
I

ID

7Decision Tree

Identification

7Classi�cation

Identity Uncertainty

7Entity Resolution

Idiot’s Bayes

7Naïve Bayes

Immune Computing

7Arti�cial Immune Systems

Immune Network

A proposed theory that the immune system is capable

of achieving immunological memory by the existence

of a mutually reinforcing network of B-cells. �is net-

work of B-cells forms due to the ability of the paratopes,

located on B-cells, to match against the idiotopes on

other B-cells. �e binding between the idiotopes and

paratopes has the e�ect of stimulating the B-cells. �is

is because the paratopes on B-cells react to the idiotopes

on similar B-cells, as it would an antigen. However,

to counter the reaction there is a certain amount of

suppression between the B-cells which acts as a regu-

latory mechanism. �is interaction of the B-cells due

to the network was said to contribute to a stable mem-
ory structure and account for the retainment ofmemory

cells, even in the absence of antigen. �is interaction of

cells forms the basis of inspiration for a large number of

AIS algorithms, for example aiNET.

Immune-Inspired Computing

7Arti�cial Immune Systems

Immunocomputing

7Arti�cial Immune Systems

Immunological Computation

7Arti�cial Immune Systems

Implication

7Entailment

Improvement Curve

7Learning Curves in Machine Learning

Incremental Learning

Paul E. Utgoff

University of Massachusetts, Amherst, USA

Definition
Incremental learning refers to any7online learning pro-
cess that learns the same7model as would be learnt by
a7batch learning algorithm.

Claude Sammut & Geoffrey I. Webb (eds.), Encyclopedia of Machine Learning, DOI ./----,
© Springer Science+Business Media LLC 

 I Incremental Learning

Motivation and Background
Incremental learning is useful when the input to a learn-

ing process occurs as a stream of distinct observations

spread out over time, with the need or desire to be able

to use the result of learning at any point in time, based

on the input observations received so far. In principle,

the stream of observations may be in�nitely long, or the

next observation long delayed, precluding any hope of

waiting until all the observations have been received.

Without the ability to forestall learning, one must com-

mit to a sequence of hypotheses or other learned arti-

facts based on the inputs observed up to the present.

One would rather not simply accumulate and store all

the inputs and, upon receipt of each new one, apply

a batch learning algorithm to the entire sequence of

inputs received so far. It would be preferable compu-

tationally if the existing hypothesis or other artifact of

learning could be updated in response to each newly

received input observation.

Theory
Consider the problem of computing the balance in one’s

checkbook account. Most would say that this does not

involve learning, but it illustrates an important point

about incremental algorithms. One procedure, a batch

algorithm based on the fundamental de�nition of bal-

ance, is to compute the balance as the sum of the

deposits less the sum of the checks and fees. As deposit,

check, and fee transactions accumulate, this de�nition

remains valid. �ere is an expectation that there will

be more transactions in the future, and there is also a

need to compute the balance periodically to ensure that

no contemplated check or fee will cause the account

to become overdrawn. We cannot wait to receive all

of the transactions and then compute the balance

just once.

One would prefer an incremental algorithm for this

application, to reduce the cost of computing the bal-

ance a�er each transaction. �is can be accomplished

by recording and maintaining one additional piece of

information, the balance a�er the nth transaction. It is
a simplematter to prove that the balance a�er n transac-
tions added to the amount of transaction n+  provides
the balance a�er n +  transactions. �is is because the
sums of the fundamental de�nition for n +  transac-
tions can be rewritten as the sums of the fundamental

de�nition for n transactions plus the amount of the
nth transaction. �is incremental algorithm reduces
the computation necessary to know the balance a�er

each transaction, but it increases the bookkeeping e�ort

somewhat due to the need for an additional variable.

Now consider the problem of learning the mean

of a real valued variable from a stream of observed

values of this variable. �ough simple, most would

say that this does involve learning, because one esti-

mates themean fromobservations, without ever establi-

shing themean de�nitively.�e fundamental de�nition

for themean requires summing the observed values and

then dividing by the number of observed values. As each

newobservation is received, one could compute the new

mean. However, one can reduce the computational cost

by employing an incremental algorithm. For n observa-
tions, we could just as well have observed exactly the

n occurences of the mean. �e sum of these observa-
tions divided by n would produce the mean. If we were
to be provided with an n+  observation, we could com-
pute the new sum of the n +  observations as n cases
of the mean value plus the new observation, divided by

n+ . �is reduces the cost of computing the mean a�er
each observation to one multiplication, two addition,

and one division operations.�ere is a small increase in

bookkeeping inmaintaining the counter n of howmany
observations have been received, and the mean m a�er
n observations.
In both of the above examples, the need to record the

fundamental data is eliminated. Only a succinct sum-

mary of the data needs to be retained. For the checkbook

balance, only the balance a�er n transactions needs to
be stored, making the speci�c amounts for the individ-

ual transactions super�uous. For themean of a variable,

only the mean m a�er n observations and the num-
ber n of observations need to be retained, making the
speci�c values of the individual observations super�u-

ous. Due to this characteristic, incremental algorithms

are o�en characterized as memoryless, not because no

memory at all is required, but because no memory

of the original data items is needed. An incremental

algorithm is not required to be memoryless, but the

incremental algorithm must operate by modifying its

existing knowledge, not by hiding the application of

the corresponding batch algorithm to the accumulated

set of observations. �e critical issue is the extent to

which computation is reduced compared to starting

Incremental Learning I 

I

with all the data observations and nothing more. An

essential aspect for an incremental algorithm is that

the obtained result be identical to that indicated by

the fundamental de�nition of the computation to be

performed.

A point of occasional confusion is whether to call an

algorithm incremental when it makes adjustments to its

data structures in response to a new data observation.

�e answer depends on whether the result is the same

that one would obtain when starting with all the obser-

vations in hand. If the answer is no, then one may have

an online learning algorithm that is not an incremental

learning algorithm. For example, consider two alterna-

tive formulations of the problem mentioned above of

learning the mean of a variable. Suppose that the count

of observations, held in the variable n, is not permit-
ted to exceed some constant, say . �en the mean

a�er n observations coupled with the minimum of n
and  no longer summarizes all n observations accu-
rately. Consider a second reformulation. Suppose that

the most recent  observations are held in a queue.

When a new observation is received, it replaces the

oldest of the  observations. Now the algorithm can

maintain a moving average, but not the overall overage.

�ese may be desirable, if one wishes to remain respon-

sive to dri� in the observations, but that is another

matter. �e algorithm would not be considered incre-

mental because it does not produce the same result for

all n observations that the corresponding batch algo-
rithm would for these same n observations. �e algo-
rithmwould be online, and it would bememoryless, but

it would not be computing the same learned artifact as

the batch algorithm.

�ese two latter reformulations raise the issue

of whether the order in which the observations are

received is relevant. It is o�en possible to determine this

by looking at the fundamental de�nition of the com-

putation to be performed. If the operator that aggre-

gates the observations is commutative, then order is not

important. For the checking account balance example

above, the fundamental aggregation is accomplished in

the summations, and addition is commutative, so the

order of the transactions is not relevant to the result-

ing balance. If a fundamental algorithm operates on a

set of observations, then aggregation of a new observa-

tion into a set of observations is accomplished by the set

union operator, which is commutative. Can one have an

incremental algorithm for which order of the observa-

tions is important? In principle, yes, provided that the

result of the incremental algorithm a�er observation n
is the same as that of the fundamental algorithm for the

�rst n observations.
A �nal seeming concern for an incremental learn-

ing algorithm is whether the selection of future obser-

vations (n +  and beyond) is in�uenced by the �rst
n observations. �is is a red herring, because for the
n observations, the question of whether the learning
based on these observations can be accomplished by a

batch algorithm or a corresponding incremental algo-

rithm remains. Of course, if one needs to use the result

of learning on the �rst k instances to help select the
k +  instance, then it would be good sense to choose
an incremental learning algorithm. One would rather

not apply a batch algorithm to each and every pre-

�x of the input stream. �is would require saving the

input stream and it would require doing much more

computation than is necessary.

We can consider a few learning scenarios which

suit incremental learning. An 7active learner uses its
current knowledge to select the next observation. For

a learner that is inducing a classi�er, the observation

would be an unclassi�ed instance. �e active learner

selects an unclassi�ed instance, which is passed to an

oracle that attaches a correct class label. �en the ora-

cle returns the labeled instance as the next observation

for the learner. �e input sequence is no longer one

of instances for which each was drawn independently

according to a probability distribution over the possi-

ble instances. Instead, the distribution is conditionally

dependent on what the learner currently believes. �e

learning problem is sequential in its nature. �e obser-

vation can be delivered in sequence, and an incremental

learning algorithm can modify its hypothesis accord-

ingly. For the n observations received so far, one could
apply a corresponding batch algorithm, but this would

be unduly awkward.

7Reinforcement learning is a kind of online learn-
ing in which an agent makes repeated trials in a sim-

ulated or abstracted world in order to learn a good, or

sometimes optimal, policy that maps states to actions.

�e learning artifact is typically a functionV over states
or a function Q over state-action pairs. As the agent
moves from state to state, it can improve its function

over time. �e choice of action depends on the current

 I Incremental Learning

V or Q and on the reward or punishment received at
each step. �us, the sequence of observations consists

of state-reward pairs or state-action-reward triples. As

with active learning, the sequence of observations can

be seen as being conditionally dependent on what the

learner currently believes at each step. �e function V
or Q can be modi�ed a�er each observation, without
retaining the observation.When the function is approx-

imated in an unbiased manner, by using a lookup table

for discrete points in the function domain, there is an

analogy with the problem of computing a checkbook

balance, as described above. For each cell of the lookup

table, its value is its initial value plus the sum of the

changes, analogously for transactions. One can com-

pute the function value by computing this sum, or one

can store the sum in the cell, as the net value of all the

changes. An incremental algorithm is preferable both

for reasons of time and space.

A k-nearest classi�er (see 7instance based learn-
ing) is de�ned by a set of training instances, the

observations, and a distance metric that returns the

numeric distance between any two instances. �e dif-

ference between the batch algorithm and the incremen-

tal algorithm is slight. �e batch algorithm accepts all

the observations at once, and the incremental algo-

rithm simply adds each new observation to the set

of observations. If however, there were data structures

kept in the background to speed computation, one

could distinguish between building those data struc-

tures once (batch) and updating those data structures

(incremental). One complaint might be that all of

the observations are retained. However, these obser-

vations do not need to be revisited when a new

one arrives. �ere is an impact on space, but not

on time.

A 7decision tree classi�er may be correct for the n
observations observed so far.When then+ observation
is received, an incremental algorithm will restructure

the tree as necessary to produce the tree that the batch

algorithm would have built for these n+  observations.
To do this, it may be that no restructuring is required at

all, or that restructuring is needed only in a subtree.�is

is a case in which memory is required for saving obser-

vations in the event that some of them may be needed

to be reconsidered from time to time. �ere is a great

savings in time over running the corresponding batch

algorithm repeatedly.

Applications
Incremental learning is pervasive, and one can �nd any

number of applications described in the literature and

on the web. �is is likely due to the fact that incremen-

tal learning o�ers computational savings in both time

and space. It is also likely due to the fact that human

and animal learning takes place over time. �ere are

sound reasons for incremental learning being essential

to development.

Future Directions
Increasingly, machine learning is confronted with the

problem of learning from input streams that contain

many millions, or more, of observations. Indeed, the

stream may produce millions of observations per day.

Streams with this many instances need to be han-

dled by methods whose memory requirements do not

grow much or at all. Memoryless online algorithms

are being developed that are capable of handling this

much throughput. Consider transaction streams, say

of a telephone company, or a credit card company, or

a stock exchange, or a surveillance camera, or eye-

tracking data, or mouse movement data. For such a rich

input stream, one could sample it, thereby reducing it

to a smaller stream. Or, one could maintain a window

of observations, giving a �nite sample that changes but

does not growover time.�ere is no shortage of applica-

tions that can produce rich input streams.Newmethods

capable of handling such heavy streams have already

appeared, and we can expect to see growth in this area.

Cross References
7Active Learning
7Cumulative Learning
7Online Learning

Recommended Reading
Domingos, P., & Hulten, G. (). A general framework for mining

massive data streams. Journal of Computational and Graphical
Statistics, .

Giraud-Carrier, C. (). A note on the utility of incremental

learning. AI Communications, , –.
Utgoff, P. E., Berkman, N. C., & Clouse, J. A. (). Decision

tree induction based on efficient tree restructuring. Machine
Learning, , –.

Induction I 

I

Indirect Reinforcement Learning

7Model-Based Reinforcement Learning

Induction

James Cussens

University of York, Heslington, UK

Definition
Induction is the process of inferring a general rule from

a collection of observed instances. Sometimes it is used

more generally to refer to any inference from premises

to conclusion where the truth of the conclusion does

not follow deductively from the premises, but where the

premises provide evidence for the conclusion. In this

more general sense, induction includes abductionwhere
facts rather than rules are inferred. (�e word “induc-

tion” also denotes a di�erent, entirely deductive form of

argument used in mathematics.)

Theory
Hume’s Problem of Induction

�e problem of induction was famously set out by
the great Scottish empiricist philosopher David Hume

(–), although he did not actually use the word

“induction” in this context. With characteristic blunt-

ness, he argued that:

▸ there can be no demonstrative arguments to prove

that those instances of which we have had no experience

resemble those of which we have had experience (Hume,

, Part , Section ).

Since scientists (and machine-learning algorithms) do
infer future-predicting general laws from past obser-

vations, Hume is led to the following unsettling con-

clusion concerning human psychology (and statistical

inference):

▸ It is not, therefore, reason, which is the guide of life,

but custom. That alone determines the mind, in all

instances, to suppose the future conformable to the

past (Hume, ).

�at general laws cannot be demonstrated (i.e., deduced)

from data is generally accepted. Hume, however, goes

further: he argues that past observations do not even

a�ect the probability of future events:

▸ Nay, I will go farther, and assert, that he could not so

much as prove by any probable arguments, that the

future must be conformable to the past. All probable

arguments are built on the supposition, that there is this

conformity betwixt the future and the past, and there-

fore can never prove it. This conformity is a matter of

fact, and if it must be proved, will admit of no proof but

from experience. But our experience in the past can be a

proof of nothing for the future, but upon a supposition,

that there is a resemblance betwixt them. This therefore

is a point, which can admit of no proof at all, and which

we take for granted without any proof (Hume, ).

Induction and Probabilistic Inference

Hume’s unwavering skepticism concerning prediction

appears at variance with the predictive accuracy of

machine learning algorithms: there ismuch experimen-

tal evidence that ML algorithms, once trained on “past

observations,” make predictions on unseen cases with

an accuracy far in excess of what can be expected by

chance.�is apparent discrepancy betweenHume’s phi-

losophy and practical experience of statistical inference

can be explored using a familiar example from the liter-

ature on induction. Let e be the statement that all swans
seen so far have been white and let h be the general
rule that all swans are white. Since h implies e it follows
that P(e∣h) =  and so, using Bayes’ theorem, we have
that

P(h∣e) = P(h)P(e∣h)
P(e) = P(h)

P(e) . ()

So P(h∣e) > P(h) as long as P(e) <  and

P(h) > . �is provides an explanation for the

predictive accuracy of hypotheses supported by data:

given supporting data they just have increased prob-

ability of being true. Of course, most machine learn-

ing outputs are not “noise-free” rules like h; almost
always hypotheses claim a certain distribution for

future data where no particular observation is ruled

out entirely – some are just more likely than oth-

ers. �e same basic argument applies: if P(h) > 

 I Induction

then as long as the observed data is more likely given

the hypothesis than it is a priori, that is, as long as

P(e∣h)/P(e) > , then the probability of h will increase.
Even in the (common) case where each hypothesis in

the hypothesis space depends on real-valued param-

eters and so P(h) =  for all h, Bayes theorem
still produces an increase in the probability density
in the neighborhoods of hypotheses supported by

the data.

In all these cases, it appears that e is giving “induc-
tive support” to h. Consider, however, h′ which states
that all swans until now have been white and all future
swans will be black. Even in this case, we have that
P(h′∣e)>P(h′) as long as P(e)<  and P(h′)> , though
h and h′make entirely contradictory future predictions.
�is is a case of Goodman’s paradox.�e paradox is the

result of confusing probabilistic inference with induc-

tive inference. Probabilistic inference, of which Bayes

theorem is an instance, is entirely deductive in nature –

the conclusions of all probabilistic inferences follow

with absolute certainty from their premises (and the

axioms of probability). P(h∣e)>P(h) for P(e)<  and
P(h)>  essentially because e has (deductively) ruled
out some data that might have refuted h, not because
a “conformity betwixt the future and the past” has been

established.

Good performance on unseen data can still be

explained. Statistical models (equivalently machine

learning algorithms)make assumptions about theworld.
�ese assumptions (so far!) o�en turn out to be correct.

Hume noted that the principle “that like objects, placed

in like circumstances, will always produce like e�ects”

(Hume, , Part , Section ) although not deducible

from �rst principles, has been established by “su�cient

custom.” �is is called the uniformity of nature prin-
ciple in the philosophical literature. It is this principle

which informs machine learning systems. Consider the

standard problemof predicting class labels for attribute-

value data using labeled data as training. If an unlabeled

test case has attribute valueswhich are “close” to those of

many training examples all of which have the same class

label then in most systems the test case will be labeled

also with this class. Di�erent systems di�er in how they

measure “likeness”: they di�er in their7inductive bias.
A systemwhich posited h′ above on the basis of ewould
have an inductive bias strongly at variance with the

uniformity of nature principle.

�ese issues resurfaced within the machine learn-

ing community in the s. �is ML work focused

on various “7no-free-lunch theorems.” Such a theorem
essentially states that a uniformity of nature assumption

is required to justify any given inductive bias. �is is

howWolpert puts in one of the earliest “no-free-lunch”

papers:

▸ This paper proves that it is impossible to justify a correla-

tion between reproduction of a training set and gener-

alization error off of the training set using only a priori

reasoning. As a result, the use in the real world of any

generalizer which fits a hypothesis function to a training

set (e.g., the use of back-propagation) is implicitly pred-

icated on an assumption about the physical universe

(Wolpert, ).

Note that in Bayesian approaches inductive bias is

encapsulated in the prior distribution: once a prior has

been determined all further work in Bayesian statis-

tics is entirely deductive. �erefore it is no surprise that

inductivists have sought to �nd “objective” or “logical”

prior distributions to provide a �rm basis for induc-

tive inference. Foremost among these is Rudolf Carnap

(–) who followed a logical approach – de�ning

prior distributions over “possible worlds” (�rst-order

models) which were in some sense uniform (Carnap,

). A modern extension of this line of thinking can

be found in Bacchus, Grove, Halpern, andKoller ().

Popper

Karl Popper (–) accepted the Humean posi-

tion on induction yet sought to defend science from

charges of irrationality (Popper, ). Popper replaced
the problem of induction by the problem of criticism.

For Popper, scienti�c progress proceeds by conjecturing

universal laws and then subjecting these laws to severe

tests with a view to refuting them. According to the

veri�ability principle of the logical positivist tradition, a
theory is scienti�c if it can be experimentally con�rmed,

but for Popper con�rmation is a hopeless task, instead

a hypothesis is only scienti�c if it is falsi�able. All uni-
versal laws have prior probability of zero, and thus will

eternally have probability zero of being true, no mat-

ter how many tests they pass. �e value of a law can

only be measured by how well-tested it is. �e degree

to which a law has been tested is called its degree of

corroboration by Popper.�e P(e∣h)/P(e) term in Bayes

Induction I 

I

theorem will be high if a hypothesis h has passed many
severe tests.

Popper’s critique of inductivism continued through-

out his life. In the Popper–Miller argument (Popper &
Miller, ), as it became known, it is observed that a

hypothesis h is logically equivalent to:

(h← e) ∧ (h ∨ e)

for any evidence e.Wehave that e ⊢ h∨e (where⊢means
“logically implies”) and also that (under weak condi-

tions) p(h ← e∣e) < p(h ← e). From this Popper and
Miller argue that

▸ …we find that what is left of h once we discard from

it everything that is logically implied by e, is a propo-

sition that in general is counterdependent on e (Popper

& Miller, )

and so

▸ Although evidence may raise the probability of a

hypothesis above the value it achieves on background

knowledge alone, every such increase in probability has

to be attributed entirely to the deductive connections

that exist between the hypothesis and the evidence

(Popper & Miller, ).

In other words if P(h∣e)>P(h) this is only because
e⊢h ∨ e. �e Popper–Miller argument found both crit-
ics and supporters. Two basic arguments of the critics

were that () deductive relations only set limits to prob-

abilistic support; in�nitely many probability distribu-

tions can still be de�ned on any given �xed system of

propositions and () Popper–Miller are mischaracter-

izing induction as the absence of deductive relations,

when it actually means ampliative inference: concluding
more than the premises entail (Cussens, ).

Causality and Hempel’s Paradox

�e branch of philosophy concerned with how evi-

dence can con�rm scienti�c hypotheses is known as

7con�rmation theory. Inductivists take the position
(against Popper) that observing data which follows

from a hypothesis not only fails to refute the hypoth-

esis, but also con�rms it to some degree: seeing a white

swan con�rms the hypothesis that all swans are white,

because

∀x : swan(x) → white(x), swan(white_swan)

⊢ white(white_swan).

But, by the same argument it follows that observing any

nonwhite, nonswan (say a black raven) also con�rms

that all swans are white, since:

∀x : swan(x) → white(x),¬white(black_raven)

⊢ ¬swan(black_raven).

�is is Hempel’s paradox to which there are a number

of possible responses. One option is to accept that the

black raven is a con�rming instance, as one object in

the universe has been ruled out as a potential refuter.

�e degree of con�rmation is however of “a minis-
cule and negligible degree” (Howson & Urbach, ,

p. ). Another option is to reject the formulation of

the hypothesis as a material implication where ∀x :
swan(x) → white(x) is just another way of writing ∀x :
¬swan(x)∨white(x). Instead, to be a scienti�c hypoth-
esis of any interest the statement must be interpreted

causally. �is is the view of Imre Lakatos (–),
and since any causal statement has a (perhaps implicit)

ceteris paribus (“all other things being equal”) clause this
has implications for refutation also.

▸ …“all swans are white,” if true, would be a mere curios-

ity unless it asserted that swanness causes whiteness.

But then a black swan would not refute this proposi-

tion, since it may only indicate other causes operating

simultaneously. Thus “all swans are white” is either an

oddity and easily disprovable or a scientific proposi-

tion with a ceteris paribus clause and therefore easily

undisprovable (Lakatos, , p. ).

Cross References
7Abduction
7Bayesian Statistics
7Classi�cation
7Learning from Analogy
7No-Free Lunch�eorems
7Nonmonotonic Logic

 I Induction as Inverted Deduction

Recommended Reading
Bacchus, F., Grove, A., Halpern, J. Y., & Koller, D. (). From statis-

tical knowledge bases to degrees of belief. Artificial Intelligence,
(–), –.

Carnap, R. (). Logical foundations of probability. Chicago: Uni-
versity of Chicago Press.

Cussens, J. (). Deduction, induction and probabilistic support.

Synthese, (), –.
Howson, C., & Urbach, P. (). Scientific reasoning: The Bayesian

approach. La Salle, IL: Open Court.
Hume, D. (). A treatise of human nature, book one (Anonymously

published).

Hume, D. (). An abstract of a treatise of human nature (Anony-
mously published as a pamphlet). London.

Lakatos, I. (). Falsification and the methodology of scientific

research programmes. In I. Lakatos & A. Musgrave (Eds.), Crit-
icism and the growth of knowledge (pp. –). Cambridge, MA:
Cambridge University Press.

Popper, K. R. (). The logic of scientific discovery. London:
Hutchinson (Translation of Logik der Forschung, ).

Popper, K. R., & Miller, D. (). The impossibility of inductive

probability. Nature, , .
Popper, K. R., & Miller, D. (). Why probabilistic support is

not inductive. Philosophical Transactions of the Royal Society of
London, , –.

Wolpert, D. H. (). On the connection between in-sample testing

and generalization error. Complex Systems, , –.

Induction as Inverted Deduction

7Logic of Generality

Inductive Bias

Synonyms
Learning bias; Variance hint

Definition
Most ML algorithms make predictions concerning

future data which cannot be deduced from already

observeddata.�e inductive bias of an algorithm iswhat

choses between di�erent possible future predictions.

A strong form of inductive bias is the learner’s choice

of hypothesis/model space which is sometimes called

declarative bias. In the case of Bayesian analysis, the
inductive bias is encapsulated in the prior distribution.

Cross References
7Induction, Learning as Search

Inductive Database Approach to
Graphmining

Stefan Kramer

Technische Universität München

Garching b. München, Germany

Overview
�e inductive database approach to graph mining can

be characterized by () the concept of querying for

(subgraph) patterns in databases of graphs, and () the

use of speci�c data structures representing the space

of solutions. For the former, a query language for the

speci�cation of the patterns of interest is necessary. �e

latter aims at a compact representation of the solution

patterns.

Pattern Domain
In contrast to other graph mining approaches, the

inductive database approach to graph mining (De

Raedt & Kramer, ; Kramer, De Raedt, & Helma,

) focuses on simple patterns (paths and trees) and

complex queries (see below), not on complex patterns

(general subgraphs) and simple queries (minimum fre-

quency only).While the �rst approaches were restricted

to paths as patterns in graph databases, they were later

extended toward unrooted trees (Rückert & Kramer,

, ). Most of the applications are dealing with

structures of small molecules and structure–activity

relationships (SARs), that is, models predicting the bio-

logical activity of chemical compounds.

Query Language
�e conditions on the patterns of interest are usu-

ally called constraints on the solution space. Simple
constraints are speci�ed by so-called query primitives.
Query primitives express frequency-related or syntactic

constraints. As an example, consider the frequency-

related query primitive f (p,D)≥ t, meaning that a sub-
graph pattern p has to occur with a frequency of
at least t in the database of graphs D. Analogously,
other frequency-related primitives demand amaximum

frequency of occurrence, or a minimum agreement

with the target class (e.g., in terms of the information

gain or the χ statistic). Answering frequency-related

Inductive Inference I 

I

queries generally requires database access. In contrast to

frequency-related primitives, syntax-related primitives

only restrict the syntax of solution (subgraph) patterns,

and thus do not require database access. For instance,

we may demand that a pattern p is more speci�c
than “c:c-Cl” (formally p≥ c:c-Cl) or more general than
“C-c:c:c:c:c-Cl” (formally p≤C-c:c:c:c:c-Cl). �e strings
in the primitive contain vertex (e.g., “C,” “c,” “Cl”...)
and edge labels (e.g., “:,” “-”...) of a path in a graph.

Many constraints on patterns can be categorized as

either monotonic or anti-monotonic. Minimum fre-

quency constraints, for instance, are anti-monotonic,

because all subpatterns (in our case: subgraphs) are fre-

quent as well, if a pattern is frequent (according to

some user-de�ned threshold) in a database. Vice versa,

maximum frequency is monotonic, because if a pat-

tern is not too frequent, then all superpatterns (in our

case: supergraphs) are not too frequent either. Anti-

monotonic or monotonic constraints can be solved by

variants of level-wise search and APriori (De Raedt

& Kramer, ; Kramer, De Raedt, & Helma, ;

Mannila & Toivonen, ). Other types of constraints

involving convex functions, for example, related to the

target class, can be solved by branch-and-bound algo-

rithms (Morishita & Sese, ). Typical query lan-

guages o�er the possibility to combine query primitives

conjunctively or disjunctively.

Data Structures
It is easy to show that solutions to conjunctions of

monotonic and anti-monotonic constraints can be rep-

resented by version spaces, and in particular, borders
of the most general and the most speci�c patterns

satisfying the constraints (De Raedt & Kramer, ;

Mannila & Toivonen, ). Version spaces of patterns

can be represented in data structures such as version
space trees (De Raedt, Jaeger, Lee, & Mannila, ;
Rückert & Kramer, ). For sequences, data struc-

tures based on su�x arrays are known to be more
e�cient than data structures based on version spaces

(Fischer, Heun, & Kramer, ). Query languages

allowing disjunctive normal forms of monotonic or

anti-monotonic primitives yieldmultiple version spaces

as solutions, represented by generalizations of version

space trees (Lee & De Raedt, ). �e inductive

database approach to graph mining can also be catego-

rized as constraint-based mining, as the goal is to �nd
solution patterns satisfying user-de�ned constraints.

Recommended Reading
De Raedt, L., Jaeger, M., Lee, S. D., & Mannila, H. (). A theory

of inductive query answering. In Proceedings of the  IEEE
international conference on data mining (ICDM ). IEEE
Computer Society, Washington, DC.

De Raedt, L., & Kramer, S. (). The levelwise version space

algorithm and its application to molecular fragment finding.

In Proceedings of the seventeenth international joint conference
on artificial intelligence (IJCAI ). Morgan Kaufmann: San
Francisco, CA.

Fischer, J., Heun, V., & Kramer, S. (). Optimal string min-

ing under frequency constraints. In Proceedings of the tenth
European conference on the principles and practice of knowledge
discovery in databases (PKDD ). Springer: Berlin.

Kramer, S., De Raedt, L., & Helma, C. (). Molecular feature min-

ing in HIV data. In Proceedings of the seventh ACM SIGKDD
international conference on knowledge discovery and data mining
(KDD ). ACM Press: New York, NY.

Lee, S. D., & De Raedt, L. (). An algebra for inductive query

evaluation. In Proceedings of the third IEEE international con-
ference on data mining (ICDM ). IEEE Computer Society,
Washington, DC.

Mannila, H., & Toivonen, H. (). Levelwise search and borders of

theories in knowledge discovery. Data Mining and Knowledge
Discovery, (), –.

Morishita, S., & Sese, J. (). Traversing itemset lattice

with statistical metric pruning. In Proceedings of the nine-
teenth ACM SIGMOD-SIGACT-SIGART symposium on prin-
ciples of database systems (PODS ). ACM Press: New

York, NY.

Rückert, U., & Kramer, S. (). Generalized version space

trees. In J.-F. Boulicaut, S. Dzeroski (Eds.), Proceed-
ings of the second international workshop on knowledge
discovery in inductive databases (KDID-). Springer:
Berlin.

Rückert, U., & Kramer, S. (). Frequent free tree discovery in

graph data. In Proceedings of the ACM symposium on applied
computing (SAC ). ACM Press: New York, NY.

Inductive Inference

Sanjay Jain, Frank Stephan

National University of Singapore,

Singapore, Republic of Singapore

Definition
Inductive inference is a theoretical framework to model

learning in the limit. �e typical scenario is that the

 I Inductive Inference

learner reads successively datum d,d,d, . . . about a
concept and outputs in parallel hypotheses e, e, e, . . .
such that each hypothesis en is based on the preced-
ing data d,d, . . . ,dn−. �e hypotheses are expected
to converge to a description for the data observed; here

the constraints on how the convergence has to happen

depend on the learning paradigm considered. In the

most basic case, almost all en have to be the same correct
index e, which correctly explains the target concept.�e
learnermight have some preknowledge of what the con-

cept might be, that is, there is some class C of possible
target concepts – the learner has only to �nd out which

of the concepts in C is the target concept; on the other
hand the learner has to be able to learn every concept

which is in the class C.

Detail
�e above given scenario of learning is essentially the

paradigm of inductive inference introduced by Gold

() and known as Ex (explanatory) learning. Usually
one considers learning of recursive functions or recur-

sively enumerable languages. Intuitively, using coding,

one can code any natural phenomenon into subsets of

N, the set of natural numbers. �us, recursive func-
tions from N to N or recursively enumerable subsets
of N (called languages here), are natural concepts to be
considered.

Here we will mainly consider language learning.

Paradigms related to function learning can be similarly

de�ned and we refer the reader to Osherson, Stob and

Weinsten, ; Jain, Osherson, Royer, & Sharma, .

One normally considers data provided to the learner

to be either full positive data (i.e., the learner is told

about every element in the target language, one ele-

ment at a time, but never told anything about elements

not in the target language) or full positive data and

full negative data (i.e., the learner is told about every

element, whether it belongs or does not belong to the

target language). Intuitively, the reason for considering

only positive data is that in many natural situations,

such as language learning by children, scienti�c explo-

ration (such as in astronomy) one gets essentially only

positive data.

A text is a sequence of elements over N ∪ {#}. Con-
tent of a text T, denoted ctnt(T) is the set of natural
numbers in the range of T. For a �nite sequence σ over

N ∪ {#}, one can similarly de�ne ctnt(σ) as the set of
natural numbers in the range of σ . A text T is said to
be for a language L i� ctnt(T) = L. Intuitively, a text
T for L represents sequential presentation of elements
of L, with #’s representing pauses in the presentation.

For example, the only text for ∅ is #∞. T[n] denotes
the initial sequence of T of length n. �at is, T[n] =
T()T() . . .T(n − ). We let SEQ denote the set of
all �nite sequences over N ∪ {#}. An informant I is
a sequence of elements over N × {, } ∪ {#}, where
for each x ∈ N, exactly one of (x, ) or (x, ) is in
the range of I. An informant I is for L i� range(I) −
{#} = {(x, χL(x)) : x ∈ N}, where χL denotes the
characteristic function of L.
A learner W is a mapping from SEQ to N ∪ {?}.

Intuitively, output of ? denotes that the learner does not

wish to make a conjecture on the corresponding input.

�e output of e denotes that the learner conjectures
hypothesis We, where W,W, . . . is some acceptable

numbering of all the recursively enumerable languages.

We say that a learner M converges on T to e i�, for all
but �nitely many n, M(T[n]) = e.

Explanatory Learning
A learner M TxtEx-identi�es a language L i� for all
texts T for L, M converges to an index e such that
We = L. Learner M TxtEx-identi�es a class L of lan-
guages i� M TxtEx-identi�es each language in the class
L. Finally, one says that a class L is TxtEx-learnable if
some learnerTxtEx-identi�esL.TxtExdenotes the col-
lection of all TxtEx-learnable classes. One can similarly
de�ne InfEx-identi�cation, for learning from infor-

mants instead of texts. �e following classes are impor-

tant examples:

RE = {L : L is recursively enumerable};
FIN = {L : L is a �nite subset of N};

KFIN = {L : L = K ∪H for some H ∈ FIN};
SD = {L :Wmin(L) = L};

COFIN = {L : N − L is �nite};
SDSIZE = {{e + x : x =  ∨ x < ∣We∣} :We is �nite};
SDALL = {{e + x : x ∈ N} : e ∈ N}.

Here, in the de�nition of KFIN, K is the halting prob-
lem, that is, some standard example of a set, which is

recursively enumerable but not recursive. �e classes

Inductive Inference I 

I

FIN, SD, SDSIZE, and SDALL are TxtEx-learnable
(Case & Smith, ; Gold, ): �e learner for FIN
always conjectures the set of all data observed so far.�e

learner for SD conjectures the least datum seen so far as,
eventually, the least observed datum coincides with the

least member of the language to be learnt. �e learner

for SDSIZE as well as the learner for SDALL also �nd in
the limit the least datum e to occur and translate it into
an index for the e-th set to be learnt. �e class KFIN
is not TxtEx-learnable, mainly for computational rea-
sons. It is impossible for the learner to determine if the

current input datum belongs to K or not; this forces a
supposed learner either to make in�nitely many mind

changes on some text for K or to make an error on
K ∪ {x}, for some x /∈ K. �e union SDSIZE ∪ SDALL
is also not TxtEx-learnable, although it is the union
of two learnable classes; so it is one example of vari-

ous nonunion theorems. Gold () gave even a more

basic example: FIN ∪ {N} is not TxtEx-learnable. Fur-
thermore, the class COFIN is also not TxtEx-learnable.
However, except for RE, all the classes given above are
InfEx-learnable, so when being fed the characteristic
function in place of only an in�nite list of all elements,

the learners become, in general, more powerful.

Note that the learner never knows when it has con-

verged to its �nal hypothesis. If the learner is required

to know when it has converged to the �nal hypothe-

sis, then the criterion of learning is the same as �nite

learning. Here a �nite learner is de�ned as follows: the

learner keeps outputting the symbol ? while waiting for

enough data to appear and, when the data observed

are su�cient, the learner outputs exactly one conjec-

ture di�erent from ?, which then is required to be an

index for the input concept in the hypothesis space.�e

class of singletons, {{n} : n ∈ N} is �nitely learn-
able; the learner just waits until the unique element n
of {n} has appeared and then knows the language. In
contrast to this, the classes FIN and SD are not �nitely
learnable.

Blum and Blum () obtained the following fun-

damental result: Whenever M learns L explanatorily
from text then L has a locking sequence for M. Here,
a sequence σ is said to be a locking sequence for M on
L i� (a) ctnt(σ) ⊆ L, (b) for all τ such that ctnt(τ) ⊆ L,
M(σ) =M(στ) and (c)WM(σ) = L. If only the �rst two
conditions are satis�ed, then the sequence is called a sta-
bilizing sequence for M on L (Fulk, ). It was shown

by Blum and Blum () that if a learner M TxtEx-
identi�es L then there exists a locking sequence σ for M
on L. One can use this result to show that certain classes,
such as FIN ∪ {N}, are not TxtEx-learnable.

Beyond Explanatory Learning
While TxtEx-learning requires that the learner syn-
tactically converges to a �nal hypothesis, which cor-

rectly explains the concept, this is no longer required

for the more general criterion of behaviourally cor-

rect learning (called TxtBc-learning). Here, the learner
may not syntactically converge but it is still required

that all its hypothesis a�er sometime are correct,

see (Bārzdiņš, b; Osherson & Weinstein, ;

Osherson, Stob and Weinsten, ; Case & Smith,

; Case & Lynes, ). So there is semantic con-

vergence to a �nal hypothesis. �us, a learner M

TxtBc identi�es a language L i� for all texts T for
L, for all but �nitely many n, WM(T[n]) = L. One
can similarly de�ne TxtBc-learnability of classes of
languages and the collection TxtBc. Every TxtEx-
learnable class is Bc-learnable, but the class KFIN and
SDSIZE ∪ SDALL are TxtBc-learnable but not TxtEx-
learnable. Furthermore, InfEx /⊆ TxtBc, for exam-
ple, FIN ∪ {N} is InfEx-learnable but not TxtBc-
learnable. On the other hand, every class that is �nitely

learnable from informant is also TxtEx-learnable
(Sharma, ).

An intermediate learning criterion is TxtFex-
learning (Case, ) or vacillatory learning, which is

similar to TxtBc-learning except that we require that
the number of distinct hypothesis output by the learner

on any text is �nite. Here one says that the learner

TxtFexn-learns the language L i� the number of distinct
hypothesis that appear in�nitely o�en on any text T for
L is bounded by n. Note that TxtFex∗ = TxtFex. Case
() showed that

TxtEx = TxtFex ⊂ TxtFex ⊂ TxtFex
⊂ . . . ⊂ TxtFex∗ ⊂ TxtBc.

For example, the class SD∪ SDALL is actually TxtFex-
learnable and not TxtEx-learnable. �e corresponding
notion has also been considered for function learning,

but there the paradigms of explanatory and vacillatory

learning coincide (Case & Smith, ).

 I Inductive Inference

Blum and Blum (), Case and Lynes () and

Case and Smith () also considered allowing the �nal

(or �nal sequence of) hypothesis to be anomalous; Blum

and Blum () considered ∗-anomalies and (Case &
Lynes, ; Case & Smith, ) considered the gen-

eral case. Here the �nal grammar for the input language

may not be perfect, but may have up to a anomalies. A
grammar n is a anomalous for L (writtenWn = aL) i�
card((L −Wn) ∪ (Wn − L)) ≤ a. Here one also con-
siders �nite anomalies, denoted by ∗-anomalies, where
card(S) ≤ ∗ just means that S is �nite.�us, a learnerM
TxtExa-identi�es a language L i�, for all textsT for all L,
M on T converges to a hypothesis e such thatWe = aL.
One can similarly de�neTxtBca-learning criteria. It can
be shown that

TxtEx = TxtEx ⊂ TxtEx ⊂ TxtEx ⊂ . . . ⊂ TxtEx∗

and

TxtBc = TxtBc ⊂ TxtBc ⊂ TxtBc ⊂ . . . ⊂ TxtBc∗.

Let SDn = {L : Wmin(L) = nL}. �en one can
show (Case & Smith, ; Case & Lynes, ) that

SDn+ ∈ TxtExn+ − TxtExn. However, there is a trade-
o� between behaviourally correct learning and explana-

tory learning for learning with anomalies. On one hand,

TxtBc /⊆ TxtEx∗, but on the other hand TxtExn+ /⊆
TxtBcn and TxtExn ⊆ TxtBcn. However, for learning
from informants, we have InfEx∗ ⊆ InfBc (Case and
Lynes () for the above results).

Consistent and Conservative Learning
Besides the above basic criteria of learning, researchers

have also considered several properties that are useful

for the learner to satisfy.

A learner M is said to be consistent on L i� for
all texts T for L, ctnt(T[n]) ⊆ WM(T[n]). �at is, the

learner’s hypothesis is consistent with the data seen

so far. �ere are three notions of consistency consid-

ered in the literature: (a) TCons, in which the learner
is expected to be consistent on all inputs, irrespective

of whether they represent some concept from the tar-

get class or not (Wiehagen and Liepe, ), (b) Cons,
in which the learner is just expected to be consis-

tent on the languages in the target class being learnt,

though the learner may be inconsistent or even unde-

�ned on the input outside the target class (Bārzdiņš,

a), and (c) RCons, in which the learner is expected
to be de�ned on all inputs, but required to be consis-

tent only on the languages in the target class (Jantke &

Beick, ). It can be shown that TCons ⊂ RCons ⊂
Cons ⊂ TxtEx (Bārzdiņš, a; Jantke and Beick, ;
Wiehagen and Liepe, ).

A learner M is said to be conservative (Angluin,
) i� it does not change its mind unless the data con-

tradicts its hypothesis. �at is, M conservatively learns

L i� for all texts T for L, if M(T[n]) ≠ M(T[n + ]),
then ctnt(T[n + ]) /⊆ WM(T[n]). It can be shown that

conservativeness is restrictive, that is there are classes of

languages, which can be TxtEx-identi�ed but not con-
servatively identi�ed. An example of a class that can

be identi�ed explanatorily but not conservatively is the

class containing all sets from SDALL, that is, the sets of
the form {e, e+ , e+ , . . .}, and all sets with minimum
ks and up to s elements where k, k, k, . . . is a recur-
sive one-one enumeration of K. �e general idea why
this class is not conservatively learnable is that when the

learner reads the data e, e+ , e+ , . . . it will, a�er some
�nite time based on data e, e+ , e+ , . . . , e+ s, output a
conjecture which contains these data plus e + s + ; but
conservative learning would then imply that e ∈ K i�
e = kr for some r ≤ s, contradicting the non-
recursiveness of K.

Monotonicity
Related notions to conservativeness are the various

notions on monotonic learning that impose certain

conditions on whether the previous hypothesis is a sub-

set of the next hypothesis or not. �e following notions

are the three main ones.

● A learner M is said to be strongly monotonic

(Jantke, ) on L i� for all texts T for L,
WM(T[n]) ⊆ WM(T[n+]. Intuitively, strong mono-

tonicity requires that the hypothesis of the learner

grows

with time.

● A learner M is said to be monotonic (Wiehagen,

) on L i� for all texts T for L, WM(T[n]) ∩ L ⊆
WM(T[n+]) ∩ L. In monotonicity, the growth of the
hypothesis is required only with respect to the lan-

guage being learnt.

● A learner M is said to be weakly monotonic (Jantke,

) on L i� for all texts T for L, if ctnt(T[n+ ])) ⊆

Inductive Inference I 

I

WM(T[n]), thenWM(T[n]) ⊆ WM(T[n+]). �at is, the

learner behaves strongly monotonically, as long as

the input data is consistent with the hypothesis.

An example for a strong monotonically learnable class

is the class SDALL. When the learner currently con-
jectures {e, e + , e + , . . .} and it sees a datum d < e,
then it makes a mind change to {d,d + ,d + , . . .}
which is a superset of the previous conjecture; it is easy

to see that all mind changes are of this type. It can be

shown that strong monotonic learning implies mono-

tonic learning and weak monotonic learning, though

monotonic learning and weak monotonic learning are

incomparable (and thus both are proper restrictions of

TxtEx-learning). For example, consider the class C con-
sisting of the set {, , , . . .} of all even numbers and,
for each n, the set {, , , . . . , n}∪{n+} consisting of
the even numbers below n and the odd number n+ .
�en, C is monotonically but not strong monotonically
learnable.

Lange, Zeugmann, and Kapur () also consid-

ered the dual version of the above criteria, where dual

strong monotonicity learning of L requires that for all
texts T for L,WM(T[n]) ⊇WM(T[n+]); dual monotonic-

ity requires that for all texts T for L, WM(T[n]) ∩ (N −
L) ⊇WM(T[n+]) ∩ (N − L); and dual weak monotonic-
ity requires that if ctnt(T[n + ]) ⊆ WM(T[n]), then

WM(T[n]) ⊇WM(T[n+]).

In a similar fashion various other properties of

learners have been considered. For example, reliability

(Blum & Blum, ; Minicozzi, ) postulates that

the learner does not converge on the input text unless

it learns it, prudence (Fulk, ; Osherson, Stob and

Weinsten, ) postulates that the learner outputs only

indices of languages, which it also learns and con�-

dence (Osherson, Stob and Weinsten, ) postulates

that the learner converges on every text to some index,

even if the text is for some language outside the class of

languages to be learnt.

Indexed Families
Angluin () initiated a study of learning indexed

families of recursive languages. A class of languages

(along with its indexing) L,L, . . . is an indexed family
i�membership questions for the languages is uniformly

decidable, that is, x ∈ Li can be recursively decided in

x and i. Angluin gave an important characterization of
indexed families that are TxtEx-learnable.
Suppose a class L = {L,L, . . .} (along with the

indexing) is given. �en, S is said to be a tell-tale
(Angluin, ) of Li i� S is �nite and for all j, if S ⊆ Lj
and Lj ⊆ Li, then Li = Lj. It can be shown that for any
class of languages that are learnable (in TxtEx or TxtBc
sense), there exists a tell-tale for each language in the

class. Moreover, Angluin showed that for indexed fam-

ilies, L = L,L, . . . , one can TxtEx-learn L i� one can
recursively enumerate a tell-tale set for each Li, e�ec-
tively from i. Within the framework of learning indexed
families, a special emphasis is given to the hypothesis

space used; so the following criteria are considered for

de�ning the learnability of a class L in dependence of
the hypothesis spaceH = H,H, �e class L is

● Exactly learnable i� there is a learner using the same
hypothesis space as the given class, that is, Hn = Ln
for all n;

● Class-preservingly learnable i� there is a learner
using a hypothesis space H with {L,L, . . .} =
{H,H, . . .} – here the order and the number of
occurrences in the hypothesis space can di�er, but

the hypothesis space must consist of the same lan-

guages as the class to be learnt, and no other lan-

guages are allowed in the hypothesis space;

● Class-comprisingly learnable i� there is a learner
using a hypothesis space H with {L,L, . . .} ⊆
{H,H, . . .} – here the hypothesis space can also
contain some further languages not in the class to

be learnt and the learner does not need to identify

these additional languages;

● Prescribed learnable i� for every hypothesis spaceH
containing all the languages fromL there is a learner
for L using this hypothesis space;

● Uniformly learnable i� for every hypothesis spaceH
with index e containing all the languages fromL one
can synthesize a learnerMe which succeeds to learn

L using the hypothesis spaceH.

Note that in all �ve cases H only ranges over indexed
families. �is di�ers from the standard case where H
is an acceptable numbering of all recursively enumer-

able sets. We refer the reader to the survey of Lange,

Zeugmann, and Zilles () for an overview on work

done on learning indexed families (TxtEx-learning,

 I Inductive Inference

learning under various properties of learners as well

as characterizations of such learning criteria) and to

(Jain, Stephan, & Ye, ; Lange & Zeugmann, ).

While for explanatory learning and every class L, all
these �ve notions coincide, these notions turn out to be

di�erent for other learning notions like those of conser-

vative learning, monotonic learning, and strong mono-

tonic learning. For example, the class of all �nite sets is

not prescribed conservatively learnable: one can make

an adversary hypothesis space where some indices con-

tain large spurious elements, so that a learner is forced

to do non-conservative mind change to obtain correct

indices for the �nite sets. �e same example as above

works for showing the limitations of prescribed learning

for monotonic and strong monotonic learning.

�e interested reader is referred to the textbook

“Systems that Learn” (Jain, Osherson, Royer, & Sharma,

; Osherson, Stob and Weinsten, ) and the

papers below as well as the references found in these

papers for further reading. Complexity issues in induc-

tive inference like the number of mind changes neces-

sary to learn a class or oracles needed to learn some class

can be foundunder the entriesComputational Complex-
ity of Learning and Query-Based Learning. �e entry
Connections between Inductive Inference and Machine
Learning provides further information on this topic.

Cross References
7Connections Between Inductive Inference and

Machine Learning

Recommended Reading
Angluin, D. (). Inductive inference of formal languages from

positive data. Information and Control, , –.
Bārzdiņš, J. (a). Inductive inference of automata, functions

and programs. In Proceedings of the international congress of
mathematics, Vancouver (pp. –).

Bārzdiņš, J. (b). Two theorems on the limiting synthesis of func-

tions. In Theory of algorithms and programs (Vol. ., pp. –).
Latvian State University, Riga (In Russian).

Blum, L., & Blum, M. (). Toward a mathematical theory of

inductive inference. Information and Control, , –.
Case, J. (). The power of vacillation in language learning. SIAM

Journal on Computing, , –.
Case, J., & Lynes, C. (). Machine inductive inference and lan-

guage identification. In M. Nielsen & E. M. Schmidt (Eds.),

Proceedings of the th international colloquium on automata,
languages and programming, Lecture Notes in Computer Sci-
ence (Vol. ., pp. –). Heidelberg: Springer-Verlag.

Case, J., & Smith, C. (). Comparison of identification criteria for

machine inductive inference. Theoretical Computer Science, ,
–.

Fulk, M. (). Prudence and other conditions on formal language

learning. Information and Computation, , –.
Gold, E. M. (). Language identification in the limit. Information

and Control, , –.
Jain, S., Osherson, D., Royer, J., & Sharma, A. (). Systems that

learn: An introduction to learning theory. (nd ed.). Cambridge:
MIT Press.

Jain, S., Stephan, F., & Ye, N. (). Prescribed learning of indexed

families. Fundamenta Informaticae, , –.
Jantke, K. P. (). Monotonic and non-monotonic inductive infer-

ence. New Generation Computing, , –.
Jantke, K. P., & Beick, H.-R. (). Combining postulates of natu-

ralness in inductive inference. Journal of Information Processing
and Cybernetics (EIK), , –.

Lange, S., & Zeugmann, T. (). Language learning in dependence

on the space of hypotheses. Proceedings of the sixth annual con-
ference on computational learning theory, Santa Cruz, CA, (pp.
–).

Lange, S., Zeugmann, T., & Kapur, S. (). Class preserving mono-

tonic language learning. Tech. Rep. /, GOSLER-Report, FB
Mathematik und Informatik, TH Leipzig.

Lange, S., Zeugmann, T., & Zilles, S. (). Learning indexed

families of recursive languages from positive data: a survey.

Theoretical Computer Science, , –.
Minicozzi, E. (). Some natural properties of strong identifica-

tion in inductive inference. Theoretical Computer Science, ,
–.

Osherson, D., Stob, M., & Weinstein, S. (). Systems that learn,
an introduction to learning theory for cognitive and computer
scientists. Cambridge: Bradford–The MIT Press.

Osherson, D., & Weinstein, S. (). Criteria of language learning.

Information and Control, , –.
Sharma, A. (). A note on batch and incremental learnability.

Journal of Computer and System Sciences, , –.
Wiehagen, R. (). A thesis in inductive inference. In J. Dix, K.

Jantke, & P. Schmitt (Eds.), Nonmonotonic and inductive logic,
st international workshop: Vol.  of Lecture notes in artificial
intelligence (pp. –). Berlin: Springer-Verlag.

Wiehagen, R., & Liepe, W. (). Charakteristische Eigenschaften

von erkennbaren Klassen rekursiver Funktionen. Journal of
Information Processing and Cybernetics (EIK), , –.

Inductive Inference

Choice of a model, theory, or hypothesis to express an

apparent regularity or pattern in a body of data about

many particular instances or events.

Inductive Inference Rules

7Logic of Generality

Inductive Logic Programming I 

I

Inductive Learning

Synonyms
Statistical learning

Definition
Inductive learning is a subclass ofmachine learning that

studies algorithms for learning knowledge based on sta-

tistical regularities.�e learned knowledge typically has

no deductive guarantees of correctness, though there

may be statistical forms of guarantees.

Inductive Logic Programming

Luc De Raedt

Katholieke Universiteit Leuven, Heverlee, Belgium

Synonyms
Learning in logic; Multi-relational data mining; Rela-

tional data mining; Relational learning

Definition
Inductive logic programming is the sub�eld of machine

learning that uses 7�rst-order logic to represent
hypotheses and data. Because �rst-order logic is expres-

sive and declarative, inductive logic programming

speci�cally targets problems involving structured data

and background knowledge. Inductive logic program-

ming tackles a wide variety of problems in machine

learning, including classi�cation, regression, cluster-

ing, and reinforcement learning, o�en using “upgrades”

of existing propositional machine learning systems.

It relies on logic for knowledge representation and

reasoning purposes. Notions of coverage, generality,

and operators for traversing the space of hypothe-

ses are grounded in logic, see also 7logic of general-
ity. Inductive logic programming systems have been

applied to important applications in bio- and chemo-

informatics, natural language processing, and web

mining.

Motivation
�e �rst motivation andmost important motivation for

using inductive logic programming is that it overcomes

the representational limitations of attribute-value learn-

ing systems. Such systems employ a table-based rep-

resentations where the instances correspond to rows

in the table, the attributes to columns, and for each

instance, a single value is assigned to each of the

attributes. �is is sometimes called the single-table
single-tuple assumption. Many problems, such as the
Bongard problem shown in Fig. , cannot elegantly be

described in this format. Bongard () introduced

about a hundred concept-learning or pattern recog-

nition problems, each containing six positive and six

negative examples. Even though Bongard problems are

toy-problems, they are similar to real-life problems such

as structure–activity relationship prediction, where the

goal is to learn to predict whether a given molecule

(as represented by its D graph structure) is active or

not. It is hard — if not, impossible — to squeeze this

type of problem into the single-table single-tuple format

for various reasons. Attribute-value learning systems

employ a �xed number of attributes and also assume

that these attributes are present in all of the exam-

ples. �is assumption does not hold for the Bongard

problems as the examples possess a variable number

of objects (shapes). �e singe-table single-tuple repre-

sentation imposes an implicit order on the attributes,

Inductive Logic Programming. Figure . A complex clas-

sification problem: Bongard problem , developed by

the Russian scientist Bongard (). It consists of 

scenes (or examples),  of class ⊕ and  of class ⊖. The

goal is to discriminate between the two classes

 I Inductive Logic Programming

whereas there is no natural order on the objects in

the Bongard problem. Finally, the relationships between

the objects in the Bongard problem are essential and

must be encoded as well. It is unclear how to do this

within the single-table single-tuple assumption. First-

order logic and relational representations allow one to

encode problems involving multiple objects (or enti-

ties) as well as the relationships that hold them in a

natural way.

�e second motivation for using inductive logic

programming is that it employs logic, a declarative rep-

resentation. �is implies that hypotheses are under-

standable and interpretable. By using logic, inductive

logic programming systems are also able to employ

background knowledge in the induction process. Back-

ground knowledge can be provided in the form of

de�nitions of auxiliary relations or predicates that

may be used by the learner. Finally, logic provides a

well-understood theoretical framework for knowledge

representation and reasoning. �is framework is also

useful for machine learning, in particular for de�n-

ing and developing notions such as the covers relation,

generality, and re�nement operators, see also7logic of
generality.

Theory
Inductive logic programming is usually de�ned as con-

cept learning using logical representations. It aims at

�nding a hypothesis (a set of rules) that covers all pos-

itive examples and none of the negatives, while taking

into account a background theory.�is is typically real-

ized by searching a space of possible hypotheses. More

formally, the traditional inductive logic programming

de�nition reads as follows:

Given

● a language describing hypotheses Lh,

● a language describing instances Li,

● possibly a background theory B, usually in the form
of a set of (de�nite) clauses,

● the covers relation that speci�es the relation between
Lh andLi, that is when an example e is covered (con-
sidered positive) by a hypothesis h, possibly taking
into account the background theory B,

● a set of positive and negative examples E = P ∪N

Find a hypothesis h ∈ Lh such that for all p ∈ P :
covers(B,h, p) = true and for all n ∈ N : covers(B,h,n) =
false.

�is de�nition can, as for7concept-learning in gen-
eral, be extended to cope with noisy data by relaxing the

requirement that all examples be classi�ed correctly.

�ere exist di�erent ways to represent learning

problems in logic, resulting in di�erent learning set-

tings. �ey typically use de�nite clause logic as the

hypothesis language Li, but di�er in the notion of an

example. One can learn from entailment, from inter-

pretations, or from proofs, cf. 7logic of generality. �e
most popular setting is learning from entailment, where
each example is a clause and covers(B,h, e) = true if and
only if B ∪ h ⊧ e.

�e top le�most scene in the Bongard problem of

Fig.1 can be represented by the clause:

positive :- object(o1), object(o2),
circle(o1), triangle(o2),
in(o1, o2), large(o2).

�e other scenes can be encoded in the same way.

�e following hypothesis then forms a solution to the

learning problem:

positive :- object(X), object(Y),
circle(X),

triangle(Y), in(X,Y).

It states that those scenes having a circle inside a triangle

are positive. For somemore complex Bongard problems

it could be useful to employ background knowledge. It

could, for instance, state that triangles are polygons.

polygon(X) :- triangle(X).

Using this clause as background theory, an alterna-

tive hypothesis covering all positives and none of the

negatives is

positive :- object(X), object(Y),
circle(X),

polygon(Y), in(X,Y).

An alternative for using long clauses as examples is

to provide an identi�er for each example and to add

Inductive Logic Programming I 

I

the corresponding facts from the condition part of the

clause to the background theory. For the above example,

the following facts

object(e1,o1).
object(e1,o2).
circle(e1,o1).
triangle(e1,o2).
in(e1,o1,o2).
large(e1,o2).

would be added to the background theory and the posi-

tive example itself would then be represented through

the fact positive(e1), where e1 is the identi�er.
�e inductive logic programming literature typically

employs this format for examples and hypotheses.

Whereas inductive logic programming originally

focused on concept-learning – as did the whole �eld

of machine learning – it is now being applied to vir-

tually all types of machine learning problems, includ-

ing regression, clustering, distance-based learning,

frequent pattern mining, reinforcement learning, and

even kernel methods and graphical models.

A Methodology
Many of the more recently developed inductive logic

programming systems have started from an existing

attribute-value learner and have upgraded it toward the

use of �rst-order logic (Van Laer & De Raedt, ).

By examining state-of-the-art inductive logic program-

ming systems one can identify a methodology for real-

izing this (Van Laer and De Raedt, ). It starts from

an attribute-value learning problem and systemof inter-

est, and takes the following two steps. First, the prob-

lem setting is upgraded by changing the representation

of the examples, the hypotheses as well as the covers

relation toward �rst-order logic. �is step is essentially

concerned with de�ning the learning setting, and pos-

sible settings to be considered include the already men-

tioned learning from entailment, interpretations, and
proofs settings. Once the problem is clearly de�ned,
one can attempt to formulate a solution. �us the sec-

ond step adapts the original algorithm to deal with the

upgraded representations. While doing so, it is advis-

able to keep the changes as minimal as possible. �is

step o�en involves the modi�cation of the operators

used to traverse the search space. Di�erent operators for

realizing this are introduced in the entry on the 7logic
of generality.

�ere are many reasons why following the method-

ology is advantageous. First, by upgrading a learner

that is already e�ective for attribute-value represen-

tations, one can bene�t from the experiences and

results obtained in the propositional setting. In many

cases, for instance decision trees, this implies that one

can rely on well-established methods and �ndings,

which are the outcomes of several decades of machine

learning research. It will be hard to do better start-

ing from scratch. Second, upgrading an existing learner

is also easier than starting from scratch as many of

the components (such as heuristics and search strat-

egy) can be recycled. It is therefore also economic in

terms of man power. �ird, the upgraded system will

be able to emulate the original one, which provides

guarantees that the output hypotheses will perform

well on attribute-value learning problems. Even more

important is that it will o�en also be able to emulate

extensions of the original systems. For instance, many

systems that extend frequent item-set mining toward

using richer representations, such as sequences, inter-

vals, the use of taxonomies, graphs, and so on, have

been developed over the past decade. Many of them

can be emulated using the inductive logic program-

ming upgrade of Apriori (Agrawal, Mannila, Srikant,

Toivonen & Verkamo, ) called Warmr (Dehaspe &

Toivonen, ). �e upgraded inductive logic pro-

gramming systems will typically be more �exible than

the systems it can emulate but typically also less e�cient

because there is a price to be paid for expressiveness.

Finally, it may be possible to incorporate new features in

the attribute-value learner by following the methodol-

ogy. One feature that is o�en absent from propositional

learners and may be easy to incorporate is the use of a

background theory.

It should be mentioned that the methodology is

not universal, that is, there exist also approaches, such

as Muggleton’s Progol (Muggleton, ), which have

directly been developed in �rst-order logic and for

which no propositional counter part exists. In such

cases, however, it can be interesting to follow the inverse

methodology, which would specialize the inductive

logic programming system.

 I Inductive Logic Programming

FOIL: An Illustration
One of the simplest and best-known inductive logic

programming systems is FOIL (Quinlan, ). It can

be regarded as an upgrade of a rule-learner such as

CN (Clark & Niblett, ). FOIL’s problem setting

is an instance of the learning from entailment set-

ting introduced above (though it restricts the back-

ground theory to ground facts only and does not allow

functors).

Like most rule-learning systems, FOIL employs

a separate-and-conquer approach. It starts from the

empty hypothesis, and then repeatedly searches for one

rule that covers as many positive examples as possi-

ble and no negative example, adds it to the hypothesis,

removes the positives covered by the rule, and then iter-

ates. �is process is continued until all positives are

covered. To �nd one rule, it performs a hill-climbing

search through the space of clauses ordered according

to generality. �e search starts at the most general rule,

the one stating that all examples are positive, and then

repeatedly specializes it. Among the specializations it

then selects the best one according to a heuristic evalu-

ation based on information gain. A heuristic, based on

the minimum description length principle, is then used

to decide when to stop specializing clauses.

�e key di�erences between FOIL and its proposi-

tional predecessors are the representation and the oper-

ators used to compute the specializations of a clause.

It employs a re�nement operator under θ-subsumption
(Plotkin, ) (see also 7logic of generality). Such an
operator essentially re�nes clauses by adding atoms to

the condition part of the clause or applying substitutions

to a clause. For instance, the clause

positive :- triangle(X), in(X,Y),
color(X,C).

can be specialized to

positive :- triangle(X), in(X,Y),
color(X,red).

positive :- triangle(X), in(X,Y),
color(X,C), large(X).

positive :- triangle(X), in(X,Y),
color(X,C),

rectangle(Y).
...

�e �rst specialization is obtained by substituting the

variable C by the constant red, the other two by adding
an atom (large(X), rectangle(Y), respectively)
to the condition part of the rule. Inductive logic

programming systems typically also employ syntac-

tic restrictions – the so-called – that specify which

clauses may be used in hypotheses. For instance, in

the above example, the second argument of the color
predicate belongs to the type Color, whereas the argu-
ments of in are of type Object and consist of object
identi�ers.

Application
Inductive logic programming has been successfully

applied to many application domains, including bio-

and chemo-informatics, ecology, network mining,

so�ware engineering, information retrieval, music

analysis, web mining, natural language processing, tox-

icology, robotics, program synthesis, design, architec-

ture, and many others.�e best-known applications are

in scienti�c domains. For instance, in structure–activity

relationship prediction, one is given a set of molecules

together with their activities, and background knowl-

edge encoding functional groups, that is particular

components of the molecule, and the task is to learn

rules stating when a molecule is active or inactive.

�is is illustrated in Fig.  (a�er Srinivasan, Muggleton,

Sternberg, and King ()), where two molecules are

active and two are inactive. One then has to �nd a pat-

tern that discriminates the actives from the inactives.

Structure–activity relationship prediction (SAR) is an

essential step in, for instance, drug discovery. Using

the general purpose inductive logic programming sys-

tem Progol (Muggleton, ) structural alerts, such
as that shown in Fig. , have been discovered. �ese

alerts allow one to distinguish the actives from the inac-

tives – the one shown in the �gure matches both of

the actives but none of the inactives – and at the same

time they are readily interpretable and provide use-

ful insight into the factors determining the activity. To

solve structure–activity relationship prediction prob-

lems using inductive logic programming one must rep-

resent the molecules and hypotheses using the logical

formalisms introduced above. �e resulting represen-

tation is very similar to that employed in the Bongard

Inductive Logic Programming I 

I

O CH=N-NH-C-NH2O=N

O– O

nitrofurazone

N O
+

4-nitropenta[cd]pyrene

N

6-nitro-7,8,9,10-tetrahydrobenzo[a]pyrene

NH

N+
O– O

4-nitroindole

Active

Inactive Y=Z

Structural alert:

O– O–

O–

Inductive Logic Programming. Figure . Predicting mutagenicity (Srinivasan et al., )

problems: the objects are the atoms and relationships

the bonds. Particular functional groups are encoded as

background predicates.

State-of-the-Art
�e upgrading methodology has been applied to a

wide variety ofmachine learning systems and problems.

�ere exist now inductive logic programming systems

that

● induce logic programs from examples under vari-

ous learning settings.�is is by far the most popular

class of inductive logic programming systems. Well-

known systems include Aleph (Srinivasan, )

and Progol (Muggleton, ) as well as various

variants of FOIL (Quinlan, ). Some of these

systems, especially Progol and Aleph, contain many

features that are not present in propositional learn-

ing systems. Most of these systems focus on a clas-

si�cation setting, and learn the de�nition of a single
predicate.

● induce logical decision trees from examples. �ese

are binary decision trees containing conjunctions of

atoms (i.e., queries) as tests. If a query succeeds, then

one branch is taken, else the other one. Decision tree

methods for both classi�cation and regression exist

(see Blockeel & De Raedt, ; Kramer & Widmer,

).

● mine for frequent queries, where queries are con-

junctions of atoms. Such queries can be evaluated

on an example. For instance, in the Bongard prob-

lem, the query?- triangle (X), in (X, Y)
succeeds on the le�most scenes, and fails on the

rightmost ones. �erefore, its frequency would be

. �e goal is then to �nd all queries that are fre-

quent, that is, whose frequencies exceed a certain

threshold. Frequent querymining upgrades the pop-

ular local pattern mining setting due to Agrawal

et al. () to inductive logic programming (see

Dehaspe & Toivonen, ).

● learn or revise the de�nitions of theories, which con-

sist of the de�nitions of multiple predicates, at the

same time (cf.Wrobel, ), and the entry7�eory
revision in this encyclopedia. Several of these sys-

tems have their origin in themodel inference system

by Shapiro () or the work by Angluin ().

Current Trends and Challenges
�ere are two major trends and challenges in induc-

tive logic programming. �e �rst challenge is to extend

 I Inductive Logic Programming

the inductive logic programming paradigm beyond the

purely symbolic one. Important trends in this regard

include

● the combination of inductive logic programming

principles with graphical and probabilistic mod-

els for reasoning about uncertainty. �is is a �eld

known as statistical relational learning, probabilistic
logic learning, or probabilistic inductive logic pro-
gramming. At the time of writing, this is a very pop-
ular research stream, attracting a lot of attention in

the wider arti�cial intelligence community, cf. the

entry 7Statistical Relational Learning in this ency-
clopedia. It has resulted in many relational or logical

upgrades of well-known graphical models includ-

ing Bayesian networks, Markov networks, hidden

Markov models, and stochastic grammars.

● the use of relational distance measures for classi-

�cation and clustering (Kirsten, Wrobel, & Hor-

vath, ; Ramon & Bruynooghe, ). �ese dis-

tances measure the similarity between two examples

or clauses, while taking into account the under-

lying structure of the instances. �ese distances

are then combined with standard classi�cation and

clustering methods such as k-nearest neighbor and
k-means.

● the integration of relational or logical representa-

tions in reinforcement learning, known as 7rela-
tional reinforcement learning (Džeroski,DeRaedt,&

Driessens, ).

�e power of inductive logic programming is also

its weakness. �e ability to represent complex objects

and relations and the ability to make use of background

knowledge add to the computational complexity.�ere-

fore, a key challenge of inductive logic programming

is tackling this added computational complexity. Even

the simplest method for testing whether one hypothesis

is more general than another – that is θ-subsumption
(Plotkin, ) – is NP-complete. Similar tests are

used for deciding whether a clause covers a particular

example in systems such as FOIL. �erefore, inductive

logic programming and relational learning systems are

computationally much more expensive than their

propositional counterparts. �is is an instance of the

expressiveness versus e�ciency trade-o� in computer

science. Because of these computational di�culties,

inductive logic programming has devoted a lot of atten-

tion to e�ciency issues. On the theoretical side, there

exist various results about the polynomial learnability

of certain subclasses of logic programs (cf. Cohen &

Page, , for an overview). From a practical perspec-

tive, there is quite some work on developing e�cient

methods for searching the hypothesis space and espe-

cially for evaluating the quality of hypotheses. Many

of these methods employ optimized inference engines

based on Prolog or database technology or constraint-

satisfaction methods (cf. Blockeel & Sebag,  for an

overview).

Cross References
7Multi-Relational Data Mining

Recommended Reading
A comprehensive introduction to inductive logic programming can

be found in the book by De Raedt () on logical and relational

learning. Early surveys of inductive logic programming are con-

tained in Muggleton and De Raedt () and Lavrač and Džeroski

() and an account of its early history is provided in Sammut

(). More recent collections on current trends can be found in the

proceedings of the annual Inductive Logic Programming Conference
(published in Springer’s Lectures Notes in Computer Science Series)
and special issues of the Machine Learning Journal. An interest-
ing collection of inductive logic programming and multi-relational

data mining works are provided in Džeroski and Lavrač ().

The upgrading methodology is described in detail in Van Laer and

De Raedt (). More information on logical issues in inductive

logic programming are given in the entry 7logic of generality
in this encyclopedia, whereas the entries 7statistical relational
learning and 7graph mining are recommended for those inter-
ested in frameworks tackling similar problems using other types of

representations.

Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., & Verkamo,

A. I. (). Fast discovery of association rules. In U. Fayyad,

G. Piatetsky-Shapiro, P. Smyth, & R. Uthurusamy (Eds.),

Advances in knowledge discovery and data mining (pp. –).
Cambridge, MA: MIT Press.

Angluin, D. (). Queries and concept-learning. Machine Learn-
ing, , –.

Blockeel, H., & De Raedt, L. (). Top-down induction of first

order logical decision trees. Artificial Intelligence, (–),
–.

Blockeel, H., & Sebag, M. (). Scalability and efficiency

in multi-relational data mining. SIGKDD Explorations, (),
–.

Bongard, M. (). Pattern recognition. New York: Spartan Books.
Clark, P., & Niblett, T. (). The CN algorithm.Machine Learning,

(), –.

Inductive Process Modeling I 

I

Cohen, W. W., & Page, D. (). Polynomial learnability and induc-

tive logic programming: Methods and results. New Generation
Computing, , –.

De Raedt, L. (). Logical and relational learning. Springer.
Dehaspe, L., & Toivonen, H. (). Discovery of relational

association rules. In S. Džeroski & N. Lavrač (Eds.),

Relational data mining (pp. –). Berlin/Heidelberg:

Springer.

Džeroski, S., De Raedt, L., & Driessens, K. (). Relational rein-

forcement learning. Machine Learning, (/), –.
Džeroski, S., & Lavrač, N. (Eds.). (). Relational data mining.

Springer.

Kirsten, M., Wrobel, S., & Horvath, T. (). Distance based

approaches to relational learning and clustering. In S. Džeroski

and N. Lavrač (Eds.), Relational data mining (pp. –).
Berlin/Heidelberg: Springer.

Kramer, S., & Widmer, G. (). Inducing classification and regres-

sion trees in first order logic. In S. Džeroski and N. Lavrač

(Eds.), Relational data mining (pp. –). Berlin/Heidelberg:
Springer.

Lavrač, N., & Džeroski, S. (). Inductive logic programming:
techniques and applications. Chichester, UK: Ellis Horwood.

Muggleton, S. (). Inverse entailment and Progol. New Genera-
tion Computing, , –.

Muggleton, S., & De Raedt, L. (). Inductive logic programming:

Theory and methods. Journal of Logic Programming, (),
–.

Plotkin, G. D. (). A note on inductive generalization. InMachine
Intelligence (vol. , pp. –). Edinburgh, Scotland: Edin-
burgh University Press.

Quinlan, J. R. ().

Learning logical definitions from relations. Machine Learning,
, –.

Ramon, J., & Bruynooghe, M. (). A framework for defining

distances between first-order logic objects. In D. Page (Ed.),

Proceedings of the eighth international conference on inductive
logic programming. Lecture notes in artificial intelligence, (vol.
, pp. –). Berlin/Heidelberg: Springer.

Sammut, C. (). The origins of inductive logic programming: A

prehistoric tale. In S. Muggleton (Ed.), Proceedings of the third
international workshop on inductive logic programming (pp. –
). Ljubljana: J. Stefan Institute.

Shapiro, E. Y. (). Algorithmic program debugging. MIT Press.

Srinivasan, A. The Aleph Manual, . URL: http://www.

comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/aleph_

toc.html.

Srinivasan, A., Muggleton, S., Sternberg, M. J. E., & King, R. D.

(). Theories for mutagenicity: A study in first-order and

feature-based induction. Artificial Intelligence, (/), –
.

Van Laer, W., & De Raedt, L. (). How to upgrade proposi-

tional learners to first order logic: A case study. In S. Džeroski

and N. Lavrač (Eds.), Relational data mining, (pp. –).
Berlin/Heidelberg: Springer.

Wrobel, S. (). First-order theory refinement. In L. De Raedt

(Ed.), Advances in inductive logic programming. Frontiers in
artificial intelligence and applications (vol. , pp. –).
Amsterdam: IOS Press.

Inductive Process Modeling

Ljupčo Todorovski

University of Ljubljana, Ljubljana, Slovenia

Synonyms
Process-based modeling

Definition
Inductive process modeling is a machine learning task

that deals with the problem of learning quantitative pro-
cessmodels from7time series data about the behavior of
an observed dynamic system. Process models are mod-

els based on ordinary di�erential equations that add an

explanatory layer to the equations. Namely, scientists

and engineers use models to both predict and explain

the behavior of an observed system. In many domains,

models commonly refer to processes that govern sys-

tem dynamics and entities altered by those processes.

Ordinary di�erential equations, o�en used to cast mod-

els of dynamic systems, o�er one way to represent these

mechanisms and can be used to simulate and predict

the system behavior, but fail to make the processes and

entities explicit. In response, process models tie the

explanatory information about processes and entities to

the mathematical formulation, based on equations, that

enables simulation.

Table  shows a process model for a predator–

prey interaction between foxes and rabbits. �e three

processes explain the dynamic change of the

concentrations of both species (represented in the

model as two population entities) through time.�e rab-
bit_growth process states that the reproduction of rabbit
is limited by the �xed environmental capacity. Similarly,

the fox_death process speci�es an unlimited exponen-
tial mortality function for the fox population. Finally,

the fox_rabbit_predation process refers to the predator–
prey interaction between foxes and rabbits that states

that the prey concentration decreases and the predator

one increases proportionally with the sizes of the two

populations. �e process model makes the structure of

the model explicit and transparent to scientists; while at

the same time it can be easily transformed in to a system

of two di�erential equations by additively combining

the equations for the time derivatives of the system

http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/aleph_toc.html.
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/aleph_toc.html.
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/aleph_toc.html.

 I Inductive Process Modeling

Inductive Process Modeling. Table  A Process Model of

Predatory–Prey Interaction between Foxes and Rabbits.

The Notation d[X, t] Indicates the Time Derivative of

Variable X.

model predation;

entities fox{population}, rabbit{population};

process rabbit_growth;

entites rabbit;

equations d[rabbit.conc,t] = . * rabbit.conc *

(− . * rabbit.conc);

process fox_death;

entites fox;

equations d[fox.conc,t] = –. * fox.conc;

process fox_rabbit_predation;

entities fox, rabbit;

equations

d[fox.conc,t] = . * rabbit.conc * fox.conc;

d[rabbit.conc,t] =− * . * rabbit.conc * fox.conc;

variables fox.conc and rabbit.conc. Given initial values
for these variables, one can simulate the equations to

produce trajectories that correspond to the population

dynamics through time.

�e processes from Table  instantiate more general

generic processes, that can be used for modeling any

ecological system. For example:

generic process predation;
entities Predator{population}, Prey{population};
parameters ar[., ], ef[., .];
equations
d[Predator.conc,t] = ef * ar * Prey.conc * Predator.conc;
d[Prey.conc,t] = – * ar * Prey.conc * Predator.conc;

is a general form of the fox_rabbit_predation pro-
cess from the example model in Table . Note that

in the generic process, the parameters are replaced

with numeric ranges and the entities with identi�ers of

generic entities (i.e., Predator and Prey are identi�ers
that refer to instances of the generic entity population).

Having de�ned entities and processes on an exam-

ple, one can de�ne the task of inductive process model-

ing as: Given

● Time series observations for a set of numeric system

variables as they change through time

● A set of entities that the model might include

● Generic processes that specify casual relations

among entities

● Constraints that determine plausible relations among

processes and entities in the model

Find a speci�c processmodel that explains the observed

data and the simulation of which closely matches

observed time series.

�ere are two approaches for solving the task of

inductive process modeling.�e �rst is the transforma-

tional approach that transforms the given knowledge

about entities, processes, and constraints to 7language
bias for equation discovery and uses the Lagramge

method for7equation discovery in turn (Todorovski &
Džeroski, , ). �e second approach performs

search through the space of candidate processmodels to

�nd the one thatmatches the given time series data best.

Inductive process modeling methods IPM

(Bridewell, Langley, Todorovski, & Džeroski, )

and HIPM (Todorovski, Bridewell, Shiran, & Langley,

) follow the second approach. IPM is a naïve

method that exhaustively searches the space of candi-

date process models following the 7learning as search
paradigm. �e search space of candidate process mod-

els is de�ned by the sets of generic processes and

of entities in the observed system speci�ed by the

user. IPM �rst matches the type of each entity against

the types of entities involved in each generic process

and produces a list of all possible instances of that

generic process. For example, the generic process pre-
dation, from the example above, given two population
entities fox and rabbit, can be instantiated in four di�er-
ent ways (fox_fox_predation, fox_rabbit_predation, rab-
bit_fox_predation, and rabbit_rabbit_predation). �e
IPM search procedure collects the set of all possible

instances of all the generic processes and uses them

as a set of candidate model components. In the search

phase, all combinations of these model components

are being matched against observed 7time series. �e

Inductive Programming I 

I

matching involves the employment of gradient-descent

methods for nonlinear optimization to estimate the

optimal values of the process model parameters. As

output, IPM reports the process models with the best

match.

Trying out all components’ combinations is pro-

hibitive in many situations since it obviously leads to

combinatorial explosion. HIPM employs constraints

that limit the space of combinations by ruling-out

implausible or forbidden combinations. Examples of

such constraints in the predator–prey example above

include rules that a proper process model of population

dynamics should include a single growth and a single

mortality process per species, the predator–prey pro-

cess should relate two di�erent species, and di�erent

predator–prey interaction should refer to di�erent pop-

ulation pairs. HIPM speci�es the rules in a hierarchy

of generic processes where each node in the hierar-

chy speci�es a rule for proper combination/selection of

process instances.

Cross References
7Equation Discovery

Recommended Reading
Bridewell, W., Langley, P., Todorovski, L., & Džeroski, S. ().

Inductive process modeling. Machine Learning, (),
–.

Todorovski, L., Bridewell, W., Shiran, O., & Langley, P. ().

Inducing hierarchical process models in dynamic domains. In

M.M. Veloso & S. Kambhampati (Eds.), Proceedings of the twen-
tieth national conference on artificial intelligence, Pittsburgh,
PA, USA.

Todorovski, L., & Džeroski, S. (). Declarative bias in equation

discovery. In D.H. Fisher (Ed.), Proceedings of the fourteenth
international conference on machine learning, Nashville, TN,
USA.

Todorovski, L., & Džeroski, S. (). Integrating domain knowl-

edge in equation discovery. In S. Džeroski & L. Todorovski

(Eds.), Computational discovery of scientific knowledge. LNCS
(Vol. ). Berlin: Springer.

Inductive Program Synthesis

7Inductive Programming

Inductive Programming

Pierre Flener,, Ute Schmid

Sabancı University, Orhanlı, Tuzla, İstanbul, Turkey
Uppsala University, Uppsala, Sweden
University of Bamberg, Feldkirchenstr. Bamberg,

Germany

Synonyms
Example-based programming; Inductive program syn-

thesis; Inductive synthesis; Program synthesis from

examples

Definition
Inductive programming is the inference of an algorithm

or program featuring recursive calls or repetition con-

trol structures, starting from information that is known

to be incomplete, called the evidence, such as positive
and negative input–output examples or clausal con-

straints. �e inferred program must be correct with

respect to the provided evidence, in a 7generalization
sense: it should neither be equivalent nor inconsistent

to it. Inductive programming is guided explicitly or

implicitly by a 7language bias and a 7search bias. �e
inferencemay draw on background knowledge or query

an oracle. In addition to 7induction, 7abduction may
be used. �e restriction to algorithms and programs

featuring recursive calls or repetition control structures

distinguishes inductive programming from 7concept
learning or7classi�cation.

�is chapter is restricted to the inference of declar-

ative programs, whether functional or logic, and dis-

pense with repetition control structures in the inferred

program in favour of recursive calls.

Motivation and Background
Inductive program synthesis is a branch of the �eld of

program synthesis, which addresses a cognitive ques-
tion as old as computers, namely the understanding

of the human act of computer programming, to the

point where a computer can be made to help in this

task (and ultimately to enhance itself). See Flener

() for a recent survey; the other main branches

of program synthesis are based on deductive inference,

 I Inductive Programming

namely constructive program synthesis and transforma-
tional program synthesis. In such deductive program syn-
thesis, the provided information, called the speci�cation,
is assumed to be complete (in contrast to inductive

program synthesis where the provided information is

known to be incomplete), and the presence of repeti-

tive or recursive control structures in the synthesized

program is not imposed.

Research on the inductive synthesis of recursive

functional programs started in the early s and was
brought onto �rm theoretical foundationswith the sem-

inal thesys system of Summers () and work of

Biermann (), where all the evidence is handled

non-incrementally (see7incremental learning). Essen-
tially, the idea is �rst to infer computation traces from
input–output examples (7instances), and then to use a
7trace-based programmingmethod to fold these traces
into a recursive program. �e main results till the mid

s were surveyed in Smith (). Due to limited

progress with respect to the range of programs that

could be synthesized, research activities decreased sig-

ni�cantly in the next decades. However, a new approach

that formalizes functional program synthesis in the

term-rewriting framework and that allows the syn-

thesis of a broader class of programs than the classi-

cal approaches is pursued in Kitzelmann and Schmid

().

�e advent of logicprogramming brought a new elan
but also a newdirection in the early s, especially due

to the mis system of Shapiro (), eventually spawn-

ing the new �eld of 7inductive logic programming
(ILP). Most of this ILP work addresses a wider class

of problems, as the focus is not only on recursive logic
programs: more adequate designations are inductive

7theory revision and declarative program debugging, as
an additional input is a possibly empty initial theory

or program that is incrementally revised or debugged

according to each newly presented piece of evidence,

possibly in the presence of background knowledge or

an oracle. �e main results on the inductive synthesis

of recursive logic programswere surveyed in Flener and

Yılmaz ().

Structure of Learning System
�e core of an inductive programming system is a

mechanism for constructing a recursive generalization

for a set of input/output examples (instances), say.

Although vocabulary of logic programming is used,

this method also covers the synthesis of functional pro-

grams.

�e input, o�en a set of input/output examples, is

called the evidence. Further evidence may be queried
from an oracle. Additional information, in the form of
predicate symbols that can be used during the synthe-

sis, can be provided as background knowledge. Since
the 7hypothesis space – the set of legal recursive pro-
grams – is in�nite, a7language bias is introduced. One
particularly useful and common approach in inductive

programming is to provide a statement bias bymeans of

a program schema.
�e evidential synthesis of a recursive program

starts from the provided evidence for some predicate

symbol and works essentially as follows. A program

schema is chosen to provide a template for the program

structure, where all yet unde�ned predicate symbols

must be instantiated during the synthesis. Prede�ned

predicate symbols of the background knowledge are

then chosen for some of these unde�ned predicate sym-

bols in the template. If it is deemed that the remaining

unde�ned predicate symbols cannot all be instantiated

via purely structural generalization by non-recursive

de�nitions, then the method is recursively called to

infer recursive de�nitions for some of them (this is

called 7predicate invention and amounts to shi�ing
the vocabulary bias); otherwise the synthesis ends suc-
cessfully right away. �is generic method can back-

track to any choice point for synthesizing alternative

programs.

In the rest of this section, this basic terminology

of inductive programming discussed more precisely. In

the next section, instantiations of this generic method

by some well-known methods are presented.

The Evidence and the Oracle

�e evidence is o�en limited to ground positive exam-

ples of the predicate symbols that are to be de�ned.

Ground negative examples are convenient to prevent

overgeneralization, but should be used constructively

and not just to reject candidate programs. A useful

generalization of ground examples is evidence in the

form of a set of (non-recursive) clauses, as variables and

additional predicate symbols can then be used.

Inductive Programming I 

I

Example  �e delOdds(L,R) relation, which holds if
and only if R is the integer list L without its odd ele-
ments, can be incompletely described by the following

clausal evidence:

delOdds([], []) ← true

delOdds([X], []) ← odd(X)
delOdds([X], [X]) ← ¬odd(X) ()

delOdds([X,Y], [Y]) ← odd(X), ¬odd(Y)
delOdds([X,Y], [X,Y]) ← ¬odd(X), ¬odd(Y)

false← delOdds([X], [X]),
odd(X)

�e �rst clause is a ground positive example, whereas

the second and third clauses generalize the in�nity of

ground positive examples, such as delOdds([], []) and
delOdds([], []), for handling singleton lists, while
the fourth and ��h clauses summarize the in�nity of

ground positive examples for handling lists of two ele-

ments, the second one being even: these clauses make

explicit the underlying �ltering relation (odd) that is
intrinsic to the problem at hand but cannot be pro-
vided via ground examples andwould otherwise have to

be guessed. �e sixth clause summarizes an in�nity of

ground negative examples for handling singleton lists,

namely where the only element of the list is odd but not

�ltered.

In some methods, especially for the induction of

functional programs, the �rst n positive input–output
examples with respect to the underlying data type are

presented (e.g., for linear lists, what to dowith the empty

list, with a one-element list, up to a list with three ele-

ments); because of this ordering of examples, no explicit

presentation of negative examples is then necessary.

Inductive program synthesis should be monotonic

in the evidence (more evidence should never yield a less

complete program, and less evidence should not yield a

more complete program) and should not be sensitive to

the order of presentation of the evidence.

Program Schemas

Informally, a program schema (Smith, ) contains a
template program and a set of axioms. �e template
abstracts a class of actual programs, called instances, in

the sense that it represents their data�ow and control-

�ow by means of place-holders, but does not make

explicit all their actual computations nor all their

actual data structures. �e axioms restrict the possible
instances of the place-holders and de�ne their interrela-

tionships. Note that a schema is problem-independent.

A 7�rst-order-logic approach is taken and templates
are considered as open logic programs (programswhere

some place-holder predicate symbols are le� unde�ned,

or open; a program with no open predicate symbols is
said to be closed) and axioms as �rst-order speci�cations
of these open predicate symbols.

Example  Most methods of inductive synthesis are

biased by program schemas whose templates have

clauses of the forms in the following generic template:

r(X,Y ,Z) ← c(X,Y ,Z), p(X,Y ,Z)

r(X,Y ,Z) ← d(X,H,X, . . . ,Xt ,Z),

r(X,Y,Z), . . . , r(Xt ,Yt ,Z),

q(H,Y, . . . ,Yt ,Z,Y)

()

where c, d, p, and q are open predicate symbols, X is
a non-empty sequence of terms, and Y , Z are possi-
bly empty sequences of terms. �e intended semantics

of this generic template can be described informally

as follows. For an arbitrary relation r over parameters
X, Y , and Z, an instance of this generic template is
to determine the values of result parameter Y corre-
sponding to a given value of induction parameter X,
considering the value of auxiliary parameter Z. Two
cases arise: either the c test succeeds and X has a value
for which Y can easily be directly computed through p,
or X has a value for which Y cannot be so easily directly
computed and the divide-and-conquer principle is
applied:

. Divide X through d into a term H and t terms
X, . . . ,Xt of the same type as X but smaller than X
according to some well-founded relation;

. Conquer through t recursive calls to r to determine
the values of Y, . . . ,Yt corresponding to X, . . . ,Xt ,

respectively, considering the value of Z;

 I Inductive Programming

. Combine through q the terms H,Y, . . . ,Yt ,Z to
build Y .

Enforcing this intended semantics must be done man-

ually, as any instance template by itself has no seman-

tics, in the sense that any program is an instance of it

(it su�ces to de�ne c by a program that always suc-
ceeds, and p by the given program). One way to do
this is to attach to a template some axioms (see Smith

() for the divide-and-conquer axioms), namely the

set of speci�cations of its open predicate symbols: these

speci�cations refer to each other, including the one

of r, and are generic (because even the speci�cation
of r is unknown), but can be manually abduced (see
7abduction) once and for all according to the informal
semantics of the schema.

Predicate Invention

Another important language bias is the available vocab-

ulary, which is here the set of predicate symbols men-

tioned in the evidence set, or actually de�ned in the

background knowledge (and possibly mentioned by the

oracle). If an inductive synthesis fails, other than back-

tracking to a di�erent program schema (i.e., shi�ing the

statement bias), one can try and shi� the vocabulary

bias by inventing new predicate symbols and induc-

ing programs for them in the extended vocabulary;

this is also known as performing 7constructive induc-
tion. Only the invention of recursively de�ned predi-

cate symbols is necessary, as a non-recursive de�nition
of a predicate symbol can be eliminated by substitu-

tion (under 7resolution) for its calls in the 7induced
program (even though that might make the program

longer).

In general, it is undecidable whether predicate

invention is necessary to induce a �nite program in the

vocabulary of its evidence and background knowledge

(as a consequence of Rice’s theorem, ), but introduc-

ing new predicate symbols always allows the induction

of a �nite program (as a consequence of a result by

Kleene), as shown in Stahl ().�e necessity of shi�-

ing the vocabulary bias can only be decided for some

restricted languages (but the bias shi� attempt might

then be unsuccessful), so in practice one o�en has to

resort to heuristics. Note that an inductive synthesiser

of recursive algorithms may be recursive itself: it may

recursively invoke itself for a necessary new predicate

symbol.

Other than the decision problem, the di�culties

of predicate invention are as follows. First, adequate

formal parameters for a new predicate symbol have

to be identi�ed among all the variables in the clause

using it. �is can be done instantaneously by using pre-

computations done manually once and for all at the

template level. Second, evidence for a new predicate

symbol has to be abduced from the current program

using the evidence for the old predicate symbol. �is

usually requires an oracle for the old predicate symbol,

whose program is still un�nished at that moment and

cannot be used. �ird, the abduced evidence may be

less numerous than for the old predicate symbol (note

that if the new predicate symbol is in a recursive clause,

then no new evidence might be abduced from the old

evidence that is covered by the base clauses) and can

be quite sparse, so that the new synthesis is more dif-

�cult. �is sparseness problem can be illustrated by an
example.

Example  Given the positive ground examples

factorial(, ), factorial(, ), factorial(, ), factorial
(, ), factorial(, ), and given the still open program:

factorial(N,F) ← N = , F = 

factorial(N,F) ← add(M, ,N), factorial(M,G),

product(N,G,F)

where add is known but product was just invented
(and named so only for the reader’s convenience), the

abduceable examples are product(, , ), product(, , ),
product(, , ), and product(, , ), which is hardly
enough for inducing a recursive program for product;
note that there is one less example than for factorial.
Indeed, examples such as product(, , ), product
(, , ), product(, , ), etc., are missing, which puts
the given examples more than one resolution step apart,

if not on di�erent resolution paths. �is is aggravated

by the absence of an oracle for the invented predi-

cate symbol, which is not necessarily intrinsic to the

task at hand (although product actually is intrinsic to
factorial).

Inductive Programming I 

I

Background Knowledge

In an inductive programming context, background

knowledge is particularly important, as the inference

of recursive programs is more di�cult than the infer-

ence of 7classi�ers. For the e�ciency of synthesis,
it is crucial that this collection of de�nitions of the

pre-de�ned predicate symbols be annotated with infor-
mation about the types of their arguments and about
whether some well-founded relation is being enforced
between some of their arguments, so that semantically

suitable instances for the open predicate symbols of

any chosen program schema can be readily spotted.

(�is requires in turn that the types of the arguments

of the predicate symbols in the provided evidence are

declared as well.)�e background knowledge should be

problem-independent, and an inductive programming

method should be able to perform knowledge mobili-
sation, namely organizing it dynamically according to
relevance to the current task.

In data-driven, analytical approaches, background

knowledge is used in combination with 7explanation-
based learning (EBL) methods, such as abduction

(see Example ) or systematic rewriting of input/

output examples into computational traces (see

Example ).

Programs and Data

Example  �e dialogs (Dialogue-based Inductive-

Abductive LOGic programSynthesiser)method (Flener,

) is interactive. �e main design objective was to

take all extra burden from the speci�er by having the

method ask for exactly and only the information it

needs, default answers being provided wherever pos-

sible. As a result, no evidence needs to be prepared

in advance, as the method invents its own candidate

evidence and queries the oracle about it, with an oppor-

tunity to declare (at the oracle/speci�er’s risk) that

enough information has been provided. All answers

by the oracle are stored as judgements, to prevent ask-
ing the same query twice. �is is suitable for all levels

of expertise of human users, as the queries are for-

mulated in the speci�er’s initially unknown conceptual

language, in a way such that the speci�er must know

the answers if she really feels the need for the wanted

program. �e method is schema-biased, and the cur-

rent implementation has two schemas. �e template of

the divide-and-conquer schema has the generality of the
generic template (). �e template of the accumulate
schema extends this by requiring an accumulator in the

sequence Z of auxiliary parameters. �e evidence lan-
guage (7observation language) is (non-recursive) logic
programswith negation. Type declarations are provided

as a language bias.�e program language (7hypothesis
language) is recursive logic programs with negation,

with possibly multiple base cases and recursive cases.

For instance, starting from the empty program

for the relation delOdds in Example , the algorithm
design choices of using the divide-and-conquer schema
with R as result parameter and L as induction param-
eter decomposed (with t = ) through head-tail

decomposition by d lead to the following intermediate
open program:

delOdds(L,R) ← c(L,R), p(L,R)

delOdds(L,R) ← d(L,H,L), delOdds(L,R),

q(H,R,R) ()

c(_, _) ← true

d(L,H,T) ← L = [H∣T]

�e �rst �ve evidential clauses for delOdds in ()
are then implicitly interactively acquired from the

oracle/speci�er by the following question & answer

dialogue, leading the speci�er to reveal the intrinsic

predicate symbol odd:

dialogs: When does delOdds([],R) hold?

Speci�er: If R = [].

dialogs: When does delOdds([X],R) hold?

Speci�er: If (odd(X) and R = [])

or (¬odd(X) and R = [X]).

dialogs: When does delOdds([X,Y],R) hold,

assuming odd(Y)?

Speci�er: If (odd(X) and R = [])

or (¬odd(X) and R = [X]).

 I Inductive Programming

dialogs: When does delOdds([X,Y],R) hold,

assuming ¬odd(Y)?

Speci�er: If (odd(X) and R = [Y])

or (¬odd(X) and R = [X,Y]).

Next, abduction infers the following evidence set for the

still open predicate symbols p and q:

p([], []) ← true

p([X], []) ← odd(X)

q(X, [], []) ← odd(X)

p([X], [X]) ← ¬odd(X)

q(X, [], [X]) ← ¬odd(X)

p([X,Y], [Y]) ← odd(X), ¬odd(Y)

q(X, [Y], [Y]) ← odd(X)

p([X,Y], [X,Y]) ← ¬odd(X), ¬odd(Y)

q(X, [Y], [X,Y]) ← ¬odd(X)

From this, induction infers the following closed pro-

grams for p and q:

p([], []) ← true

q(H,L, [H∣L]) ← ¬odd(H)

q(H,L,L) ← odd(H)

()

�e �nal closed program is the union of the pro-

grams () and (), as no predicate invention is deemed

necessary. Sample syntheses with predicate invention

are presented in Flener () and Flener and Yılmaz

().

Example  �e thesys method (Summers, )

was one of the �rst methods for the inductive syn-

thesis of functional (Lisp) programs. Although it

has a rather restricted scope, it can be seen as the

methodological foundation of many later methods

for inducing functional programs. �e non-interactive

method is schema-biased, and the implementation has

two schemas. Upon adaptation to functional program-

ming, the template of the linear recursion schema is the
instance of the generic template () obtained by having

X as a sequence of exactly one induction parameter and
Z as the empty sequence of auxiliary parameters, and
by dividing X into t =  smaller value Xt , so that there

is only t =  recursive call. �e template of the accumu-
late schema extends this by having Z as a sequence of
exactly one auxiliary parameter, playing the role of an

accumulator. �e evidence language (observation lan-

guage) is sets of ground positive examples.�e program

language (hypothesis language) is recursive functional

programs, with possibly multiple base cases, but only

one recursive case. �e only primitive functions are nil,
cons, head, tail, and empty, because the implementa-
tion is limited to the list datatype, inductively de�ned by

list ≡ nil ∣ cons(x, list), under the axioms empty(nil) =
true, head(cons(x, y)) = x, and tail(cons(x, y)) = y.
�ere is no function invention.

For instance, from the following examples of a list

unpacking function:

unpack(nil) = nil

unpack((A)) = ((A))

unpack((A B)) = ((A) (B))

unpack((A B C)) = ((A) (B) (C))

the abduced traces are:

empty(X) → nil

empty(tail(X)) → cons(X,nil)

empty(tail(tail(X))) →

cons(cons(head(X),nil), cons(tail(X),nil))

empty(tail(tail(tail(X)))) →

cons(cons(head(X),nil),

cons(cons(head(tail(X)),nil),

cons(tail(tail(X)),nil)))

Inductive Programming I 

I

and the induced program is:

unpack(X) ←

empty(X) → nil,

empty(tail(X)) → cons(X,nil),

true → cons(cons(head(X),nil),

unpack(tail(X)))

A modern extension of thesys is the igor method

(Kitzelmann& Schmid, ).�e underlying program

template describes the set of all functional programs

with the following restrictions: built-in functions can

only be �rst-order, and no nested or mutual recur-

sion is allowed. igor adopts the two-step approach of

thesys. Synthesis is still restricted to structural prob-

lems,where only the structure of the argumentsmatters,

but not their contents, such as in list reversing. Never-

theless, the scope of synthesisable programs is consid-

erably larger. For instance, tree-recursive functions and

functions with hidden parameters can be induced.Most

notably, programs consisting of a calling function and

an arbitrary set of further recursive functions can be

induced. �e �rst step of synthesis (trace construction)

is therefore expanded such that traces can contain nest-

ings of conditions. �e second step is expanded such

that the synthesis of a function can rely on the inven-

tion and synthesis of other functions (that is, igor uses

a technique of function invention in correspondence to

the concept of predicate invention introduced above).

An extension, igor, relies on constructor-term rewrit-

ing techniques.�e two synthesis steps are merged into

one andmake use of background knowledge.�erefore,

the synthesis of programs for semantic problems, such

as list sorting, becomes feasible.

Applications
In the framework of so�ware engineering, inductive pro-
gramming is de�ned as the inference of information

that is pertinent to the construction of a generalized

computational system for which the provided evidence

is a representative sample (Flener & Partridge, ). In

other words, inductive programming does not have to

be a panacea for so�ware development in-the-large and

infer a complete so�ware system in order to be useful: it

su�ces to induce, for instance, a self-contained system

module while programming in-the-small, problem fea-

tures and decision logic for speci�cation acquisition and

enhancement, or support for debugging and testing.

Inductive programming is then not always limited to

programswith repetitive or recursive control structures.

�ere are opportunities for synergy with manual pro-

gramming and deductive program synthesis, as there

are sometimes system modules that no one knows how

to specify in a complete way, or that are harder to specify

or program in a completeway, and yetwhere incomplete

information such as input-output examples is readily

available. More examples and pointers to the literature

are given in Flener (, Section ) and Flener and

Partridge ().

In the context of end-user programming, inductive
programming methods can be used to enable non-

expert users to take advantage of themore sophisticated

functionalities o�ered by their so�ware. �is kind of

application is in the focus of7programming by demon-
stration (PBD).

Finally, it is worth having an evidential synthesiser

of recursive algorithms invoked by a more general-

purpose machine learning method when necessary

predicate invention is detected or conjectured, as such

general methods require a lot of evidence to infer reli-

ably a recursively de�ned hypothesis.

Future Directions
Inductive programming is still mainly a topic of

basic research, exploring how the intellectual ability

of humans to infer generalized recursive procedures

from incomplete evidence can be captured in the form

of synthesis methods. Already a variety of promising

methods are available. A necessary step should be to

compare and analyse the currentmethods. A �rst exten-

sive comparison of di�erent ILP methods for inductive

programming was presented some years ago (Flener &

Yılmaz, ). An up-to-date analysis should take into

account not only ILP methods but also methods for

the synthesis of functional programs, using classical

(Kitzelmann & Schmid, ) as well as evolutionary

 I Inductive Synthesis

(Olsson, ) methods. �e methods should be com-

pared with respect to the required quantity of evi-

dence, the kind and amount of background knowledge,

the scope of programs that can be synthesized, and

the e�ciency of synthesis. Such an empirical compar-

ison should result in the de�nition of characteristics

that describe concisely the scope, usefulness, and e�-

ciency of the existing methods in di�erent problem

domains.

Since only a few inductive programming methods

can deal with semantic problems, it should be useful to

investigate how inductive programming methods can

be combined with other machine learning methods,

such as kernel-based classi�cation.

Finally, the existing methods should be adapted to

a broad variety of application areas in the context of

programming assistance, as well as in other domains

where recursive data structures or recursive procedures

are relevant.

Acknowledgment
Most of the work by Pierre Flener was done while

on leave of absence in / as a Visiting Faculty

Member and Erasmus Exchange Teacher at Sabancı

University.

Cross References
7Explanation-Based Learning
7Inductive Logic Programming
7Programming by Demonstration
7Trace-Based Programming

Websites
● Online Platform of the Inductive Programming

Co- mmunity: http://www.inductiveprogramming.

org/.

● Flener, P., & Partridge, D. (). Inductive pro-

gramming. Automated So�ware Engineering, (),
–. http://user.it.uu.se/~pierref/ase/.

● Workshops on Approaches and Applications of Induc-
tive Programming (AAIP , AAIP , and
AAIP ): http://www.cogsys.wiai.uni-

bamberg.de/aaip/.

● Journal of Machine Learning Research, Special Topic
on Approaches and Applications on Inductive Pro-
gramming, February/March : http://jmlr.csail.
mit.edu/papers/topic/inductive_programming.html.

● Tutorial on Automatic Inductive Programming at
ICML : http://www.evannai.inf.ucm.es/

et/icml/aiptutorial.htm.

Recommended Reading
Biermann, A. W. (). The inference of regular LISP programs

from examples. IEEE Transactions on Systems, Man, and Cyber-
netics, (), –.

Flener, P. (). Inductive logic program synthesis with DIALOGS.

In S. H. Muggleton, (Ed.), Revised selected papers of the th
international workshop on inductive logic programming (ILP
), volume  of lecture notes in artificial intelligence
(pp. –). Berlin: Springer.

Flener, P. (). Achievements and prospects of program syn-

thesis. In A. Kakas & F. Sadri (Eds.), Computational logic:
Logic programming and beyond; essays in honour of Robert A.
Kowalski, volume  of lecture notes in artificial intelligence
(pp. –). Berlin: Springer.

Flener, P., & Partridge, D. (). Inductive programming. Auto-
mated Software Engineering, (), –.

Flener, P., & Yılmaz S. (). Inductive synthesis of recursive

logic programs: achievements and prospects. Journal of Logic
Programming, (–), –.

Kitzelmann, E., & Schmid, U. (). Inductive synthesis of

functional programs – An explanation based generalization

approach. Journal of Machine Learning Research, , –.
Olsson, J. R. (). Inductive functional programming using incre-

mental program transformation. Artificial Intelligence, (),
–.

Shapiro, E. Y. (). Algorithmic program debugging. Cambridge,
MA: MIT Press.

Smith, D. R. (). The synthesis of LISP programs from examples:

A survey. In A. W. Biermann, G. Guiho, & Y. Kodratoff (Eds.),

Automatic program construction techniques (pp. –). New
York: Macmillan.

Smith, D. R. (). Top-down synthesis of divide-and-conquer

algorithms. Artificial Intelligence, (), –.
Stahl, I. (). The appropriateness of predicate invention as bias

shift operation in ILP. Machine Learning, (–), –.
Summers, P. D. (). A methodology for LISP program construc-

tion from examples. Journal of the ACM, (), –.

Inductive Synthesis

7Inductive Programming

http://jmlr.csail.mit.edu/papers/topic/inductive_programming.html
http://jmlr.csail.mit.edu/papers/topic/inductive_programming.html
http://user.it.uu.se/~pierref/ase/.
http://www.cogsys.wiai.uni-bamberg.de/aaip/
http://www.cogsys.wiai.uni-bamberg.de/aaip/
http://www.evannai.inf.uc3m.es/et/icml06/aiptutorial.htm.
http://www.evannai.inf.uc3m.es/et/icml06/aiptutorial.htm.
http://www.inductiveprogramming.org/.
http://www.inductiveprogramming.org/.

Inductive Transfer I 

I

Inductive Transfer

Ricardo Vilalta, Christophe Giraud-Carrier,

Pavel Brazdil, Carlos Soares

University of Houston, Houston TX, USA
Brigham Young University, UT, USA
University of Porto, Porto, Portugal

Synonyms
Transfer of knowledge across domains

Definition
Inductive transfer refers to the ability of a learning

mechanism to improve performance on the current

task a�er having learned a di�erent but related concept

or skill on a previous task. Transfer may additionally

occur between two ormore learning tasks that are being

undertaken concurrently. Transfer may include back-

ground knowledge or a particular form of7search bias.
As an illustration, an application of inductive trans-

fer arises in competitive games involving teams of

robots (e.g., Robocup Soccer). In this scenario, trans-

ferring knowledge learned from one task into another

task is crucial to acquire skills necessary to beat the

opponent team. Speci�cally, imagine a situation where

a team of robots has been taught to keep a soccer ball

away from the opponent team. To achieve that goal,

robots must learn to keep the ball, pass the ball to a

close teammate, etc., always trying to remain at a safe

distance from the opponents. Now let us assume that we

wish to teach the same team of robots to play a di�er-

ent game where they must learn to score against a team

of defending robots. Knowledge gained during the �rst

activity can be transferred to the second one. Speci�-

cally, a robot can prefer to perform an action learned in

the past over actions proposed during the current task

because the past action has a signi�cant higher merit

value. For example, a robot under the second task may

learn to recognize that it is preferable to shoot than to

pass the ball because the goal is very close. �is action

can be learned from the �rst task by recognizing that the

precision of a pass is contingent on the proximity of the

teammate.

Structure of the System
�e main idea behind a learning architecture using

knowledge transfer is to produce a source model from

which knowledge can be extracted and transferred

to a target model. �is allows for multiple scenar-

ios (Brazdil, Giraud-Carrier, Soares, & Vilalta, ;

Pratt & �run, ). For example, the target and

source models can be trained at di�erent times such

that the transfer takes place a�er the source model has

been trained; in this case there is an explicit form of

knowledge transfer, also called representational trans-
fer. In contrast, we use the term functional transfer to
denote the case where two or more models are trained

simultaneously; in this case the models share (part

of) their internal structure during learning (see Neu-

ral Networks below). When the transfer of knowledge

is explicit, we denote the case as literal transfer when
the source model is le� intact. In addition, we denote

the case as nonliteral transfer when the source model
is modi�ed before knowledge is transferred to the tar-

get model; in this case some processing step takes place

on the model before it is used to initialize the target

model.

Neural Networks

A learning paradigm amenable to test the feasibil-

ity of knowledge transfer is that of neural networks

(Caruana, ). A popular form of knowledge transfer

is e�ected throughmultitask learning, where the output

nodes in the multilayer network represent more than

one task. In such a scenario, internal nodes are shared

by di�erent tasks dynamically during learning. As an

illustration, consider the problem of learning to clas-

sify astronomical objects from images mapping the sky

into multiple classes. One task may be in charge of clas-

sifying a star into several classes (e.g., main sequence,

dwarf, red giant, neutron, pulsar, etc.). Another task can

focus on galaxy classi�cation (e.g., spiral, barred spi-

ral, elliptical, irregular, etc.). Rather than separating the

problem into di�erent tasks where each task is in charge

of identifying one type of luminous object, one can

combine the tasks together into a single parallel multi-

task problemwhere the hidden layer of a neural network

shares patterns that are common to all classi�cation

 I Inductive Transfer

tasks (see Fig. ). �e reason explaining why learning

o�en improves in accuracy and speed in this context is

that trainingwithmany tasks in parallel on a single neu-

ral network induces information that accumulates in

the training signals; if there exists properties common

to several tasks, internal nodes can serve to represent

common subconcepts simultaneously.

Other Paradigms

Knowledge transfer can be performed using other

learning and data-analysis paradigms such as 7kernel
methods, probabilistic methods (see 7Bayesian Meth-
ods) and 7clustering (Evgeniou, Micchelli, & Pontil,
; Raina, Ng, & Koller, ). For example, induc-

tive transfer can take place in learning methods that

assume a probabilistic distribution of the data by guar-

anteeing a form of relatedness among the distributions

adopted across tasks (Raina et al.). As an illustration,

if learning to classify both stars and galaxies assumes

a mixture of normal densities to model the example-

class distribution, one can force both distributions to

have sets of parameters that are as similar as possible

while preserving good generalization performance. In

that case, shared knowledge can be interpreted as a set

of assumptions about the data distribution for all tasks

under analysis. �e knowledge transfer concept is also

related to the problem of introducing new intermedi-

ate concepts in the process of bottom–up induction of

rules. In the inductive logic programming (ILP) setting,

this is referred to as predicate invention (Stahl, ).

Metasearching for Problem Solvers

A di�erent research direction in inductive transfer

explores complex scenarioswhere the so�ware architec-

ture itself evolves with experience (Schmidhuber, ).

�emain idea is to divide a program into di�erent com-

ponents that can be reused during di�erent stages of

the learning process. As an illustration, one can work

within the space of (self-delimiting binary) programs

to propose an optimal ordered problem solver.�e goal

is to solve a sequence of problems, deriving one solu-

tion a�er the other, as optimally as possible; ideally, the

system should be capable of exploiting previous solu-

tions and incorporate them into the solution to the

current problem. �is can be done by allocating com-

puting time to the search for previous solutions that,

if useful, become transformed into building blocks. We

assume that the current problem can be solved by copy-

ing or invoking previous pieces of code (i.e., building

blocks or knowledge). In that case the mechanism will

accept those solutions with substantial savings in com-

putational time.

Theoretical Work
Several studies have provided a theoretical analysis of

the case where a learner uses experience from previ-

ous tasks to learn a new task. �is process is o�en

referred to as metalearning. �e aim is to understand

the conditions under which a learning algorithm can

provide good generalizations when embedded in an

environment made of related tasks. Although the idea

of knowledge transfer is normally made implicit in

the analysis, it is clear that the metalearner extracts

and exploits knowledge on every task to perform

well on future tasks. �eoretical studies fall within

a Bayesian model and within a Probably Approx-

imately Correct (PAC) model. �e idea is to �nd

not only the right hypothesis in a hypothesis space

(base learning), but in addition, to �nd the right

hypothesis space in a family of hypothesis spaces

(metalearning).

Let us review the main ideas behind these studies

(Baxter, ). We begin by assuming that the learner

is embedded in a set of related tasks that share cer-

tain commonalities. Going back to the problemwhere a

learner is designed for the recognition of astronomical

objects, the idea is to classify objects (e.g., stars, galaxies,

nebulae, planets) extracted from images mapping cer-

tain region of the sky.Oneway to transfer learning expe-

rience from one astronomical center to another is by

sharing ametalearner that carries a bias toward recogni-

tion of astronomical objects. In traditional learning, we

assume a probability distribution p that indicates which
examples are more likely to be seen in such task. Now

we assume there is a more general distribution P over
the space of all possible distributions. In essence, the

metadistributionP indicates which tasks aremore likely
to be found within the sequence of tasks faced by the

metalearner (just as an example distribution p indicates
which examples are more likely to be seen in one task).

In our example, the metadistribution P peaks over tasks
corresponding to classi�cation of astronomical objects.

Given a family of hypothesis spaces {H}, the goal of the

Inductive Transfer I 

I

……

… …

Stars

Main
Sequence

Giants and
Red Giants

White Dwarfs

Galaxies

Spiral Elliptical Irregular

seixalaGsratS

Inductive Transfer. Figure . Example of multitask learning on astronomical images

metalearner is to �nd a hypothesis space H* that mini-
mizes a functional risk corresponding to the expected

loss of the best possible hypothesis in each hypothe-

sis space. In practice, since we ignore the form of P,
we need to draw samples T, T, . . . ,Tn to infer how

tasks are distributed in our environment. To summa-

rize, in the transfer learning scenario our input is made

of samples T = {Ti}, where each sample Ti is composed

of examples. �e goal of the metalearner is to output a

hypothesis space with an7inductive bias that generates
accurate models for a new task.

Future Directions
�e research community faces several challenges on

how to e�ciently transfer knowledge across tasks. One

challenge involves devising learning architectures with

an explicit representation of knowledge about mod-

els and algorithms, i.e., metaknowledge. Most systems

that integrate knowledge transfer mechanisms make an

implicit assumption about the transfer process by mod-

ifying the bias embedded by the hypothesis space. For

example, we may change bias by selecting a learning

algorithm that draws linear boundaries over the input

space instead of one that draws quadratic boundaries;

here, no explicit knowledge is transferred specifying our

preference for linear boundaries. Because of this limita-

tion, transferring knowledge across domains becomes

problematic.

Another challenge is to understand why a learn-

ing algorithm performs well or not on certain datasets

and to use that (meta)knowledge to improve its per-

formance. Recent work in metalearning has explored

the idea that high-quality dataset characteristics or

metafeatures provide enough information to di�er-

entiate the performance of a given set of learning

algorithms. From a practical perspective, a proper char-

acterization of datasets leads to an interesting goal: the

construction of metalearning assistants. �e main role

of these assistants is to recommend a good predictive

 I Inequalities

model given a new dataset, or to attempt to modify

the learning mechanism before it is invoked again in a

dataset drawn from a similar distribution.

Cross References
7Metalearning

Recommended Reading
Baxter, J. (). A model of inductive learning bias. Journal of

Artificial Intelligence Research, , –.
Brazdil, P., Giraud-Carrier, C., Soares, C., & Vilalta, R. (). Met-

alearning: Applications to data mining. Springer-Verlag Berlin:
Heidelberg.

Caruana, R. (). Multitask learning: A knowledge-based

source of inductive bias. In P. E. Utgoff (Ed.), Proceedings
of the tenth international conference on machine learning
(pp. –). San Mateo, Springer Netherlands: Morgan

Kaufmann.

Dai, W., Yang, Q., Xue, G., & Yu, Y. (). Boosting for trans-

fer learning. In Proceedings of the th annual international
conference on machine learning (pp. –). New York:

ACM.

Evgeniou, T., Micchelli, C. A., & Pontil, M. (). Learning mul-

tiple tasks with kernel methods. Journal of Machine Learning
Research, , –.

Mihalkova, L., Huynh, T., & Mooney, R. J. (). Mapping and

revising Markov logic networks for transfer learning. In Pro-
ceedings of the nd AAAI conference on artificial intelligence
(pp. –). Vancouver, BC: AAAI Press.

Oblinger, D., Reid, M., Brodie, M., & de Salvo Braz, R. ().

Cross-training and its application to skill-mining. IBM Systems
Journal, (), –.

Pratt, L., & Thrun, S. (). Second special issue on inductive

transfer. Machine Learning, , No. , –.
Raina, R., Ng, A. Y., & Koller, D. (). Constructing informative

priors using transfer learning. In Proceedings of the twenty-third
international conference on machine learning (pp. –).
Pittsburgh, PA: ACM.

Reid, M. (). Improving rule evaluation using multitask learn-

ing. In Proceedings of the th international conference on ILP
(pp. –). Springer-Verlag, Heidelberg.

Schmidhuber, J., Zhao, J., & Wiering M. A. (). Shifting induc-

tive bias with success-story algorithm, adaptive Levin search,

and incremental self-improvement. Machine Learning, (),
–.

Stahl, I. (). Predicate invention in inductive logic programming.

In L. De Raedt (Ed.), Advances in inductive logic programming.
(pp. –). IOS Press.

Inequalities

7Generalization Bounds

Information Retrieval

Information retrieval (IR) is a set of techniques that

extract from a collection of documents those that are

relevant to a given query. Initially addressing the needs

of librarians and specialists, the �eld has evolved dra-

matically with the advent of the World Wide Web.

It is more general than data retrieval, whose purpose
is to determine which documents contain occurrences

of the keywords that make up a query. Whereas the

syntax and semantics of data retrieval frameworks is

strictly de�ned, with queries expressed in a totally for-

malized language, words from a natural language given

no or limited structure are the medium of commu-

nication for information retrieval frameworks. A cru-

cial task for an IR system is to index the collection of

documents to make their contents e�ciently accessi-

ble. �e documents retrieved by the system are usually

ranked by expected relevance, and the user who exam-

ines some of them might be able to provide feedback

so that the query can be reformulated and the results

improved.

Information Theory

7Minimum Description Length Principle
7MinimumMessage Length

In-Sample Evaluation

Synonyms
Within-sample evaluation

Definition
In-sample evaluation is an approach to 7algorithm
evaluation whereby the learned model is evaluated on

the data from which it was learned. �is provides a

biased estimate of learning performance, in contrast to

7holdout evaluation.

Cross References
7Algorithm Evaluation

Instance-Based Learning I 

I

Instance

Synonyms
Case; Example; Item; Object

Definition
An instance is an individual object from the universe
of discourse. Most 7learners create a 7model by ana-
lyzing a 7training set of instances. Most 7machine
learning models take the form of a function from an

7instance space to an output space. In7attribute-value
learning, each instance is o�en represented as a vec-

tor of 7attribute values, each position in the vector
corresponding to a unique attribute.

Instance Language

7Observation Language

Instance Space

Synonyms
Example space; Item space; Object space

Definition
An instance space is the space of all possible7instances
for some 7learning task. In 7attribute-value learning,
the instance space is o�en depicted as a geometric space,

one dimension corresponding to each attribute.

Instance-Based Learning

Eamonn Keogh

University of California, Riverside, CA, USA

Synonyms
Analogical reasoning; Case-based learning; Memory-

based; Nearest neighbor methods; Non-parametric

methods

Definition
Instance-based learning refers to a family of techniques

for 7classi�cation and 7regression, which produce

a class label/predication based on the similarity of the

query to its nearest neighbor(s) in the training set. In

explicit contrast to other methods such as 7decision
trees and 7neural networks, instance-based learning
algorithms do not create an abstraction from speci�c

instances. Rather, they simply store all the data, and at

query time derive an answer from an examination of the

query’s7nearest neighbor(s).
Somewhat more generally, instance-based learning

can refer to a class of procedures for solving new prob-

lems based on the solutions of similar past problems.

Motivation and Background
Most instance-based learning algorithms can be speci-

�ed by determining the following four items:

. Distance measure: Since the notion of similarity is

being used to produce class label/prediction, we

must explicitly state what similarity/distance mea-

sure to use. For real-valued data, Euclidean distance

is a popular choice and may be optimal under some

assumptions.

. Number of neighbors to consider: It is possible to

consider any number from one to all neighbors.

�is number is typically denoted as k.
. Weighting function: It is possible to give each neigh-

bor equal weight, or to weight them based on their

distance to the query.

. Mapping from local points: Finally, some method

must be speci�ed to use the (possibly weighted)

neighbors to produce an answer. For example, for

regression the output can be the weighted mean

of the k nearest neighbors, or for classi�cation the
output can be the majority vote of the k near-
est neighbors (with some speci�ed tie-breaking

procedure).

Since instance-based learning algorithms defer all the

work until a query is submitted, they are some-

times called lazy algorithms (in contrast to eager

learning algorithms, such as decision trees). Beyond

the setting of parameters/distance measures/mapping

noted above, one of the main research issues with

instance-based learning algorithms is mitigating their

expensive classi�cation time, since a naïve algorithm

would require comparing the distance for the query

to every point in the database. Two obvious solutions

 I Instance-Based Reinforcement Learning

are indexing the data to achieve a sublinear search,

and numerosity reduction (data editing) (Wilson &

Martinez, ).

Further Reading
�ebest distancemeasure to usewith an instance-based

learning algorithms is the subject of active research. For

the special case of time series data alone, there are at

least one hundred methods Ding, Trajcevski, Scheuer-

mann, Wang, & Keogh (). Conferences such as

ICML, SIGKDD, etc. typically have several papers each

year which introduce new distance measures and/or

e�cient search techniques.

Recommended Reading
Aha, D. W., Kibler, D., & Albert, M. K. (). Instance-based

learning algorithms. Machine Learning, , –.
Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., & Keogh, E. J.

(). Querying and mining of time series data: Experimental

comparison of representations and distance measures. PVLDB,
(), –.

Wilson, D. R., & Martinez, T. R. (). Reduction techniques for

exemplar-based learning algorithms. Machine Learning, (),
–.

Instance-Based Reinforcement
Learning

William D. Smart

Washington University in St. Louis,

St. Louis, MO, USA

Synonyms
Kernel-based reinforcement learning

Definition
Traditional reinforcement-learning (RL) algorithms

operate on domains with discrete state spaces.�ey typ-

ically represent the value function in a table, indexed by

states, or by state–action pairs. However, when apply-

ing RL to domains with continuous state, a tabular

representation is no longer possible. In these cases,

a common approach is to represent the value func-

tion by storing the values of a small set of states

(or state–action pairs), and interpolating these val-

ues to other, unstored, states (or state–action pairs).

�is approach is known as instance-based reinforce-

ment learning (IBRL). �e instances are the explicitly

stored values, and the interpolation is typically done

using well-known instance-based supervised learning

algorithms.

Motivation and Background
Instance-Based Reinforcement Learning (IBRL) is one

of a set of value-function approximation techniques that

allow standard RL algorithms to deal with problems

that have continuous state spaces. Essentially, the tab-

ular representation of the value function is replaced

by an instance-based supervised learning algorithm

and the rest of the RL algorithm remains unaltered.

Instance-based methods are appealing because each

stored instance can be viewed as analogous to one cell in

the tabular representation.�e interpolation method of

the instance-based learning algorithm then blends the

value between these instances.

IBRL allows generalization of value across the state

(or state–action) space.Unlike tabular representations it

is capable of returning a value approximation for states

(or state–action pairs) that have never been directly

experienced by the system. �is means that, in theory,

fewer experiences are needed to learn a good approxi-

mation to the value function and, hence, a good control

policy. IBRL also provides a more compact representa-

tion of the value function than a table does.�is is espe-

cially important in problems with multi-dimensional

continuous state spaces. A straightforward discretiza-

tion of such a space results in an exponential number of

table cells.�is, in turn, leads to an exponential increase

in the amount of training experiences needed to obtain

a good approximation of the value function.

An additional bene�t of IBRL over other value-

function approximation techniques, such as arti�cial

neural networks, is the ability to bound the predicted

value of the approximation. �is is important, since

it allow us to retain some of the theoretical non-

divergence results for tabular representations.

Structure of Learning System
IBRL can be used to approximate both the state

value function and the state–action value function. For

problems with discrete actions, it is common to store a

separate value function for each action. For continuous

Instance-Based Reinforcement Learning I 

I

actions, the (continuous) state and action vectors are

o�en concatenated, and VFA is done over this com-

bined domain. For clarity, we will discuss only the

state value function here, although our comments apply

equally well to the state–action value function.

The Basic Approach

IBRL uses an instance-based supervised learning algo-

rithm to replace the tabular value function represen-

tation of common RL algorithms. It maintains a set

of states, o�en called basis points, and their associated

values, using them to provide a value-function approx-

imation for the entire state space.�ese exemplar states

can be obtained in a variety of ways, depending on the

nature of the problem.�e simplest approach is to sam-

ple, either regularly or randomly, from the state space.

However, this approach can result in an unacceptably

large number of instances, especially if the state space

is large, or has high dimension. A better approach is

to use states encountered by the learning agent as it

follows trajectories in the state space. �is allows the

representational power of the approximation algorithm

to be focused on areas of the space in which the learning

agent is likely to be.�is, too, can result in a large num-

ber of states, if the agent is long-lived. A �nal approach

combines the previous two by sub-sampling from the

observed states.

Each stored instance state has a value associ-

ated with it, and an instance-based supervised learn-

ing algorithm is used to calculate the value of all

other states. While any instance-based algorithm can

be used, kernel-based algorithms have proven to be

popular. Algorithms such as locally weighted regres-

sion (Smart & Kaelbling, ), and radial basis func-

tion networks (Kretchmar & Anderson, ) are com-

monly seen in the literature. �ese algorithms make

some implicit assumptions about the form of the value

function and the underlying state space, which we

discuss below. For a state s, the kernel-based value-
function approximation V(s) is

V(s) = 
η

n

∑
i=

ϕ (s, si)V(si), ()

where the si values are the n stored basis points, η is a
normalizer,

η =
n

∑
i=

ϕ (s, si) , ()

and ϕ is the kernel function. A common choice for ϕ is
an exponential kernel,

ϕ (s, t) = e
(s−t)

σ , ()

where σ is the kernel bandwidth. �e use of kernel-
based approximation algorithms is well motivated,

since they respect Gordon’s non-divergence condi-

tions (Gordon, ), and also Szepesvári and Smart’s

convergence criteria (Szepesvári & Smart, ).

As the agent gathers experience, the value approxi-

mations at each of the stored states and, optionally, the

location and bandwidth of the states must be updated.

Several techniques, o�en based on the temporal dif-

ference error, have been proposed, but the problem

remains open. An alternative to on-line updates is a

batch approach, which relies on storing the experiences

generated by the RL agent, composing these into a dis-

crete MDP, solving this MDP exactly, and then using

supervised learning techniques on the states and their

associated values.�is approach is known as �tted value

iteration (Szepesvári & Munos, ).

Examples of IBRL Algorithms

Several IBRL algorithms have been reported in the

literature. Kretchmar and Anderson () presented

one of the �rst IBRL algorithms. �ey used a radial

basis function (RBF) network to approximate the state–

action value function for the well-knownmountain-car

test domain. �e temporal di�erence error of the value

update is used to modify the weights, centers, and vari-

ances of the RBF units, although they noted that it

was not particularly e�ective in producing good control

policies.

Smart and Kaelbling () used locally weighted

learning algorithms and a set of heuristic rules to

approximate the state–action value function. A set of

states, sampled from those experienced by the learning

agent, were stored along with their associated values.

One approximation was stored for each discrete action.

Interpolation between these exemplars was done by

locally weighted averaging or locally weighted regres-

sion, supplemented with heuristics to avoid extrapola-

tion and over-estimation. Learning was done on-line,

with new instances being added as the learning agent

explored the state space. �e algorithm was shown

to be e�ective in practice, but o�ered no theoretical

guarantees.

 I Instance-Based Reinforcement Learning

Ormoneit and Sen () presented an o�ine

kernel-based reinforcement-learning algorithm that

stores experiences (si, ai, ri, s′i) as the instances, and uses
these to approximate the state–action value function for

problems with discrete actions. For a given state s and
action a, the state–action value Q(s, a) is approximated
as

Q̂ (s, a) = 

ηs,a
∑
i∣ai=a

ϕ (d (s, si)
σ

)[ri + γmax
a′

Q̂ (s′i , a′)] ,

()

where ϕ is a kernel function, σ is the kernel bandwidth,
γ is the RL discount factor, and ηs,a is a normalizing

term,

ηs,a = ∑
i∣ai=a

ϕ (d (s, si)
σ

) . ()

�ey showed that, with enough basis points, this

approximation converges to the true value function,

under some reasonable assumptions. However, they

provide no bound on the number of basis points needed

to provide a good approximation to the value function.

Assumptions

IBRLmakes a number of assumptions about the form of

the value function, and the underlying state space. �e

main assumptions are that state similarity is well mea-

sure by (weighted) Euclidean distance. �is implicity

assumes that the underlying state space be metric, and

is a topological disk. Essentially, this means that stattes

that are close to each other in the state space have similar

value. �is is clearly not true for states between which

the agent cannot move, such as those on the opposite

sides of a thin wall. In this case, there is a discontinuity

in the state space, introduced by the wall, which is not

well modeled by the instance-based algorithm.

Instance-based function approximation algorithms

assume that the function theymodel is smooth and con-

tinuous between the basis points. Any discontinuities in

the function tend to get “smoothed out” in the approx-

imation. �is assumption is especially problematic for

value-function approximation, since it allows value on

one side of the discontinuity to a�ect the approxima-

tion on the other. If the location of the discontinuity is

known, and we are able to allocate an arbitrary number

of basis points, we can overcome this problem. How-

ever, in practical applications of RL, neither of these is

feasible, and the problem of approximating the value

function at or near discontinuities remains an open one.

Problems and Drawbacks

Although IBRL has been shown to be e�ective on

a number of problems, it does have a number of

drawbacks that remain unaddressed. Instance-based

approximation algorithms are o�en expensive in terms

of storage, especially for long-lived agents. Although the

literature containsmany techniques for editing the basis

set of instance-based approximators, these techniques

are generally for a supervised learning setting,where the

utility of a particular edit can be easily evaluated. In the

RL setting, we lack the ground truth available to super-

vised learning, making the evaluation of edits consider-

ably more di�cult. Additionally, as the number of basis

points increases, so does the time needed to perform an

approximation. �is limitation is signi�cant in the RL

setting, since many such value predictions are needed

on every step of the accompanying RL algorithm.

�e value of a particular state, s, is calculated by
blending the values from other nearby states, si. �is is
problematic if it is not possible to move from state s to
each of the states si. �e value of s should only be in�u-
enced by the value of states reachable from s, but this
condition is not enforced by standard instance-based

approximation algorithms.�is leads to problemswhen

modeling discontinuities in the value function, as noted

above, and in situations where the system dynamics

constrain the agent’smotion, as in the case of a “one-way

door” in the state space.

IBRL also su�ers badly from the curse of dimen-

sionality; the number of points needed to adequately

represent the value function is exponential in the

dimensionality of the state space. However, by using

only states actually experienced by the learning agent,

we can lessen the impact of this problem. By using

only observed states, we are explicitly modeling the

manifold over which the system state moves. �is

manifold is embedded in the full state space and, for

many real-world problems, has a lower dimensional-

ity than the full space. �e Euclidean distance metric

used by many instance-based algorithms will not accu-

rately measure distance along this manifold. In prac-

tice, the manifold over which the system state moves

will be locally Euclidean for problems with smooth,

continuous dynamics. As a result, the assumptions of

Inverse Entailment I 

I

instance-based function approximators are valid locally

and the approximations are of reasonable quality.

Cross References
7Curse of Dimensionality
7Instance-Based Learning
7Locally Weighted Learning
7Reinforcement Learning
7Value-Function Approximation

Recommended Reading
Gordon, G. J. (). Stable function approximation in dynamic pro-

gramming. In Proceedings of the twelfth international conference
on machine learning (pp. –). Tahoe City, CA.

Kretchmar, R. M., & Anderson, C. W. (). Comparison of CMACs

and radial basis functions for local function approximators in

reinforcement learning. In International conference on neural
networks, Houston, TX (Vol. , pp. –).

Ormoneit, D., & Sen, Ś. (). Kernel-based reinforcement learn-

ing. Machine Learning, (–), –.
Smart, W. D., & Kaelbling, L. P. (). Practical reinforcement

learning in continuous spaces. In Proceedings of the seventeenth
international conference on machine learning (ICML ) (pp.
–). Stanford, CA.

Szepesvári, C., & Munos, R. (). Finite time bounds for sampling

based fitted value iteration. In Proceedings of the twenty-second
international conference on machine learning (ICML ),
Bonn, Germany (pp. –).

Szepesvári, C., & Smart, W. D. (). Interpolation-based

Q-learning. In Proceedings of the twenty-first international
conference on machine learning (ICML ), Banff, Alberta,
Canada (pp. –).

Intelligent Backtracking

Synonyms
Dependency directed backtracking

Definition
Intelligent backtracking is a general class of techniques

used to enhance search and constraint satisfaction algo-

rithms. Backtracking is a general mechanism in search

where a problem solver encounters an unsolvable search

state and backtracks to a previous search state that

might be solvable. Intelligent backtrackingmechanisms

provide variousways of selecting the backtracking point

based on past experience in a way that is likely to be

fruitful.

Intent Recognition

7Inverse Reinforcement Learning

Internal Model Control

Synonyms
Certainty equivalence principle; Model-based control

Definition
Many advanced controllers for nonlinear systems

require knowledge of the model of the dynamics of the

system to be controlled. �e system dynamics is o�en

called an “internal model,” and the resulting controller

is model-based. If the model is not known, it can be

learned with function approximation techniques. �e

learned model is subsequently used as if it were correct

in order to synthesize a controller – the control liter-

ature calls this assumption the “certainty equivalence

principle.”

Interval Scale

An intervalmeasurement scale ranks the data, and the
di�erences between units of measure can be calculated

by arithmetic.However, zero in the interval level ofmea-
surement means neither “nil” nor “nothing” as zero in
arithmetic means. See7Measurement Scales.

Inverse Entailment

Definition
Inverse entailment is a 7generality relation in

7inductive logic programming.More speci�cally, when
7learning from entailment using a background theory
B, a hypothesis H covers an example e, relative to the
background theory B if and only if B∧H ⊧ e, that is, the
background theory B and the hypothesis H together
entail the example (see 7entailment). For instance,
consider the background theory B:

bird :- blackbird.
bird :- ostrich.

 I Inverse Optimal Control

and the hypothesis H:

flies :- bird.

Together B ∧H entail the example e :

flies :- blackbird, normal.

�is can be decided through deductive inference. Now

when learning from entailment in inductive logic pro-

gramming, one starts from the example e and the back-
ground theory B, and the aim is to induce a rule H that
together with B entails the example. Inverting entail-
ment is based on the observation that B ∧ H ⊧ e is
logically equivalent to B ∧ ¬e ⊧ ¬H, which in turn can
be used to compute a hypothesis H that will cover the
example relative to the background theory. Indeed, the

negation of the example is ¬e:

blackbird.
normal.
:-flies.

and together with B this entails ¬H:

bird.
:-flies.

�eprinciple of inverse entailment is typically employed

to compute the 7bottom clause, which is the most
speci�c clause covering the example under entailment.

It can be computed by generating the set of all facts (true

and false) that are entailed by B ∧ ¬e and negating the
resulting formula ¬H.

Cross References
7Bottom Clause
7Entailment
7Inductive Logic Programming
7Logic of Generality

Inverse Optimal Control

7Inverse Reinforcement Learning

Inverse Reinforcement Learning

Pieter Abbeel, Andrew Y. Ng

University of California, Berkeley, California, USA
Stanford University, Stanford, California, USA

Synonyms
Intent recognition; Inverse optimal control; Plan

recognition

Definition
Inverse reinforcement learning (inverse RL) consid-

ers the problem of extracting a reward function from

observed (nearly) optimal behavior of an expert acting

in an environment.

Motivation and Background
�emotivation for inverse RL is two fold:

. For many RL applications, it is di�cult to write

down an explicit reward function specifying how

di�erent desiderata should be traded o� exactly. In

fact, engineers o�en spend signi�cant e�ort tweak-

ing the reward function such that the optimal policy

corresponds to performing the task they have in

mind. For example, consider the task of driving a

car well. Various desiderata have to be traded o�,

such as speed, following distance, lane preference,

frequency of lane changes, distance from the curb,

and so on. Specifying the reward function for the

task of driving requires explicitly writing down the

trade-o� between these features.

Inverse RL algorithms provide an e�cient solu-

tion to this problem in the apprenticeship learning

setting – when an expert is available to demon-

strate the task. InverseRL algorithms exploit the fact

that an expert demonstration implicitly encodes the

reward function of the task at hand.

. Reinforcement learning and related frameworks

are o�en used as computational models for ani-

mal and human learning (Schmajuk & Zanutto,

; Touretzky & Saksida, ; Watkins, ).

Such models are supported both by behavioral

studies and by neurophysiological evidence that

reinforcement learning occurs in bee foraging

(Montague, Dayan, Person, & Sejnowski, ) and

Inverse Reinforcement Learning I 

I

in songbird vocalization (Doya & Sejnowski, ).

It seems clear that in examining animal and human

behavior, we must consider the reward function as

an unknown to be ascertained through empirical

investigation, particularly when dealing with mul-

tiattribute reward functions. Consider, for example,

that the bee might weigh nectar ingestion against

�ight distance, time, and risk fromwind and preda-

tors. It is hard to see how one could determine the

relative weights of these terms a priori. Similar con-

siderations apply to human economic behavior, for

example. Hence, inverse reinforcement learning is a

fundamental problem of theoretical biology, econo-

metrics, and other scienti�c disciplines that deal

with reward-driven behavior.

Structure of the Learning System
Preliminaries and Notation

AMarkov decision process (MDP) is a tuple ⟨S,A,T, γ,
D,R⟩, where S is a �nite set of states; A is a set of
actions; T = {Psa} is a set of state-transition probabil-
ities (here, Psa is the state transition distribution upon

taking action a in state s); γ ∈ [, ) is a discount fac-
tor; D is the distribution over states for time zero; and
R : S↦ R is the reward function.
A policy π is a mapping from states to probability

distributions over actions. Let Π denotes the set of all

stationary policies. (We restrict attention to stationary

policies, since it is well known that there exists a station-

ary policy that is optimal for in�nite horizon MDPs.)

�e utility of a policy π is given by

U(π) = E [
∞

∑
t=

γtR(st)∣π] .

�e expectation is taken with respect to the random

state sequence s, s, s, . . . drawnby starting froma state
s ∼ D, and picking actions according to π.
Let µS(π) be the discounted distribution over states

when acting according to the policy π. In particular,
for a discrete state space we have that [µS(π)](s) =
∑∞t= γtProb(st = s∣π). (In the case of a continuous state
space, we replace Prob(st = s∣π) by the appropriate
probability density function.) �en, we have that

U(π) = R⊺µS(π).

�us, the utility of a policy π is linear in the reward
function.

O�en the reward function R can be represented
more compactly. Let ϕ : S→ Rn be a featuremap. A typ-

ical assumption in inverse RL is to assume the reward

function R is a linear combination of the features ϕ:
R(s) = w⊺ϕ(s).�en, we have that the utility of a policy
π is linear in the reward function weights w:

U(π) = E [∑∞t= γtR(st)∣π]
= E [∑∞t= γtw⊺ϕ(st)∣π]
= w⊺E [∑∞t= γtϕ(st)∣π]
= w⊺µϕ(π). ()

Here, we used linearity of expectation to bringw outside
of the expectation.�e last equality de�nes the vector of

feature expectations µϕ(π) = E [∑∞t= γtϕ(st)∣π].
We assume access to demonstrations by some

expert. We denote the expert’s policy by π∗. Speci�-
cally, we assume the ability to observe trajectories (state

sequences) generated by the expert starting from s ∼ D
and taking actions according to π∗.

Characterization of the Inverse RL Solution Set

A reward function R is consistent with the policy π∗

being optimal if and only if the utility obtained when

acting according to the policy π∗ is at least as high as
the utility obtained when acting according to any other

policy π, or equivalently,

U(π∗) ≥ U(π) ∀π ∈ Π. ()

Using the fact that U(π) = R⊺µS(π), we can equiva-
lently write the conditions of Eq. () as a set of linear

constraints on the reward function R:

R⊺µS(π∗) ≥ R⊺µS(π) ∀π ∈ Π. ()

�e state distribution µS(π) does not depend on the
reward function R. �us, Eq. () is a set of linear con-
straints in the reward function and we can use a linear

program (LP) solver to �nd a reward function consis-

tent with the policy π∗ being optimal. Strictly speaking,
Eq. () solves the inverse RL problem. However, to apply

inverse RL in practice, the following three issues need to

be addressed:

 I Inverse Reinforcement Learning

. Reward Function Ambiguity. Typically, a large set
of reward functions satisfy all the constraints of

Eq. (). One such reward function that satis�es all

the constraints for any MDP is the all-zeros reward

function (it is consistent with any policy being opti-

mal). Clearly, the all-zeros reward function is not a

desirable answer to the inverse RL problem. More

generally, this observation suggests not all reward

functions satisfying Eq. () are of equal interest and

raises the question of how to recover reward func-

tions that are of interest to the inverse RL problem.

. Statistical E�ciency. O�en the state space is very
large (or even in�nite) and we do not have suf-

�ciently many expert demonstrations available to

accurately estimate µ(⋅; π∗) from data.
. Computational E�ciency. �e number of con-
straints in Eq. () is equal to the number of station-

ary policies ∣Π∣ and grows quickly with the number
of states and actions of the MDP. For �nite-state-

actionMDPs, we have ∣A∣∣S∣ constraints. So, even for
small state and action spaces, feeding all the con-

straints of Eq. () into an LP solver becomes quickly

impractical. For continuous state-action spaces, the

formulation of Eq. () has an in�nite number of

constraints, and thus using a standard LP solver to

�nd a feasible reward function R is impossible.

In the following sections, we address these three

issues.

Reward Function Ambiguity As observed above, typi-

cally a large set of reward functions satisfy all the con-

straints of Eq. (). To obtain a single reward function,

it is natural to reformulate the inverse RL problem as

an optimization problem. We describe one standard

approach for disambiguation. Of course, many other

formulations as an optimization problem are possible.

Similar to common practice in support vector

machines research, one can maximize the (so�) margin

by which the policy π∗ outperforms all other policies.
As is common in structured prediction tasks (see, e.g.,

Taskar, Guestrin, & Koller, ), one can require the

margin by which the policy π∗ outperforms another
policy π to be larger when π di�ers more from π∗,
as measured according to some function h(π∗, π). �e
resulting formulation (Ratli�, Bagnell, & Zinkevich,

) is

min
R,ξ

∥R∥ + Cξ

s.t. R⊺µS(π∗) ≥ R⊺µS(π) + h(π∗, π) − ξ ∀π ∈ Π.
()

For the resulting optimal reward function to corre-

spond to a desirable solution to the inverse RL problem,

it is important that the objective and the margin scaling

encode the proper prior knowledge. If a sparse reward

function is suggested by prior knowledge, then a -norm

might be more appropriate in the objective. An exam-

ple of a margin scaling function for a discrete MDP is

the number of states in which the action prescribed by

the policy π di�ers from the action prescribed by the
expert policy π∗. If the expert has only been observed in
a small number of states, then one could restrict atten-

tion to these states when evaluating this margin scaling

function.

Another way of encoding prior knowledge is by

restricting the reward function to belong to a certain

functional class, for example, the set of functions lin-

ear in a speci�ed set of features. �is approach is very

common, and is also important for statistical e�ciency.

It will be explained in the next section.

Remark.When using inverse RL to help us specify
a reward function for a given task based on an expert

demonstration, it is not necessary to explicitly resolve

the ambiguities in the reward function. In particular,

one can provably perform as well as the expert without

matching the expert’s reward function. More details are

given in Sect. ..

Statistical Efficiency As formulated thus far, solving the

inverse RL problem requires the knowledge (or accu-

rate statistical estimates) of µS(π∗). For most practical
problems, the number of states is large (or even in�nite)

and thus accurately estimating µS(π∗) requires a very
large number of expert demonstrations. �is (statisti-

cal) problem can be resolved by restricting the reward

function to belong to a prespeci�ed class of functions.

�e common approach is to assume the reward function

R can be expressed as a linear combination of a known
set of features. In particular, we have R(s) = w⊺ϕ(s).
Using this assumption, we can use the expression for the

utility of the policy π from Eq. ().
Rewriting Eq. (), we now have the following con-

straints in the reward weights w:

Inverse Reinforcement Learning I 

I

min
w,ξ

∥w∥ + Cξ

s.t. w⊺µϕ(π∗) ≥ w⊺µϕ(π) + h(π∗, π) − ξ ∀π ∈ Π.

()

�is new formulation requires only estimates of the

expected feature counts µϕ(π∗), rather than estimates
of the distribution over the state space µS(π∗). Assum-
ing the number of features is smaller than the number

of states, this signi�cantly reduces the number of expert

demonstrations required.

Computational Efficiency For concreteness, we will

consider the formulation of Eq. (). Although the num-

ber of variables is only equal to the number of features

in the reward function, the number of constraints is

very large (equal to the number of stationary policies).

As a consequence, feeding the problem into a standard

quadratic programming (QP) solver will not work.

Ratli� et al. () suggested a formal computa-

tional approach to solving the inverse RL problem,

using standard techniques from convex optimization,

which provide convergence guarantees. More speci�-

cally, they used a subgradient method to optimize the

following equivalent problem:

min
w,ξ

∥w∥ + Cmax
π∈Π

(w⊺µϕ(π) + h(π∗, π)

−w⊺µϕ(π∗)) . ()

In each iteration, to compute the subgradient, it is suf-

�cient to �nd the optimal policy with respect to a

reward function that is easily determined from the cur-

rent reward weights w and the margin scaling function
h(π∗, ⋅). In more recent work, Ratli�, Bradley, Bagnell,
and Chestnutt () proposed a boosting algorithm

to solve a formulation similar to Eq. (), which also

includes feature selection.

A Generative Approach to Inverse RL

Abbeel and Ng () made the following observation,

which resolves the ambiguity problem in a completely

di�erent way: if, for a policy π, we have that µϕ(π) =
µϕ(π∗), then the following holds:

U(π) = w⊺µϕ(π) = w⊺µϕ(π∗) = U(π∗),

no matter what the value of w is. �us, to perform
as well as the expert, it is su�cient to �nd a policy

that attains the same expected feature counts µϕ as the
expert.

Abbeel andNgprovide an algorithm that �nds a pol-

icy π satisfying µϕ(π) = µϕ(π∗). �e algorithm iterates
over two steps: () generate a reward function by solving

aQP; () solve theMDP for the current reward function.

In contrast to the previously described inverse RL

methods, which focus on merely recovering a reward

function that could explain the expert’s behavior, this

inverse RL algorithm is shown to �nd a policy that

performs at least as well as the expert. �e algo-

rithm is shown to converge in a polynomial number of

iterations.

Apprenticeship Learning: Inverse RL
Versus Imitation Learning
Inverse RL alleviates the need to specify a reward

function for a given task when expert demonstrations

are available. Alternatively, one could directly estimate

the policy of the expert using a standard machine-

learning algorithm, since it is simply a mapping from

state to action. �e latter approach, o�en referred to as

7imitation learning or 7behavioral cloning, has been
successfully tested on a variety of tasks, including learn-

ing to �y in a �xed-wing �ight simulator (Sammut,

Hurst, Kedzier, & Michie, ), and learning to drive

a car (Pomerleau, ).

�e behavioral cloning approach can be expected to

be successful whenever the policy class to be consid-

ered can be learned e�ciently fromdata. In contrast, the

inverse RL approach relies on having a reward function

that can be estimated e�ciently from data.

Cross References
7Apprenticeship Learning
7Reinforcement Learning
7Reward Shaping

Recommended Reading
Abbeel, P., & Ng, A. Y. (). Apprenticeship learning via inverse

reinforcement learning. In Proceedings of ICML, Banff, Alberta,
Canada.

Doya, K., & Sejnowski, T. (). A novel reinforcement model of

birdsong vocalization learning. In Neural Information Process-
ing Systems . Cambridge, MA: MIT Press.

 I Inverse Resolution

Montague, P. R., Dayan, P., Person, C., & Sejnowski, T. J. (). Bee

foraging in uncertain environments using predictive hebbian

learning. Nature, (), –.
Pomerleau, D. (). ALVINN: An autonomous land vehicle in a

neural network. In NIPS . San Francisco, CA: Morgan Kauf-
mann.

Ratliff, N., Bagnell, J., & Zinkevich, M. (). Maximum margin

planning. In Proceedings of ICML, Pittsburgh, Pennsylvania.
Ratliff, N., Bradley, D., Bagnell, J., & Chestnutt, J. (). Boost-

ing structured prediction for imitation learning. In Neural
Information Processing Systems . Cambridge, MA: MIT Press.

Sammut, C., Hurst, S., Kedzier, D., & Michie, D. (). Learning to

fly. In Proceedings of ICML. Aberdeen, Scotland, UK.
Schmajuk, N. A., & Zanutto, B. S. (). Escape, avoidance, and

imitation. Adaptive Behavior, , –.
Taskar, B., Guestrin, C., & Koller, D. (). Max-margin Markov

networks. In Neural Information Processing Systems Conference
(NIPS), Vancouver, Canada.

Touretzky, D. S., & Saksida, L. M. (). Operant conditioning in

skinnerbots. Adaptive Behavior, , –.
Watkins, C. J. (). Models of delayed reinforcement learning. PhD

thesis, Psychology Department, Cambridge University.

Inverse Resolution

Definition
Inverse resolution is, as the name indicates, a rule that

inverts resolution. �is follows the idea of induction as

the inverse of deduction formulated in the 7logic of
generality.�e resolution rule is the best-known deduc-

tive inference rule, used in many theorem provers and

logic programming systems. 7Resolution starts from
two 7clauses and derives the resolvent, a clause that
is entailed by the two clauses. �is can be graphically

represented using the following schema (for proposi-

tional logic).

h← g, a, . . . , an and g ← b, . . . , bm
h← b, . . . , bm, a, . . . , an

.

Inverse resolution operators, such as absorption () and
identi�cation (), invert this process. To this aim, they
typically assume the resolvent is given together with

one of the original clauses and then derive the missing
clause. �is leads to the following two operators, which

start from the clauses below and induce the clause above

the line.

h← g, a, . . . , an and g ← b, . . . , bm
h← b, . . . , bm, a, . . . , an and g ← b, . . . , bm

,

h← g, a, . . . , an and g ← b, . . . , bm
h← b, . . . , bm, a, . . . , an and h← g, a, . . . , an

.

�e operators are shown here only for the proposi-

tional case, as the �rst order case is more involved as

it requires one to deal with substitions as well as inverse

substitutions.

As one example, consider the clauses

(1) flies :- bird, normal.
(2) bird :- blackbird.
(3) flies :- blackbird, normal.

Here, () is the resolvent of () and (). Furthermore,

starting from () and (), the absorption operator would

generate (), and starting from () and (), the identi�-

cation operator would generate ().

Cross References
7First-Order Logic
7Logic of Generality
7Resolution

Is More General Than

7Logic of Generality

Is More Specific Than

7Logic of Generality

Item

7Instance

Iterative Classification

7Collective Classi�cation

	I
	ID3
	Identification
	Identity Uncertainty
	Idiot's Bayes
	Immune Computing
	Immune Network
	Immune-Inspired Computing
	Immunocomputing
	Immunological Computation
	Implication
	Improvement Curve
	Incremental Learning
	Definition
	Motivation and Background
	Theory
	Applications
	Future Directions
	Cross References
	Recommended Reading

	Indirect Reinforcement Learning
	Induction
	Definition
	Theory
	Hume's Problem of Induction
	Induction and Probabilistic Inference
	Popper
	Causality and Hempel's Paradox

	Cross References
	Recommended Reading

	Induction as Inverted Deduction
	Inductive Bias
	Synonyms
	Definition
	Cross References

	Inductive Database Approach to Graphmining
	Overview
	Pattern Domain
	Query Language
	Data Structures
	Recommended Reading

	Inductive Inference
	Definition
	Detail
	Explanatory Learning
	Beyond Explanatory Learning
	Consistent and Conservative Learning
	Monotonicity
	Indexed Families
	Cross References
	Recommended Reading

	Inductive Inference
	Inductive Inference Rules
	Inductive Learning
	Synonyms
	Definition

	Inductive Logic Programming
	Synonyms
	Definition
	Motivation
	Theory
	A Methodology
	FOIL: An Illustration
	Application
	State-of-the-Art
	Current Trends and Challenges
	Cross References
	Recommended Reading

	Inductive Process Modeling
	Synonyms
	Definition
	Cross References
	Recommended Reading
	Inductive Program Synthesis

	Inductive Programming
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	The Evidence and the Oracle
	Program Schemas
	Predicate Invention
	Background Knowledge

	Programs and Data
	Applications
	Future Directions
	Acknowledgment
	Cross References
	Websites
	Recommended Reading
	Inductive Synthesis

	Inductive Transfer
	Synonyms
	Definition
	Structure of the System
	Neural Networks
	Other Paradigms
	Metasearching for Problem Solvers

	Theoretical Work
	Future Directions
	Cross References
	Recommended Reading

	Inequalities
	Information Retrieval
	Information Theory
	In-Sample Evaluation
	Synonyms
	Definition
	Cross References

	Instance
	Synonyms
	Definition

	Instance Language
	Instance Space
	Synonyms
	Definition

	Instance-Based Learning
	Synonyms
	Definition
	Motivation and Background
	Further Reading
	Recommended Reading

	Instance-Based Reinforcement Learning
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	The Basic Approach
	Examples of IBRL Algorithms
	Assumptions
	Problems and Drawbacks

	Cross References
	Recommended Reading

	Intelligent Backtracking
	Synonyms
	Definition

	Intent Recognition
	Internal Model Control
	Synonyms
	Definition

	Interval Scale
	Inverse Entailment
	Definition
	Cross References

	Inverse Optimal Control
	Inverse Reinforcement Learning
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Preliminaries and Notation
	Characterization of the Inverse RL Solution Set
	Reward Function Ambiguity
	Statistical Efficiency
	Computational Efficiency

	A Generative Approach to Inverse RL

	Apprenticeship Learning: Inverse RL Versus Imitation Learning
	Cross References
	Recommended Reading

	Inverse Resolution
	Definition
	Cross References

	Is More General Than
	Is More Specific Than
	Item
	Iterative Classification

