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Efficient Exploration in
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Synonyms
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Definition
An agent acting in a world makes observations, takes
actions, and receives rewards for the actions taken.
Given a history of such interactions, the agent must
make the next choice of action so as to maximize
the long-term sum of rewards. To do this well, an
agent may take suboptimal actions which allow it to
gather the information necessary to later take optimal
or near-optimal actions with respect to maximizing the
long-term sumof rewards.�ese information gathering
actions are generally considered exploration actions.

Motivation
Since gathering information about the world generally
involves taking suboptimal actions compared with a
later learned policy, minimizing the number of infor-
mation gathering actions helps optimize the standard
goal in reinforcement learning. In addition, under-
standing exploration well is key to understanding rein-
forcement learning well, since exploration is a key
aspect of reinforcement learning which is missing from
standard supervised learning settings (Fig. ).

Efficient Exploration in Markov Decision
Processes
One simpli�cation of reinforcement learning is the
7Markov decision process setting. In this setting, an
agent repeatedly takes an action a, resulting in a tran-
sition to a state according to a conditional probability
transition matrix P(s′∣s, a), and a (possibly probabilis-
tic) reward R(s′, a, s) ∈ [, ]. �e goal is to e�ciently
output a policy π which is є-optimal over T timesteps.
�e value of policy π in a start state s is de�ned as

η(π, s) = E(a,s,r)T∼(π ,P,R)T
T

∑
t=

rt ,

which should be read as the expectation over T-length
sequences drawn from the interaction of the policy π
with the world as represented by P and R. An є-optimal
policy π therefore satis�es:

max
π′

η(π′, s) − η(π, s) ≤ є.

�ere are several notable results in this setting, typically
expressed in terms of the dependence on the number
of actions A, and the number of states S. �e �rst is
for the β-greedy strategy commonly appliedwhen using
7Q-learning (Watkins & Dayan, ) which explores
randomly with probability β.
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A Key Lock Structure MDP

Efficient Exploration in Reinforcement Learning. Figure .

An example of a keylock MDP. The state are arranged in

a chain. In each state, one of the two actions leads to the

next state while the other leads back to the beginning.

The only reward is in the transition to the last state in

the chain. Keylock MDPs defeat simple greedy strategies,

because the probability of randomly reaching the last

transition is exponentially small in the length of the

chain

�eorem  �ere exists MDPs such that with probabil-
ity at least /, β-greedy requires Θ(AS

) explorations to
�nd an є-optimal policy.

�is is essentially a negative result, saying that a
greedy exploration strategy cannot quickly discover a
good policy in some settings. �e proof uses an MDP
with a key-lock like structure where for each state
all actions but one take the agent back to the begin-
ning state, and the reward is at the end of a chain of
states.
It turns out that there exists algorithms capa-

ble of �nding a near-optimal policy in an MDP
with only a polynomial number of exploratory tran-
sitions.

�eorem  For all MDPs, for any δ > , with probabil-
ity  − δ, the algorithm Explicit-Explore-or-Exploit �nds
an є-optimal policy a�er Õ(SA) explorations.

In other words, E (Kearns & Singh, ) requires
exploration steps at most proportional to the size of
the probability table driving the dynamics of the agent’s
world. �e algorithm works in precisely the manner
which might be expected: it builds a model of the world

based on its observations and solves the model to deter-
mine whether to explore or exploit. �e basic approach
was generalized to stochastic games and reformulated
as an “optimistic initialization” style algorithm named
R-MAX (Brafman & Tennenholtz, ).
It turns out that an even better dependence is possi-

ble using the delayed Q-learning (Strehl, Li, Wiewiora,
Langford, & Littman, ) algorithm.

�eorem  For all MDPs, for any δ > , with prob-
ability  − δ, the algorithm delayed Q-learning �nds an
є-optimal policy a�er Õ(SA) explorations.

�e delayed Q-learning algorithm requires explo-
rations proportional to the size of the solution pol-
icy rather than proportional to the size of world
dynamics. At a high level, delayed Q-learning oper-
ates by keeping values for exploration and exploita-
tion of observed state-actions, uses these values to
decide between exploration and exploitation, and care-
fully updates these values. Delayed Q-learning does not
obsolete E, because the (nonvisible) dependence on є
and T are worse (Strehl, ).

�is is a best possible result in terms of the depen-
dence on S and A (up to log factors), as the following
theorem (Kakade, ) states:

�eorem  For all algorithms, there exists an MDP
such that with Ω(SA) explorations are required to �nd
an є optimal policy with probability at least  .

Since even representing a policy requires a lookup
table of size SA, this algorithm-independent lower
bound is relatively unsurprising.

Variations on MDP Learning

�ere are several minor variations in the setting and
goal de�nitions which do not qualitatively impact the
set of provable results. For example, if rewards are in a
bounded range, they can be o�set and rescaled to the
interval [, ].
It’s also common to use a so� horizon (or discount-

ing) where the policy evaluation is changed to:

ηγ(π, s) = E(a,s,r)∞∼(π ,P,R)∞
∞
∑
t=

γtrt
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for some value γ < . �is setting is not precisely
equivalent to the hard horizon, but since

sum∞
t=(ln(/є)+ln(/−γ))/−γγtrt ≤ є

similar results are provablewith /( − γ) taking the role
of T and slightly altered algorithms.
One last variation changes the goal. Instead of out-

putting an є-optimal policy for the next T timesteps, we
could have an algorithm to handle both the exploration
and exploitation, then retrospectively go back over a
trace of experience and mark a subset of the actions
as “exploration actions,” with a guarantee that the
remainder of the actions are according to an є-optimal
policy (Kakade, ). Again, minor alterations to
known algorithms in the above setting appear to
work here.

Alternative Settings

�ere are several known analyzed variants of the basic
setting formed bymaking additional assumptions about
the world. �is includes Factored MDPs (Kearns &
Koller, ), Metric MDPs (Kakade, Kearns, & Lang-
ford, ), Continuous MDPs (Brunskill, Le�er, Li,
Littman, & Roy, ), MDPs with a Bayesian prior
(Poupart, Vlassis, Hoey, & Regan, ), and appren-
ticeship learningwhere there is access to a teacher for an
MDP (Abbeel&Ng, ).�e structure of these results
are all similar at a high level: with some additional
information, it is possible to greatly ease the di�culty
of exploration allowing tractable application to much
larger problems.
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Emerging Patterns

Definition
Emerging pattern mining is an area of 7supervised
descriptive rule induction. Emerging patterns are
de�ned as itemsets whose support increases signi�-
cantly from one data set to another (Dong & Li, ).
Emerging patterns are said to capture emerging trends
in time-stamped databases, or to capture di�erentiating
characteristics between classes of data.

Recommended Reading
Dong, G., & Li, J. (). Efficient mining of emerging patterns: Dis-

covering trends and differences. In Proceedings of the th ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD-) (pp. –).

Empirical Risk Minimization

Xinhua Zhang
Australian National University
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Definition
�e goal of learning is usually to �nd a model
which delivers good generalization performance over
an underlying distribution of the data. Consider an
input space X and output space Y . Assume the pairs
(X×Y) ∈ X×Y are randomvariables whose (unknown)
joint distribution is PXY . It is our goal to �nd a predictor
f : X ↦ Y which minimizes the expected risk:

P( f (X) ≠ Y) = E(X,Y)∼PXY [δ( f (X) ≠ Y)] ,

where δ(z) =  if z is true, and  otherwise.
However, in practice we only have n pairs of training

examples (Xi,Yi) drawn identically and independently
from PXY . Since PXY is unknown, we o�en use the risk
on the training set (called empirical risk) as a surrogate
of the expected risk on the underlying distribution:


n

n

∑
i=

δ( f (Xi) ≠ Yi).

Empirical risk minimization (ERM) refers to the idea
of choosing a function f by minimizing the empir-
ical risk. Although it is o�en e�ective and e�cient,
ERM is subject to 7over�tting, i.e., �nding a model
which �ts the training data well but predicts poorly
on unseen data. �erefore, 7regularization is o�en
required.
More details about ERM can be found in Vapnik

().

Recommended Reading
Vapnik, V. (). Statistical learning theory. New York: Wiley.

Ensemble Learning

Gavin Brown
�e University of Manchester
Manchester, UK

Synonyms
Committee machines; Multiple classi�er systems

Definition
Ensemble learning refers to the procedures employed
to train multiple learning machines and combine
their outputs, treating them as a “committee” of deci-
sion makers. �e principle is that the decision of
the committee, with individual predictions combined
appropriately, should have better overall 7accuracy,
on average, than any individual committee mem-
ber. Numerous empirical and theoretical studies have
demonstrated that ensemble7models very o�en attain
higher accuracy than single models.

�e members of the ensemble might be predict-
ing real-valued numbers, class labels, posterior prob-
abilities, rankings, clusterings, or any other quantity.
�erefore, their decisions can be combined by many
methods, including averaging, voting, and probabilistic
methods. �e majority of ensemble learning methods
are generic, applicable across broad classes of model
types and learning tasks.
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Motivation and Background
If we could build the “perfect” machine learning device,
one which would give us the best possible answer
every time, there would be no need for ensemble learn-
ing methods – indeed, there would be no need for
this encyclopedia either. �e underlying principle of
ensemble learning is a recognition that in real-world
situations, every model has limitations and will make
errors. Given that each model has these “limitations,”
the aim of ensemble learning is to manage their
strengths and weaknesses, leading to the best possi-
ble decision being taken overall. Several theoretical and
empirical results have shown that the accuracy of an
ensemble can signi�cantly exceed that of a singlemodel.

�e principle of combining predictions has been
of interest to several �elds over many years. Over 
years ago, a controversial question had arisen, on how
best to estimate the mean of a probability distribution
given a small number of sample observations. Laplace
() demonstrated that the sample mean was not
always optimal: under a simple condition, the sam-
ple median was a better combined predictor of the
population mean. �e �nancial forecasting community
has analyzed model combination for several decades,
in the context of stock portfolios. �e contribution of
the machine learning (ML) community emerged in the
s – automatic construction (from data) of both
the models and the method to combine them. While
the majority of the ML literature on this topic is from
 onward, the principle has been explored brie�y
by several independent authors since the s. See
Kuncheva (b) for historical accounts.

�e study of ensemble methods, with model out-
puts considered for their abstract properties rather than
the speci�cs of the algorithm which produced them,
allows for a wide impact across many �elds of study. If
we can understand precisely why, when, and how par-
ticular ensemble methods can be applied successfully,
we would have made progress toward a powerful new
tool for Machine Learning: the ability to automatically
exploit the strengths and weaknesses of di�erent learning
systems.

Methods and Algorithms
An ensemble consists of a set of models and a method
to combine them. We begin this section by assuming

that we have a set of models, generated by any of the
learning algorithms in this encyclopedia; we explore
popular methods of combining their outputs, for clas-
si�cation and regression problems. Following this, we
review some of the most popular ensemble algorithms,
for learning a set of models given the knowledge that
they will be combined, including extensive pointers for
further reading. Finally, we take a theoretical perspective,
and review the concept of ensemble diversity, the funda-
mental property which governs how well an ensemble
can perform.

Methods for Combining a Set of Models

�ere exist numerous methods for model combination,
far too many to fully detail here. �e linear combiner,
the product combiner, and the voting combiner are by
far themost commonly used in practice.�ough a com-
biner could be speci�cally chosen to optimize perfor-
mance in a particular application, these three rules have
shown consistently good behavior across many prob-
lems, and are simple enough that they are amenable to
theoretical analysis.

�e linear combiner is used for models that output
real-valued numbers, so is applicable for 7regression
ensembles, or for 7classi�cation ensembles producing
class probability estimates. Here, notation for the latter
case is only shown.We have amodel ft(y∣x), an estimate
of the probability of class y given input x. For a set of
these, t = {, . . . ,T}, the ensemble probability estimate
is,

f̄ (y∣x) =
T

∑
t=

wtft(y∣x). ()

If theweightswt = /T,∀t, this is a simple uniform aver-
aging of the probability estimates. �e notation clearly
allows for the possibility of a nonuniformly weighted
average. If the classi�ers have di�erent accuracies on the
data, a nonuniform combination could in theory give
a lower error than a uniform combination. However,
in practice, the di�culty of estimating the w param-
eters without over�tting, and the relatively small gain
that is available (see Kuncheva, b, p. ), have
meant that in practice the uniformly weighted average
is by far the most commonly used. A notable exception,
to be discussed later in this article, is the mixture of
experts paradigm – in MoE, weights are nonuniform,
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but are learnt and dependent on the input value x. An
alternative combiner is the product rule:

f̄ (y∣x) =

Z

T

∏
t=

ft(y∣x)wt , ()

where Z is a normalization factor to ensure f̄ is a
valid distribution. Note that Z is not required to make
a valid decision, as the order of posterior estimates
remain unchanged before/a�er normalization. Under
the assumption that the class-conditional probability
estimates are independent, this is the theoretically opti-
mal combination strategy. However, this assumption is
highly unlikely to hold in practice, and again theweights
w are di�cult to reliably determine. Interestingly, the
linear and product combiners are in fact special cases of
the generalized mean (Kuncheva, b) allowing for a
continuum of possible combining strategies.

�e linear and product combiners are applicable
when our models output real-valued numbers. When
the models instead output class labels, a majority (or
plurality) vote can be used. Here, each classi�er votes
for a particular class, and the class with the most votes
is chosen as the ensemble output. For a two-class prob-
lem the models produce labels, ht(x) ∈ {−,+}. In this
case, the ensemble output for the voting combiner can
be written as

H(x) = sign
⎛

⎝

T

∑
t=

wtht(x)
⎞

⎠
. ()

�e weights w can be uniform for a simple majority
vote, or nonuniform for a weighted vote.
We have discussed only a small fraction of the possi-

ble combiner rules. Numerous other rules exist, includ-
ing methods for combining rankings of classes, and
unsupervised methods to combine clustering results.
For details of the wider literature, see Kuncheva (b)
or Polikar ().

Algorithms for Learning a Set of Models

If we had a committee of people taking decisions, it is
self-evident that we would not want them all to make
the same bad judgments at the same time. With a com-
mittee of learning models, the same intuition applies:
we will have no gain from combining a set of identi-
cal models. We wish the models to exhibit a certain
element of “diversity” in their group behavior, though
still retaining good performance individually.

We therefore make a distinction between two types
of ensemble learning algorithms, those which encour-
age diversity implicitly, and those which encourage it
explicitly. �e vast majority of ensemble methods are
implicit, in that they provide di�erent random sub-
sets of the training data to each learner. Diversity is
encouraged “implicitly” by random sampling of the
data space: at no point is a measurement taken to
ensure diversity will emerge. �e random di�erences
between the datasets might be in the selection of exam-
ples (the7Bagging algorithm), the selection of features
(7Random Subspace Method, Ho,  or 7Rotation
Forests, Rodriguez, Kuncheva, & Alonso, ), or
combinations of the two (the Random Forests algo-
rithm, Breiman, ). Many other “randomization”
schemes are of course possible.
An alternative is to explicitly encourage diversity,

constructing each ensemble member with some mea-
surement ensuring that it is substantially di�erent from
the other members. 7Boosting algorithms achieve this
by altering the distribution of training examples for
each learner such that it is encouraged to make more
accurate predictions where previous predictors have
made errors. �e DECORATE algorithm (Melville &
Mooney, ) explicitly alters the distribution of class
labels, such that successive models are forced to learn
di�erent answers to the same problem. 7Negative
correlation learning (see Brown, ; Brown, Wyatt,
Harris, & Yao, ), includes a penalty term when
learning each ensemble member, explicitly managing
the accuracy-diversity trade-o�.
In general, ensemblemethods constitute a large class

of algorithms – some based on heuristics, and some
on sound learning-theoretic principles. �e three algo-
rithms that have received the most attention in the
literature are reviewed here. It should be noted that we
present only the most basic form of each; numerous
modi�cations have been proposed for a variety of learn-
ing scenarios. As further study the reader is referred to
the many comprehensive surveys of the �eld (Brown et
al., ; Kuncheva, b; Polikar, ).

Bagging

In the Bagging algorithm (Breiman, ), each mem-
ber of the ensemble is constructed from a di�erent
training dataset, and the predictions combined either
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by uniform averaging or voting over class labels. Each
dataset is generated by sampling from the total N
data examples, choosing N items uniformly at random
with replacement. Each sample is known as a boot-
strap; the name Bagging is an acronym derived from
Bootstrap AGGregatING. Since a bootstrap samples N
items uniformly at randomwith replacement, the prob-
ability of any individual data item not being selected is
p = ( − /N)N . �erefore with large N, a single boot-
strap is expected to contain approximately .% of
the original set, while .% of the originals are not
selected.
Like many ensemble methods, Bagging works best

with unstable models, that is those that produce dif-
fering generalization behavior with small changes to
the training data. �ese are also known as high vari-
ancemodels, examples of which are7decision trees and
7neural networks. Bagging therefore tends not to work
well with very simplemodels. In e�ect, Bagging samples
randomly from the space of possible models tomake up
the ensemble – with very simple models the sampling
produces almost identical (low diversity) predictions.
Despite its apparent capability for variance reduc-

tion, situations have been demonstrated where Bag-
ging can convergewithout a�ecting variance (see Brown
et al., ). Several other explanations have been pro-
posed for Bagging’s success, including links to Bayesian
model averaging. In summary, it seems that several
years from its introduction, despite its apparent simplic-
ity, Bagging is still not fully understood.

Algorithm  Bagging
Input: Required ensemble size T
Input: Training set S={(x, y), (x, y), . . . ,
(xN , yN)}
for t =  to T do
Build a dataset St , by sampling N items, randomly
with replacement from S.
Train a model ht using St , and add it to the ensem-
ble.

end for
For a new testing point (x′, y′),
If model outputs are continuous, combine them by
averaging.
If model outputs are class labels, combine them by
voting.

Adaboost

Adaboost (Freund & Schapire, ) is the most well
known of the Boosting family of algorithms (Schapire,
). �e algorithm trains models sequentially, with a
new model trained at each round. At the end of each
round, mis-classi�ed examples are identi�ed and have
their emphasis increased in a new training set which is
then fed back into the start of the next round, and a new
model is trained. �e idea is that subsequent models
should be able to compensate for errors made by earlier
models.
Adaboost occupies somewhat of a special place in

the history of ensemble methods. �ough the proce-
dure seems heuristic, the algorithm is in fact grounded
in a rich learning-theoretic body of literature. Schapire
() addressed a question posed by Kearns and
Valiant () on the nature of two complexity classes
of learning problems.�e two classes are strongly learn-
able and weakly learnable problems. Schapire showed
that these classes were equivalent; this had the corollary
that a weak model, performing only slightly better than
random guessing, could be “boosted” into an arbitrarily
accurate strongmodel. �e original Boosting algorithm
was a proof by construction of this equivalence, though
had a number of impractical assumptions built-in. �e
Adaboost algorithm (Freund & Schapire, ) was the
�rst practical Boosting method. �e authoritative his-
torical account of the development can be found in
Schapire (), including discussion of numerous vari-
ants and interpretations of the algorithm.�eprocedure
is shown in Algorithm . Some similarities with Bag-
ging are evident; a key di�erences is that at each round t,
Bagging has a uniform distribution Dt , while Adaboost
adapts a nonuniform distribution.

�e ensemble is constructed by iteratively adding
models. Each time a model is learnt, it is checked to
ensure it has at least єt < ., that is, it has performance
better than random guessing on the data it was sup-
plied with. If it does not, either an alternative model is
constructed, or the loop is terminated.
A�er each round, the distribution Dt is updated to

emphasize incorrectly classi�ed examples. �e update
causes half the distribution mass of Dt+ to be over the
examples incorrectly classi�ed by the previous model.
More precisely,∑ht(xi)≠yi Dt+(i) = ..�us, ifht has an
error rate of %, then examples from that small %will
be allocated % of the next model’s training “e�ort,”
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Algorithm  Adaboost
Input: Required ensemble size T
Input: Training set S = {(x, y), (x, y), . . . ,
(xN , yN)}, where yi ∈ {−,+}
De�ne a uniform distribution D(i) over elements
of S.
for t =  to T do
Train a model ht using distribution Dt .
Calculate єt = PDt(ht(x) ≠ y)
If єt ≥ . break
Set αt =


 ln (

−єt
єt

)

Update Dt+(i) =
Dt(i) exp(−αtyiht(xi))

Zt

where Zt is a normalization factor so that Dt+ is a
valid distribution.

end for
For a new testing point (x′, y′),
H(x′) = sign(∑T

t= αtht(x′))

while the remaining examples (those correctly classi-
�ed) are underemphasized. An equivalent (and simpler)
writing of the distribution update scheme is to multi-
ply Dt(i) by /( − єt) if ht(xi) is correct, and by /єt
otherwise.

�e updates cause the models to sequentially min-
imize an exponential bound on the error rate. �e
training error rate on a data sample S drawn from the
true distributionD obeys the bound,

Px,y∼S(yH(x) < ) ≤
T

∏
t=

√
єt( − єt). ()

�is upper bound on the training error (though not the
actual training error) is guaranteed to decrease mono-
tonically with T, given єt < ..
In an attempt to further explain the performance of

Boosting algorithms, Schapire also developed bounds
on the generalization error of voting systems, in terms
of the voting margin, the de�nition of which was given
in (). Note that, this is not the same as the geomet-
ric margin, optimized by 7support vector machines.
�e di�erence is that the voting margin is de�ned using
the one-norm ∣∣w∣∣ in the denominator, while the geo-
metric margin uses the two-norm ∣∣w∣∣. While this
is a subtle di�erence, it is an important one, form-
ing links between SVMs and Boosting algorithms –
see Rätsch, Mika, Schölkopf, and Müller () for

details. �e following bound holds with probability
 − δ,

Px,y∼D(H(x) ≠ y) ≤ Px,y∼S(yH(x) < θ)+Õ
⎛
⎝

√
d

Nθ
− ln δ

⎞
⎠
, ()

where the Õ notation hides constants and logarith-
mic terms, and d is the 7VC-dimension of the model
used. Roughly, this states that the generalization error
is less than or equal to the training error plus a term
dependent on the voting margin. �e larger the mini-
mum margin in the training data, the lower the testing
error. �e original bounds have since been signi�cantly
improved, see Koltchinskii and Panchenko () as a
comprehensive recent work. We note that this bound
holds generally for any voting system, and is not speci�c
to the Boosting framework.

�e margin-based theory is only one explanation of
the success of Boosting algorithms. Mease and Wyner
() present a discussion of several questions on why
and how Adaboost succeeds. �e subsequent  pages
of discussion demonstrate that the story is by no means
simple. �e conclusion is, while no single theory can
fully explain Boosting, each provides a di�erent part of
the still unfolding story.

Mixtures of Experts

�e mixtures of experts architecture is a widely inves-
tigated paradigm for creating a combination of mod-
els (Jacobs, Jordan, Nowlan, & Hinton, ). �e prin-
ciple underlying the architecture is that certain models
will be able to “specialize” to particular parts of the
input space. It is commonly implemented with a neu-
ral network as the base model, or some other model
capable of estimating probabilities. A Gating network
receives the same inputs as the component models,
but its outputs are used as the weights for a linear
combiner. �e Gating network is responsible for learn-
ing the appropriate weighted combination of the spe-
cialized models (“experts”) for any given input. �us,
the input space is “carved-up” between the experts,
increasing and decreasing their weights for particu-
lar examples. In e�ect, a mixture of experts explic-
itly learns how to create expert ensemble members in
di�erent portions of the input space, and select the
most appropriate subset for a new testing example
(Fig. ).
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Ensemble Learning. Figure . The mixtures of experts architecture

�e architecture has received wide attention, and
has a strong following in the probabilistic modeling
community, where it may go under the pseudonym of
a “mixture model.” A common training method is the
7expectation-maximization algorithm.

Theoretical Perspectives: Ensemble
Diversity
We have seen that all ensemble algorithms in some way
attempt to encourage “diversity.” In this section, we take
a more formalized perspective, to understand what is
meant by this term.

What is Diversity?

�e optimal “diversity” is fundamentally a credit assign-
ment problem. If the committee as a whole makes an
erroneous prediction, howmuch of this error should be
attributed to each member? More precisely, how much
of the committee prediction is due to the accuracies of
the individual models, and how much is due to their
interactions when they were combined? We would ide-
ally like to reexpress the ensemble error as two distinct
components: a term for the accuracies of the individ-
ual models, plus a term for their interactions, i.e., their
diversity.

It turns out that this so-called accuracy-diversity
breakdown of the ensemble error is not always possi-
ble, depending on the type of error function, and choice
of combiner rule. It should be noted that when “diver-
sity” is referred to in the literature, it is most o�en
meant to indicate classi�cation with a majority vote
combiner, but for completeness we address the general
case here. In the following sections, the existing work to
understand diversity in three distinct cases is described:
for regression tasks (a linear combiner), and classi�-
cation tasks, with either a linear combiner or a voting
combiner.

Regression Error with a Linear Combination Rule

In a regression problem, it is common to use the squared
error criterion. �e accuracy-diversity breakdown for
this case (using a linear combiner) is called the ambigu-
ity decomposition (Krogh & Vedelsby, ). �e result
states that the squared error of the linearly combined
ensemble, f̄ (x), can be broken into a sum of two
components:

(f̄ (x) − d) =

T

T

∑
t=

(ft(x) − d) −

T

T

∑
t=

(ft(x) − f̄ (x)).

()
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�e �rst term on the right hand side is the average
squared error of the individual models, while the sec-
ond term quanti�es the interactions between the pre-
dictions. Note that this second term, the “ambiguity,”
is always positive. �is guarantees that, for an arbitrary
data point, the ensemble squared error is always less
than or equal to the average of the individual squared
errors.

�e intuition here can be understood as follows.
Imagine �ve friends, playing “guess the weight of the
cake” (an old English fairground game): if a player’s
guess is close enough to the true weight, they win the
cake. Just as they are about to play, the fairground man-
ager states that they can only submit one guess. �e
dilemma seems to be in whose guess they should sub-
mit – however, the ambiguity decomposition shows us
that taking the average of their guesses, and submitting
that, will always be closer (on average) than choosing
a person at random and submitting their guess. Note
that this is quali�ed with “on average” – it may well be
that one of the predictions will in fact be closer than
the average prediction, but we presume that we have
no way of identifying which prediction to choose, other
than random. It can be seen that greater diversity in
the predictions (i.e., a larger ambiguity term) results in
a larger gain over the average individual performance.
However, it is also clear that there is a trade-o� to be had:
too much diversity and the average error is extremely
large.

�e idea of a trade-o� between these two terms
is reminiscent of the 7bias-variance decomposition
(Geman, Bienenstock, & Doursat, ); in fact, there
is a deep connection between these results. Taking the
expected value of () over all possible training sets gives
us the ensemble analogy to the bias-variance decom-
position, called the 7bias-variance-covariance decom-
position (Ueda & Nakano, ). �is shows that the
expected squared error of an ensemble f̄ (x) from a
target d is:

ED{(f̄ (x)−d)} = bias

+

T
var +

⎛

⎝
−

T
⎞

⎠
covar, ()

where the expectation is with respect to all possible
training datasets D. While the bias and variance terms
are constrained to be positive, the covariance between

models can become negative – thus the de�nition of
diversity emerges as an extra degree of freedom in the
bias-variance dilemma. �is extra degree of freedom
allows an ensemble to approximate functions that are
di�cult (if not impossible) to �nd with a single model.
See Brown et al. () for extensive further discussion
of this concept.

Classification Error with a Linear Combination Rule

In a classi�cation problem, our error criterion is the
misclassi�cation rate, also known as the zero-one loss
function. For this type of loss, it is well known there
is no unique de�nition of bias-variance; instead there
exist multiple decompositions each with advantages
and disadvantages (see Kuncheva, b, p. ). �is
gives us a clue as to the situation with an ensemble –
there is also no simple accuracy-diversity separation of
the ensemble classi�cation error. Classi�cation prob-
lems can of course be addressed either by a model
producing class probabilities (where we linearly com-
bine), or directly producing class labels (where we use
majority vote). Partial theory has been developed for
each case.
For linear combiners, there exist theoretical results

that relate the correlation of the probability estimates
to the ensemble classi�cation error. Tumer and Ghosh
() showed that the reducible classi�cation error
(i.e., above the Bayes rate) of a simple averaging ensem-
ble, eave, can be written as

eave = eadd
⎛

⎝

 + δ(T − )
T

⎞

⎠
, ()

where eadd is the classi�cation error of an individual
model. �e δ is a correlation coe�cient between the
model outputs. When the individual models are iden-
tical, the correlation is δ = . In this case, the ensem-
ble error is equal to the individual error, eave = eadd.
When the models are statistically independent, δ = ,
and the ensemble error is a fraction /T of the individual
error, eave = /T × eadd. When δ is negative, the mod-
els are negatively correlated, and the ensemble error is
lower than the average individual error. However, ()
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is derived under quite strict assumptions, holding only
for a local area around the decision boundary, and ulti-
mately resting on the bias-variance-covariance theory
from regression problems. Further details, includ-
ing recent work to li� some of the assumptions
(Kuncheva, b).

Classification Error with a Voting Combination Rule

�e case of a classi�cation problem with a majority
vote combiner is the most challenging of all. In general,
there is no known breakdown of the ensemble clas-
si�cation error into neat accuracy and diversity com-
ponents. �e simplest intuition to show that correla-
tion between models does a�ect performance is given
by the Binomial theorem. If we have T models each
with identical error probability p = P(ht(x) ≠ y),
assuming theymake statistically independent errors, the
following error probability of the majority voting com-
mittee holds,

P(H(x) ≠ y) =
T

∑
k>(T/)

(
T
k
)pk( − p)(T−k). ()

For example, in the case of T =  ensemble mem-
bers, each with error p = ., the majority voting error
will be ., an order of magnitude improvement over
the individual error. However, this only holds for sta-
tistically independent errors. �e correlated case is an
open problem. Instead, various authors have proposed
their own heuristic de�nitions of diversity in majority
voting ensembles. Kuncheva (b) conducted exten-
sive studies of several suggested diversity measures; the
conclusion was that “no measure consistently correlates
well with the majority vote accuracy.” In spite of this,
some were found useful as an approximate guide to
characterize performance of ensemblemethods, though
should not be relied upon as the “�nal word” on diver-
sity. Kuncheva’s recommendation in this case is the
Q-statistic (Kuncheva, b, p. ), due to its simplic-
ity and ease of computation.
Breiman () took an alternative approach, deriv-

ing not a separation of error components, but a bound
on the generalization error of a voting ensemble,
expressed in terms of the correlations of the models. To
understand this, we must introduce concept of voting

margin.�e votingmargin for a two-class problem,with
y ∈ {−,+}, is de�ned,

m =
yt∑T

t= wtht(x)
∑

T
t= ∣wt ∣

= yH(x). ()

If the margin is positive, the example is correctly classi-
�ed, if it is negative, the example is incorrectly classi�ed.
�e expectedmargin s = ED{m}measures the extent to
which the average number of votes for the correct class
exceeds the average vote for any other class, with respect
to the data distribution D. �e larger the voting mar-
gin, the more con�dence in the classi�cation. Breiman’s
bound shows,

PD(H(x) ≠ y) = PD(yH(x) < ) ≤
ρ̄( − s)

s
. ()

Here ρ̄ is the average pairwise correlation between the
errors of the individual models. �us, the generaliza-
tion error is minimized by a small ρ̄, and an s as close
to  as possible. �e balance between a high accu-
racy (large s) and a high diversity (low ρ̄) constitutes
the tradeo� in this case, although the bound is quite
loose.

Summary

In summary, the de�nition of diversity depends on the
problem. In a regression problem, the optimal diversity
is the trade-o� between the bias, variance and covari-
ance components of the squared error. In a classi�cation
problem, with a linear combiner, there exists partial
theory to relate the classi�er correlations to the ensem-
ble error rate. In a classi�cation problem with a voting
combiner, there is no single theoretical framework or
de�nition of diversity. However, the lack of an agreed
de�nition of diversity has not discouraged researchers
from trying to achieve it, nor has it stalled the progress
of e�ective algorithms in the �eld.

Conclusions & Current Directions
in the Field
Ensemble methods constitute some of the most robust
and accurate learning algorithms of the past decade
(Caruana & Niculescu-Mizil, ). A multitude of
heuristics have been developed for randomizing the
ensemble parameters, to generate diverse models. It
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is arguable that this line of investigation is nowa-
days rather oversubscribed, and the more interesting
research is now in methods for nonstandard data.
7Cluster ensembles (Strehl & Ghosh, ) are ensem-
ble techniques applied to unsupervised learning prob-
lems. Problems with nonstationary data, also known
as concept dri�, are receiving much recent attention
(Kuncheva, a).�emost up to date innovations are
to be found in the biennial International Workshop on
Multiple Classi�er Systems (Roli et al., ).
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Entailment

Synonyms
Implication; Logical consequence

Definition
�e term entailment is used in the context of logical rea-
soning. Formally, a logical formula T entails a formula c
if and only if all models ofT are also amodel of c.�is is
usually denoted as T ⊧ c and means that c is a logical
consequence of T or that c is implied by T.
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Let us elaborate this de�nition for propositional
clausal logic, where the formulae T could be the follow-
ing expression:

flies :- bird, normal.
bird :- blackbird.
bird :- ostrich.

Here, the �rst clause or rule can be read as �ies if nor-
mal and bird, that is, normal birds �y, the second and
third one as stating that blackbirds, resp. ostriches, are
birds. An interpretation is then an assignment of truth-
values to the propositional variables. For instance, for
the above domain

{ostrich, bird}
{blackbird, bird, normal}

are interpretations, speci�ed through the set of proposi-
tional variables that are true.�is means that in the �rst
interpretation, the only true propositions areostrich
andbird. An interpretation speci�es a kind of possible
world. An interpretation I is then a model for a clause
h : −b, ..., bn if and only if {b, ..., bn} ⊆ I → h ∈ I
and it is model for a clausal theory if and only if it is
a model for all clauses in the theory. �erefore, the �rst
interpretation above is a model for the theory, but the
second one is not because the interpretation is not a
model for the �rst clause (as {bird, normal} ⊆ I
but flies /∈ I). Using these notions, it can now be ver-
i�ed that the clausal theory T above logically entails the
clause

flies :- ostrich, normal.

because allmodels of the theory are also amodel for this
clause.
In machine learning, the notion of entailment is

used as a covers relation in 7inductive logic program-
ming, where hypotheses are clausal theories, instances
are clauses, and an example is covered by the hypothesis
when it is entailed by the hypothesis.

Cross References
7Inverse Entailment
7Learning from Entailment
7Logic of Generality

Recommended Reading
Russell, S., & Norvig, P. Artificial intelligence: A modern approach

(nd ed.). Prentice Hall.

Entity Resolution

Indrajit Bhattacharya, Lise Getoor
IBM India Research Laboratory, New Delhi, India
University of Maryland, College Park, MD, USA

Synonyms
Co-reference resolution; Deduplication; Duplicate
detection; Identity uncertainty; Merge-purge; Object
consolidation; Record linkage; Reference reconcili-
ation

Definition
A fundamental problem in data cleaning and integra-
tion (see 7Data Preparation) is dealing with uncertain
and imprecise references to real-world entities.�e goal
of entity resolution is a take a collection of uncertain
entity references (or references, in short) from a sin-
gle data source or multiple data sources, discover the
unique set of underlying entities, and map each refer-
ence to its corresponding entity. �is typically involves
two subproblems – identi�cation of references with dif-
ferent attributes to the same entity, and disambiguation
of references with identical attributes by assigning them
to di�erent entities.

Motivation and Background
Entity resolution is a common problem that comes
up in di�erent guises (and is given di�erent names)
in many computer science domains. Examples include
computer vision, where we need to �gure out when
regions in two di�erent images refer to the same under-
lying object (the correspondence problem); natural lan-
guage processing when we would like to determine
which noun phrases refer to the same underlying entity
(co-reference resolution); and databases, where, when
merging two databases or cleaning a database, wewould



 E Entity Resolution

like to determine when two tuple records are referring
to the same real-world object (deduplication and data
integration). Deduplication is important for remov-
ing redundancy and for accurate analysis. In infor-
mation integration, determining approximate joins is
important for consolidating information from multiple
sources; most o�en there will not be a unique key that
can be used to join tables across databases.
Such ambiguities in entity references can occur due

to multiple reasons. O�en times, data may have data
entry errors, such as typographical errors. Multiple rep-
resentations, such as abbreviations, are also possible.
Di�erent databases typically have di�erent keys – one
person database may use social security numbers while
another uses name and address.
Traditional entity resolution approaches focus on

matching attributes of di�erent references for resolv-
ing entities. However, many data sources have explicit
or implicit relationships present among the entity
references. �ese relations are indicative of relation-
ships between the underlying entities themselves. For
example, person records in census data are linked by
family relationships such as sibling, parent, and spouse.
Researchers collaborate mostly within their organiza-
tion, or their research community, as a result of which
references to related researchers tend to occur closely
together. Recent entity resolution approaches in sta-
tistical relational learning make use of relationships
between references to improve entity resolution accu-
racy, and additionally to discover relationships between
the underlying entities.

Theory/Solution
As an illustration of the entity resolution problem, con-
sider the task of resolving the author references in

a database of academic publications similar to DBLP,
CiteSeer or PubMed. Let us take as an example the
following set of four papers:

. W. Wang, C. Chen, A. Ansari, “A mouse immunity
model”

. W. Wang, A. Ansari, “A better mouse immunity
model”

. L. Li, C. Chen,W.Wang, “Measuring protein-bound
�uxetine”

. W. W. Wang, A. Ansari, “Autoimmunity in biliary
cirrhosis”

Now imagine that we would like to �nd out, given
these four papers, which of these author names refer
to the same author entities. �is process involves deter-
mining whether paper  and paper  are written by the
same author namedWang, or whether they are di�erent
authors. We need to answer similar questions about all
such similar author names in the database.
In this example, it turns out there are six under-

lying author entities, which we will call Wang and
Wang, Chen and Chen, Ansari and Li. �e three
references with the name “A. Ansari” correspond to
author Ansari and the reference with name “L. Li” to
author Li. However, the two references with name “C.
Chen” map to two di�erent authors Chen and Chen.
Similarly, the four references with name “W. Wang” or
“W.W.Wang”map to two di�erent authors.�e “Wang”
references from the �rst, second, and fourth papers cor-
respond to author Wang, while that from the third
paper maps to a di�erent author Wang. �is infer-
ence illustrates the twin problems of identifying “W.
Wang” and “W. W. Wang” as the same author, and
disambiguating two references with name “W. Wang”
as di�erent authors. �is is shown pictorially in Fig. ,

W Wang A Ansari W Wang A Ansari

A AnsariW W Wang

A mouse immunity model A better mouse immunity model

Autoimmunity in biliary cirrhosisMeasuring protien−bound fluxetine

C ChenL Li

C Chen

Paper 2

Paper 4Paper 3

Paper 1

W Wang

Entity Resolution. Figure . The references in different papers in the bibliographic example. References to the same

entity are identically shaded
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where references that correspond to the same authors
are shaded identically. In the entity resolution pro-
cess, all those and only those author references that are
shaded identically should be resolved as corresponding
to the same underlying entity.
Formally, in the entity resolution problem, we are

given a set of referencesR = {ri}, where each reference
r has attributes r.A, r.A, . . . , r.Ak, such as observed
names and a�liations for author references, as in our
example above. �e references correspond to some set
of unknown entities E = {ei}. We introduce the nota-
tion r.E to refer to the entity to which reference r corre-
sponds. �e goal is to recover the hidden set of entities
E = {ei} and the entity labels r.E for individual refer-
ences given the observed attributes of the references.
In addition to the attributes, in some data sources we
have information in the form of relationships between
the references, such as coauthor relationships between
author references in publication databases. We can
capture the relationships with a set of hyper-edges
H = {hi}. Each hyper-edge h may have attributes as
well to capture the attributes of relationships, which we
denote h.A,h.A, . . . ,h.Al, and we use h.R to denote
the set of references that it connects. In our exam-
ple, each rectangle denotes one hyper-edge correspond-
ing to one paper in the database. �e �rst hyper-edge
corresponding to Paper has as its attribute the title
“A mouse immunity model” and connects the three ref-
erences having name attributes “W. Wang,” “C. Chen,”
and “A.Ansari.” A reference r can belong to zero ormore
hyper-edges and we use r.H to denote the set of hyper-
edges in which r participates. For example, if we have
paper, author, and venue references, then a paper ref-
erence may be connected to multiple author references
and also to a venue reference. In general, the under-
lying references can refer to entities of di�erent types,
as in a publication database, or in newspaper articles,
which contain references to people, places, organiza-
tions, etc.When the type information is known for each
reference, resolution decisions are restricted within ref-
erences of the same type. Otherwise, the typesmay need
to be discovered as well as part of the entity resolution
process.
Traditional entity resolution approaches pose entity

resolution as a pair-wise decision problem over refer-
ences based on their attribute similarity. It can also be
posed as a7graph clustering problem, where references

are clustered together based on their attribute similari-
ties and each cluster is taken to represent one underlying
entity. Entity resolution approaches di�er in how the
similarities between references are de�ned and com-
puted and how the resolution decisions are made based
on these similarities. Traditionally, each pair-wise deci-
sion is made independently of the others. For example,
the decision to resolve the two Wang references from
papers  and  would be made independently of the
decision to resolve the two Chen references from the
same papers.

�e �rst improvement is to account for the simi-
larity of the coauthor names when such relationships
are available. However, this still does not consider the
“entities” of the related references. For the two “Wang”
references in the earlier example, the two “C. Chen”
coauthors match regardless of whether they refer to
Chen or Chen. �e correct evidence to use here is
that the “Chen’s” are not co-referent. In such a setting,
in order to resolve the “W. Wang” references, it is nec-
essary to resolve the “C Chen” references as well, and
not just consider their name similarity. In the collec-
tive relational entity resolution approach, resolutions
are not made independently, but instead one resolution
decision a�ects other resolutions via hyper-edges.
Below, we discuss the di�erent entity resolution

approaches in greater detail.

Attribute-Based Entity Resolution
As discussed earlier, exact matching of attributes does
not su�ce for entity resolution. Several sophisticated
similarity measures have been developed for tex-
tual strings (Cohen, Ravikumar, & Fienberg, ;
Chaudhuri, Ganjam, Ganti, &Motwani, ) that may
be used for unsupervised entity resolution. Finally, a
weighted combination of the similarities over the di�er-
ent attributes for each reference is used to compute the
attribute similarity between two references. An alterna-
tive is to use adaptive supervised algorithms that learn
string 7similarity metrics from labeled data (Bilenko
& Mooney, ). In the traditional entity resolution
approach (Fellegi & Sunter, ; Cohen et al., ),
similarity is computed for each pair of references ri, rj
based on their attributes and only those pairs that
have similarity above some threshold are considered
co-referent.
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Efficiency
Even the attribute-only approach to entity resolution
is known to be a hard problem computationally, since
it is infeasible to compare all pairs of references using
expensive similarity measures. �erefore, e�ciency
issues have long been a focus for data cleaning, the
goal being the development of inexpensive algorithms
for �nding approximate solutions.�e key mechanisms
for doing this involve computing the matches e�ciently
and employing techniques commonly called “block-
ing” to quickly �nd potential duplicates (Hernández &
Stolfo, ; Monge & Elkan, ), using cheap and
index-based similarity computations to rule out non-
duplicate pairs. Sampling approaches can quickly com-
pute cosine similarity between tuples for fast text-joins
within an SQL framework (Gravano, Ipeirotis, Koudas,
& Srivastava, ). Error-tolerant indexes can also
be used in data warehousing applications to e�ciently
look up a small but “probabilistically safe” set of refer-
ence tuples as candidates for matching for an incoming
tuple (Chaudhuri et al., ). Generic entity reso-
lution frameworks also exist for resolving and merg-
ing duplicates as a database operator and minimize
the number of record-level and feature-level operations
(Menestrina, Benjelloun, & Garcia-Molina, ).

Probabilistic Models for Pairwise
Resolution
�e groundwork for posing entity resolution as a prob-
abilistic 7classi�cation problem was done by Fellegi
and Sunter (), who studied the problem of labeling
pairs of records from two di�erent �les to be merged
as “match” (M) or “non-match” (U) on the basis of
agreement γ among their di�erent �elds or attributes.
Given an agreement pattern γ, the conditional prob-
abilities P(γ∣M) and P(γ∣U) of γ given matches and
non-matches are computed and compared to decide
whether the two references are duplicates or not. Fellegi
and Sunter showed that the probabilities P(γ∣M) and
P(γ∣U) of �eld agreements can be estimated without
requiring labeled training data if the di�erent �elds
agreements are assumed to be independent. Winkler
() used the EM algorithm to estimate the proba-
bilities without making the independence assumption.

Probabilistic Models for Relational Entity
Resolution
Probabilistic models that take into account inter-
action between di�erent entity resolution decisions
through hyper-edges have been proposed for named-
entity recognition in natural language processing and
for citation matching (McCallum & Wellner, ;
Singla & Domingos, ). Such 7relational learn-
ing approaches introduce a decision variable yij for
every pair of references ri and rj, but instead of infer-
ring the yij’s independently, use conditional random
�elds for joint reasoning. For example, the decision
variables for the “Wang” references and the “Chen”
references in papers  and  would be connected to
each other features functions would be de�ned to
ensure that they are more likely to take up identical
values.
Such relational models are supervised and require

labeled data to train the parameters. One of the
di�culties in using a supervised method for resolu-
tion is constructing a good training set that includes a
representative collection of positive and negative exam-
ples. Accordingly, unsupervised relational models have
also been developed (Bhattacharya & Getoor, ; Li,
Morie, & Roth, ; Pasula, Marthi, Milch, Russell, &
Shpitser, ). Instead of introducing pairwise deci-
sion variables, this category of approaches use genera-
tivemodels for references using latent entity labels. Note
that, here, the number of entities is unknown and needs
to be discovered automatically from the available ref-
erences. Relationships between the references, such as
co-mentions or co-occurrences, are captured using joint
distributions over the entity labels.
All of these probabilistic models have been shown

to perform well in practice and have the advantage
that the match/non-match decisions do not depend
on any user-speci�ed similarity measures and thresh-
olds but are learned directly from data. However, this
bene�t comes at a price. Inference in relational prob-
abilistic models is an expensive process. Exact infer-
ence is mostly intractable and approximate strategies
such as loopy belief propagation andMonte Carlo sam-
pling strategies are employed. Even these approximate
strategies take several iterations to converge and extend-
ing such approaches to large datasets is still an open
problem.
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Other Approaches for Relational Entity
Resolution
Alternative approaches (Dong, Halevy, & Madha-
van, ; Bhattacharya & Getoor, ; Kalashnikov,
Mehrotra, & Chen, ) consider relational structure
of the entities for data integration but avoid the com-
plexity of probabilistic inference. By avoiding a formal
probabilistic model, these approaches can handle com-
plex and longer-range relationships between di�erent
entity references and the resolution process is signi�-
cantly faster as well. Such approaches also create pair-
wise decision nodes between references and create a
dependency graph over them to capture the relation-
ships in the data. But instead of performing probabilistic
inference, they keep updating the value associated with
each decision node by propagating relational evidence
fromone decision node to another over the dependency
graph.
When the relationships between the references and

the entities can be captured in a single graph, thematch-
ing entity for a speci�c referencemay be identi�ed using
path-based similarities between their corresponding
nodes in the graph. �e connection strength associ-
ated with each edge in the graph can be determined
in the unsupervised fashion given all the references,
their candidate entity choices, and the relationships
between them, by solving a set of nonlinear equations
(Kalashnikov et al., ). �is approach is useful for
incremental data cleaning when the set of entities cur-
rently in the database is known and an incoming refer-
ence needs to be matched with one of these entities.
An alternative approach to performing collective

entity resolution using relational evidence is to perform
collective relational clustering (Bhattacharya & Getoor,
).�e goal here is to cluster the references into enti-
ties by taking into account the relationships between
the references. �is is achieved by de�ning a similar-
ity measure between two clusters of references that take
into account not only the attribute similarity of the ref-
erences in the two clusters, but also the neighboring
clusters of each cluster. �e neighboring clusters of any
reference cluster c are de�ned by considering the ref-
erences r′ connected to references r belonging to c via
hyper-edges, and the clusters to which these related ref-
erences belong. If the r.C represents the current cluster
for reference c, then N(c) = ⋃ r′.C, where r.H = r′.H

and r.C = c. For instance, the neighboring clusters for a
Wang cluster in our example containing theWang ref-
erences from papers , and  are the Ansari cluster and
the Chen clusters containing the other references from
the same papers. �e relational similarity between two
clusters is then computed by comparing their neighbor-
hoods. �is relational similarity complements attribute
similarity in the combined similarity between two clus-
ters. Intuitively, two entities are likely to be the same if
they are similar in attributes and are additionally con-
nected to the same other entities. Collective relational
clustering can be e�ciently implemented by maintain-
ing a priority queue for merge-able cluster pairs and
updating the “neighboring” queue elements with every
merge operation.

Applications
Data cleaning and reference disambiguation approaches
have been applied and evaluated in a number of
domains.�e earliest applicationswere onmedical data.
Census data is an area where detection of duplicates
poses a signi�cant challenge and Winkler (Winkler,
) has successfully applied his research and other
baselines to this domain. A great deal of work has
been done making use of bibliographic data (Pasula
et al., ; Singla & Domingos, ; Bhattacharya
& Getoor, ). Almost without exception, the focus
has been on the matching of citations. Work in coref-
erence resolution and disambiguating entity mentions
in natural language processing (McCallum & Wellner,
) has been applied to text corpora and newswire
articles like the TREC corpus. �ere have also been
signi�cant applications in information integration in
data-warehouses (Chaudhuri et al., ).

Cross References
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Epsilon Covers

Thomas Zeugmann
Hokkaido University
Sapparo, Japan

Definition
Let (M, ρ) be a metric space, let S⊆M, and let ε > .
A set E⊆M is an ε-cover for S, if for every s ∈ S there is
an e ∈ E such that ρ(s, e) ≤ ε.
An ε-cover E is said to be proper, if E⊆S.

Application
�e notion of an ε-cover is frequently used in kernel-
based learning methods.
For further information, we refer the reader to

Herbrich ().

Cross References
7Statistical Machine Learning
7Support Vector Machines
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Epsilon Nets

Thomas Zeugmann
Hokkaido University
Sapparo, Japan

Definition
Epsilon nets were introduced by Haussler and Welz
() and their usefulness for computational learning
theory has been discovered by Blumer, Ehrenfeucht,
Haussler, & Warmuth ().
Let X ≠ ∅ be any learning domain and let C⊆℘(X)

be any nonempty concept class. For the sake of sim-
plicity, we also use C here as hypothesis space. In order
to guarantee that all probabilities considered below
do exist, we restrict ourselves to well-behaved concept
classes (7PAC Learning).
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Furthermore, letD be any arbitrarily �xed probabil-
ity distribution over the learning domainX and let c ∈ C
be any �xed concept.
A hypothesis h ∈ C is said to be bad for c i�

d(c,h) = ∑
x ∈ c△h

D(x) > ε.

Furthermore, we use

∆(c) =df {h △ c ∣ h ∈ C}

to denote the set of all possible error regions of c with
respect to C and D. Moreover, let

∆ε(c) =df {h △ c ∣ h ∈ C, d(c,h) > ε}

denote the set of all bad error regions of c with respect
to C and D.
Now we are ready to formally de�ne the notion of

an ε-net.

Definition

Let ε ∈ (, ) and let S⊆X. �e set S is said to be an ε-net
for ∆(c) i� S ∩ r ≠ ∅ for all r ∈ ∆ε(c).

Remarks

Conceptually, a set S constitutes an ε-net for ∆(c) i�
every bad error region is hit by at least one point in S.

Example

Consider the one-dimensional Euclidean space E and
let X = [, ]⊆E. Furthermore, let C be the set of all
closed intervals [a, b]⊆[, ]. Consider any �xed c ∈ C
and let D be the uniform distribution, i.e., D([a, b]) =

/(b − a) for all [a, b] ∈ C. Furthermore, let h ∈ C; then
wemaywrite c△ h = I∪I, where I, I ∈ C. Let ε ∈ (, )
be arbitrarily �xed and let

S = {kε/ ∣  ≤ k ≤ ⌈/ε⌉, k ∈ N}.

�en, S forms an ε-net for ∆(c). �is can be seen as
follows. Assume r ∈ ∆ε(c). �en, D(I) > ε/ or
D(I) > ε/. Now, by the de�nition of S it is obvious
that D(Ii) > ε/ implies Ii ∩ S ≠ ∅, i = , .

Application
Recall that in 7PAC Learning, the general strategy to
design a learner has been to draw a su�ciently large
�nite sample and then to �nd a hypothesis that is con-
sistent with it. For showing that this strategy is always
successful, the notion of an ε-net plays an important
role.�is can be expressed by the following observation.

Observation. Let S = {x, . . . , xm} be an ε-net
for ∆(c), and let h ∈ C be any hypothesis such that
h(xi) = c(xi) for all  ≤ i ≤ m, i.e., h is consistent. �en
we have d(c,h) ≤ ε.
It then remains to show that the7VCDimension of

C and of ∆(c) are the same and to apply Sauer’s Lemma
to complete the proof.
For further information, we refer the reader to

Blumer, Ehrenfeucht, Haussler, & Warmuth () as
well as to Kearns and Vazirani ().

Cross References
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Equation Discovery

Ljupčo Todorovski
University of Ljubljana
Ljubljana, Slovenia

Synonyms
Computational discovery of quantitative laws; Symbolic
regression

Definition
Equation discovery is a machine learning task that
deals with the problem of learning quantitative laws
and models, expressed in the form of equations, in
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collections of measured numeric data. Equation dis-
covery methods take at input a 7data set consisting
of measured values of a set of numeric variables of
an observed system or phenomenon. At output, equa-
tion discovery methods provide a set of equations,
such that, when used to calculate the values of sys-
tem variables, the calculated values closely match the
measured ones.

Motivation and Background
Equation discovery methods can be used to solve
complex modeling tasks, i.e., establishing a mathe-
matical model of an observed system. Modeling tasks
are omnipresent in many scienti�c and engineering
domains.
Equation discovery is strongly related to system

identi�cation, another approach to mathematical mod-
eling. System identi�cation methods work under the
assumption that the structure of the model (the form
of the model equations) is known or comes from a
well-de�ned class of model structures, such as polyno-
mials or neural networks. �erefore, they are mainly
concerned with the parameter estimation task, that
is, the task of determining the values of the model
parameters that minimize the discrepancy between
measured data and data obtained by simulating the
model. Equation discoverymethods, on the other hand,
aim at identifying both, an adequate structure of the
model equations and appropriate values of the model
parameters.

7Regression also deals with building predictive
models from numeric data. �e focus of regression
methods is on building descriptive black-box models
that can reconstruct the training data with high accu-
racy. In contrast, equation discovery methods focus on
establishing explanatory models that, beside accurate
predictions, provide explanations of the mechanisms
that govern the behavior of the modeled system.
Early equation discovery methods dealt with redis-

covering empirical laws from the history of science
(this is where the synonym “computational discov-
ery of quantitative laws” comes from). �rough the
years, the focus of the equation discovery methods has
shi�ed from discovering quantitative laws to modeling
real-world systems.

Structure of the Learning System

�e task of equation discovery can be decomposed into
two closely coupled subtasks of structural identi�cation
and parameter estimation. �e �rst task of structural
identi�cation deals with the problem of �nding the
optimal structure of an equation. �e second task of
parameter estimation deals with the problem of �nd-
ing the optimal values of the constant parameters in the
equation. General approaches to and speci�c methods
for equation discovery use di�erent techniques to solve
these two subtasks.

Approaches and Methods

�ere are two general and fundamentally di�erent
approaches to equation discovery. �e �rst approach
relies on a de�nition of a space of candidate equa-
tion structures. Following this de�nition, a generate-
and-test (or 7learning as search) approach is used to
generate di�erent equation structures, solve the param-
eter estimation task for each of them, and report those
equations that most closely approximate the data. �e
second approach relies on heuristics, used by scientists
and engineers in the discovery or modeling processes,
to establish an appropriate equation structure.

�e�rst equation discovery system, Bacon (Langley,
), follows the second approach described above.
It incorporates a set of data-driven heuristics for
detecting regularities (constancies and trends) in mea-
sured data and for formulating hypotheses based on
them. An example heuristic would, when faced with
a situation where the values of two observed vari-
ables increase/decrease simultaneously, introduce a
new equation term by multiplying them. Furthermore,
Bacon builds equation structure at di�erent levels of
description. At each level of description, all but two
variables are held constant and hypotheses connecting
the two changing variables are considered. Using a rela-
tively small set of data-driven heuristics, Bacon is able to
rediscover a number of physical laws including the ideal
gas law, the law of gravitation, the law of refraction, and
Black’s speci�c heat law.
An alternative set of heuristics for equation discov-

ery can be derived from dimensional analysis that is
routinely used to check the plausibility of equations by
using rules that specify the proper ways to combine
variables and terms with di�erent measurements units,
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di�erent measurement scales, or types thereof. Fol-
lowing these rules, equation discovery method Coper
(Kokar, ) considers only equation structures that
properly combine variables and constants, given the
knowledge about their exact measurement units. Equa-
tion discovery method SDS (Takashi & Hiroshi, )
extends Coper to cases, where the exact measurement
units of the variables and constants involved in the
equation are not known, but only knowledge about the
types of the7measurement scales is available.
Finally, the heuristics and design of the equation

discovery method E* (Scha�er, ) is based on a
systematic survey of more than a hundred laws and
models published in the Physical Review journal. �e
review shows that many of the published laws andmod-
els follow one of �ve di�erent equation structures. By
including only these �ve structures as its main heuristic
for solving the structure identi�cation task (implement-
ing it as a 7language bias), E* was able to reconstruct
the correct laws and models in about a third of the test
cases collected from the same journal.
Abacus (Falkenhainer & Michalski, ) was the

�rst equation discovery method that followed the
generate-and-test (or 7learning as search) approach,
mentioned above. Abacus experimented with di�erent
search strategies within a �xed space of candidate equa-
tion structures. Othermethods that follow the generate-
and-test approach di�er in the ways they de�ne the
space of candidate equation structures and solve the
parameter estimation task.
Equation discovery methods EF (Zembowitz &

Zytkow, ) and Lagrange (Džeroski & Todorovski,
) explore the space of polynomial equation struc-
tures that are linear in the constant parameters, so they
apply 7linear regression to estimate parameters. �e
user can shape the space of candidate structures by
specifying parameters, such as, themaximal polynomial
degree, the maximal number of multiplicative terms
included in a polynomial, and a set of functions that
can be used to transform the original variables before
combining them into multiplicative terms.
While all of the above methods assume a �xed pre-

de�ned 7language bias (via speci�cation of the class
of candidate equation structures or via heuristics for
establishing appropriate structure), equation discov-
ery method Lagramge (Todorovski & Džeroski, )
employs dynamic declarative 7language bias, that is,

let the user of the equation discovery method choose
or specify the space of candidate equation structures.
In its �rst version, Lagramge uses the formalism of
context-free grammars for specifying the space of equa-
tion structures. �e formalism has been shown to be
general enough to allow users to build their speci�-
cation upon many di�erent types of modeling knowl-
edge, from measurement units to very speci�c knowl-
edge about building models in a particular domain of
interest (Todorovski & Džeroski, ). For solving the
structure identi�cation task, Lagramge de�nes a re�ne-
ment operator that orders the search space of candi-
date equation structures, de�ned by the user-speci�ed
grammar, from the simplest ones to more complex.
Exhaustive and7beam search strategies are then being
employed to the search space and for each structure
considered during the search, Lagramge uses gradient-
descentmethods for nonlinear optimization to solve the
parameter estimation task. �e heuristic function that
guides the search is based on the7mean squared error
that measures the discrepancy between the measured
and simulated values of the observed system variables.
Alternatively, Lagramge can use heuristic function that
takes into account the complexity of the equation and is
based on the7minimum description length principle.
Successors of Lagramge, equation discovery meth-

ods, Lagramge  (Todorovski & Džeroski, ),
IPM (Bridewell, Langley, Todorovski, & Džeroski,
), and HIPM (Todorovski, Bridewell, Shiran, &
Langley, ), primarily focus on the improvement of
the knowledge representation formalism used to for-
malize the modeling knowledge and transform it to
7language bias for equation discovery. All of them
follow the paradigm of7inductive process modeling.

Types of Equations

At �rst, equation discovery methods dealt with the
problem of learning algebraic equations from data.
Equation discovery method Lagrange (Džeroski &
Todorovski, ) extended the scope of equation dis-
covery to modeling dynamics from 7time series data
with ordinary di�erential equations. It took a naïve
approach based on transforming the task of discover-
ing ordinary di�erential equations to the simpler task
of discovering algebraic equations, by extending the set
of observed system variables with numerically calcu-
lated time derivatives thereof. By doing so, any of the
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existing equation discovery methods could be, in prin-
ciple, used to discover di�erential equations. However,
the naïve approach has a major drawback of introduc-
ing large numerical errors, due to instability of meth-
ods for numerical di�erentiation. Equation discovery
method GoldHorn (Križman, Džeroski, & Kompare,
) replaced the instable numerical di�erentiation
with the stable numerical methods for the inverse prob-
lem of integration. Goldhorn also upgrades Lagrange
with �lteringmethods to copewithmeasurement errors
and noisy data.
While ordinary di�erential equations can model

systems that change their state along a single dimen-
sion, time, partial di�erential equations can be used to
model systems that change along many (temporal and
spatial) dimensions. �e naïve approach of introduc-
ing numerically calculated partial derivatives has been
used in the Paddles (Todorovski, Džeroski, Srinivasan,
Whiteley, & Gavaghan, ) method for discovery of
partial di�erential equations.�emethod �rst slices the
measurement data into narrow spatial subsets, induces
ordinary di�erential equations in each of them, and uses
most frequently obtained equation structures to extend
them with partial derivatives and to obtain a relatively
small class of partial di�erential equation structures to
explore. All the equation discovery tasks in Paddles are
solved using Lagramge (Todorovski & Džeroski, ).

Applications
Equation discovery methods have been applied to
various tasks of discovering equation-based laws and
models from measured and/or simulation data. Appli-
cation domains range from physics (mechanical and
electrical engineering, �uid dynamics) (Takashi &
Hiroshi, ; Todorovski & Džeroski, , ),
through ecology (population dynamics) (Todorovski &
Džeroski, ; Todorovski et al., ) to biochemistry
(chemical kinetics) (Džeroski & Todorovski, ; Lan-
gley, Shiran, Shrager, Todorovski, & Pohorille, ).

Cross References
7Inductive Process Modeling
7Language Bias
7Learning as Search
7Linear Regression
7Measurement Scales

7Regression
7System Identi�cation
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Error Correcting Output Codes

Synonyms
ECOC

Definition
Error correcting output codes are an7ensemble learn-
ing technique. It is applied to a problem with multiple
classes, decomposing it into several binary problems.
Each class is �rst encoded as a binary string of length
T, assuming we have T models in the ensemble. Each
model then tries to separate a subset of the original
classes from all the others. For example, one model
might learn to distinguish “class A” from “not class A.”
A�er the predictions, with T models we have a binary
string of length T. �e class encoding that is closest to
this binary string (using Hamming distance) is the �nal
decision of the ensemble.

Recommended Reading
Kong, E. B., & Dietterich, T. G. (). Error-correcting output cod-

ing corrects bias and variance. In International conference on
machine learning.

Error Curve

7Learning Curves in Machine Learning

Error Rate

Kai Ming Ting

Synonyms
Error

Definition
Error rate refers to a measure of the degree of predic-
tion error of a 7model made with respect to the true
model.

�e term error rate is o�en applied in the context
of 7classi�cation models. In this context, error rate =
P(λ(X) ≠ Y), where XY is a joint distribution and the
classi�cation model λ is a function X → Y . Sometimes

this quantity is expressed as a percentage rather than a
value between . and ..
Two commonmeasures of error rate for7regression

models are 7mean squared error and 7mean absolute
error.

�e error rate of a model is o�en assessed or esti-
mated by applying it to test data for which the 7class
labels (Y values) are known.�e error rate of a classi�er
on test data may be calculated as number of incorrectly
classi�ed objects/total number of objects. Alternatively, a
smoothing functionmay be applied, such as a7Laplace
estimate or an7m-estimate.
Error rate is directly related to7accuracy, such that

error rate = . − accuracy (or when expressed as a
percentage, error rate =  − accuracy).

Cross References
7Accuracy
7Confusion matrix
7Mean absolute error
7Mean squared error

Error Squared

Synonyms
Squared error

Definition
Error squared is a common 7loss function used with
7regression.�is is the square of the di�erence between
the predicted and true values.

Estimation of Density Level Sets

7Density-Based Clustering

Evaluation

Evaluation is a process that assesses some property
of an artifact. In machine learning, two types of
artifacts are most commonly evaluated, 7models and
algorithms. 7Model evaluation o�en focuses on the
predictive e�cacy of themodel, but may also assess fac-
tors such as its complexity, the ease with which it can
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be understood, or the computational requirements for
its application.7Algorithm evaluation o�en focuses on
evaluation of the models an algorithm produces, but
may also appraise its computational e�ciency.

Evaluation Data

7Test Data
7Test Set

Evaluation Set

7Test Set

Evolution of Agent Behaviors

7Evolutionary Robotics

Evolution of Robot Control

7Evolutionary Robotics

Evolutionary Algorithms

Synonyms
Evolutionary computation; Evolutionary computing;
Genetic and evolutionary algorithms

Definition
Generic term subsuming all machine learning and opti-
mization methods inspired by neo-Darwinian evolu-
tion theory.

Cross References
7Coevolutionary Learning
7Compositional Coevolution
7Evolutionary Clustering
7Evolutionary Computation in Economics
7Evolutionary Computation in Finance
7Evolutionary Computational Techniques in
Marketing

7Evolutionary Feature Selection and Construction
7Evolutionary Fuzzy Systems
7Evolutionary Games
7Evolutionary Kernel Learning
7Evolutionary Robotics
7Neuroevolution
7Nonstandard Criteria in Evolutionary Learning
7Test-Based Coevolution

Evolutionary Clustering

David Corne, Julia Handl,
Joshua Knowles
Heriot-Watt University, Edinburgh, UK
University of Manchester

Synonyms
Cluster optimization; Evolutionary grouping; Genetic
clustering; Genetic grouping

Definition
Evolutionary clustering refers to the application of
7evolutionary algorithms (also known as genetic
algorithms) to data 7clustering (or cluster analy-
sis), a general class of problems in machine learning,
with numerous applications throughout science and
industry. Di�erent de�nitions of data clustering exist,
but it generally concerns the identi�cation of homo-
geneous groups of data (clusters) within a given data
set. �at is, data items that are similar to each other
should be grouped together in the same cluster or group,
while (usually) dissimilar items should be placed in sep-
arate clusters. �e output of any clustering method is
therefore a speci�c collection of clusters. If we have
a speci�c way to evaluate (calculate the quality of) a
given grouping into clusters, then we can consider the
clustering task as an optimization problem. In gen-
eral, this optimization problem is NP hard, and it is
common to address it with advanced heuristic or meta-
heuristic methods. Evolutionary algorithms are promi-
nent among such methods, and have led to a vari-
ety of promising and successful techniques for cluster
optimization.
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Motivation and Background
In many problem-solving scenarios, we have large
amounts of data. We need to cluster those data sensibly
into groups in order to help us understand the problem
and decide how to proceed further (see 7clustering).
It is common, in fact, for this initial “cluster analy-
sis” stage to be the most important (or only) stage in
the investigation. In bioinformatics, for example, a fre-
quent activity is the clustering of gene expression data
(data that indicate, for a speci�c cell, how active each
of several thousands of genes are at di�erent points
in time, or under di�erent experimental conditions).
A very important current challenge is to understand
the role of each gene; by clustering such data, which
means arranging genes into groups such that genes in
the same group have similar patterns of activity, we
�nd important clues about genes whose role is cur-
rently unknown, simply by assigning their putative role
as being related to that of genes (whose role is known)
that are in the same cluster. Meanwhile, a ubiquitous
situation in industry and commerce is the clustering of
data about customers or clients. Here, the role of clus-
tering is all about identifying what types of clients (for
example, based on age, income, postcode, and many
other attributes that may make up a customer’s pro-
�le) buy or use certain kinds of products and services.
E�ective ways to identify groups enable companies to
better target their products and their direct marketing
campaigns, and/or make more e�ective decisions about
loans, credit and overdra�s. Many machine learning
techniques can be used to predict things about cus-
tomers, or predict things about genes, and so forth.
However, the value of clustering (in a similar way
to visualization of the data) is that it can lead to a
much deeper understanding of the data, which in turn
informs the continuing process of applying machine
learning methods to it. In this general context, there are
many well-known and well-used clustering methods,
such as k-means, hierarchical agglomerative clustering,
neighbor-joining, and so forth. However, there are also
well-known di�culties with thesemethods; speci�cally,
there is o�en a need to choose in advance the number of
clusters to �nd in the data, and: they tend to be strongly
biased towards �nding certain types of groupings. For
these reasons, methods that are more �exible have been
recently investigated, and evolutionary clustering tech-
niques are prominent among these. �ey are �exible in

that (unlike k-means, for example), the choice of the
number of clusters does not have to be made a priori,
and the method is not tied to any particular way of
identifying the distance between two items of data, nor
is there any a priori 7inductive bias concerning what
counts as a good clustering. �at is, in broad terms,
an evolutionary clustering algorithm allows a user to
decide in advance on a de�nition of cluster quality that
is suitable for the problem at hand, and to decide in
advance how many clusters are sought, or to leave that
decision open; these decisions are then “plugged in to”
the algorithm which then proceeds to search for good
clusterings.

Structure of Learning System
Evolving Clusters and Evolving Clustering Algorithms

Given a dataset to be clustered, the concept of evolu-
tionary clustering covers two distinct ways in which
we can address the problem of �nding the best clus-
tering. Each of these approaches is under continuing
research, and has proven successful under di�erent con-
ditions. �e �rst approach is to use an evolutionary
algorithm to search the space of candidate groupings of
the data; this is the most straightforward approach, and
perhaps the most �exible in the sense discussed above.
�e second approach is to “wrap” an evolutionary algo-
rithm around a simpler clustering algorithm (such as
k-means), and either use the evolutionary algorithm to
search the space of features for input to the cluster-
ing algorithm (i.e., the evolutionary algorithm is doing
7feature selection in this case), or to search a space
of parameters, such as the number of clusters, feature
weights, and/or other parameters of the clustering algo-
rithm in use. Central in all of these approaches is a way
to measure the quality of a clustering, which in turn
depends on some given metric that provides a distance
between any pair of data items. Although some applica-
tions o�en come with pre-identi�ed ways to measure
distance and cluster quality, in the following we will
assume the most common approach, in which distance
is the Euclidean distance between the data items (per-
haps Hamming distance, in cases where the data are not
numeric), and the measure of quality for a given clus-
tering is the ratio of within-cluster and between-cluster,
wherewithin-cluster is the mean distance between pairs
of items that are in the same cluster, and between-cluster
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Direct evolutionary clustering

Initialise a population of clusters

Evaluate the quality of each
clusters in the population

Initialise a population of
parameter vectors for a specific
clustering algorithm C

Evaluate the quality of each
vector, by running C on the data,
and evaluating the quality of the
resulting clustering

Has a termination condition
been reached?

Via, selection and variation,
generate a new population of
parameter vectors.

Has a termination condition
been reached?

Via, selection and variation,
generate a new population of
clusters

No

Indirect evolutionary clustering
Start

Yes

Stop

Yes

No

Evolutionary Clustering. Figure . The two main approaches to evolutionary clustering; direct (left) and indirect (right)

is the mean distance between pairs of items that are in
di�erent clusters.
We illustrate the two main approaches to evolution-

ary clustering in Fig. .
On the le� in Fig. , we see the direct approach, in

which the evolutionary algorithm searches the space of
clusterings of the data.�e key features in this approach
are the encoding and 7genetic operators. A�er evalu-
ating the quality of each of a population of clusterings,
a new population is generated from the old one via
selection and variation. Essentially, some individuals
from the current population are treated as “parents,”
and new ones are produced from these by using genetic
operators. �e encoding speci�es precisely how a spe-
ci�c data clustering is represented; while the operators
specify how new clusterings are derived from the old
ones. To take a simple example, suppose we needed to
cluster  items (A, B, C,…, J) into an arbitrary number
of groups. In a simple encoding, we might represent a
clustering as a vector of  labels, independently chosen
from  to , in which the ith element gives the group
label of the ith item. Hence, the following individual in
our population of clusterings:

         

represents the following grouping:

(A, I) (B, H) (C, D, F) (E) (G, I)

Given such a representation, a typical genetic operator
might be to randomly change a single label in a single
parent. For example, we may choose the ��h element
in the above vector and change it randomly to , e�ec-
tively placing item E in the same group as items G and I.
Further notes about operators for this and other encod-
ings are given in a special subsection below.

�ere are several examples of the second type of
approach, called “indirect” evolutionary clustering in
the Fig.  (right). �is approach is o�en used where the
“internal” clustering method (“C,” in the �gure) is very
sensitive to initialization conditions and/or parameters
of the metric in use to measure distance between items.
For example, if C is the k-means algorithm, then, for
each application of C, we need choices for the parame-
ter k, and for each of k initial cluster center positions in
the data space. �e parameter vectors referred to in the
�gure would be precisely these; the evolutionary algo-
rithm searches this parameter space, �nding those that
lead to an optimized clustering from k-means.
Figure  illustrates why this will o�en be a more

e�ective approach than k-means alone. In this case, it
is entirely unclear whether these data form two, four,
or even �ve clusters. �ere are two widely separated
groups of points, and this two-cluster solution may be
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Evolutionary Clustering. Figure . An example with many potential interpretations of the number of clusters

easily found by a -means algorithm. However, to the
human eye there is also a clear four-cluster solution,
further analysis of whichmay lead to better understand-
ing of these data. �is four-cluster solution is di�cult
for a -means algorithm to �nd, depending on very
fortunate initial settings for the cluster centers. Mean-
while, it is worth noting that there are potentially �ve
clusters, as the group on the right can be perceived as
a central group of two items, surrounded by a single
backward-C-shaped group.�e “backward-C” cluster is
an example that simply cannot be reliably detected (as
a distinct cluster from the group of two items contained
within it), with most standard cluster analysis meth-
ods. Traditional approaches invariably incorporate the
assumption that clusters will be centered around a par-
ticular position, with the likelihood of a point belonging
to that cluster depending monotonically on distance
from that position. However, on of the strengths of evo-
lutionary clustering is that it provides the �exibility to
work e�ectively with arbitrary de�nitions of what may
constitute a valid cluster.

Encodings and Operators for Evolutionary Clustering

�e more frequently researched style of evolutionary
clustering is the direct approach, and the development
of this approach in recent years is essentially charac-
terized by certain key ideas for the encoding method.
Encodings range from the straightforward representa-
tion noted above (with the ith gene coding for the clus-
ter membership of the ith data item), to more complex
representations, such as matrix-based or permutation-
based representations.

Before providing a brief description of other encod-
ings it is worth brie�y examining a well-known disad-
vantage of the simple encoding. Given that they have
a population, evolutionary algorithms o�er the oppor-
tunity to use multi-parent genetic operators – that is,
we can design operators that produce a new candidate
clustering given two or more “parent” clusterings. Such
operators are neither mandatory nor necessarily bene�-
cial in evolutionary algorithms, and there ismuch litera-
ture discussing theirmerits andhow this depends on the
problem at hand. However, they are o�en found help-
ful, especially in cases where we can see some intuitive
merit in combining di�erent aspects of parent solutions,
resulting in a new solution that seems to have a chance at
being good, but which we would have been immensely
unlikely to obtain from single-parent operators given
the current population. In this context, we can see, as
follows, that the opposite seems to be the case when
we use standard multi-parent operators with the sim-
ple encoding. Suppose the following are both very good
clusterings of ten items:

Clustering :          

Clustering :          

Clearly, a good clustering of these items places items –
together, and items – together, in separate groups. It
is also clear, however, that using a standard crossover
operator between these two parents (e.g., producing
a child by randomly choosing between clusterings for
each item in turn) will lead to a clustering that mixes
items from these two groups, perhaps even combining
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them all into one group. �e main point is that a
crossover operation destroys the very relationships
between the items that underpinned the �tness of the
parents.
One of the more prominent and in�uential rep-

resentations for clustering, incorporating a design for
far more e�ective multi-parent operators, was that of
Falkenauer’s “Grouping Genetic Algorithm,” which also
provides a general template for the implementation of
evolutionary algorithms for grouping problems. �e
essential element of Falkenauer’s method is that multi-
parent operators recombine entire groups rather than
item labels. For example, suppose we encode two clus-
terings explicitly as follows:

Clustering : (A, I, B, H) (C, G) (D, E, F, J)

Clustering : (A, I, B, H) (C, D, J) (E, F, G)

A Falkenauer-style crossover operator works as follows.
First, we randomly choose some entire groups from the
�rst parent and some entire groups from the second
parent; the child in this case might then be:

(A, I, B, H) (C, G) (E, F, G)

in which the groups that come from the �rst parent are
underlined. Typically, we will now have some repeated
items; we remove the entire groups that contain these
items and came from the �rst parent, in this case leaving
us with:

(A, I, B, H) (E, F, G)

�e �nal step is to add back the missing items, plac-
ing them one by one into one of the existing groups, or
perhaps forming one or more new groups. �e applica-
tion in hand will o�en suggest heuristics to use for this
step. In clustering, for example, we could make use of
the mean Euclidean distance from items in the groups
so far. Whatever the end result in this case, note that the
fact that A, I, B, and H were grouped together in both
parents will be preserved in the child. Similarly, the E,
F, G grouping is inherited directly from a parent.
A more recent and e�ective approach, speci�-

cally for clustering, is one �rst proposed in Park
and Song () called a link-based encoding. In this
approach, the encoding is simply a list of item indices,
and is interpreted as follows. If the ith element in the
permutation is j, then items i and jare in the same group.
So, for example,

B C E E A E G C B G

represents the following grouping:

(A, B, C, D, E, H, I) (F, G, J)

Standard crossover operators may be used with this
encoding, causing (intuitively) a reasonable degree of
exploration of the space of possible clusterings, yet pre-
serving much of the essential “same-group” relation-
ships between items that were present in the parents.
In Handl and Knowles () it is shown why this
encoding is e�ective compared with some alternatives.
We also brie�y note other encodings that have been

prominent in the history of this sub�eld. An early
approach was that of Jones and Beltramo, who intro-
duced a “permutationwith separators” encoding. In this
approach, a clustering is encoded by a permutation of
the items to be clustered, with a number of separators
indicating cluster boundaries. For example, if we have
ten items to cluster (A–J) and use S as the separator, the
following is a candidate clustering:

A I B H S C G S D E F J

representing the same grouping as that of “Clustering
” above. Jones and Beltramo o�ered a variant of this
encoding that is a cross between the direct and indi-
rect approaches. In their greedy permutation encoding,
a clustering is represented by a permutation (with no
separator characters), with the following interpretation:
the �rst k items in the permutation become the centers
of the �rst kclusters. �e remaining items, in the order
they appear, are added to whichever cluster is best for
that item according to the objective function (clustering
quality metric) in use.

Evolutionary Multiobjective Clustering

It can be strongly argued that the clustering problem
is inherently multiobjective, yet most methods employ
only a single performance criterion to optimize. In fact,
there are at least three groups of criteria commonly
used (but usually one at a time) in clustering (both
evolutionary clustering and other methods). �ese are:
compactness, connectedness, and spatial separation.
When an algorithmoptimizes for compactness, the idea
is that clusters should consist of highly homogeneous
data items only – that is, the distance (or other measure
of variation) between items in the same cluster should
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be small. In contrast, if we optimize the degree of con-
nectedness, then we are increasing the extent to which
neighboring data items should share the same cluster.
�is can deal with arbitrarily-shaped clusters, but can
lack robustness when there is little spatial separation
between clusters. Finally, spatial separation is usually
used as a criterion in combination with compactness,
or with a measure of the balance of cluster sizes.
In multiobjective clustering, the idea is to explicitly

explore the solutions that are trade-o�s between the
con�icting criteria, exploiting the fact that these trade-
o� solutions are o�en the ones that most appeal as
intuitively “correct” solutions to a clustering problem.
Handl and Knowles make use of Park and Song’s link-
based encoding in their multiobjective evolutionary
algorithm,MOCK, which treats a clustering problem as
a two-objective problem, using measures of compact-
ness and connectedness for the two objectives. MOCK’s
multiobjective search process is based on the PESA-II
evolutionary multiobjective optimizer (Corne, Jerram,
Knowles & Oates, ). Following use of MOCK for
a clustering problem, an intermediate result (inherent
in multiobjective optimization methods) is a (possi-
bly large) collection of di�erent clusterings. �ese will
range from clusterings that score very well on compact-
ness but poorly on connectedness, through to cluster-
ings that achieve excellent connectedness at the expense
of poor compactness. It is useful to note that the number
of clusters tends to increase as we go from poor con-
nectedness to high-connectedness clusters. Arguably, in
many applications such a collection of alternative solu-
tions is useful for the decision-maker. Nevertheless, the
MOCK approach incorporates an automated model-
selection process that attempts to choose an ideal
clustering from the discovered approximate Pareto
front. �is process is oriented around the notion of
determining the “right” number of clusters, and makes
use of Tibshirani,Walther, and Hastie () gap statis-
tic (full details are inHandl&Knowles, ). Extensive
comparison studies, using a wide variety of clustering
problems and comparing with many alternative cluster-
ing methods, show consistent performance advantages
for the MOCK’s approach.

Cross References
7Clustering
7Feature Selection
7Semi-Supervised Learning

7Supervised Learning
7Unsupervised Learning
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Definition
Evolutionary computation (EC) in economics is an area
of knowledge which involves the use of any of the
EC techniques, also known as evolutionary algorithms
(EAs), in order to approach the topics within the eco-
nomic sciences.�is area of knowledge is di�erent from
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the Evolutionary Economics �eldwhich does not neces-
sarily apply EC techniques to study economic problems.
�e use of EC in economics pursues di�erent purposes
mainly to overcome some of the limitations of the clas-
sical economic models and to relax some of the strong
assumptions made in such models.

Motivation and Background
Evolutionary computation (EC) is a branch of Machine
Learning which is inspired in many forms by the prin-
ciple of evolution. EC techniques, among many other
machine learning techniques, have proven to be quite
�exible and powerful tools in many di�erent �elds and
disciplines. Economics-a�ne �elds are by nomeans the
exception for this widespread use of these evolutionary
inspired techniques.
In addition to the undeniable necessity of com-

puting in almost every aspect of our modern lives,
numerous problems in economics possess algorithmic
nature. �erefore, economists must consider computa-
tional complexity as an important analysis tool due to
the fact that some of such problems belong to the dislik-
able class of NP-complete (�e NP-complete computa-
tional complexity class is a subset of “harder” problems
from the NP computational class, which is the set of
all the decision problems which can be solved using a
Nondeterministic TuringMachine in polynomial time).
problems. Having said so, EC has been intensively used
as an alternative approach to analytical methods in
order to tackle numerous NP-complete problems with
relative good success.

�e �rst work in economics (Clarifying: such �rst
work approached a classic game known as the Pris-
oners’ Dilemma), which involved the use of EC dates
back to the s, in Axelrod and Hamilton ()
and Axelrod () the authors used Genetic Algo-
rithms (GAs) to derive strategies for the Iterated Pris-
oner’s Dilemma (IPD). From then, EC techniques in
economics had been used in areas such as macroe-
conomics, econometrics, game theory, auctions, learn-
ing and agent-based models. �ere is even a school
of thought in economics known as “Evolutionary
Economics” (See for example Witt () for an
introduction), whose approach to the study of eco-
nomics involves concepts in evolution but does not
necessarily rely on EC techniques.

Rationality and Learning

One of the most relevant concepts in the economics
science is the concept of rationality. �is concept is at
the core of most of the economic models, since it is
frequently assumed that economic agents behave in a
fully rational way. Unfortunately, it is not clear if such
assumption holds a�er the irrational behavior observed
during the recurrent �nancial crises.
Herbert A. Simon is probably the best known scien-

tist to claim that “decision-making” under uncertainty
is not a fully rational process. He developed his theory
based on the concept of “bounded rationality” (Simon,
), andhewas one of the pioneers in the �eld of arti�-
cial intelligence (AI) as well as a highly reputed psychol-
ogist and economist. Later, in Arthur (), the author
made important contributions to the development of
agents with bounded rationality, using computational
tools. In addition, recent ideas about rationality from
a computer scientist’s point of view are found in Tsang
(). In this context to be more precise about the
meaning of bounded rationality, let us quote Herbert A.
Simon:

▸ ... boundedly rational agents experience limits in formu-

lating and solving complex problems and in process-

ing (receiving, storing, retrieving, transmitting) informa-

tion...

Some other common assumptions behind the clas-
sical economic theory are that the participants of the
model have homogeneous preferences and they interact
globally (Axtell, ). In other words, having limited
number of participants in the model, the theorists
assume that those individuals exhibit the same prefer-
ences and all of them interact with each other. �ese
agents are called “representative agents.” Moreover, the
analysis is focused only at the point of equilibrium,
and aspects such as asymmetric information, imper-
fect competition and network externalities are not
considered.
Departing from the assumption of full rational-

ity and homogeneous expectations, the horizon (and
the design issues) opens widely. �e modeling of the
learning behavior of the agents is a central part of the
research agenda in computational economics. Regard-
ing the agents’ learning process, in Lucas (), the
author provided an interpretation of adaptive behavior
from the economics point of view:



Evolutionary Computation in Economics E 

E

▸ In general terms, we view or model an individual as a

collection of decision rules (rules that dictate the action

to be taken in given situations) and a set of preferences

used to evaluate the outcomes arising from particular

situation-action combinations. These decision rules are

continuously under review and revision; new decision

rules are tried and tested against experience, and rules

that produce desirable outcomes supplant those that

do not.

�ere are many useful techniques to implement
what Lucas de�ned as adaptive learning, like 7genetic
algorithms (GAs), as has been done in Bullard and
Du�y (), and 7genetic programming (GP) as has
been done in Martinez-Jaramillo and Tsang (b).
GP has been previously described as a suitable way to
model economic learning in Edmonds (). In Bren-
ner (), the author provides us a summary of the
available options to model agent behavior and learning
in economics.
Nevertheless, the more traditional economists are

still reluctant to accept an approach in which there is
not a rational expectations type of agent, where instead
there are inductive, boundedly rational heterogeneous
agents (Arthur, ).

Economic and Econometric Models

Two of the most relevant areas in economics are
macroeconomics and econometrics. Macroeconomics
is the branch of economics which analyzes the national
economy and its relations with the international econ-
omy. Macroeconomic analysis tries to understand the
relationships between the broad sectors of the economy
by making use of aggregated economic variables such
as in�ation, unemployment, interest rates, total output,
etc. EC has been used in order to analyze some of such
macroeconomic variables, a �eldwhich is dominated by
econometric analysis. Econometrics is a �eld within the
wider area of economicswhich involves the use of statis-
tics and its tools for the measurement of relationships
postulated by economic theory (Greene, ).
Many methods in econometrics involve an opti-

mization process, and it is well known that EC is
particularly suitable for optimization problems. Prob-
ably one of the �rst applications of GP in econo-
metrics was done by the creator of GP himself in
Koza (). Additionally, in Agapie and Agapie ()

the authors use GAs and simulated annealing (SA)
for econometric modeling. �ey found that the per-
formance of the evolutionary algorithms (EAs) is
better than the performance of traditional gradient
techniques on the speci�c models in which they per-
formed the comparison. Finally, Östermark () uses
a Hybrid GA in several ill-conditioned econometric
and mathematical optimization problems with good
results.
In addition to the usage of EC in econometrics, some

classical economic models such as the Cobweb model
and exchange rate models had been also approached
with EC techniques. For instance, in Arifovic () and
Chen and Yeh () to approach the Cobweb model,
in the former work the author uses GAs, whereas in
the latter the authors use GP. Furthermore, Arifovic
explores the use of GAs in foreign exchange markets in
Arifovic (). �e GA mechanism developed in such
works evolved decision rules that were used to deter-
mine the composition of the agents’ portfolios in a for-
eign exchange market. Arifovic made two observations
rarely seen in the standard overlapping generations
(OLG) model with two currencies. First, she evidenced
that the returns and exchanges rates were gener-
ated endogenously, and second, she observed that the
model’s equilibrium dynamics is not stable and shows
bounded oscillations (the theoretical model implies a
constant exchange rate).

�e use of GAs in economic modeling is not
restricted to the above mentioned works. In Bullard,
Arifovic, and Du�y (), the authors studied a ver-
sion of the growth model in which the physical capital
is accumulated in a standard form, but the human cap-
ital accumulation is subject to increasing returns. In
their model, the agents take two decisions when they
are young: howmuch to save by renting physical capital
to the companies and how much to invest in training.
Returns on training depend on the average level of the
human capital of the economy. �e authors introduce
the agents’ learning by means of GAs. In Marimon,
McGrattan, and Sargent (), Marimon develops
an economic model in which the agents adapt by
means of a GA.

Game Theory

Game �eory is a branch of applied mathematics that
attempts to model the individual’s strategic behavior.
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�e�rst study considered to establish the fundamentals
of the �eld is the book “�eory of Games and Economic
Behavior” (von Neumann & Morgenstern, ). �e
idea behind this theory is that the success of the indi-
vidual’s decisions depends on the decisions of others.
While originally, the aim of the theory was to study the
competition in which the agent does better at another’s
expense (zero sum games), now it has been extended
to study a wider class of interactions among individu-
als. Furthermore, it is extensively used in economics,
biology, and political science among some other
disciplines.
A well-de�ned mathematical object, the game con-

sists of a set of players and a set of strategies (decisions)
available to those players. In addition, for each combi-
nation of strategies a speci�cation of payo�s is provided.
�e aim of the traditional applications of the game
theory was to �nd a Nash equilibrium, a solution con-
cept, in which each player of the game adopts a strategy
that is unlikely to be changed. �is solution concept
was named a�er John Nash, whose work was published
in the early s (Nash, ). Nevertheless, it took
almost  years to fully realize what a powerful tool
Nash has created. Nowadays, Game�eory is one of the
best established theories in economics and it has been
extensively used to model the interactions between the
economic agents. However, games typically have many
Nash equilibria and one of the main assumptions is
that the agents behave in a rational way. In more real-
istic games, the equilibrium selection problem does not
have an easy solution though, and the human behavior
observed in real life is frequently irrational.
Given the above mentioned constraints, in order to

go further, the Evolutionary Game �eory was orig-
inated as an application of the mathematical theory
of games to biological contexts (see 7Evolutionary
Games). In this �eld, Maynard Smith is considered
to be the �rst one to de�ne the concept of Evolu-
tionary Stable Strategy in Maynard Smith (). Fur-
thermore, the possibility of using computer modeling
as an extension of the theory of games was �rst explored
in Axelrod and Hamilton (). Since then, computer
science has been used in traditional game theory prob-
lems, like the strategic behavior of agents in auctions,
auction mechanism design, etc. By providing approxi-
mate solutions in such complex problems this approach
can be useful where analytical solutions have not been

found. For instance, the iterative prisoners’ dilemma is
one of the most studied games by researchers in com-
puter science (Axelrod, ). �e prisoners’ dilemma
is a classic game that consists of the decision-making
process by two prisoners who can choose to cooperate
or to defect. In the case that the two prisoners choose to
cooperate they get a payo� of three each, in the case that
both choose to defect they get a payo� of one each, and
in the case that any of them decides to defect and the
other to cooperate, the former gets a payo� of �ve and
the latter a payo� of zero. In equilibrium, both players
decide to defect despite the fact that would be better for
them to cooperate.
Axelrod organized a tournament on the iterated

prisoners’ dilemma inwhich he asked people fromgame
theory and amateurs to provide him with strategies.
�e surprising result was that a very simple strategy
(Tit for Tat) won the tournament (Axelrod, ). A�er
the reporting of the results from such tournament,
Axelrod was able to provide some mathematical results
on how cooperation can emerge in a population of
egoists. �e previous example clearly illustrates how
bene�cial was the use of computer science to obtain the-
oretical results in a problem where analytical methods
alone have not delivered the desired outcomes.
Game theory is one of the most important areas in

economics because it has applications to many �elds,
such as corporate decision making, microeconomics,
market modeling, public policy analysis, environmen-
tal systems, etc. We can �nd more applications of EC to
game theory than the IPD. For example, another work
related to game theory and EC is the one done by Du�y
and Engle-Warnick (), which deals with the well-
known two-player, repeated ultimatum game. In this
work they used GP as a means of inferring the strate-
gies that were played by subjects in economic decision-
making experiments. Other works, within the �eld of
EC and game theory, are the duopoly and oligopoly
games (Chen & Ni, ). References regarding coop-
eration, coalition, and coordination are also made o�en
and usually driven by EC techniques, Vriend (). In
Jin and Tsang (), the authors applied GP to �nd
strategies for sequential bargaining procedure and con-
�rmed that equilibria can be approximated by GP. �is
gives opportunity to �nd approximate solutions tomore
complex situations for which theoretical solutions are
yet to be found.
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�e interesting research by Riechmann () pro-
poses to study the foundations of the GAs by means
of game theory. Riechmann interprets the GA as an
N-players repeated game in which an individual of the
GA represents a player with a di�erent strategy. Once
the author achieves the interpretation of the learning
process of a GA as an evolutionary game, he attempts
to shed some light on the fundamentals of GAs.

Auction Theory

Auction theory studies the behavior of the participants
in auction markets. �e study of auctions is relevant
because they de�ne the protocol which is followed by
the participants in some important markets; for exam-
ple, some stock markets, such as the New York Stock
Exchange, operate under a double auction-like mech-
anism. �ere are many di�erent types of auctions: the
English auction, the Dutch auction, the Vickrey auc-
tions, etc. In Klemperer (), there is a good intro-
duction to the �eld.
EC techniques, particularly GAs, have been inten-

sively used in auctions to derive bidding strategies in
simulated auctions. In Andreoni and Miller (), the
author uses adaptive learning, modelled with a GA, in
order to capture patterns which arise in experimental
auctions with humans. Such bidding patterns cannot
be explained by the theoretical models, something that
allowed the exploration of alternative methods such as
adaptive behavior by means of EC. Some other relevant
examples of the study of auctions using EC techniques
are Anthony and Jennings (), Byde (), Cli�
(), Dawid (), Mochon, Quintana, Sáez, and
Isasi (), and Saez, Quintana, Isasi, and Mochon
().

Agent-Based Models

Agent-based computational economics (ACE) can be
thought of as a branch of a wider area: Agent-based
Modeling (ABM) (Wooldridge, ). �e �eld of
agent-based modeling is not restricted to economics,
it has been applied in social sciences in general (Axel-
rod, ), in some classical and not so classical prob-
lems in computer science, and in some other disci-
plines. Axelrod provides an account of his experience
using the agent-based methodology for several prob-
lems and he suggests that the ABM can be seen as
a bridge between disciplines. Axelrod and Tesfatsion

provide a good guide to the relevant literature of the
ABM inAxelrod and Tesfatsion (). In Chen (),
there is a good introduction to agents in economics and
�nance; in such work, Chen conceives the agents not
just as economic agents but as computational intelligent
units.
Most of the economic and �nance theory is based on

what is known as investor homogeneity or the represen-
tative agent. In ACE the researchers can depart from the
assumptions of homogeneous expectations and perfect
rationality by means of computational-based economic
agents. In , Tesfatsion surveys some of the most
important works and topics on this area of research.
In ACE one of the main goals is to explain

the macrodynamics of the economy by means of
the microinteractions of the economic agents. �is
approach to the study of the economy has been called
a “bottom-up” approach in opposition to the more tra-
ditional approaches in economics. An additional pur-
pose of ACE is to handle real-world issues, which has
become possible due to the technological advances in
computational tools. With the use of programming lan-
guages, the agent-based approach allows us to represent
explicitly agents with bounded rationality and hetero-
geneous preferences. Given a speci�c social structure,
the simulation of the interaction among agents is the
strength and the heart of the ABM. Even in its early
stage of development, ABM is a promising area of
research, which has opened the opportunity to social
scientists to look for new insights in resolving rele-
vant real-world issues. Considered “the third way of
doing science” (Axelrod, ), modeling the behav-
ior of the autonomous decision-making entities allows
researchers to simulate the emergence of certain phe-
nomena in order to gain better understanding of the
object of study (Axtell, ). In this senseACE, de�ned
as “the computational study of economic processes
modelled as dynamic systems of interacting agents”
(Tesfatsion, ), is a growing area in the �eld of ABM.
ACE research is developing rapidly, by using machine
learning techniques, the researchersmodel the agents as
so�ware programs able to take autonomous decisions.
Consequently, the interactions among the individuals at
the microlevel give rise to regularities at the macrolevel
(globally).�e intention is to observe the emerging self-
organizing process for a certain period of time, in order
to study the presence of patterns or the lack of them.
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Currently, the study of this self-organizing capability is
one of the most active areas of ACE research.
One of the most crucial tasks in representing explic-

itly the market participants is the simulation of their
autonomous decisions. Nowadays, advances in AI have
opened possibilities of tackling this issue. In particu-
lar, techniques such as neural networks (NNs), genetic
algorithms (GAs), genetic programming (GP), and
other population-based algorithms are widely used in
the �eld.

�ere are some interesting works in which the
agent-based methodology is compared with experi-
ments performed with human beings (Chan, LeBaron,
Lo, & Poggio, ; Du�y, ). In both the works,
the bene�ts that each type of research has on each
other are identi�ed. For instance, experimental research
can be used as an important method to calibrate an
agent-based model. On the other hand, agent-based
simulations can be used to explain certain phenomena
present in human experiments. To summarize, there are
many bene�cial ways in which both types of research
in�uence each other.
According to Tesfatsion, the economic research

being done with the ACE methodology can pursue
one of two main objectives: the �rst one is the con-
structive explanation of macrophenomena and the
second is the design of new economic mechanisms.
In Tesfatsion (), Tesfatsion updates the classi�ca-
tion of the research being made in ACE into four main
categories: empirical understanding, normative under-
standing, methodological advancement, and �nally,
qualitative insight and theory generation.
EAs have been used for the modeling of the agents’

learning in multiagent simulations. In multiagent sim-
ulations of economics systems, it is possible to �nd very
di�erent approaches and topics, just to illustrate some
few examples of the immense amount of works, let us
take a look at the following list:

● Electricity markets (Amin, ) (Learning Classi-
�er System).

● Payment card markets (Alexandrova-Kabadjova,
) (Population Based Incremental Learning).

● Retail petrol markets (Heppenstall, Evans, & Birkin,
) (Genetic Algorithms).

● Stock markets (Arthur et al., ) (Learning Clas-
si�er Systems) and (Martinez-Jaramillo & Tsang,
b) (GP).

● Foreign exchange markets (Arifovic, ; Izumi &
Ueda, ) (Genetic Algorithms).

Related to payment methods and systems, another
economic phenomena characterized with complex
social interaction suitable for ABM is the mar-
ket dynamics of some electronic payment instru-
ments, such as payment cards. In this �eld, the �rst
evolutionary computation model was introduced in
Alexandrova-Kabadjova (). �is paper studies the
competition among payment card scheme. �e authors
apply a Generalized Population Based Incremental
Learning Algorithm (GPBIL), an extended version of
the PBIL algorithm, in order to �nd an optimal price
strategy for the electronic payment instrument.

Cross References
7Evolutionary Algorithms
7Evolutionary Computation in Finance
7Evolutionary Computational Techniques in
Marketing
7Genetic Algorithms
7Genetic Programming

Recommended Reading
Agapie, A., & Agapie, A. (). Evolutionary computation for

econometric modeling. Advanced Modeling and Optimization,
, –.

Alexandrova-Kabadjova, B. (). Evolutionary learning of the opti-
mal pricing strategy in an artificial payment card market, Studies
in computational intelligence (Vol. ). Berlin: Springer.

Amin, M. (). Restructuring the electric enterprise: Simulating
the evolution of the electric power industry with intelligent
adaptive agents. In A. Faruqui, & K. Eakin, (Eds.), Market
analysis and resource management (Chap. ). Boston: Kluwer
Publishers.

Andreoni, J., & Miller, J. H. (). Auctions with artificial adaptive
agents. Games and Economic Behavior, , –.

Anthony, P., & Jennings, N. R. (). Developing a bidding agent for
multiple heterogeneous auctions. ACM Transactions on Internet
Technology, , –.

Arifovic, J. (). Genetic algorithm learning and the cobweb
model. Journal of Economic Dynamics and Control, , –.

Arifovic, J. (). The behavior of the exchange rate in the genetic
algorithm and experimental economics. Journal of Political
Economy, , –.



Evolutionary Computation in Economics E 

E

Arthur, W. B. (). Learning and adaptiver economic behavior.
Designing economic agents that act like human agents: A behav-
ioral approach to bounded rationality. American Economic
Review, , –.

Arthur, W. B. (). Inductive reasoning and bounded rationality:
The El Farol problem. American Economic Review, , –.

Arthur, W. B., Holland, J. H., LeBaron, B., Palmer, R. G., & Talyer, P.
(). Asset pricing under endogenous expectations in an arti-
ficial stock market. In W. Brian Arthur, S. Durlauf, & D. Lane,
(Eds.), The economy as an evolving complex system II. Menlo
Park: Addison-Wesley.

Axelrod, R. (). The evolution of strategies in the iterated pris-
oner’s dilemma. In L. Davis (Ed.), Genetic algorithms and sim-
ulated annealing, Research notes in AI (Chap. , pp. –). Los
Altos, CA: Morgan Kaufmann.

Axelrod, R. (). Advancing the art of simulation in the social
sciences. Japanese Journal for Management Information System,
Special Issue on Agent-Based Modeling,  ().

Axelrod, R., & Hamilton, W. D. (). The evolution of cooperation.
Science, , –.

Axelrod, R., & Tesfatsion, L. (). A guide for newcomers to
agent-based modeling in the social sciences. In K. L. Judd, &
L. Tesfatsion, (Eds.), Handbook of computational economics,
Volume : Agent-based computational economics, Handbooks
in economics (Appendix A, pp. –). Amsterdam:
North-Holland.

Axtell, R. (). Why agents? on the varied motivations for agent
computing in the social sciences. Working Paper , Center on
Social and Economic Dynamics.

Brenner, T. (). Agent learning representation – advice in mod-
elling economic learning. In K. L. Judd, & L. Tesfatsion, (Eds.),
Handbook of computational economics, Volume : Agent-based
computational economics, Handbooks in economics (Chap. ,
pp. –). Amsterdam: North-Holland.

Bullard, J., Arifovic, J., & Duffy, J. (). Learning in a model of
economic growth and development. Working Paper -A,
Federal Reserve Bank Of St. Louis.

Bullard, J., & Duffy, J. (). Using genetic algorithms to model the
evolution of heterogeneous beliefs. Computational Economics,
, –.

Byde, A. (). Applying evolutionary game theory to auction
mechanism design. In ACM conference on electronic commerce
(pp. –). New York: ACM.

Chan, N. T., LeBaron, B., Lo, A. W., & Poggio, T. (). Agent-based
models of financial markets: A comparison with experimen-
tal markets. MIT Sloan Working Paper -, Massachusetts
Institute of Technology.

Chen, S.-H. (). Editorial: Computationally intelligent agents
in economics and finance. Information Science, (),
–.

Chen, S.-H., & Ni, C. C. (). Simulating the ecology of oligopolis-
tic competition with genetic algorithms. Knowledge Information
Systems, (), –.

Chen, S.-H., & Yeh, C.-H. (). Genetic programming learning
in the cobweb model with speculators. In International com-
puter symposium (ICS’). Proceedings of international confer-
ence on artificial intelligence (pp. –), National Sun Yat-Sen
University, Kaohsiung, Taiwan, R.O.C.

Cliff, D. (). Explorations in evolutionary design of online auc-
tion market mechanisms. Electronic Commerce Research and
Applications, , –.

Dawid, H. (). On the convergence of genetic learning in a double
auction market. Journal of Economic Dynamics and Control, ,
–.

Duffy, J. (). Agent-based models and human subject exper-
iments. In K. L. Judd, & L. Tesfatsion, (Eds.), Handbook of
computational economics, Volume : Agent-based computational
economics, Handbooks in economics (Chap. , pp. –).
Amsterdam: North-Holland.

Duffy, J., & Engle-Warnick, J. (). Using symbolic regression to
infer strategies from experimental data. In S.-H. Chen (Ed.),
Evolutionary computation in economics and finance (pp. –).
New York: Physica-Verlag.

Edmonds, B. (). Modelling bounded rationality in agent-based
simulations using the evolution of mental models. In T. Brenner
(Ed.), Computational techniques for modelling learning in eco-
nomics (pp. –). Dordrecht: Kluwer.

Greene, W. H. (). Econometric analysis (th ed.). Upper Saddle
River, NJ: Prentice Hall.

Heppenstall, A., Evans, A., & Birkin, M. (). Using hybrid agent-
based systems to model spatially-influenced retail markets.
Journal of Artificial Societies and Social Simulation, , .

Izumi, K., & Ueda, K. (). Phase transition in a for-
eign exchange market-analysis based on an artificial market
approach. IEEE Transactions of Evolutionary Computation, (),
–.

Jin, N., & Tsang, E. P. K. (). Co-adaptive strategies for sequential
bargaining problems with discount factors and outside options.
In Proceedings of the IEEE congress on evolutionary computation
(pp. –). Washington, DC: IEEE Press.

Klemperer, P. (). Auctions: Theory and practice. The Toulouse
lectures in economics. Princeton, NJ: Princeton University Press.

Koza, J. (). A genetic approach to econometric modelling. In
P. Bourgine, & B. Walliser, (Eds.), Economics and cognitive
science (pp. –). Oxford: Pergamon Press.

Lucas, R. E. (). Adaptive behavior and economic theory. In
R. M. Hogarth, & M. W. Reder, (Eds.), Rational choice: The con-
trast between economics and psychology (pp. –). Chicago:
University of Chicago Press.

Marimon, R., McGrattan, E., & Sargent, T. J. (). Money as a
medium of exchange in an economy with artificially intelli-
gent agents. Journal of Economic Dynamics and Control, ,
–.

Martinez-Jaramillo, S., & Tsang, E. P. K. (). An hetero-
geneous, endogenous and coevolutionary gp-based financial
market. IEEE Transactions on Evolutionary Computation, ,
–.

Mochon, A., Quintana, D., Sáez, Y., & Isasi, P. (). Analy-
sis of ausubel auctions by means of evolutionary computa-
tion. In IEEE congress on evolutionary computation (CEC )
(pp. –). Edinburgh, Scotland.

Nash, J. (). The barganing problem. Econometrica, ,
–.

Östermark, R. (). Solving irregular econometric and mathemat-
ical optimization problems with a genetic hybrid algorithm.
Computational Economics, (), –.



 E Evolutionary Computation in Finance

Riechmann, T. (). Genetic algorithm learning and economic evo-
lution. Studies in fuzziness and soft computing (pp. –).
Heidelberg: Physica-Verlag.

Saez, Y., Quintana, D., Isasi, P., & Mochon, A. (). Effects
of a rationing rule on the ausubel auction: A genetic
algorithm implementation. Computational Intelligence, (),
–.

Simon, H. A. (). Models of man: Social and rational. New York:
John Wiley.

Maynard Smith, J. (). Game theory and the evolution of fighting
(pp. –). Edinburgh: Edinburgh University Press.

Tesfatsion, L. (). Agent-based computational economics: A
constructive approach to economic theory. In K. L. Judd &
L. Tesfatsion, (Eds.), Handbook of computational economics,
Volume : Agent-based computational economics, Handbooks in
economics (Chap. , pp. –). Amsterdam: North-Holland.

Tsang, E. P. K. (). Computational intelligence determines effec-
tive rationality. International Journal of Automation and Com-
puting, , –.

von Neumann, J., & Morgenstern, O. (). Theory of games
and economic behavior. Princeton, NJ: Princeton University
Press.

Vriend, N. J. (). Self-organization of markets: An example
of a computational approach. Computational Economics, ,
–.

Witt, U. (). Evolutionary economics (nd ed.). Basingstoke, UK:
Palgrave Macmillan.

Wooldridge, M. (). An Introduction to multiagent systems.
Chichester: Wiley.

Evolutionary Computation in
Finance

Serafín Martínez-Jaramillo, Alma Lilia
García-Almanza,
Biliana Alexandrova-Kabadjova,
Tonatiuh Peña Centeno
Bank of Mexico,
Mexico, D.F

Definition
Evolutionary computation (EC) in �nance is an area
of research and knowledge which involves the use of
techniques, known as evolutionary algorithms (EAs), to
approach topics in �nance. �is area of knowledge is
similar to EC in economics, in fact such areas frequently
overlap regarding some of the topics approached. �e
application of EC in �nance pursues two main goals:
�rst, to overcome the limitations of some theoretical
models (and the strong assumptions being made by

such models) and second, to innovate in this extremely
competitive area of research.

Motivation and Background
Evolutionary computation is a �eld in Machine Learn-
ing in which the developed techniques apply the
principle of Evolution in several di�erent ways. �e
application of EC in �nance includes portfolio opti-
mization, �nancial forecasting, asset pricing, just to
mention some examples.
In �nance, competition is at the center of the

everyday activities by the individuals and compa-
nies that participate in this �eld. For example, in the
stock markets everybody is trying to beat the mar-
ket in order to make more pro�ts than the other
participants.
As a result of this �erce competition, there is

a constant need to innovate and machine learning
has provided novel and competitive tools in �nancial
research.�erefore, it is natural to �nd numerous prob-
lems in �nance being approached by any of the exis-
tent EC techniques like 7Genetic Programming (GP),
7Genetic Algorithms (GAs), Evolutionary Strategies
(EAs), etc. �is �eld has been called in many di�erent
ways like computational �nance, computational intel-
ligence in �nance, etc. Research in this area is still
evolving; therefore, it is di�cult to de�ne it clearly or
to establish its limits. Moreover, nowadays it is almost
impossible to provide a full account of all the rele-
vant work that involves any form of EC in �nance. It
is also hard to organize this vast amount of human
knowledge.
Nowadays, computing in �nance is an almost

unavoidable tool, from Monte Carlo simulation and
optimization to computer intensive methods to valuate
complex derivatives; in fact, some of the most criti-
cal processes in �nance make heavy use of computers.
Moreover, this research and professional practices have
been known as computational �nance and the appli-
cation of evolutionary techniques in �nance �t within
such de�nition. Computational �nance is now a fre-
quently mentioned term and is frequently associated
with �nancial engineering. However, in this context we
refer to computational �nance as the use of noncon-
ventional computational techniques, like EC or other
machine learning techniques, to tackle problems in
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�nance. See for example, Tsang andMartinez-Jaramillo
() for a good introduction to the �eld.

Financial Forecasting

Financial forecasting is one of the most important
�elds in the computational �nance area (Tsang &
Martinez-Jaramillo, ) and EC has been used to
solve a great variety of �nancial forecasting problems,
such as, detection of stock price movements, volatil-
ity prediction, forecasting of foreign exchange markets,
and so on.
Machine learning classi�ers, like other forecasting

techniques, extend past experience into the future. �e
aim is to analyze past data in order to identify patterns in
the interest of creating a model to predict future events.
In this section we will introduce some important works
in the �nancial forecasting area, which take advantage
of some of the EC distinctive features. First, the rel-
evance of the interpreatability of the solution is illus-
trated; a�er that, some examples about the usefulness of
genetating multiple solutions for the same problem are
given.�en, some works that use EC as an optimization
approach to solve forecasting problems are presented.
Finally, the use of a great variety of representations is
highlighted. Evolutionary techniques are able to pro-
duce interpretable solutions, this property is especially
important for predictions, since themain goals of classi-
�cation are: to generate an accurate classi�cationmodel
that is be able to predict unseen cases and to discover
the predictive structure of the problem (Breiman, Fried-
man, Olshen, & Stone, ). Models for understand-
ing provide information about the structural patterns
in data that can be useful to recognize the variables’
interactions. �ere are classi�cation models that have
good predictive power, however, these provide a poor
representation of the solution; for example, 7Arti�cial
Neural Networks (ANNs). Since EC techniques pro-
vide not just a good prediction but an interpretable
solution, these have been used in �nancial problems to
acquire knowledge of the event to predict. For exam-
ple, Tsang, Yung, and Li () trained a GP using past
data from the �nancial stock markets to predict price
movements of at least r% in a period of at most n times.
�e attributes used to train the GPwere indicators from
technical analysis. Due to the interpretability of the
solution, the authors were able to analyze the most suc-
cessful indicators in the result. In fact, some researchers

have used EC in order to discover new �nancial indica-
tors such asAllen andKarjalainen (), whomade use
of aGP system to infer technical trading rules frompast.
In the same vein, Bhattacharyya, Pictet, and Zumbach
() used GP to discover trading decision models
from high-frequency foreign exchange (FX) markets
data. In other research, Bhattacharyya et al. ()
used GA for mining �nancial 7time-series to iden-
tify patterns, with the aim to discover trading decision
models. In a di�erent approach, Potvin, Soriano, and
Vallée () applied GP to automatically generate
short-term trading rules on the stock markets, the
authors used historical pricing and transaction vol-
ume data reported for  Canadian companies from the
Toronto stock exchange market. Other approach called
grammatical evolution (GE) (Brabazon & O’Neill,
) was applied to discover new technical trading
rules, which can be used to trade foreign exchangemar-
kets. In that approach, each of the evolved programs
represents a market trading system.
As it was mentioned earlier, EC techniques are able

to generate a set of solutions for a single problem, this
quality has been used to collect a set of results, with the
aim of applying the most suitable solution according
to the situation, for instance Lipinski () analyzed
high-frequency data, from the Paris Stock Exchange
Market. In that model, stock market trading rules were
combined into stock market trading experts, which
de�ned the trading expertise. �e author used a sim-
ple GA, a population-based incremental learning, the
compact genetic algorithm, and the extended compact
genetic algorithm to discover optimal trading experts in
a speci�c situation, the author argues that the optimal
solution depends on the speci�c situation on the stock
market, which varies with time. EC plays an impor-
tant role in the learning and continual adaptation to the
changing environment.
Taking advantage of the EC’s ability to generate

multiple solutions, Garcia-Almanza and Tsang ()
proposed an approach, called evolving comprehensible
rules (ECR), to discover patterns in �nancial data sets
to detect investment opportunities. ECR was designed
to classify the minority class in imbalanced environ-
ments, which is particularly useful in �nancial forecast-
ing because the number of pro�table chances is scarce.
�e approach o�ers a range of solutions to suit the
investor’s risk guidelines and so, the user can choose
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the best trade-o� between miss-classi�cation and false
alarm costs according to the investor’s requirements.
Another approach proposed by Ghandar et al. ()
was designed to generate trading rules, the authors
implemented an adaptive computational intelligent sys-
tem by using an evolutionary algorithm and a fuzzy
logic rule base representation. �e data to train the
system was composed just by volume and price. �e
authors’ objective was to create a system to generate
rules for buy recommendations in dynamicmarket con-
ditions. An analysis of the results was provided by
applying the system for portfolio construction in his-
torical data for companies listed as part of the MSCI
Europe Index from  to . �e results showed
that their approach was able to generate trading rules
that beat traditional, �xed rule-based strategies, as the
pricemomentum and alpha portfolios, but this also beat
the market index.
Given that EC can be used as an optimization tech-

nique, it has been combined with other approaches.
As an instance, Chen, Wang, and Zhang () used
a genetic algorithm to determine the number of input
variables and the number of hidden layers in an ANN
for forecasting foreign exchange rates of the Dollar/
Deutsche mark. Chen and Lu () used GP to opti-
mize an ANN, this approach is called evolutionary
neural trees (ENT). �e objective was to forecast the
high-frequency stock returns of the Heng–Sheng stock
index. Schoreels, Logan, and Garibaldi () investi-
gated the e�ectiveness of an agent based trading system.
�e system employs a simple GA to optimize the trad-
ing decisions for every agent, the knowledge was based
on a range of technical indicators generating trading
signals. In Dempster, Payne, Romahi, and �ompson
() the authors aim to detect buy and sell signals
in the exchange (FX) markets. �e authors analyzed
and compare the performance of a GP combined with
a reinforcement learning system to a simple linear pro-
gram characterizing a7Markov decision process and a
heuristic in high-frequency (intraday) foreign exchange
trading. �e authors considered eight popular techni-
cal indicators used by intraday FX traders, Based on
simple trend-indicators such as moving averages as well
as more complex rules. From experimental results the
authors found that all methods were able to create
signi�cant in-sample and out-of-sample pro�ts when
transaction costs are zero. �e GP approach generated

pro�ts for nonzero transaction costs, although none
of the methods produce signi�cant pro�ts at realistic
transaction costs.
As it can be seen from the previous paragraphs,

EC techniques allow representing the solutions using
di�erent structures, such as, decision trees (Potvin et
al. ()), �nite states automats, graphs, grammar
(Brabazon & O’Neill, ), networks, binary vectors
(Lipinski, ) amongmay others. In fact, this charac-
teristic lets us to choose the best representation for the
problem.

Portfolio Optimization

Portfolio optimization is probably the most important
task in �nance. �e most relevant aspects in �nance
are involved in such task: the determination of the
price, the estimation of the volatility, the correlation
among stocks, etc. �e portfolio selection problem can
be described in a simple way as the problem of choos-
ing the assets and the proportion of such assets in an
investor’s portfolio that wants to maximize his pro�ts
and minimize the risk.
As its name suggest, Portfolio Optimization is an

optimization problem and EC has proven to be very
useful in di�cult (sometimes intractable) optimiza-
tion problems. In (Maringer, ), the author explains
extensively the portfolio optimization problem and the
possible heuristic approaches, including ant systems
(AS), memetic algorithms (MAs), GAs, and ESs.
Multi-objective evolutionary optimization is an

important �eld within EC and the portfolio optimiza-
tion problem is one its more important applications
in �nance. Being a multi-objective optimization prob-
lem, EC provides plenty of opportunities and di�erent
approaches can be used for the portfolio optimization
problem. For example, Hassan and Clack () use a
multi-objective GP to approach this problem. InDiosan
(), the author compares di�erent multi-objective
evolutionary algorithms for the portfolio optimization
problem.

�e number of papers on portfolio optimization
using any form of EC techniques is huge and still grow-
ing. For example, in (Loraschi et al., ) the authors
use distributed genetic algorithms to approach the port-
folio optimization problem, whereas in (Loraschi and
Tettamanzi, ) and (Streichert, Ulmer, and Zell,
) the authors use EAs.
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Financial Markets

Financial markets are mechanisms where buyers and
sellers exchange goods like bonds, gold, options,
currencies, etc. Some examples of such markets are
the New York Stock Exchange, the Chicago Mercantil
Exchange, and the NASDAQ Stock Market.
Financial markets are essential for �nancial systems

and for the overall economy. Such markets represent
one of the most e�cient ways to allocate �nancial
resources into companies, due to the low transaction
costs and the public information available for buyers
and sellers. However, bubbles and crashes are recur-
rent phenomena which have enormous repercussions
to global economy. In fact, nowadays we can see as
never before that one single crash in one market could
lead to a worldwide slump on most of the remain-
ing stock markets. Crises in �nancial markets could
a�ect other aspects of the (real) economy; for exam-
ple, interest rates, in�ation, unemployment, etc. �is,
in turn could cause even more instability on the �nan-
cial markets as we have witnessed recently. Moreover,
market crashes occur with an unpleasant higher fre-
quency than is predicted by the standard economic
theory.
One of the most important research issues in �nan-

cial markets is the explanation of the process that
determines the asset prices and as a result the rate of
return. �ere are many models that can be used to
explain such process, like the capital asset pricingmodel
(CAPM), the arbitrage pricing theory (APT) or the
black-scholes option pricing. Unfortunately, such mod-
els do not explain, as one would expect, the behavior of
prices in real markets. �e contradictions between the
existing theory and the empirical properties of the stock
market returns are one of the motivations for some
researchers to develop and use di�erent approaches to
study �nancial markets. An additional aspect on the
study of �nancial markets is the complexity of the ana-
lytical models of such markets. Financial markets are
also very complex to analyze the wide variety of partic-
ipants and their ever-changing nature. Previous to the
development of some new simulation techniques, very
important simplifying (unrealistic) assumptions had to
be made in order to allow tractability of the theoretical
models.
Behavioral �nance, agent-based computational eco-

nomics (ACE) (Tesfatsion, ) and computational

�nance (Tsang & Martinez-Jaramillo, ) have risen
as alternative ways to overcome some of the problems
of the analytical models. AI and in particular EC have
been used in the past to study some �nancial and eco-
nomic problems. However, the development of a well
established community, known as the ACE community,
facilitates the study of phenomena in �nancial markets
that was not possible in the past. Within such commu-
nity, a vast number of works and a di�erent number
of approaches are being produced by numbers in order
to solve or gain more understanding of some economic
and �nancial problems.

�e in�uential work of Arthur, Holland, LeBaron,
Palmer, & Talyer, () and previously the develop-
ment of the concept of bounded rationality (Arthur,
; Simon, ) changed the way in which we con-
ceive and model the economic agents. �is change in
conception, modi�ed dramatically the possibilities to
study some economic phenomena and in particular
the Financial Markets. �e new models of economic
agents have changed, there is no need any more of
fully rational representative agents, there is no need of
homogeneous expectations and information symmetry.
Furthermore, the development of arti�cially adapted
agents (Holland & Miller, ) gives to the economics
science a way forward into the study of economic
systems.
Agent-based �nancial markets of di�erent charac-

teristics have been developed for the study of such mar-
kets in the last decade since the in�uential Santa Fe
Arti�cial Market. (�e Santa Fe Arti�cial Stock Market
is a simulated stock market developed at the Santa Fe
Institute. Such market was developed by team of highly
reputed researchers, among them John Holland, the
inventor of genetic algorithms (Holland, ).) (Arthur
et al., ). Some of them di�er from the original
Santa Fe market on the type of agents used like Chen
and Yeh (), Gode and Sunder (), Martinez-
Jaramillo and Tsang (b); on market mechanism
like Bak, Paczuski, and Shubik (), Gode and Sun-
der (). Other markets borrow ideas from statistical
mechanics like Levy, M., Levy, H., and Solomon ()
and Lux (). Some important research has been done
modelling stockmarkets inspired on theminority game.
(�e Minority Game was �rst proposed by Yi-Cheng
Zhang and Damien Challet () inspired by El Farol
bar problem introduced by Brian Arthur ().) like
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Challet, Marsili, and Zhang (). �ere are �nancial
simulated markets in which several stocks are traded
like in Cincotti, Ponta, and Raberto (). However,
there are some criticisms to this approach like the prob-
lem of calibration, the numerous parameters needed for
the simulation program, the complexity of the simula-
tion, etc.
Although they all di�er in the sort of assumptions

made, methodology and tools; these markets share the
same essence: the macro behavior of such market (usu-
ally the price) should emerge endogenously as a result
of the micro-interactions of the (heterogeneous) mar-
ket participants. �is approach is in opposition with
the traditional techniques being used in Economics and
Finance.
One of the most crucial aspects on the modelling

of �nancial markets is the modelling of the market
participants also known as “agents”. Unfortunatelly, for
the sake ofmathematical tractability, theoretical models
assume that all the market participants can bemodelled
by a representative agent. �e representative agent is a
common, yet very strong, assumption in the modeling
of �nancial markets. �is concept has been the source
of controversy and strong criticisms. For example, in
Kirman (), the author criticizes the representative
individual approach in economics. Moreover, Lux and
Ausloos () declare:

▸ Unfortunately, standard modelling practices in eco-

nomics have rather tried to avoid heterogeneity and

interaction of agents as far as possible. Instead, one

often restricted attention to the thorough theoretical

analysis of the decisions of one (or few) representative

agents

In order to overcome the limitations of such an
assumption, some researchers has opted for less ortho-
dox techniques like GAs and GPs to model the
participants in �nancial markets. Such evolutionary
techniques have been widely used to model the agents’
behaviour and adaptation in �nancial markets. In order
to understand the di�erent approaches of the variety
of arti�cial (simulated) �nancial markets, it is useful
to describe the di�erent types of markets on the basis
of the framework proposed in LeBaron (). In such
work, LeBaron identi�es the key design issues present in
every arti�cial �nancial market and describes some of

the most important works until then. �e main design
issues identi�ed in LeBaron () are:

● Agents
● Market mechanism
● Assets
● Learning
● Calibration
● Time

In addition to the description of the di�erent
approaches in arti�cial �nancial markets by using the
above described framework, there is a fairly detailed
extension of it in Grothmann () that is worth look-
ing at. In such work the basic design issues proposed in
LeBaron () are extended and detailed. For a more
complete and detailed guide to the application of EC
techniques in arti�cial �nancial markets, see Martinez-
Jaramillo and Tsang ().

Option Pricing

Derivatives (See Hull,  for an introduction.) are
�nancial instruments whose main purpose is to hedge
risk; however, they can also be used with specula-
tion purposes with potentially negative e�ects on the
�nancial health of the companies. Derivatives markets
are having an important expansion in recent years;
futures, forwards, swaps, and options are the best
known types of derivatives. Having said so, option
pricing is an extremely important task in �nance. �e
Black–Scholes model for option pricing is the refer-
ence analytical model as it has an important theoretical
framework behind it. However, in practice prices show
that there is a departure from the prices obtained with
such model. One possible reason that could explain
such departure is the assumptions being made in such
model (the assumption of constant volatility and the
assumption that prices follow a geometric Brownian
motion). �is is why GP has been used as an alterna-
tive to perform option pricing in Chen, Yeh, and Lee
(), Fan, Brabazon, O’Sullivan, and O’Neill (),
Yin, Brabazon, and O’Sullivan (). Interestingly,
not only GP has been used to perform option pric-
ing but also ACO has been explored to approach this
important problem in �nance (Kumar, �ulasiram, &
�ulasiraman, ).
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Credit Scoring, Credit Rating, and Bankruptcy

Prediction

Credit rating and credit scoring are two examples
of �nancial problems that have been traditionally
approached through statistical analyzes. Credit rating is
an estimate of a corporation’s worthiness to be given a
credit and is generally expressed in terms of an ordinal
value; whereas credit scoring is a technique used express
the potential risk of lendingmoney to a given consumer
in terms of a probability measure. Both techniques are
therefore similar in their ends but applied to di�erent
domains.

�e seminal work in the �eld of credit scoring is
that of Altman (), who proposed the application
of linear discriminant analysis (Fisher, ) to a set
of measurements known as �nancial ratios, i.e., indica-
tors of a corporation’s �nancial health, that are obtained
from the corporation’s �nancial statements. One of the
main applications of Altmans’ method, also known as
Z-score, is bankruptcy prediction. Understandably, a
series of improvements have been achieved by means
of applying more powerful classi�ers, such as deci-
sion trees, genetic programming, neural networks and
support vector machines, among others. References
that apply such techniques or that make a literature
review of their application are Atiya (), Huang,
Chen, and Wang (), Ong, Huang, and Tzeng
(), Shin and Lee (), and Martens, Baesens,
Gestel, and Vanthienen ().
Another method to evaluate credit worthiness is

the one provided by specialized agencies. �e so-called
credit ratings are nothing more than ordinal values
expressing the �nancial history, current assets, and lia-
bilities of entities such as individuals, organizations,
or even sovereign countries, such that they represent
their risk of defaulting a loan. Although each rat-
ing agency uses its own methodology and scale these
are usually not disclosed, nevertheless, on the aca-
demic realm, several superseding techniques to ordi-
nal regression have been applied. For example, Huang,
Chen, H., Hsu, Chen, W. H., and Wu () and
Paleologo, Elissee�, and Antonini () have pro-
posed computationally oriented methods to solve this
problem.
Related to bankruptcy prediction, NNs have been

the standard selection apart from the traditional
statistical methods (discriminant analysis, logit and

probit models). Quintana, Saez, Mochon, and Isasi
() explore the feasibility of using the evolutionary
nearest neighbor classi�er algorithm (ENPC) suggested
by (Fernández & Isasi, ) in the domain of early
bankruptcy prediction. �ey assess its performance
comparing it to six other alternatives, their results sug-
gest that this algorithm might be considered as a good
choice. Another relevant work is Turku, Back, Laitinen,
Sere, and Wezel () in which the authors compare
discriminant analysis, logit analysis, and GAs for the
selection of the independent variables used for the pre-
dictionmodel. Finally, in Lensberg, Eilifsen, andMcKee
(), the authors use GP to study bankruptcy in
Norwegian companies and �nd acceptable accuracy in
addition to information about the usefulness of the
variables used for the prediction task.
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Definition
Evolutionary Computation (EC) in marketing is a
�eld that uses evolutionary techniques to extract and
gather useful patterns with the objective of designing
marketing strategies and discovering products and ser-
vices of superior value which satisfy the customers’
necessities. Due to the �erce competition by some
companies for attracting more customers and the
necessity of innovation, it is common to �nd numer-
ous marketing problems being approached by EC
techniques.

Motivation and Background
�e objective of marketing is to identify the customers’
needs and desires in order to guide the entire orga-
nization to serve best by designing products, services,
and programs which satisfy customers (Kotler & Arm-
strong, ). Nowadays, the market competition is
very strong, since customers can choose from several
alternatives. For that reason,marketing teams are facing
the necessity of creating intelligent business strategies.
�us, new arti�cial intelligent approaches for market-
ing have emerged; especially, evolutionary algorithms
have been used to solve a variety of marketing problems
such as the design of more attractive products and ser-
vices for consumers, the analysis of populations to target
potential clients, the design of newmarketing strategies,
and more.

Applications
Nowadays, it is very easy to capture and store large sets
of data. However, such data must be processed and ana-
lyzed in order to obtain useful information to make
marketing decisions. Since EC techniques can be used
to extract patterns from data, these have been used in
marketing for multiple purposes. In order to illustrate
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the application of EC in marketing, let us introduce
some important works in this �eld.

Target potential clients

Bhattacharyya () proposed a Genetic Algorithm
(GA) in combination with a case-based reasoning sys-
tem to predict customer purchasing behavior. �e
objective was to identify potential customers for a spe-
ci�c product or service. �is approach was developed
and tested with real cases from a worldwide insurance
direct marketing company. An optimization mecha-
nism was integrated into the classi�cation system to
select those customers who were most likely to acquire
an insurance.

New Products design

As it was mentioned previously, one of the goals of
marketing is to discover products of superior value
and quality. To achieve this goal, Fruchter et al. ()
resolved to design a product line rather than a single
product. �e authors argued that by o�ering a prod-
uct line, the manufacturer can customize the products
according to the necessities of di�erent segments of the
population, which would satisfy more customers. Since
the amount of data about customer preferences was
large, the optimization of the product line became very
di�cult. �e authors used a GA to optimize the prob-
lem and the performance of the solutions was valued
by measuring the manufacturer’s pro�ts. In the same
vein, Liu and Ong () used a GA to solve a prob-
lem of marketing segmentation, this approach was used
to make strategy decisions for reaching e�ectively all
customers. In other approach proposed by Balakrish-
nan and Jacob (), a GA was used to optimize the
customer’s preferences in new products’ design. �e
authors explained that, to design a new product it is
important to determine its attributes, such as color or
shape. A study to gather the customers’ preferences had
to be carried out. Finally, a GA was used to select those
attributes that satis�ed a bigger number of customers.

Advertisement

Advertising is an important area of marketing; this is
de�ned as the activity of attracting public attention to a
product or business. Since personalized advertisement
improves marketing e�ciency, Kwon and Moon ()
proposed a personalized prediction model to be used

in email marketing. A circuit model combined with
Genetic Programming (GP) was proposed to analyze
customers’ information. �e result was a set of rec-
ommendation rules, which was tested over a general
mass marketing. According to the authors, the model
achieved a signi�cant improvement in sales. In Naik,
Mantrala, and Sawyer (), the authors used a GA
combined with a Kalman �lter procedure to determine
the best media schedule for advertisement, which was
constrained by a budget.�is approach evaluated a large
number of alternative media schedules to decide the
best media planning solution.
Internet has become a very popular and conve-

nient media to make businesses. Many products and
services can be found easily in a very short time, increas-
ing the competition between those providers. Since
this kind of sales does not involve human interac-
tion directly, it is essential to design new and better
strategies to personalize the Web pages in order to
contend in this media. As an instance, Abraham and
Ramos () proposed an ant clustering algorithm
to discover Web usage patterns and a linear genetic
program to analyze the visitor trends. �e objective
was to discover useful knowledge from interactions
of the users with the Web. �e knowledge was used
to design adaptive Web sites, business and support
services, personalization, network tra�c �ow analysis,
and more.
According to Scanlon (), the company Sta-

ples used a so�ware called IDDEA to redesign and
relaunch its paper brand. �is so�ware was developed
by A�nova Inc, and uses a GA to simulate the evolu-
tion of consumer markets where strong products sur-
vive and weak ones die out. �e strongest possible
design emerges a�er several generations. A panel of 
consumers select their favorite options from each
generation. �e so�ware analyze customers choices
over multiple generations to identify preference pat-
terns. Surveys include consumer pro�les that comprised
basic demographic information, customer beliefs and
consumer habits. �is allow them to understand
how di�erent designs attract di�erent consumers. In
another project, IDDEA was used to identify imagery
and messaging that would be of interest to con-
sumers. As can be seen from previous paragraphs,
EC has been used to solve a variety of marketing
problems.
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Since EC is able to dcal with optimization, forecast-
ing and data mining problems, among others, there is a
great potential of usage in the �eld of marketing to opti-
mize processes, to extract patterns of customers from
large amount of data, to forecast purchasing tendencies,
and many others.
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Synonyms
EFSC; Evolutionary constructive induction; Evolu-
tionary feature selection; Evolutionary feature syn-
thesis; Genetic attribute construction; Genetic feature
selection

Definition
Evolutionary feature selection and construction (EFSC)
is a bio-inspired methodology for explicit modi�cation
of input data of a learning system. It uses evolutionary
computation (EC) to �nd a mapping from the original
data representation space onto a secondary represen-
tation space. In evolutionary feature selection (EFS),
that mapping consists in dropping o� some of the fea-
tures (7attributes) from the original representation,
so the dimensionality of the resulting representation
space is not greater than that of the original space. In
evolutionary feature construction (EFC), evolutionary
algorithm creates (synthesizes) new features (derived
attributes) that complement and/or replace the original
ones. �erefore, EFS may be considered as special case
of EFC.
A typical EFSC algorithm maintains a population

of solutions, each of them encoding a speci�c map-
ping. �e best mapping found in evolutionary search
becomes the data preprocessor for the classi�er. Usu-
ally, EFSC takes place in training phase only, and the
evolved mapping does not undergo further changes in
the testing phase.

http://www.businessweek.com/innovate/content/dec2008/id20081229_162381.htm
http://www.businessweek.com/innovate/content/dec2008/id20081229_162381.htm
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�ough EFSC is technically a form of data pre-
processing (see 7Data Preparation), some of its vari-
ants may as well involve an internal inductive pro-
cess in the �tness function. Also, EFS and EFC
may be considered as special cases of 7Feature
Selection and 7Feature Construction, respectively.
EFC is also partially inspired by 7Constructive
Induction.

Motivation and Background
Real-world machine learning problems o�en involve
a multitude of attributes, which individually have low
informative content and cannot provide satisfactory
performance of the learning system. �is applies in
particular to data-abundant domains like image anal-
ysis and signal processing. When faced with many
low-quality attributes, induction algorithms tend to
build classi�ers that perform poorly in terms of clas-
si�cation accuracy. �is problem may be alleviated
by removing some features from the original rep-
resentation space ( feature selection) or introducing
new features de�ned as informative expressions (arith-
metic, logical, etc.) built of multiple attributes ( feature
construction).
Unfortunately, many learning algorithms lack the

ability of discovering intricate dependencies between
attributes, which is a necessary precondition for suc-
cessful feature selection and construction. �is gap is
�lled out by EFSC, which uses EC to get rid of super-
�uous attributes and to construct new features. To this
extent, anticipated bene�ts from EFSC are similar to
those of general7Feature Selection and7Feature Con-
struction, and include reduced dimensionality of the
input space, better predictive accuracy of the learn-
ing system, faster training and querying, and better
readability of the acquired knowledge.
In general, both feature selection and feature con-

struction may be conveniently formulated as an opti-
mization problem with each solution corresponding to
a particular feature subset (for feature selection) or to
a particular de�nition of new features (for feature con-
struction). �e number of such solutions grows expo-
nentially with the number of original features, which
renders the exact search methods infeasible. �ere-
fore, EC techniques with their ability of performing
global parallel search with low risk of being trapped in

local optima are particularly predisposed to solve these
types of problems. Moreover, EC algorithms can opti-
mize arbitrary function without demanding assump-
tions concerning solution space and objective function
(like, for instance, the branch-and-bound algorithm).
�is is extremely important in the context of EFSC,
where the so-called �tness landscape (the objective
function spanned over the space of solutions) heavily
depends on the training data, and it is therefore di�cult
to predict its properties.

�e other strength of EC is the ease of adapta-
tion to a speci�c task that usually boils down to the
choice of solution representation and implementation
of the �tness function. For instance, a subset of fea-
tures in EFS may be directly encoded as a bit string
solution in genetic algorithm (GA), where a bit at a
particular position determines the selection or exclu-
sion of the corresponding feature (Vafaie & Imam,
; Yang & Honavar, ). In EFC, de�nitions of
constructed features may be conveniently represented
as genetic programming (GP) expressions/procedures
(Rizki, Zmuda, & Tamburino, ; Teller & Veloso,
). Also, unlike many other search algorithms, evo-
lutionary algorithm can easily produce many solu-
tions. �is makes it a natural tool for, e.g., a parallel
construction of multiple representations (feature sub-
sets) that may be subsequently used in a compound
classi�er.

Structure of Learning System
Typically, EFSC uses a variant of evolutionary algorithm
(usually GA for EFS or genetic programming for EFC)
tomaintain a population of solutions (individuals), each
of them encoding a particular subset of features (for
EFS) or de�nition of new features (for EFC). Solutions
undergo mutations, crossing-over, and selective pres-
sure that promotes the well-performing ones. Selective
pressure is exerted by �tness function, which estimates
solution’s quality by measuring some properties of the
secondary representation space (see Fig. ).�is usually
involves three steps:

. Decoding of solution (retrieving mapping from the
encoded solution).

. Transforming the training set into the secondary
representation space according to the mapping.
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. Estimating the quality of the secondary representa-
tion space which, a�er appropriate conversion (e.g.,
scaling), becomes solution’s �tness.

Technically, step  usually boils down to one of two
methods.Filter approach relies onmeasures that charac-
terize the desired properties of training data in the sec-
ondary space (e.g., class separability), abstracting from
any particular induction algorithm. Wrapper approach
estimates the predictive ability that may be attained in
the secondary representation space by a speci�c induc-
tion algorithm, usually by partitioning the training set
into several subsets and performingmultiple train-and-
test experiment (e.g., cross-validation). In both cases,
the particular implementation depends on the type of
task being solved (classi�cation or regression, predom-
inantly the former one). Wrapper approach, though
computationally more expensive, takes into account
inductive and representational biases speci�c for induc-
tion algorithm, and o�en prove superior in terms of
classi�cation accuracy.

�e result of a typical EFSC procedure is the best
solution found in the evolutionary run, i.e., the superior
representationmappingwith respect to �tness function.
�is mapping serves as a preprocessor of input data and
is subsequently used to induce the �nal classi�er from
the training set. �e trained classi�er together with the
preprocessing provided by the mapping is the �nal out-
come of the EFSC-enriched training process and may
be used for classi�cation of new examples.

EFS and EFC are predominantly applied to super-
vised learning from examples and attribute-value rep-
resentation of training data. �e above scheme remains
relatively unchanged across various EFS and EFC app-
roaches reported in literature, with main di�erences
discussed in following.

Evolutionary Feature Selection

EFS is the simplest variant of EFSC. In this case, a
solution encodes the indices of attributes that should
be removed from the original representation (or, alter-
natively, which should be le� in the resulting sec-
ondary representation). �is leads to straightforward
encoding characteristic for GA, with each solution
being a bit string as long as the number of original
attributes. EFS may be thus easily implemented using
o�-shelf generic so�ware packages and involves rela-
tively straightforward �tness function. However, more
sophisticated approaches have been also considered,
like evolving GP individuals to asses the quality of and
rank feature subsets (Neshatian & Zhang, ).

Evolutionary feature weighting (EFW) is a direct
generalization of EFS, where the evolutionary search
weighs features instead of selecting them. Solutions in
EFW are real-valued vectors evolved by evolutionary
algorithm or evolutionary strategy. EFW requires use of
a special wrapper �tness function that can take attribute
weights into account. In (Komosiński &Krawiec, ),
EFW has been used with a nearest neighbor-based
wrapper �tness function to weigh features for a medical
diagnosing problem.
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Evolutionary Feature Construction

EFC requires sophisticated evolutionary representation
of solutions to encode de�nitions of new features, and
usually employs genetic programming for that purpose.
Each GP solution encodes an expression tree that uses
the original attributes and numeric constants as leaves
(terminals), and functions from a prede�ned vocabu-
lary as internal tree nodes (nonterminals). �e value
returned by such an expression when applied to an
example is interpreted as the new feature. Function
set usually encompasses simple arithmetics (typically
+, −, ∗, /) and elementary functions (like sin, cos, log,
exp).�e evolved features replace or extend the original
ones. As a single new feature is usually insu�cient to
provide satisfactory discriminative ability, it is common
to encode several GP trees within each solution.
EFC may be conveniently adopted to image anal-

ysis or computer vision problems, or any other type
of machine learning task that involves a large num-
bers of attributes. Commonly, an EFC algorithm evolves
GP solutions that construct higher-level features from
low-level image attributes (Krawiec & Bhanu, )
or implement advanced feature detectors (Howard,
Roberts, & Ryan, ; Puente, ; Quintana, Poli,
& Claridge, ). Alternatively, solutions encode
chains of operations that process the entire image
globally according to the goal speci�ed by the �t-
ness function. Many other variants of this approach
have been studied in literature, involving, e.g., solu-
tions represented as graphs (Teller & Veloso, ) or
sequences of operations (linear genetic programming,
(Bhanu et al., )).

Applications
Real-world applications of EFSC are numerous and
include medical and technical diagnosing, computer
network intrusion detection, genetics, air quality fore-
casting, brain-computer interfaces, seismography,
robotics, face recognition, handwriting recognition,
vehicle detection in visual, infrared, and radarmodality,
image segmentation, satellite imaging, and stereovision.
�e conceptually simpler EFS has been implemented in
several machine learning and neural-network so�ware
packages (WEKA, Statistica Neural Networks). EFC
usually requires a more sophisticated and application-
speci�c implementation. However, for standard

learning-from-example tasks, it may be conveniently
implemented by extending o�-shelf libraries, like
WEKA (Waikato Environment for Knowledge Anal-
ysis, http://www.cs.waikato.ac.nz/ml/weka/) and ECJ
(Evolutionary Computation in Java, http://cs.gmu.edu/
~eclab/projects/ecj/). More examples of real-world
applications of EFSC may be found in (Langdon,
Gustafson, & Koza, ).

Future Directions
Recent work on EFC employs various extensions of
EC. It has been demonstrated that an EFC task may
be decomposed into several semi-independent subtasks
using cooperative coevolution, a variant of evolution-
ary algorithm that maintains several populations with
solutions encoding partial solutions to the problem
(Krawiec & Bhanu, ). Other recent work demon-
strates that fragments of GP expressions encoding fea-
ture de�nitions may help to discover good features in
other learning tasks (Jaśkowski, Krawiec, & Wieloch,
). With time, EFC becomes more and more uni-
�ed with GP-based classi�cation, where solutions are
expected to perform the complete classi�cation or
regression task rather than to implement only feature
de�nitions.

�e online genetic programming bibliography
(Langdon et al., ) provides quite complete cover-
age of state of the art in evolutionary feature selection
and construction. A concise review of contemporary
genetic programming research involving feature con-
struction for image analysis and object detection may
be found in (Krawiec, Howard, & Zhang, ). Amore
extensive and systematic study of di�erent evolution-
ary approaches to feature construction is presented in
(Bhanu et al., ).
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Evolutionary Fuzzy Systems

Carlos Kavka
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Definition
An evolutionary fuzzy system is a hybrid automatic
learning approximation that integrates 7fuzzy systems
with 7evolutionary algorithms, with the objective of
combining the optimization and learning abilities of
evolutionary algorithms together with the capabilities
of fuzzy systems to deal with approximate knowledge.
Evolutionary fuzzy systems allow the optimization of
the knowledge provided by the expert in terms of lin-
guistic variables and fuzzy rules, the generation of some
of the components of fuzzy systems based on the partial
information provided by the expert, and in some cases
even the generation of fuzzy systems without expert
information. Sincemany evolutionary fuzzy systems are
based on the use of genetic algorithms, they are also
known as genetic fuzzy systems. However, many models
presented in the scienti�c literature also use genetic pro-
gramming, evolutionary programming, or evolution
strategies, making the term evolutionary fuzzy systems
more adequate. Highly related is the concept of evolu-
tionary neuro-fuzzy systems, where the main di�erence
is that the representation is based on neural networks.
Recently, the related concept of evolving fuzzy systems
has been introduced, where the main objective is to
apply evolutionary techniques to the design of fuzzy sys-
tems that are adequate to the control of nonstationary
processes, mainly on real-time applications.

Motivation and Background
One of the most interesting properties of a fuzzy sys-
tem is its ability to represent expert knowledge by using
linguistic terms of everyday common use, allowing the
description of uncertainty, vagueness, and imprecision
in the expert knowledge. �e linguistic terms, which
are imprecise by their own nature, are, however, de�ned
very precisely by using fuzzy theory concepts.

http://www.cs.bham.ac.uk/wbl/biblio/
http://www.cs.bham.ac.uk/wbl/biblio/
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�e usual approach to build a fuzzy system consists
in the de�nition of the membership functions and the
rule base in terms of expert knowledge. Compared with
other rule-based approaches, the process of extracting
knowledge from experts and representing it formally is
simpler, since linguistic terms can be de�ned to match
the terms used by the experts. In this way, rules are
de�ned establishing relations between the input and
output variables using these linguistic terms. However,
even if there is a clear advantage of using the terms
de�ned as 7fuzzy sets, the knowledge extraction pro-
cess is still di�cult and time consuming, usually requir-
ing a very di�cult manual �ne tuning process. It should
be noted that no automatic framework to determine
the parameters of the components of the fuzzy system
exists yet, generating the need for methods that provide
adaptability and learning ability for the design of fuzzy
systems.
Since it is very easy to map a fuzzy system into

a feedforward neural network structure, it is not
surprising that many methods based on neural net-
work learning have been proposed to automate the
fuzzy system building process (Ho�mann, ; Karr &
Gentry, ) �e combined approach provides advan-
tages from both worlds: the low level learning and com-
putational power of neural networks is joined together
with the high level human-like thinking and reasoning
of fuzzy systems. However, this approach can still face
some problems, such as the potential risk of its learning
algorithms to get trapped in local minimum, the pos-
sible need for restriction of the membership functions
to follow some mathematical properties (like di�eren-
tiability), and the di�culties of inserting or extracting
knowledge in some approaches, where the obtained lin-
guistic terms can exhibit a poor semantic due to the
usual black-box processing of many neural networks
models.
Evolutionary algorithms provide a set of properties

that make them ideal candidates for the optimization
and design of fuzzy systems, and in fact, there are many
methods that have been proposed in the literature to
design or tune the di�erent components of fuzzy sys-
tems. Evolutionary systems exhibit robust performance
and global search characteristics, while requiring only a
simple quality measure from the environment. �ere is
no need for gradient information or input/output pat-
terns. Other strengths come from its parallel nature:

instead of selecting a single solution and re�ning it, in
most evolutionary methods, a set of alternative solu-
tions is considered and evolved in parallel.

Structure of the Learning System
�e learning process de�ned by an evolutionary fuzzy
system starts from the knowledge provided by the
expert, which can include all or just some of the com-
ponents of the knowledge base of a fuzzy system.
�e evolutionary algorithm that is behind this learn-
ing approach can perform the optimization of all the
parameters that are provided by the expert, plus the
generation of the missing components of the fuzzy
system based on the partial speci�cations provided by
the expert.

�e model shown in Fig.  presents a general archi-
tecture of the learning and optimization process in
evolutionary fuzzy systems. An initial knowledge base
KBi is built based on the knowledge provided by the
expert. Note thatKBi could be (and usually is) a incom-
pletely speci�ed knowledge base. Based on this initial
expert knowledge, the evolutionary algorithm creates
a population of individuals, which can represent com-
plete fuzzy systems or just a few components of them.
�e evaluation of the individuals is performed by creat-
ing a temporary knowledge base KBt , which can also be
complete or not. By using the information in KBt , com-
bined with the initial knowledge baseKBi, the individu-
als are evaluated by determining the error in the approx-
imation of patterns if there are examples available, com-
puting the reinforcement signal (typical situation in
control problems), or in any other way depending on
the problem characteristics (Babuska, ; Cordon,
Gomide, Herrera, Ho�mann, & Magdalena, ). �e

evolutionary algorithm

Expert
knowledge

Operators

Population

Fitness Evaluation

FS

final product

KBi

KBt

Evolutionary Fuzzy Systems. Figure . The general mo-

del of the evolutionary fuzzy systems learning and opti-

mization
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result of the evaluation is typically a single �tness mea-
sure, which provides the necessary information for the
selection and the variational operators of the evolution-
ary algorithm. �ese operators, which can be standard
or de�ned speci�cally for the problem, combine and
mute the individuals based on the �tness value and their
speci�c parameters.�e process is repeated till a prede-
�ned criterion is ful�lled, obtaining as a �nal result the
fuzzy system FS.
Depending on the information provided by the

expert, the learning or optimization process performed
by the evolutionary fuzzy system can be applied to the
database, the fuzzy rule base or both of them. �ese
three approaches are described below.

Optimization and Learning of the Fuzzy Database

In this case, it is assumed that the fuzzy rule base is
known and provided by the expert. �e initial knowl-
edge base KBi contains the fuzzy rule base, and if pro-
vided, the initial approximation of the parameters of
antecedents and/or consequents. Since the expert has
to de�ne the rule base, and in order to do that, he/she
needs to know the labels of the linguistic terms used
for the antecedents and consequents, it is usual that the
number of fuzzy sets is prede�ned and kept constant
during the evolution.

�e representation of the individuals contains only
the parameters of the fuzzy sets associated to the input
linguistic variables, and the fuzzy sets associated to the
output variables in the case of a Mamdani fuzzy system,
or the associated lineal approximators in the case of a
Takagi-Sugeno fuzzy system. Other parameters could
also be speci�ed if necessary (scale factors, etc.). Usu-
ally, individuals are represented as a �xed length string
that is de�ned as the concatenation of all parameters of
the input and output fuzzy sets or approximators. Of
course, the representation for the fuzzy sets depends
on their particular class: for example, three values are
required to represent triangular fuzzy sets, four values
to represent trapezoidal fuzzy sets, and two for sig-
moidal fuzzy sets. As an example, Fig.  shows that three
values are necessary to represent a triangular fuzzy set:
the center, the le� width, and the right width, labeled as
c, ol, and od, respectively. From this example, it can be
seen that  values are required in order to represent the
 fuzzy sets associated to this single linguistic variable.

0

1

L1 L2 L3

C
oroI

L4 L5

D1 D2 D3 D4 D5

Evolutionary Fuzzy Systems. Figure . A linguistic vari-

able represented with five fuzzy sets

However, it is usual to apply fuzzy logic concepts
(Zadeh, ) to simplify the representation, with the
implied reduction in the search space, and also, to en-
hance the interpretability (Casillas, Cordon, Herrera, &
Magdalena, ) of the resulting fuzzy system. As an
example, it is desirable that the partition associated
to a linguistic variable ful�lls the completeness prop-
erty, which establishes that for each point in the input
domain, the summation of the membership values of
all membership functions must be equal to . It is also
desirable that the position of the fuzzy sets remains
always the same during the evolution, for example in
Fig. , it means that it is expected that the fuzzy set L
will be always at the le� of L, L always at the le� of
L, and so on. A representation that considers these
two requirements can be de�ned by representing the
whole partition specifying the distance from the center
of a fuzzy set to the center of the next one (Ho�mann,
).�e representation of �ve fuzzy sets then requires
only �ve values (labeled in the �gure as ∆i), which
reduces largely the search space and keeps the order of
fuzzy sets, while ful�lling the completeness property.
Most implementations use real values to represent the
parameters.

�e operators of the evolutionary algorithm can be
standard operators or can be de�ned speci�cally based
on the selected representation. As an example, opera-
tors thatmodify thewidth of fuzzy sets, shi� the centers,
or perform other operations on the fuzzy set represen-
tations, linear approximators, or other parameters have
been de�ned in the scienti�c literature.

Optimization and Learning of the Fuzzy Rule Base

In this case, the fuzzy rule base is not known, or
only an initial approximation to it is provided. �e
other parameters of the knowledge base are known and
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provided by the expert. �e three most usual approxi-
mations are

. Michigan approximation: Each individual of the
population codi�es a single rule (Bonarini, ),
which means that each individual by itself cannot
represent a complete solution to the problem. �e
knowledge base for evaluation KBt is built based on
the informationde�ned inKBi and the rules de�ned
by all the individuals from the population com-
bined together (see Fig. a). Rules are penalized or
rewarded based on its performance during the eval-
uation. �e fuzzy system is then built through the
competition of a set of independent rules that have
to be learned to collaborate during the evolution.

. Pittsburgh approximation: Each individual repre-
sents the complete rule base. If dynamic creation
and removal of rules is allowed, it is necessary to
de�ne special variational operators to deal with
variable length individuals. Compared with the
Michigan approach the evaluation is simpler, since
by just combining each individual with KBi it is
possible to build KBt for evaluation (see Fig. b).
However, usually, the search space is larger when
compared with the Michigan approach.

. Iterative approximation: Each individual codi�es a
single rule (Cordon, Herrera, & Ho�mann, )
like in the Michigan approach. However, in each
iteration of the algorithm, only the best rule is
selected discarding all the others. �is selection is
based by considering the properties of the rule,
such as for example, its covering degree on a set
of examples. �e algorithm is then competitive and
not cooperative. It is usually necessary to apply

Population

KBi

ba
Population

KBi

Evolutionary Fuzzy Systems. Figure . The evaluation of

individuals in the (a) Michigan and (b) Pittsburgh

approaches

algorithms to re�ne the fuzzy rule set obtained
at the end of the evolutionary process, which can
include operations, such as for example, the removal
of similar rules.

�e representation in all of these approximations
usually consists of individuals that contain references to
the fuzzy sets already de�ned inKBi.�e representation
of each individual can be a sequence of integers where
each one is an index to the fuzzy sets associated to the
corresponding linguistic variable. As an example, the
fuzzy rule base could be represented as a matrix where
each cell corresponds to the intersection of the input
fuzzy sets, containing the index of the output fuzzy set
associated to the rule. It is also possible to represent the
fuzzy rule base as a decision table or simply as a list
of rules. In these last two cases, the representation can
have variable length, allowing to represent fuzzy rule
sets with variable size.

�e �tness calculation depends on the selected
approximation. On a Pittsburgh approximation, the �t-
ness corresponds to the evaluation of the complete fuzzy
system on the corresponding problem. It is also pos-
sible to include in the �tness calculation other factors,
such as for example, penalization for fuzzy rule bases
that containsmany rules or fuzzy rules with superposed
application areas, etc. On aMichigan or Iterativemodel,
the �tness indicates the degree of adequacy of the
rule measured independently, considering also in the
Michigan model its degree of cooperation with the
other rules in the population.

�e de�nition of the variational operators depends
of course on the selected approximation. If the repre-
sentation allows it, standard operators of crossover and
mutation can be used. However, it can be convenient
(or necessary) to de�ne speci�c operators. As an exam-
ple, variational operators can consider factors such as
the time period since the rule has been used for the
last time, its overall contribution to the �nal result, its
performancewhen evaluated on the set of examples, etc.

Optimization and Learning of the Complete

Knowledge Base

�is case is a combination of the two models described
before. �e knowledge base KBi contains the initial
approximation to the de�nition of the antecedents and
consequents, and the initial approximation to the fuzzy
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rule base as provided by the expert. Note that KBi can
also be empty if it is expected that the algorithm must
generate all the parameters of the fuzzy system by itself.

�e representation of the individuals contains all the
parameters that de�ne a knowledge base in order to
allow its learning or optimization. �e three most used
representation schemes are shown in Fig. . In the �rst
scheme, each individual contains the representation of
all fuzzy sets, and the representation of all fuzzy rules
using indexes to refer to the corresponding fuzzy sets.
In the second scheme, each individual is structured as a
set of rules, where each one speci�es its own input and
output fuzzy sets by directly including the parameters
that de�ne them. �e representation (a) is adequate for
descriptive fuzzy systems, since the rules contain ref-
erences to the fuzzy sets used in their de�nition and
can be shared by all of them. �e representation (b) is
adequate for approximative fuzzy systems, where each
rule de�nes its own fuzzy sets. �ese two representa-
tions are adequate for the Pittsburgh approximation,
while the third one (c) is adequate for the Michigan
and the Iterative approximation. Of course, there can
bemany variations of this representations. For example,
the input space partition can be prede�ned or obtained
through fuzzy clustering algorithms, and if this parti-
tion is not expected to go under optimization, then it
is not necessary to include the parameters of the input
fuzzy sets in the representation.
Since this model is a combination of the two

previous models, everything that was mentioned before
concerning the �tness function and the variational
operators also applies in this context. However, the fact
that all parameters of the knowledge base are included
in the representation allows to de�ne more power-
ful variational operators. As an example, it is possible
to de�ne operators that decide the creation of new

fuzzy sets, the elimination of some of them, and at
the same time, the adaptation of the associated fuzzy
rules, when for example, it is detected that there are
areas in the input space that are not well covered, many
rules with superimposed areas, etc. It is also possible to
apply genetic programming techniques (Pedrycz, ),
which are usually used to modify the structure of the
fuzzy system, adding, removing, or combining sections
of the fuzzy system with the objective of generating the
most adequate structure.

Final Remarks

Clearly, the integration of fuzzy systems with evolu-
tionary algorithms allows to overcome the limitations
of each model considered independently, obtaining a
powerful hybrid approach, which allows to learn and
optimize fuzzy systems based on expert knowledge.
Previous sections have discussed in general terms the
evolutionary learning model. However, in order to get
more details about particular implementations, it is rec-
ommended to read the publications referenced in the
next section. �e presentation from Karr & Gentry
() is interesting, not only because it provides a nice
introduction and application of evolutionary fuzzy sys-
tems, but it has the additional value of being one of
the �rst publications in the area. �e presentation of
Ho�mann () is an excellent introduction to evo-
lutionary fuzzy systems used for control applications.
�e other publications present details on evolutionary
fuzzy systems (Babuska ; Bonarini ; Cordon
et al., ; Juang Lin & Lin ; Lee & Takagi ),
including representations based on neural networks
(Ho�mann, ; Karr & Gentry, ), evolution
strategies (Alpaydtn, Dundar, & Balktr, ), genetic
programming (Pedrycz, ) and applications of evo-
lutionary fuzzy systems to the domain of recurrent
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Evolutionary Fuzzy Systems. Figure . Representations for the complete knowledge base adequate for (a) descriptive
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rule adequate for Michigan and Iterative approximations
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fuzzy systems (Kavka, Roggero, & Schoenauer, ).
�e paper by Cordon et al. () provides a very com-
prehensive reference list about the main developments
on evolutionary fuzzy systems.
It should be stressed that a very important aspect

to consider in the de�nition of evolutionary fuzzy sys-
tems is the interpretability of the resulting fuzzy systems
(Casillas et al., ). Even if it has been mentioned
that it is possible to design an evolutionary fuzzy system
without expert information, by allowing the evolution-
ary algorithm tode�ne all the components of the knowl-
edge base by itself, it must always be considered that
the interpretability of the results is essential. Designing
a system that solves the problem, but that works as a
black box, can be adequate in other contexts, but it is
not desirable at all in the context of evolutionary fuzzy
systems. An evolutionary fuzzy system algorithm must
provide themeans so that the expert knowledge de�ned
in fuzzy terms can be considered and used appropri-
ately during the evolution, and also, itmust guarantee an
adequate interpretability degree of the resulting fuzzy
system.
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Definition
Evolutionary algorithms are a family of algorithms
inspired by the workings of evolution by natural selec-
tion, whose basic structure is to

. Produce an initial population of individuals, these
latter being candidate solutions to the problem at
hand

. Evaluate the �tness of each individual in accordance
with the problem whose solution is sought

. While termination condition not met do
a. Select �tter individuals for reproduction
b. Recombine (crossover) individuals
c. Mutate individuals
d. Evaluate �tness of modi�ed individuals

. End while

Evolutionary games is the application of evolu-
tionary algorithms to the evolution of game-playing
strategies for various games, including chess, backgam-
mon, and Robocode.

Motivation and Background
Ever since the dawn of arti�cial intelligence in the s,
games have been part and parcel of this lively �eld.
In , a year a�er the Dartmouth Conference that
marked the o�cial birth of AI, Alex Bernstein designed
a program for the IBM  that played two amateur
games of chess. In , Allen Newell, J.C. Shaw, and
Herbert Simon introduced a more sophisticated chess
program (beaten in thirty-�ve moves by a ten-year-
old beginner in its last o�cial game played in ).
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Arthur L. Samuel of IBM spentmuch of the s work-
ing on game-playing AI programs, and by  he had a
checkers program that could play at the master’s level.
In  and , Donald Michie described a simple
trial-and-error learning system for learning how to play
Tic-Tac-Toe (or Noughts and Crosses) called MENACE
(for Matchbox Educable Noughts and Crosses Engine).
�ese are but examples of highly popular games that
have been treated by AI researchers since the �eld’s
inception.
Why study games? �is question was answered by

Susan L. Epstein, who wrote:

▸ There are two principal reasons to continue to do

research on games... First, human fascination with game

playing is long-standing and pervasive. Anthropolo-

gists have cataloged popular games in almost every cul-

ture... Games intrigue us because they address impor-

tant cognitive functions... The second reason to con-

tinue game-playing research is that some difficult

games remain to be won, games that people play very

well but computers do not. These games clarify what

our current approach lacks. They set challenges for us to

meet, and they promise ample rewards (Epstein, ).

Studying games may thus advance our knowledge
in both cognition and arti�cial intelligence, and, last
but not least, games possess a competitive angle which
coincides with our human nature, thus motivating both
researcher and student alike.
Even more strongly, Laird and van Lent proclaimed

that,

▸ ...interactive computer games are the killer application

for human-level AI. They are the application that will

soon need human-level AI, and they can provide the

environments for research on the right kinds of prob-

lems that lead to the type of the incremental and

integrative research needed to achieve human-level AI

(Laird & van Lent, ).

Recently, evolutionary algorithms have proven a
powerful tool that can automatically “design” successful
game-playing strategies for complex games (Azaria &
Sipper, a,b; Hauptman & Sipper, b, a,b;
Shichel et al., ; Sipper et al., ).

Structure of the Learning System
Genetic Programming

Genetic Programming is a subclass of evolutionary
algorithms, wherein a population of individual pro-
grams is evolved, each program comprising functions
and terminals. �e functions are usually arithmetic and
logic operators that receive a number of arguments as
input and compute a result as output; the terminals are
zero-argument functions that serve both as constants
and as sensors, the latter being a special type of function
that queries the domain environment.

�e main mechanism behind genetic programming
is precisely that of a generic evolutionary algorithm
(Sipper, ; Tettamanzi & Tomassini, ), namely,
the repeated cycling through four operations applied to
the entire population: evaluate-select-crossover-mutate.
Starting with an initial population of randomly gen-
erated programs, each individual is evaluated in the
domain environment and assigned a �tness value rep-
resenting how well the individual solves the problem
at hand. Being randomly generated, the �rst-generation
individuals usually exhibit poor performance. However,
some individuals are better than others, that is, (as in
nature) variability exists, and through the mechanism
of natural (or, in our case, arti�cial) selection, these
have a higher probability of being selected to parent the
next generation. �e size of the population is �nite and
usually constant.
Speci�cally, �rst a genetic operator is chosen at ran-

dom; then, depending on the operator, one or two indi-
viduals are selected from the current population using
a selection operator, one example of which is tourna-
ment selection: Randomly choose a small subset of indi-
viduals, and then select the one with the best �tness.
A�er the probabilistic selection of better individuals the
chosen genetic operator is used to construct the next
generation. �e most common operators are

● Reproduction (unary): Copy one individual to the
next generation with no modi�cations. �e main
purpose of this operator is to preserve a small num-
ber of good individuals.

● Crossover (binary): Randomly select an internal
node in each of the two individuals and swap the
subtrees rooted at these nodes. An example is shown
in Fig. .
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Before After

Crossover

Mutation

Evolutionary Games. Figure . Genetic operators in gen-

etic programming. LISP programs are depicted as trees.

Crossover (top): Two subtrees (marked in bold) are

selected from the parents and swapped. Mutation (bot-

tom): A subtree (marked in bold) is selected from the

parent individual and removed. A new subtree is grown

instead

● Mutation (unary): Randomly select a node from the
tree, delete the subtree rooted at that node, and
then “grow” a new subtree in its stead. An exam-
ple is shown in Fig.  (the growth operator as well
as crossover and mutation are described in detail in
Koza, ).

�e generic genetic programming �owchart is
shown in Fig. . When one wishes to employ genetic
programming, one needs to de�ne the following six
desiderata:

. Program architecture
. Set of terminals
. Set of functions
. Fitness measure
. Control parameters
. Manner of designating result and terminating run

Evolving Game-Playing Strategies

Recently, we have shown that complex and success-
ful game-playing strategies can be attained via genetic

programming. We focused on three games (Azaria &
Sipper, a,b; Hauptman & Sipper, b, a,b;
Shichel et al., ; Sipper et al., ):

. Backgammon. Evolves a full-�edged player for the
non-doubling-cube version of the game (Azaria &
Sipper, a,b; Sipper et al., ).

. Chess (endgames). Evolves a player able to play
endgames (Hauptman & Sipper, b, a,b;
Sipper et al., ). While endgames typically con-
tain but a few pieces, the problem of evaluation is
still hard, as the pieces are usually free to move all
over the board, resulting in complex game trees –
both deep and with high branching factors. Indeed,
in the chess lore much has been said and written
about endgames.

. Robocode. A simulation-based game in which
robotic tanks �ght to destruction in a closed
arena (robocode.alphaworks.ibm.com). �e pro-
grammers implement their robots in the Java
programming language, and can test their cre-
ations either by using a graphical environment in
which battles are held, or by submitting them to a
central Web site where online tournaments regu-
larly take place. Our goal here has been to evolve
Robocode players able to rank high in the inter-
national league (Shichel et al., ; Sipper et al.,
).

A strategy for a given player in a game is a way of
specifying which choice the player is to make at every
point in the game from the set of allowable choices at
that point, given all the information that is available
to the player at that point (Koza, ). �e problem
of discovering a strategy for playing a game can be
viewed as one of seeking a computer program. Depend-
ing on the game, the program might take as input the
entire history of past moves or just the current state of
the game. �e desired program then produces the next
move as output. For some games one might evolve a
complete strategy that addresses every situation tack-
led.�is proved to work well with Robocode, which is a
dynamic game, with relatively few parameters and little
need for past history.
In a two-player game, such as chess or backgammon,

players move in turn, each trying to win against the
opponent according to speci�c rules (Hong, Huang, &
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Evolutionary Games. Figure . Generic genetic programming flowchart (based on Koza, ). M is the population size,

and Gen is the generation counter. The termination criterion can be the completion of a fixed number of generations

or the discovery of a good-enough individual

Lin, ). �e course of the game may be modeled
using a structure known as an adversarial game tree (or
simply game tree), in which nodes are the positions in
the game and edges are the moves. By convention, the
two players are denoted asMAX andMIN, whereMAX
is the player who moves �rst. �us, all nodes at odd-
numbered tree levels are game positions where MAX

moves next (labeled MAX nodes). Similarly, nodes on
even levels are called MIN nodes, and represent posi-
tions in which MIN (opponent) moves next.

�e complete game tree for a given game is the tree
starting at the initial position (the root) and containing
all possible moves (edges) from each position. Terminal
nodes represent positions where the rules of the game
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determine whether the result is a win, a draw, or a loss.
Although the game tree for the initial position is an
explicit representation of all possible paths of the game,
therefore theoretically containing all the information
needed to play perfectly, for most (nontrivial) games it
is extremely large, and constructing it is not feasible.
For example, the complete chess game tree consists of
roughly  nodes (Shannon, ).
When the game tree is too large to be generated

completely, only a partial tree (called a search tree)
is generated instead. �is is accomplished by invok-
ing a search algorithm, deciding which nodes are to be
developed at any given time and when to terminate the
search (typically at nonterminal nodes due to time con-
straints). During the search, some nodes are evaluated
by means of an evaluation function according to given
heuristics. �is is done mostly at the leaves of the tree.
Furthermore, search can start fromany position andnot
just at the beginning of the game.
Because we are searching for a winning strategy, we

need to �nd a good next move for the current player,
such that no matter what the opponent does therea�er,
the player’s chances of winning the game are as high
as possible. A well-known method called the minimax
search (Campbell & Marsland, ; Kaindl, ) has
traditionally been used, and it forms the basis for most
methods still in use today. �is algorithm performs a
depth-�rst search (the depth is usually predetermined),
applying the evaluation function to the leaves of the tree,
and propagating these values upward according to the
minimax principal: at MAX nodes, select the maximal
value, and atMIN nodes – theminimal value.�e value
is ultimately propagated to the position from which the
search had started.
With games such as backgammon and chess

one can couple a current-state evaluator (e.g., board
evaluator) with a next-move generator. One can then
go on to create a minimax tree, which consists of
all possible moves, counter moves, counter counter-
moves, and so on; for real-life games, such a tree’s size
quickly becomes prohibitive. �e approach we used
with backgammon and chess is to derive a very shallow,
single-level tree, and evolve “smart” evaluation func-
tions. Our arti�cial player is thus created by combin-
ing an evolved board evaluator with a simple program
that generates all next-move boards (such programs can
easily be written for backgammon and chess).

In what follows, we describe the de�nition of the six
items necessary in order to employ genetic program-
ming, as delineated in the previous section: program
architecture, set of terminals, set of functions, �tness
measure, control parameters, and manner of designat-
ing result and terminating run. Due to lack of space
we shall elaborate upon one game – Robocode – and
only summarize the major results for backgammon and
chess.

Example: Robocode

Program Architecture A Robocode player is written as
an event-driven Java program. A main loop controls
the tank activities, which can be interrupted on various
occasions, called events. �e program is limited to four
lines of code, as we were aiming for the HaikuBot cat-
egory, one of the divisions of the international league
with a four-line code limit. �e main loop contains one
line of code that directs the robot to start turning the
gun (and the mounted radar) to the right. �is insures
that within the �rst gun cycle, an enemy tank will be
spotted by the radar, triggering a ScannedRobotEvent.
Within the code for this event, three additional lines
of code were added, each controlling a single actuator
and using a single numerical input that was supplied by
a genetic programming-evolved subprogram. �e �rst
line instructs the tank to move to a distance speci�ed
by the �rst evolved argument. �e second line instructs
the tank to turn to an azimuth speci�ed by the sec-
ond evolved argument. �e third line instructs the gun
(and radar) to turn to an azimuth speci�ed by the third
evolved argument (Fig. ).

Terminal and Function Sets We divided the termi-
nals into three groups according to their functional-
ity (Shichel et al., ) (Fig. ):

. Game-status indicators: A set of terminals that pro-
vide real-time information on the game status, such
as last enemy azimuth, current tank position, and
energy levels.

. Numerical constants: Two terminals, one providing
the constant  and the other being an ephemeral
random constant (ERC). �is latter terminal is ini-
tialized to a random real numerical value in the
range [-, ], and does not change during evolution.
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Robocode Player’s Code Layout

while (true)
TurnGunRight(INFINITY); //main code loop

...
OnScannedRobot(){

MoveTank(<GP#1>);
TurnTankRight(<GP#2>);
TurnGunRight(<GP#3>);

}

Evolutionary Games. Figure . Robocode player’s code layout (HaikuBot division)

Energy() Returns the remaining energy of the player
Heading() Returns the current heading of the player
X() Returns the current horizontal position of the player
Y() Returns the current vertical position of the player
MaxX() Returns the horizontal battlefield dimension
MaxY() Returns the vertical battlefield dimension
EnemyBearing() Returns the current enemy bearing, relative to the current player’s heading
EnemyDistance() Returns the current distance to the enemy
EnemyVelocity() Returns the current enemy’s velocity
EnemyHeading() Returns the current enemy heading, relative to the current player’s heading
EnemyEnergy() Returns the remaining energy of the enemy
Constant() An ERC (Ephemeral Random Constant) in the range [-1,1]
Random() Returns a random real number in the range [-1,1]
Zero() Returns the constant 0

a

b

Add(F, F) Add two real numbers
Sub(F, F) Subtract two real numbers
Mul(F, F) Multiply two real numbers
Div(F, F) Divide first argument by second, if denominator non-zero, otherwise

return zero
Abs(F) Absolute value
Neg(F) Negative value
Sin(F) Sine function
Cos(F) Cosine function
ArcSin(F) Arcsine function
ArcCos(F) Arccosine function
IfGreater(F, F, F, F) If first argument greater than second, return value of third argument,

else return value of fourth argument
IfPositive(F, F, F) If first argument is positive, return value of second argument, else return

value of third argument
Fire(F) If argument is positive, execute fire command with argument as fire-

power and return 1; otherwise, do nothing and return 0

Evolutionary Games. Figure . Robocode representation. (a) Terminal set (b) Function set (F: Float)

. Fire command:�is special function is used to cur-
tail one line of code by not implementing the �re
actuator in a dedicated line.

Fitness Measure We explored two di�erent modes of
learning: using a �xed external opponent as teacher,

and coevolution – letting the individuals play against
each other; the former proved better. However, not just
one but three external opponents were used to measure
performance; these adversaries were downloaded from
theHaikuBot league (robocode.yajags.com).�e �tness
value of an individual equals its average fractional score
(over three battles).
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Control Parameters and Run Termination �e major
evolutionary parameters (Koza, ) were population
size – , generation count – between  and ,
selection method – tournament, reproduction prob-
ability – , crossover probability – ., and muta-
tion probability – .. An evolutionary run terminates
when �tness is observed to level o�. Since the game
is highly nondeterministic a “lucky” individual might
attain a higher �tness value than better overall individ-
uals. In order to obtain a more accurate measure for the
evolved players, we let each of them do battle for 
rounds against  di�erent adversaries (one at a time).
�e results were used to extract the top player – to be
submitted to the international league.

Results We submitted our top player to the HaikuBot
division of the international league. At its very �rst tour-
nament it came in third, later climbing to �rst place
of  (robocode.yajags.com//haiku-v.html).
All other  programs, defeated by our evolved
strategy, were written by humans. For more details on
GP-Robocode see Shichel et al., () and Azaria,
Hauptman, and Shichel ().

Backgammon and Chess: Major Results

Backgammon We pitted our top evolved backgammon
players against Pubeval, a free, public-domain board
evaluation function written by Tesauro. �e program –
which plays well – has become the de facto yardstick
used by the growing community of backgammon-
playing program developers. Our top evolved player
was able to attain a win percentage of .% in a tour-
nament against Pubeval, about % higher (!) than the
previous top method. Moreover, several evolved strate-
gies were able to surpass the % mark, and most of
them outdid all previous works. For more details on
GP-Gammon, see Azaria and Sipper (a) andAzaria
et al. ().

Chess (endgames) We pitted our top evolved chess-
endgame players against two very strong external oppo-
nents: () A program we wrote (“Master”) based upon
consultation with several high-ranking chess players
(the highest being Boris Gutkin, ELO , Inter-
national Master); () CRAFTY – a world-class chess
program, which �nished second in the  World
Computer Speed Chess Championship (www.cs.biu.ac.

Evolutionary Games. Table  Percent of wins, advan-

tages, and draws for the best GP-EndChess player in the

tournament against two top competitors

%Wins %Advs %Draws

Master . . .

CRAFTY . . .

il/games/). Speed chess (“blitz”) involves a time-limit
per move, which we imposed both on CRAFTY and on
our players. Not only did we thus seek to evolve good
players, but ones who play well and fast. Results are
shown in Table . As can be seen, GP-EndChess man-
ages to hold its own, and even win, against these top
players. For more details on GP-EndChess see Azaria
et al., () and Hauptman and Sipper (b).
Deeper analysis of the strategies developed

(Hauptman & Sipper, a) revealed several impor-
tant shortcomings, most of which stemmed from the
fact that they used deep knowledge and little search
(typically, they developed only one level of the search
tree). Simply increasing the search depth would not
solve the problem, since the evolved programs exam-
ine each board very thoroughly, and scanning many
boards would increase time requirements prohibitively.
And so we turned to evolution to �nd an optimal way
to overcome this problem: How to add more search
at the expense of less knowledgeable (and thus less
time-consuming) node evaluators, while attaining bet-
ter performance. In Hauptman and Sipper (b)
we evolved the search algorithm itself, focusing on the
Mate-In-N problem: �nd a keymove such that evenwith
the best possible counterplays, the opponent cannot
avoid being mated in (or before) move N. We showed
that our evolved search algorithms successfully solve
several instances of the Mate-In-N problem, for the
hardest ones developing % less game-tree nodes than
CRAFTY. Improvement is thus not over the basic alpha-
beta algorithm, but over a world-class program using all
standard enhancements (Hauptman & Sipper, b).
Finally, in Hauptman and Sipper (a), we exam-

ined a strong evolved chess-endgame player, focusing
on the player’s emergent capabilities and tactics in the
context of a chess match. Using a number of meth-
ods we analyzed the evolved player’s building blocks

www.cs.biu.ac. il/games/
www.cs.biu.ac. il/games/
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and their e�ect on play level. We concluded that evo-
lution has found combinations of building blocks that
are far from trivial and cannot be explained through
simple combination – thereby indicating the possible
emergence of complex strategies.

Cross References
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7Genetic Algorithms
7Genetic Programming
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Definition
Evolutionary kernel learning stands for using
7evolutionary algorithms to optimize the 7kernel
function for a kernel-based learning machine.

Motivation and Background
In kernel-based learning algorithms the kernel function
determines the scalar product and thereby themetric in
the feature space in which the learning algorithm oper-
ates. �e kernel is usually not adapted by the 7kernel
method itself. Choosing the right kernel function is cru-
cial for the training accuracy and generalization capa-
bilities of the learning machine. It may also in�uence
the runtime and storage complexity during learning and
application.
Finding an appropriate kernel is a 7model selec-

tion problem. �e kernel function is selected from an a
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priori �xed class. When a parameterized family of ker-
nel functions is considered, kernel adaptation reduces
to �nding an appropriate parameter vector. In prac-
tice, the most frequently used method to determine
these values is grid search. In simple grid search the
parameters are varied independently with a �xed step-
size through a range of values and the performance of
every combination is measured. Because of its compu-
tational complexity, grid search is only suitable for the
adjustment of a few parameters. Further, the choice of
the discretization of the search space may be crucial.
Gradient-based approaches are perhaps themost elabo-
rate techniques for adapting real-valued kernel param-
eters, see the articles by Chapelle, Vapnik, Bousquet,
andMukherjee () andGlasmachers and Igel ()
and references therein. To use these methods, however,
the class of kernel functions must have a di�erentiable
structure. �ey are also not directly applicable if the
score function for assessing the parameter performance
is not di�erentiable.�is excludes some reasonable per-
formance measures. Evolutionary kernel learning does
not su�er from these limitations. Additionally, it allows
for7multi-objective optimization (MOO).

Structure of Learning System
Canonical evolutionary kernel learning can be descr-
ibed as an evolutionary algorithm (EA) in which the
individuals encode kernel functions, see Fig. . �ese
individuals are evaluated by determining the task-
speci�c performance of the kernel they represent. Two
special aspects must be considered when designing an
EA for kernel learning. First, one must decide how to
assess the performance (i.e., the �tness) of a particu-
lar kernel. �at is, model selection criteria have to be
de�ned depending on the problem at hand. Second, one
must also specify the subset of possible kernel func-
tions in which the EA should search. �is leads to the

questions of how to encode these kernels and which
variation operators to employ.

Assessing Fitness: Model Selection Criteria

�e following presents some performance indices that
have been considered for kernel selection. �ey can be
used alone or in linear combination for single-objective
optimization. In MOO a subset of these criteria can be
used as di�erent objectives.
It is important to note that, although many of these

measures are designed to improve7generalization, ker-
nel learning can lead to7over�tting if only limited data
is used in the model selection process (e.g., in every
generation the same small data sets are used to assess
performance). Regularization (e.g., in a Bayesian frame-
work) can be used to prevent over�tting. If enough
data are available, it is advisable to monitor the gener-
alization behavior of kernel learning using independent
data. For example, external data can be used for the early
stopping of evolutionary kernel learning.

Accuracy on Sample Data �e most straightforward
way to evaluate a model is to consider its performance
on sample data. �e empirical risk given by the error
on the training data could be considered, but it does
not measure generalization. To estimate the generaliza-
tion performance, the accuracy on data not used for
training is evaluated. In the simplest case, the avail-
able data is split into a training and validation set, with
the �rst used for learning and the second for subse-
quent performance assessment. A theoretically sound
and simple method is 7cross-validation (CV). Cross-
validation makes better use of the data, but it is more
computationally demanding. In practice, it yields very
good results.
If 7classi�cation is considered, it may be reason-

able to split the classi�cation error into false negative

initialize parent population of individuals,
each encoding kernel and perhaps additional parameters

while termination criterion is not met
create off spring individuals from parents
using variation operators

train and evaluate kernel machine encoded by individuals
using sample data

select new parent population based on evaluation

Evolutionary Kernel Learning. Figure . Canonical evolutionary kernel learning algorithm
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and false positive rates and to view 7sensitivity and
7speci�city as two separate objectives (Suttorp & Igel,
).

Measures Derived from Bounds on the Generalization

Performance Statistical learning theory allows one to
compute estimates of and bounds on the expected gen-
eralization error of learningmachines.�ese values can
be utilized as criteria for model selection, although then
the assumptions of the underlying theorems from statis-
tical learning theory are typically violated and the terms
“bound” and “unbiased estimate” become misleading.
For example, radius-margin bounds were used to

evolve kernels for 7support vector machines (SVMs)
for classi�cation (Igel, ). Furthermore, the number
of support vectors (SVs) was optimized in combina-
tion with the empirical risk (Igel, ). �e fraction
of SVs is an upper bound on the leave-one-out error
(e.g., Chapelle et al., ).

Number of Input Variables Variable selection refers to
the 7feature selection problem of choosing input vari-
ables that are best suited for the learning task.Masking a
subset of variables can be viewed as modifying the ker-
nel. By considering only a subset of feature dimensions
the computational complexity of the learning machine
decreases. When deteriorating feature dimensions are
removed, the overall performancemay increase. Reduc-
ing the number of input variables is therefore a common
objective, which can be achieved using single-objective
(Eads et al., ; Fröhlich, Chapelle, & Schölkopf,
; Jong, Marchiori, & van der Vaart, ; Miller,
Jerebko, Malley, & Summers, ) or multi-objective
(Pang & Kasabov, ; Shi, Suganthan, & Deb, )
evolutionary kernel learning.

Space and Time Complexity of the Classifier In some
applications, it can be desirable to have fast kernelmeth-
ods (e.g., for meeting real-time constraints). �us, the
execution time may be considered in the performance
assessment during evolutionary kernel learning.

�e space and time complexity of SVMs scales with
the number of SVs. �is is an additional reason to con-
siderminimization of the number of SVs as an objective
in evolutionary model selection for SVMs (Igel, ;
Suttorp & Igel, ).

Multi-Objective Optimization �e design of a learning
machine is usually aMOOproblem. For example, accu-
racy and complexity can be viewed as multiple, and
probably con�icting, objectives. �e goal of MOO is to
approximate a diverse set of Pareto-optimal solutions
(i.e., solutions that cannot be improved in one objec-
tive without getting worse in another one), which pro-
vide insights into the trade-o�s between the objectives.
Evolutionary multi-objective algorithms have become
popular for MOO. Applications of multi-objective evo-
lutionary kernel learning combining some of these per-
formance measures listed above can be found in the
work of Igel (), Pang and Kasabov (), and Shi
et al. ().

Encoding and Variation Operators

�e sheer complexity of the space of possible kernel
functions makes it necessary to restrict the search to
a particular class of kernel functions. �is restriction
essentially determines the representation and the oper-
ators used in evolutionary kernel learning.
When a parameterized family of mappings is con-

sidered, the kernel parameters can be encoded more or
less directly in a real-valued EA. �is is a frequently
used representation, for example for Gaussian kernel
functions.
For variable selection a binary encoding can be

appropriate. One can �x a kernel k : X × X → R,
where k(x⃗, z⃗) solely depends on some distance measure
between x⃗, z⃗ ∈ X. In the binary encoding each bit then
indicates whether a particular input variable is consid-
ered when computing the distance (Pang and Kasabov,
; Shi et al., ).
Kernels can be built from other kernels. For exam-

ple, if k and k are kernel functions onX then ak(x⃗, z⃗)+
bk(x⃗, z⃗) and a exp(−bk(x⃗, z⃗)) for x⃗, z⃗ ∈ X, a, b ∈ R+

are also kernels on X. �is suggests a representation in
which the individuals encode expressions that evaluate
to kernel functions.
Given these di�erent search spaces, it is not surpris-

ing that the aspects of allmajor branches of evolutionary
computation have been used in evolutionary kernel
learning: genetic algorithms (Fröhlich et al., ),
genetic programming (Howley & Madden, ), evo-
lution strategies (Igel, ), and evolutionary pro-
gramming (Runarsson & Sigurdsson, ).
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In general, kernel methods assume that the kernel
(or at least the 7Gram matrix 7(kernel matrix) in the
training process) is7positive semide�nite (psd).�ere-
fore, it is advisable to restrict the search space such
that only psd functions evolve. Other ways of dealing
with the problem of ensuring positive semide�niteness
are to ignore it (Howley & Madden, ) or to con-
struct a psd Gram matrix from the matrix M⃗ induced
by the training data and a non-psd “kernel” function.
�e latter can be achieved by subtracting the smallest
eigenvalue of M⃗ from its diagonal entries.

Gaussian Kernels Gaussian kernel functions are
prevalent. �eir general form is k(x⃗, z⃗) :=
exp (−(x⃗ − z⃗)TA⃗(x⃗ − z⃗)) for x⃗, z⃗ ∈ Rn and sym-
metric positive de�nite (pd) matrix A⃗ ∈ Rn×n. When
adapting A⃗, the issue of ensuring that the optimization
algorithm generates only pd matrices A⃗ arises. �is
can be achieved by an appropriate parametrization
of A⃗. O�en the search is restricted to matrices of the
form γI⃗, where I⃗ is the unit matrix and γ ∈ R+ is the
only adjustable parameter. However, allowing more
�exibility has proven to be bene�cial in certain appli-
cations (e.g., see Chapelle et al., ; Friedrichs & Igel,
; Glasmachers & Igel, ). It is straightforward
to consider diagonal matrices with positive elements
to allow for independent scaling factors weighting the
input components. However, only by dropping this
restriction one can achieve invariance against both
rotation and scaling of the input space. A real-valued
encoding that maps onto the set of all symmetric
pd matrices can be used such that all modi�cations
of the parameters result in feasible kernels, see the
articles by Friedrichs and Igel (), Glasmachers and
Igel (), and Suttorp and Igel () for di�erent
parametrizations.

Optimizing Additional Hyperparameters One of the
advantages of evolutionary kernel learning is that it
can be easily augmented with an optimization of addi-
tional hyperparameters of the kernel method.�emost
prominent example is to encode not only the kernel but
also the regularization parameter when doing model
selection for SVMs.

Application Example
Notable applications of evolutionary kernel learning
include the design of classi�ers in bioinformatics
(Mersch, Glasmachers, Meinicke, & Igel, ; Pang
& Kasabov, ; Shi et al., ). Let us consider
the work by Mersch et al. () as an instructive
example. Here, the parameters of a sequence kernel
are evolved to improve the prediction of gene starts
in DNA sequences. �e kernel can be viewed as a
weighted sum of  kernels, each measuring similarity
with respect to a particular tri-nucleotide sequence
(codon). �e  weights w, . . . ,w are optimized
together with an additional global kernel parameter σ
and a regularization parameter C for the SVM. Each
individual stores x⃗ ∈ R, where (w, . . . ,w, σ ,C)T =
(exp(x), . . . , exp(x), ∣x∣, ∣x∣)T. An evolution
strategy is applied, using additive multi-variate Gaus-
sian mutation and weighted global recombination
for variation and rank-based selection. �e �tness is
determined by a -fold cross-validation. �e evolved
kernels lead to higher classi�cation rates and the
adapted weights reveal the importance of particular
codons for the task at hand.
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Evolutionary Robotics

Phil Husbands
University of Sussex
Brighton, UK

Synonyms
Embodied evolutionary learning; Evolution of agent
behaviors; Evolution of robot control

Definition
Evolutionary robotics involves the use of7evolutionary
computing techniques to automatically develop some or
all of the following properties of a robot: the control sys-
tem, the body morphology, and the sensor and motor

properties and layout. Populations of arti�cial genomes
(usually lists of characters and numbers) encode prop-
erties of autonomous mobile robots required to carry
out a particular task or to exhibit some set of behav-
iors. �e genomes are mutated and interbred creating
new generations of robots according to a Darwinian
scheme in which the �ttest individuals are most likely
to produce o�spring. Fitness is measured in terms of
how good a robot’s behavior is according to some evalu-
ation criteria; this is usually automaticallymeasured but
may, in the manner of eighteenth century pig breeders,
be based on the experimenters’ judgment.

Motivation and Background
Turing’s () paper, Computing Machinery and Intel-
ligence, is widely regarded as one of the seminal works
in arti�cial intelligence. It is best known for what came
to be called the Turing test – a proposal for decid-
ing whether or not a machine is intelligent. However,
tucked away toward the end of Turing’s wide rang-
ing discussion of issues arising from the test is a far
more interesting proposal. He suggests that worthwhile
intelligent machines should be adaptive, should learn
and develop, but concedes that designing, building, and
programming such machines by hand is probably com-
pletely infeasible. He goes on to sketch an alternative
way of creatingmachines based on an arti�cial analog of
biological evolution. Each machine would have hered-
itary material encoding its structure, mutated copies
of which would form o�spring machines. A selec-
tion mechanism would be used to favor better adapted
machines – in this case, those that learned to behave
most intelligently. Turing proposed that the selection
mechanism should largely consist of the experimenter’s
judgment.
It was not until more than  years a�er their

publication that Turing’s long forgotten suggestions
became reality. Building on the development of princi-
pled evolutionary search algorithm by, among others,
Holland (), researchers at CNR, Rome, Case West-
ern University, the University of Sussex, EPFL, and
elsewhere independently demonstrated methodologies
and practical techniques to evolve, rather than design,
the control systems for primitive autonomous intelli-
gent machines (Beer & Gallagher, ; Cli�, Harvey, &
Husbands, ; de Garis, ; Floreano & Mondada,
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Create initial population
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evaluate their fitnesses 
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Evolutionary Robotics. Figure . General scheme employed in evolutionary robotics

; Husbands & Harvey, ; Parisi & Nol�, ).
�us, the �eld of Evolutionary Robotics was born in
the early s. Initial motivations were similar to Tur-
ing’s: the hand design of intelligent adaptive machines
intended for operation in natural environments is
extremely di�cult, would it be possible to wholly or
partly automate the process?
Today, the �eld of evolutionary robotics has expa-

nded in scope to take in a wide range of applications,
including promising new work on autonomous �y-
ing machines (Floreano, Husbands, & Nol�, ), as
well as research aimed at exploring speci�c scienti�c
issues – for instance, principles from neuroscience or
questions in cognitive science (Harvey, Di Paolo,Wood,
Quinn, & Tuci, ; Philippides, Husbands, Smith, &
O’Shea, ). Such work is able to exploit the fact
that evolutionary robotics operates with fewer assump-
tions about neural architectures and behavior generat-
ing mechanisms than other methods; this means that
whole general classes of designs and processes can be
explored.

Structure of the Learning System
�ekey elements of the evolutionary robotics approach are

● An arti�cial genetic encoding specifying the robot
control systems/body plan/sensor properties etc.,
along with a mapping to the target system

● A method for measuring the �tness of the robot
behaviors generated from these genotypes

● A way of applying selection and a set of “genetic”
operators to produce the next generation from the
current

�e structure of the overall evolutionary process is cap-
tured in Fig. . �e general scheme is like that of any
application of an evolutionary search algorithm. How-
ever,many details of speci�c parts of the process, partic-
ularly the evaluation step, are peculiar to evolutionary
robotics.

�e more general parts of the evolutionary process
(selection, breeding, genetic operators such asmutation
and crossover, replacement, and population structure)
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Evolutionary Robotics. Figure . Evolved neurocontrollers. On the left a simple fixed architecture feedforward net-

work is illustrated. The connection weights, and sometimes the neuron properties, are put under evolutionary control.

On the right a more complex architecture is illustrated. In this case, the whole architecture, including the number

of neurons and connections, is under evolutionary control, along with connection and neuron properties and the

morphology of a visual sensor that feeds into the network

are also found in most other applications of evolution-
ary computing and, just as in those other applications,
there are many well-documented ways of implemented
each (De Jong, ; Eiben & Smith, ). Hence, this
section focuses on genetic encoding and evaluation as
a route to more evolutionary robotics speci�c issues.
For a much fuller treatment of the subject, see Floreano
et al. () and Nol� and Floreano ().

Genetic Encoding

While, as already mentioned, many aspects of the robot
design can potentially be under genetic control, at least
the control system always is. By far the most popular
form of controller is some sort of neural network.�ese
range from straightforward feedforward networks of
simple elements (Floreano & Mondada, ) to rel-
atively complex, dynamic and plastic recurrent net-
works (Beer &Gallagher ; Floreano&Urzelai ;
Philippides, Husbands, Smith, &O’Shea, ), as illus-
trated in Fig. . In the simplest case, a �xed architecture
network is used to control a robot whose sensors feed
into the network which in turn feeds out to the robot
motors. In this scenario, the parameters of the network
(connectionweights and relevant properties of the units
such as thresholds or biases) are coded as a �xed length
string of numerical values.
Amore complex case, which has been explored since

the very early days of evolutionary robotics (Cli� et al.,
), involves the evolution of the network architecture
as well as the properties of the connections and units.
Typically, the size of the network (number of units and
connections) and its architecture (wiring diagram) are

unconstrained and free to evolve. �is involves more
complex encodings which can grow and shrink, as units
and connections are added or lost, while allowing a
coherent decoding of connections between units.�ese
range from relatively simple strings employing blocks
of symbols that encode a unit’s properties and connec-
tions relative to other units (Cli� et al.) to more indirect
schemes thatmake use of growth processes in some geo-
metric space (Philippides et al., ) or employ genetic
programming-like tree representations in which whole
subbranches can be added, deleted, or swapped over
(Gruau, ).

�emost general case involves the encoding of con-
trol network and body and sensor properties. Various
kinds of developmental schemes have been used to
encode the construction of body morphologies from
basic building blocks, both in simulation and in the
real world. �e position and properties of sensors
can also be put under evolutionary control. Some-
times one complex encoding scheme is used for all
aspects of the robot under evolutionary control, and
sometimes the di�erent aspects are put on separate
genotypes.

Fitness Evaluation

�e �tness of members of the population is measured,
via an evaluation mechanism, in terms of the robot
behaviors produced by the control system, or control
system plus robot morphology that it encodes. Fitness
evaluation, therefore, consists of translating the genome
in question into a robot instantiation and then measur-
ing the aspects of the resulting behavior. In the earliest
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work aimed at using evolutionary techniques to develop
neurocontrollers for particular physical robots, mem-
bers of a population were downloaded in turn onto
the robot and their behavior was monitored and mea-
sured either automatically by clever experimental setups
(Floreano&Mondada, ; Harvey, Husbands, &Cli�,
) or manually by an observer (Gruau & Quatrama-
ran, ). �e machinery of the evolutionary search
algorithm was managed on a host computer while the
�tness evaluations were undertaken on the target robot.
One drawback of evaluating �tness on the robot is

that this cannot be done any quicker than in real time,
making the whole evolutionary process rather slow.
However, in the early work in the �eld this approach
was taken because it was felt that it was unlikely that
simulations could be made accurate enough to allow
proper transfer of evolved behavior onto the real robot.
However, a careful study of accurate physics-based
simulations of a Khepera robot, with various degrees
of noise added, proved this assumption false (Jakobi,
Husbands, & Harvey, ). �is led to the devel-
opment of Jakobi’s minimal simulation methodology
(Jakobi, a), whereby computationally very e�cient
simulations are built by modeling only those aspects of
the robot–environment interaction deemed important
to the desired behavior and masking everything else
with carefully structured noise (so that evolution could
not come to rely on any of those features). �ese ultra-
fast, ultralean simulations have successfully been used
with many di�erent forms of robot and sensing, with
very accurate transfer of behavior from simulation to
reality. An alternative approach uses plastic controllers
that further adapt through self-organization to help
smooth out the di�erences between an inaccurate sim-
ulation and the real world (Urzelai & Floreano, ).
Instead of evolving connectionweights, in this approach
“learning rules” for adapting connection strengths are
evolved – this results in controllers that continually
adapt to changes in their environment. For details of
further approaches, see Floreano et al. (). Much
evolutionary robotics work now makes use of simula-
tions; without them it would be impossible to do the
most ambitious work on the concurrent evolution of
controllers and body morphology (Lipson & Pollack,
) (to be brie�y described later). However, although
simulation packages and techniques have developed
rapidly in the past few years, there will still inevitably

be discrepancies between simulation and reality, and the
lessons and insights of the work outlined above should
not be forgotten.
An interesting distinction can be made between

implicit and explicit �tness functions in evolutionary
robotics (Nol� & Floreano, ). In this context, an
explicit �tness function rewards speci�c behavioral ele-
ments – such as traveling in a straight line – and hence
shapes the overall behavior from a set of speci�c behav-
ioral primitives. Implicit �tness functions operate at a
more indirect, abstract level – �tness points are given for
completing some task but they are not tied to speci�c
behavioral elements. Implicit �tness functions might
involve components such as maintaining energy levels
or covering as much ground as possible, components
that can be achieved in many di�erent ways. In prac-
tice, it is quite possible to de�ne a �tness function that
has both explicit and implicit elements.

Advantages

Potential advantages of this methodology include

● �e ability to explore potentially unconstrained
designs that have large numbers of free variables.
A class of robot systems (to be searched) is de�ned
rather than speci�c, fully de�ned robot designs.�is
means fewer assumptions and constraints are neces-
sary in specifying a viable solution.

● �e ability to use the methodology to �ne-tune the
parameters of an already successful design.

● �e ability, through the careful design of �tness cri-
teria and selection techniques, to take into account
multiple, and potentially con�icting, design criteria
and constraints (e.g., e�ciency, cost, weight, power
consumption, etc.).

● �e possibility of developing highly unconventional
and minimal designs.

● �e ability to explicitly take into account robustness
and reliability as major driving force behind the �t-
ness measure, factors that are particularly important
for certain applications.

Applications
For a detailed survey of applications of evolutionary
robotics, see Floreano et al. (); this section gives a
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brief overview of some areas covered by the methodol-
ogy to give a better idea of the techniques involved and
to indicate the scope of the �eld.
Prominent early centers for research in this area

were EPFL and Sussex University, both of which are still
very active in the �eld. Much of the early EPFL work
used the miniature Khepera robot (Mondada, Franzi,
& Ienne, ), which became a popular tool in many
areas of robotics research. In its simplest form, it is a
two-wheeled cylindrical robot with a ring of IR sen-
sors around its body. �e �rst successful evolutionary
robotics experiments at EPFL employed the setup illus-
trated in Figs.  and . A population of bit strings
encoded the connection weights and node thresholds
for a simple �xed architecture feedforward neural net-
work. Eachmember of the populationwas decoded into
a particular instantiation of a neural network controller
whichwas then downloaded onto the robot (Floreano&
Mondada, ). �is controlled the robot for a �xed
period of time as it moved around the environment
shown in Fig. .

�e following simple �tness function was used to
evolve obstacle avoidance behaviors:

F = V + ( −
√
DV) + ( − I)

where V is the average rotation speed of opposing
wheels, DV is the di�erence between signed speed val-
ues of opposing wheels, and I is the activation value of
the IR sensor with the highest input (readings are high if
an obstacle is close to a sensor). Maximizing this func-
tion ensures high speed, a tendency to move in straight
lines, and avoidance of walls and obstacles in the envi-
ronment. A�er about  h of real-world evolution using
this setup, controllers were evolved that successfully
generated e�cient motion around the course, avoiding
collisions with the walls.
At the same time as this work was going on at EPFL,

a series of pioneering experiments on evolving visu-
ally guided behaviors were being performed at Sussex
University (Cli� et al., ; Harvey et al., ) in
which discrete-time dynamical recurrent neural net-
works and visual sampling morphologies were concur-
rently evolved to allow a gantry robot (as well as other
more standard mobile robots) to perform various visu-
ally guided tasks. An early instantiation of the Sussex
gantry robot is shown in Fig. .

Population manager

Mutation

Crossover

Selective reproduction

Evaluation

Evolutionary Robotics. Figure . Setup for early EPFL

evolutionary robotics experiments with the Khepera

robot (see text for details). Used with permission

Evolutionary Robotics. Figure . The simple environ-

ment used for evolving obstacle avoidance behaviors

with a Khepera robot. Used with permission

ACCD camera points down toward amirror angled
at ○. �e mirror can rotate around an axis perpen-
dicular to the camera’s image plane. �e camera is sus-
pended from the gantry allowing motion in the X, Y ,
and Z dimensions. �is e�ectively provides an equiva-
lent to a wheeled robot with a forward facing camera
when only the X and Y dimensions of translation are
used (see Fig. ).

�e apparatus was initially used in a manner sim-
ilar to the real-world EPFL evolutionary robots setup
illustrated in Fig. . A population of strings encod-
ing robot controllers and visual sensing morphologies
are stored on a computer to be downloaded one at a
time onto the robot. �e exact position and orienta-
tion of the camera head can be accurately tracked and
used in the �tness evaluations. A number of visually
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Evolutionary Robotics. Figure . An early version of the

Sussex gantry robot (right) was a “hardware simulation”

of a robot such as that shown on the left. It allowed real-

world evolution of visually guided behaviors in an eas-

ily controllable experimental setup (see text for further

details)

guided navigation behaviorswere successfully achieved,
including navigating around obstacles and discriminat-
ing between di�erent objects. In the experiment illus-
trated in Fig. , starting from a random position and
orientation the robot has to move to the triangle rather
than the rectangle. �is has to be achieved irrespec-
tive of the relative positions of the shapes and under
very noisy lighting conditions. �e architecture and
all parameters of recurrent neural network controllers
were evolved in conjunction with visual sampling
morphologies – only genetically speci�ed patches from
the camera image were used (by being fed to input neu-
rons according to a genetic speci�cation), the rest of
the image is thrown away. �is resulted in extremely
minimal systems only using  or  pixels of visual infor-
mation, yet still able to very robustly perform the task
under highly variable lighting conditions. Behaviors
were evolved in an incremental way, withmore complex
capabilities being evolved from populations of robots
that were successful at some simpler task (for details
see Harvey et al. () and Harvey, Husbands, Cli�,
�ompson, & Jakobi ()). �e highly minimal yet
very robust systems developed highlighted the poten-
tial for evolutionary robotics techniques in areas such as
space explorationwhere there is a great pressure tomin-
imize resources while maintaining reliability (Hobbs,
Husbands, & Harvey, ).
Since this early work, many di�erent behaviors have

been successfully evolved on a wide range of robots
(Floreano et al., ; Nol� & Floreano, ) �ere is
not enough room to give an adequate summary of the
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Evolutionary Robotics. Figure . Schematic diagram of a

distributed neural network for the control of locomo-

tion as used by Beer et al. Excitatory connections are

denoted by open triangles, and inhibitory connections

are denoted by filled circles. C, command neuron; P, pace-

maker neuron; FT, foot motor neuron; FS and BS, forward

swing and backward swing motor neurons; FAS and BAS,

forward and backward angle sensors. Reproduced with

permission

whole �eld, so a few interesting subareas are highlighted
below.
Over the past  years or so, there has been a grow-

ing body of work on evolving controllers for various
kinds of walking robots – a nontrivial sensorimotor
coordination task. Early work in this area concentrated
on evolving dynamical network controllers for simple
simulated insects (o�en inspired by cockroach studies),
which were required to walk in uncomplicated envi-
ronments (e.g., de Garis, ; Beer & Gallagher, ).
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�e promise of this work soon led to versions of this
methodology being used on real robots. Probably, the
�rst success in this direction was by Lewis, Fagg, and
Solidum () who evolved a neural controller for a
simple hexapod robot, using coupled oscillators built
from continuous-time, leaky-integrator, arti�cial neu-
rons. �e robot was able to execute an e�cient tripod
gait on �at surfaces. All evaluations were done on the
actual robot with each leg connected to its own pair of
coupled neurons, leg swing being driven by one neuron
and leg elevation by the other. �ese pairs of neurons
were cross-connected, in a manner similar to that used
in the neural architecture shown in Fig. , to allow coor-
dination between the legs. �is architecture for loco-
motion, introduced by Beer, Chiel, and Sterling (),
was based on the studies of cockroaches and has been
much used ever since. Gallagher, Beer, Espenschiel, and
Quinn () used a generalization of it to evolve con-
trollers for generating locomotion in a hexapod robot.
�is machine was more complex than Lewis et al.’s,
with a greater number of degrees of freedom per leg. In
this work, each leg was controlled by a fully connected
network of �ve continuous-time, leaky-integrator neu-
rons, each receiving a weighted sensory input from that
leg’s angle sensor. �e connection weights and neuron
time constants and biases were under genetic control.
�is produced e�cient tripod gaits for walking on �at
surfaces. In order to produce a wider range of gaits
operating at a number of speeds such that rougher ter-
rain could be successfully negotiated, a slightly di�erent
distributed architecture, more inspired by stick insect
studies, was found to be more e�ective (Beer, Quinn,
Chiel, & Ritzmann, ).
Jakobi (b) successfully used his minimal simu-

lation techniques to evolve controllers for an -legged
robot. Evolution in simulation took less than  h on
what would today be regarded as a very slow com-
puter, and then transferred successfully to the real robot.
Jakobi evolvedmodular controllers based onBeer’s con-
tinuous recurrent network architecture to control the
robot as it engaged in walking about its environment,
avoiding obstacles and seeking out goals. �e robot
could smoothly change gait, move backward and for-
ward, and even turn on the spot. More recently, related
approaches have been successfully used to evolve con-
trollers formoremechanically sophisticated robots such
as the Sony Aibo (Tllez, Angulo, & Pardo, ). In the

last few years, there has also been successful work on
evolving coupled oscillator style neural controllers for
the highly unstable dynamic problem of biped walk-
ing. Reil and Husbands () showed that accurate
physics-based simulations using physics-engine so�-
ware could be used to develop controllers able to
generate successful bipedal gaits. Reil and colleagues
have now signi�cantly developed this technology to
exploits its commercial possibilities in the animation
and games industries (see www.naturalmotion.com for
further details). Vaughan has taken related work in
another direction. He has successfully applied evolu-
tionary robotics techniques to evolve a simulation of a
D ten-degree of freedom bipedal robot. �is machine
demonstratesmany of the properties of human locomo-
tion. By using passive dynamics and compliant tendons,
it conserves energy while walking on a �at surface. Its
speed and gait can be dynamically adjusted and it is
capable of adapting to discrepancies in both its environ-
ment and its body’s construction (Vaughan, Di Paolo &
Harvey, ). In general, the evolutionary develop-
ment of neural network walking controllers, with their
intricate dynamics, produces a wider range of gaits and
generates smoother,more adaptive locomotion than the
more standard use of �nite state machine based systems
employing parameterized rules governing the timing
and coordination of individual leg movements.
Early single robot research was soon expanded

to handle interactions between multiple robots. Flo-
reano and Nol� did pioneering work on the coevo-
lution of predator–prey behaviors in physical robots
(Floreano & Nol�, ). �e �tness of the prey robot
was measured by how quickly it could catch the prey;
the �tness of the prey was determined by how long
it could escape the predator. Two Khepera robots
were used in this experiment, each had the standard
set of proximity sensors but the predator also has a
vision system and the prey was able to move twice
as fast as the predator. A series of interesting chasing
and evasion strategies emerged. Later Quinn, Smith,
Mayley, and Husbands () demonstrated the evo-
lution of coordinated cooperative behavior in a group
of robots. A group of robots equipped only with IR
proximity sensors were required to move as far as
possible as a coordinated group starting from a ran-
dom con�guration. �e task was solved by the robots
adopting and then maintaining a speci�c formation.

www.naturalmotion.com
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Analysis of the best evolved solution showed that it
involved the robots adopting di�erent roles, with the
identical robots collectively “deciding” which robot
would perform each role. Given the minimal sens-
ing constraints, the evolved system would have proved
extremely di�cult to have designed by hand. For dis-
cussion of other multiple robot behaviors, see Floreano
et al. ().
In the work described so far, control systems have

been evolved for pre-existing robots: the brain is con-
strained to �t a particular body and set of sensors. Of
course in nature, the nervous system evolved simulta-
neously with the rest of the organism. As a result, the
nervous system is highly integrated with the sensory
apparatus and the rest of the body: thewhole operates in
a harmonious and balanced way – there are no distinct
boundaries between the control system, the sensors,
and the body.
Karl Sims started to explore the concurrent evolu-

tion of the brain and the body in his highly imaginative
work involving simulated D “creatures” (Sims, ).
In this work, the creatures coevolved under a compet-
itive scenario in which they were required to try and
gain control of a resource (a cube) placed in the cen-
tre of an arena. Both the morphology of the creatures
and the neural system controlling their actuators were
under evolutionary control.
Lipson and Pollack (), working at Brandeis

University, pushed the idea of fully evolvable robot
hardware about as far as is reasonably technologi-
cally feasible at present. In an important piece of

Evolutionary Robotics. Figure . A fully automatically

evolved robot developed on the Golem project (see text

for details). Used with permission

research, directly inspired by Sims’ earlier simulation
work, autonomous “creatures” were evolved in simu-
lation out of basic building blocks (neurons, plastic
bars, and actuators). �e bars could connect together
to form arbitrary truss structures with the possibility
of both rigid and articulated substructures. Neurons
could be connected to each other and to the bars whose
length they would then control via a linear actuator.
Machines de�ned in this way were required to move as
far as possible in a limited time. �e �ttest individuals
were then fabricated robotically using rapid manufac-
turing technology (plastic extrusion D printing) to
produce results such as that shown in Fig. . �ey thus
achieved autonomy of design and construction using
evolution in a “limited universe” physical simulation
coupled to automatic fabrication.�e highly unconven-
tional designs thus realized performed as well in reality
as in simulation.�e success of this work points the way
to new possibilities in developing energy e�cient fault
tolerant machines.
Pfeifer and colleagues at Zurich University have

explored issues central to the key motivation for
fully evolvable robot hardware: the balanced inter-
play between body morphology, neural processing, and
generation of adaptive behavior and have developed
a set of design principles for intelligent systems in
which these issues take centre stage (Pfeifer & Bongard,
).

Future Directions
Major ongoing challenges – methodological, theoreti-
cal, and technological – include �nding the best way to
incorporate development and lifetime plasticity within
the evolutionary framework (this involves trends com-
ing from the emerging �eld of epigenetic robotics),
understanding better what the most useful building
blocks are for evolved neurocontrollers, and �nding
e�cient ways to scale work on concurrently evolving
bodies and brains.

�ere are very interesting developments in the
evolution of group behaviors and the emergence
of communication (Di Paolo, ; Floreano, Mitri,
Magnenat, & Keller, ; Quinn, ), the use of evo-
lutionary robotics as a tool to illuminate problems in
cognitive science (Beer, ; Harvey et al., ) and
neuroscience (Di Paolo, ; Philippides et al., ;
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Seth, ), in developing �ying behaviors (Floreano,
Hauert, Leven, & Zu�erey, ; Shim & Husbands,
), and in robots that have some form of self-
model (Bongard, Zykov, & Lipson, ), to name but
a few.
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Expectation Maximization
Clustering

Xin Jin, Jiawei Han
University of Illinois at Urbana-Champaign
Urbana, IL, USA

Synonyms
EM Clustering

�e EM algorithm (Dempster, Laird, & Rubin )
�nds maximum likelihood estimates of parameters in
probabilistic models. EM is an iterative method which
alternates between two steps, expectation (E) and max-
imization (M). For clustering, EM makes use of the
�nite Gaussian mixtures model and estimates a set of
parameters iteratively until a desired convergence value
is achieved. �e mixture is de�ned as a set of K proba-
bility distributions and each distribution corresponds to
one cluster. An instance is assigned with a membership
probability for each cluster.

�e EM algorithm for partitional clustering works
as follows:

. Guess initial parameters: mean and standard devia-
tion (if using normal distribution model).
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. Iteratively re�ne the parameters with E andM steps.
In the E step: compute the membership possibility
for each instance based on the initial parameter val-
ues. In theM step: recompute the parameters based
on the new membership possibilities.

. Assign each instance to the cluster with which it has
the highest membership possibility.

Cross References
7Expectation-Maximization Algorithm
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Expectation Propagation

Tom Heskes
Radboud University Nijmegen
Nijmegen, �e Netherlands

Synonyms
EP

Definition
Expectation propagation is an algorithm for Bayesian
machine learning (see7BayesianMethods). It tunes the
parameters of a simpler approximate distribution (e.g.,
a Gaussian) to match the exact posterior distribution of
themodel parameters given the data. Expectation prop-
agation operates by propagatingmessages, similar to the
messages in (loopy) belief propagation (see7Graphical
Models). Whereas messages in belief propagation cor-
respond to exact belief states, messages in expectation
propagation correspond to approximations of the belief
states in terms of expectations, such as means and vari-
ances. It is a deterministicmethod especially well-suited
to large databases and dynamic systems, where exact
methods for Bayesian inference fail and 7Monte Carlo
methods are far too slow.

Motivation and Background
One of the main problems for 7Bayesian methods are
their computational expense: computation of the exact
posterior, given the observed data, typically requires

the solution of high-dimensional integrals that have no
analytical expressions. Approximation algorithms are
needed to approximate this posterior as accurately as
possible. �ese techniques for approximate inference
can be subdivided in two categories: deterministic
approaches and stochastic sampling (Monte Carlo)
methods. Having the important advantage that (under
certain conditions) they give exact results in the limit
of an in�nite number of samples,Monte Carlo methods
are the method of choice in Bayesian statistics. How-
ever, in particular when dealing with large databases,
the time needed for stochastic sampling to obtain a rea-
sonably accurate approximation of the exact posterior
can be prohibitive. �is explains the need for faster,
deterministic approaches, such as the Laplace approx-
imation, variational approximations, and expectation
propagation.
Expectation propagation was �rst described by

�omas Minka in his thesis (Minka, ). It can be
viewed as a generalization and reformulation of the
earlier ADATAP algorithm of Manfred Opper and
Ole Winther (). Expectation propagation quickly
became one of the most popular deterministic appro-
aches for approximate Bayesian inference. Expectation
propagation improves upon assumed density �ltering,
a classical method from stochastic control, by itera-
tively re�ning local approximations instead of comput-
ing them just once. Furthermore, it encompasses loopy
belief propagation, a popular method for approximate
inference in probabilistic 7graphical models, as a spe-
cial case. Where loopy belief propagation is restricted
to models of discrete variables only, expectation prop-
agation applies to a much wider class of probabilistic
graphicalmodelswith discrete and continuous variables
and complex interactions between them.

Structure of Learning System
Bayesian Machine Learning

In the Bayesian framework for machine learning, you
should enumerate all reasonable models of the data and
assign a prior belief P(w) to each of these models w.
In the discrete case, the w are the di�erent models, in
the continuous case, the w are the continuous valued
parameters (usually vectors). �en, upon observing the
data D, you compute the likelihood P(D∣w) to evaluate
how probable the data was under each of these models.
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Expectation Propagation. Figure . (left-hand side) A so-called factor graph corresponding to the i.i.d. assumption in

Bayesian machine learning. Each box corresponds to a factor or term. A circle corresponds to a variable. Factors are

connected to the variables that they contain. Ψ corresponds to the prior, Ψ . . . Ψn are the likelihood terms for the n

data points. (right-hand side) Factor graph of the approximating distribution. The original terms have been replaced

by term approximations

�eproduct of the prior and the likelihood gives you, up
to a normalization constant, the posterior probability
P(w∣D) over models given the data:

P(w∣D) =
P(D∣w)P(w)

P(D)
,

where the normalization term P(D) is called the prob-
ability of the data or “evidence.” �is posterior proba-
bility incorporates all you have learned from the data D
regarding the models w under consideration. As indi-
cated above, exact calculation of this posterior proba-
bility is o�en infeasible, because the normalization term
requires the solution of intractable sums or integrals.
In its simplest setting, the dataD consists of n obser-

vations, x, . . . , xn, which are assumed to be indepen-
dent and identically-distributed (i.i.d.). �e posterior
probability then factorizes into n +  terms, one for
each observation and one for the prior.With de�nitions
Ψ(w) ≡ P(w) and Ψi(w) ≡ P(xi∣w), we can rewrite

P(w∣D) =
P(w)∏

n
i= P(xi∣w)

P(D)
≡
∏

n
i= Ψi(w)

P(D)
.

�is factorization is visualized in the so-called factor
graph in Fig. . We use it as a running example in the
following section.

Assumed Density Filtering

Expectation propagation can be interpreted as an itera-
tive re�nement of assumed density �ltering. In assumed
density �ltering, we add terms one-by-one and project
in each step back to the “assumed density.” For exam-
ple, suppose that our prior probability P(w) = Ψ(w)

is a (known) Gaussian distribution over model param-
eters w, the terms corresponding to the data points
are non-Gaussian, and we aim to �nd an appropri-
ate Gaussian approximation Q(w) to the exact (non-
Gaussian) posterior P(w∣D). Our �rst approximation

is the prior itself. Assumed-density �ltering now pro-
ceeds by adding terms one at a time, where at each step
we approximate the resulting distribution as closely as
possible by a Gaussian. �e pseudo-code is given in
Algorithm , where Q:i(w) denotes the approximation
obtained a�er incorporating the prior and the �rst i
observations.
If we use the Kullback–Leibler divergence as

the distance measure from the non-Gaussian (but
normalized) product of Q:i−(w) and Ψi(w) and the
Gaussian approximation, projection becomes “moment
matching”; the result of the projection is the Gaussian
that has the same mean and covariance matrix as the
non-Gaussian product.

Expectation Propagation

When in assumed density �ltering, we add the term
Ψi(w), the Gaussian approximation changes from
Q:i−(w) to Q:i(w). We will call the quotient of the
two the term approximation (here and in the following
we ignore normalization constants):

Ψ̃i(w) =
Q:i(w)

Q:i−(w)
.

In our running example, term approximations are quo-
tients between two di�erent Gaussian densities and
therefore have a Gaussian form themselves. Since the
prior Ψ(w) is a Gaussian density, Ψ̃(w) = Ψ(w).
�e approximationQ:n(w) is equal to the product of all

Algorithm  Assumed density �ltering

: Q(w) = Ψ(w)

: for i =  to n do
: Q:i(w) = Project_to_Gaussian(Q:i−(w)Ψi(w))

: end for
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Expectation Propagation. Figure . Visualization of expectation propagation when recomputing the term approxima-

tion for observation i

term approximations and is visualized on the righthand
side of Fig. . In assumed density �ltering, the resulting
approximation depends on the ordering in which the
terms have been added. For example, if the terms had
been added in reverse order, their term approximations
might have been (slightly) di�erent.
Expectation propagation now generalizes assumed

density �ltering by iteratively re�ning these term
approximations. When successful, the �nal approxima-
tion will be independent of the ordering. Pseudo-code
of expectation propagation is given in Algorithm . In
step  through , the term approximations are initial-
ized; in step  through , these term approximations
are iteratively re�ned until they no longer change. In
step , we take out the previous term approximation
from the current approximation. In step , we put back
in the exact term and project back to a Gaussian, like we
did in assumed density �ltering. It is easy to check that
the approximation Q(w) a�er the �rst loop equals the
approximation Q:n(w) obtained with assumed density
�ltering. �e recalculation of the term approximation
corresponding to observation i is visualized in Fig. .

Computational Aspects

With expectation propagation, we have to do a lit-
tle more bookkeeping than with assumed density
�ltering: we have to keep track of the term approx-
imations. One loop of expectation propagation is
about as expensive as running assumed density �lter-
ing. Typically, about �ve iterations are su�cient for
convergence.

�e crucial operation is in step  of Algorithm 
and step  of Algorithm . Here we have to compute
the moments of the (non-Gaussian) probability distri-
bution on the right-hand side. In most cases, we do
not have analytical expressions for these moments and
have to compute them numerically, e.g., using Gaussian
quadrature. We then obtain the moments (mean and
covariance matrix) of the new approximation Q(w).
Divisions and multiplications correspond to a simple

subtraction and addition of so-called canonical param-
eters. For the Gaussian, these canonical parameters are
the inverse of the covariance matrix (precision matrix)
and the product of the precision matrix and the mean.
�e bottom-line is that we go back and forth between
distributions in terms of moments and in terms of
canonical parameters. For a Gaussian, this requires
computing the inverse of the covariance matrix, which
is roughly on the order of d, where d is the dimension of
w. A practical point of concern is that matrix inversion
is numerically instable, in particular for matrices that
are close to singular, which can lead to serious round-o�
errors.

Convergence Issues

Sadly enough, expectation propagation is not guaran-
teed to converge to a �xed point. If it does, this �xed
point can be shown to correspond to an extremum of
the so-called Bethe free energy, an approximation of the
“evidence” logP(D), under particular consistency and
normalization constraints (Heskes, Opper, Wiegerinck,

Algorithm  Expectation propagation

: Ψ̃(w) = Ψ(w)

: for i =  to n do
: Ψ̃i(w) = 
: end for

: Q(w) =
n

∏
i=
Ψ̃i(w)

: while not converged do
: for i =  to n do

: Q−i(w) =
Q(w)

Ψ̃i(w)

: Q(w) = Project_to_Gaussian(Q−i(w)Ψi(w))

: Ψ̃i(w) =
Q(w)

Q−i(w)

: end for
: end while
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Winther, & Zoeter, ; Heskes &Zoeter, ;Minka,
, ). �ese constraints relate to the projection
step in Algorithm : a�er convergence, the moments of
Q(w) should be equal to the moments of the distribu-
tion obtained by taking out a term approximation and
putting back the corresponding exact term.�is should
hold for all i.i.d. observations i = , . . . ,n in the factor
graph of Fig. : so we conclude that, a�er convergence,
the moments (“expectations”) of all distributions con-
structed in this way should be the same. Expectation
consistent approximations are based on the exact same
idea and indeed turn out to be equivalent to expectation
propagation (Heskes et al., ).
When expectation propagation does not converge,

we can try “damping”: instead of replacing the old term
approximation by the new one, we replace it by a log-
convex combination of the old and the new one. In
many cases, damping with a step size . makes expec-
tation propagation converge, at the expense of requir-
ing more iterations. However, even damping with an
in�nitesimally small step size is not guaranteed to lead
to convergence. In those cases, we can try to mini-
mize the Bethe free energy more explicitly with a so-
called double-loop algorithm (Heskes & Zoeter, ):
in the outer loop we compute a convex bound on
the Bethe free energy, which we then minimize in the
inner loop with an algorithm very similar to standard
expectation propagation. Double-loop algorithms are
an order ofmagnitude slower than standard expectation
propagation.

Generalizations

�e running example above serves to illustrate
the main idea, but is of course rather restrictive.
Expectation propagation can be applied with any mem-
ber of the exponential family as approximating distri-
bution (Minka, ; Seeger, ). �e crucial oper-
ations are the projection step and the transformation
from moment to canonical form: if these can be per-
formed e�ciently and robustly, expectation propaga-
tion is into play.
In many interesting cases, the model to be learned

(here represented as a single variable w) contains a lot
of structure.�is structure can be exploited by expecta-
tion propagation tomake it more e�cient. For example,
when a term only contains a subset of the elements

of w, so does its term approximation. Also, we might
take as the approximating distribution a distribution
that factorizes over the elements of w, instead of a “full”
distribution coupling all elements. For a Gaussian, this
would amount to a diagonal instead of a full covari-
ance matrix. Such a factorization will lead to lower
memory requirements and faster computation, perhaps
at the expense of reduced accuracy. More advanced
approximations include Tree-EP, where the approxi-
mating structure is a tree, and generalized expectation
propagation, which generalizes expectation propaga-
tion to include higher-order interactions in the same
way as generalized belief propagation generalizes loopy
belief propagation (Welling, Minka, & Teh, ).
Power expectation propagation (Minka, ) gen-

eralizes expectation propagation by considering a dif-
ferent distance measure in the projection step. Instead
of taking the Kullback–Leibler divergence, we can take
any so-called α-divergence. α =  corresponds to the
Kullback–Leibler divergence, α =− to the Kullback–
Leibler divergence with the two probabilities inter-
changed. In the latter case, we obtain a variational
method called variational Bayes.

Programs and Data
Code for expectation propagation applied for Gaussian
process classi�cation can be found at http://www.kyb.
tuebingen.mpg.de/bs/people/csatol/ogp/, and http://
www.gaussianprocess.org/gpml/code/matlab/doc/clas-
si�cation.html. Kevin Murphy’s Bayes Net toolbox
(http://bnt.sourceforge.net) can provide a good starting
point to write your own code for expectation propa-
gation.

Applications
Expectation propagation has been applied for, among
others, Gaussian process classi�cation (Csató, ),
inference in Bayesian networks and Markov random
�elds, text classi�cation with Dirichlet models and
processes (Minka & La�erty, ), 7logistic regres-
sion models for rating players (Herbrich & Graepel,
), and inference and learning in hybrid and non-
linear dynamic Bayesian networks (Heskes & Zoeter,
).

http://bnt.sourceforge.net
http://www.kyb.tuebingen.mpg.de/bs/people/csatol/ogp/
http://www.kyb.tuebingen.mpg.de/bs/people/csatol/ogp/
http://www.gaussianprocess.org/gpml/code/matlab/doc/clas-sification.html
http://www.gaussianprocess.org/gpml/code/matlab/doc/clas-sification.html
http://www.gaussianprocess.org/gpml/code/matlab/doc/clas-sification.html
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Future Directions
From an application point of view, expectation propa-
gation will probably become one of the standard tech-
niques for approximate Bayesian machine learning,
much like the Laplace approximation and Monte Carlo
methods. Future research may involve questions like

● When does expectation propagation converge? Can
we design variants that are guaranteed to converge?

● What “power” to use in power expectation propaga-
tion for what kind of purposes?

● Can we adapt expectation propagation to handle
approximating distributions that are not part of the
exponential family?

Cross References
7Gaussian Distribution
7Gaussian Process
7Graphical Models
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Expectation-Maximization
Algorithm

Synonyms
EM Algorithm; Expectation Maximization Algorithm

Expectation-Maximization (EM)was described byArthur
Dempster, Nan Laird, and Donald Rubin in a classic
 paper in the Journal of the Royal Statistical Soci-
ety. �e EM algorithm is used for �nding maximum
likelihood estimates of parameters in stochasticmodels,
where the model depends on unobserved latent or hid-
den variables. EM iterates between performing expecta-
tion (E) and maximization (M) steps. Each expectation
step involves the computation of the expectation of the
likelihood of all model parameters by including the hid-
den variables as if they were observed. Each maximiza-
tion step involves the computation of the maximum
likelihood estimates of the parameters by maximizing
the expected likelihood found during the expectation
step. �e parameters produced by the maximization
step are then used to begin another expectation step,
and the process is repeated.
It can be shown that an EM iteration will not

decrease the observed data likelihood function. How-
ever, there is no guarantee that the iteration converges
to a maximum likelihood estimator.
“Expectation-maximization” has developed to be a

general recipe and umbrella term for a class of algo-
rithms that iterates between a type of expectation and
maximization step. �e Baum–Welch algorithm is an
example of an EM algorithm speci�cally suited to
HMMs.

Experience Curve

7Learning Curves in Machine Learning
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Experience-Based Reasoning

7Case-Based Reasoning

Explanation

In 7Minimum Message Length, an explanation is a
code with two parts, where the �rst part is an assertion
code and the second part is a detail code.

Explanation-Based Generalization
for Planning

7Explanation-Based Learning for Planning

Explanation-Based Learning

Gerald DeJong, Shiau Hong Lim
University of Illinois at Urbana
Urbana, IL, USA
University of Illinois,
IL, USA

Synonyms
Analytical learning; Deductive learning; EBL; Utility
problem

Definition
Explanation-Based Learning (EBL) is a principled
method for exploiting available domain knowledge to
improve 7supervised learning. Improvement can be
in speed of learning, con�dence of learning, accuracy
of the learned concept, or a combination of these. In
modern EBL the domain theory represents an expert’s
approximate knowledge of complex systematic world
behavior. It may be imperfect and incomplete. Inference
over the domain knowledge provides analytic evidence
that compliments the empirical evidence of the train-
ing data. By contrast, in original EBL the domain theory
is required to be much stronger; inferred properties
are guaranteed. Another important aspect of modern
EBL is the interaction between domain knowledge and

Explanation-Based Learning. Figure . Conventional

learner

labeled training examples a�orded by explanations.
Interaction allows the nonlinear combination of evi-
dence so that the resulting information about the target
concept can be much greater than the sum of the infor-
mation from each evidence source taken independently.

Motivation and Background
A conventional machine learning system is illustrated
in Fig. . A hypothesis ĥ is selected from a space of can-
didates H using a training set of labeled examples Z as
evidence. It is common to assume that the examples
are drawn from some space of well-formed inputs X
according to some �xed but unknown distribution D.
�e quality of ĥ is to be judged against di�erent exam-
ples similarly selected and labeled. �e correct label
for an example is speci�ed by some ideal target con-
cept, c∗. �is is typically some complex world process
whose outcome is of interest.�e target concept, c∗, will
generally not be a member of space of acceptable candi-
dates, H. Rather, the learner tries to �nd some ĥ which
is acceptably similar to c∗ over XD and can serve as a
computationally tractable stand-in.
Of course, good performance of ĥ on Z (its train-

ing performance) alone is insu�cient.�e learner must
achieve some statistical guarantee of good performance
on the underlying distribution (test performance). If H
is too rich and diverse or if Z is too impoverished, a
learner is likely to7over�t the data; itmay �nd a pattern
in the training data that does not hold in the underlying
distribution XD . Test performance will be poor despite
good training performance.
An Explanation-Based Learner employs its domain

theory, ∆ (Fig. ) as an additional source of informa-
tion. �is domain theory must not be confused with
7learning bias, which is present in all learners. Deter-
minations (Russell & Grosof, ) provide an extreme
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Explanation-Based Learning. Figure . EBL learner

illustration. �ese are logical expressions that make
strong claims about the world but only a�er seeing a
training example. EBL domain theories are used only
to explain. An inferred expression is not guaranteed to
hold but only provides analytic evidence.
An explanation for some z ∈ Z is immediately

and easily generalized: �e structure of the explanation
accounts for why zs assigned classi�cation label should
follow from its features. All other examples that meet
these conditions are assigned the same classi�cation by
the generalized explanation for the same reasons.
Early approaches to EBL (e.g., DeJong & Mooney,

; Mitchell, ; Mitchell, Keller, & Kedar-Cabelli,
; Russell & Norvig, ) were undone by two dif-
�cult problems: () unavoidable imperfections in the
domain theory and () the utility problem. �e former
stems from assuming a conventional semantics for the
domain theory. It results in a brittleness and an under-
reliance on the training data. Modern EBL is largely a
reaction to this di�culty. �e utility problem is a con-
sequence of an ill-de�ned hypothesis space and, as will
be discussed later, can be avoided in a straightforward
manner.

Structure of Learning System
Explanations and Their Generalization

An explanation for a training example is any causal
structure, derivable from ∆, which justi�es why this
training example might merit its teacher-assigned clas-
si�cation label. A generalized explanation is the struc-
ture of an explanation without the commitment to any
particular example. �e explanation and generalization
processes are relatively straightforward and not signi�-
cantly di�erent from the original EBL algorithms.

�eweaknessofearlyEBLisinviewingthecomponents
of ∆ as constraints. �is leads to a view of explanations
andtheirgeneralizationsasproofs.Real-worldbrittleness
duetothequali�cationproblem(McCarthy,)follows
inevitably.InmodernEBL,∆isseenasapproximatingthe
underlying world constraints (DeJong, ; Kimmig,
De Raedt, & Toivonen, ). �e domain theory is
fundamentally a statistical device. Its analytic evidence
and the empirical evidenceof the trainingexamplesboth
provide a bridge to the real world.

�e domain theory introduces new predicates and
speci�es their signi�cant potential interactions. From a
statistical point of view, these are named latent (hidden)
features together with a kind of grammar for construct-
ing alternative estimators for them. In short, the domain
theory compactly speci�es a large set of conceptual
structures that an expert believes may be useful mak-
ing sense of the domain. If the expert is correct, then
patterns of interest will become computationally much
more accessible via analytic inference.
One �exible and useful form of a domain theory

is sound inference over a set of �rst-order symbolic
logic sentences. In such domain theories, the explana-
tion mechanism can be identical to logical deduction
although using a paraconsistent inference mechanism;
inference must be well behaved despite inconsisten-
cies in the theory. Generalized explanations are simply
“theorems” of ∆ that relate a classi�cation label to the
values of observable example features. But since the
sentences of the theory only approximate world con-
straints, derivation alone, even via sound inference, is
not su�cient evidence to believe a conclusion. �us,
a generalized explanation is only a conjecture. Addi-
tional training examples beyond those used to generate
each explanation help to estimate the utility of these
generalizations.
But analytic mechanisms need not be limited to

symbolic logic-like inference. For example, one EBL
approach is to distinguish handwritten Chinese charac-
ters (Lim, Wang, & DeJong, ) employing a Hough
transform as a component of the domain theory. �ere,
an explanation conjectures (hidden) glyph “strokes” to
explain how the observed pixels of the training images
may realize the image’s character label.
Whatever the form of the analytic inferential mech-

anism, multiple, quite incompatible explanations can
be generated; the same training label can be explained
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Explanation-Based Learning. Figure . An example

space with two designated positive training items

Explanation-Based Learning. Figure . Four constructed

explanations are sufficient to cover the positive examples

using di�erent input features and postulating di�erent
interactions. Such explanations will generalize to cover
quite di�erent subsets ofX. Figure  shows a small train-
ing set with two positive examples highlighted. While
the explanation process can be applied to all exam-
ples both positive and negative, these two will be used
to illustrate. In this illustration, just two explanations
are constructed for each of the highlighted training
examples. Figure  shows the generalized extensions
of these four explanations in the example space. �e
region enclosed by each contour is meant to denote
the subset of X conjectured to merit the same classi-
�cation as the explained example. Explanations make
no claim about the labels for examples outside their
extension.

Evaluation and Hypothesis Selection

Additional training examples that fall within the exten-
sion of a generalized explanation help to evaluate it

Explanation-Based Learning. Figure . Explanations are

evaluated with other training examples

Explanation-Based Learning. Figure . An element from

H that approximates the weighted explanations

empirically.�is is shown in Fig. .�e estimated utility
of a generalized explanation re�ects () the general-
ized explanation’s empirical accuracy on these train-
ing examples, () the inferential e�ort required to
derive the explanation (see DeJong, ), and () the
redundancies and interactions with other generalized
explanations (higher utility is estimated if its correct
predictions are less commonly shared by other gener-
alized explanations).

�e estimated utilities de�ne an EBL classi�er as a
mixture of the generalized explanations each weighted
by its estimated utility:

ĉEBL(x) = ∑
g∈GE(Z,∆)

ug ⋅ g(x),

where GE(Z, ∆) denotes the generalized explanations
for Z from ∆ and ug is the estimated utility for g. �is
corresponds to a voting scheme where each general-
ized explanation that claims to apply to an example
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casts a vote in proportion to its estimated utility. �e
votes are normalized over the utilities of voting general-
ized explanations.�emixture scheme is similar to that
of sleeping experts (Freund, Schapire, Singer, & War-
muth, ).�is EBL classi�er approximates the target
concept c∗. But unlike the approximation chosen by a
conventional learner, ĉEBL re�ects the information of ∆
in addition to Z.

�e �nal step is to select a hypothesis ĥ fromH. �e
EBL concept ĉEBL is used to guide this choice. Figure 
illustrates the selection of a ĥ ∈ H, which is a good
approximation to a utility-blended mixture of Fig. .
�is �nal step, selecting a hypothesis fromH, is impor-
tant but was omitted in original EBL. �ese systems
employed generalized explanations directly. Unfortu-
nately, such classi�ers su�er from a di�culty known
as the utility problem (Minton, ). Note this is a
slightly di�erent use of the term utility, referring to
the performance of an application system. �is sys-
tem can be harmed more than helped by concepts such
as ĉEBL, even if these concepts provide highly accurate
classi�cation. Essentially, the average cost of evaluat-
ing an EBL concept may outweigh the average bene�t
that it provides to the application system. It is now
clear that this utility problem is simply the manifesta-
tion of a poorly structured hypothesis space. Note that,
in general, an EBL classi�er itself will not be an ele-
ment of the space of acceptable hypothesesH. Previous
approaches to the utility problem (Etzioni, ; Gratch
& DeJong, ; Greiner & Jurisica, ; Minton, )
identify and disallow o�ending EBL concepts. How-
ever, the root cause is addressed by employing the EBL
concept as a guidance in selecting a ĥ ∈ H rather
than using ĉEBL directly. Without this last step, H is
completely ignored. But H embodies all of the infor-
mation in the learning problem about what makes an
acceptable hypothesis. �e “utility problem” is sim-
ply the manifestation of leaving out this important
information.
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the dominant paradigm of the �eld, interest in analytic
approaches waned.�e current resurgence of interest is
largely driven by placing EBL in a modern statistically
sophisticated framework that nonetheless is still able
to exploit a �rst-order expressiveness (DeJong, ;
Kimmig et al., ; Lim et al., ; Sun & DeJong,
)

Cross References
7Explanation-Based Learning for Planning
7Speedup Learning

Recommended Reading
Anderson, J. (). Knowledge compilation: The general learning

mechanism. In R. Michalski, J. Carbonell, & T. Mitchell (Eds.),
Machine learning II (pp. –). San Mateo, CA: Morgan
Kaufmann.

Bruynooghe, M., De Raedt, L., & De Schreye, D. (). Explanation
based program transformation. In IJCAI (pp. –).

Cohen, W. W. (). Abductive explanation-based learning: A solu-
tion to the multiple inconsistent explanation problem.Machine
Learning, , –.

DeJong, G. (). Generalizations based on explanations. In
IJCAI’, the seventh international joint conference on artificial
intelligence (pp. –). Vancover, BC.

DeJong, G. (). Toward robust real-world inference: A new per-
spective on explanation-based learning. In ECML, the seven-
teenth European conference on machine learning (pp. –).
Heidelberg: Springer.



 E Explanation-Based Learning for Planning

DeJong, G., & Mooney, R. (). Explanation-based learning: An
alternative view. Machine Learning, (), –.

Etzioni, O. (). A structural theory of explanation-based learn-
ing. Artificial Intelligence, (), –.

Fikes, R., Hart, P. E., & Nilsson, N. J. (). Learning and exe-
cuting generalized robot plans. Artificial Intelligence, (–),
–.

Flann, N. S., & Dietterich, T. G. (). A study of explanation-
based methods for inductive learning. Machine Learning, ,
–.

Freund, Y., Schapire, R. E., Singer, Y., & Warmuth, M. K. ().
Using and combining predictors that specialize. In Twenty-
ninth annual ACM symposium on the theory of computing
(pp. –). El Paso, TX.

Genest, J., Matwin, S., & Plante, B. (). Explanation-based learn-
ing with incomplete theories: A three-step approach. In pro-
ceedings of the seventh international conference on machine
learning (pp. –).

Gratch, J., & DeJong, G. (). Composer: A probabilistic solu-
tion to the utility problem in speed-up learning. In AAAI
(pp. –).

Greiner, R., & Jurisica, I. (). A statistical approach to solving
the EBL utility problem. In National conference on artificial
intelligence (pp. –). San Jose, CA.

Hirsh, H. (). Explanation-based generalization in a logic-
programming environment. In IJCAI (pp. –). Milan,
Italy.

Kimmig, A., De Raedt, L., & Toivonen, H. (). Probabilistic
explanation based learning. In ECML’, the eighteenth Euro-
pean conference on machine learning (pp. –).

Laird, J. E., Rosenbloom, P. S., & Newell, A. (). Chunking in
soar: The anatomy of a general learning mechanism. Machine
Learning, (), –.

Lim, S. H., Wang, L.-L., & DeJong, G. (). Explanation-based fea-
ture construction. In IJCAI’, the twentieth international joint
conference on artificial intelligence (pp. –)

McCarthy, J. (). Circumscription – a form of non-monotonic
reasoning. Artificial Intelligence, , –.

Minton, S. (). Quantitative results concerning the utility
of explanation-based learning. Artificial Intelligence, (–),
–.

Mitchell, T. (). Machine learning. New York: McGraw-Hill.
Mitchell, T., Keller, R., & Kedar-Cabelli, S. (). Explanation-

based generalization: A unifying view. Machine Learning, (),
–.

Ourston, D., & Mooney, R. J. (). Theory refinement combining
analytical and empirical methods. Artificial Intelligence, (),
–.

Pazzani, M. J., & Kibler, D. F. (). The utility of knowledge in
inductive learning. Machine Learning, , –.

Russell, S., & Norvig, P. (). Artificial intelligence: A modern
approach (nd ed.). Englewood Cliffs, NJ: Prentice-Hall.

Russell, S. J., & Grosof, B. N. (). A declarative approach to bias
in concept learning. In AAAI (pp. –). Seattle, WA.

Sun, Q., & DeJong, G. (). Feature kernel functions: Improving
svms using high-level knowledge. In CVPR () (pp. –)

Thrun, S., & Mitchell, T. M. (). Integrating inductive neu-
ral network learning and explanation-based learning. In IJCAI
(pp. –). Chambery, France.

Towell, G. G., Craven, M., & Shavlik, J. W. (). Constructive
induction in knowledge-based neural networks. In proceed-
ings of the eighth international conference on machine learning
(pp. –)

Zelle, J. M., & Mooney, R. J. (). Combining Foil and EBG to
speed-up logic programs. In IJCAI (pp. –). Chambery,
France.

Explanation-Based Learning for
Planning

Subbarao Kambhampati, Sungwook Yoon
Arizona State University, Tempe, AZ, USA
Palo Alto, CA, USA

Synonyms
Explanation-based generalization for planning; Speedup
learning for planning

Definition
7Explanation-based learning (EBL) involves using
prior knowledge to explain (“prove”) why the training
example has the label it is given, and using this expla-
nation to guide the learning. Since the explanations are
o�en able to pinpoint the features of the example that
justify its label, EBL techniques are able to get by with
much fewer number of training examples. On the �ip
side, unlike general classi�cation learners, EBL requires
prior knowledge (aka “domain theory/model”) in addi-
tion to labeled training examples – a requirement that
is not easily met in some scenarios. Since many plan-
ning and problem solving agents do start with declara-
tive domain theories (consisting at least descriptions of
actions along with their preconditions and e�ects), EBL
has been a popular learning technique for planning.

Dimensions of Variation
�e application of EBL in planning varies along several
dimensions: whether the learning was for improv-
ing the speed and quality of the underlying plan-
ner (Etzioni, ; Kambhampati, ; Kambhampati,
Katukam, & Qu, ; Minton et al., ; Yoon, Fern,
& Givan, ) or acquire the domain model (Levine &
DeJong, ); whether it was was done from successes
(Kambhampati, ; Yoon et al. ) or failures (Ihrig
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& Kambhampati, ; Minton et al., ); whether
the explanations were based on complete/correct
(Kambhampati et al., ; Minton et al., ) or par-
tial domain theories (Yoon et al.), whether learning
is based on single (Kambhampati, ; Kambhampati
et al.; Minton et al., ) or multiple examples (Estlin
& Mooney, ; Flann & Dietterich, ) (where, in
the latter case, inductive learning is used in conjunc-
tion with EBL) and �nally whether the planner whose
performance EBL aims to improve is a means-ends
analysis one (Minton et al., ), partial-order planner
(Estlin & Mooney, ) or a heuristic search planner
(Yoon et al.).
EBL techniques have been used in planning both

to improve search and to reduce domain modeling
burden (although the former has received more atten-
tion by far). In the former case, EBL is used to learn
“control knowledge” to speedup the search process
(Kambhampati et al., ; Minton et al., ), or to
improve the quality of the solutions found by the search
process (Estlin & Mooney, ). In the latter case EBL
is used to develop domain models (e.g., action models)
(Levine & DeJong, ).
EBL for search improvement involves either remem-

bering and reusing successful plans, or learning search
control rules to avoid failing search branches. Other
variations include learning e�ective indexing of stored
cases from retrieval failures (Ihrig & Kambhampati,
) and learning “adjustments” to the default heuristic
used by the underlying search.
Another important issue is the degree of complete-

ness/correctness of the underlying background theory
used to explain examples. If the theory is complete and
correct, then learning is possible from a single example.
�is type of EBL has been called “analytical learning.”
When the theory is partia, EBL still is e�ective in nar-
rowing down the set of potentially relevant features of
the training example. �ese features can then be used
within an inductive learner. Within planning, EBL has
been used in the context of complete/correct as well as
partial domain models.
A �nal dimension of variation that di�erentiated a

large number of research e�orts is the type of underly-
ing planner. Initially, EBL was used on top of means-
ends analysis planners (cf. PRODIGY, Minton et al.,
). Later work focused on partial order planners
(e.g., Estlin &Mooney, ; Kambhampati et al., ).

More recently, the focus has been on forward search
state-space planners (Yoon et al., ).

Learning from Success: Explanation-Based
Generalization
When learning from successful cases (plans), the train-
ing examples comprise of successful plans, and the
explanations involve proofs showing that the plan, as
it is given, is able to support the goals. Only the parts
of the plan that take part in this proof are relevant for
justifying the success of the plan. �e plan is thus “gen-
eralized” by removing extraneous actions that do not
take part in the proof. Object identi�ers and action
orderings are also generalized as long as the generaliza-
tion doesn’t a�ect the proof of correctness (Kambham-
pati, ). �e output of the learning phase is thus a
variablized plan containing a subset of the constraints
(actions, orderings, object identity constraints) of the
original plan. �is is then typically indexed and used as
a macro-operator to speed-up later search.
For example, given a planning problem of starting

with an initial state where �ve blocks, A, B, C, D and
E are on table, and the problem requires that in the
goal state A must be on B and C must be on D, and a
plan P that is a sequence of actions pickup A, stack A
on B, pickup E, putdown E, Pickup C, stack C on D, the
explanation-based learner might output the generaliza-
tion “do in any order { pickup x, stack x on y} { pick up z,
stack z on w}” for the generalized goals on (x, y) and on
(w, z), starting from a state where x, y, z and w are all
on table and clear, and each of them denotes a distinct
block.
One general class of such proof schema involves

showing that every top level goal of the planning prob-
lem aswell as the precondition of every action are estab-
lished and protected. Establishment requires that there
is an action in the plan that gives that condition, and
protection requires that once established, the condition
is not deleted by any intervening action.
A crucial point is that the extent of generaliza-

tion depends on the �exibility of the proof strategy
used. Kambhampati and Kedar () discuss a spec-
trum of generalization strategies associated with a spec-
trum of proof strategies, while Shavlik () discusses
how the number of actions in the plan can also be
generalized.
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Learning from Failure
When learning from the failure of a search branch,
EBL starts by analyzing the plans at the failing nodes
and constructing an explanation of failure. �e fail-
ure explanation is just a subset of constraints in the
plan at the current search node, which, in conjunction
with domain theory ensures that no successful solu-
tion can be reached by further re�ning this plan. �e
explanations can range from direct constraint inconsis-
tencies (e.g., ordering cycles), to indirect violation of
domain axioms (e.g., the plan requiring both clear(B)
and On(A,B) to be satis�ed at the same time point).
�e explanations at the leaf nodes are “regressed” over
the decisions in the search tree to higher level nodes
to get explanations of (implicit) failures in these higher
level nodes.�e search control rules can then essentially
recommend pruning any search node which satis�es a
failure explanation.

�e deep a�nity between EBL from search failures
and the idea of 7nogood learning and dependency-
directed backtracking in CSP is explored in
Kambhampati (). As in dependency directed
backtracking, the more succinct the explanation, the
higher the chance of learning e�ective control rules.
Note that e�ectiveness here is de�ned in terms of the
match costs involved in checking whether the rule is
applicable, and the search reductions provided when it
is applicable. Signi�cant work has been done to identify
classes of failure explanation that are expected to lead to
ine�ective rules (Etzioni, ). In contrast to CSP that
has a �nite depth search tree, one challenge in planning
is that o�en an unpromising search node might not
exhibit any direct failure with a succinct explanation,
and is abandoned by the search for heuristic reasons
(such as the fact that the node crosses a depth limit
threshold). Strategies for �nding implicit explanations
of failure (using domain axioms), as well as getting by
with incomplete explanations of failure are discussed in
Kambhampati et al. (). EBL from failures has also
been applied to retrieval (rather than search) failures.
In this case, the failure of extending a plan retrieved
from the library to solve a new problem is used to learn
new indexing schemes that inhibit that case from being
retrieved in such situations (Ihrig & Kambhampati,
).

Learning Adjustments to Heuristics
Most recent work in planning has been in the context of
heuristic search planners, where learning from failures
doesn’t work as well (since the heuristic search may
change directions much before a given search branch
ends in an explainable failure). One way of helping
such planners is to improve their default heuristic (Yoon
et al., ). Given a heuristic h(s) that gives the heuris-
tic estimate of state s, the aim in Yoon et al. is to learn
an adjustment δ(s) that is added to h(s) to get a getter
estimate of h∗(s) – the true cost of state s. �e system
has access to actual plan traces (which can be obtained
by having the underlying planner solve some problems
from scratch). For each state s on the trace, we know the
true distance of state s from the goal state, and we can
also compute the h(s) value with respect to the default
heuristic. �is gives the learner a set of training exam-
ples which are pairs of states and the adjustments they
needed to make to the default heuristic meet the true
distance. In order to learn the δ(s) from this training
data, we need to enumerate the features of state s that
are relevant to it needing the speci�c adjustment. �is
is where EBL come in. Speci�cally, one way of enumer-
ating the relevant features is to explain why s has the
default heuristic value it does. �is, in turn, is done by
taking the features of the relaxed plan for state s. Since
the relaxed plan is a plan that assumes away all negative
interactions between the actions, relaxed plan features
can be seen as features of the explanation of the label
for state s in terms of a partial domain theory (onewhich
ignores all the deletes of all actions).

EBL from Incomplete Domain Theories
While most early e�orts for speed-up focused on com-
plete and correct theories, several e�orts also looked at
speed-up learning from incomplete theories. �e so-
called Lazy EBL approaches (Chien, ; Tadepalli,
) work by �rst constructing partial explanations,
and subsequently re�ne the over-general rules learned.
Other approaches that use similar ideas outside plan-
ning include Flann and Dietterich () and Cohen
(). As we noted above, the work by Yoon et al.
() can also be seen as basing learning (in their case
of adjustments to a default heuristic function) w.r.t. a
partial domain theory.
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EBL to Learn Domain Knowledge
Although most work in EBL for planning has been
focused on speedup, there has also been some work
aimed at learning domain knowledge (rather than con-
trol knowledge). Of particular interest is “operational-
izing” a complex, if opaque, domain model by learning
from it a simpli�ed domain model that is adequate to
e�ciently solve an expected distribution of problems.
�e recent work by Levine and DeJong () is an
example of such an e�ort.

EBL and Knowledge-Level Learning
Although the focus of this article is on EBL as applied
to planning, we need to foreground one general issue:
whether EBL is capable of knowledge-level learning
or not. A popular misconception of EBL is that since
it depends on a complete and correct domain theory,
no knowledge-level learning is possible, and speedup
learning is the only possibility. (�e origins of this mis-
conception can be traced back to the very beginning.
�e two seminal articles on EBL in the very �rst issue
of the Machine Learning journal di�ered profoundly
in their interpretations of EBL. While Mitchell, Keller,
and Kedar-Cabelli () assumed that EBL by default
workswith complete and correct theories (thus preclud-
ing any knowledge-level learning), DeJong () pro-
vide a more general view of EBL that uses background
knowledge – whether or not it is complete – to focus the
generalization (and as such can be seen as a knowledge-
based feature-selection step for a subsequent inductive
learner)). As we noted at the outset however, EBL is not
required to depend on complete and correct domain
theories, and when it doesn’t, knowledge level learning
is indeed possible.

Utility Problem and its Non-Exclusive
Relation to EBL
As we saw above, much early work in EBL for plan-
ning focused on speed-up for the underlying planner.
Some of the knowledge learned for speedup – especially
control rules and macro-operators – can also adversely
a�ect the search by increasing either the search space
size (macros) and/or per-node cost (matching control

rules). Clearly, in order for the net e�ect to be posi-
tive, care needs to be exercised as to which control rules
and/or macros are stored.�is has been called the “util-
ity problem” (Minton, ) and signi�cant attention
has been paid to develop strategies that either dynami-
cally evaluate the utility of the learned control knowl-
edge (and forget useless rules) (Markovitch & Scott,
; Minton, ), or select the set of rules that best
serve a given distribution of problem instances (Gratch,
Chien, & DeJong, ).
Despite the prominent attention given to the util-

ity problem, it is important to note the non-exclusive
connection between EBL and utility problem We note
that any strategy that aims to provide/acquire control
knowledge will su�er from the utility problem. For
example, utility problem also holds for inductive learn-
ing techniques that were used to learn control knowl-
edge (cf. Leckie & Zukerman, ). In other words, it
is not special to EBL but rather to the speci�c applica-
tion task. We note that it is both possible to do speedup
learning that is less suceptible to the utility problem
(e.g., learn adjustments to heuristics, Yoon et al., ),
and possible to to use EBL for knowledge-level learning
(Levine & DeJong, ).

Current Status
EBL for planning was very much in vogue in late
eighties and early nineties. However, as the speed of
the underlying planners increased drastically, the need
for learning as a crutch to improve search e�ciency
reduced. �ere has however been a recent resurgence
of interest, both in further speeding up the planners,
and in learning domain models. Starting , there
is a new track in the International Planning Compe-
tition devoted to learning methods for planning. In
the �rst year, the emphasis was on speedup learning.
ObtuseWedge, a system that uses EBL analysis to learn
adjustments to the default heuristic, was among the
winners of the track. �e DARPA integrated learning
initiative, and interest in model-lite planning have also
brought focus back to EBL for planning – this time with
partial domain theories.
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Additional Reading
�e tutorial (Yoon & Kambhampati, ) provides an
up-to-date and broader overview of learning techniques
applied to planning, and contains signi�cant discussion
of EBL techniques. �e paper (Zimmerman & Kamb-
hampati, ) provides a survey of machine learning
techniques used in planning, and includes a more com-
prehensive listing of research e�orts that applied EBL in
planning.
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