ID3

» Decision Tree

|
Identification

» Classification

! Identity Uncertainty

»Entity Resolution

' Idiot’s Bayes

» Naive Bayes

" Immune Computing

» Artificial Immune Systems

|
Immune Network

A proposed theory that the immune system is capable
of achieving immunological memory by the existence
of a mutually reinforcing network of B-cells. This net-
work of B-cells forms due to the ability of the paratopes,
located on B-cells, to match against the idiotopes on
other B-cells. The binding between the idiotopes and
paratopes has the effect of stimulating the B-cells. This
is because the paratopes on B-cells react to the idiotopes
on similar B-cells, as it would an antigen. However,
to counter the reaction there is a certain amount of
suppression between the B-cells which acts as a regu-
latory mechanism. This interaction of the B-cells due

to the network was said to contribute to a stable mem-
ory structure and account for the retainment of memory
cells, even in the absence of antigen. This interaction of
cells forms the basis of inspiration for a large number of
AIS algorithms, for example aiNET.

! Immune-Inspired Computing

» Artificial Immune Systems

! Immunocomputing

» Artificial Immune Systems

| . .
Immunological Computation

» Artificial Immune Systems

! Implication

» Entailment

! Improvement Curve

»Learning Curves in Machine Learning

I .
Incremental Learning

PauL E. UTGOFF
University of Massachusetts, Amherst, USA

Definition

Incremental learning refers to any »online learning pro-
cess that learns the same »model as would be learnt by
a Pbatch learning algorithm.

Claude Sammut & Geoffrey I. Webb (eds.), Encyclopedia of Machine Learning, DOI110.1007/978-0-387-30164-8,

© Springer Science+Business Media LLC 2011

516

Incremental Learning

Motivation and Background

Incremental learning is useful when the input to a learn-
ing process occurs as a stream of distinct observations
spread out over time, with the need or desire to be able
to use the result of learning at any point in time, based
on the input observations received so far. In principle,
the stream of observations may be infinitely long, or the
next observation long delayed, precluding any hope of
waiting until all the observations have been received.
Without the ability to forestall learning, one must com-
mit to a sequence of hypotheses or other learned arti-
facts based on the inputs observed up to the present.
One would rather not simply accumulate and store all
the inputs and, upon receipt of each new one, apply
a batch learning algorithm to the entire sequence of
inputs received so far. It would be preferable compu-
tationally if the existing hypothesis or other artifact of
learning could be updated in response to each newly
received input observation.

Theory

Consider the problem of computing the balance in one’s
checkbook account. Most would say that this does not
involve learning, but it illustrates an important point
about incremental algorithms. One procedure, a batch
algorithm based on the fundamental definition of bal-
ance, is to compute the balance as the sum of the
deposits less the sum of the checks and fees. As deposit,
check, and fee transactions accumulate, this definition
remains valid. There is an expectation that there will
be more transactions in the future, and there is also a
need to compute the balance periodically to ensure that
no contemplated check or fee will cause the account
to become overdrawn. We cannot wait to receive all
of the transactions and then compute the balance
just once.

One would prefer an incremental algorithm for this
application, to reduce the cost of computing the bal-
ance after each transaction. This can be accomplished
by recording and maintaining one additional piece of
information, the balance after the nth transaction. It is
a simple matter to prove that the balance after » transac-
tions added to the amount of transaction # + 1 provides
the balance after n + 1 transactions. This is because the
sums of the fundamental definition for n + 1 transac-
tions can be rewritten as the sums of the fundamental

definition for n transactions plus the amount of the
nth transaction. This incremental algorithm reduces
the computation necessary to know the balance after
each transaction, but it increases the bookkeeping effort
somewhat due to the need for an additional variable.

Now consider the problem of learning the mean
of a real valued variable from a stream of observed
values of this variable. Though simple, most would
say that this does involve learning, because one esti-
mates the mean from observations, without ever establi-
shing the mean definitively. The fundamental definition
for the mean requires summing the observed values and
then dividing by the number of observed values. As each
new observation is received, one could compute the new
mean. However, one can reduce the computational cost
by employing an incremental algorithm. For n observa-
tions, we could just as well have observed exactly the
n occurences of the mean. The sum of these observa-
tions divided by n would produce the mean. If we were
to be provided with an 7 +1 observation, we could com-
pute the new sum of the n + 1 observations as n cases
of the mean value plus the new observation, divided by
n+1. This reduces the cost of computing the mean after
each observation to one multiplication, two addition,
and one division operations. There is a small increase in
bookkeeping in maintaining the counter n of how many
observations have been received, and the mean m after
n observations.

In both of the above examples, the need to record the
fundamental data is eliminated. Only a succinct sum-
mary of the data needs to be retained. For the checkbook
balance, only the balance after # transactions needs to
be stored, making the specific amounts for the individ-
ual transactions superfluous. For the mean of a variable,
only the mean m after n observations and the num-
ber n of observations need to be retained, making the
specific values of the individual observations superflu-
ous. Due to this characteristic, incremental algorithms
are often characterized as memoryless, not because no
memory at all is required, but because no memory
of the original data items is needed. An incremental
algorithm is not required to be memoryless, but the
incremental algorithm must operate by modifying its
existing knowledge, not by hiding the application of
the corresponding batch algorithm to the accumulated
set of observations. The critical issue is the extent to
which computation is reduced compared to starting

Incremental Learning

517

with all the data observations and nothing more. An
essential aspect for an incremental algorithm is that
the obtained result be identical to that indicated by
the fundamental definition of the computation to be
performed.

A point of occasional confusion is whether to call an
algorithm incremental when it makes adjustments to its
data structures in response to a new data observation.
The answer depends on whether the result is the same
that one would obtain when starting with all the obser-
vations in hand. If the answer is no, then one may have
an online learning algorithm that is not an incremental
learning algorithm. For example, consider two alterna-
tive formulations of the problem mentioned above of
learning the mean of a variable. Suppose that the count
of observations, held in the variable #, is not permit-
ted to exceed some constant, say 100. Then the mean
after n observations coupled with the minimum of n
and 100 no longer summarizes all # observations accu-
rately. Consider a second reformulation. Suppose that
the most recent 100 observations are held in a queue.
When a new observation is received, it replaces the
oldest of the 100 observations. Now the algorithm can
maintain a moving average, but not the overall overage.
These may be desirable, if one wishes to remain respon-
sive to drift in the observations, but that is another
matter. The algorithm would not be considered incre-
mental because it does not produce the same result for
all n observations that the corresponding batch algo-
rithm would for these same #n observations. The algo-
rithm would be online, and it would be memoryless, but
it would not be computing the same learned artifact as
the batch algorithm.

These two latter reformulations raise the issue
of whether the order in which the observations are
received is relevant. It is often possible to determine this
by looking at the fundamental definition of the com-
putation to be performed. If the operator that aggre-
gates the observations is commutative, then order is not
important. For the checking account balance example
above, the fundamental aggregation is accomplished in
the summations, and addition is commutative, so the
order of the transactions is not relevant to the result-
ing balance. If a fundamental algorithm operates on a
set of observations, then aggregation of a new observa-
tion into a set of observations is accomplished by the set
union operator, which is commutative. Can one have an

incremental algorithm for which order of the observa-
tions is important? In principle, yes, provided that the
result of the incremental algorithm after observation n
is the same as that of the fundamental algorithm for the
first n observations.

A final seeming concern for an incremental learn-
ing algorithm is whether the selection of future obser-
vations (n + 1 and beyond) is influenced by the first
n observations. This is a red herring, because for the
n observations, the question of whether the learning
based on these observations can be accomplished by a
batch algorithm or a corresponding incremental algo-
rithm remains. Of course, if one needs to use the result
of learning on the first k instances to help select the
k + 1 instance, then it would be good sense to choose
an incremental learning algorithm. One would rather
not apply a batch algorithm to each and every pre-
fix of the input stream. This would require saving the
input stream and it would require doing much more
computation than is necessary.

We can consider a few learning scenarios which
suit incremental learning. An Pactive learner uses its
current knowledge to select the next observation. For
a learner that is inducing a classifier, the observation
would be an unclassified instance. The active learner
selects an unclassified instance, which is passed to an
oracle that attaches a correct class label. Then the ora-
cle returns the labeled instance as the next observation
for the learner. The input sequence is no longer one
of instances for which each was drawn independently
according to a probability distribution over the possi-
ble instances. Instead, the distribution is conditionally
dependent on what the learner currently believes. The
learning problem is sequential in its nature. The obser-
vation can be delivered in sequence, and an incremental
learning algorithm can modify its hypothesis accord-
ingly. For the n observations received so far, one could
apply a corresponding batch algorithm, but this would
be unduly awkward.

> Reinforcement learning is a kind of online learn-
ing in which an agent makes repeated trials in a sim-
ulated or abstracted world in order to learn a good, or
sometimes optimal, policy that maps states to actions.
The learning artifact is typically a function V over states
or a function Q over state-action pairs. As the agent
moves from state to state, it can improve its function
over time. The choice of action depends on the current

518

Incremental Learning

V or Q and on the reward or punishment received at
each step. Thus, the sequence of observations consists
of state-reward pairs or state-action-reward triples. As
with active learning, the sequence of observations can
be seen as being conditionally dependent on what the
learner currently believes at each step. The function V'
or Q can be modified after each observation, without
retaining the observation. When the function is approx-
imated in an unbiased manner, by using a lookup table
for discrete points in the function domain, there is an
analogy with the problem of computing a checkbook
balance, as described above. For each cell of the lookup
table, its value is its initial value plus the sum of the
changes, analogously for transactions. One can com-
pute the function value by computing this sum, or one
can store the sum in the cell, as the net value of all the
changes. An incremental algorithm is preferable both
for reasons of time and space.

A k-nearest classifier (see »instance based learn-
ing) is defined by a set of training instances, the
observations, and a distance metric that returns the
numeric distance between any two instances. The dif-
ference between the batch algorithm and the incremen-
tal algorithm is slight. The batch algorithm accepts all
the observations at once, and the incremental algo-
rithm simply adds each new observation to the set
of observations. If however, there were data structures
kept in the background to speed computation, one
could distinguish between building those data struc-
tures once (batch) and updating those data structures
(incremental). One complaint might be that all of
the observations are retained. However, these obser-
vations do not need to be revisited when a new
one arrives. There is an impact on space, but not
on time.

A »decision tree classifier may be correct for the n
observations observed so far. When the n+1 observation
is received, an incremental algorithm will restructure
the tree as necessary to produce the tree that the batch
algorithm would have built for these # + 1 observations.
To do this, it may be that no restructuring is required at
all, or that restructuring is needed only in a subtree. This
is a case in which memory is required for saving obser-
vations in the event that some of them may be needed
to be reconsidered from time to time. There is a great
savings in time over running the corresponding batch
algorithm repeatedly.

Applications

Incremental learning is pervasive, and one can find any
number of applications described in the literature and
on the web. This is likely due to the fact that incremen-
tal learning offers computational savings in both time
and space. It is also likely due to the fact that human
and animal learning takes place over time. There are
sound reasons for incremental learning being essential
to development.

Future Directions

Increasingly, machine learning is confronted with the
problem of learning from input streams that contain
many millions, or more, of observations. Indeed, the
stream may produce millions of observations per day.
Streams with this many instances need to be han-
dled by methods whose memory requirements do not
grow much or at all. Memoryless online algorithms
are being developed that are capable of handling this
much throughput. Consider transaction streams, say
of a telephone company, or a credit card company, or
a stock exchange, or a surveillance camera, or eye-
tracking data, or mouse movement data. For such a rich
input stream, one could sample it, thereby reducing it
to a smaller stream. Or, one could maintain a window
of observations, giving a finite sample that changes but
does not grow over time. There is no shortage of applica-
tions that can produce rich input streams. New methods
capable of handling such heavy streams have already
appeared, and we can expect to see growth in this area.

Cross References
» Active Learning

» Cumulative Learning
»Online Learning

Recommended Reading

Domingos, P., & Hulten, G. (2003). A general framework for mining
massive data streams. Journal of Computational and Graphical
Statistics, 12.

Giraud-Carrier, C. (2000). A note on the utility of incremental
learning. AI Communications, 13, 215-223.

Utgoff, P. E., Berkman, N. C., & Clouse, J. A. (1997). Decision
tree induction based on efficient tree restructuring. Machine
Learning, 29, 5-44.

Induction

519

[
Indirect Reinforcement Learning

»Model-Based Reinforcement Learning

|
Induction

JaAMESs CUSSENS
University of York, Heslington, UK

Definition

Induction is the process of inferring a general rule from
a collection of observed instances. Sometimes it is used
more generally to refer to any inference from premises
to conclusion where the truth of the conclusion does
not follow deductively from the premises, but where the
premises provide evidence for the conclusion. In this
more general sense, induction includes abduction where
facts rather than rules are inferred. (The word “induc-
tion” also denotes a different, entirely deductive form of
argument used in mathematics.)

Theory

The problem of induction was famously set out by
the great Scottish empiricist philosopher David Hume
(1711-1776), although he did not actually use the word
“induction” in this context. With characteristic blunt-
ness, he argued that:

» there can be no demonstrative arguments to prove
that those instances of which we have had no experience
resemble those of which we have had experience (Hume,
1739, Part 3, Section 6).

Since scientists (and machine-learning algorithms) do
infer future-predicting general laws from past obser-
vations, Hume is led to the following unsettling con-
clusion concerning human psychology (and statistical
inference):

» It is not, therefore, reason, which is the guide of life,
but custom. That alone determines the mind, in all
instances, to suppose the future conformable to the
past (Hume, 1740).

That general laws cannot be demonstrated (i.e., deduced)
from data is generally accepted. Hume, however, goes
further: he argues that past observations do not even
affect the probability of future events:

» Nay, | will go farther, and assert, that he could not so
much as prove by any probable arguments, that the
future must be conformable to the past. All probable
arguments are built on the supposition, that there is this
conformity betwixt the future and the past, and there-
fore can never prove it. This conformity is a matter of
fact, and if it must be proved, will admit of no proof but
from experience. But our experience in the pastcanbea
proof of nothing for the future, but upon a supposition,
that there is aresemblance betwixt them. This therefore
is a point, which can admit of no proof at all, and which
we take for granted without any proof (Hume, 1740).

Hume’s unwavering skepticism concerning prediction
appears at variance with the predictive accuracy of
machine learning algorithms: there is much experimen-
tal evidence that ML algorithms, once trained on “past
observations,” make predictions on unseen cases with
an accuracy far in excess of what can be expected by
chance. This apparent discrepancy between Hume's phi-
losophy and practical experience of statistical inference
can be explored using a familiar example from the liter-
ature on induction. Let e be the statement that all swans
seen so far have been white and let i be the general
rule that all swans are white. Since h implies e it follows
that P(e|h) = 1 and so, using Bayes’ theorem, we have
that

P(h)P(elh) _ P(h)
Ple) P(e)’

P(hle) = @

So P(hle) > P(h) as long as P(e) < 1 and
P(h) > 0. This provides an explanation for the
predictive accuracy of hypotheses supported by data:
given supporting data they just have increased prob-
ability of being true. Of course, most machine learn-
ing outputs are not “noise-free” rules like h; almost
always hypotheses claim a certain distribution for
future data where no particular observation is ruled
out entirely — some are just more likely than oth-
ers. The same basic argument applies: if P(h) > 0

520

Induction

then as long as the observed data is more likely given
the hypothesis than it is a priori, that is, as long as
P(elh)/P(e) > 1, then the probability of & will increase.
Even in the (common) case where each hypothesis in
the hypothesis space depends on real-valued param-
eters and so P(h) = 0 for all h, Bayes theorem
still produces an increase in the probability density
in the neighborhoods of hypotheses supported by
the data.

In all these cases, it appears that e is giving “induc-
tive support” to h. Consider, however, i’ which states
that all swans until now have been white and all future
swans will be black. Even in this case, we have that
P(H'|e) >P(h") aslong as P(e) <1and P(h') > 0, though
hand h' make entirely contradictory future predictions.
This is a case of Goodman’s paradox. The paradox is the
result of confusing probabilistic inference with induc-
tive inference. Probabilistic inference, of which Bayes
theorem is an instance, is entirely deductive in nature -
the conclusions of all probabilistic inferences follow
with absolute certainty from their premises (and the
axioms of probability). P(hle) > P(h) for P(e)<1 and
P(h) >0 essentially because e has (deductively) ruled
out some data that might have refuted 4, not because
a “conformity betwixt the future and the past” has been
established.

Good performance on unseen data can still be
explained. Statistical models (equivalently machine
learning algorithms) make assumptions about the world.
These assumptions (so far!) often turn out to be correct.
Hume noted that the principle “that like objects, placed
in like circumstances, will always produce like effects”
(Hume, 1739, Part 3, Section 8) although not deducible
from first principles, has been established by “sufficient
custom.” This is called the uniformity of nature prin-
ciple in the philosophical literature. It is this principle
which informs machine learning systems. Consider the
standard problem of predicting class labels for attribute-
value data using labeled data as training. If an unlabeled
test case has attribute values which are “close” to those of
many training examples all of which have the same class
label then in most systems the test case will be labeled
also with this class. Different systems differ in how they
measure “likeness”: they differ in their »inductive bias.
A system which posited k' above on the basis of e would
have an inductive bias strongly at variance with the
uniformity of nature principle.

These issues resurfaced within the machine learn-
ing community in the 1990s. This ML work focused
on various “Pno-free-lunch theorems?” Such a theorem
essentially states that a uniformity of nature assumption
is required to justify any given inductive bias. This is
how Wolpert puts in one of the earliest “no-free-lunch”
papers:

» This paper proves thatitis impossible to justify a correla-
tion between reproduction of a training set and gener-
alization error off of the training set using only a priori
reasoning. As a result, the use in the real world of any
generalizer which fits a hypothesis function to a training
set (e.g., the use of back-propagation) is implicitly pred-
icated on an assumption about the physical universe
(Wolpert, 1992).

Note that in Bayesian approaches inductive bias is
encapsulated in the prior distribution: once a prior has
been determined all further work in Bayesian statis-
tics is entirely deductive. Therefore it is no surprise that
inductivists have sought to find “objective” or “logical”
prior distributions to provide a firm basis for induc-
tive inference. Foremost among these is Rudolf Carnap
(1891-1970) who followed a logical approach - defining
prior distributions over “possible worlds” (first-order
models) which were in some sense uniform (Carnap,
1950). A modern extension of this line of thinking can
be found in Bacchus, Grove, Halpern, and Koller (1996).

Karl Popper (1902-1994) accepted the Humean posi-
tion on induction yet sought to defend science from
charges of irrationality (Popper, 1934). Popper replaced
the problem of induction by the problem of criticism.
For Popper, scientific progress proceeds by conjecturing
universal laws and then subjecting these laws to severe
tests with a view to refuting them. According to the
verifiability principle of the logical positivist tradition, a
theory is scientific if it can be experimentally confirmed,
but for Popper confirmation is a hopeless task, instead
a hypothesis is only scientific if it is falsifiable. All uni-
versal laws have prior probability of zero, and thus will
eternally have probability zero of being true, no mat-
ter how many tests they pass. The value of a law can
only be measured by how well-tested it is. The degree
to which a law has been tested is called its degree of
corroboration by Popper. The P(e|h)/P(e) term in Bayes

Induction

521

theorem will be high if a hypothesis / has passed many
severe tests.

Popper’s critique of inductivism continued through-
out his life. In the Popper-Miller argument (Popper &
Miller, 1984), as it became known, it is observed that a
hypothesis h is logically equivalent to:

(h<e)n(hve)

for any evidence e. We have that e - hve (where - means
“logically implies”) and also that (under weak condi-
tions) p(h < ele) < p(h < e). From this Popper and
Miller argue that

» ...we find that what is left of 1 once we discard from
it everything that is logically implied by e, is a propo-
sition that in general is counterdependent on e (Popper
& Miller, 1987)

and so

» Although evidence may raise the probability of a
hypothesis above the value it achieves on background
knowledge alone, every such increase in probability has
to be attributed entirely to the deductive connections
that exist between the hypothesis and the evidence
(Popper & Miller, 1987).

In other words if P(hle)>P(h) this is only because
e+ h v e. The Popper-Miller argument found both crit-
ics and supporters. Two basic arguments of the critics
were that (1) deductive relations only set limits to prob-
abilistic support; infinitely many probability distribu-
tions can still be defined on any given fixed system of
propositions and (2) Popper-Miller are mischaracter-
izing induction as the absence of deductive relations,
when it actually means ampliative inference: concluding
more than the premises entail (Cussens, 1996).

The branch of philosophy concerned with how evi-
dence can confirm scientific hypotheses is known as
»confirmation theory. Inductivists take the position
(against Popper) that observing data which follows
from a hypothesis not only fails to refute the hypoth-
esis, but also confirms it to some degree: seeing a white

swan confirms the hypothesis that all swans are white,
because

Vx : swan(x) — white(x), swan(white_swan)
+ white(white_swan).

But, by the same argument it follows that observing any
nonwhite, nonswan (say a black raven) also confirms
that all swans are white, since:

Vx : swan(x) — white(x), ~white(black_raven)

+ —swan(black_raven).

This is Hempel’s paradox to which there are a number
of possible responses. One option is to accept that the
black raven is a confirming instance, as one object in
the universe has been ruled out as a potential refuter.
The degree of confirmation is however of “a minis-
cule and negligible degree” (Howson & Urbach, 1989,
p- 90). Another option is to reject the formulation of
the hypothesis as a material implication where Vx :
swan(x) — white(x) is just another way of writing Vx :
—swan(x) v white(x). Instead, to be a scientific hypoth-
esis of any interest the statement must be interpreted
causally. This is the view of Imre Lakatos (1922-1974),
and since any causal statement has a (perhaps implicit)
ceteris paribus (“all other things being equal”) clause this
has implications for refutation also.

» ...all swans are white,” if true, would be a mere curios-
ity unless it asserted that swanness causes whiteness.
But then a black swan would not refute this proposi-
tion, since it may only indicate other causes operating
simultaneously. Thus “all swans are white” is either an
oddity and easily disprovable or a scientific proposi-
tion with a ceteris paribus clause and therefore easily
undisprovable (Lakatos, 1970, p. 102).

Cross References

» Abduction

»Bayesian Statistics

» Classification

»Learning from Analogy
»No-Free Lunch Theorems
»Nonmonotonic Logic

522

Induction as Inverted Deduction

Recommended Reading

Bacchus, F, Grove, A., Halpern, J. Y., & Koller, D. (1996). From statis-
tical knowledge bases to degrees of belief. Artificial Intelligence,
87(1-2), 75-143.

Carnap, R. (1950). Logical foundations of probability. Chicago: Uni-
versity of Chicago Press.

Cussens, J. (1996). Deduction, induction and probabilistic support.
Synthese, 108(1), 1-10.

Howson, C., & Urbach, P. (1989). Scientific reasoning: The Bayesian
approach. La Salle, IL: Open Court.

Hume, D. (1739). A treatise of human nature, book one (Anonymously
published).

Hume, D. (1740). An abstract of a treatise of human nature (Anony-
mously published as a pamphlet). London.

Lakatos, I. (1970). Falsification and the methodology of scientific
research programmes. In I. Lakatos & A. Musgrave (Eds.), Crit-
icism and the growth of knowledge (pp. 91-196). Cambridge, MA:
Cambridge University Press.

Popper, K. R. (1959). The logic of scientific discovery. London:
Hutchinson (Translation of Logik der Forschung, 1934).

Popper, K. R., & Miller, D. (1984). The impossibility of inductive
probability. Nature, 310, 434.

Popper, K. R., & Miller, D. (1987). Why probabilistic support is
not inductive. Philosophical Transactions of the Royal Society of
London, 321, 569-591.

Wolpert, D. H. (1992). On the connection between in-sample testing
and generalization error. Complex Systems, 6, 47-94.

[
Induction as Inverted Deduction

> Logic of Generality

I
Inductive Bias

Synonyms
Learning bias; Variance hint

Definition

Most ML algorithms make predictions concerning
future data which cannot be deduced from already
observed data. The inductive bias of an algorithm is what
choses between different possible future predictions.
A strong form of inductive bias is the learner’s choice
of hypothesis/model space which is sometimes called
declarative bias. In the case of Bayesian analysis, the
inductive bias is encapsulated in the prior distribution.

Cross References
»Induction, Learning as Search

" Inductive Database Approach to
Graphmining

STEFAN KRAMER
Technische Universitit Miinchen
Garching b. Miinchen, Germany

Overview

The inductive database approach to graph mining can
be characterized by (1) the concept of querying for
(subgraph) patterns in databases of graphs, and (2) the
use of specific data structures representing the space
of solutions. For the former, a query language for the
specification of the patterns of interest is necessary. The
latter aims at a compact representation of the solution
patterns.

Pattern Domain

In contrast to other graph mining approaches, the
inductive database approach to graph mining (De
Raedt & Kramer, 2001; Kramer, De Raedt, & Helma,
2001) focuses on simple patterns (paths and trees) and
complex queries (see below), not on complex patterns
(general subgraphs) and simple queries (minimum fre-
quency only). While the first approaches were restricted
to paths as patterns in graph databases, they were later
extended toward unrooted trees (Riickert & Kramer,
2003, 2004). Most of the applications are dealing with
structures of small molecules and structure-activity
relationships (SARs), that is, models predicting the bio-
logical activity of chemical compounds.

Query Language

The conditions on the patterns of interest are usu-
ally called constraints on the solution space. Simple
constraints are specified by so-called query primitives.
Query primitives express frequency-related or syntactic
constraints. As an example, consider the frequency-
related query primitive f(p, D) > t, meaning that a sub-
graph pattern p has to occur with a frequency of
at least t in the database of graphs D. Analogously,
other frequency-related primitives demand a maximum
frequency of occurrence, or a minimum agreement
with the target class (e.g., in terms of the information
gain or the y* statistic). Answering frequency-related

Inductive Inference

523

queries generally requires database access. In contrast to
frequency-related primitives, syntax-related primitives
only restrict the syntax of solution (subgraph) patterns,
and thus do not require database access. For instance,
we may demand that a pattern p is more specific
than “c:c-CI” (formally p > c:c-Cl) or more general than
“C-c:c:c:e:c-Cl (formally p < C-cic:c:c:c-Cl). The strings
in the primitive contain vertex (e.g., “C, “c; “CI’..)
and edge labels (e.g., “: “-”..) of a path in a graph.
Many constraints on patterns can be categorized as
either monotonic or anti-monotonic. Minimum fre-
quency constraints, for instance, are anti-monotonic,
because all subpatterns (in our case: subgraphs) are fre-
quent as well, if a pattern is frequent (according to
some user-defined threshold) in a database. Vice versa,
maximum frequency is monotonic, because if a pat-
tern is not too frequent, then all superpatterns (in our
case: supergraphs) are not too frequent either. Anti-
monotonic or monotonic constraints can be solved by
variants of level-wise search and APriori (De Raedt
& Kramer, 2001; Kramer, De Raedt, & Helma, 2001;
Mannila & Toivonen, 1997). Other types of constraints
involving convex functions, for example, related to the
target class, can be solved by branch-and-bound algo-
rithms (Morishita & Sese, 2000). Typical query lan-
guages offer the possibility to combine query primitives
conjunctively or disjunctively.

Data Structures

It is easy to show that solutions to conjunctions of
monotonic and anti-monotonic constraints can be rep-
resented by version spaces, and in particular, borders
of the most general and the most specific patterns
satistying the constraints (De Raedt & Kramer, 2001;
Mannila & Toivonen, 1997). Version spaces of patterns
can be represented in data structures such as version
space trees (De Raedt, Jaeger, Lee, & Mannila, 2002;
Riickert & Kramer, 2003). For sequences, data struc-
tures based on suffix arrays are known to be more
efficient than data structures based on version spaces
(Fischer, Heun, & Kramer, 2006). Query languages
allowing disjunctive normal forms of monotonic or
anti-monotonic primitives yield multiple version spaces
as solutions, represented by generalizations of version
space trees (Lee & De Raedt, 2003). The inductive

database approach to graph mining can also be catego-
rized as constraint-based mining, as the goal is to find
solution patterns satisfying user-defined constraints.

Recommended Reading

De Raedt, L., Jaeger, M., Lee, S. D., & Mannila, H. (2002). A theory
of inductive query answering. In Proceedings of the 2002 IEEE
international conference on data mining (ICDM 2002). IEEE
Computer Society, Washington, DC.

De Raedt, L., & Kramer, S. (2001). The levelwise version space
algorithm and its application to molecular fragment finding.
In Proceedings of the seventeenth international joint conference
on artificial intelligence (IJCAI 2001). Morgan Kaufmann: San
Francisco, CA.

Fischer, J., Heun, V., & Kramer, S. (2006). Optimal string min-
ing under frequency constraints. In Proceedings of the tenth
European conference on the principles and practice of knowledge
discovery in databases (PKDD 2006). Springer: Berlin.

Kramer, S., De Raedt, L., & Helma, C. (2001). Molecular feature min-
ing in HIV data. In Proceedings of the seventh ACM SIGKDD
international conference on knowledge discovery and data mining
(KDD 2001). ACM Press: New York, NY.

Lee, S. D., & De Raedt, L. (2003). An algebra for inductive query
evaluation. In Proceedings of the third IEEE international con-
ference on data mining (ICDM 2003). IEEE Computer Society,
Washington, DC.

Mannila, H., & Toivonen, H. (1997). Levelwise search and borders of
theories in knowledge discovery. Data Mining and Knowledge
Discovery, 1(3), 241-258.

Morishita, S., & Sese, J.
with statistical metric pruning. In Proceedings of the nine-
teenth ACM SIGMOD-SIGACT-SIGART symposium on prin-
ciples of database systems (PODS 2000). ACM Press: New
York, NY.

Riickert, U, & Kramer, S. (2003). Generalized version space
trees. In J.-F. Boulicaut, S. Dzeroski (Eds.), Proceed-
ings of the second international workshop on knowledge
discovery in inductive databases (KDID-2003). Springer:

(2000). Traversing itemset lattice

Berlin.

Riickert, U., & Kramer, S. (2004). Frequent free tree discovery in
graph data. In Proceedings of the ACM symposium on applied
computing (SAC 2004). ACM Press: New York, NY.

Inductive Inference

SANJAY JAIN, FRANK STEPHAN
National University of Singapore,
Singapore, Republic of Singapore

Definition
Inductive inference is a theoretical framework to model
learning in the limit. The typical scenario is that the

524

Inductive Inference

learner reads successively datum dy,d;, d, ... about a
concept and outputs in parallel hypotheses e, €1, €2, . . .
such that each hypothesis e, is based on the preced-
ing data do,d, ...

to converge to a description for the data observed; here

,dy_1. The hypotheses are expected

the constraints on how the convergence has to happen
depend on the learning paradigm considered. In the
most basic case, almost all e,, have to be the same correct
index e, which correctly explains the target concept. The
learner might have some preknowledge of what the con-
cept might be, that is, there is some class C of possible
target concepts — the learner has only to find out which
of the concepts in C is the target concept; on the other
hand the learner has to be able to learn every concept
which is in the class C.

Detail

The above given scenario of learning is essentially the
paradigm of inductive inference introduced by Gold
(1967) and known as Ex (explanatory) learning. Usually
one considers learning of recursive functions or recur-
sively enumerable languages. Intuitively, using coding,
one can code any natural phenomenon into subsets of
N, the set of natural numbers. Thus, recursive func-
tions from N to N or recursively enumerable subsets
of N (called languages here), are natural concepts to be
considered.

Here we will mainly consider language learning.
Paradigms related to function learning can be similarly
defined and we refer the reader to Osherson, Stob and
Weinsten, 1986; Jain, Osherson, Royer, & Sharma, 1999.

One normally considers data provided to the learner
to be either full positive data (i.e., the learner is told
about every element in the target language, one ele-
ment at a time, but never told anything about elements
not in the target language) or full positive data and
full negative data (i.e., the learner is told about every
element, whether it belongs or does not belong to the
target language). Intuitively, the reason for considering
only positive data is that in many natural situations,
such as language learning by children, scientific explo-
ration (such as in astronomy) one gets essentially only
positive data.

A text is a sequence of elements over Nu {#}. Con-
tent of a text T, denoted ctnt(T) is the set of natural
numbers in the range of T. For a finite sequence ¢ over

N u {#}, one can similarly define ctnt(¢) as the set of
natural numbers in the range of 0. A text T is said to
be for a language L iff ctnt(T) = L. Intuitively, a text
T for L represents sequential presentation of elements
of L, with #5 representing pauses in the presentation.
For example, the only text for @ is #°°. T[n] denotes
the initial sequence of T of length n. That is, T[n] =
T(0)T(1)...T(n —1). We let SEQ denote the set of
all finite sequences over N U {#}. An informant I is
a sequence of elements over N x {0,1} u {#}, where
for each x € N, exactly one of (x,0) or (x,1) is in
the range of I. An informant I is for L iff range(I) —
{#} = {(x,x(x)) : x € N}, where y; denotes the
characteristic function of L.

A learner W is a mapping from SEQ to N u {?}.
Intuitively, output of ? denotes that the learner does not
wish to make a conjecture on the corresponding input.
The output of e denotes that the learner conjectures
hypothesis W,, where Wy, Wy,... is some acceptable
numbering of all the recursively enumerable languages.
We say that a learner M converges on T to e iff, for all
but finitely many n, M(T[n]) = e.

Explanatory Learning

A learner M TxtEx-identifies a language L iff for all
texts T for L, M converges to an index e such that
W, = L. Learner M TxtEx-identifies a class £ of lan-
guages iff M TxtEx-identifies each language in the class
L. Finally, one says that a class £ is TxtEx-learnable if
some learner TxtEx-identifies £. TxtEx denotes the col-
lection of all TxtEx-learnable classes. One can similarly
define InfEx-identification, for learning from infor-
mants instead of texts. The following classes are impor-
tant examples:

RE = {L: L is recursively enumerable};
FIN = {L: L is a finite subset of N};
KFIN = {L: L = KU H for some H € FIN};
SD=A{L: Whin(r) = L}
COFIN = {L: N - L is finite};
SDSIZE = {{e+x:x=0Vx<|W,|}: W, is finite};
SDALL = {{e+x:x€N}:eeN}.

Here, in the definition of KFIN, K is the halting prob-
lem, that is, some standard example of a set, which is
recursively enumerable but not recursive. The classes

Inductive Inference

525

FIN, SD, SDSIZE, and SDALL are TxtEx-learnable
(Case & Smith, 1983; Gold, 1967): The learner for FIN
always conjectures the set of all data observed so far. The
learner for SD conjectures the least datum seen so far as,
eventually, the least observed datum coincides with the
least member of the language to be learnt. The learner
tor SDSIZE as well as the learner for SDALL also find in
the limit the least datum e to occur and translate it into
an index for the e-th set to be learnt. The class KFIN
is not TxtEx-learnable, mainly for computational rea-
sons. It is impossible for the learner to determine if the
current input datum belongs to K or not; this forces a
supposed learner either to make infinitely many mind
changes on some text for K or to make an error on
K u {x}, for some x ¢ K. The union SDSIZE U SDALL
is also not TxtEx-learnable, although it is the union
of two learnable classes; so it is one example of vari-
ous nonunion theorems. Gold (1967) gave even a more
basic example: FIN U {N} is not TxtEx-learnable. Fur-
thermore, the class COFIN is also not TxtEx-learnable.
However, except for RE, all the classes given above are
InfEx-learnable, so when being fed the characteristic
function in place of only an infinite list of all elements,
the learners become, in general, more powerful.

Note that the learner never knows when it has con-
verged to its final hypothesis. If the learner is required
to know when it has converged to the final hypothe-
sis, then the criterion of learning is the same as finite
learning. Here a finite learner is defined as follows: the
learner keeps outputting the symbol ? while waiting for
enough data to appear and, when the data observed
are sufficient, the learner outputs exactly one conjec-
ture different from ?, which then is required to be an
index for the input concept in the hypothesis space. The
class of singletons, {{n} : n € N} is finitely learn-
able; the learner just waits until the unique element n
of {n} has appeared and then knows the language. In
contrast to this, the classes FIN and SD are not finitely
learnable.

Blum and Blum (1975) obtained the following fun-
damental result: Whenever M learns L explanatorily
from text then L has a locking sequence for M. Here,
a sequence o is said to be a locking sequence for M on
Liff (a) ctnt(o) < L, (b) for all 7 such that ctnt(7) € L,
M(0) = M(o7) and (c) Wy () = L. If only the first two
conditions are satisfied, then the sequence is called a sta-
bilizing sequence for M on L (Fulk, 1990). It was shown

by Blum and Blum (1975) that if a learner M TxtEx-
identifies L then there exists a locking sequence ¢ for M
on L. One can use this result to show that certain classes,
such as FIN U {N}, are not TxtEx-learnable.

Beyond Explanatory Learning

While TxtEx-learning requires that the learner syn-
tactically converges to a final hypothesis, which cor-
rectly explains the concept, this is no longer required
for the more general criterion of behaviourally cor-
rect learning (called TxtBc-learning). Here, the learner
may not syntactically converge but it is still required
that all its hypothesis after sometime are correct,
see (Barzding, 1974b; Osherson & Weinstein, 1982;
Osherson, Stob and Weinsten, 1986; Case & Smith,
1983; Case & Lynes, 1982). So there is semantic con-
vergence to a final hypothesis. Thus, a learner M
TxtBc identifies a language L iff for all texts T for
L, for all but finitely many n, Wy r[,)) = L. One
can similarly define TxtBc-learnability of classes of
languages and the collection TxtBc. Every TxtEx-
learnable class is Bc-learnable, but the class KFIN and
SDSIZE u SDALL are TxtBc-learnable but not TxtEx-
learnable. Furthermore, InfEx ¢ TxtBc, for exam-
ple, FIN u {N} is InfEx-learnable but not TxtBc-
learnable. On the other hand, every class that is finitely
learnable from informant is also TxtEx-learnable
(Sharma, 1998).

An intermediate learning criterion is TxtFex-
learning (Case, 1999) or vacillatory learning, which is
similar to TxtBc-learning except that we require that
the number of distinct hypothesis output by the learner
on any text is finite. Here one says that the learner
TxtFex,-learns the language L iff the number of distinct
hypothesis that appear infinitely often on any text T for
L is bounded by n. Note that TxtFex, = TxtFex. Case
(1999) showed that

TxtEx = TxtFex; c TxtFex, c TxtFex;
c ... c TxtFex, c TxtBc.

For example, the class SD U SDALL is actually TxtFex,-
learnable and not TxtEx-learnable. The corresponding
notion has also been considered for function learning,
but there the paradigms of explanatory and vacillatory
learning coincide (Case & Smith, 1983).

526

Inductive Inference

Blum and Blum (1975), Case and Lynes (1982) and
Case and Smith (1983) also considered allowing the final
(or final sequence of) hypothesis to be anomalous; Blum
and Blum (1975) considered *-anomalies and (Case &
Lynes, 1982; Case & Smith, 1983) considered the gen-
eral case. Here the final grammar for the input language
may not be perfect, but may have up to a4 anomalies. A
grammar # is a anomalous for L (written W, = “L) iff
card((L - W,) u (W, — L)) < a. Here one also con-
siders finite anomalies, denoted by *-anomalies, where
card(S) < * just means that S is finite. Thus, a learner M
TxtEx“-identifies a language L iff, for all texts T forall L,
M on T converges to a hypothesis e such that W, = L.
One can similarly define TxtBc”-learning criteria. It can
be shown that

TxtEx = TxtEx’ c TxtEx' ¢ TxtEx’ c ... c TxtEx*
and
TxtBc = TxtBc® c TxtBc' ¢ TxtBc? c ... c TxtBc*.

Let SD, = {L : Wpinq) = "L}. Then one can
show (Case & Smith, 1983; Case & Lynes, 1982) that
SD,.; € TxtEx""! — TxtEx". However, there is a trade-
oft between behaviourally correct learning and explana-
tory learning for learning with anomalies. On one hand,
TxtBc ¢ TxtEx”, but on the other hand TxtEx*"*" ¢
TxtBc" and TxtEx”" ¢ TxtBc". However, for learning
from informants, we have InfEx* ¢ InfBc (Case and
Lynes (1982) for the above results).

Consistent and Conservative Learning
Besides the above basic criteria of learning, researchers
have also considered several properties that are useful
for the learner to satisfy.

A learner M is said to be consistent on L iff for
all texts T for L, ctnt(T[n]) S Wy(r[a). That is, the
learner’s hypothesis is consistent with the data seen
so far. There are three notions of consistency consid-
ered in the literature: (a) TCons, in which the learner
is expected to be consistent on all inputs, irrespective
of whether they represent some concept from the tar-
get class or not (Wiehagen and Liepe, 1976), (b) Cons,
in which the learner is just expected to be consis-
tent on the languages in the target class being learnt,
though the learner may be inconsistent or even unde-
fined on the input outside the target class (Barzdins,

1974a), and (c) RCons, in which the learner is expected
to be defined on all inputs, but required to be consis-
tent only on the languages in the target class (Jantke &
Beick, 1981). It can be shown that TCons c RCons c
Cons c TxtEx (Barzdins, 1974a; Jantke and Beick, 1981;
Wiehagen and Liepe, 1976).

A learner M is said to be conservative (Angluin,
1980) ift it does not change its mind unless the data con-
tradicts its hypothesis. That is, M conservatively learns
L iff for all texts T for L, if M(T[n]) + M(T[n +1]),
then ctnt(T[n +1]) ¢ Wy(rpa))- It can be shown that
conservativeness is restrictive, that is there are classes of
languages, which can be TxtEx-identified but not con-
servatively identified. An example of a class that can
be identified explanatorily but not conservatively is the
class containing all sets from SDALL, that is, the sets of
the form {e,e+1,e+2,...}, and all sets with minimum
ks and up to s elements where ko, ki, ks, . .
sive one-one enumeration of K. The general idea why

. is a recur-

this class is not conservatively learnable is that when the
learner reads the data e,e+ 1,e+2, ... it will, after some
,e+s,output a
conjecture which contains these data plus e + s + 1; but

finite time based on datae,e+1,e+2,...

conservative learning would then imply that e € K iff

e = k, for some r < s, contradicting the non-

recursiveness of K.

Monotonicity

Related notions to conservativeness are the various
notions on monotonic learning that impose certain
conditions on whether the previous hypothesis is a sub-
set of the next hypothesis or not. The following notions
are the three main ones.

e A learner M is said to be strongly monotonic
(Jantke, 1991) on L iff for all texts T for L,
Wamertn)) € Wwm(rn+1)- Intuitively, strong mono-
tonicity requires that the hypothesis of the learner
grows
with time.

e A learner M is said to be monotonic (Wiehagen,
1990) on L iff for all texts T for L, Wyy(rpa) N L €
Wn(r[ns1]) N L. In monotonicity, the growth of the
hypothesis is required only with respect to the lan-
guage being learnt.

e Alearner M is said to be weakly monotonic (Jantke,
1991) on L iff for all texts T for L, if ctnt(T[n+1])) €

Inductive Inference

527

WM(T[n])’ then WM(T[n]) c WM(T[n+1])- That is, the
learner behaves strongly monotonically, as long as
the input data is consistent with the hypothesis.

An example for a strong monotonically learnable class
is the class SDALL. When the learner currently con-
jectures {e,e + 1l,e + 2,...} and it sees a datum d < e,
then it makes a mind change to {d,d + 1,d + 2,...}
which is a superset of the previous conjecture; it is easy
to see that all mind changes are of this type. It can be
shown that strong monotonic learning implies mono-
tonic learning and weak monotonic learning, though
monotonic learning and weak monotonic learning are
incomparable (and thus both are proper restrictions of
TxtEx-learning). For example, consider the class C con-
sisting of the set {0,2,4,...} of all even numbers and,
for each n, the set {0,2,4,...,2n}u{2n+1} consisting of
the even numbers below 2# and the odd number 2n + 1.
Then, C is monotonically but not strong monotonically
learnable.

Lange, Zeugmann, and Kapur (1992) also consid-
ered the dual version of the above criteria, where dual
strong monotonicity learning of L requires that for all
texts T for L, Wy(1(n]) 2 Whi(r[n+1])s dual monotonic-
ity requires that for all texts T for L, Wyy(r[a}) N (N -
L) 2 Wyi(rna]) N (N = L); and dual weak monotonic-
ity requires that if ctnt(T[n + 1]) S Wy(r[a), then
W) 2 W(r[n+1))-

In a similar fashion various other properties of
learners have been considered. For example, reliability
(Blum & Blum, 1975; Minicozzi, 1976) postulates that
the learner does not converge on the input text unless
it learns it, prudence (Fulk, 1990; Osherson, Stob and
Weinsten, 1986) postulates that the learner outputs only
indices of languages, which it also learns and confi-
dence (Osherson, Stob and Weinsten, 1986) postulates
that the learner converges on every text to some index,
even if the text is for some language outside the class of
languages to be learnt.

Indexed Families

Angluin (1980) initiated a study of learning indexed
families of recursive languages. A class of languages
(along with its indexing) Ly, Ly, . . . is an indexed family
iff membership questions for the languages is uniformly
decidable, that is, x € L; can be recursively decided in

x and i. Angluin gave an important characterization of
indexed families that are TxtEx-learnable.

Suppose a class £ = {Lo,L;,...} (along with the
indexing) is given. Then, S is said to be a tell-tale
(Angluin, 1980) of L; iff S is finite and for all j, if S € L;
and L; € L;, then L; = L;. It can be shown that for any
class of languages that are learnable (in TxtEx or TxtBc
sense), there exists a tell-tale for each language in the
class. Moreover, Angluin showed that for indexed fam-
ilies, £ = Ly, Ly, ..., one can TxtEx-learn L iff one can
recursively enumerate a tell-tale set for each L;, effec-
tively from i. Within the framework of learning indexed
families, a special emphasis is given to the hypothesis
space used; so the following criteria are considered for
defining the learnability of a class £ in dependence of
the hypothesis space # = Hy, Hj, The class L is

e Exactly learnable iff there is a learner using the same
hypothesis space as the given class, that is, H, = L,
for all n;

o Class-preservingly learnable iff there is a learner
using a hypothesis space H with {Lo,L;,...} =
{Hy,Hy,...} - here the order and the number of
occurrences in the hypothesis space can differ, but
the hypothesis space must consist of the same lan-
guages as the class to be learnt, and no other lan-
guages are allowed in the hypothesis space;

o Class-comprisingly learnable iff there is a learner
using a hypothesis space H with {Lo,L;,...} <
{Ho,Hj,...} - here the hypothesis space can also
contain some further languages not in the class to
be learnt and the learner does not need to identify
these additional languages;

o Prescribed learnable ift for every hypothesis space H
containing all the languages from L there is a learner
for £ using this hypothesis space;

e Uniformly learnable iff for every hypothesis space
with index e containing all the languages from £ one
can synthesize a learner M, which succeeds to learn
L using the hypothesis space H.

Note that in all five cases H only ranges over indexed
families. This differs from the standard case where #H
is an acceptable numbering of all recursively enumer-
able sets. We refer the reader to the survey of Lange,
Zeugmann, and Zilles (2008) for an overview on work
done on learning indexed families (TxtEx-learning,

528

Inductive Inference

learning under various properties of learners as well
as characterizations of such learning criteria) and to
(Jain, Stephan, & Ye, 2008; Lange & Zeugmann, 1993).
While for explanatory learning and every class £, all
these five notions coincide, these notions turn out to be
different for other learning notions like those of conser-
vative learning, monotonic learning, and strong mono-
tonic learning. For example, the class of all finite sets is
not prescribed conservatively learnable: one can make
an adversary hypothesis space where some indices con-
tain large spurious elements, so that a learner is forced
to do non-conservative mind change to obtain correct
indices for the finite sets. The same example as above
works for showing the limitations of prescribed learning
for monotonic and strong monotonic learning.

The interested reader is referred to the textbook
“Systems that Learn” (Jain, Osherson, Royer, & Sharma,
1999; Osherson, Stob and Weinsten, 1986) and the
papers below as well as the references found in these
papers for further reading. Complexity issues in induc-
tive inference like the number of mind changes neces-
sary to learn a class or oracles needed to learn some class
can be found under the entries Computational Complex-
ity of Learning and Query-Based Learning. The entry
Connections between Inductive Inference and Machine
Learning provides further information on this topic.

Cross References
» Connections
Machine Learning

Between Inductive Inference and

Recommended Reading

Angluin, D. (1980). Inductive inference of formal languages from
positive data. Information and Control, 45, 117-135.

Barzdins, J. (1974a). Inductive inference of automata, functions
and programs. In Proceedings of the international congress of
mathematics, Vancouver (pp. 771-776).

Barzdins, J. (1974b). Two theorems on the limiting synthesis of func-
tions. In Theory of algorithms and programs (Vol. 1., pp. 82-88).
Latvian State University, Riga (In Russian).

Blum, L., & Blum, M. (1975). Toward a mathematical theory of
inductive inference. Information and Control, 28, 125-155.
Case, J. (1999). The power of vacillation in language learning. SIAM

Journal on Computing, 28, 1941-1969.

Case, J., & Lynes, C. (1982). Machine inductive inference and lan-
guage identification. In M. Nielsen & E. M. Schmidt (Eds.),
Proceedings of the 9th international colloquium on automata,
languages and programming, Lecture Notes in Computer Sci-
ence (Vol. 140., pp. 107-115). Heidelberg: Springer-Verlag.

Case, J., & Smith, C. (1983). Comparison of identification criteria for
machine inductive inference. Theoretical Computer Science, 25,
193-220.

Fulk, M. (1990). Prudence and other conditions on formal language
learning. Information and Computation, 85, 1-11.

Gold, E. M. (1967). Language identification in the limit. Information
and Control, 10, 447-474.

Jain, S., Osherson, D., Royer, J., & Sharma, A. (1999). Systems that
learn: An introduction to learning theory. (2nd ed.). Cambridge:
MIT Press.

Jain, S., Stephan, F., & Ye, N. (2008). Prescribed learning of indexed
families. Fundamenta Informaticae, 83, 159-175.

Jantke, K. P. (1991). Monotonic and non-monotonic inductive infer-
ence. New Generation Computing, 8, 349-360.

Jantke, K. P., & Beick, H.-R. (1981). Combining postulates of natu-
ralness in inductive inference. Journal of Information Processing
and Cybernetics (EIK), 17, 465-484.

Lange, S., & Zeugmann, T. (1993). Language learning in dependence
on the space of hypotheses. Proceedings of the sixth annual con-
ference on computational learning theory, Santa Cruz, CA, (pp.
127-136).

Lange, S., Zeugmann, T., & Kapur, S. (1992). Class preserving mono-
tonic language learning. Tech. Rep. 14/92, GOSLER-Report, FB
Mathematik und Informatik, TH Leipzig.

Lange, S., Zeugmann, T., & Zilles, S. (2008). Learning indexed
families of recursive languages from positive data: a survey.
Theoretical Computer Science, 397, 194-232.

Minicozzi, E. (1976). Some natural properties of strong identifica-
tion in inductive inference. Theoretical Computer Science, 2,
345-360.

Osherson, D., Stob, M., & Weinstein, S. (1986). Systems that learn,
an introduction to learning theory for cognitive and computer
scientists. Cambridge: Bradford—-The MIT Press.

Osherson, D., & Weinstein, S. (1982). Criteria of language learning.
Information and Control, 52,123-138.

Sharma, A. (1998). A note on batch and incremental learnability.
Journal of Computer and System Sciences, 56, 272-276.

Wiehagen, R. (1990). A thesis in inductive inference. In J. Dix, K.
Jantke, & P. Schmitt (Eds.), Nonmonotonic and inductive logic,
Ist international workshop: Vol. 543 of Lecture notes in artificial
intelligence (pp. 184-207). Berlin: Springer-Verlag.

Wiehagen, R., & Liepe, W. (1976). Charakteristische Eigenschaften
von erkennbaren Klassen rekursiver Funktionen. Journal of
Information Processing and Cybernetics (EIK), 12, 421-438.

| .
Inductive Inference

Choice of a model, theory, or hypothesis to express an
apparent regularity or pattern in a body of data about
many particular instances or events.

|
Inductive Inference Rules

»Logic of Generality

Inductive Logic Programming

529

! Inductive Learning

Synonyms
Statistical learning

Definition

Inductive learning is a subclass of machine learning that
studies algorithms for learning knowledge based on sta-
tistical regularities. The learned knowledge typically has
no deductive guarantees of correctness, though there
may be statistical forms of guarantees.

! Inductive Logic Programming

Luc DE RAEDT
Katholieke Universiteit Leuven, Heverlee, Belgium

Synonyms
Learning in logic; Multi-relational data mining; Rela-
tional data mining; Relational learning

Definition

Inductive logic programming is the subfield of machine
learning that uses Mfirst-order logic to represent
hypotheses and data. Because first-order logic is expres-
sive and declarative, inductive logic programming
specifically targets problems involving structured data
and background knowledge. Inductive logic program-
ming tackles a wide variety of problems in machine
learning, including classification, regression, cluster-
ing, and reinforcement learning, often using “upgrades”
of existing propositional machine learning systems.
It relies on logic for knowledge representation and
reasoning purposes. Notions of coverage, generality,
and operators for traversing the space of hypothe-
ses are grounded in logic, see also »logic of general-
ity. Inductive logic programming systems have been
applied to important applications in bio- and chemo-
informatics, natural language processing, and web
mining.

Motivation

The first motivation and most important motivation for
using inductive logic programming is that it overcomes
the representational limitations of attribute-value learn-
ing systems. Such systems employ a table-based rep-
resentations where the instances correspond to rows
in the table, the attributes to columns, and for each
instance, a single value is assigned to each of the
attributes. This is sometimes called the single-table
single-tuple assumption. Many problems, such as the
Bongard problem shown in Fig. 1, cannot elegantly be
described in this format. Bongard (1970) introduced
about a hundred concept-learning or pattern recog-
nition problems, each containing six positive and six
negative examples. Even though Bongard problems are
toy-problems, they are similar to real-life problems such
as structure-activity relationship prediction, where the
goal is to learn to predict whether a given molecule
(as represented by its 2D graph structure) is active or
not. It is hard — if not, impossible — to squeeze this
type of problem into the single-table single-tuple format
for various reasons. Attribute-value learning systems
employ a fixed number of attributes and also assume
that these attributes are present in all of the exam-
ples. This assumption does not hold for the Bongard
problems as the examples possess a variable number
of objects (shapes). The singe-table single-tuple repre-
sentation imposes an implicit order on the attributes,

n A VO@

Ol | v
A

v A

®
©

V v

o A
>o| |A®] | |OO0

® ©

Inductive Logic Programming. Figure 1. A complex clas-
sification problem: Bongard problem 47, developed by
the Russian scientist Bongard (1970). It consists of 12
scenes (or examples), 6 of class @ and 6 of class ©. The
goal is to discriminate between the two classes

530

Inductive Logic Programming

whereas there is no natural order on the objects in
the Bongard problem. Finally, the relationships between
the objects in the Bongard problem are essential and
must be encoded as well. It is unclear how to do this
within the single-table single-tuple assumption. First-
order logic and relational representations allow one to
encode problems involving multiple objects (or enti-
ties) as well as the relationships that hold them in a
natural way.

The second motivation for using inductive logic
programming is that it employs logic, a declarative rep-
resentation. This implies that hypotheses are under-
standable and interpretable. By using logic, inductive
logic programming systems are also able to employ
background knowledge in the induction process. Back-
ground knowledge can be provided in the form of
definitions of auxiliary relations or predicates that
may be used by the learner. Finally, logic provides a
well-understood theoretical framework for knowledge
representation and reasoning. This framework is also
useful for machine learning, in particular for defin-
ing and developing notions such as the covers relation,
generality, and refinement operators, see also »logic of
generality.

Theory

Inductive logic programming is usually defined as con-
cept learning using logical representations. It aims at
finding a hypothesis (a set of rules) that covers all pos-
itive examples and none of the negatives, while taking
into account a background theory. This is typically real-
ized by searching a space of possible hypotheses. More
formally, the traditional inductive logic programming
definition reads as follows:

Given

o alanguage describing hypotheses Lp,

o alanguage describing instances £;,

o possibly a background theory B, usually in the form
of a set of (definite) clauses,

o the covers relation that specifies the relation between
Ly and £, that is when an example e is covered (con-
sidered positive) by a hypothesis h, possibly taking
into account the background theory B,

e aset of positive and negative examples E= PUN

Find a hypothesis 1 € L such that for all p € P :
covers(B,h,p) = trueand foralln € N : covers(B, h,n) =
false.

This definition can, as for »concept-learning in gen-
eral, be extended to cope with noisy data by relaxing the
requirement that all examples be classified correctly.

There exist different ways to represent learning
problems in logic, resulting in different learning set-
tings. They typically use definite clause logic as the
hypothesis language £;, but differ in the notion of an
example. One can learn from entailment, from inter-
pretations, or from proofs, cf. »-logic of generality. The
most popular setting is learning from entailment, where
each example is a clause and covers(B, h, e) = true if and
onlyif Buh ke

The top leftmost scene in the Bongard problem of
Fig.1 can be represented by the clause:
positive :- object(ol),

circle(ol),
02),

object (02),
triangle (02),
in (ol, large (02) .
The other scenes can be encoded in the same way.
The following hypothesis then forms a solution to the
learning problem:
positive :- object (X), object(Y),
circle (X),
triangle(Y), in(X,Y).
It states that those scenes having a circle inside a triangle
are positive. For some more complex Bongard problems
it could be useful to employ background knowledge. It
could, for instance, state that triangles are polygons.
polygon (X) :— triangle (X).
Using this clause as background theory, an alterna-
tive hypothesis covering all positives and none of the
negatives is
positive :- object (X), object(Y),
circle (X),
polygon (YY), in(X,Y).

An alternative for using long clauses as examples is
to provide an identifier for each example and to add

Inductive Logic Programming

531

the corresponding facts from the condition part of the
clause to the background theory. For the above example,
the following facts

object (el,o0l).
object (el,02).
circle(el,ol).
triangle (el, 02).
in(el,o0l,02).
large(el,02).

would be added to the background theory and the posi-
tive example itself would then be represented through
the fact positive (el), where el is the identifier.
The inductive logic programming literature typically
employs this format for examples and hypotheses.

Whereas inductive logic programming originally
focused on concept-learning - as did the whole field
of machine learning - it is now being applied to vir-
tually all types of machine learning problems, includ-
ing regression, clustering, distance-based learning,
frequent pattern mining, reinforcement learning, and
even kernel methods and graphical models.

A Methodology

Many of the more recently developed inductive logic
programming systems have started from an existing
attribute-value learner and have upgraded it toward the
use of first-order logic (Van Laer & De Raedt, 2001).
By examining state-of-the-art inductive logic program-
ming systems one can identify a methodology for real-
izing this (Van Laer and De Raedt, 2001). It starts from
an attribute-value learning problem and system of inter-
est, and takes the following two steps. First, the prob-
lem setting is upgraded by changing the representation
of the examples, the hypotheses as well as the covers
relation toward first-order logic. This step is essentially
concerned with defining the learning setting, and pos-
sible settings to be considered include the already men-
tioned learning from entailment, interpretations, and
proofs settings. Once the problem is clearly defined,
one can attempt to formulate a solution. Thus the sec-
ond step adapts the original algorithm to deal with the
upgraded representations. While doing so, it is advis-
able to keep the changes as minimal as possible. This

step often involves the modification of the operators
used to traverse the search space. Different operators for
realizing this are introduced in the entry on the »logic
of generality.

There are many reasons why following the method-
ology is advantageous. First, by upgrading a learner
that is already effective for attribute-value represen-
tations, one can benefit from the experiences and
results obtained in the propositional setting. In many
cases, for instance decision trees, this implies that one
can rely on well-established methods and findings,
which are the outcomes of several decades of machine
learning research. It will be hard to do better start-
ing from scratch. Second, upgrading an existing learner
is also easier than starting from scratch as many of
the components (such as heuristics and search strat-
egy) can be recycled. It is therefore also economic in
terms of man power. Third, the upgraded system will
be able to emulate the original one, which provides
guarantees that the output hypotheses will perform
well on attribute-value learning problems. Even more
important is that it will often also be able to emulate
extensions of the original systems. For instance, many
systems that extend frequent item-set mining toward
using richer representations, such as sequences, inter-
vals, the use of taxonomies, graphs, and so on, have
been developed over the past decade. Many of them
can be emulated using the inductive logic program-
ming upgrade of Apriori (Agrawal, Mannila, Srikant,
Toivonen & Verkamo, 1996) called Warmr (Dehaspe &
Toivonen, 2001). The upgraded inductive logic pro-
gramming systems will typically be more flexible than
the systems it can emulate but typically also less efficient
because there is a price to be paid for expressiveness.
Finally, it may be possible to incorporate new features in
the attribute-value learner by following the methodol-
ogy. One feature that is often absent from propositional
learners and may be easy to incorporate is the use of a
background theory.

It should be mentioned that the methodology is
not universal, that is, there exist also approaches, such
as Muggleton’s Progol (Muggleton, 1995), which have
directly been developed in first-order logic and for
which no propositional counter part exists. In such
cases, however, it can be interesting to follow the inverse
methodology, which would specialize the inductive
logic programming system.

532

Inductive Logic Programming

FOIL: An lllustration

One of the simplest and best-known inductive logic
programming systems is FOIL (Quinlan, 1990). It can
be regarded as an upgrade of a rule-learner such as
CN2 (Clark & Niblett, 1989). FOILs problem setting
is an instance of the learning from entailment set-
ting introduced above (though it restricts the back-
ground theory to ground facts only and does not allow
functors).

Like most rule-learning systems, FOIL employs
a separate-and-conquer approach. It starts from the
empty hypothesis, and then repeatedly searches for one
rule that covers as many positive examples as possi-
ble and no negative example, adds it to the hypothesis,
removes the positives covered by the rule, and then iter-
ates. This process is continued until all positives are
covered. To find one rule, it performs a hill-climbing
search through the space of clauses ordered according
to generality. The search starts at the most general rule,
the one stating that all examples are positive, and then
repeatedly specializes it. Among the specializations it
then selects the best one according to a heuristic evalu-
ation based on information gain. A heuristic, based on
the minimum description length principle, is then used
to decide when to stop specializing clauses.

The key differences between FOIL and its proposi-
tional predecessors are the representation and the oper-
ators used to compute the specializations of a clause.
It employs a refinement operator under 6-subsumption
(Plotkin, 1970) (see also »logic of generality). Such an
operator essentially refines clauses by adding atoms to
the condition part of the clause or applying substitutions
to a clause. For instance, the clause

positive :- triangle(X), in(X,Y),
color (X,C) .
can be specialized to

positive :- triangle(X), in(X,Y),
color (X, red) .

positive :- triangle(X), in(X,Y),
color (X,C), large(X).

positive :- triangle(X), in(X,Y),

color (X,C),
rectangle (Y) .

The first specialization is obtained by substituting the
variable C by the constant red, the other two by adding
an atom (large (X), rectangle (Y), respectively)
to the condition part of the rule. Inductive logic
programming systems typically also employ syntac-
tic restrictions - the so-called - that specify which
clauses may be used in hypotheses. For instance, in
the above example, the second argument of the color
predicate belongs to the type Color, whereas the argu-
ments of in are of type Ob ject and consist of object
identifiers.

Application

Inductive logic programming has been successfully
applied to many application domains, including bio-
and chemo-informatics, ecology, network mining,
software engineering, information retrieval, music
analysis, web mining, natural language processing, tox-
icology, robotics, program synthesis, design, architec-
ture, and many others. The best-known applications are
in scientific domains. For instance, in structure-activity
relationship prediction, one is given a set of molecules
together with their activities, and background knowl-
edge encoding functional groups, that is particular
components of the molecule, and the task is to learn
rules stating when a molecule is active or inactive.
This is illustrated in Fig. 2 (after Srinivasan, Muggleton,
Sternberg, and King (1996)), where two molecules are
active and two are inactive. One then has to find a pat-
tern that discriminates the actives from the inactives.
Structure-activity relationship prediction (SAR) is an
essential step in, for instance, drug discovery. Using
the general purpose inductive logic programming sys-
tem Progol (Muggleton, 1995) structural alerts, such
as that shown in Fig. 2, have been discovered. These
alerts allow one to distinguish the actives from the inac-
tives — the one shown in the figure matches both of
the actives but none of the inactives — and at the same
time they are readily interpretable and provide use-
ful insight into the factors determining the activity. To
solve structure-activity relationship prediction prob-
lems using inductive logic programming one must rep-
resent the molecules and hypotheses using the logical
formalisms introduced above. The resulting represen-
tation is very similar to that employed in the Bongard

Inductive Logic Programming

533

Structural alert:

Active
o=N O CH=N-NH-C‘-‘NH2
|
o O
I
o
nitrofurazone 4-nitropenta[cd]pyrene
Inactive

N
/\\
o~ O

6-nitro-7,8,9,10-tetrahydrobenzo[a]pyrene

@ v

o7 O
\ 7/

N+

o,

NH

4-nitroindole

Inductive Logic Programming. Figure 2. Predicting mutagenicity (Srinivasan et al., 1996)

problems: the objects are the atoms and relationships
the bonds. Particular functional groups are encoded as
background predicates.

State-of-the-Art

The upgrading methodology has been applied to a
wide variety of machine learning systems and problems.
There exist now inductive logic programming systems
that

o induce logic programs from examples under vari-
ous learning settings. This is by far the most popular
class of inductive logic programming systems. Well-
known systems include Aleph (Srinivasan, 2007)
and Progol (Muggleton, 1995) as well as various
variants of FOIL (Quinlan, 1990). Some of these
systems, especially Progol and Aleph, contain many
features that are not present in propositional learn-
ing systems. Most of these systems focus on a clas-
sification setting, and learn the definition of a single
predicate.

¢ induce logical decision trees from examples. These
are binary decision trees containing conjunctions of
atoms (i.e., queries) as tests. If a query succeeds, then
one branch is taken, else the other one. Decision tree

methods for both classification and regression exist
(see Blockeel & De Raedt, 1998; Kramer & Widmer,
2001).

o mine for frequent queries, where queries are con-
junctions of atoms. Such queries can be evaluated
on an example. For instance, in the Bongard prob-
lem, the query ?- triangle (X), in (X, Y)
succeeds on the leftmost scenes, and fails on the
rightmost ones. Therefore, its frequency would be
6. The goal is then to find all queries that are fre-
quent, that is, whose frequencies exceed a certain
threshold. Frequent query mining upgrades the pop-
ular local pattern mining setting due to Agrawal
et al. (1996) to inductive logic programming (see
Dehaspe & Toivonen, 2001).

e learn or revise the definitions of theories, which con-
sist of the definitions of multiple predicates, at the
same time (cf. Wrobel, 1996), and the entry »Theory
revision in this encyclopedia. Several of these sys-
tems have their origin in the model inference system
by Shapiro (1983) or the work by Angluin (1987).

Current Trends and Challenges
There are two major trends and challenges in induc-
tive logic programming. The first challenge is to extend

534

Inductive Logic Programming

the inductive logic programming paradigm beyond the
purely symbolic one. Important trends in this regard
include

e the combination of inductive logic programming
principles with graphical and probabilistic mod-
els for reasoning about uncertainty. This is a field
known as statistical relational learning, probabilistic
logic learning, or probabilistic inductive logic pro-
gramming. At the time of writing, this is a very pop-
ular research stream, attracting a lot of attention in
the wider artificial intelligence community, cf. the
entry P-Statistical Relational Learning in this ency-
clopedia. It has resulted in many relational or logical
upgrades of well-known graphical models includ-
ing Bayesian networks, Markov networks, hidden
Markov models, and stochastic grammars.

o the use of relational distance measures for classi-
fication and clustering (Kirsten, Wrobel, & Hor-
vath, 2001; Ramon & Bruynooghe, 1998). These dis-
tances measure the similarity between two examples
or clauses, while taking into account the under-
lying structure of the instances. These distances
are then combined with standard classification and
clustering methods such as k-nearest neighbor and
k-means.

e the integration of relational or logical representa-
tions in reinforcement learning, known as Prela-
tional reinforcement learning (DZeroski, De Raedt, &
Driessens, 2001).

The power of inductive logic programming is also
its weakness. The ability to represent complex objects
and relations and the ability to make use of background
knowledge add to the computational complexity. There-
fore, a key challenge of inductive logic programming
is tackling this added computational complexity. Even
the simplest method for testing whether one hypothesis
is more general than another - that is 6-subsumption
(Plotkin, 1970) - is NP-complete. Similar tests are
used for deciding whether a clause covers a particular
example in systems such as FOIL. Therefore, inductive
logic programming and relational learning systems are
computationally much more expensive than their
propositional counterparts. This is an instance of the
expressiveness versus efficiency trade-off in computer

science. Because of these computational difficulties,
inductive logic programming has devoted a lot of atten-
tion to efficiency issues. On the theoretical side, there
exist various results about the polynomial learnability
of certain subclasses of logic programs (cf. Cohen &
Page, 1995, for an overview). From a practical perspec-
tive, there is quite some work on developing efficient
methods for searching the hypothesis space and espe-
cially for evaluating the quality of hypotheses. Many
of these methods employ optimized inference engines
based on Prolog or database technology or constraint-
satisfaction methods (cf. Blockeel & Sebag, 2003 for an
overview).

Cross References
» Multi-Relational Data Mining

Recommended Reading

A comprehensive introduction to inductive logic programming can
be found in the book by De Raedt (2008) on logical and relational
learning. Early surveys of inductive logic programming are con-
tained in Muggleton and De Raedt (1994) and Lavra¢ and Dzeroski
(1994) and an account of its early history is provided in Sammut
(1993). More recent collections on current trends can be found in the
proceedings of the annual Inductive Logic Programming Conference
(published in Springer’s Lectures Notes in Computer Science Series)
and special issues of the Machine Learning Journal. An interest-
ing collection of inductive logic programming and multi-relational
data mining works are provided in DzZeroski and Lavra¢ (2001).
The upgrading methodology is described in detail in Van Laer and
De Raedt (2001). More information on logical issues in inductive
logic programming are given in the entry Plogic of generality
in this encyclopedia, whereas the entries Pstatistical relational
learning and P>graph mining are recommended for those inter-
ested in frameworks tackling similar problems using other types of
representations.

Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., & Verkamo,
A. 1. (1996). Fast discovery of association rules. In U. Fayyad,
G. Piatetsky-Shapiro, P. Smyth, & R. Uthurusamy (Eds.),
Advances in knowledge discovery and data mining (pp. 307-328).
Cambridge, MA: MIT Press.

Angluin, D. (1987). Queries and concept-learning. Machine Learn-
ing, 2, 319-342.

Blockeel, H., & De Raedt, L. (1998). Top-down induction of first
order logical decision trees. Artificial Intelligence, 101(1-2),
285-297.

Blockeel, H., & Sebag, M. (2003). Scalability and efficiency
in multi-relational data mining. SIGKDD Explorations, 5(1),
17-30.

Bongard, M. (1970). Pattern recognition. New York: Spartan Books.

Clark, P., & Niblett, T. (1989). The CN2 algorithm. Machine Learning,
3(4), 261-284.

Inductive Process Modeling

535

Cohen, W. W.,, & Page, D. (1995). Polynomial learnability and induc-
tive logic programming: Methods and results. New Generation
Computing, 13, 369-409.

De Raedt, L. (2008). Logical and relational learning. Springer.

Dehaspe, L., & Toivonen, H. (2001). Discovery of relational
association rules. In S. Dzeroski & N. Lavra¢ (Eds.),
Relational data mining (pp. 189-212). Berlin/Heidelberg:
Springer.

Dzeroski, S., De Raedt, L., & Driessens, K. (2001). Relational rein-
forcement learning. Machine Learning, 43(1/2), 5-52.

Dzeroski, S., & Lavra¢, N. (Eds.). (2001). Relational data mining.
Springer.

Kirsten, M., Wrobel, S., & Horvath, T. (2001). Distance based
approaches to relational learning and clustering. In S. DZeroski
and N. Lavra¢ (Eds.), Relational data mining (pp. 213-232).
Berlin/Heidelberg: Springer.

Kramer, S., & Widmer, G. (2001). Inducing classification and regres-
sion trees in first order logic. In S. DZeroski and N. Lavra¢
(Eds.), Relational data mining (pp. 140-159). Berlin/Heidelberg:
Springer.

Lavra¢, N., & Dzeroski, S. (1994). Inductive logic programming:
techniques and applications. Chichester, UK: Ellis Horwood.

Muggleton, S. (1995). Inverse entailment and Progol. New Genera-
tion Computing, 13, 245-286.

Muggleton, S., & De Raedt, L. (1994). Inductive logic programming:
Theory and methods. Journal of Logic Programming, 19(20),
629-679.

Plotkin, G. D. (1970). A note on inductive generalization. In Machine
Intelligence (vol. 5, pp. 153-163). Edinburgh, Scotland: Edin-
burgh University Press.

Quinlan, J. R. (1990).

Learning logical definitions from relations. Machine Learning,
5, 239-266.

Ramon, J., & Bruynooghe, M. (1998). A framework for defining
distances between first-order logic objects. In D. Page (Ed.),
Proceedings of the eighth international conference on inductive
logic programming. Lecture notes in artificial intelligence, (vol.
1446, pp. 271-280). Berlin/Heidelberg: Springer.

Sammut, C. (1993). The origins of inductive logic programming: A
prehistoric tale. In S. Muggleton (Ed.), Proceedings of the third
international workshop on inductive logic programming (pp. 127-
148). Ljubljana: J. Stefan Institute.

Shapiro, E. Y. (1983). Algorithmic program debugging. MIT Press.

Srinivasan, A. The Aleph Manual, 2007. URL: http://www.
comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/aleph_
toc.html.

Srinivasan, A., Muggleton, S., Sternberg, M. J. E., & King, R. D.
(1996). Theories for mutagenicity: A study in first-order and
feature-based induction. Artificial Intelligence, 85(1/2), 277-
299.

Van Laer, W., & De Raedt, L. (2001). How to upgrade proposi-
tional learners to first order logic: A case study. In S. DZeroski
and N. Lavra¢ (Eds.), Relational data mining, (pp. 235-261).
Berlin/Heidelberg: Springer.

Wrobel, S. (1996). First-order theory refinement. In L. De Raedt
(Ed.), Advances in inductive logic programming. Frontiers in
artificial intelligence and applications (vol. 32, pp. 14-33).
Amsterdam: I0S Press.

I . .
Inductive Process Modeling

Lyupco TODOROVSKI
University of Ljubljana, Ljubljana, Slovenia

Synonyms
Process-based modeling

Definition

Inductive process modeling is a machine learning task
that deals with the problem of learning quantitative pro-
cess models from »time series data about the behavior of
an observed dynamic system. Process models are mod-
els based on ordinary differential equations that add an
explanatory layer to the equations. Namely, scientists
and engineers use models to both predict and explain
the behavior of an observed system. In many domains,
models commonly refer to processes that govern sys-
tem dynamics and entities altered by those processes.
Ordinary differential equations, often used to cast mod-
els of dynamic systems, offer one way to represent these
mechanisms and can be used to simulate and predict
the system behavior, but fail to make the processes and
entities explicit. In response, process models tie the
explanatory information about processes and entities to
the mathematical formulation, based on equations, that
enables simulation.

Table 1 shows a process model for a predator-
prey interaction between foxes and rabbits. The three
processes
concentrations of both species (represented in the

explain the dynamic change of the
model as two population entities) through time. The rab-
bit_growth process states that the reproduction of rabbit
is limited by the fixed environmental capacity. Similarly,
the fox_death process specifies an unlimited exponen-
tial mortality function for the fox population. Finally,
the fox_rabbit_predation process refers to the predator—
prey interaction between foxes and rabbits that states
that the prey concentration decreases and the predator
one increases proportionally with the sizes of the two
populations. The process model makes the structure of
the model explicit and transparent to scientists; while at
the same time it can be easily transformed in to a system
of two differential equations by additively combining
the equations for the time derivatives of the system

http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/aleph_toc.html.
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/aleph_toc.html.
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/aleph_toc.html.

536

Inductive Process Modeling

Inductive Process Modeling. Table 1 A Process Model of
Predatory-Prey Interaction between Foxes and Rabbits.
The Notation d[X,t] Indicates the Time Derivative of
Variable X.

model predation;
entities fox{population}, rabbit{population};
process rabbit_growth;
entites rabbit;
equations d[rabbit.conc,t] = 1.81 * rabbit.conc *

(1-0.0003 * rabbit.conc);

process fox_death;
entites fox;

equations d[fox.conc,t] = —1.04 * fox.conc;

process fox_rabbit_predation;

entities fox, rabbit;
equations

d[fox.conc,t] = 0.03 * rabbit.conc * fox.conc;

d[rabbit.conc,t] = —1* 0.3 * rabbit.conc * fox.conc;

variables fox.conc and rabbit.conc. Given initial values
for these variables, one can simulate the equations to
produce trajectories that correspond to the population
dynamics through time.

The processes from Table 1 instantiate more general
generic processes, that can be used for modeling any
ecological system. For example:

generic process predation;
entities Predator{population}, Prey{population};
parameters ar[0.01, 10], ef[0.001, 0.8];
equations
d[Predator.conc,t] = ef * ar * Prey.conc * Predator.conc;
d[Prey.conc,t] = -1 * ar * Prey.conc * Predator.conc;

is a general form of the fox_rabbit_predation pro-
cess from the example model in Table 1. Note that
in the generic process, the parameters are replaced
with numeric ranges and the entities with identifiers of
generic entities (i.e., Predator and Prey are identifiers
that refer to instances of the generic entity population).

Having defined entities and processes on an exam-
ple, one can define the task of inductive process model-
ing as: Given

o Time series observations for a set of numeric system
variables as they change through time

o A set of entities that the model might include

e Generic processes that specify casual relations
among entities

o Constraints that determine plausible relations among
processes and entities in the model

Find a specific process model that explains the observed
data and the simulation of which closely matches
observed time series.

There are two approaches for solving the task of
inductive process modeling. The first is the transforma-
tional approach that transforms the given knowledge
about entities, processes, and constraints to »language
bias for equation discovery and uses the Lagramge
method for »equation discovery in turn (Todorovski &
Dzeroski, 1997, 2007). The second approach performs
search through the space of candidate process models to
find the one that matches the given time series data best.

Inductive process modeling methods IPM
(Bridewell, Langley, Todorovski, & Dzeroski, 2008)
and HIPM (Todorovski, Bridewell, Shiran, & Langley,
2005) follow the second approach. IPM is a naive
method that exhaustively searches the space of candi-
date process models following the »learning as search
paradigm. The search space of candidate process mod-
els is defined by the sets of generic processes and
of entities in the observed system specified by the
user. IPM first matches the type of each entity against
the types of entities involved in each generic process
and produces a list of all possible instances of that
generic process. For example, the generic process pre-
dation, from the example above, given two population
entities fox and rabbit, can be instantiated in four differ-
ent ways (fox_fox_predation, fox_rabbit_predation, rab-
bit_fox_predation, and rabbit_rabbit_predation). The
IPM search procedure collects the set of all possible
instances of all the generic processes and uses them
as a set of candidate model components. In the search
phase, all combinations of these model components
are being matched against observed »time series. The

Inductive Programming 537

matching involves the employment of gradient-descent
methods for nonlinear optimization to estimate the
optimal values of the process model parameters. As
output, IPM reports the process models with the best
match.

Trying out all components’ combinations is pro-
hibitive in many situations since it obviously leads to
combinatorial explosion. HIPM employs constraints
that limit the space of combinations by ruling-out
implausible or forbidden combinations. Examples of
such constraints in the predator-prey example above
include rules that a proper process model of population
dynamics should include a single growth and a single
mortality process per species, the predator-prey pro-
cess should relate two different species, and different
predator-prey interaction should refer to different pop-
ulation pairs. HIPM specifies the rules in a hierarchy
of generic processes where each node in the hierar-
chy specifies a rule for proper combination/selection of
process instances.

Cross References
»Equation Discovery

Recommended Reading

Bridewell, W., Langley, P., Todorovski, L., & Dzeroski, S. (2008).
Inductive process modeling. Machine Learning, 71(1),
1-32.

Todorovski, L., Bridewell, W., Shiran, O., & Langley, P. (2005).
Inducing hierarchical process models in dynamic domains. In
M.M. Veloso & S. Kambhampati (Eds.), Proceedings of the twen-
tieth national conference on artificial intelligence, Pittsburgh,
PA, USA.

Todorovski, L., & Dzeroski, S. (1997). Declarative bias in equation
discovery. In D.H. Fisher (Ed.), Proceedings of the fourteenth
international conference on machine learning, Nashville, TN,
USA.

Todorovski, L., & Dzeroski, S. (2007). Integrating domain knowl-
edge in equation discovery. In S. Dzeroski & L. Todorovski
(Eds.), Computational discovery of scientific knowledge. LNCS
(Vol. 4660). Berlin: Springer.

! Inductive Program Synthesis

»Inductive Programming

[. .
Inductive Programming

Pierre FLENER", UTE ScHMID®

1Sabanci University, Orhanli, Tuzla, Istanbul, Turkey
*Uppsala University, Uppsala, Sweden

>University of Bamberg, Feldkirchenstr. Bamberg,
Germany

Synonyms

Example-based programming; Inductive program syn-
thesis; Inductive synthesis; Program synthesis from
examples

Definition

Inductive programming is the inference of an algorithm
or program featuring recursive calls or repetition con-
trol structures, starting from information that is known
to be incomplete, called the evidence, such as positive
and negative input-output examples or clausal con-
straints. The inferred program must be correct with
respect to the provided evidence, in a »generalization
sense: it should neither be equivalent nor inconsistent
to it. Inductive programming is guided explicitly or
implicitly by a »language bias and a »search bias. The
inference may draw on background knowledge or query
an oracle. In addition to »induction, »abduction may
be used. The restriction to algorithms and programs
featuring recursive calls or repetition control structures
distinguishes inductive programming from »concept
learning or »classification.

This chapter is restricted to the inference of declar-
ative programs, whether functional or logic, and dis-
pense with repetition control structures in the inferred
program in favour of recursive calls.

Motivation and Background

Inductive program synthesis is a branch of the field of
program synthesis, which addresses a cognitive ques-
tion as old as computers, namely the understanding
of the human act of computer programming, to the
point where a computer can be made to help in this
task (and ultimately to enhance itself). See Flener
(2002) for a recent survey; the other main branches
of program synthesis are based on deductive inference,

538

Inductive Programming

namely constructive program synthesis and transforma-
tional program synthesis. In such deductive program syn-
thesis, the provided information, called the specification,
is assumed to be complete (in contrast to inductive
program synthesis where the provided information is
known to be incomplete), and the presence of repeti-
tive or recursive control structures in the synthesized
program is not imposed.

Research on the inductive synthesis of recursive
functional programs started in the early 1970s and was
brought onto firm theoretical foundations with the sem-
inal THESYs system of Summers (1977) and work of
Biermann (1978), where all the evidence is handled
non-incrementally (see »-incremental learning). Essen-
tially, the idea is first to infer computation fraces from
input-output examples (»instances), and then to use a
»trace-based programming method to fold these traces
into a recursive program. The main results till the mid
1980s were surveyed in Smith (1984). Due to limited
progress with respect to the range of programs that
could be synthesized, research activities decreased sig-
nificantly in the next decades. However, a new approach
that formalizes functional program synthesis in the
term-rewriting framework and that allows the syn-
thesis of a broader class of programs than the classi-
cal approaches is pursued in Kitzelmann and Schmid
(2006).

The advent of logic programming brought a new elan
but also a new direction in the early 1980s, especially due
to the mis system of Shapiro (1983), eventually spawn-
ing the new field of »inductive logic programming
(ILP). Most of this ILP work addresses a wider class
of problems, as the focus is not only on recursive logic
programs: more adequate designations are inductive
»theory revision and declarative program debugging, as
an additional input is a possibly empty initial theory
or program that is incrementally revised or debugged
according to each newly presented piece of evidence,
possibly in the presence of background knowledge or
an oracle. The main results on the inductive synthesis
of recursive logic programs were surveyed in Flener and
Yilmaz (1999).

Structure of Learning System
The core of an inductive programming system is a
mechanism for constructing a recursive generalization

for a set of input/output examples (instances), say.
Although vocabulary of logic programming is used,
this method also covers the synthesis of functional pro-
grams.

The input, often a set of input/output examples, is
called the evidence. Further evidence may be queried
from an oracle. Additional information, in the form of
predicate symbols that can be used during the synthe-
sis, can be provided as background knowledge. Since
the »hypothesis space — the set of legal recursive pro-
grams - is infinite, a »language bias is introduced. One
particularly useful and common approach in inductive
programming is to provide a statement bias by means of
a program schema.

The evidential synthesis of a recursive program
starts from the provided evidence for some predicate
symbol and works essentially as follows. A program
schema is chosen to provide a template for the program
structure, where all yet undefined predicate symbols
must be instantiated during the synthesis. Predefined
predicate symbols of the background knowledge are
then chosen for some of these undefined predicate sym-
bols in the template. If it is deemed that the remaining
undefined predicate symbols cannot all be instantiated
via purely structural generalization by non-recursive
definitions, then the method is recursively called to
infer recursive definitions for some of them (this is
called »predicate invention and amounts to shifting
the vocabulary bias); otherwise the synthesis ends suc-
cessfully right away. This generic method can back-
track to any choice point for synthesizing alternative
programs.

In the rest of this section, this basic terminology
of inductive programming discussed more precisely. In
the next section, instantiations of this generic method
by some well-known methods are presented.

The evidence is often limited to ground positive exam-
ples of the predicate symbols that are to be defined.
Ground negative examples are convenient to prevent
overgeneralization, but should be used constructively
and not just to reject candidate programs. A useful
generalization of ground examples is evidence in the
form of a set of (non-recursive) clauses, as variables and
additional predicate symbols can then be used.

Inductive Programming

539

Example1 The delOdds(L, R) relation, which holds if
and only if R is the integer list L without its odd ele-
ments, can be incompletely described by the following
clausal evidence:

delOdds([1,[]) < true
delOdds([X],[]) < odd(X)
]
]

—

delOdds([X],[X]) < —odd(X) (1)
delOdds([X, Y],[Y]) < odd(X), —odd(Y)
delOdds([X, Y], [X,Y]) < —odd(X), —odd(Y)
false < delOdds([X],[X]),
0dd(X)

The first clause is a ground positive example, whereas
the second and third clauses generalize the infinity of
ground positive examples, such as delOdds([5],[]) and
delOdds([22],[22]), for handling singleton lists, while
the fourth and fifth clauses summarize the infinity of
ground positive examples for handling lists of two ele-
ments, the second one being even: these clauses make
explicit the underlying filtering relation (odd) that is
intrinsic to the problem at hand but cannot be pro-
vided via ground examples and would otherwise have to
be guessed. The sixth clause summarizes an infinity of
ground negative examples for handling singleton lists,
namely where the only element of the list is odd but not
filtered.

In some methods, especially for the induction of
functional programs, the first n positive input-output
examples with respect to the underlying data type are
presented (e.g., for linear lists, what to do with the empty
list, with a one-element list, up to a list with three ele-
ments); because of this ordering of examples, no explicit
presentation of negative examples is then necessary.

Inductive program synthesis should be monotonic
in the evidence (more evidence should never yield a less
complete program, and less evidence should not yield a
more complete program) and should not be sensitive to
the order of presentation of the evidence.

Informally, a program schema (Smith, 1985) contains a
template program and a set of axioms. The template
abstracts a class of actual programs, called instances, in

the sense that it represents their dataflow and control-
flow by means of place-holders, but does not make
explicit all their actual computations nor all their
actual data structures. The axioms restrict the possible
instances of the place-holders and define their interrela-
tionships. Note that a schema is problem-independent.
A »first-order-logic approach is taken and templates
are considered as open logic programs (programs where
some place-holder predicate symbols are left undefined,
or open; a program with no open predicate symbols is
said to be closed) and axioms as first-order specifications
of these open predicate symbols.

Example 2 Most methods of inductive synthesis are
biased by program schemas whose templates have
clauses of the forms in the following generic template:

r(X,Y,Z) < o(X,Y,2),p(X,Y,2)

r(X,Y,Z) < d(X,HX,...,X,Z),

r(X,Y,2), ..., r(X,Y,2), (2)

q(H, Yy,...,Y,Z,Y)

where ¢, d, p, and q are open predicate symbols, X is
a non-empty sequence of terms, and Y, Z are possi-
bly empty sequences of terms. The intended semantics
of this generic template can be described informally
as follows. For an arbitrary relation r over parameters
X, Y, and Z, an instance of this generic template is
to determine the values of result parameter Y corre-
sponding to a given value of induction parameter X,
considering the value of auxiliary parameter Z. Two
cases arise: either the c test succeeds and X has a value
for which Y can easily be directly computed through p,
or X has a value for which Y cannot be so easily directly
computed and the divide-and-conquer principle is
applied:

1. Divide X through d into a term H and ¢ terms
Xi,...,X; of the same type as X but smaller than X
according to some well-founded relation;

2. Conquer through t recursive calls to r to determine
the values of Y3,. .., Y; corresponding to Xj, . .., X,
respectively, considering the value of Z;

540

Inductive Programming

3. Combine through g the terms H,Y;,..
build Y.

.,Y[,Z to

Enforcing this intended semantics must be done man-
ually, as any instance template by itself has no seman-
tics, in the sense that any program is an instance of it
(it suffices to define ¢ by a program that always suc-
ceeds, and p by the given program). One way to do
this is to attach to a template some axioms (see Smith
(1985) for the divide-and-conquer axioms), namely the
set of specifications of its open predicate symbols: these
specifications refer to each other, including the one
of r, and are generic (because even the specification
of r is unknown), but can be manually abduced (see
»abduction) once and for all according to the informal
semantics of the schema.

Another important language bias is the available vocab-
ulary, which is here the set of predicate symbols men-
tioned in the evidence set, or actually defined in the
background knowledge (and possibly mentioned by the
oracle). If an inductive synthesis fails, other than back-
tracking to a different program schema (i.e., shifting the
statement bias), one can try and shift the vocabulary
bias by inventing new predicate symbols and induc-
ing programs for them in the extended vocabulary;
this is also known as performing »constructive induc-
tion. Only the invention of recursively defined predi-
cate symbols is necessary, as a non-recursive definition
of a predicate symbol can be eliminated by substitu-
tion (under Presolution) for its calls in the »induced
program (even though that might make the program
longer).

In general, it is undecidable whether predicate
invention is necessary to induce a finite program in the
vocabulary of its evidence and background knowledge
(as a consequence of Rice’s theorem, 1953), but introduc-
ing new predicate symbols always allows the induction
of a finite program (as a consequence of a result by
Kleene), as shown in Stahl (1995). The necessity of shift-
ing the vocabulary bias can only be decided for some
restricted languages (but the bias shift attempt might
then be unsuccessful), so in practice one often has to
resort to heuristics. Note that an inductive synthesiser
of recursive algorithms may be recursive itself: it may

recursively invoke itself for a necessary new predicate
symbol.

Other than the decision problem, the difficulties
of predicate invention are as follows. First, adequate
formal parameters for a new predicate symbol have
to be identified among all the variables in the clause
using it. This can be done instantaneously by using pre-
computations done manually once and for all at the
template level. Second, evidence for a new predicate
symbol has to be abduced from the current program
using the evidence for the old predicate symbol. This
usually requires an oracle for the old predicate symbol,
whose program is still unfinished at that moment and
cannot be used. Third, the abduced evidence may be
less numerous than for the old predicate symbol (note
that if the new predicate symbol is in a recursive clause,
then no new evidence might be abduced from the old
evidence that is covered by the base clauses) and can
be quite sparse, so that the new synthesis is more dif-
ficult. This sparseness problem can be illustrated by an
example.

Example 3 Given the positive ground examples
factorial(0,1), factorial(1,1), factorial(2,2), factorial
(3,6), factorial(4,24), and given the still open program:

factorial(N,F) <« N=0,F=1
factorial(N,F) <« add(M,1,N), factorial(M, G),

product(N, G, F)

where add is known but product was just invented
(and named so only for the reader’s convenience), the
abduceable examples are product(1,1,1), product(2,1,2),
product(3,2,6), and product(4,6,24), which is hardly
enough for inducing a recursive program for product;
note that there is one less example than for factorial.
Indeed, examples such as product(3,6,18), product
(2,6,12), product(1,6,6), etc., are missing, which puts
the given examples more than one resolution step apart,
if not on different resolution paths. This is aggravated
by the absence of an oracle for the invented predi-
cate symbol, which is not necessarily intrinsic to the
task at hand (although product actually is intrinsic to
factorial).

Inductive Programming

541

In an inductive programming context, background
knowledge is particularly important, as the inference
of recursive programs is more difficult than the infer-
ence of Pclassifiers. For the efficiency of synthesis,
it is crucial that this collection of definitions of the
pre-defined predicate symbols be annotated with infor-
mation about the types of their arguments and about
whether some well-founded relation is being enforced
between some of their arguments, so that semantically
suitable instances for the open predicate symbols of
any chosen program schema can be readily spotted.
(This requires in turn that the types of the arguments
of the predicate symbols in the provided evidence are
declared as well.) The background knowledge should be
problem-independent, and an inductive programming
method should be able to perform knowledge mobili-
sation, namely organizing it dynamically according to
relevance to the current task.

In data-driven, analytical approaches, background
knowledge is used in combination with »explanation-
based learning (EBL) methods, such as abduction
(see Example 4) or systematic rewriting of input/
output examples into computational traces (see
Example 5).

Programs and Data

Example 4 The p1aLoGs (Dialogue-based Inductive-
Abductive LOGic program Synthesiser) method (Flener,
1997) is interactive. The main design objective was to
take all extra burden from the specifier by having the
method ask for exactly and only the information it
needs, default answers being provided wherever pos-
sible. As a result, no evidence needs to be prepared
in advance, as the method invents its own candidate
evidence and queries the oracle about it, with an oppor-
tunity to declare (at the oracle/specifier’s risk) that
enough information has been provided. All answers
by the oracle are stored as judgements, to prevent ask-
ing the same query twice. This is suitable for all levels
of expertise of human users, as the queries are for-
mulated in the specifier’s initially unknown conceptual
language, in a way such that the specifier must know
the answers if she really feels the need for the wanted

program. The method is schema-biased, and the cur-
rent implementation has two schemas. The template of
the divide-and-conquer schema has the generality of the
generic template (2). The template of the accumulate
schema extends this by requiring an accumulator in the
sequence Z of auxiliary parameters. The evidence lan-
guage (»observation language) is (non-recursive) logic
programs with negation. Type declarations are provided
as a language bias. The program language (»>hypothesis
language) is recursive logic programs with negation,
with possibly multiple base cases and recursive cases.

For instance, starting from the empty program
for the relation delOdds in Example 1, the algorithm
design choices of using the divide-and-conquer schema
with R as result parameter and L as induction param-
eter decomposed (with + = 1) through head-tail
decomposition by d lead to the following intermediate
open program:

delOdds(L,R) < ¢(L,R), p(L,R)
delOdds(L,R) < d(L,H, L), delOdds(Ly, R;),
4(HL R, R) G
c(_,_) < true
d(L,H,T) < L =[H|T]

The first five evidential clauses for delOdds in (1)
are then implicitly interactively acquired from the
oracle/specifier by the following question & answer
dialogue, leading the specifier to reveal the intrinsic
predicate symbol odd:

DIALOGS: When does delOdds([], R) hold?

Specifier: IfR=1]].
DIALOGS: When does delOdds([X], R) hold?
Specifier: If (odd(X) andR=[1])
or (~odd(X) and R = [X]).
DIALOGS: When does delOdds([X, Y], R) hold,
assuming odd(Y)?
Specifier: If (odd(X) and R=1])

or (-=odd(X) and R = [X]).

542 Inductive Programming

pD1ALOGS: When does delOdds([X, Y], R) hold,
assuming —odd(Y)?

Specifier: If (odd(X) and R =[Y])
or (modd(X) and R = [X,Y]).

Next, abduction infers the following evidence set for the
still open predicate symbols p and g:

p(LLL]) < true
p(IXL[]) < odd(X)
a(X,[1.[]) < odd(X)

p([XL[X]) < -odd(X)

q(X, [].[X]) < —odd(X)
p(X.YLIY]) <« odd(X), ~odd(Y)
q(X, [Y],[Y]) < odd(X)
P(XYLIX.Y]) < -odd(X), -odd(Y)
q(X [Y],[X,Y]) < —odd(X)

From this, induction infers the following closed pro-
grams for p and g:

p([LI]) « true
q(H,L,[H|L]) « -odd(H) (4)
q(H,L,L) < odd(H)

The final closed program is the union of the pro-
grams (3) and (4), as no predicate invention is deemed
necessary. Sample syntheses with predicate invention
are presented in Flener (1997) and Flener and Yilmaz
(1999).

Example 5 The THESYs method (Summers, 1977)
was one of the first methods for the inductive syn-
thesis of functional (Lisp) programs. Although it
has a rather restricted scope, it can be seen as the
methodological foundation of many later methods

for inducing functional programs. The non-interactive
method is schema-biased, and the implementation has
two schemas. Upon adaptation to functional program-
ming, the template of the linear recursion schema is the
instance of the generic template (2) obtained by having
X as a sequence of exactly one induction parameter and
Z as the empty sequence of auxiliary parameters, and
by dividing X into t = 1 smaller value X, so that there
is only t = 1 recursive call. The template of the accumu-
late schema extends this by having Z as a sequence of
exactly one auxiliary parameter, playing the role of an
accumulator. The evidence language (observation lan-
guage) is sets of ground positive examples. The program
language (hypothesis language) is recursive functional
programs, with possibly multiple base cases, but only
one recursive case. The only primitive functions are nil,
cons, head, tail, and empty, because the implementa-
tion is limited to the list datatype, inductively defined by
list = nil | cons(x, list), under the axioms empty(nil) =
true, head(cons(x,y)) = x, and tail(cons(x,y)) = y.
There is no function invention.

For instance, from the following examples of a list
unpacking function:

unpack(nil) = nil
unpack((A)) = ((4)
unpack((AB)) = ((A) (B))
unpack((ABC)) = ((A) (B) (C))

the abduced traces are:

empty(X) — nil
empty(tail(X)) — cons(X, nil)
empty(tail(tail(X))) -

cons(cons(head(X), nil), cons(tail(X), nil))

empty(tail(tail(tail(X)))) -
cons(cons(head(X), nil),
cons(cons(head(tail(X)), nil),
cons(tail(tail (X)), nil)))

Inductive Programming

543

and the induced program is:

unpack(X) -
empty(X) - nil,

empty(tail(X)) — cons(X, nil),

true - cons(cons(head(X), nil),

unpack(tail(X)))

A modern extension of THESYS is the 1GOrR method
(Kitzelmann & Schmid, 2006). The underlying program
template describes the set of all functional programs
with the following restrictions: built-in functions can
only be first-order, and no nested or mutual recur-
sion is allowed. 1GOR adopts the two-step approach of
THESYS. Synthesis is still restricted to structural prob-
lems, where only the structure of the arguments matters,
but not their contents, such as in list reversing. Never-
theless, the scope of synthesisable programs is consid-
erably larger. For instance, tree-recursive functions and
functions with hidden parameters can be induced. Most
notably, programs consisting of a calling function and
an arbitrary set of further recursive functions can be
induced. The first step of synthesis (trace construction)
is therefore expanded such that traces can contain nest-
ings of conditions. The second step is expanded such
that the synthesis of a function can rely on the inven-
tion and synthesis of other functions (that is, IGOR uses
a technique of function invention in correspondence to
the concept of predicate invention introduced above).
An extension, IGOR2, relies on constructor-term rewrit-
ing techniques. The two synthesis steps are merged into
one and make use of background knowledge. Therefore,
the synthesis of programs for semantic problems, such
as list sorting, becomes feasible.

Applications

In the framework of software engineering, inductive pro-
gramming is defined as the inference of information
that is pertinent to the construction of a generalized
computational system for which the provided evidence
is a representative sample (Flener & Partridge, 2001). In
other words, inductive programming does not have to

be a panacea for software development in-the-large and
infer a complete software system in order to be useful: it
suffices to induce, for instance, a self-contained system
module while programming in-the-small, problem fea-
tures and decision logic for specification acquisition and
enhancement, or support for debugging and testing.
Inductive programming is then not always limited to
programs with repetitive or recursive control structures.
There are opportunities for synergy with manual pro-
gramming and deductive program synthesis, as there
are sometimes system modules that no one knows how
to specify in a complete way, or that are harder to specify
or program in a complete way, and yet where incomplete
information such as input-output examples is readily
available. More examples and pointers to the literature
are given in Flener (2002, Section 5) and Flener and
Partridge (2001).

In the context of end-user programming, inductive
programming methods can be used to enable non-
expert users to take advantage of the more sophisticated
functionalities offered by their software. This kind of
application is in the focus of »programming by demon-
stration (PBD).

Finally, it is worth having an evidential synthesiser
of recursive algorithms invoked by a more general-
purpose machine learning method when necessary
predicate invention is detected or conjectured, as such
general methods require a lot of evidence to infer reli-
ably a recursively defined hypothesis.

Future Directions

Inductive programming is still mainly a topic of
basic research, exploring how the intellectual ability
of humans to infer generalized recursive procedures
from incomplete evidence can be captured in the form
of synthesis methods. Already a variety of promising
methods are available. A necessary step should be to
compare and analyse the current methods. A first exten-
sive comparison of different ILP methods for inductive
programming was presented some years ago (Flener &
Yilmaz, 1999). An up-to-date analysis should take into
account not only ILP methods but also methods for
the synthesis of functional programs, using classical
(Kitzelmann & Schmid, 2006) as well as evolutionary

544

Inductive Synthesis

(Olsson, 1995) methods. The methods should be com-
pared with respect to the required quantity of evi-
dence, the kind and amount of background knowledge,
the scope of programs that can be synthesized, and
the efficiency of synthesis. Such an empirical compar-
ison should result in the definition of characteristics
that describe concisely the scope, usefulness, and effi-
ciency of the existing methods in different problem
domains.

Since only a few inductive programming methods
can deal with semantic problems, it should be useful to
investigate how inductive programming methods can
be combined with other machine learning methods,
such as kernel-based classification.

Finally, the existing methods should be adapted to
a broad variety of application areas in the context of
programming assistance, as well as in other domains
where recursive data structures or recursive procedures
are relevant.

Acknowledgment

Most of the work by Pierre Flener was done while
on leave of absence in 2006/07 as a Visiting Faculty
Member and Erasmus Exchange Teacher at Sabanci
University.

Cross References
»Explanation-Based Learning
»Inductive Logic Programming

» Programming by Demonstration
»Trace-Based Programming

Websites

e Online Platform of the Inductive Programming
Co- mmunity: http://www.inductiveprogramming.
org/.

e Flener, P, & Partridge, D. (2001). Inductive pro-
gramming. Automated Software Engineering, 8(2),
131-137. httpy//user.ituu.se/~pierref/ase/.

o Workshops on Approaches and Applications of Induc-
tive Programming (AAIP 2005, AAIP 2007, and
AAIP 2009): http://www.cogsys.wiai.uni-
bamberg.de/aaip/.

o Journal of Machine Learning Research, Special Topic
on Approaches and Applications on Inductive Pro-
gramming, February/March 2006: http://jmlr.csail.
mit.edu/papers/topic/inductive_programming.html.

o Tutorial on Automatic Inductive Programming at
ICML 2006: http://www.evannai.inf.uc3m.es/
et/icml06/aiptutorial.htm.

Recommended Reading

Biermann, A. W. (1978). The inference of regular LISP programs
from examples. IEEE Transactions on Systems, Man, and Cyber-
netics, 8(8), 585-600.

Flener, P. (1997). Inductive logic program synthesis with DIALOGS.
In S. H. Muggleton, (Ed.), Revised selected papers of the 6th
international workshop on inductive logic programming (ILP
1996), volume 1314 of lecture notes in artificial intelligence
(pp. 175-198). Berlin: Springer.

Flener, P. (2002). Achievements and prospects of program syn-
thesis. In A. Kakas & F. Sadri (Eds.), Computational logic:
Logic programming and beyond; essays in honour of Robert A.
Kowalski, volume 2407 of lecture notes in artificial intelligence
(pp. 310-346). Berlin: Springer.

Flener, P., & Partridge, D. (2001). Inductive programming. Auto-
mated Software Engineering, 8(2), 131-137.

Flener, P., & Yilmaz S. (1999). Inductive synthesis of recursive
logic programs: achievements and prospects. Journal of Logic
Programming, 41(2-3), 141-195.

Kitzelmann, E., & Schmid, U. (2006). Inductive synthesis of
functional programs - An explanation based generalization
approach. Journal of Machine Learning Research, 7, 429-454.

Olsson, J. R. (1995). Inductive functional programming using incre-
mental program transformation. Artificial Intelligence, 74(1),
55-83.

Shapiro, E. Y. (1983). Algorithmic program debugging. Cambridge,
MA: MIT Press.

Smith, D. R. (1984). The synthesis of LISP programs from examples:
A survey. In A. W. Biermann, G. Guiho, & Y. Kodratoff (Eds.),
Automatic program construction techniques (pp. 307-324). New
York: Macmillan.

Smith, D. R. (1985). Top-down synthesis of divide-and-conquer
algorithms. Artificial Intelligence, 27(1), 43-96.

Stahl, I. (1995). The appropriateness of predicate invention as bias
shift operation in ILP. Machine Learning, 20(1-2), 95-117.
Summers, P. D. (1977). A methodology for LISP program construc-

tion from examples. Journal of the ACM, 24(1), 161-175.

! Inductive Synthesis

» Inductive Programming

http://jmlr.csail.mit.edu/papers/topic/inductive_programming.html
http://jmlr.csail.mit.edu/papers/topic/inductive_programming.html
http://user.it.uu.se/~pierref/ase/.
http://www.cogsys.wiai.uni-bamberg.de/aaip/
http://www.cogsys.wiai.uni-bamberg.de/aaip/
http://www.evannai.inf.uc3m.es/et/icml06/aiptutorial.htm.
http://www.evannai.inf.uc3m.es/et/icml06/aiptutorial.htm.
http://www.inductiveprogramming.org/.
http://www.inductiveprogramming.org/.

Inductive Transfer

545

|
Inductive Transfer

RICARDO VILALTA!, CHRISTOPHE GIRAUD-CARRIER?,
PAVEL BrazDIL?, CARLOS SOARES®

"University of Houston, Houston TX, USA

Brigham Young University, UT, USA

3University of Porto, Porto, Portugal

Synonyms
Transfer of knowledge across domains

Definition
Inductive transfer refers to the ability of a learning
mechanism to improve performance on the current
task after having learned a different but related concept
or skill on a previous task. Transfer may additionally
occur between two or more learning tasks that are being
undertaken concurrently. Transfer may include back-
ground knowledge or a particular form of »search bias.
As an illustration, an application of inductive trans-
fer arises in competitive games involving teams of
robots (e.g., Robocup Soccer). In this scenario, trans-
ferring knowledge learned from one task into another
task is crucial to acquire skills necessary to beat the
opponent team. Specifically, imagine a situation where
a team of robots has been taught to keep a soccer ball
away from the opponent team. To achieve that goal,
robots must learn to keep the ball, pass the ball to a
close teammate, etc., always trying to remain at a safe
distance from the opponents. Now let us assume that we
wish to teach the same team of robots to play a differ-
ent game where they must learn to score against a team
of defending robots. Knowledge gained during the first
activity can be transferred to the second one. Specifi-
cally, a robot can prefer to perform an action learned in
the past over actions proposed during the current task
because the past action has a significant higher merit
value. For example, a robot under the second task may
learn to recognize that it is preferable to shoot than to
pass the ball because the goal is very close. This action
can belearned from the first task by recognizing that the
precision of a pass is contingent on the proximity of the
teammate.

Structure of the System

The main idea behind a learning architecture using
knowledge transfer is to produce a source model from
which knowledge can be extracted and transferred
to a target model. This allows for multiple scenar-
ios (Brazdil, Giraud-Carrier, Soares, & Vilalta, 2009;
Pratt & Thrun, 1997). For example, the target and
source models can be trained at different times such
that the transfer takes place after the source model has
been trained; in this case there is an explicit form of
knowledge transfer, also called representational trans-
fer. In contrast, we use the term functional transfer to
denote the case where two or more models are trained
simultaneously; in this case the models share (part
of) their internal structure during learning (see Neu-
ral Networks below). When the transfer of knowledge
is explicit, we denote the case as literal transfer when
the source model is left intact. In addition, we denote
the case as nonliteral transfer when the source model
is modified before knowledge is transferred to the tar-
get model; in this case some processing step takes place
on the model before it is used to initialize the target
model.

A learning paradigm amenable to test the feasibil-
ity of knowledge transfer is that of neural networks
(Caruana, 1993). A popular form of knowledge transfer
is effected through multitask learning, where the output
nodes in the multilayer network represent more than
one task. In such a scenario, internal nodes are shared
by different tasks dynamically during learning. As an
illustration, consider the problem of learning to clas-
sify astronomical objects from images mapping the sky
into multiple classes. One task may be in charge of clas-
sifying a star into several classes (e.g., main sequence,
dwarf, red giant, neutron, pulsar, etc.). Another task can
focus on galaxy classification (e.g., spiral, barred spi-
ral, elliptical, irregular, etc.). Rather than separating the
problem into different tasks where each task is in charge
of identifying one type of luminous object, one can
combine the tasks together into a single parallel multi-
task problem where the hidden layer of a neural network
shares patterns that are common to all classification

546

Inductive Transfer

tasks (see Fig. 1). The reason explaining why learning
often improves in accuracy and speed in this context is
that training with many tasks in parallel on a single neu-
ral network induces information that accumulates in
the training signals; if there exists properties common
to several tasks, internal nodes can serve to represent
common subconcepts simultaneously.

Knowledge transfer can be performed using other
learning and data-analysis paradigms such as »kernel
methods, probabilistic methods (see »Bayesian Meth-
ods) and Pclustering (Evgeniou, Micchelli, & Pontil,
2005; Raina, Ng, & Koller, 2006). For example, induc-
tive transfer can take place in learning methods that
assume a probabilistic distribution of the data by guar-
anteeing a form of relatedness among the distributions
adopted across tasks (Raina et al.). As an illustration,
if learning to classify both stars and galaxies assumes
a mixture of normal densities to model the example-
class distribution, one can force both distributions to
have sets of parameters that are as similar as possible
while preserving good generalization performance. In
that case, shared knowledge can be interpreted as a set
of assumptions about the data distribution for all tasks
under analysis. The knowledge transfer concept is also
related to the problem of introducing new intermedi-
ate concepts in the process of bottom-up induction of
rules. In the inductive logic programming (ILP) setting,
this is referred to as predicate invention (Stahl, 1995).

A different research direction in inductive transfer
explores complex scenarios where the software architec-
ture itself evolves with experience (Schmidhuber, 1997).
The main idea is to divide a program into different com-
ponents that can be reused during different stages of
the learning process. As an illustration, one can work
within the space of (self-delimiting binary) programs
to propose an optimal ordered problem solver. The goal
is to solve a sequence of problems, deriving one solu-
tion after the other, as optimally as possible; ideally, the
system should be capable of exploiting previous solu-
tions and incorporate them into the solution to the
current problem. This can be done by allocating com-
puting time to the search for previous solutions that,
if useful, become transformed into building blocks. We

assume that the current problem can be solved by copy-
ing or invoking previous pieces of code (i.e., building
blocks or knowledge). In that case the mechanism will
accept those solutions with substantial savings in com-
putational time.

Theoretical Work

Several studies have provided a theoretical analysis of
the case where a learner uses experience from previ-
ous tasks to learn a new task. This process is often
referred to as metalearning. The aim is to understand
the conditions under which a learning algorithm can
provide good generalizations when embedded in an
environment made of related tasks. Although the idea
of knowledge transfer is normally made implicit in
the analysis, it is clear that the metalearner extracts
and exploits knowledge on every task to perform
well on future tasks. Theoretical studies fall within
a Bayesian model and within a Probably Approx-
imately Correct (PAC) model. The idea is to find
not only the right hypothesis in a hypothesis space
(base learning), but in addition, to find the right
hypothesis space in a family of hypothesis spaces
(metalearning).

Let us review the main ideas behind these studies
(Baxter, 2000). We begin by assuming that the learner
is embedded in a set of related tasks that share cer-
tain commonalities. Going back to the problem where a
learner is designed for the recognition of astronomical
objects, the idea is to classify objects (e.g., stars, galaxies,
nebulae, planets) extracted from images mapping cer-
tain region of the sky. One way to transfer learning expe-
rience from one astronomical center to another is by
sharing a metalearner that carries a bias toward recogni-
tion of astronomical objects. In traditional learning, we
assume a probability distribution p that indicates which
examples are more likely to be seen in such task. Now
we assume there is a more general distribution P over
the space of all possible distributions. In essence, the
metadistribution P indicates which tasks are more likely
to be found within the sequence of tasks faced by the
metalearner (just as an example distribution p indicates
which examples are more likely to be seen in one task).
In our example, the metadistribution P peaks over tasks
corresponding to classification of astronomical objects.
Given a family of hypothesis spaces {H}, the goal of the

Inductive Transfer

547

Stars
Main Giants and .
Sequence Red Giants White Dwarfs
Stars

Galaxies

Spiral Elliptical Irregular

Galaxies

Inductive Transfer. Figure 1. Example of multitask learning on astronomical images

metalearner is to find a hypothesis space H* that mini-
mizes a functional risk corresponding to the expected
loss of the best possible hypothesis in each hypothe-
sis space. In practice, since we ignore the form of P,
., T, to infer how
tasks are distributed in our environment. To summa-

we need to draw samples Ty, T, ..

rize, in the transfer learning scenario our input is made
of samples T = {T;}, where each sample T; is composed
of examples. The goal of the metalearner is to output a
hypothesis space with an »inductive bias that generates
accurate models for a new task.

Future Directions

The research community faces several challenges on
how to efficiently transfer knowledge across tasks. One
challenge involves devising learning architectures with
an explicit representation of knowledge about mod-
els and algorithms, i.e., metaknowledge. Most systems
that integrate knowledge transfer mechanisms make an

implicit assumption about the transfer process by mod-
ifying the bias embedded by the hypothesis space. For
example, we may change bias by selecting a learning
algorithm that draws linear boundaries over the input
space instead of one that draws quadratic boundaries;
here, no explicit knowledge is transferred specifying our
preference for linear boundaries. Because of this limita-
tion, transferring knowledge across domains becomes
problematic.

Another challenge is to understand why a learn-
ing algorithm performs well or not on certain datasets
and to use that (meta)knowledge to improve its per-
formance. Recent work in metalearning has explored
the idea that high-quality dataset characteristics or
metafeatures provide enough information to differ-
entiate the performance of a given set of learning
algorithms. From a practical perspective, a proper char-
acterization of datasets leads to an interesting goal: the
construction of metalearning assistants. The main role
of these assistants is to recommend a good predictive

548

Inequalities

model given a new dataset, or to attempt to modify
the learning mechanism before it is invoked again in a
dataset drawn from a similar distribution.

Cross References
» Metalearning

Recommended Reading

Baxter, J. (2000). A model of inductive learning bias. Journal of
Artificial Intelligence Research, 12, 149-198.

Brazdil, P., Giraud-Carrier, C., Soares, C., & Vilalta, R. (2009). Met-
alearning: Applications to data mining. Springer-Verlag Berlin:
Heidelberg.

Caruana, R. (1993). Multitask learning: A knowledge-based
source of inductive bias. In P. E. Utgoff (Ed.), Proceedings
of the tenth international conference on machine learning
(pp. 41-48). San Mateo, Springer Netherlands: Morgan
Kaufmann.

Dai, W., Yang, Q., Xue, G., & Yu, Y. (2007). Boosting for trans-
fer learning. In Proceedings of the 24th annual international
conference on machine learning (pp. 193-200). New York:
ACM.

Evgeniou, T., Micchelli, C. A., & Pontil, M. (2005). Learning mul-
tiple tasks with kernel methods. Journal of Machine Learning
Research, 6, 615-637.

Mihalkova, L., Huynh, T., & Mooney, R. J. (2007). Mapping and
revising Markov logic networks for transfer learning. In Pro-
ceedings of the 22nd AAAI conference on artificial intelligence
(pp. 608-614). Vancouver, BC: AAAI Press.

Oblinger, D., Reid, M., Brodie, M., & de Salvo Braz, R. (2002).
Cross-training and its application to skill-mining. IBM Systems
Journal, 41(3), 449-460.

Pratt, L., & Thrun, S. (1997). Second special issue on inductive
transfer. Machine Learning, 28, No. 1, 5-130.

Raina, R., Ng, A. Y., & Koller, D. (2006). Constructing informative
priors using transfer learning. In Proceedings of the twenty-third
international conference on machine learning (pp. 713-720).
Pittsburgh, PA: ACM.

Reid, M. (2004). Improving rule evaluation using multitask learn-
ing. In Proceedings of the 14th international conference on ILP
(pp- 252-269). Springer-Verlag, Heidelberg.

Schmidhuber, J., Zhao, J., & Wiering M. A. (1997). Shifting induc-
tive bias with success-story algorithm, adaptive Levin search,
and incremental self-improvement. Machine Learning, 28(1),
105-130.

Stahl, I. (1996). Predicate invention in inductive logic programming.
In L. De Raedt (Ed.), Advances in inductive logic programming.
(pp. 34-47). IOS Press.

| .us
Inequalities

» Generalization Bounds

Information Retrieval

Information retrieval (IR) is a set of techniques that
extract from a collection of documents those that are
relevant to a given query. Initially addressing the needs
of librarians and specialists, the field has evolved dra-
matically with the advent of the World Wide Web.
It is more general than data retrieval, whose purpose
is to determine which documents contain occurrences
of the keywords that make up a query. Whereas the
syntax and semantics of data retrieval frameworks is
strictly defined, with queries expressed in a totally for-
malized language, words from a natural language given
no or limited structure are the medium of commu-
nication for information retrieval frameworks. A cru-
cial task for an IR system is to index the collection of
documents to make their contents efficiently accessi-
ble. The documents retrieved by the system are usually
ranked by expected relevance, and the user who exam-
ines some of them might be able to provide feedback
so that the query can be reformulated and the results
improved.

! Information Theory

»Minimum Description Length Principle
»Minimum Message Length

[.
In-Sample Evaluation

Synonyms
Within-sample evaluation

Definition

In-sample evaluation is an approach to »algorithm
evaluation whereby the learned model is evaluated on
the data from which it was learned. This provides a
biased estimate of learning performance, in contrast to
»holdout evaluation.

Cross References
» Algorithm Evaluation

Instance-Based Learning

549

|
Instance

Synonyms
Case; Example; Item; Object

Definition

An instance is an individual object from the universe
of discourse. Most Plearners create a »model by ana-
lyzing a Ptraining set of instances. Most »machine
learning models take the form of a function from an
»instance space to an output space. In P-attribute-value
learning, each instance is often represented as a vec-
tor of P-attribute values, each position in the vector
corresponding to a unique attribute.

" Instance Language

»Observation Language

" Instance Space

Synonyms
Example space; Item space; Object space

Definition

An instance space is the space of all possible P»-instances
for some Plearning task. In P-attribute-value learning,
the instance space is often depicted as a geometric space,
one dimension corresponding to each attribute.

[.
Instance-Based Learning

EaMONN KEOGH
University of California, Riverside, CA, USA

Synonyms

Analogical reasoning; Case-based learning; Memory-
based; Nearest neighbor methods; Non-parametric
methods

Definition
Instance-based learning refers to a family of techniques
for »classification and Pregression, which produce

a class label/predication based on the similarity of the
query to its nearest neighbor(s) in the training set. In
explicit contrast to other methods such as »decision
trees and Pneural networks, instance-based learning
algorithms do not create an abstraction from specific
instances. Rather, they simply store all the data, and at
query time derive an answer from an examination of the
query’s P-nearest neighbor(s).

Somewhat more generally, instance-based learning
can refer to a class of procedures for solving new prob-
lems based on the solutions of similar past problems.

Motivation and Background
Most instance-based learning algorithms can be speci-
fied by determining the following four items:

1. Distance measure: Since the notion of similarity is
being used to produce class label/prediction, we
must explicitly state what similarity/distance mea-
sure to use. For real-valued data, Euclidean distance
is a popular choice and may be optimal under some
assumptions.

2. Number of neighbors to consider: It is possible to
consider any number from one to all neighbors.
This number is typically denoted as k.

3. Weighting function: It is possible to give each neigh-
bor equal weight, or to weight them based on their
distance to the query.

4. Mapping from local points: Finally, some method
must be specified to use the (possibly weighted)
neighbors to produce an answer. For example, for
regression the output can be the weighted mean
of the k nearest neighbors, or for classification the
output can be the majority vote of the k near-
est neighbors (with some specified tie-breaking
procedure).

Since instance-based learning algorithms defer all the
work until a query is submitted, they are some-
times called lazy algorithms (in contrast to eager
learning algorithms, such as decision trees). Beyond
the setting of parameters/distance measures/mapping
noted above, one of the main research issues with
instance-based learning algorithms is mitigating their
expensive classification time, since a naive algorithm
would require comparing the distance for the query
to every point in the database. Two obvious solutions

550

Instance-Based Reinforcement Learning

are indexing the data to achieve a sublinear search,
and numerosity reduction (data editing) (Wilson &
Martinez, 2000).

Further Reading

The best distance measure to use with an instance-based
learning algorithms is the subject of active research. For
the special case of time series data alone, there are at
least one hundred methods Ding, Trajcevski, Scheuer-
mann, Wang, & Keogh (2008). Conferences such as
ICML, SIGKDD, etc. typically have several papers each
year which introduce new distance measures and/or
efficient search techniques.

Recommended Reading

Aha, D. W., Kibler, D., & Albert, M. K. (1991). Instance-based
learning algorithms. Machine Learning, 6, 37-66.

Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., & Keogh, E. J.
(2008). Querying and mining of time series data: Experimental
comparison of representations and distance measures. PVLDB,
1(2), 1542-1552.

Wilson, D. R., & Martinez, T. R. (2000). Reduction techniques for
exemplar-based learning algorithms. Machine Learning, 38(3),
257-286.

! Instance-Based Reinforcement
Learning

WiLLIAM D. SMART
Washington University in St. Louis,
St. Louis, MO, USA

Synonyms
Kernel-based reinforcement learning

Definition

Traditional reinforcement-learning (RL) algorithms
operate on domains with discrete state spaces. They typ-
ically represent the value function in a table, indexed by
states, or by state-action pairs. However, when apply-
ing RL to domains with continuous state, a tabular
representation is no longer possible. In these cases,
a common approach is to represent the value func-
tion by storing the values of a small set of states
(or state-action pairs), and interpolating these val-
ues to other, unstored, states (or state-action pairs).

This approach is known as instance-based reinforce-
ment learning (IBRL). The instances are the explicitly
stored values, and the interpolation is typically done
using well-known instance-based supervised learning
algorithms.

Motivation and Background

Instance-Based Reinforcement Learning (IBRL) is one
of a set of value-function approximation techniques that
allow standard RL algorithms to deal with problems
that have continuous state spaces. Essentially, the tab-
ular representation of the value function is replaced
by an instance-based supervised learning algorithm
and the rest of the RL algorithm remains unaltered.
Instance-based methods are appealing because each
stored instance can be viewed as analogous to one cell in
the tabular representation. The interpolation method of
the instance-based learning algorithm then blends the
value between these instances.

IBRL allows generalization of value across the state
(or state—action) space. Unlike tabular representations it
is capable of returning a value approximation for states
(or state—action pairs) that have never been directly
experienced by the system. This means that, in theory,
fewer experiences are needed to learn a good approxi-
mation to the value function and, hence, a good control
policy. IBRL also provides a more compact representa-
tion of the value function than a table does. This is espe-
cially important in problems with multi-dimensional
continuous state spaces. A straightforward discretiza-
tion of such a space results in an exponential number of
table cells. This, in turn, leads to an exponential increase
in the amount of training experiences needed to obtain
a good approximation of the value function.

An additional benefit of IBRL over other value-
function approximation techniques, such as artificial
neural networks, is the ability to bound the predicted
value of the approximation. This is important, since
it allow us to retain some of the theoretical non-
divergence results for tabular representations.

Structure of Learning System

IBRL can be used to approximate both the state
value function and the state—action value function. For
problems with discrete actions, it is common to store a
separate value function for each action. For continuous

Instance-Based Reinforcement Learning

551

actions, the (continuous) state and action vectors are
often concatenated, and VFA is done over this com-
bined domain. For clarity, we will discuss only the
state value function here, although our comments apply
equally well to the state-action value function.

IBRL uses an instance-based supervised learning algo-
rithm to replace the tabular value function represen-
tation of common RL algorithms. It maintains a set
of states, often called basis points, and their associated
values, using them to provide a value-function approx-
imation for the entire state space. These exemplar states
can be obtained in a variety of ways, depending on the
nature of the problem. The simplest approach is to sam-
ple, either regularly or randomly, from the state space.
However, this approach can result in an unacceptably
large number of instances, especially if the state space
is large, or has high dimension. A better approach is
to use states encountered by the learning agent as it
follows trajectories in the state space. This allows the
representational power of the approximation algorithm
to be focused on areas of the space in which the learning
agent is likely to be. This, too, can result in a large num-
ber of states, if the agent is long-lived. A final approach
combines the previous two by sub-sampling from the
observed states.

Each stored instance state has a value associ-
ated with it, and an instance-based supervised learn-
ing algorithm is used to calculate the value of all
other states. While any instance-based algorithm can
be used, kernel-based algorithms have proven to be
popular. Algorithms such as locally weighted regres-
sion (Smart & Kaelbling, 2000), and radial basis func-
tion networks (Kretchmar & Anderson, 1997) are com-
monly seen in the literature. These algorithms make
some implicit assumptions about the form of the value
function and the underlying state space, which we
discuss below. For a state s, the kernel-based value-
function approximation V(s) is

V(s) = % Z¢ (55) V(s:)» 0

where the s; values are the # stored basis points, # is a
normalizer,

’7:2”:(/)(5’51')’ (2)
i1

and ¢ is the kernel function. A common choice for ¢ is
an exponential kernel,

=02

d(s,t)=e 2, (3)

where ¢ is the kernel bandwidth. The use of kernel-
based approximation algorithms is well motivated,

since they respect Gordon’s non-divergence condi-
tions (Gordon, 1995), and also Szepesvari and Smart’s
convergence criteria (Szepesvari & Smart, 2004).

As the agent gathers experience, the value approxi-
mations at each of the stored states and, optionally, the
location and bandwidth of the states must be updated.
Several techniques, often based on the temporal dif-
ference error, have been proposed, but the problem
remains open. An alternative to on-line updates is a
batch approach, which relies on storing the experiences
generated by the RL agent, composing these into a dis-
crete MDP, solving this MDP exactly, and then using
supervised learning techniques on the states and their
associated values. This approach is known as fitted value
iteration (Szepesvari & Munos, 2005).

Several IBRL algorithms have been reported in the
literature. Kretchmar and Anderson (1997) presented
one of the first IBRL algorithms. They used a radial
basis function (RBF) network to approximate the state-
action value function for the well-known mountain-car
test domain. The temporal difference error of the value
update is used to modify the weights, centers, and vari-
ances of the RBF units, although they noted that it
was not particularly effective in producing good control
policies.

Smart and Kaelbling (2000) used locally weighted
learning algorithms and a set of heuristic rules to
approximate the state-action value function. A set of
states, sampled from those experienced by the learning
agent, were stored along with their associated values.
One approximation was stored for each discrete action.
Interpolation between these exemplars was done by
locally weighted averaging or locally weighted regres-
sion, supplemented with heuristics to avoid extrapola-
tion and over-estimation. Learning was done on-line,
with new instances being added as the learning agent
explored the state space. The algorithm was shown
to be effective in practice, but offered no theoretical
guarantees.

552

Instance-Based Reinforcement Learning

Ormoneit and Sen (2002) presented an offline
kernel-based reinforcement-learning algorithm that
stores experiences (s;, a;, 74, s}) as the instances, and uses
these to approximate the state-action value function for
problems with discrete actions. For a given state s and
action a, the state-action value Q(s, a) is approximated
as

Q(s,a)— 5 ¢(d(sS))[ri+yrr;z}xQ(sf,a')],

$a ila;=a
(4)
where ¢ is a kernel function, ¢ is the kernel bandwidth,
y is the RL discount factor, and #;, is a normalizing

term,
Cne(fen)

ila;j=a

They showed that, with enough basis points, this
approximation converges to the true value function,
under some reasonable assumptions. However, they
provide no bound on the number of basis points needed
to provide a good approximation to the value function.

IBRL makes a number of assumptions about the form of
the value function, and the underlying state space. The
main assumptions are that state similarity is well mea-
sure by (weighted) Euclidean distance. This implicity
assumes that the underlying state space be metric, and
is a topological disk. Essentially, this means that stattes
that are close to each other in the state space have similar
value. This is clearly not true for states between which
the agent cannot move, such as those on the opposite
sides of a thin wall. In this case, there is a discontinuity
in the state space, introduced by the wall, which is not
well modeled by the instance-based algorithm.
Instance-based function approximation algorithms
assume that the function they model is smooth and con-
tinuous between the basis points. Any discontinuities in
the function tend to get “smoothed out” in the approx-
imation. This assumption is especially problematic for
value-function approximation, since it allows value on
one side of the discontinuity to affect the approxima-
tion on the other. If the location of the discontinuity is
known, and we are able to allocate an arbitrary number
of basis points, we can overcome this problem. How-
ever, in practical applications of RL, neither of these is

feasible, and the problem of approximating the value
function at or near discontinuities remains an open one.

Although IBRL has been shown to be effective on
a number of problems, it does have a number of
drawbacks that remain unaddressed. Instance-based
approximation algorithms are often expensive in terms
of storage, especially for long-lived agents. Although the
literature contains many techniques for editing the basis
set of instance-based approximators, these techniques
are generally for a supervised learning setting, where the
utility of a particular edit can be easily evaluated. In the
RL setting, we lack the ground truth available to super-
vised learning, making the evaluation of edits consider-
ably more difficult. Additionally, as the number of basis
points increases, so does the time needed to perform an
approximation. This limitation is significant in the RL
setting, since many such value predictions are needed
on every step of the accompanying RL algorithm.

The value of a particular state, s, is calculated by
blending the values from other nearby states, s;. This is
problematic if it is not possible to move from state s to
each of the states s;. The value of s should only be influ-
enced by the value of states reachable from s, but this
condition is not enforced by standard instance-based
approximation algorithms. This leads to problems when
modeling discontinuities in the value function, as noted
above, and in situations where the system dynamics
constrain the agent’s motion, as in the case of a “one-way
door” in the state space.

IBRL also suffers badly from the curse of dimen-
sionality; the number of points needed to adequately
represent the value function is exponential in the
dimensionality of the state space. However, by using
only states actually experienced by the learning agent,
we can lessen the impact of this problem. By using
only observed states, we are explicitly modeling the
manifold over which the system state moves. This
manifold is embedded in the full state space and, for
many real-world problems, has a lower dimensional-
ity than the full space. The Euclidean distance metric
used by many instance-based algorithms will not accu-
rately measure distance along this manifold. In prac-
tice, the manifold over which the system state moves
will be locally Euclidean for problems with smooth,
continuous dynamics. As a result, the assumptions of

Inverse Entailment

553

instance-based function approximators are valid locally
and the approximations are of reasonable quality.

Cross References

» Curse of Dimensionality
»Instance-Based Learning
»Locally Weighted Learning

» Reinforcement Learning

» Value-Function Approximation

Recommended Reading

Gordon, G.J. (1995). Stable function approximation in dynamic pro-
gramming. In Proceedings of the twelfth international conference
on machine learning (pp. 261-268). Tahoe City, CA.

Kretchmar, R. M., & Anderson, C. W. (1997). Comparison of CMACs
and radial basis functions for local function approximators in
reinforcement learning. In International conference on neural
networks, Houston, TX (Vol. 2, pp. 834-837).

Ormoneit, D., & Sen, $. (2002). Kernel-based reinforcement learn-
ing. Machine Learning, 49(2-3), 161-178.

Smart, W. D., & Kaelbling, L. P. (2000). Practical reinforcement
learning in continuous spaces. In Proceedings of the seventeenth
international conference on machine learning (ICML 2000) (pp.
903-910). Stanford, CA.

Szepesvari, C., & Munos, R. (2005). Finite time bounds for sampling
based fitted value iteration. In Proceedings of the twenty-second
international conference on machine learning (ICML 2005),
Bonn, Germany (pp. 880-887).

Szepesvari, C., & Smart, W. D. (2004). Interpolation-based
Q-learning. In Proceedings of the twenty-first international
conference on machine learning (ICML 2004), Banff, Alberta,
Canada (pp. 791-798).

I . .
Intelligent Backtracking

Synonyms
Dependency directed backtracking

Definition

Intelligent backtracking is a general class of techniques
used to enhance search and constraint satisfaction algo-
rithms. Backtracking is a general mechanism in search
where a problem solver encounters an unsolvable search
state and backtracks to a previous search state that
might be solvable. Intelligent backtracking mechanisms
provide various ways of selecting the backtracking point
based on past experience in a way that is likely to be
fruitful.

" Intent Recognition

»Inverse Reinforcement Learning

[
Internal Model Control

Synonyms
Certainty equivalence principle; Model-based control

Definition

Many advanced controllers for nonlinear systems
require knowledge of the model of the dynamics of the
system to be controlled. The system dynamics is often
called an “internal model,” and the resulting controller
is model-based. If the model is not known, it can be
learned with function approximation techniques. The
learned model is subsequently used as if it were correct
in order to synthesize a controller - the control liter-
ature calls this assumption the “certainty equivalence
principle”

[
Interval Scale

An interval measurement scale ranks the data, and the
differences between units of measure can be calculated
by arithmetic. However, zero in the interval level of mea-
surement means neither “nil” nor “nothing” as zero in
arithmetic means. See »Measurement Scales.

|
Inverse Entailment

Definition

Inverse entailment is a Pgenerality relation in
»inductive logic programming. More specifically, when
»learning from entailment using a background theory
B, a hypothesis H covers an example e, relative to the
background theory Bif and only if BA H E e, that is, the
background theory B and the hypothesis H together
entail the example (see Pentailment). For instance,
consider the background theory B:

bird :- blackbird.
bird :- ostrich.

554

Inverse Optimal Control

and the hypothesis H:

flies :- bird.

Together B A H entail the example e:

flies :- blackbird, normal.

This can be decided through deductive inference. Now
when learning from entailment in inductive logic pro-
gramming, one starts from the example e and the back-
ground theory B, and the aim is to induce a rule H that
together with B entails the example. Inverting entail-
ment is based on the observation that BA H E e is
logically equivalent to B A —e E —H, which in turn can
be used to compute a hypothesis H that will cover the
example relative to the background theory. Indeed, the
negation of the example is —e:

blackbird.
normal.
:—flies.

and together with B this entails -H:

bird.
:—flies.

The principle of inverse entailment is typically employed
to compute the »bottom clause, which is the most
specific clause covering the example under entailment.
It can be computed by generating the set of all facts (true
and false) that are entailed by B A —e and negating the
resulting formula —H.

Cross References

»Bottom Clause

» Entailment

»Inductive Logic Programming
»Logic of Generality

| .
Inverse Optimal Control

» Inverse Reinforcement Learning

[. .
Inverse Reinforcement Learning

PIETER ABBEEL', ANDREW Y. NG?
"University of California, Berkeley, California, USA
2Stanford University, Stanford, California, USA

Synonyms
Intent recognition; Inverse optimal control; Plan
recognition

Definition

Inverse reinforcement learning (inverse RL) consid-
ers the problem of extracting a reward function from
observed (nearly) optimal behavior of an expert acting
in an environment.

Motivation and Background
The motivation for inverse RL is two fold:

1. For many RL applications, it is difficult to write

down an explicit reward function specifying how
different desiderata should be traded off exactly. In
fact, engineers often spend significant effort tweak-
ing the reward function such that the optimal policy
corresponds to performing the task they have in
mind. For example, consider the task of driving a
car well. Various desiderata have to be traded off,
such as speed, following distance, lane preference,
frequency of lane changes, distance from the curb,
and so on. Specifying the reward function for the
task of driving requires explicitly writing down the
trade-off between these features.
Inverse RL algorithms provide an efficient solu-
tion to this problem in the apprenticeship learning
setting — when an expert is available to demon-
strate the task. Inverse RL algorithms exploit the fact
that an expert demonstration implicitly encodes the
reward function of the task at hand.

2. Reinforcement learning and related frameworks
are often used as computational models for ani-
mal and human learning (Schmajuk & Zanutto,
1997; Touretzky & Saksida, 1997; Watkins, 1989).
Such models are supported both by behavioral
studies and by neurophysiological evidence that
reinforcement learning occurs in bee foraging
(Montague, Dayan, Person, & Sejnowski, 1995) and

Inverse Reinforcement Learning

555

in songbird vocalization (Doya & Sejnowski, 1995).
It seems clear that in examining animal and human
behavior, we must consider the reward function as
an unknown to be ascertained through empirical
investigation, particularly when dealing with mul-
tiattribute reward functions. Consider, for example,
that the bee might weigh nectar ingestion against
flight distance, time, and risk from wind and preda-
tors. It is hard to see how one could determine the
relative weights of these terms a priori. Similar con-
siderations apply to human economic behavior, for
example. Hence, inverse reinforcement learning is a
fundamental problem of theoretical biology, econo-
metrics, and other scientific disciplines that deal
with reward-driven behavior.

Structure of the Learning System

A Markov decision process (MDP) is a tuple (S, A, T, y,
D,R), where S is a finite set of states; A is a set of
actions; T = {P,,} is a set of state-transition probabil-
ities (here, Py, is the state transition distribution upon
taking action a in state s); y € [0,1) is a discount fac-
tor; D is the distribution over states for time zero; and
R: S~ Ris the reward function.

A policy 7 is a mapping from states to probability
distributions over actions. Let IT denotes the set of all
stationary policies. (We restrict attention to stationary
policies, since it is well known that there exists a station-
ary policy that is optimal for infinite horizon MDPs.)
The utility of a policy 7 is given by

() - E[gth(st)h].

The expectation is taken with respect to the random
state sequence s, 51, S, . . . drawn by starting from a state
so ~ D, and picking actions according to 7.

Let ps(7r) be the discounted distribution over states
when acting according to the policy 7. In particular,
for a discrete state space we have that [us(7m)](s) =
Yoo ¥ Prob(s; = s|m). (In the case of a continuous state
space, we replace Prob(s; = s|m) by the appropriate
probability density function.) Then, we have that

U(r) =R us(m).

Thus, the utility of a policy 7 is linear in the reward
function.

Often the reward function R can be represented
more compactly. Let ¢ : S - R" be a feature map. A typ-
ical assumption in inverse RL is to assume the reward
function R is a linear combination of the features ¢:
R(s) = w'¢(s). Then, we have that the utility of a policy
7 is linear in the reward function weights w:

U(m) = E[XZ y'R(se)]

E[XZy'w ¢(st)ln]

wTE[XZ0 ' ¢(st)l]

w' g (7). @

Here, we used linearity of expectation to bring w outside
of the expectation. The last equality defines the vector of
feature expectations py(m) = E[X 20 y'¢(se)|7].

We assume access to demonstrations by some
expert. We denote the expert’s policy by n*. Specifi-
cally, we assume the ability to observe trajectories (state
sequences) generated by the expert starting from so ~ D
and taking actions according to 7*.

A reward function R is consistent with the policy 7*
being optimal if and only if the utility obtained when
acting according to the policy 7" is at least as high as
the utility obtained when acting according to any other
policy 7, or equivalently,

U(n*) 2 U(m) Vmell (2)

Using the fact that U(7) = R ug(m), we can equiva-
lently write the conditions of Eq. (2) as a set of linear
constraints on the reward function R:

RTus(m*) >R ps(m) Vmell. (3)

The state distribution ys(7) does not depend on the
reward function R. Thus, Eq. (3) is a set of linear con-
straints in the reward function and we can use a linear
program (LP) solver to find a reward function consis-
tent with the policy 7* being optimal. Strictly speaking,
Eq. (3) solves the inverse RL problem. However, to apply
inverse RL in practice, the following three issues need to
be addressed:

556

Inverse Reinforcement Learning

1. Reward Function Ambiguity. Typically, a large set
of reward functions satisfy all the constraints of
Eq. (3). One such reward function that satisfies all
the constraints for any MDP is the all-zeros reward
function (it is consistent with any policy being opti-
mal). Clearly, the all-zeros reward function is not a
desirable answer to the inverse RL problem. More
generally, this observation suggests not all reward
functions satisfying Eq. (3) are of equal interest and
raises the question of how to recover reward func-
tions that are of interest to the inverse RL problem.

2. Statistical Efficiency. Often the state space is very
large (or even infinite) and we do not have suf-
ficiently many expert demonstrations available to
accurately estimate y(+; 7*) from data.

3. Computational Efficiency. The number of con-
straints in Eq. (3) is equal to the number of station-
ary policies |I1| and grows quickly with the number
of states and actions of the MDP. For finite-state-
action MDPs, we have |A[Sl constraints. So, even for
small state and action spaces, feeding all the con-
straints of Eq. (3) into an LP solver becomes quickly
impractical. For continuous state-action spaces, the
formulation of Eq. (3) has an infinite number of
constraints, and thus using a standard LP solver to
find a feasible reward function R is impossible.

In the following sections, we address these three
issues.

Reward Function Ambiguity As observed above, typi-
cally a large set of reward functions satisfy all the con-
straints of Eq. (3). To obtain a single reward function,
it is natural to reformulate the inverse RL problem as
an optimization problem. We describe one standard
approach for disambiguation. Of course, many other
formulations as an optimization problem are possible.

Similar to common practice in support vector
machines research, one can maximize the (soft) margin
by which the policy 7* outperforms all other policies.
As is common in structured prediction tasks (see, e.g.,
Taskar, Guestrin, & Koller, 2003), one can require the
margin by which the policy 7n* outperforms another
policy 7 to be larger when 7 differs more from 7%,
as measured according to some function h(7*, 7). The
resulting formulation (Ratliff, Bagnell, & Zinkevich,
2006) is

min HRH% +Cé&
R

st. R us(n*) > R us(n) + h(n*,m) - & Vmell
(4)

For the resulting optimal reward function to corre-
spond to a desirable solution to the inverse RL problem,
it is important that the objective and the margin scaling
encode the proper prior knowledge. If a sparse reward
function is suggested by prior knowledge, then a1-norm
might be more appropriate in the objective. An exam-
ple of a margin scaling function for a discrete MDP is
the number of states in which the action prescribed by
the policy 7 differs from the action prescribed by the
expert policy 7*. If the expert has only been observed in
a small number of states, then one could restrict atten-
tion to these states when evaluating this margin scaling
function.

Another way of encoding prior knowledge is by
restricting the reward function to belong to a certain
functional class, for example, the set of functions lin-
ear in a specified set of features. This approach is very
common, and is also important for statistical efficiency.
It will be explained in the next section.

Remark. When using inverse RL to help us specify
a reward function for a given task based on an expert
demonstration, it is not necessary to explicitly resolve
the ambiguities in the reward function. In particular,
one can provably perform as well as the expert without
matching the expert’s reward function. More details are
given in Sect. 4.3.

Statistical Efficiency As formulated thus far, solving the
inverse RL problem requires the knowledge (or accu-
rate statistical estimates) of pg(7*). For most practical
problems, the number of states is large (or even infinite)
and thus accurately estimating pg(7*) requires a very
large number of expert demonstrations. This (statisti-
cal) problem can be resolved by restricting the reward
function to belong to a prespecified class of functions.
The common approach is to assume the reward function
R can be expressed as a linear combination of a known
set of features. In particular, we have R(s) = w'¢(s).
Using this assumption, we can use the expression for the
utility of the policy 7 from Eq. (1).

Rewriting Eq. (4), we now have the following con-
straints in the reward weights w:

Inverse Reinforcement Learning

557

min HW”% +C¢
w,&

st.w'pg(m) > whpg(m) + h(n*,m) - & Vmell

()

This new formulation requires only estimates of the
expected feature counts ug(7*), rather than estimates
of the distribution over the state space (7). Assum-
ing the number of features is smaller than the number
of states, this significantly reduces the number of expert
demonstrations required.

Computational Efficiency For concreteness, we will
consider the formulation of Eq. (5). Although the num-
ber of variables is only equal to the number of features
in the reward function, the number of constraints is
very large (equal to the number of stationary policies).
As a consequence, feeding the problem into a standard
quadratic programming (QP) solver will not work.

Ratliff et al. (2006) suggested a formal computa-
tional approach to solving the inverse RL problem,
using standard techniques from convex optimization,
which provide convergence guarantees. More specifi-
cally, they used a subgradient method to optimize the
following equivalent problem:

. 2 T *
C h b
min [wl; + Cmax (w'pg (7) + h(n", 7)

—wug(n*)). (6)

In each iteration, to compute the subgradient, it is suf-
ficient to find the optimal policy with respect to a
reward function that is easily determined from the cur-
rent reward weights w and the margin scaling function
h(m*,-). In more recent work, Ratliff, Bradley, Bagnell,
and Chestnutt (2007) proposed a boosting algorithm
to solve a formulation similar to Eq. (6), which also
includes feature selection.

Abbeel and Ng (2004) made the following observation,
which resolves the ambiguity problem in a completely
different way: if, for a policy 7, we have that y4(7) =
g ("), then the following holds:

U(m) =w'pg(m) = whug(n") = U(n"),

no matter what the value of w is. Thus, to perform
as well as the expert, it is sufficient to find a policy
that attains the same expected feature counts y4 as the
expert.

Abbeel and Ng provide an algorithm that finds a pol-
icy 7 satisfying g (7) = py (7). The algorithm iterates
over two steps: (1) generate a reward function by solving
a QP; (2) solve the MDP for the current reward function.

In contrast to the previously described inverse RL
methods, which focus on merely recovering a reward
function that could explain the expert’s behavior, this
inverse RL algorithm is shown to find a policy that
performs at least as well as the expert. The algo-
rithm is shown to converge in a polynomial number of
iterations.

Apprenticeship Learning: Inverse RL
Versus Imitation Learning

Inverse RL alleviates the need to specify a reward
function for a given task when expert demonstrations
are available. Alternatively, one could directly estimate
the policy of the expert using a standard machine-
learning algorithm, since it is simply a mapping from
state to action. The latter approach, often referred to as
»imitation learning or »behavioral cloning, has been
successfully tested on a variety of tasks, including learn-
ing to fly in a fixed-wing flight simulator (Sammut,
Hurst, Kedzier, & Michie, 1992), and learning to drive
a car (Pomerleau, 1989).

The behavioral cloning approach can be expected to
be successful whenever the policy class to be consid-
ered can be learned efficiently from data. In contrast, the
inverse RL approach relies on having a reward function
that can be estimated efficiently from data.

Cross References

» Apprenticeship Learning
> Reinforcement Learning
»Reward Shaping

Recommended Reading

Abbeel, P., & Ng, A. Y. (2004). Apprenticeship learning via inverse
reinforcement learning. In Proceedings of ICML, Banff, Alberta,
Canada.

Doya, K., & Sejnowski, T. (1995). A novel reinforcement model of
birdsong vocalization learning. In Neural Information Process-
ing Systems 7. Cambridge, MA: MIT Press.

558

Inverse Resolution

Montague, P. R., Dayan, P,, Person, C., & Sejnowski, T. J. (1995). Bee
foraging in uncertain environments using predictive hebbian
learning. Nature, 377(6551), 725-728.

Pomerleau, D. (1989). ALVINN: An autonomous land vehicle in a
neural network. In NIPS 1. San Francisco, CA: Morgan Kauf-
mann.

Ratliff, N., Bagnell, J., & Zinkevich, M. (2006). Maximum margin
planning. In Proceedings of ICML, Pittsburgh, Pennsylvania.

Ratliff, N., Bradley, D., Bagnell, J., & Chestnutt, J. (2007). Boost-
ing structured prediction for imitation learning. In Neural
Information Processing Systems 19. Cambridge, MA: MIT Press.

Sammut, C., Hurst, S., Kedzier, D., & Michie, D. (1992). Learning to
fly. In Proceedings of ICML. Aberdeen, Scotland, UK.

Schmajuk, N. A., & Zanutto, B. S. (1997). Escape, avoidance, and
imitation. Adaptive Behavior, 6, 63-129.

Taskar, B., Guestrin, C., & Koller, D. (2003). Max-margin Markov
networks. In Neural Information Processing Systems Conference
(NIPS03), Vancouver, Canada.

Touretzky, D. S., & Saksida, L. M. (1997). Operant conditioning in
skinnerbots. Adaptive Behavior, 5, 219-247.

Watkins, C. J. (1989). Models of delayed reinforcement learning. PhD
thesis, Psychology Department, Cambridge University.

[.
Inverse Resolution

Definition

Inverse resolution is, as the name indicates, a rule that
inverts resolution. This follows the idea of induction as
the inverse of deduction formulated in the »logic of
generality. The resolution rule is the best-known deduc-
tive inference rule, used in many theorem provers and
logic programming systems. »Resolution starts from
two P-clauses and derives the resolvent, a clause that
is entailed by the two clauses. This can be graphically
represented using the following schema (for proposi-
tional logic).

h<ga,...,apand g < by,..., by,
h<—b1,.. ’

-:bm>a1>~--aan

Inverse resolution operators, such as absorption (17) and
identification (17), invert this process. To this aim, they
typically assume the resolvent is given together with
one of the original clauses and then derive the missing
clause. This leads to the following two operators, which
start from the clauses below and induce the clause above
the line.

h<ga,...,a,and g < by,..., by,

I’l<—b1,...

b
yomsa1,..,apand g < by, ..., by

h<ga,...
h<—b1,..

sapand g < by,..., by,

Hbmay,..,agand h < g, ay,...,a,

The operators are shown here only for the proposi-
tional case, as the first order case is more involved as
it requires one to deal with substitions as well as inverse
substitutions.

As one example, consider the clauses

(1) flies :— bird, normal.
(2) bird :- blackbird.
(3) flies :— blackbird, normal.

Here, (3) is the resolvent of (1) and (2). Furthermore,
starting from (3) and (2), the absorption operator would
generate (1), and starting from (3) and (1), the identifi-
cation operator would generate (2).

Cross References
» First-Order Logic

» Logic of Generality
»Resolution

[
Is More General Than

» Logic of Generality

! Is More Specific Than

»Logic of Generality

! Item

»Instance

|
Iterative Classification

» Collective Classification

	I
	ID3
	Identification
	Identity Uncertainty
	Idiot's Bayes
	Immune Computing
	Immune Network
	Immune-Inspired Computing
	Immunocomputing
	Immunological Computation
	Implication
	Improvement Curve
	Incremental Learning
	Definition
	Motivation and Background
	Theory
	Applications
	Future Directions
	Cross References
	Recommended Reading

	Indirect Reinforcement Learning
	Induction
	Definition
	Theory
	Hume's Problem of Induction
	Induction and Probabilistic Inference
	Popper
	Causality and Hempel's Paradox

	Cross References
	Recommended Reading

	Induction as Inverted Deduction
	Inductive Bias
	Synonyms
	Definition
	Cross References

	Inductive Database Approach to Graphmining
	Overview
	Pattern Domain
	Query Language
	Data Structures
	Recommended Reading

	Inductive Inference
	Definition
	Detail
	Explanatory Learning
	Beyond Explanatory Learning
	Consistent and Conservative Learning
	Monotonicity
	Indexed Families
	Cross References
	Recommended Reading

	Inductive Inference
	Inductive Inference Rules
	Inductive Learning
	Synonyms
	Definition

	Inductive Logic Programming
	Synonyms
	Definition
	Motivation
	Theory
	A Methodology
	FOIL: An Illustration
	Application
	State-of-the-Art
	Current Trends and Challenges
	Cross References
	Recommended Reading

	Inductive Process Modeling
	Synonyms
	Definition
	Cross References
	Recommended Reading
	Inductive Program Synthesis

	Inductive Programming
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	The Evidence and the Oracle
	Program Schemas
	Predicate Invention
	Background Knowledge

	Programs and Data
	Applications
	Future Directions
	Acknowledgment
	Cross References
	Websites
	Recommended Reading
	Inductive Synthesis

	Inductive Transfer
	Synonyms
	Definition
	Structure of the System
	Neural Networks
	Other Paradigms
	Metasearching for Problem Solvers

	Theoretical Work
	Future Directions
	Cross References
	Recommended Reading

	Inequalities
	Information Retrieval
	Information Theory
	In-Sample Evaluation
	Synonyms
	Definition
	Cross References

	Instance
	Synonyms
	Definition

	Instance Language
	Instance Space
	Synonyms
	Definition

	Instance-Based Learning
	Synonyms
	Definition
	Motivation and Background
	Further Reading
	Recommended Reading

	Instance-Based Reinforcement Learning
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	The Basic Approach
	Examples of IBRL Algorithms
	Assumptions
	Problems and Drawbacks

	Cross References
	Recommended Reading

	Intelligent Backtracking
	Synonyms
	Definition

	Intent Recognition
	Internal Model Control
	Synonyms
	Definition

	Interval Scale
	Inverse Entailment
	Definition
	Cross References

	Inverse Optimal Control
	Inverse Reinforcement Learning
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Preliminaries and Notation
	Characterization of the Inverse RL Solution Set
	Reward Function Ambiguity
	Statistical Efficiency
	Computational Efficiency

	A Generative Approach to Inverse RL

	Apprenticeship Learning: Inverse RL Versus Imitation Learning
	Cross References
	Recommended Reading

	Inverse Resolution
	Definition
	Cross References

	Is More General Than
	Is More Specific Than
	Item
	Iterative Classification

