that generates all next-move boards (such programs can
easily be written for backgammon and chess).

In what follows, we describe the definition of the six
items necessary in order to employ genetic program-
ming, as delineated in the previous section: program
architecture, set of terminals, set of functions, fitness
measure, control parameters, and manner of designat-
ing result and terminating run. Due to lack of space
we shall elaborate upon one game - Robocode - and
only summarize the major results for backgammon and
chess.

Program Architecture A Robocode player is written as
an event-driven Java program. A main loop controls
the tank activities, which can be interrupted on various
occasions, called events. The program is limited to four
lines of code, as we were aiming for the HaikuBot cat-
egory, one of the divisions of the international league
with a four-line code limit. The main loop contains one
line of code that directs the robot to start turning the
gun (and the mounted radar) to the right. This insures
that within the first gun cycle, an enemy tank will be
spotted by the radar, triggering a ScannedRobotEvent.
Within the code for this event, three additional lines
of code were added, each controlling a single actuator
and using a single numerical input that was supplied by
a genetic programming-evolved subprogram. The first
line instructs the tank to move to a distance specified
by the first evolved argument. The second line instructs
the tank to turn to an azimuth specified by the sec-
ond evolved argument. The third line instructs the gun
(and radar) to turn to an azimuth specified by the third
evolved argument (Fig. 3).

Terminal and Function Sets We divided the termi-
nals into three groups according to their functional-
ity (Shichel et al., 2005) (Fig. 4):

1. Game-status indicators: A set of terminals that pro-
vide real-time information on the game status, such
as last enemy azimuth, current tank position, and
energy levels.

2. Numerical constants: Two terminals, one providing
the constant 0 and the other being an ephemeral
random constant (ERC). This latter terminal is ini-
tialized to a random real numerical value in the
range [-1, 1], and does not change during evolution.



Evolutionary Games 367

Robocode Player’s Code Layout

while (true)
TurnGunRight (INFINITY) ; //main code loop

OnScannedRobot () {
MoveTank (<GP#1>) ;
TurnTankRight (<GP#2>) ;
TurnGunRight (<GP#3>) ;

Evolutionary Games. Figure 3. Robocode player’s code layout (HaikuBot division) ﬂ
Energy() Returns the remaining energy of the player
Heading() Returns the current heading of the player
X() Returns the current horizontal position of the player
Y() Returns the current vertical position of the player
MaxX() Returns the horizontal battlefield dimension
MaxY() Returns the vertical battlefield dimension

EnemyBearing()  Returns the current enemy bearing, relative to the current player’s heading
EnemyDistance() Returns the current distance to the enemy

EnemyVelocity()  Returns the current enemy’s velocity

EnemyHeading()  Returns the current enemy heading, relative to the current player’s heading
EnemyEnergy() Returns the remaining energy of the enemy

Constant() An ERC (Ephemeral Random Constant) in the range [-1,1]
Random() Returns a random real number in the range [-1,1]
Zero() Returns the constant 0
a
Add(F, F) Add two real numbers
Sub(F, F) Subtract two real numbers
Mul(F, F) Multiply two real numbers
Div(F, F) Divide first argument by second, if denominator non-zero, otherwise
return zero
Abs(F) Absolute value
Neg(F) Negative value
Sin(F) Sine function
Cos(F) Cosine function
ArcSin(F) Arcsine function
ArcCos(F) Arccosine function

IfGreater(F, F, F, F)  If first argument greater than second, return value of third argument,
else return value of fourth argument

IfPositive(F, F, F) If first argument is positive, return value of second argument, else return
value of third argument
Fire(F) If argument is positive, execute fire command with argument as fire-

power and return 1; otherwise, do nothing and return 0

b

Evolutionary Games. Figure 4. Robocode representation. (a) Terminal set (b) Function set (F: Float)

3. Fire command: This special function is used to cur-  and coevolution - letting the individuals play against
tail one line of code by not implementing the fire  each other; the former proved better. However, not just
actuator in a dedicated line. one but three external opponents were used to measure

performance; these adversaries were downloaded from
the HaikuBot league (robocode.yajags.com). The fitness

Fitness Measure We explored two different modes of value of an individual equals its average fractional score

learning: using a fixed external opponent as teacher, ~ (over three battles).



368

Evolutionary Games

Control Parameters and Run Termination The major
evolutionary parameters (Koza, 1992) were population
size — 256, generation count — between 100 and 200,
selection method - tournament, reproduction prob-
ability - 0, crossover probability - 0.95, and muta-
tion probability — 0.05. An evolutionary run terminates
when fitness is observed to level off. Since the game
is highly nondeterministic a “lucky” individual might
attain a higher fitness value than better overall individ-
uals. In order to obtain a more accurate measure for the
evolved players, we let each of them do battle for 100
rounds against 12 different adversaries (one at a time).
The results were used to extract the top player - to be
submitted to the international league.

Results We submitted our top player to the HaikuBot
division of the international league. At its very first tour-
nament it came in third, later climbing to first place
of 28 (robocode.yajags.com/20050625/haiku-1v1.html).
All other 27 programs, defeated by our evolved
strategy, were written by humans. For more details on
GP-Robocode see Shichel et al., (2005) and Azaria,
Hauptman, and Shichel (2007).

Backgammon We pitted our top evolved backgammon
players against Pubeval, a free, public-domain board
evaluation function written by Tesauro. The program -
which plays well — has become the de facto yardstick
used by the growing community of backgammon-
playing program developers. Our top evolved player
was able to attain a win percentage of 62.4% in a tour-
nament against Pubeval, about 10% higher (!) than the
previous top method. Moreover, several evolved strate-
gies were able to surpass the 60% mark, and most of
them outdid all previous works. For more details on
GP-Gammon, see Azaria and Sipper (2005a) and Azaria
et al. (2007).

Chess (endgames) We pitted our top evolved chess-
endgame players against two very strong external oppo-
nents: (1) A program we wrote (“Master”) based upon
consultation with several high-ranking chess players
(the highest being Boris Gutkin, ELO 2400, Inter-
national Master); (2) CRAFTY - a world-class chess
program, which finished second in the 2004 World
Computer Speed Chess Championship (www.cs.biu.ac.

Evolutionary Games. Table 1 Percent of wins, advan-
tages, and draws for the best GP-EndChess player in the
tournament against two top competitors

Master 6.00 2.00 68.00

CRAFTY 2.00 4.00 72.00

il/games/). Speed chess (“blitz”) involves a time-limit
per move, which we imposed both on CRAFTY and on
our players. Not only did we thus seek to evolve good
players, but ones who play well and fast. Results are
shown in Table 1. As can be seen, GP-EndChess man-
ages to hold its own, and even win, against these top
players. For more details on GP-EndChess see Azaria
et al.,, (2007) and Hauptman and Sipper (2005b).
Deeper analysis of the strategies developed
(Hauptman & Sipper, 2005a) revealed several impor-
tant shortcomings, most of which stemmed from the
fact that they used deep knowledge and little search
(typically, they developed only one level of the search
tree). Simply increasing the search depth would not
solve the problem, since the evolved programs exam-
ine each board very thoroughly, and scanning many
boards would increase time requirements prohibitively.
And so we turned to evolution to find an optimal way
to overcome this problem: How to add more search
at the expense of less knowledgeable (and thus less
time-consuming) node evaluators, while attaining bet-
ter performance. In Hauptman and Sipper (2007b)
we evolved the search algorithm itself, focusing on the
Mate-In-N problem: find a key move such that even with
the best possible counterplays, the opponent cannot
avoid being mated in (or before) move N. We showed
that our evolved search algorithms successfully solve
several instances of the Mate-In-N problem, for the
hardest ones developing 47% less game-tree nodes than
CRAFTY. Improvement is thus not over the basic alpha-
beta algorithm, but over a world-class program using all
standard enhancements (Hauptman & Sipper, 2007b).
Finally, in Hauptman and Sipper (2007a), we exam-
ined a strong evolved chess-endgame player, focusing
on the player’s emergent capabilities and tactics in the
context of a chess match. Using a number of meth-
ods we analyzed the evolved player’s building blocks


www.cs.biu.ac. il/games/
www.cs.biu.ac. il/games/

Evolutionary Kernel Learning

369

and their effect on play level. We concluded that evo-
lution has found combinations of building blocks that
are far from trivial and cannot be explained through
simple combination - thereby indicating the possible
emergence of complex strategies.

Cross References

» Evolutionary Computation
» Genetic Algorithms
»Genetic Programming

Recommended Reading

Azaria, Y., & Sipper, M. (2005a). GP-Gammon: Genetically program-
ming backgammon players. Genetic Programming and Evolvable
Machines, 6(3), 283-300.

Azaria, Y., & Sipper, M. (2005b). GP-Gammon: Using genetic
programming to evolve backgammon players. In M. Keijzer,
A. Tettamanzi, P. Collet, J. van Hemert, & M. Tomassini (Eds.),
Proceedings of 8th European conference on genetic program-
ming (EuroGP2005), LNCS (Vol. 3447, pp. 132-142). Heidelberg:
Springer.

Campbell, M. S., & Marsland, T. A. (1983). A comparison of minimax
tree search algorithms. Artificial Intelligence, 20, 347-367.
Epstein, S. L. (1999). Game playing: The next moves. In Proceed-
ings of the sixteenth National conference on artificial intelligence

(pp- 987-993). Menlo Park, CA: AAAI Press.

Hauptman, A., & Sipper, M. (2005a). Analyzing the intelligence of a
genetically programmed chess player. In Late breaking papers
at the 2005 genetic and evolutionary computation conference,
GECCO 2005.

Hauptman, A., & Sipper, M. (2005b). GP-EndChess: Using genetic
programming to evolve chess endgame players. In M. Keijzer,
A. Tettamanzi, P. Collet, J. van Hemert, & M. Tomassini (Eds.),
Proceedings of 8th European conference on genetic program-
ming (EuroGP2005), LNCS (Vol. 3447, pp. 120-131). Heidelberg:
Springer.

Hauptman, A., & Sipper, M. (2007a). Emergence of complex strate-
gies in the evolution of chess endgame players. Advances in
Complex Systems, 10(Suppl. 1), 35-59.

Hauptman, A., & Sipper, M. (2007b). Evolution of an efficient search
algorithm for the mate-in-N problem in chess. In M. Ebner,
M. O’Neill, A. Ekart, L. Vanneschi, & A. I. Esparcia-Alcazar
(Eds.), Proceedings of 10th European conference on genetic pro-
gramming (EuroGP2007), LNCS (Vol. 4445, pp. 78-89). Heidel-
berg: Springer.

Hong, T.-P., Huang, K.-Y.,, & Lin, W.-Y. (2001). Adversarial search
by evolutionary computation. Evolutionary Computation, 9(3),
371-385.

Kaindl, H. (1988). Minimaxing: Theory and practice. AI-Magazine,
9(3), 69-76.

Koza, J. R. (1992). Genetic programming: On the programming of
computers by means of natural selection. Cambridge, MA: MIT
Press.

Laird, J. E., & van Lent, M. (2000). Human-level AT’s killer appli-
cation: Interactive computer games. In AAAI-00: Proceed-
ings of the 17th National conference on artificial intelligence
(pp. 1171-1178). Cambridge, MA: MIT Press.

Shannon, C. E. (1950). Automatic chess player. Scientific American,
48, 182.

Shichel, Y., Ziserman, E., & Sipper, M. (2005). GP-Robocode: Using
genetic programming to evolve robocode players. In M. Keijzer,
A. Tettamanzi, P. Collet, J. van Hemert, & M. Tomassini (Eds.),
Proceedings of 8th European conference on genetic program-
ming (EuroGP2005), LNCS (Vol. 3447, pp. 143-154). Heidelberg:
Springer.

Sipper, M. (2002). Machine nature: The coming age of bio-inspired
computing. New York: McGraw-Hill.

Sipper, M., Azaria, Y., Hauptman, A., & Shichel, Y. (2007). Design-
ing an evolutionary strategizing machine for game playing and
beyond. IEEE Transactions on Systems, Man, and Cybernetics,
Part C: Applications and Reviews, 37(4), 583-593.

Tettamanzi, A., & Tomassini, M. (2001). Soft computing: Inte-
grating evolutionary, neural, and fuzzy systems. Berlin:
Springer.

! Evolutionary Grouping

»Evolutionary Clustering

I . .
Evolutionary Kernel Learning

CHRISTIAN IGEL
Ruhr-Universitit Bochum
Bochum, Institute fiir Neuroinformatik Germany

Definition

Evolutionary kernel learning stands for
»evolutionary algorithms to optimize the »kernel
function for a kernel-based learning machine.

using

Motivation and Background
In kernel-based learning algorithms the kernel function
determines the scalar product and thereby the metric in
the feature space in which the learning algorithm oper-
ates. The kernel is usually not adapted by the »kernel
method itself. Choosing the right kernel function is cru-
cial for the training accuracy and generalization capa-
bilities of the learning machine. It may also influence
the runtime and storage complexity during learning and
application.

Finding an appropriate kernel is a »model selec-
tion problem. The kernel function is selected from an a



370

Evolutionary Kernel Learning

priori fixed class. When a parameterized family of ker-
nel functions is considered, kernel adaptation reduces
to finding an appropriate parameter vector. In prac-
tice, the most frequently used method to determine
these values is grid search. In simple grid search the
parameters are varied independently with a fixed step-
size through a range of values and the performance of
every combination is measured. Because of its compu-
tational complexity, grid search is only suitable for the
adjustment of a few parameters. Further, the choice of
the discretization of the search space may be crucial.
Gradient-based approaches are perhaps the most elabo-
rate techniques for adapting real-valued kernel param-
eters, see the articles by Chapelle, Vapnik, Bousquet,
and Mukherjee (2002) and Glasmachers and Igel (2005)
and references therein. To use these methods, however,
the class of kernel functions must have a differentiable
structure. They are also not directly applicable if the
score function for assessing the parameter performance
is not differentiable. This excludes some reasonable per-
formance measures. Evolutionary kernel learning does
not suffer from these limitations. Additionally, it allows
for »multi-objective optimization (MOO).

Structure of Learning System

Canonical evolutionary kernel learning can be descr-
ibed as an evolutionary algorithm (EA) in which the
individuals encode kernel functions, see Fig. 1. These
individuals are evaluated by determining the task-
specific performance of the kernel they represent. Two
special aspects must be considered when designing an
EA for kernel learning. First, one must decide how to
assess the performance (i.e., the fitness) of a particu-
lar kernel. That is, model selection criteria have to be
defined depending on the problem at hand. Second, one
must also specify the subset of possible kernel func-
tions in which the EA should search. This leads to the

questions of how to encode these kernels and which
variation operators to employ.

The following presents some performance indices that
have been considered for kernel selection. They can be
used alone or in linear combination for single-objective
optimization. In MOO a subset of these criteria can be
used as different objectives.

It is important to note that, although many of these
measures are designed to improve »generalization, ker-
nel learning can lead to »overfitting if only limited data
is used in the model selection process (e.g., in every
generation the same small data sets are used to assess
performance). Regularization (e.g., in a Bayesian frame-
work) can be used to prevent overfitting. If enough
data are available, it is advisable to monitor the gener-
alization behavior of kernel learning using independent
data. For example, external data can be used for the early
stopping of evolutionary kernel learning.

Accuracy on Sample Data The most straightforward
way to evaluate a model is to consider its performance
on sample data. The empirical risk given by the error
on the training data could be considered, but it does
not measure generalization. To estimate the generaliza-
tion performance, the accuracy on data not used for
training is evaluated. In the simplest case, the avail-
able data is split into a training and validation set, with
the first used for learning and the second for subse-
quent performance assessment. A theoretically sound
and simple method is »cross-validation (CV). Cross-
validation makes better use of the data, but it is more
computationally demanding. In practice, it yields very
good results.

If »classification is considered, it may be reason-
able to split the classification error into false negative

initialize parent population of individuals,
each encoding kernel and perhaps additional parameters

while termination criterion is not met

create off spring individuals from parents
using variation operators

using sample data

train and evaluate kernel machine encoded by individuals

select new parent population based on evaluation

Evolutionary Kernel Learning. Figure 1. Canonical evolutionary kernel learning algorithm



Evolutionary Kernel Learning

371

and false positive rates and to view Psensitivity and
»specificity as two separate objectives (Suttorp & Igel,
2006).

Measures Derived from Bounds on the Generalization
Performance Statistical learning theory allows one to
compute estimates of and bounds on the expected gen-
eralization error of learning machines. These values can
be utilized as criteria for model selection, although then
the assumptions of the underlying theorems from statis-
tical learning theory are typically violated and the terms
“bound” and “unbiased estimate” become misleading.

For example, radius-margin bounds were used to
evolve kernels for »support vector machines (SVMs)
for classification (Igel, 2005). Furthermore, the number
of support vectors (SVs) was optimized in combina-
tion with the empirical risk (Igel, 2005). The fraction
of SVs is an upper bound on the leave-one-out error
(e.g., Chapelle et al., 2002).

Number of Input Variables Variable selection refers to
the »feature selection problem of choosing input vari-
ables that are best suited for the learning task. Masking a
subset of variables can be viewed as modifying the ker-
nel. By considering only a subset of feature dimensions
the computational complexity of the learning machine
decreases. When deteriorating feature dimensions are
removed, the overall performance may increase. Reduc-
ing the number of input variables is therefore a common
objective, which can be achieved using single-objective
(Eads et al., 2002; Frohlich, Chapelle, & Schélkopf,
2004; Jong, Marchiori, & van der Vaart, 2004; Miller,
Jerebko, Malley, & Summers, 2003) or multi-objective
(Pang & Kasabov, 2004; Shi, Suganthan, & Deb, 2004)
evolutionary kernel learning.

Space and Time Complexity of the Classifier In some
applications, it can be desirable to have fast kernel meth-
ods (e.g., for meeting real-time constraints). Thus, the
execution time may be considered in the performance
assessment during evolutionary kernel learning.

The space and time complexity of SVMs scales with
the number of SVs. This is an additional reason to con-
sider minimization of the number of SV as an objective
in evolutionary model selection for SVMs (Igel, 2005;
Suttorp & Igel, 2006).

Multi-Objective Optimization The design of a learning
machine is usually a MOO problem. For example, accu-
racy and complexity can be viewed as multiple, and
probably conflicting, objectives. The goal of MOO is to
approximate a diverse set of Pareto-optimal solutions
(i.e., solutions that cannot be improved in one objec-
tive without getting worse in another one), which pro-
vide insights into the trade-offs between the objectives.
Evolutionary multi-objective algorithms have become
popular for MOO. Applications of multi-objective evo-
lutionary kernel learning combining some of these per-
formance measures listed above can be found in the
work of Igel (2005), Pang and Kasabov (2004), and Shi
et al. (2004).

The sheer complexity of the space of possible kernel
functions makes it necessary to restrict the search to
a particular class of kernel functions. This restriction
essentially determines the representation and the oper-
ators used in evolutionary kernel learning.

When a parameterized family of mappings is con-
sidered, the kernel parameters can be encoded more or
less directly in a real-valued EA. This is a frequently
used representation, for example for Gaussian kernel
functions.

For variable selection a binary encoding can be
appropriate. One can fix a kernel k : X x X - R,
where k(X, Z) solely depends on some distance measure
between X,z € X. In the binary encoding each bit then
indicates whether a particular input variable is consid-
ered when computing the distance (Pang and Kasabov,
2004; Shi et al., 2004).

Kernels can be built from other kernels. For exam-
ple, ifk; and k; are kernel functions on X then ak; (%, )+
bk, (%,Z) and aexp(-bki(%,2)) for X,Z € X,a,b ¢ R*
are also kernels on X. This suggests a representation in
which the individuals encode expressions that evaluate
to kernel functions.

Given these different search spaces, it is not surpris-
ing that the aspects of all major branches of evolutionary
computation have been used in evolutionary kernel
learning: genetic algorithms (Frohlich et al., 2004),
genetic programming (Howley & Madden, 2005), evo-
lution strategies (Igel, 2005), and evolutionary pro-
gramming (Runarsson & Sigurdsson, 2004).




372

Evolutionary Kernel Learning

In general, kernel methods assume that the kernel
(or at least the »Gram matrix »(kernel matrix) in the
training process) is »-positive semidefinite (psd). There-
fore, it is advisable to restrict the search space such
that only psd functions evolve. Other ways of dealing
with the problem of ensuring positive semidefiniteness
are to ignore it (Howley & Madden, 2005) or to con-
struct a psd Gram matrix from the matrix M induced
by the training data and a non-psd “kernel” function.
The latter can be achieved by subtracting the smallest
eigenvalue of M from its diagonal entries.

Gaussian Kernels Gaussian kernel functions are
prevalent. Their general form is k(%,Z) =
exp(-(x-2)TA(¥-2)) for X,z € R" and sym-
metric positive definite (pd) matrix A € R™". When
adapting A, the issue of ensuring that the optimization
algorithm generates only pd matrices A arises. This
can be achieved by an appropriate parametrization
of A. Often the search is restricted to matrices of the
form yI, where I is the unit matrix and y € R* is the
only adjustable parameter. However, allowing more
flexibility has proven to be beneficial in certain appli-
cations (e.g., see Chapelle et al., 2002; Friedrichs & Igel,
2005; Glasmachers & Igel, 2005). It is straightforward
to consider diagonal matrices with positive elements
to allow for independent scaling factors weighting the
input components. However, only by dropping this
restriction one can achieve invariance against both
rotation and scaling of the input space. A real-valued
encoding that maps onto the set of all symmetric
pd matrices can be used such that all modifications
of the parameters result in feasible kernels, see the
articles by Friedrichs and Igel (2005), Glasmachers and
Igel (2005), and Suttorp and Igel (2006) for different
parametrizations.

Optimizing Additional Hyperparameters One of the
advantages of evolutionary kernel learning is that it
can be easily augmented with an optimization of addi-
tional hyperparameters of the kernel method. The most
prominent example is to encode not only the kernel but
also the regularization parameter when doing model
selection for SVMs.

Application Example

Notable applications of evolutionary kernel learning
include the design of classifiers in bioinformatics
(Mersch, Glasmachers, Meinicke, & Igel, 2007; Pang
& Kasabov, 2004; Shi et al., 2004). Let us consider
the work by Mersch et al. (2007) as an instructive
example. Here, the parameters of a sequence kernel
are evolved to improve the prediction of gene starts
in DNA sequences. The kernel can be viewed as a
weighted sum of 64 kernels, each measuring similarity
with respect to a particular tri-nucleotide sequence
(codon). The 64 weights wy,...,wes are optimized
together with an additional global kernel parameter o
and a regularization parameter C for the SVM. Each
individual stores X € R°®, where (wy, ..., We4, 0, C)T =
(exp(x1)s. .. exp(xes)s | %65 [x66])T.  An
strategy is applied, using additive multi-variate Gaus-
sian mutation and weighted global recombination
for variation and rank-based selection. The fitness is
determined by a 5-fold cross-validation. The evolved
kernels lead to higher classification rates and the
adapted weights reveal the importance of particular
codons for the task at hand.

evolution

Cross References
» Neuroevolution

Recommended Reading

Chapelle, O., Vapnik, V., Bousquet, O., & Mukherjee, S. (2002).
Choosing multiple parameters for support vector machines.
Machine Learning, 46(1), 131-159.

Eads, D. R., Hill, D., Davis, S., Perkins, S. J., Ma, J., Porter, R. B.,
et al. (2002). Genetic algorithms and support vector machines
for time series classification. In B. Bosacchi, D. B. Fogel, &
J. C. Bezdek (Eds.), Applications and science of neural networks,
fuzzy systems, and evolutionary computation V, Proceedings
of the SPIE (Vol. 4787) (pp. 74-85). SPIE-The International
Society for Optical Engineering. Bellington, WA

Friedrichs, F., & Igel, C. (2005). Evolutionary tuning of multiple
SVM parameters. Neurocomputing, 64(C), 107-117.

Frohlich, H., Chapelle, O., & Schélkopf, B. (2004). Feature selec-
tion for support vector machines using genetic algorithms.
International Journal on Artificial Intelligence Tools, 13(4),
791-800.

Glasmachers, T., & Igel, C. (2005). Gradient-based adaptation
of general gaussian kernels. Neural Computation, 17(10),
2099-2105.

Howley, T., & Madden, M. (2005). The genetic kernel support vec-
tor machine: Description and evaluation. Artificial Intelligence
Review, 24(3), 379-395.

Igel, C. (2005). Multi-objective model selection for support vector
machines. In C. A. Coello Coello, E. Zitzler, & A. Hernandez



Evolutionary Robotics

373

Aguirre (Eds.), Proceedings of the third international conference
on evolutionary multi-criterion optimization (EMO 2005), LNCS
(Vol. 3410) (pp. 534-546). Berlin: Springer.

Jong, K., Marchiori, E., & van der Vaart, A. (2004). Analysis of
proteomic pattern data for cancer detection. In G. R. Raidl,
S. Cagnoni, J. Branke, D. W. Corne, R. Drechsler, Y. Jin, et al.
(Eds.), Applications of evolutionary computing, LNCS (Vol.
3005, pp. 41-51). Berlin: Springer.

Mersch, B., Glasmachers, T., Meinicke, P., & Igel, C. (2007). Evo-
lutionary optimization of sequence kernels for detection of
bacterial gene starts. International Journal of Neural Systems,
17(5), 369-381.

Miller, M. T., Jerebko, A. K., Malley, J. D., & Summers, R. M.
(2003). Feature selection for computer-aided polyp detection
using genetic algorithms. In A. V. Clough & A. A. Amini (Eds.),
Medical imaging 2003: Physiology and function: Methods, sys-
tems, and applications, Proceedings of the SPIE (Vol. 5031)
(pp- 102-110).

Pang, S., & Kasabov, N. (2004). Inductive vs. transductive infer-
ence, global vs. local models: SVM, TSVM, and SVMT for gene
expression classification problems. In International joint con-
ference on neural networks (IJCNN 2004) (Vol. 2, pp. 1197-1202).
Washington, DC: IEEE Press.

Runarsson, T. P.,, & Sigurdsson, S. (2004). Asynchronous parallel
evolutionary model selection for support vector machines. Neu-
ral Information Processing - Letters and Reviews, 3(3), 59-68.

Shi, S. Y. M., Suganthan, P. N., & Deb, K. (2004). Multi-class protein
fold recognition using multi-objective evolutionary algorithms.
In IEEE symposium on computational intelligence in bioinfor-
matics and computational biology (pp. 61-66). Washington, DC:
IEEE Press.

Suttorp, T., & Igel, C. (2006). Multi-objective optimization of
support vector machines. In Y. Jin (Ed.), Multi-objective
machine learning. Studies in computational intelligence (Vol. 16,
pp. 199-220). Berlin: Springer.

[ . .
Evolutionary Robotics

PuiL HusBANDS
University of Sussex
Brighton, UK

Synonyms
Embodied evolutionary learning; Evolution of agent
behaviors; Evolution of robot control

Definition

Evolutionary robotics involves the use of »-evolutionary
computing techniques to automatically develop some or
all of the following properties of a robot: the control sys-
tem, the body morphology, and the sensor and motor

properties and layout. Populations of artificial genomes
(usually lists of characters and numbers) encode prop-
erties of autonomous mobile robots required to carry
out a particular task or to exhibit some set of behav-
iors. The genomes are mutated and interbred creating
new generations of robots according to a Darwinian
scheme in which the fittest individuals are most likely
to produce offspring. Fitness is measured in terms of
how good a robot’s behavior is according to some evalu-
ation criteria; this is usually automatically measured but
may, in the manner of eighteenth century pig breeders,
be based on the experimenters’ judgment.

Motivation and Background

Turing’s (1950) paper, Computing Machinery and Intel-
ligence, is widely regarded as one of the seminal works
in artificial intelligence. It is best known for what came
to be called the Turing test - a proposal for decid-
ing whether or not a machine is intelligent. However,
tucked away toward the end of Turings wide rang-
ing discussion of issues arising from the test is a far
more interesting proposal. He suggests that worthwhile
intelligent machines should be adaptive, should learn
and develop, but concedes that designing, building, and
programming such machines by hand is probably com-
pletely infeasible. He goes on to sketch an alternative
way of creating machines based on an artificial analog of
biological evolution. Each machine would have hered-
itary material encoding its structure, mutated copies
of which would form offspring machines. A selec-
tion mechanism would be used to favor better adapted
machines - in this case, those that learned to behave
most intelligently. Turing proposed that the selection
mechanism should largely consist of the experimenter’s
judgment.

It was not until more than 40 years after their
publication that Turing’s long forgotten suggestions
became reality. Building on the development of princi-
pled evolutionary search algorithm by, among others,
Holland (1975), researchers at CNR, Rome, Case West-
ern University, the University of Sussex, EPFL, and
elsewhere independently demonstrated methodologies
and practical techniques to evolve, rather than design,
the control systems for primitive autonomous intelli-
gent machines (Beer & Gallagher, 1992; Cliff, Harvey, &
Husbands, 1993; de Garis, 1990; Floreano & Mondada,




374

Evolutionary Robotics

Create initial population
of robot genotypes;
evaluate their fithesses

Replace members
of population

Population of
robot genotypes

Select parents
according to fitness

Evaluate new
offspring

Breed

Create mutated offspring

Evolutionary Robotics. Figure 1. General scheme employed in evolutionary robotics

1994; Husbands & Harvey, 1992; Parisi & Nolfi, 1993).
Thus, the field of Evolutionary Robotics was born in
the early 1990s. Initial motivations were similar to Tur-
ing’s: the hand design of intelligent adaptive machines
intended for operation in natural environments is
extremely difficult, would it be possible to wholly or
partly automate the process?

Today, the field of evolutionary robotics has expa-
nded in scope to take in a wide range of applications,
including promising new work on autonomous fly-
ing machines (Floreano, Husbands, & Nolfi, 2008), as
well as research aimed at exploring specific scientific
issues — for instance, principles from neuroscience or
questions in cognitive science (Harvey, Di Paolo, Wood,
Quinn, & Tuci, 2005; Philippides, Husbands, Smith, &
O’Shea, 2005). Such work is able to exploit the fact
that evolutionary robotics operates with fewer assump-
tions about neural architectures and behavior generat-
ing mechanisms than other methods; this means that
whole general classes of designs and processes can be
explored.

Structure of the Learning System
The key elements of the evolutionary robotics approach are

e An artificial genetic encoding specifying the robot
control systems/body plan/sensor properties etc.,
along with a mapping to the target system

e A method for measuring the fitness of the robot
behaviors generated from these genotypes

e A way of applying selection and a set of “genetic”
operators to produce the next generation from the
current

The structure of the overall evolutionary process is cap-
tured in Fig. 1. The general scheme is like that of any
application of an evolutionary search algorithm. How-
ever, many details of specific parts of the process, partic-
ularly the evaluation step, are peculiar to evolutionary
robotics.

The more general parts of the evolutionary process
(selection, breeding, genetic operators such as mutation
and crossover, replacement, and population structure)



Evolutionary Robotics

375

Visual
inputs

+ve

-ve Left motor

@

Visual morphology

Evolutionary Robotics. Figure 2. Evolved neurocontrollers. On the left a simple fixed architecture feedforward net-

work is illustrated. The connection weights, and sometimes the neuron properties, are put under evolutionary control.
On the right a more complex architecture is illustrated. In this case, the whole architecture, including the number
of neurons and connections, is under evolutionary control, along with connection and neuron properties and the

morphology of a visual sensor that feeds into the network

are also found in most other applications of evolution-
ary computing and, just as in those other applications,
there are many well-documented ways of implemented
each (De Jong, 2006; Eiben & Smith, 2003). Hence, this
section focuses on genetic encoding and evaluation as
a route to more evolutionary robotics specific issues.
For a much fuller treatment of the subject, see Floreano
et al. (2008) and Nolfi and Floreano (2000).

While, as already mentioned, many aspects of the robot
design can potentially be under genetic control, at least
the control system always is. By far the most popular
form of controller is some sort of neural network. These
range from straightforward feedforward networks of
simple elements (Floreano & Mondada, 1994) to rel-
atively complex, dynamic and plastic recurrent net-
works (Beer & Gallagher 1992; Floreano & Urzelai 2000;
Philippides, Husbands, Smith, & O’Shea, 2005), as illus-
trated in Fig. 2. In the simplest case, a fixed architecture
network is used to control a robot whose sensors feed
into the network which in turn feeds out to the robot
motors. In this scenario, the parameters of the network
(connection weights and relevant properties of the units
such as thresholds or biases) are coded as a fixed length
string of numerical values.

A more complex case, which has been explored since
the very early days of evolutionary robotics (Cliff et al.,
1993), involves the evolution of the network architecture
as well as the properties of the connections and units.
Typically, the size of the network (number of units and
connections) and its architecture (wiring diagram) are

unconstrained and free to evolve. This involves more
complex encodings which can grow and shrink, as units
and connections are added or lost, while allowing a
coherent decoding of connections between units. These
range from relatively simple strings employing blocks
of symbols that encode a unit’s properties and connec-
tions relative to other units (Cliff et al.) to more indirect
schemes that make use of growth processes in some geo-
metric space (Philippides et al., 2005) or employ genetic
programming-like tree representations in which whole
subbranches can be added, deleted, or swapped over
(Gruau, 1995).

The most general case involves the encoding of con-
trol network and body and sensor properties. Various
kinds of developmental schemes have been used to
encode the construction of body morphologies from
basic building blocks, both in simulation and in the
real world. The position and properties of sensors
can also be put under evolutionary control. Some-
times one complex encoding scheme is used for all
aspects of the robot under evolutionary control, and
sometimes the different aspects are put on separate
genotypes.

The fitness of members of the population is measured,
via an evaluation mechanism, in terms of the robot
behaviors produced by the control system, or control
system plus robot morphology that it encodes. Fitness
evaluation, therefore, consists of translating the genome
in question into a robot instantiation and then measur-
ing the aspects of the resulting behavior. In the earliest




376

Evolutionary Robotics

work aimed at using evolutionary techniques to develop
neurocontrollers for particular physical robots, mem-
bers of a population were downloaded in turn onto
the robot and their behavior was monitored and mea-
sured either automatically by clever experimental setups
(Floreano & Mondada, 1994; Harvey, Husbands, & Cliff,
1994) or manually by an observer (Gruau & Quatrama-
ran, 1997). The machinery of the evolutionary search
algorithm was managed on a host computer while the
fitness evaluations were undertaken on the target robot.

One drawback of evaluating fitness on the robot is
that this cannot be done any quicker than in real time,
making the whole evolutionary process rather slow.
However, in the early work in the field this approach
was taken because it was felt that it was unlikely that
simulations could be made accurate enough to allow
proper transfer of evolved behavior onto the real robot.
However, a careful study of accurate physics-based
simulations of a Khepera robot, with various degrees
of noise added, proved this assumption false (Jakobi,
Husbands, & Harvey, 1995). This led to the devel-
opment of Jakobi’s minimal simulation methodology
(Jakobi, 1998a), whereby computationally very efficient
simulations are built by modeling only those aspects of
the robot-environment interaction deemed important
to the desired behavior and masking everything else
with carefully structured noise (so that evolution could
not come to rely on any of those features). These ultra-
fast, ultralean simulations have successfully been used
with many different forms of robot and sensing, with
very accurate transfer of behavior from simulation to
reality. An alternative approach uses plastic controllers
that further adapt through self-organization to help
smooth out the differences between an inaccurate sim-
ulation and the real world (Urzelai & Floreano, 2001).
Instead of evolving connection weights, in this approach
“learning rules” for adapting connection strengths are
evolved - this results in controllers that continually
adapt to changes in their environment. For details of
further approaches, see Floreano et al. (2008). Much
evolutionary robotics work now makes use of simula-
tions; without them it would be impossible to do the
most ambitious work on the concurrent evolution of
controllers and body morphology (Lipson & Pollack,
2000) (to be briefly described later). However, although
simulation packages and techniques have developed
rapidly in the past few years, there will still inevitably

be discrepancies between simulation and reality, and the
lessons and insights of the work outlined above should
not be forgotten.

An interesting distinction can be made between
implicit and explicit fitness functions in evolutionary
robotics (Nolfi & Floreano, 2000). In this context, an
explicit fitness function rewards specific behavioral ele-
ments - such as traveling in a straight line — and hence
shapes the overall behavior from a set of specific behav-
ioral primitives. Implicit fitness functions operate at a
more indirect, abstract level - fitness points are given for
completing some task but they are not tied to specific
behavioral elements. Implicit fitness functions might
involve components such as maintaining energy levels
or covering as much ground as possible, components
that can be achieved in many different ways. In prac-
tice, it is quite possible to define a fitness function that
has both explicit and implicit elements.

Potential advantages of this methodology include

o The ability to explore potentially unconstrained
designs that have large numbers of free variables.
A class of robot systems (to be searched) is defined
rather than specific, fully defined robot designs. This
means fewer assumptions and constraints are neces-
sary in specifying a viable solution.

o The ability to use the methodology to fine-tune the
parameters of an already successful design.

o The ability, through the careful design of fitness cri-
teria and selection techniques, to take into account
multiple, and potentially conflicting, design criteria
and constraints (e.g., efficiency, cost, weight, power
consumption, etc.).

o The possibility of developing highly unconventional
and minimal designs.

o The ability to explicitly take into account robustness
and reliability as major driving force behind the fit-
ness measure, factors that are particularly important
for certain applications.

Applications
For a detailed survey of applications of evolutionary
robotics, see Floreano et al. (2008); this section gives a



Evolutionary Robotics

brief overview of some areas covered by the methodol-
ogy to give a better idea of the techniques involved and
to indicate the scope of the field.

Prominent early centers for research in this area
were EPFL and Sussex University, both of which are still
very active in the field. Much of the early EPFL work
used the miniature Khepera robot (Mondada, Franzi,
& lenne, 1993), which became a popular tool in many
areas of robotics research. In its simplest form, it is a
two-wheeled cylindrical robot with a ring of IR sen-
sors around its body. The first successful evolutionary
robotics experiments at EPFL employed the setup illus-
trated in Figs. 3 and 4. A population of bit strings
encoded the connection weights and node thresholds
for a simple fixed architecture feedforward neural net-
work. Each member of the population was decoded into
a particular instantiation of a neural network controller
which was then downloaded onto the robot (Floreano &
Mondada, 1994). This controlled the robot for a fixed
period of time as it moved around the environment
shown in Fig. 4.

The following simple fitness function was used to
evolve obstacle avoidance behaviors:

F=V+(1-VDV)+(1-1I)

where V is the average rotation speed of opposing
wheels, DV is the difference between signed speed val-
ues of opposing wheels, and I is the activation value of
the IR sensor with the highest input (readings are high if
an obstacle is close to a sensor). Maximizing this func-
tion ensures high speed, a tendency to move in straight
lines, and avoidance of walls and obstacles in the envi-
ronment. After about 36 h of real-world evolution using
this setup, controllers were evolved that successfully
generated efficient motion around the course, avoiding
collisions with the walls.

At the same time as this work was going on at EPFL,
a series of pioneering experiments on evolving visu-
ally guided behaviors were being performed at Sussex
University (CLff et al, 1993; Harvey et al.,, 1994) in
which discrete-time dynamical recurrent neural net-
works and visual sampling morphologies were concur-
rently evolved to allow a gantry robot (as well as other
more standard mobile robots) to perform various visu-
ally guided tasks. An early instantiation of the Sussex
gantry robot is shown in Fig. 5.

{— Population manager ﬁ

Mutation

Crossover
Selective reproduction
Evaluation

Evolutionary Robotics. Figure 3. Setup for early EPFL
evolutionary robotics experiments with the Khepera
robot (see text for details). Used with permission

Evolutionary Robotics. Figure 4. The
ment used for evolving obstacle avoidance behaviors
with a Khepera robot. Used with permission

simple environ-

A CCD camera points down toward a mirror angled
at 45°. The mirror can rotate around an axis perpen-
dicular to the camera’s image plane. The camera is sus-
pended from the gantry allowing motion in the X, Y,
and Z dimensions. This effectively provides an equiva-
lent to a wheeled robot with a forward facing camera
when only the X and Y dimensions of translation are
used (see Fig. 5).

The apparatus was initially used in a manner sim-
ilar to the real-world EPFL evolutionary robots setup
illustrated in Fig. 3. A population of strings encod-
ing robot controllers and visual sensing morphologies
are stored on a computer to be downloaded one at a
time onto the robot. The exact position and orienta-
tion of the camera head can be accurately tracked and
used in the fitness evaluations. A number of visually




378

Evolutionary Robotics

Evolutionary Robotics. Figure 5. An early version of the
Sussex gantry robot (right) was a “hardware simulation”
of a robot such as that shown on the left. It allowed real-
world evolution of visually guided behaviors in an eas-
ily controllable experimental setup (see text for further
details)

guided navigation behaviors were successfully achieved,
including navigating around obstacles and discriminat-
ing between different objects. In the experiment illus-
trated in Fig. 5, starting from a random position and
orientation the robot has to move to the triangle rather
than the rectangle. This has to be achieved irrespec-
tive of the relative positions of the shapes and under
very noisy lighting conditions. The architecture and
all parameters of recurrent neural network controllers
were evolved in conjunction with visual sampling
morphologies — only genetically specified patches from
the camera image were used (by being fed to input neu-
rons according to a genetic specification), the rest of
the image is thrown away. This resulted in extremely
minimal systems only using 2 or 3 pixels of visual infor-
mation, yet still able to very robustly perform the task
under highly variable lighting conditions. Behaviors
were evolved in an incremental way, with more complex
capabilities being evolved from populations of robots
that were successful at some simpler task (for details
see Harvey et al. (1994) and Harvey, Husbands, Cliff,
Thompson, & Jakobi (1997)). The highly minimal yet
very robust systems developed highlighted the poten-
tial for evolutionary robotics techniques in areas such as
space exploration where there is a great pressure to min-
imize resources while maintaining reliability (Hobbs,
Husbands, & Harvey, 1996).

Since this early work, many different behaviors have
been successfully evolved on a wide range of robots
(Floreano et al., 2008; Nolfi & Floreano, 2000) There is
not enough room to give an adequate summary of the

aac >

Evolutionary Robotics. Figure 6. Schematic diagram of a
distributed neural network for the control of locomo-
tion as used by Beer et al. Excitatory connections are
denoted by open triangles, and inhibitory connections
are denoted by filled circles. C, command neuron; P, pace-
maker neuron; FT, foot motor neuron; FS and BS, forward
swing and backward swing motor neurons; FAS and BAS,
forward and backward angle sensors. Reproduced with
permission

whole field, so a few interesting subareas are highlighted
below.

Over the past 15 years or so, there has been a grow-
ing body of work on evolving controllers for various
kinds of walking robots — a nontrivial sensorimotor
coordination task. Early work in this area concentrated
on evolving dynamical network controllers for simple
simulated insects (often inspired by cockroach studies),
which were required to walk in uncomplicated envi-
ronments (e.g., de Garis, 1990; Beer & Gallagher, 1992).



Evolutionary Robotics

379

The promise of this work soon led to versions of this
methodology being used on real robots. Probably, the
first success in this direction was by Lewis, Fagg, and
Solidum (1992) who evolved a neural controller for a
simple hexapod robot, using coupled oscillators built
from continuous-time, leaky-integrator, artificial neu-
rons. The robot was able to execute an efficient tripod
gait on flat surfaces. All evaluations were done on the
actual robot with each leg connected to its own pair of
coupled neurons, leg swing being driven by one neuron
and leg elevation by the other. These pairs of neurons
were cross-connected, in a manner similar to that used
in the neural architecture shown in Fig. 6, to allow coor-
dination between the legs. This architecture for loco-
motion, introduced by Beer, Chiel, and Sterling (1989),
was based on the studies of cockroaches and has been
much used ever since. Gallagher, Beer, Espenschiel, and
Quinn (1996) used a generalization of it to evolve con-
trollers for generating locomotion in a hexapod robot.
This machine was more complex than Lewis et als,
with a greater number of degrees of freedom per leg. In
this work, each leg was controlled by a fully connected
network of five continuous-time, leaky-integrator neu-
rons, each receiving a weighted sensory input from that
leg’s angle sensor. The connection weights and neuron
time constants and biases were under genetic control.
This produced efficient tripod gaits for walking on flat
surfaces. In order to produce a wider range of gaits
operating at a number of speeds such that rougher ter-
rain could be successfully negotiated, a slightly different
distributed architecture, more inspired by stick insect
studies, was found to be more effective (Beer, Quinn,
Chiel, & Ritzmann, 1997).

Jakobi (1998b) successfully used his minimal simu-
lation techniques to evolve controllers for an 8-legged
robot. Evolution in simulation took less than 2 h on
what would today be regarded as a very slow com-
puter, and then transferred successfully to the real robot.
Jakobi evolved modular controllers based on Beer’s con-
tinuous recurrent network architecture to control the
robot as it engaged in walking about its environment,
avoiding obstacles and seeking out goals. The robot
could smoothly change gait, move backward and for-
ward, and even turn on the spot. More recently, related
approaches have been successfully used to evolve con-
trollers for more mechanically sophisticated robots such
as the Sony Aibo (Tllez, Angulo, & Pardo, 2006). In the

last few years, there has also been successful work on
evolving coupled oscillator style neural controllers for
the highly unstable dynamic problem of biped walk-
ing. Reil and Husbands (2002) showed that accurate
physics-based simulations using physics-engine soft-
ware could be used to develop controllers able to
generate successful bipedal gaits. Reil and colleagues
have now significantly developed this technology to
exploits its commercial possibilities in the animation
and games industries (see www.naturalmotion.com for
further details). Vaughan has taken related work in
another direction. He has successfully applied evolu-
tionary robotics techniques to evolve a simulation of a
3D ten-degree of freedom bipedal robot. This machine
demonstrates many of the properties of human locomo-
tion. By using passive dynamics and compliant tendons,
it conserves energy while walking on a flat surface. Its
speed and gait can be dynamically adjusted and it is
capable of adapting to discrepancies in both its environ-
ment and its body’s construction (Vaughan, Di Paolo &
Harvey, 2004). In general, the evolutionary develop-
ment of neural network walking controllers, with their
intricate dynamics, produces a wider range of gaits and
generates smoother, more adaptive locomotion than the
more standard use of finite state machine based systems
employing parameterized rules governing the timing
and coordination of individual leg movements.

Early single robot research was soon expanded
to handle interactions between multiple robots. Flo-
reano and Nolfi did pioneering work on the coevo-
lution of predator-prey behaviors in physical robots
(Floreano & Nolfi, 1997). The fitness of the prey robot
was measured by how quickly it could catch the prey;
the fitness of the prey was determined by how long
it could escape the predator. Two Khepera robots
were used in this experiment, each had the standard
set of proximity sensors but the predator also has a
vision system and the prey was able to move twice
as fast as the predator. A series of interesting chasing
and evasion strategies emerged. Later Quinn, Smith,
Mayley, and Husbands (2003) demonstrated the evo-
lution of coordinated cooperative behavior in a group
of robots. A group of robots equipped only with IR
proximity sensors were required to move as far as
possible as a coordinated group starting from a ran-
dom configuration. The task was solved by the robots
adopting and then maintaining a specific formation.



www.naturalmotion.com

380

Evolutionary Robotics

Analysis of the best evolved solution showed that it
involved the robots adopting different roles, with the
identical robots collectively “deciding” which robot
would perform each role. Given the minimal sens-
ing constraints, the evolved system would have proved
extremely difficult to have designed by hand. For dis-
cussion of other multiple robot behaviors, see Floreano
et al. (2008).

In the work described so far, control systems have
been evolved for pre-existing robots: the brain is con-
strained to fit a particular body and set of sensors. Of
course in nature, the nervous system evolved simulta-
neously with the rest of the organism. As a result, the
nervous system is highly integrated with the sensory
apparatus and the rest of the body: the whole operates in
a harmonious and balanced way - there are no distinct
boundaries between the control system, the sensors,
and the body.

Karl Sims started to explore the concurrent evolu-
tion of the brain and the body in his highly imaginative
work involving simulated 3D “creatures” (Sims, 1994).
In this work, the creatures coevolved under a compet-
itive scenario in which they were required to try and
gain control of a resource (a cube) placed in the cen-
tre of an arena. Both the morphology of the creatures
and the neural system controlling their actuators were
under evolutionary control.

Lipson and Pollack (2000), working at Brandeis
University, pushed the idea of fully evolvable robot
hardware about as far as is reasonably technologi-
cally feasible at present. In an important piece of

Evolutionary Robotics. Figure7. A fully automatically
evolved robot developed on the Golem project (see text
for details). Used with permission

research, directly inspired by Sims’ earlier simulation
work, autonomous “creatures” were evolved in simu-
lation out of basic building blocks (neurons, plastic
bars, and actuators). The bars could connect together
to form arbitrary truss structures with the possibility
of both rigid and articulated substructures. Neurons
could be connected to each other and to the bars whose
length they would then control via a linear actuator.
Machines defined in this way were required to move as
far as possible in a limited time. The fittest individuals
were then fabricated robotically using rapid manufac-
turing technology (plastic extrusion 3D printing) to
produce results such as that shown in Fig. 7. They thus
achieved autonomy of design and construction using
evolution in a “limited universe” physical simulation
coupled to automatic fabrication. The highly unconven-
tional designs thus realized performed as well in reality
as in simulation. The success of this work points the way
to new possibilities in developing energy efficient fault
tolerant machines.

Pfeifer and colleagues at Zurich University have
explored issues central to the key motivation for
fully evolvable robot hardware: the balanced inter-
play between body morphology, neural processing, and
generation of adaptive behavior and have developed
a set of design principles for intelligent systems in
which these issues take centre stage (Pfeifer & Bongard,
2007).

Future Directions

Major ongoing challenges - methodological, theoreti-
cal, and technological - include finding the best way to
incorporate development and lifetime plasticity within
the evolutionary framework (this involves trends com-
ing from the emerging field of epigenetic robotics),
understanding better what the most useful building
blocks are for evolved neurocontrollers, and finding
efficient ways to scale work on concurrently evolving
bodies and brains.

There are very interesting developments in the
evolution of group behaviors and the emergence
of communication (Di Paolo, 1998; Floreano, Mitri,
Magnenat, & Keller, 2007; Quinn, 2001), the use of evo-
lutionary robotics as a tool to illuminate problems in
cognitive science (Beer, 2003; Harvey et al., 2005) and
neuroscience (Di Paolo, 2003; Philippides et al., 2005;



Evolutionary Robotics

381

Seth, 2005), in developing flying behaviors (Floreano,
Hauert, Leven, & Zufferey, 2007; Shim & Husbands,
2007), and in robots that have some form of self-
model (Bongard, Zykov, & Lipson, 2006), to name but
a few.

Cross References

»Co-Evolutionary Learning
»Evolutionary Artificial Neural Networks
» Genetic Algorithms

»Robot Learning

Recommended Reading

Beer, R. D. (2003). The dynamics of active categorical perception
in an evolved model agent (with commentary and response).
Adaptive Behavior, 11(4), 209-243.

Beer, R. D., Chiel, H. J., & Sterling, L. S. (1989). Heterogeneous
neural networks for adaptive behavior in dynamic environ-
ments. In D. Touretzky (Ed.), Neural information process-
ing systems (vol.l, pp. 577-585). San Francisco, CA: Morgan
Kauffman.

Beer, R. D., & Gallagher, J. C. (1992). Evolving dynamical neu-
ral networks for adaptive behaviour. Adaptive Behaviour, 1,
94-110.

Beer, R. D., Quinn, R. D., Chiel, H. J., & Ritzmann, R. E. (1997).
Biologically-inspired approaches to robotics. Communications
of the ACM, 40(3), 30-38.

Bongard, J., Zykov, V., & Lipson, H. (2006). Resilient machines
through continuous self-modeling. Science, 314, 1118-1121.
Cliff, D., Harvey, L., & Husbands, P. (1993). Explorations in evolu-

tionary robotics. Adaptive Behavior, 2, 73-110.

de Garis, H. (1990). Genetic programming: Evolution of time depen-
dent neural network modules which teach a pair of stick legs to
walk. In Proceedings of the 9th European conference on artificial
intelligence (pp. 204-206). Stockholm, Sweden.

DeJong, K. A. (2006). Evolutionary computation: A unified approach.
Cambridge, MA: MIT Press.

Di Paolo, E. (1998). An investigation into the evolution of commu-
nication. Adaptive Behavior, 6(2), 285-324.

Di Paolo, E. A. (2003). Evolving spike-timing dependent plasticity
for single-trial learning in robots. Philosophical Transactions of
the Royal Society A, 361, 2299-2319.

Eiben, A. E., & Smith, J. E. (2003). Introduction to evolutionary
computing. Berlin: Springer.

Floreano, D., Hauert, S., Leven, S., & Zufferey, J. C. (2007). Evolu-
tionary swarms of flying robots. In D. Floreano (Ed.), Proceed-
ings of the international symposium on flying insects and robots,
(pp. 35-36). Monte Verita, Switzerland: EPFL.

Floreano, D., Husbands, P., & Nolfi, S. (2008). Evolutionary robotics.
In B. Siciliano, & O. Khatib (Eds.), Springer handbook of robotics
(Chap. 61). (pp.1423-1451). Berlin: Springer.

Floreano, D., Mitri, S., Magnenat, S., & Keller, L. (2007). Evolution-
ary conditions for the emergence of communication in robots.
Current Biology, 17, 514-519.

Floreano, D., & Mondada, F. (1994). Automatic creation of an
autonomous agent: Genetic evolution of a neural-network
driven robot. In D. Cliff, P. Husbands, J. Meyer, & S. W. Wilson
(Eds.), From animals to animats III: Proceedings of the third
international conference on simulation of adaptive behavior
(pp. 402-410). Cambridge, MA: MIT Press-Bradford Books.

Floreano, D., & Nolfi, S. (1997). Adaptive behavior in competing co-
evolving species. In P. Husbands, & I. Harvey (Eds.), Proceedings
of the 4th European conference on artificial life (pp. 378-387).
Cambridge, MA: MIT Press.

Floreano, D., & Urzelai, J. (2000). Evolutionary robots with on-
line self-organization and behavioral fitness. Neural Networks,
13(4-5), 431-443.

Gallagher, J., Beer, R., Espenschiel, M., & Quinn, R. (1996). Appli-
cation of evolved locomotion controllers to a hexapod robot.
Robotics and Autonomous Systems, 19(1), 95-103.

Gruau, F. (1995). Automatic definition of modular neural networks.
Adaptive Behavior, 3(2), 151-183.

Gruau, F, & Quatramaran, K. (1997). Cellular encoding for interac-
tive evolutionary robotics. In P. Husbands, & I. Harvey (Eds.),
Proceedings of the 4th European conference on artificial life.
Cambridge, MA: The MIT Press/Bradford Books

Harvey, I., Di Paolo, E., Wood, R., Quinn, M., & Tuci, E. (2005). Evo-
lutionary robotics: A new scientific tool for studying cognition.
Artificial Life, 11(1-2), 79-98.

Harvey, I., Husbands, P., & CIliff, D. T. (1994). Seeing the light:
Artificial evolution, real vision. In D. T. Cliff, P. Husbands,
J. A. Meyer, & S. Wilson (Eds.), From animals to animats 3: Pro-
ceedings of the third international conference on simulation of
adaptive behaviour, SAB94 (pp. 392-401). Cambridge, MA: MIT
Press.

Harvey, 1., Husbands, P., Cliff, D., Thompson, A., & Jakobi, N.
(1997). Evolutionary robotics: The Sussex approach. Robotics
and Autonomous Systems, 20, 205-224.

Hobbs, J., Husbands, P., & Harvey, 1. (1996). Achieving improved
mission robustness. In 4th European Space Agency workshop on
advanced space technologies for robot applications - ASTRA’96,
Noordwijk, The Netherlands ESTEC.

Holland, J. H. (1975). Adaptation in natural and artificial systems.
Ann Arbor, MI: University of Michigan Press.

Husbands, P., & Harvey, I. (1992). Evolution versus design: Control-
ling autonomous mobile robots. In Proceedings of 3rd annual
conf. on artificial intelligence, simulation and planning in high
autonomy systems (pp. 139-146) Los Alimitos, CA: IEEE Com-
puter Society Press.

Jakobi, N. (1998a). Evolutionary robotics and the radical envelope of
noise hypothesis. Adaptive Behaviour, 6, 325-368.

Jakobi, N. (1998b). Running across the reality gap: Octopod locomo-
tion evolved in a minimal simulation. In P. Husbands, & J. A.
Meyer, (Eds.), Evolutionary robotics: First European workshop,
EvoRobot98 (pp. 39-58). Berlin: Springer.

Jakobi, N., Husbands, P., & Harvey, I. (1995). Noise and the real-
ity gap: The use of simulations in evolutionary robotics. In
F. Moran et al. (Eds.), Proceedings of 3rd European conference
on artificial life (pp. 704-720). Berlin: Springer.

Lewis, M. A., Fagg, A. H., & Solidum, A. (1992). Genetic program-
ming approach to the construction of a neural network for a
walking robot. In Proceedings of IEEE international conference
on robotics and automation (pp. 2618-2623). Washington, DC:
IEEE Press.




382

Evolving Neural Networks

Lipson, H., & Pollack, J. (2000). Automatic design and manufacture
of robotic lifeforms. Nature, 406, 974-978.

Mondada, E., Franzi, E., & Ienne, P. (1993). Mobile robot minia-
turization: A tool for investigation in control algorithms. In
T. Yoshikawa, & F. Miyazaki (Eds.), Proceedings of the third
international symposium on experimental robotics (pp. 501-513).
Berlin: Springer.

Nolfi, S., & Floreano, D. (2000). Evolutionary robotics: The biol-
ogy, Intelligence, and technology of self-organizing machines.
Cambridge, MA: MIT Press/Bradford Books.

Parisi, D., & Nolfi, S. (1993). Neural network learning in an ecolog-
ical and evolutionary context. In V. Roberto (Ed.), Intelligent
perceptual systems (pp. 20-40). Berlin: Springer.

Pfeifer, R., & Bongard, J. (2007). How the body shapes the way we
think: A new view of intelligence. Cambridge, MA: MIT Press.

Philippides, A., Husbands, P., Smith, T., & O’Shea, M. (2005).
Flexible couplings: Diffusing neuromodulators and adaptive
robotics. Artificial Life, 11(1&2), 139-160.

Quinn, M. (2001). Evolving communication without dedicated com-
munication channels. In J. Kelemen, & P. Sosik. (Eds.), Proceed-
ings of the 6th European conference on artificial life, ECAL01
(pp. 357-366). Berlin: Springer.

Quinn, M., Smith, L., Mayley, G., & Husbands, P. (2003).
Evolving controllers for a homogeneous system of physi-
cal robots: Structured cooperation with minimal sensors.
Philosophical Transactions of the Royal Society of London,
Series A: Mathematical, Physical and Engineering Sciences, 361,
2321-2344.

Reil, T., & Husbands, P. (2002). Evolution of central pattern
generators for bipedal walking in real-time physics environ-
ments. IEEE Transactions of Evolutionary Computation, 6(2),
10-21.

Seth, A. K. (2005). Causal connectivity analysis of evolved neu-
ral networks during behavior. Network: Computation in Neural
Systems, 16(1), 35-54.

Shim, Y. S., & Husbands, P. (2007). Feathered flyer: Integrating mor-
phological computation and sensory reflexes into a physically
simulated flapping-wing robot for robust flight Manoeuvre. In
Proceedings of ECAL LNCS (Vol. 4648, pp. 756-765). Berlin:
Springer.

Sims, K. (1994). Evolving 3D morphology and behavior by compe-
tition. In R. Brooks, & P. Maes, (Eds.), Proceedings of artificial
life IV (pp. 28-39). Cambridge, MA: MIT Press.

Tllez, R., Angulo, C., & Pardo, D. (2006). Evolving the walk-
ing behaviour of a 12 DOF quadruped using a distributed
neural architecture. In 2nd International workshop on bio-
logically inspired approaches to advanced information tech-
nology (Bio-ADIT’2006) LNCS (Vol. 385, pp. 5-19). Berlin:
Springer.

Turing, A. M. (1950). Computing machinery and intelligence. Mind,
59, 433-460.

Urzelai, J., & Floreano, D. (2001). Evolution of adaptive synapses:
Robots with fast adaptive behavior in new environments. Evo-
lution Computing, 9, 495-524.

Vaughan, E., Di Paolo, E. A., & Harvey, I. (2004). The evolution of
control and adaptation in a 3D powered passive dynamic walker.
In J. Pollack, M. Bedau, P. Husbands, T. Ikegami, & R. Wat-
son, (Eds.), Proceedings of the ninth international conference on
the simulation and synthesis of living systems artificial life IX,
(pp. 139-145). Cambridge, MA: MIT Press.

! Evolving Neural Networks

» Neuroevolution

! Example

»Instance

! Example-Based Programming

» [Inductive Programming

! Expectation Maximization
Algorithm

» Expectation-Maximization Algorithm

! Expectation Maximization
Clustering

XIN JIN, JIAwWEI HAN
University of Illinois at Urbana-Champaign
Urbana, IL, USA

Synonyms
EM Clustering

The EM algorithm (Dempster, Laird, & Rubin 1977)
finds maximum likelihood estimates of parameters in
probabilistic models. EM is an iterative method which
alternates between two steps, expectation (E) and max-
imization (M). For clustering, EM makes use of the
finite Gaussian mixtures model and estimates a set of
parameters iteratively until a desired convergence value
is achieved. The mixture is defined as a set of K proba-
bility distributions and each distribution corresponds to
one cluster. An instance is assigned with a membership
probability for each cluster.

The EM algorithm for partitional clustering works
as follows:

1. Guess initial parameters: mean and standard devia-
tion (if using normal distribution model).



Expectation Propagation

383

2. Iteratively refine the parameters with E and M steps.
In the E step: compute the membership possibility
for each instance based on the initial parameter val-
ues. In the M step: recompute the parameters based
on the new membership possibilities.

3. Assign each instance to the cluster with which it has
the highest membership possibility.

Cross References
»Expectation-Maximization Algorithm

Recommended Reading

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likeli-
hood from incomplete data via the em algorithm. Journal of the
Royal Statistical Society. Series B (Methodological), 39(1), 1-38.

! Expectation Propagation

Tom HESKES
Radboud University Nijmegen
Nijmegen, The Netherlands

Synonyms
EP

Definition

Expectation propagation is an algorithm for Bayesian
machine learning (see »Bayesian Methods). It tunes the
parameters of a simpler approximate distribution (e.g.,
a Gaussian) to match the exact posterior distribution of
the model parameters given the data. Expectation prop-
agation operates by propagating messages, similar to the
messages in (loopy) belief propagation (see »Graphical
Models). Whereas messages in belief propagation cor-
respond to exact belief states, messages in expectation
propagation correspond to approximations of the belief
states in terms of expectations, such as means and vari-
ances. Itis a deterministic method especially well-suited
to large databases and dynamic systems, where exact
methods for Bayesian inference fail and »Monte Carlo
methods are far too slow.

Motivation and Background

One of the main problems for »Bayesian methods are
their computational expense: computation of the exact
posterior, given the observed data, typically requires

the solution of high-dimensional integrals that have no
analytical expressions. Approximation algorithms are
needed to approximate this posterior as accurately as
possible. These techniques for approximate inference
can be subdivided in two categories: deterministic
approaches and stochastic sampling (Monte Carlo)
methods. Having the important advantage that (under
certain conditions) they give exact results in the limit
of an infinite number of samples, Monte Carlo methods
are the method of choice in Bayesian statistics. How-
ever, in particular when dealing with large databases,
the time needed for stochastic sampling to obtain a rea-
sonably accurate approximation of the exact posterior
can be prohibitive. This explains the need for faster,
deterministic approaches, such as the Laplace approx-
imation, variational approximations, and expectation
propagation.

Expectation propagation was first described by
Thomas Minka in his thesis (Minka, 2001). It can be
viewed as a generalization and reformulation of the
earlier ADATAP algorithm of Manfred Opper and
Ole Winther (2001). Expectation propagation quickly
became one of the most popular deterministic appro-
aches for approximate Bayesian inference. Expectation
propagation improves upon assumed density filtering,
a classical method from stochastic control, by itera-
tively refining local approximations instead of comput-
ing them just once. Furthermore, it encompasses loopy
belief propagation, a popular method for approximate
inference in probabilistic »graphical models, as a spe-
cial case. Where loopy belief propagation is restricted
to models of discrete variables only, expectation prop-
agation applies to a much wider class of probabilistic
graphical models with discrete and continuous variables
and complex interactions between them.

Structure of Learning System

In the Bayesian framework for machine learning, you
should enumerate all reasonable models of the data and
assign a prior belief P(w) to each of these models w.
In the discrete case, the w are the different models, in
the continuous case, the w are the continuous valued
parameters (usually vectors). Then, upon observing the
data D, you compute the likelihood P(D|w) to evaluate
how probable the data was under each of these models.




384

Expectation Propagation

=1
o

[=H

(=1
3

Expectation Propagation. Figure 1. (left-hand side) A so-called factor graph corresponding to the i.i.d. assumption in

Bayesian machine learning. Each box corresponds to a factor or term. A circle corresponds to a variable. Factors are
connected to the variables that they contain. ¥, corresponds to the prior, ¥; ... ¥, are the likelihood terms for the n
data points. (right-hand side) Factor graph of the approximating distribution. The original terms have been replaced

by term approximations

The product of the prior and the likelihood gives you, up
to a normalization constant, the posterior probability
P(w|D) over models given the data:

P(D|w)P(w)

P(w|D) = P(D)

where the normalization term P(D) is called the prob-
ability of the data or “evidence” This posterior proba-
bility incorporates all you have learned from the data D
regarding the models w under consideration. As indi-
cated above, exact calculation of this posterior proba-
bility is often infeasible, because the normalization term
requires the solution of intractable sums or integrals.
In its simplest setting, the data D consists of n obser-
vations, xj, . . .,X,, which are assumed to be indepen-
dent and identically-distributed (i.i.d.). The posterior
probability then factorizes into n + 1 terms, one for
each observation and one for the prior. With definitions
¥y (w) = P(w) and ¥;(w) = P(x;|w), we can rewrite

P(w) Ty PCxilw) _ TTiz Wi(w) -

PwiD) = P(D) P(D)

This factorization is visualized in the so-called factor
graph in Fig. 1. We use it as a running example in the
following section.

Expectation propagation can be interpreted as an itera-
tive refinement of assumed density filtering. In assumed
density filtering, we add terms one-by-one and project
in each step back to the “assumed density.” For exam-
ple, suppose that our prior probability P(w) = ¥y(w)
is a (known) Gaussian distribution over model param-
eters w, the terms corresponding to the data points
are non-Gaussian, and we aim to find an appropri-
ate Gaussian approximation Q(w) to the exact (non-
Gaussian) posterior P(w|D). Our first approximation

is the prior itself. Assumed-density filtering now pro-
ceeds by adding terms one at a time, where at each step
we approximate the resulting distribution as closely as
possible by a Gaussian. The pseudo-code is given in
Algorithm 1, where Qo.;(w) denotes the approximation
obtained after incorporating the prior and the first i
observations.

If we use the Kullback-Leibler divergence as
the distance measure from the non-Gaussian (but
normalized) product of Qq.;—1(w) and ¥;(w) and the
Gaussian approximation, projection becomes “moment
matching”; the result of the projection is the Gaussian
that has the same mean and covariance matrix as the
non-Gaussian product.

When in assumed density filtering, we add the term
W¥;(w), the Gaussian approximation changes from
Qo:i-1(w) to Qq.;i(w). We will call the quotient of the
two the term approximation (here and in the following
we ignore normalization constants):
‘i’i(w) _ Qo:i(w) )

Qo:i-1(w)
In our running example, term approximations are quo-
tients between two different Gaussian densities and
therefore have a Gaussian form themselves. Since the
prior ¥o(w) is a Gaussian density, ¥o(w) = Wo(w).
The approximation Qo., (w) is equal to the product of all

Algorithm 1 Assumed density filtering
1 Qo(W) = \I/()(W)

2: fori=1tondo
3 Qq.i(w) = Project_to_Gaussian(Qy.;-; (w)¥;(w))

4: end for




Expectation Propagation

385

substitute
—

N
project

Expectation Propagation. Figure 2. Visualization of expectation propagation when recomputing the term approxima-

tion for observation i

term approximations and is visualized on the righthand
side of Fig. 1. In assumed density filtering, the resulting
approximation depends on the ordering in which the
terms have been added. For example, if the terms had
been added in reverse order, their term approximations
might have been (slightly) different.

Expectation propagation now generalizes assumed
density filtering by iteratively refining these term
approximations. When successful, the final approxima-
tion will be independent of the ordering. Pseudo-code
of expectation propagation is given in Algorithm 2. In
step 1 through 5, the term approximations are initial-
ized; in step 6 through 12, these term approximations
are iteratively refined until they no longer change. In
step 8, we take out the previous term approximation
from the current approximation. In step 9, we put back
in the exact term and project back to a Gaussian, like we
did in assumed density filtering. It is easy to check that
the approximation Q(w) after the first loop equals the
approximation Qo.,(w) obtained with assumed density
filtering. The recalculation of the term approximation
corresponding to observation i is visualized in Fig. 2.

With expectation propagation, we have to do a lit-
tle more bookkeeping than with assumed density
filtering: we have to keep track of the term approx-
imations. One loop of expectation propagation is
about as expensive as running assumed density filter-
ing. Typically, about five iterations are sufficient for
convergence.

The crucial operation is in step 3 of Algorithm 1
and step 9 of Algorithm 2. Here we have to compute
the moments of the (non-Gaussian) probability distri-
bution on the right-hand side. In most cases, we do
not have analytical expressions for these moments and
have to compute them numerically, e.g., using Gaussian
quadrature. We then obtain the moments (mean and
covariance matrix) of the new approximation Q(w).
Divisions and multiplications correspond to a simple

subtraction and addition of so-called canonical param-
eters. For the Gaussian, these canonical parameters are
the inverse of the covariance matrix (precision matrix)
and the product of the precision matrix and the mean.
The bottom-line is that we go back and forth between
distributions in terms of moments and in terms of
canonical parameters. For a Gaussian, this requires
computing the inverse of the covariance matrix, which
is roughly on the order of d°, where d is the dimension of
w. A practical point of concern is that matrix inversion
is numerically instable, in particular for matrices that
are close to singular, which can lead to serious round-off
errors.

Sadly enough, expectation propagation is not guaran-
teed to converge to a fixed point. If it does, this fixed
point can be shown to correspond to an extremum of
the so-called Bethe free energy, an approximation of the
“evidence” log P(D), under particular consistency and
normalization constraints (Heskes, Opper, Wiegerinck,

Algorithm 2 Expectation propagation

1 Py (w) = Yo (w)
2: fori=1tondo
¥ (w) =1

4: end for

: Q(w) = fg‘i’i(w)

6: while not converged do

@

wu

7. fori=1tondo

. () = QW)
N 7T
9: Q(w) = Project_to_Gaussian(Q-_;(w)¥;(w))
10: ¥i(w) = QQ_fEAZ)
1:  end for

12: end while




386

Expectation Propagation

Winther, & Zoeter, 2005; Heskes & Zoeter, 2002; Minka,
2001, 2005). These constraints relate to the projection
step in Algorithm 2: after convergence, the moments of
Q(w) should be equal to the moments of the distribu-
tion obtained by taking out a term approximation and
putting back the corresponding exact term. This should
hold for all i.i.d. observations i = 1,...,# in the factor
graph of Fig. 1: so we conclude that, after convergence,
the moments (“expectations”) of all distributions con-
structed in this way should be the same. Expectation
consistent approximations are based on the exact same
idea and indeed turn out to be equivalent to expectation
propagation (Heskes et al., 2005).

When expectation propagation does not converge,
we can try “damping”: instead of replacing the old term
approximation by the new one, we replace it by a log-
convex combination of the old and the new one. In
many cases, damping with a step size 0.1 makes expec-
tation propagation converge, at the expense of requir-
ing more iterations. However, even damping with an
infinitesimally small step size is not guaranteed to lead
to convergence. In those cases, we can try to mini-
mize the Bethe free energy more explicitly with a so-
called double-loop algorithm (Heskes & Zoeter, 2002):
in the outer loop we compute a convex bound on
the Bethe free energy, which we then minimize in the
inner loop with an algorithm very similar to standard
expectation propagation. Double-loop algorithms are
an order of magnitude slower than standard expectation
propagation.

The running example above serves to illustrate
the main idea, but is of course rather restrictive.
Expectation propagation can be applied with any mem-
ber of the exponential family as approximating distri-
bution (Minka, 2001; Seeger, 2005). The crucial oper-
ations are the projection step and the transformation
from moment to canonical form: if these can be per-
formed efficiently and robustly, expectation propaga-
tion is into play.

In many interesting cases, the model to be learned
(here represented as a single variable w) contains a lot
of structure. This structure can be exploited by expecta-
tion propagation to make it more efficient. For example,
when a term only contains a subset of the elements

of w, so does its term approximation. Also, we might
take as the approximating distribution a distribution
that factorizes over the elements of w, instead of a “full”
distribution coupling all elements. For a Gaussian, this
would amount to a diagonal instead of a full covari-
ance matrix. Such a factorization will lead to lower
memory requirements and faster computation, perhaps
at the expense of reduced accuracy. More advanced
approximations include Tree-EP, where the approxi-
mating structure is a tree, and generalized expectation
propagation, which generalizes expectation propaga-
tion to include higher-order interactions in the same
way as generalized belief propagation generalizes loopy
belief propagation (Welling, Minka, & Teh, 2005).

Power expectation propagation (Minka, 2005) gen-
eralizes expectation propagation by considering a dif-
ferent distance measure in the projection step. Instead
of taking the Kullback-Leibler divergence, we can take
any so-called a-divergence. a=1 corresponds to the
Kullback-Leibler divergence, « =-1 to the Kullback-
Leibler divergence with the two probabilities inter-
changed. In the latter case, we obtain a variational
method called variational Bayes.

Programs and Data

Code for expectation propagation applied for Gaussian
process classification can be found at http://www.kyb.
tuebingen.mpg.de/bs/people/csatol/ogp/, and http://
www.gaussianprocess.org/gpml/code/matlab/doc/clas-
sification.html. Kevin Murphy’s Bayes Net toolbox
(http://bnt.sourceforge.net) can provide a good starting
point to write your own code for expectation propa-
gation.

Applications

Expectation propagation has been applied for, among
others, Gaussian process classification (Csatd, 2002),
inference in Bayesian networks and Markov random
fields, text classification with Dirichlet models and
processes (Minka & Lafferty, 2002), »logistic regres-
sion models for rating players (Herbrich & Graepel,
2006), and inference and learning in hybrid and non-
linear dynamic Bayesian networks (Heskes & Zoeter,
2002).


http://bnt.sourceforge.net
http://www.kyb.tuebingen.mpg.de/bs/people/csatol/ogp/
http://www.kyb.tuebingen.mpg.de/bs/people/csatol/ogp/
http://www.gaussianprocess.org/gpml/code/matlab/doc/clas-sification.html
http://www.gaussianprocess.org/gpml/code/matlab/doc/clas-sification.html
http://www.gaussianprocess.org/gpml/code/matlab/doc/clas-sification.html

Experience Curve

387

Future Directions

From an application point of view, expectation propa-
gation will probably become one of the standard tech-
niques for approximate Bayesian machine learning,
much like the Laplace approximation and Monte Carlo
methods. Future research may involve questions like

o When does expectation propagation converge? Can
we design variants that are guaranteed to converge?

o What “power” to use in power expectation propaga-
tion for what kind of purposes?

e Can we adapt expectation propagation to handle
approximating distributions that are not part of the
exponential family?

Cross References

» Gaussian Distribution
» Gaussian Process

» Graphical Models

Recommended Reading

Csatd, L. (2002). Gaussian processes — iterative sparse approxima-
tions. PhD thesis, Aston University, Birmingham, UK.

Herbrich, R., & Graepel, T. (2006). TrueSkill: A Bayesian skill rat-
ing system. (Tech. Rep. No. MSR-TR-2006-80). Cambridge, UK:
Microsoft Research.

Heskes, T., Opper, M., Wiegerinck, W., Winther, O., & Zoeter, O.
(2005). Approximate inference with expectation constraints.
Journal of Statistical Mechanics: Theory and Experiment, 11,
P11015-1-P11015-24.

Heskes, T., & Zoeter, O. (2002). Expectation propagation for approx-
imate inference in dynamic Bayesian networks. In A. Darwiche
& N. Friedman (Eds.), Proceedings of the 18th conference on
uncertainty in artificial intelligence (pp. 216-223). San Fran-
cisco: Morgan Kaufmann.

Minka, T. (2001). A family of algorithms for approximate Bayesian
inference. PhD thesis, Cambridge, MA: MIT.

Minka, T. (2005). Divergence measures and message passing.
(Tech. Rep. NO. MSR-TR-2005-173), Cambridge, UK: Microsoft
Research.

Minka, T., & Lafferty, J. (2002). Expectation-propogation for the
generative aspect model. In A. Darwiche & N. Friedman (Eds.),
Proceedings of the 18th conference on uncertainty in artificial
intelligence (pp. 352-359). San Francisco: Morgan Kaufmann.

Opper, M., & Winther, O. (2001). Tractable approximations
for probabilistic models: The adaptive Thouless-Anderson-
Palmer mean field approach. Physical Review Letters, 86,
3695-3699.

Seeger, M. (2005). Expectation propagation for exponential families
(Tech. Rep.). Berkeley, CA: University of California.

Welling, M., Minka, T., & Teh, Y. (2005). Structured region graphs:
Morphing EP into GBP. In F. Bacchus & T. Jaakkola (Eds.),
Proceedings of the 2Ist conference on uncertainty in artificial
intelligence (UAI) (pp. 609-614). Arlington, VA: AUAI Press.

! Expectation-Maximization
Algorithm

Synonyms
EM Algorithm; Expectation Maximization Algorithm

Expectation-Maximization (EM) was described by Arthur
Dempster, Nan Laird, and Donald Rubin in a classic
1977 paper in the Journal of the Royal Statistical Soci-
ety. The EM algorithm is used for finding maximum
likelihood estimates of parameters in stochastic models,
where the model depends on unobserved latent or hid-
den variables. EM iterates between performing expecta-
tion (E) and maximization (M) steps. Each expectation
step involves the computation of the expectation of the
likelihood of all model parameters by including the hid-
den variables as if they were observed. Each maximiza-
tion step involves the computation of the maximum
likelihood estimates of the parameters by maximizing
the expected likelihood found during the expectation
step. The parameters produced by the maximization
step are then used to begin another expectation step,
and the process is repeated.

It can be shown that an EM iteration will not
decrease the observed data likelihood function. How-
ever, there is no guarantee that the iteration converges
to a maximum likelihood estimator.

“Expectation-maximization” has developed to be a
general recipe and umbrella term for a class of algo-
rithms that iterates between a type of expectation and
maximization step. The Baum-Welch algorithm is an
example of an EM algorithm specifically suited to
HMMs.

! Experience Curve

»Learning Curves in Machine Learning



388

Experience-Based Reasoning

| . .
Experience-Based Reasoning

> Case-Based Reasoning

| .
Explanation

In »Minimum Message Length, an explanation is a
code with two parts, where the first part is an assertion
code and the second part is a detail code.

! Explanation-Based Generalization
for Planning

»Explanation-Based Learning for Planning

! Explanation-Based Learning

GErALD DEJong!, SH1AU HoNG Lim?
"University of Illinois at Urbana
Urbana, IL, USA

2University of Illinois,

IL, USA

Synonyms
Analytical learning; Deductive learning; EBL; Utility
problem

Definition

Explanation-Based Learning (EBL) is a principled
method for exploiting available domain knowledge to
improve Psupervised learning. Improvement can be
in speed of learning, confidence of learning, accuracy
of the learned concept, or a combination of these. In
modern EBL the domain theory represents an expert’s
approximate knowledge of complex systematic world
behavior. It may be imperfect and incomplete. Inference
over the domain knowledge provides analytic evidence
that compliments the empirical evidence of the train-
ing data. By contrast, in original EBL the domain theory
is required to be much stronger; inferred properties
are guaranteed. Another important aspect of modern
EBL is the interaction between domain knowledge and

Hypothesis

Space H
Training — | Learning | —
Set ~ System

Explanation-Based Learning. Figure 1. Conventional
learner

labeled training examples afforded by explanations.
Interaction allows the nonlinear combination of evi-
dence so that the resulting information about the target
concept can be much greater than the sum of the infor-
mation from each evidence source taken independently.

Motivation and Background

A conventional machine learning system is illustrated
in Fig. 1. A hypothesis  is selected from a space of can-
didates H using a training set of labeled examples Z as
evidence. It is common to assume that the examples
are drawn from some space of well-formed inputs X
according to some fixed but unknown distribution D.
The quality of /1 is to be judged against different exam-
ples similarly selected and labeled. The correct label
for an example is specified by some ideal target con-
cept, c*. This is typically some complex world process
whose outcome is of interest. The target concept, ¢*, will
generally not be a member of space of acceptable candi-
dates, H. Rather, the learner tries to find some /1 which
is acceptably similar to ¢* over Xp and can serve as a
computationally tractable stand-in.

Of course, good performance of /i on Z (its train-
ing performance) alone is insufficient. The learner must
achieve some statistical guarantee of good performance
on the underlying distribution (test performance). If H
is too rich and diverse or if Z is too impoverished, a
learner is likely to »overfit the data; it may find a pattern
in the training data that does not hold in the underlying
distribution Xp. Test performance will be poor despite
good training performance.

An Explanation-Based Learner employs its domain
theory, A (Fig. 2) as an additional source of informa-
tion. This domain theory must not be confused with
»learning bias, which is present in all learners. Deter-
minations (Russell & Grosof, 1987) provide an extreme



Explanation-Based Learning

389

Hypothesis
Space H
Training l
Set Z Y
Leaming | —» 4
System
Dornain /'
Knowledge A

Explanation-Based Learning. Figure 2. EBL learner

illustration. These are logical expressions that make
strong claims about the world but only after seeing a
training example. EBL domain theories are used only
to explain. An inferred expression is not guaranteed to
hold but only provides analytic evidence.

An explanation for some z € Z is immediately
and easily generalized: The structure of the explanation
accounts for why zs assigned classification label should
follow from its features. All other examples that meet
these conditions are assigned the same classification by
the generalized explanation for the same reasons.

Early approaches to EBL (e.g., DeJong & Mooney,
1986; Mitchell, 1997; Mitchell, Keller, & Kedar-Cabelli,
1986; Russell & Norvig, 2003) were undone by two dif-
ficult problems: (1) unavoidable imperfections in the
domain theory and (2) the utility problem. The former
stems from assuming a conventional semantics for the
domain theory. It results in a brittleness and an under-
reliance on the training data. Modern EBL is largely a
reaction to this difficulty. The utility problem is a con-
sequence of an ill-defined hypothesis space and, as will
be discussed later, can be avoided in a straightforward
manner.

Structure of Learning System

An explanation for a training example is any causal
structure, derivable from A, which justifies why this
training example might merit its teacher-assigned clas-
sification label. A generalized explanation is the struc-
ture of an explanation without the commitment to any
particular example. The explanation and generalization
processes are relatively straightforward and not signifi-
cantly different from the original EBL algorithms.

TheweaknessofearlyEBLisinviewingthecomponents
of A as constraints. This leads to a view of explanations
andtheir generalizationsas proofs. Real-world brittleness
duetothequalification problem (McCarthy,1980) follows
inevitably. Inmodern EBL, Aisseenasapproximatingthe
underlying world constraints (DeJong, 2006; Kimmig,
De Raedt, & Toivonen, 2007). The domain theory is
fundamentally a statistical device. Its analytic evidence
and the empirical evidence of the training examples both
provide a bridge to the real world.

The domain theory introduces new predicates and
specifies their significant potential interactions. From a
statistical point of view, these are named latent (hidden)
features together with a kind of grammar for construct-
ing alternative estimators for them. In short, the domain
theory compactly specifies a large set of conceptual
structures that an expert believes may be useful mak-
ing sense of the domain. If the expert is correct, then
patterns of interest will become computationally much
more accessible via analytic inference.

One flexible and useful form of a domain theory
is sound inference over a set of first-order symbolic
logic sentences. In such domain theories, the explana-
tion mechanism can be identical to logical deduction
although using a paraconsistent inference mechanism;
inference must be well behaved despite inconsisten-
cies in the theory. Generalized explanations are simply
“theorems” of A that relate a classification label to the
values of observable example features. But since the
sentences of the theory only approximate world con-
straints, derivation alone, even via sound inference, is
not sufficient evidence to believe a conclusion. Thus,
a generalized explanation is only a conjecture. Addi-
tional training examples beyond those used to generate
each explanation help to estimate the utility of these
generalizations.

But analytic mechanisms need not be limited to
symbolic logic-like inference. For example, one EBL
approach is to distinguish handwritten Chinese charac-
ters (Lim, Wang, & DeJong, 2007) employing a Hough
transform as a component of the domain theory. There,
an explanation conjectures (hidden) glyph “strokes” to
explain how the observed pixels of the training images
may realize the image’s character label.

Whatever the form of the analytic inferential mech-
anism, multiple, quite incompatible explanations can
be generated; the same training label can be explained




390

Explanation-Based Learning

X Example Space

Explanation-Based Learning. Figure 3. An example
space with two designated positive training items

Explanation-Based Learning. Figure 4. Four constructed
explanations are sufficient to cover the positive examples

using different input features and postulating different
interactions. Such explanations will generalize to cover
quite different subsets of X. Figure 3 shows a small train-
ing set with two positive examples highlighted. While
the explanation process can be applied to all exam-
ples both positive and negative, these two will be used
to illustrate. In this illustration, just two explanations
are constructed for each of the highlighted training
examples. Figure 4 shows the generalized extensions
of these four explanations in the example space. The
region enclosed by each contour is meant to denote
the subset of X conjectured to merit the same classi-
fication as the explained example. Explanations make
no claim about the labels for examples outside their
extension.

Additional training examples that fall within the exten-
sion of a generalized explanation help to evaluate it

Explanation-Based Learning. Figure 5. Explanations are
evaluated with other training examples

X .

Explanation-Based Learning. Figure 6. An element from
H that approximates the weighted explanations

empirically. This is shown in Fig. 5. The estimated utility
of a generalized explanation reflects (1) the general-
ized explanation’s empirical accuracy on these train-
ing examples, (2) the inferential effort required to
derive the explanation (see DeJong, 2006), and (3) the
redundancies and interactions with other generalized
explanations (higher utility is estimated if its correct
predictions are less commonly shared by other gener-
alized explanations).

The estimated utilities define an EBL classifier as a
mixture of the generalized explanations each weighted
by its estimated utility:

Cepr(x) = Z Ug -g(x),

g€GE(Z,A)

where GE(Z, A) denotes the generalized explanations
for Z from A and u, is the estimated utility for g. This
corresponds to a voting scheme where each general-
ized explanation that claims to apply to an example



Explanation-Based Learning

391

casts a vote in proportion to its estimated utility. The
votes are normalized over the utilities of voting general-
ized explanations. The mixture scheme is similar to that
of sleeping experts (Freund, Schapire, Singer, & War-
muth, 1997). This EBL classifier approximates the target
concept ¢*. But unlike the approximation chosen by a
conventional learner, ¢gpp reflects the information of A
in addition to Z.

The final step is to select a hypothesis /1 from H. The
EBL concept ¢gpy, is used to guide this choice. Figure 6
illustrates the selection of a i € H , which is a good
approximation to a utility-blended mixture of Fig. 5.
This final step, selecting a hypothesis from H, is impor-
tant but was omitted in original EBL. These systems
employed generalized explanations directly. Unfortu-
nately, such classifiers suffer from a difficulty known
as the utility problem (Minton, 1990). Note this is a
slightly different use of the term utility, referring to
the performance of an application system. This sys-
tem can be harmed more than helped by concepts such
as CepL, even if these concepts provide highly accurate
classification. Essentially, the average cost of evaluat-
ing an EBL concept may outweigh the average benefit
that it provides to the application system. It is now
clear that this utility problem is simply the manifesta-
tion of a poorly structured hypothesis space. Note that,
in general, an EBL classifier itself will not be an ele-
ment of the space of acceptable hypotheses H. Previous
approaches to the utility problem (Etzioni, 1993; Gratch
& DeJong, 1992; Greiner & Jurisica, 1992; Minton, 1990)
identify and disallow offending EBL concepts. How-
ever, the root cause is addressed by employing the EBL
concept as a guidance in selecting a & € H rather
than using Cgpy, directly. Without this last step, H is
completely ignored. But H embodies all of the infor-
mation in the learning problem about what makes an
acceptable hypothesis. The “utility problem” is sim-
ply the manifestation of leaving out this important
information.

The roots and motivation for EBL extend at least to
the MACROPs of STRIPS (Fikes, Hart, & Nilsson,
1972). The importance of explanations of training exam-
ples was first suggested in DeJong (1981). The standard

references for the early EBL work are Mitchell et al.
(1986) and DeJong and Mooney (1986). When cover-
ing EBL, current textbooks give somewhat refined ver-
sions of this early approach (Mitchell, 1997; Russell &
Norvig, 2003). Important related ideas include deter-
minations (Russell & Grosof, 1987), chunking (Laird,
Rosenbloom, & Newell, 1986), and knowledge compi-
lation (Anderson, 1986). EBLs ability to employ first-
order theories make it an attractive compliment to
learning Horn theories with »Inductive Logic Pro-
gramming (Bruynooghe, De Raedt, & De Schreye,
1989; Hirsh, 1987; Pazzani & Kibler, 1992; Zelle &
Mooney, 1993). The problem of imperfect domain the-
ories was recognized early, and there have been many
approaches (Cohen, 1992; Flann & Dietterich, 1989;
Genest, Matwin, & Plante, 1990; Ourston & Mooney,
1994; Thrun & Mitchell, 1993; Towell, Craven, & Shavlik,
1991). But with modern statistical learning ascending to
the dominant paradigm of the field, interest in analytic
approaches waned. The current resurgence of interest is
largely driven by placing EBL in a modern statistically
sophisticated framework that nonetheless is still able
to exploit a first-order expressiveness (DeJong, 2006;
Kimmig et al., 2007; Lim et al., 2007; Sun & DeJong,
2005)

Cross References
» Explanation-Based Learning for Planning
»Speedup Learning

Recommended Reading

Anderson, J. (1986). Knowledge compilation: The general learning
mechanism. In R. Michalski, J. Carbonell, & T. Mitchell (Eds.),
Machine learning II (pp. 289-310). San Mateo, CA: Morgan
Kaufmann.

Bruynooghe, M., De Raedt, L., & De Schreye, D. (1989). Explanation
based program transformation. In IJCAI (pp. 407-412).

Cohen, W. W. (1992). Abductive explanation-based learning: A solu-
tion to the multiple inconsistent explanation problem. Machine
Learning, 8,167-219.

DeJong, G. (1981). Generalizations based on explanations. In
IJCAI’81, the seventh international joint conference on artificial
intelligence (pp. 67-69). Vancover, BC.

DeJong, G. (2006). Toward robust real-world inference: A new per-
spective on explanation-based learning. In ECMLOG, the seven-
teenth European conference on machine learning (pp. 102-113).
Heidelberg: Springer.



392

Explanation-Based Learning for Planning

DeJong, G., & Mooney, R. (1986). Explanation-based learning: An
alternative view. Machine Learning, 1(2), 145-176.

Etzioni, O. (1993). A structural theory of explanation-based learn-
ing. Artificial Intelligence, 60(1), 93-139.

Fikes, R., Hart, P. E., & Nilsson, N. J. (1972). Learning and exe-
cuting generalized robot plans. Artificial Intelligence, 3(1-3),
251-288.

Flann, N. S., & Dietterich, T. G. (1989). A study of explanation-
based methods for inductive learning. Machine Learning, 4,
187-226.

Freund, Y., Schapire, R. E., Singer, Y., & Warmuth, M. K. (1997).
Using and combining predictors that specialize. In Twenty-
ninth annual ACM symposium on the theory of computing
(pp- 334-343). El Paso, TX.

Genest, J., Matwin, S., & Plante, B. (1990). Explanation-based learn-
ing with incomplete theories: A three-step approach. In pro-
ceedings of the seventh international conference on machine
learning (pp. 286-294).

Gratch, J., & DeJong, G. (1992). Composer: A probabilistic solu-
tion to the utility problem in speed-up learning. In AAAI
(pp. 235-240).

Greiner, R., & Jurisica, I. (1992). A statistical approach to solving
the EBL utility problem. In National conference on artificial
intelligence (pp. 241-248). San Jose, CA.

Hirsh, H. (1987). Explanation-based generalization in a logic-
programming environment. In IJCAI (pp. 221-227). Milan,
Ttaly.

Kimmig, A., De Raedt, L., & Toivonen, H. (2007). Probabilistic
explanation based learning. In ECML07, the eighteenth Euro-
pean conference on machine learning (pp. 176-187).

Laird, J. E., Rosenbloom, P. S., & Newell, A. (1986). Chunking in
soar: The anatomy of a general learning mechanism. Machine
Learning, 1(1), 11-46.

Lim, S. H., Wang, L.-L., & DeJong, G. (2007). Explanation-based fea-
ture construction. In IJCAI’07, the twentieth international joint
conference on artificial intelligence (pp. 931-936)

McCarthy, J. (1980). Circumscription — a form of non-monotonic
reasoning. Artificial Intelligence, 13, 27-39.

Minton, S. (1990). Quantitative results concerning the utility
of explanation-based learning. Artificial Intelligence, 42(2-3),
363-391.

Mitchell, T. (1997). Machine learning. New York: McGraw-Hill.

Mitchell, T., Keller, R., & Kedar-Cabelli, S. (1986). Explanation-
based generalization: A unifying view. Machine Learning, 1(1),
47-80.

Ourston, D., & Mooney, R. J. (1994). Theory refinement combining
analytical and empirical methods. Artificial Intelligence, 66(2),
273-309.

Pazzani, M. J., & Kibler, D. F. (1992). The utility of knowledge in
inductive learning. Machine Learning, 9, 57-94.

Russell, S., & Norvig, P. (2003). Artificial intelligence: A modern
approach (2nd ed.). Englewood Cliffs, NJ: Prentice-Hall.

Russell, S. J., & Grosof, B. N. (1987). A declarative approach to bias
in concept learning. In AAAI (pp. 505-510). Seattle, WA.

Sun, Q., & DeJong, G. (2005). Feature kernel functions: Improving
svms using high-level knowledge. In CVPR (2) (pp. 177-183)

Thrun, S., & Mitchell, T. M. (1993). Integrating inductive neu-
ral network learning and explanation-based learning. In IJCAI
(pp- 930-936). Chambery, France.

Towell, G. G., Craven, M., & Shavlik, J. W. (1991). Constructive
induction in knowledge-based neural networks. In proceed-
ings of the eighth international conference on machine learning
(pp. 213-217)

Zelle, J. M., & Mooney, R. J. (1993). Combining Foil and EBG to
speed-up logic programs. In IJCAI (pp. 1106-1113). Chambery,
France.

! Explanation-Based Learning for
Planning

SuBBARAO KAMBHAMPATI', SUNGWOOK YOON?
!Arizona State University, Tempe, AZ, USA
2Palo Alto, CA, USA

Synonyms
Explanation-based generalization for planning; Speedup
learning for planning

Definition

»Explanation-based learning (EBL) involves using
prior knowledge to explain (“prove”) why the training
example has the label it is given, and using this expla-
nation to guide the learning. Since the explanations are
often able to pinpoint the features of the example that
justify its label, EBL techniques are able to get by with
much fewer number of training examples. On the flip
side, unlike general classification learners, EBL requires
prior knowledge (aka “domain theory/model”) in addi-
tion to labeled training examples — a requirement that
is not easily met in some scenarios. Since many plan-
ning and problem solving agents do start with declara-
tive domain theories (consisting at least descriptions of
actions along with their preconditions and effects), EBL
has been a popular learning technique for planning.

Dimensions of Variation

The application of EBL in planning varies along several
dimensions: whether the learning was for improv-
ing the speed and quality of the underlying plan-
ner (Etzioni, 1993; Kambhampati, 1994; Kambhampati,
Katukam, & Qu, 1996; Minton et al., 1989; Yoon, Fern,
& Givan, 2008) or acquire the domain model (Levine &
DeJong, 2006); whether it was was done from successes
(Kambhampati, 1994; Yoon et al. 2008) or failures (Ihrig



Explanation-Based Learning for Planning

393

& Kambhampati, 1997; Minton et al., 1989); whether
the explanations were based on complete/correct
(Kambhampati et al., 1996; Minton et al., 1989) or par-
tial domain theories (Yoon et al.), whether learning
is based on single (Kambhampati, 1994; Kambhampati
et al; Minton et al., 1989) or multiple examples (Estlin
& Mooney, 1997; Flann & Dietterich, 1989) (where, in
the latter case, inductive learning is used in conjunc-
tion with EBL) and finally whether the planner whose
performance EBL aims to improve is a means-ends
analysis one (Minton et al., 1989), partial-order planner
(Estlin & Mooney, 1997) or a heuristic search planner
(Yoon et al.).

EBL techniques have been used in planning both
to improve search and to reduce domain modeling
burden (although the former has received more atten-
tion by far). In the former case, EBL is used to learn
“control knowledge” to speedup the search process
(Kambhampati et al., 1996; Minton et al., 1989), or to
improve the quality of the solutions found by the search
process (Estlin & Mooney, 1997). In the latter case EBL
is used to develop domain models (e.g., action models)
(Levine & DeJong, 2006).

EBL for search improvement involves either remem-
bering and reusing successful plans, or learning search
control rules to avoid failing search branches. Other
variations include learning effective indexing of stored
cases from retrieval failures (Ihrig & Kambhampati,
1997) and learning “adjustments” to the default heuristic
used by the underlying search.

Another important issue is the degree of complete-
ness/correctness of the underlying background theory
used to explain examples. If the theory is complete and
correct, then learning is possible from a single example.
This type of EBL has been called “analytical learning”
When the theory is partia, EBL still is effective in nar-
rowing down the set of potentially relevant features of
the training example. These features can then be used
within an inductive learner. Within planning, EBL has
been used in the context of complete/correct as well as
partial domain models.

A final dimension of variation that differentiated a
large number of research efforts is the type of underly-
ing planner. Initially, EBL was used on top of means-
ends analysis planners (cf. PRODIGY, Minton et al.,
1989). Later work focused on partial order planners
(e.g., Estlin & Mooney, 1997; Kambhampati et al., 1996).

More recently, the focus has been on forward search
state-space planners (Yoon et al., 2008).

Learning from Success: Explanation-Based
Generalization

When learning from successful cases (plans), the train-
ing examples comprise of successful plans, and the
explanations involve proofs showing that the plan, as
it is given, is able to support the goals. Only the parts
of the plan that take part in this proof are relevant for
justifying the success of the plan. The plan is thus “gen-
eralized” by removing extraneous actions that do not
take part in the proof. Object identifiers and action
orderings are also generalized as long as the generaliza-
tion doesn’t affect the proof of correctness (Kambham-
pati, 1994). The output of the learning phase is thus a
variablized plan containing a subset of the constraints
(actions, orderings, object identity constraints) of the
original plan. This is then typically indexed and used as
a macro-operator to speed-up later search.

For example, given a planning problem of starting
with an initial state where five blocks, A, B, C, D and
E are on table, and the problem requires that in the
goal state A must be on B and C must be on D, and a
plan P that is a sequence of actions pickup A, stack A
on B, pickup E, putdown E, Pickup C, stack C on D, the
explanation-based learner might output the generaliza-
tion “do in any order { pickup x, stack x on y} { pick up z,
stack z on w}” for the generalized goals on (x, y) and on
(w,z), starting from a state where x, y, z and w are all
on table and clear, and each of them denotes a distinct
block.

One general class of such proof schema involves
showing that every top level goal of the planning prob-
lem as well as the precondition of every action are estab-
lished and protected. Establishment requires that there
is an action in the plan that gives that condition, and
protection requires that once established, the condition
is not deleted by any intervening action.

A crucial point is that the extent of generaliza-
tion depends on the flexibility of the proof strategy
used. Kambhampati and Kedar (1994) discuss a spec-
trum of generalization strategies associated with a spec-
trum of proof strategies, while Shavlik (1990) discusses
how the number of actions in the plan can also be
generalized.




394

Explanation-Based Learning for Planning

Learning from Failure

When learning from the failure of a search branch,
EBL starts by analyzing the plans at the failing nodes
and constructing an explanation of failure. The fail-
ure explanation is just a subset of constraints in the
plan at the current search node, which, in conjunction
with domain theory ensures that no successful solu-
tion can be reached by further refining this plan. The
explanations can range from direct constraint inconsis-
tencies (e.g., ordering cycles), to indirect violation of
domain axioms (e.g., the plan requiring both clear(B)
and On(A,B) to be satisfied at the same time point).
The explanations at the leaf nodes are “regressed” over
the decisions in the search tree to higher level nodes
to get explanations of (implicit) failures in these higher
level nodes. The search control rules can then essentially
recommend pruning any search node which satisfies a
failure explanation.

The deep affinity between EBL from search failures
and the idea of »nogood learning and dependency-
directed backtracking in CSP is explored in
Kambhampati (1998). As in dependency directed
backtracking, the more succinct the explanation, the
higher the chance of learning effective control rules.
Note that effectiveness here is defined in terms of the
match costs involved in checking whether the rule is
applicable, and the search reductions provided when it
is applicable. Significant work has been done to identify
classes of failure explanation that are expected to lead to
ineffective rules (Etzioni, 1993). In contrast to CSP that
has a finite depth search tree, one challenge in planning
is that often an unpromising search node might not
exhibit any direct failure with a succinct explanation,
and is abandoned by the search for heuristic reasons
(such as the fact that the node crosses a depth limit
threshold). Strategies for finding implicit explanations
of failure (using domain axioms), as well as getting by
with incomplete explanations of failure are discussed in
Kambhampati et al. (1996). EBL from failures has also
been applied to retrieval (rather than search) failures.
In this case, the failure of extending a plan retrieved
from the library to solve a new problem is used to learn
new indexing schemes that inhibit that case from being
retrieved in such situations (Ihrig & Kambhampati,
1997).

Learning Adjustments to Heuristics

Most recent work in planning has been in the context of
heuristic search planners, where learning from failures
doesn’t work as well (since the heuristic search may
change directions much before a given search branch
ends in an explainable failure). One way of helping
such planners is to improve their default heuristic (Yoon
etal., 2008). Given a heuristic h(s) that gives the heuris-
tic estimate of state s, the aim in Yoon et al. is to learn
an adjustment J(s) that is added to h(s) to get a getter
estimate of h*(s) - the true cost of state s. The system
has access to actual plan traces (which can be obtained
by having the underlying planner solve some problems
from scratch). For each state s on the trace, we know the
true distance of state s from the goal state, and we can
also compute the h(s) value with respect to the default
heuristic. This gives the learner a set of training exam-
ples which are pairs of states and the adjustments they
needed to make to the default heuristic meet the true
distance. In order to learn the §(s) from this training
data, we need to enumerate the features of state s that
are relevant to it needing the specific adjustment. This
is where EBL come in. Specifically, one way of enumer-
ating the relevant features is to explain why s has the
default heuristic value it does. This, in turn, is done by
taking the features of the relaxed plan for state s. Since
the relaxed plan is a plan that assumes away all negative
interactions between the actions, relaxed plan features
can be seen as features of the explanation of the label
for state s in terms of a partial domain theory (one which
ignores all the deletes of all actions).

EBL from Incomplete Domain Theories
While most early efforts for speed-up focused on com-
plete and correct theories, several efforts also looked at
speed-up learning from incomplete theories. The so-
called Lazy EBL approaches (Chien, 1989; Tadepalli,
1989) work by first constructing partial explanations,
and subsequently refine the over-general rules learned.
Other approaches that use similar ideas outside plan-
ning include Flann and Dietterich (1989) and Cohen
(1992). As we noted above, the work by Yoon et al.
(2008) can also be seen as basing learning (in their case
of adjustments to a default heuristic function) w.r.t. a
partial domain theory.



Explanation-Based Learning for Planning

395

EBL to Learn Domain Knowledge

Although most work in EBL for planning has been
focused on speedup, there has also been some work
aimed at learning domain knowledge (rather than con-
trol knowledge). Of particular interest is “operational-
izing” a complex, if opaque, domain model by learning
from it a simplified domain model that is adequate to
efficiently solve an expected distribution of problems.
The recent work by Levine and DeJong (2006) is an
example of such an effort.

EBL and Knowledge-Level Learning
Although the focus of this article is on EBL as applied
to planning, we need to foreground one general issue:
whether EBL is capable of knowledge-level learning
or not. A popular misconception of EBL is that since
it depends on a complete and correct domain theory,
no knowledge-level learning is possible, and speedup
learning is the only possibility. (The origins of this mis-
conception can be traced back to the very beginning.
The two seminal articles on EBL in the very first issue
of the Machine Learning journal differed profoundly
in their interpretations of EBL. While Mitchell, Keller,
and Kedar-Cabelli (1986) assumed that EBL by default
works with complete and correct theories (thus preclud-
ing any knowledge-level learning), DeJong (2006) pro-
vide a more general view of EBL that uses background
knowledge — whether or not it is complete - to focus the
generalization (and as such can be seen as a knowledge-
based feature-selection step for a subsequent inductive
learner)). As we noted at the outset however, EBL is not
required to depend on complete and correct domain
theories, and when it doesn’t, knowledge level learning
is indeed possible.

Utility Problem and its Non-Exclusive
Relation to EBL

As we saw above, much early work in EBL for plan-
ning focused on speed-up for the underlying planner.
Some of the knowledge learned for speedup - especially
control rules and macro-operators — can also adversely
affect the search by increasing either the search space
size (macros) and/or per-node cost (matching control

rules). Clearly, in order for the net effect to be posi-
tive, care needs to be exercised as to which control rules
and/or macros are stored. This has been called the “util-
ity problem” (Minton, 1990) and significant attention
has been paid to develop strategies that either dynami-
cally evaluate the utility of the learned control knowl-
edge (and forget useless rules) (Markovitch & Scott,
1988; Minton, 1990), or select the set of rules that best
serve a given distribution of problem instances (Gratch,
Chien, & DeJong, 1994).

Despite the prominent attention given to the util-
ity problem, it is important to note the non-exclusive
connection between EBL and utility problem We note
that any strategy that aims to provide/acquire control
knowledge will suffer from the utility problem. For
example, utility problem also holds for inductive learn-
ing techniques that were used to learn control knowl-
edge (cf. Leckie & Zukerman, 1993). In other words, it
is not special to EBL but rather to the specific applica-
tion task. We note that it is both possible to do speedup
learning that is less suceptible to the utility problem
(e.g., learn adjustments to heuristics, Yoon et al., 2008),
and possible to to use EBL for knowledge-level learning
(Levine & DeJong, 2006).

Current Status

EBL for planning was very much in vogue in late
eighties and early nineties. However, as the speed of
the underlying planners increased drastically, the need
for learning as a crutch to improve search efficiency
reduced. There has however been a recent resurgence
of interest, both in further speeding up the planners,
and in learning domain models. Starting 2008, there
is a new track in the International Planning Compe-
tition devoted to learning methods for planning. In
the first year, the emphasis was on speedup learning.
ObtuseWedge, a system that uses EBL analysis to learn
adjustments to the default heuristic, was among the
winners of the track. The DARPA integrated learning
initiative, and interest in model-lite planning have also
brought focus back to EBL for planning — this time with
partial domain theories.




396

Explanation-Based Learning for Planning

Additional Reading

The tutorial (Yoon & Kambhampati, 2007) provides an
up-to-date and broader overview of learning techniques
applied to planning, and contains significant discussion
of EBL techniques. The paper (Zimmerman & Kamb-
hampati, 2003) provides a survey of machine learning
techniques used in planning, and includes a more com-
prehensive listing of research efforts that applied EBL in
planning.

Cross References
»Explanation-Based Learning
»Speedup Learning

Recommended Reading

Bhatnagar, N., & Mostow, J. (1994). On-line learning from search
failures. Machine Learning, 15(1), 69-117.

Borrajo, D., & Veloso, M. M. (1997). Lazy incremental learning
of control knowledge for efficiently obtaining quality plans.
Artificial Intelligence Review, 11(1-5), 371-405.

Chien, S. A. (1989). Using and refining simplifications: Explanation-
based learning of plans in intractable domains. In IJCAI
(pp- 590-595).

Cohen, W. W. (1992). Abductive explanation-based learning: A solu-
tion to the multiple inconsistent explanation problem. Machine
Learning, 8,167-219.

DeJong, G., & Mooney, R. J. (1986). Explanation-based learning: An
alternative view. Machine Learning, 1(2), 145-176.

Estlin, T. A., & Mooney, R. J. (1997). Learning to improve both effi-
ciency and quality of planning. In IJCAI 1997 (pp. 1227-1233).

Etzioni, O. (1993). A structural theory of explanation-based learn-
ing. Artificial Intelligence, 60(1), 93-139.

Flann, N. S., & Dietterich, T. G. (1989). A study of explanation-based
methods for inductive learning. Machine Learning, 4, 187-226.

Gratch, J., Chien, S. A., & DeJong, G. (1994). Improving learning per-
formance through rational resource allocation. In AAAT 1994
(pp. 576-581).

Thrig, L. H., & Kambhampati, S. (1997). Storing and indexing plan
derivations through explanation-based analysis of retrieval fail-
ures. Journal of Artificial Intelligence Research, 7, 161-198.

Kambhampati, S. (1994). A unified framework for explanation-based
generalization of partially ordered and partially instantiated
plans. Artificial Intelligence, 67(1), 29-70.

Kambhampati, S. (1998). On the relations between intelligent
backtracking and failure-driven explanation-based learning
in constraint satisfaction and planning. Artificial Intelligence,
105(1-2), 161-208.

Kambhampati, S., Katukam, S., & Qu, Y. (1996). Failure driven
dynamic search control for partial order planners: An
explanation based approach. Artificial Intelligence, 88(1-2),
253-315.

Leckie, C., & Zukerman, I. (1993). An inductive approach to learning
search control rules for planning. In IJCAI 1993 (pp. 1100-1105)

Levine, G., & DeJong, G. (2006). Explanation-based acquisition of
planning operators. In ICAPS 2006 (pp. 152-161).

Markovitch, S., & Scott, P. D. (1988). The role of forgetting in
learning. In ML 1988 (pp. 459-465).

Minton, S. (1990). Quantitative results concerning the utility
of explanation-based learning. Artificial Intelligence, 42(2-3),
363-391.

Minton, S., Carbonell, J. G., Knoblock, C. A., Kuokka, D., Etzioni, O.,
& Gil, Y. (1989). Explanation-based learning: A problem solving
perspective. Artificial Intelligence, 40(1-3), 63-118.

Mitchell, T. M., Keller, R. M., & Kedar-Cabelli, S. T. (1986).
Explanation-based generalization: A unifying view. Machine
Learning, 1(1), 47-80.

Shavlik, J. W. (1990). Acquiring recursive and iterative concepts with
explanation-based learning. Machine Learning, 5, 39-40.

Tadepalli, P. (1989). Lazy explanation based learning: A solution to
the intractable theory problem. In IJCAI 1989 (pp. 694-700).

Yoon, S., Fern, A., & Givan, R. (2008). Learning control knowl-
edge for forward search planning. Journal of Machine Learning
Research, 9, 683-718.

Yoon, S., & Kambhampati, S. (2007). Learning for planning. Tutorial
delivered at ICAPS 2007. http://rakaposhi.eas.asu.edu/learn-
plan.html

Zimmerman, T., & Kambhampati, S. (2003). Learning-assisted auto-
mated planning: Looking back, taking stock, going forward. AI
Magazine, 24(2), 73-96.


http://rakaposhi.eas.asu.edu/learn-plan.html
http://rakaposhi.eas.asu.edu/learn-plan.html

	E
	EBL
	Echo State Network
	ECOC
	Edge Prediction
	Efficient Exploration in Reinforcement Learning
	Synonyms
	Definition
	Motivation
	Efficient Exploration in Markov Decision Processes
	Variations on MDP Learning
	Alternative Settings

	Cross References
	Recommended Reading
	EFSC
	Elman Network
	EM Algorithm
	EM Clustering
	Embodied Evolutionary Learning
	Emerging Patterns
	Definition
	Recommended Reading

	Empirical Risk Minimization
	Definition
	Recommended Reading

	Ensemble Learning
	Synonyms
	Definition
	Motivation and Background
	Methods and Algorithms
	Methods for Combining a Set of Models
	Algorithms for Learning a Set of Models
	Bagging
	Adaboost
	Mixtures of Experts

	Theoretical Perspectives: Ensemble Diversity
	What is Diversity?
	Regression Error with a Linear Combination Rule
	Classification Error with a Linear Combination Rule
	Classification Error with a Voting Combination Rule
	Summary

	Conclusions & Current Directions in the Field
	Recommended Reading

	Entailment
	Synonyms
	Definition
	Cross References
	Recommended Reading

	Entity Resolution
	Synonyms
	Definition
	Motivation and Background
	Theory/Solution
	Attribute-Based Entity Resolution
	Efficiency
	Probabilistic Models for Pairwise Resolution
	Probabilistic Models for Relational Entity Resolution
	Other Approaches for Relational Entity Resolution
	Applications
	Cross References
	Recommended Reading

	Epsilon Covers
	Definition
	Application
	Cross References
	Recommended Reading

	Epsilon Nets
	Definition
	Definition
	Remarks
	Example

	Application
	Cross References
	Recommended Reading

	Equation Discovery
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Approaches and Methods
	Types of Equations

	Applications
	Cross References
	Recommended Reading

	Error
	Error Correcting Output Codes
	Synonyms
	Definition
	Recommended Reading

	Error Curve
	Error Rate
	Synonyms
	Definition
	Cross References

	Error Squared
	Synonyms
	Definition

	Estimation of Density Level Sets
	Evaluation
	Evaluation Data
	Evaluation Set
	Evolution of Agent Behaviors
	Evolution of Robot Control
	Evolutionary Algorithms
	Synonyms
	Definition
	Cross References

	Evolutionary Clustering
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	Evolving Clusters and Evolving Clustering Algorithms
	Encodings and Operators for Evolutionary Clustering
	Evolutionary Multiobjective Clustering

	Cross References
	Recommended Reading

	Evolutionary Computation
	Evolutionary Computation in Economics
	Definition
	Motivation and Background
	Rationality and Learning
	Economic and Econometric Models
	Game Theory
	Auction Theory
	Agent-Based Models

	Cross References
	Recommended Reading

	Evolutionary Computation in Finance
	Definition
	Motivation and Background
	Financial Forecasting
	Portfolio Optimization
	Financial Markets
	Option Pricing
	Credit Scoring, Credit Rating, and Bankruptcy Prediction

	Cross References
	Recommended Reading

	Evolutionary Computational Techniques in Marketing
	Definition
	Motivation and Background
	Applications
	Target potential clients
	New Products design
	Advertisement

	Cross References
	Recommended Reading

	Evolutionary Computing
	Evolutionary Constructive Induction
	Evolutionary Feature Selection
	Evolutionary Feature Selection and Construction
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	Evolutionary Feature Selection
	Evolutionary Feature Construction

	Applications
	Future Directions
	Cross References
	Recommended Reading

	Evolutionary Feature Synthesis
	Evolutionary Fuzzy Systems
	Definition
	Motivation and Background
	Structure of the Learning System
	Optimization and Learning of the Fuzzy Database
	Optimization and Learning of the Fuzzy Rule Base
	Optimization and Learning of the Complete Knowledge Base
	Final Remarks

	Recommended Reading

	Evolutionary Games
	Definition
	Motivation and Background
	Structure of the Learning System
	Genetic Programming
	Evolving Game-Playing Strategies
	Example: Robocode
	Program Architecture
	Terminal and Function Sets
	Fitness Measure
	Control Parameters and Run Termination
	Results

	Backgammon and Chess: Major Results
	Backgammon
	Chess (endgames)


	Cross References
	Recommended Reading

	Evolutionary Grouping
	Evolutionary Kernel Learning
	Definition
	Motivation and Background
	Structure of Learning System
	Assessing Fitness: Model Selection Criteria
	Accuracy on Sample Data
	Measures Derived from Bounds on the Generalization Performance
	Number of Input Variables
	Space and Time Complexity of the Classifier
	Multi-Objective Optimization

	Encoding and Variation Operators
	Gaussian Kernels
	Optimizing Additional Hyperparameters


	Application Example
	Cross References
	Recommended Reading

	Evolutionary Robotics
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Genetic Encoding
	Fitness Evaluation
	Advantages

	Applications
	Future Directions
	Cross References
	Recommended Reading

	Evolving Neural Networks
	Example
	Example-Based Programming
	Expectation Maximization Algorithm
	Expectation Maximization Clustering
	Synonyms
	Cross References
	Recommended Reading

	Expectation Propagation
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	Bayesian Machine Learning
	Assumed Density Filtering
	Expectation Propagation
	Computational Aspects
	Convergence Issues
	Generalizations

	Programs and Data
	Applications
	Future Directions
	Cross References
	Recommended Reading

	Expectation-Maximization Algorithm
	Synonyms

	Experience Curve
	Experience-Based Reasoning
	Explanation
	Explanation-Based Generalization for Planning
	Explanation-Based Learning
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	Explanations and Their Generalization
	Evaluation and Hypothesis Selection
	Literature

	Cross References
	Recommended Reading

	Explanation-Based Learning for Planning
	Synonyms
	Definition
	Dimensions of Variation
	Learning from Success: Explanation-Based Generalization
	Learning from Failure
	Learning Adjustments to Heuristics
	EBL from Incomplete Domain Theories
	EBL to Learn Domain Knowledge
	EBL and Knowledge-Level Learning
	Utility Problem and its Non-Exclusive Relation to EBL
	Current Status
	Additional Reading
	Cross References
	Recommended Reading




