
L

L-Distance

7Manhattan Distance

Label

A label is a target value that is associated with each

7object in 7training data. In 7classi�cation learn-
ing, labels are 7classes. In 7regression, labels are
numeric.

Labeled Data

Labeled data are 7data for which each 7object has
an identi�ed target value, the 7label. Labeled data
are used in 7supervised learning. �ey stand in con-
trast to unlabeled data that are used in 7unsupervised
learning.

Language Bias

Definition
A learner’s language bias is the set of hypotheses that can

be expressed using the hypothesis language employed

by the learner.

�is language bias can be implicit, or it can be

de�ned explicitly, using a bias speci�cation language

(see7Bias Speci�cation Language).

Cross References
7Learning as Search

Laplace Estimate

7Rule Learning

Latent Class Model

7Mixture Model

Latent Factor Models and Matrix
Factorizations

Definition
Latent Factor models are a state of the art method-

ology for model-based 7collaborative �ltering. �e
basic assumption is that there exist an unknown

low-dimensional representation of users and items

where user-item a�nity can be modeled accurately.

For example, the rating that a user gives to a movie

might be assumed to depend on few implicit factors

such as the user’s taste across various movie genres.

Matrix factorization techniques are a class of widely

successful Latent Factor models that attempt to �nd

weighted low-rank approximations to the user-item

matrix, where weights are used to hold out missing

entries. �ere is a large family of matrix factorization

models based on choice of loss function to measure

approximation quality, regularization terms to avoid

over�tting, and other domain-dependent formulations.

Lazy Learning

Geoffrey I. Webb

Monash University, Victoria, Australia

Definition
�e computation undertaken by a learning system can

be viewed as occurring at two distinct times,7training
time and 7consultation time. Consultation time is the
time between when an7object is presented to a system
for an inference to be made and the time when the

Claude Sammut & Geoffrey I. Webb (eds.), Encyclopedia of Machine Learning, DOI ./----,

© Springer Science+Business Media LLC 

 L Learning as Search

inference is completed. Training time is the time prior

to consultation time during which the system makes

inferences from training data in preparation for consul-

tation time. Lazy learning refers to any machine learn-

ing process that defers the majority of computation to

consultation time. Two typical examples of lazy learn-

ing are 7instance-based learning and 7Lazy Bayesian
Rules. Lazy learning stands in contrast to7eager learn-
ing in which the majority of computation occurs at

training time.

Discussion
Lazy learning can be computationally advantageous

when predictions using a single 7training set will only
be made for few objects.�is is because only the imme-

diate sections of the instance space that are occupied

by objects to be classi�ed need be modeled. In conse-

quence, no computation is expended in the modeling

areas of the instance space that are irrelevant to the

predictions that need to be made. �is can also be an

advantage when a training set is frequently updated,

as can be the case in 7online learning, as only the
applicable portions of each model are created.

Lazy learning can help improve prediction 7accu-
racy by allowing a system to concentrate on deriving the

best possible decision for the exact points of the instance

space for which predictions are to be made. In contrast,

eager learning can sometimes result in suboptimal pre-

dictions for some speci�c parts of the instance space as a

result of trade-o�s during the process of deriving a sin-

gle model that seeks to minimize average error over the

entire instance space.

Cross References
7Eager Learning
7Instance-Based Learning
7Locally Weighted Regression for Control
7Online Learning

Learning as Search

Claude Sammut

�e University of New South Wales, Sydney NSW,

Australia

Definition
Learning can be viewed as a search through the space

of all sentences in a concept description language for

a sentence that best describes the data. Alternatively, it

can be viewed as a search through all hypotheses in a

7hypothesis space. In either case, a generality relation
usually determines the structure of the search space.

Background
�e input to a learning program consists of descrip-

tions of objects from the universe (the 7training set)
and, in the case of 7supervised learning, an output
value associated with the example. A program is limited

in the concepts that it can learn by the representa-

tional capabilities of both the 7observation language
(i.e., the language used to describe the training exam-

ples) and 7hypothesis language (the language used to
describe the concept). For example, if an attribute/value

list is used to represent examples for an induction pro-

gram, the measurement of certain attributes and not

others places limits on the kinds of patterns that the

learner can �nd. �e learner is said to be biased by

its observation language. �e hypothesis language also

places constraints on what may andmay not be learned.

For example, in the language of attributes and values,

relationships between objects are di�cult to represent.

Whereas, amore expressive language, such as �rst-order

logic, can easily be used to describe relationships.�ese

biases are collectively referred to as representation bias.

Representational power comes at a price. Learning

can be viewed as a search through the space of all sen-

tences in a language for a sentence that best describes

the data. �e richer the language, the larger the search

space. When the search space is small, it is possible to

use “brute force” search methods. If the search space is

very large, additional knowledge is required to reduce

the search. Notions of generality and speci�city are

important for ordering the search (see7Generalization
and7Specialization).

Representation
�e representation of instances and concepts a�ects the

way a learning system searches for concept representa-

tions.

�e input to a learning program may take many

forms, for example, records in a database, pages of

text, images, audio, and other signals of continuous

data. Very o�en, the raw data are transformed into fea-

ture vectors or attribute/value lists. �e values of the

attributes or features may be continuous or discrete.

Learning as Search L 

L

�ese representation by attribute/value lists is the obser-

vation language.

�e representation of the concept varies consider-

ably, depending on the approach taken for learning. In

7instance-based learning, concepts are represented by
a set of prototypical instances of the concept, so abstract

representations are not constructed at all. �is kind

of representation is said to be extensional. Instance-

based learning is also called 7lazy learning because
the learner does little work at the time that training

instances are presented. Rather, at classi�cation time,

the system must �nd the most similar instances to the

new example. See Fig. .

When instances are represented as feature vectors,

we can treat each feature or attribute as one dimension

in a multi-dimensional space. �e supervised learn-

ing problem can then be characterized as the prob-

lem of �nding a surface that separates objects that

belong to di�erent classes into di�erent regions. In the

case of unsupervised learning, the problem becomes

one of the �nding clusters of instances in the multi-

dimensional space.

Learning methods di�er in the way they repre-

sent and create the discrimination surfaces. In function

approximation, the learner searches for functions that

describes the surface (Fig. ). Function approximation

methods can o�en produce accurate classi�ers because

+

+
+

+

+ +

+

-

-
-

-

- +
+ +

+

-

-

-

-

-
-

-

-

-

-

-

-

-

-

+ +

+

+

+

+

Learning as Search. Figure . The extension of an

Instance-Based Learning concept is shown in solid lines.

The dashed lines represent the target concept. A sample

of positive and negative examples is shown Adapted

from Aha, Kibler and Albert ()

they are capable of construction complex decision sur-

faces. However, the concept description is stored as a set

of coe�cients.�us, the results of learning are not easily

available for inspection by a human reader.

Rather than searching for discriminant functions,

symbolic learning systems �nd expressions equivalent

to sentences in some form of logic. For example, wemay

distinguish objects according to two attributes: size and

color. We may say that an object belongs to class  if its

color is red and its size is very small tomedium. Follow-

ing the notation of Michalski (), the classes in Fig. 

may be written as:

class← size = large ∧ color ∈ {red, orange}

class← size ∈ {small,medium} ∧ color

∈ {oragne, yellow}

class← size ∈ {v_small . . .medium} ∧ color = blue

Note that this kind of description partitions the uni-

verse with axis-orthogonal surfaces, unlike the function

approximation methods that �nd smooth surfaces to

discriminate classes (Fig. ).

Useful insights into induction can be gained by visu-

alizing it as searching for a discrimination surface in a

multi-dimensional space. However, there are limits to

this geometric interpretation of learning. If we wish to

learn concepts that describe complex objects and rela-

tionships between the objects, it is o�en useful to rely on

reasoning about the concept description language itself.

As we saw, the concepts in Fig.  can be expressed

as clauses in propositional logic. We can establish a

correspondence between sentences in the concept des-

Learning as Search. Figure . A linear discrimination

between two classes

 L Learning as Search

V_small

V_large

small

medium

large

red orange yellow green blue violet

Class1 Class1

Class2

Class2

Class3

Class3

Class3

Class2

Learning as Search. Figure . Discrimination on attributes and values

+

+
+

+

+ +

+

-

-
-

-

-

+

+

+
+

-

-

-

-

-

-

-

-

-

-

-

+ +

+

+

+

+

Learning as Search. Figure . The dashed line shows the

real division of objects in the universe. The solid lines

show a decision tree approximation

cription language (the hypothesis language) and a

diagrammatic representation of the concept. More

importantly, we can create a correspondence between

generalization and specialization operations on the sets

of objects and generalization and specialization opera-

tions on the sentences of the language.

Once we have established the correspondence

between sets of objects and their descriptions, it is o�en

convenient to forget about the objects and only consider

that we are working with expressions in a language. For

example, the clause

class← size = large ∧ color = red ()

can be generalized to

class← size = large ()

by dropping one of the conditions. �us, we can view

learning as search through a generalization lattice that is

created by applying di�erent syntactic transformations

on sentences in the hypothesis language.

Version Spaces and Subsumption
Mitchell (, ) de�nes the version space for a

learning algorithm as the subset of hypotheses consis-

tent with the training examples. �at is, the hypothesis

language is capable of describing a large, possibly in�-

nite, number of concepts.When searching for the target

concept, we are only interested in the subset of sen-

tences in the hypothesis language that are consistent

with the training examples, where consistentmeans that

the examples are correctly classi�ed. We can used the

generality of concepts to help us limit our search to only

those hypotheses in the version space.

In the above example, we stated that clause () is

more general than clause (). In doing so, we assumed

that there is a general-to-speci�c ordering on the sen-

tences in the hypothesis language.We can formalize the

generality relation as follows. A hypothesis, h, is a predi-

cate thatmaps an instance to true or false.�at is, if h(x)
is true then x is hypothesized to belong to the concept

being learned, the target. Hypothesis, h, ismore general

than or equal to h, if h covers at least asmany examples

as h (Mitchell, ). �at is, h ≥ h if and only if

(∀x)[h(x) → h(x)]

A hypothesis, h, is strictly more general than h, if h ≥
h and h ≰ h.

Note that themore general than ordering is strongly

related to subsumption (see 7subsumption and the

Learning as Search L 

L

7Logic of Generality). Where the above de�nition of
the generality relation is given in terms of the cover of

a hypothesis, subsumption de�nes a generality ordering

on expressions in the hypothesis language.

Learning algorithms can use the more general than

relation to order their search for the best hypothesis.

Because generalizations and specializations may not be

unique, this relation forms a lattice over the sentences

in the hypothesis language, as illustrated in Fig. . A

search may start from the set of most speci�c hypothe-

ses that �t the training data and perform a speci�c-

to-general search or it may start from the set of most

general hypotheses and perform a general-to-speci�c

search. �e search algorithm may also be bidirectional,

combining both.

In Fig. , each node represents a hypothesis. �e

learning algorithm searches this lattice in an attempt

to �nd the hypothesis that best �ts the training data.

Like searching in any domain, the algorithm may keep

track of one node at a time, as in depth �rst or best

�rst searches, or it may create a frontier of nodes as in

breadth �rst or beam searches.

Supposewehave single-hypothesis search.A speci�c-

to-general search may begin by randomly selecting a

positive training example and creating a hypothesis that

the target concept is exactly that example. Each time a

new positive example is seen that is not covered by the

hypothesis, the hypothesismust be generalized.�at is, a

new hypothesis is constructed that is general enough to

cover all the examples covered by the previous hypothe-

sis, as well as covering the new example. If the algorithm

sees a negative example that is incorrectly covered by

the current hypothesis, then the hypothesis must be

h1

h2

h3

Specific

General

Learning as Search. Figure . Generalization lattice

specialized. �at is, a new hypothesis is construct that is

more speci�c than the current hypothesis such that all

the positive examples that were previously covered are

still covered by the new negative example is excluded.

A similar method can be used for a general-to-

speci�c search. In this case, the initial hypothesis is that

the target concept covers every object in the universe.

In both cases, the algorithm must choose how to con-

struct either generalizations or specializations.�at is, a

method is needed to choose which nodes in the search

to expand next. Here, the7least general generalization
(Plotkin, ) or the 7most general specialization are
useful. �ese de�ne the smallest steps that can be taken

in expanding the search. For example, in Fig. , h is the

minimal specialization that can be made from h or h
in a general-to-speci�c search that starts from the top

of the lattice. Similarly, h and h are the least general

generalizations of h. A search for the target concept

can begin with an initial hypothesis and make minimal

generalizations or specializations in expanding the next

node in the search.

Rather thanmaintaining on a single current hypoth-

esis, a search strategy may keep a set of candidate

hypotheses. For example, a breadth �rst search gener-

alizing from hypothesis h will create a frontier for the

search that is the set {h, h}. When there are many
ways in which an hypothesis can be generalized or spe-

cialized, the size of the frontier set may be large. In

algorithms such asAq (Michalski, ) andCN (Clark

and Niblett, ), a beam search is used. Rather than

storing all possible hypotheses, the n best are kept are

stored, where “best” can be de�ned in several ways. One

metric for comparing hypotheses is given by

Pc +Nc̄

P +N

where P and N are the number of positive and nega-

tive instances, respectively; Pc is the number of posi-

tive instances covered by the hypothesis; and Nc̄ is the

number of negative instances not covered.

Mitchell’s () candidate-elimination algorithm

performs a bidirectional search in the hypothesis space.

It maintains a set, S, of most speci�c hypotheses that

are consistent with the training data and a set, G,

of most general hypotheses consistent with the train-

ing data. �ese two sets form two boundaries on the

version space. As new training examples are seen, the

 L Learning as Search

Algorithm .�e candidate-elimination algorithm, a�er Mitchell ()
Initialize G to the set of maximally general hypotheses in the hypothesis space
Initialize S to the maximally speci�c hypotheses in the hypothesis space
For each training example, d,
if d is a positive example
remove from G any hypothesis inconsistent with d

For each hypothesis, s, in S that is not consistent with d
remove s from S

add all minimal generalizations, h, of s such that
h is consistent with d and some member of G is more general than h

remove from S any hypothesis that is more general than another hypothesis in S

if d is a negative example
remove from S any hypothesis inconsistent with d

For each hypothesis, g, in G that is not consistent with d
remove g from G

add all minimal specializations, h, of g such that
h is consistent with d and some member of S is more general than h

remove from G any hypothesis that is less general than another hypothesis in G

boundaries are generalized or specialized to maintain

consistency. If a new positive example is not covered by

a hypothesis in S, then it must be generalized. If a new

negative example is not rejected by an hypotheses in G,

then it must be specialized. Any hypothesis in G not

consistent with a positive example is removed and any

hypothesis in S not consistent with a negative example

is also removed. See Algorithm .

Noisy Data
Up to this point, we have assumed that the training

data are free of noise. �at is, all the examples are

correctly classi�ed and all the attribute values are cor-

rect. Once we relax this assumption, the algorithms

described above must be modi�ed to use approximate

measures of consistency.�e danger presented by noisy

data is that the learning algorithmwill over �t the train-

ing data by creating concept descriptions that try to

cover the bad data as well as the good. For methods to

handle noisy data see the entries in7pruning.
Several standard texts give good introductions to

search in learning, including Langley (), Mitchell

(), Bratko (), Russell and Norvig ().

Cross References
7Decision Tree Learning
7Generalization

7Induction
7Instance-Based Learning
7Logic of Generality
7Rule Learning
7Subsumption

Recommended Reading
Aha, D. W., Kibler, D., & Albert, M. K. (). Instance-based

learning algorithms. Machine Learning, (), –.

Bratko, I. (). Prolog programming for artificial intelligence (rd

ed.). Boston, MA: Addison-Wesley.

Clark, P., & Niblett, T. (). The CN induction algorithm.

Machine Learning, (), –.

Langley, P. (). Elements of machine learning. San Mateo: Morgan

Kaufmann.

Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.),Machine learning:

An artificial intelligence approach. Palo Alto: Tioga.

Michalski, R. S. (). A theory and methodology of inductive

learning. In R. S.

Mitchell, T. M. (). Version spaces: A candidate elimination

approach to rule-learning (pp. –). In Proceedings of

the fifth international joint conference on artificial intelligence,

Cambridge.

Mitchell, T. M. (). Generalization as search. Artificial Intelli-

gence, (), –.

Mitchell, T. M. (). Machine learning. New York:

McGraw-Hill.

Plotkin, G. D. (). A note on inductive generalization. In

B. Meltzer & D. Michie (Eds.), Machine intelligence (Vol. , pp.

–). Edinburgh: Edinburgh University Press.

Russell, S., & Norvig, P. (). Artificial intelligence: A modern

approach (rd ed.). Englewood cliffs, WJ: Prentice Hall.

Learning Curves in Machine Learning L 

L

Learning Bayesian Networks

7Learning Graphical Models

Learning Bias

7Inductive Bias

Learning By Demonstration

7Behavioral Cloning

Learning By Imitation

7Behavioral Cloning

Learning Classifier Systems

7Classi�er Systems

Learning Control

Learning control refers to the process of acquiring a

control strategy for a particular control system and a

particular task by trial and error. Learning control is

usually distinguished from adaptive control in that the

learning system is permitted to fail during the process of

learning. In contrast, adaptive control emphasizes single

trial convergence without failure. �us, learning con-

trol resembles the way that humans and animals acquire

new movement strategies, while adaptive control is a

special case of learning control that ful�lls stringent

performance constraints, e.g., as needed in life-critical

systems like airplanes and industrial robots. In general,

the control system can be any system that changes its

state in response to a control signal, e.g., a web pagewith

a hyperlink, a car, or a robot.

Learning Control Rules

7Behavioral Cloning

Learning Curves in Machine
Learning

Claudia Perlich

IBM T.J. Watson Research Center, Yorktown Heights,

NY, USA

Synonyms
Error curve; Experience curve; Improvement curve;

Training curve

Definition
A learning curve shows a measure of predictive per-

formance on a given domain as a function of some

measure of varying amounts of learning e�ort.�emost

common form of learning curves in the general �eld

of machine learning shows predictive accuracy on the

test examples as a function of the number of training

examples as in Fig. .

Motivation and Background
Learning curves were initially introduced in educa-

tional and behavioral/cognitive psychology. �e �rst

person to describe the learning curve was Hermann

Ebbinghaus in  (Wozniak, ). He found that

the time required to memorize a nonsense syllable

increased sharply as the number of syllables increased.

Wright () described the e�ect of learning on labor

Number of Training Examples

P
re

di
ct

io
n

A
cc

ur
ac

y

Learning Curves in Machine Learning. Figure . Stylized

learning curve showing the model accuracy on test

examples as a function of the number of training

examples

 L Learning Curves in Machine Learning

productivity in the aircra� industry and proposed

a mathematical model of the learning curve. Over

time, the term has acquired related interpretation in

many di�erent �elds including the above de�nition in

machine learning and statistics.

Use of Learning Curves in Machine
Learning
In the area of machine learning, the term “learning

curve” is used in two di�erent contexts, the main

di�erence being the variable on the x-axis of the

curve.

● �e7arti�cial neural network (ANN) literature has
used the term to show the diverging behavior of

in and out-of-sample performance as a function of

the number of training iterations for a given num-

ber of training examples. Figure  shows this stylized

e�ect.

● General machine learning uses learning curves to

show the predictive7generalization performance as
a function of the number of training examples. Both

the graphs in Fig.  are examples of such learning

curves.

Artificial Neural Networks

�e origins of ANNs are heavily inspired by the social

sciences and the goal of recreating the learning behav-

ior of the brain. �e original model of the “perceptron”

mirrored closely the biological foundations of neural

Training Iterations

P
re

d
ic

ti
o

n
 E

rr
o

r

Generalization error

Training error

Early stopping

Learning Curves in Machine Learning. Figure . Learning

curve for an artificial neural network

sciences. It is likely that the notion of learning curves

was to some extent carried over from the social sci-

ences of human learning into the �eld ofANNs. It shows

the model error as a function of the training time mea-

sured in terms of the number of iterations. One iteration

denotes in the context of neural network learning one

single pass over the training data and the corresponding

update of the network parameters (also called weights).

�e algorithm uses gradient descent minimizing the

model error on the training data.

�e learning curve in Fig.  shows the stylized e�ect

of the relative training and generalization error on a test

set as a function of the number of iterations. A�er initial

decrease of both types of error, the generalization error

reaches a minimum and starts to increase again while

the training error continues to decrease.

�is e�ect of increasing generalization error is

closely related to the more general machine learning

issue of7over�tting and variance error for models with
high expressive power (or capacity). One of the initial

solutions to this problem for neural networks was early

stopping - some form of early regularization technique

that picked themodel at theminimumof the error curve

on a validation subset of the data that was not used for

training.

General Machine Learning

In themore general machine learning setting and statis-

tics (Flury & Schmid, ), learning curves represent

the generalization performance of the model as a func-

tion of the size of the training set.

Figure  was taken from Perlich, Provost, and

Simono� () and shows two typical learning curves

for two di�erent modeling algorithms (7decision tree
and 7logistic regression) on a fairly large domain. For
smaller training-set sizes the curves are steep, but the

increase in accuracy lessens for larger training-set sizes.

O�en for very large training-set sizes the standard

representation in the upper graph obscures small, but

non-trivial, gains. �erefore, to visualize the curves it is

o�en useful to use a log scale on the horizontal axis and

start the graph at the accuracy of the smallest training-

set size (rather than at zero). In addition, one can

include error bars that capture the estimated variance of

the error over multiple experiments and provide some

Learning Curves in Machine Learning L 

L

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2000 4000 6000 8000 10000 12000 14000 16000

 A
cc

ur
ac

y

Sample Size

Learning Curve of Californian Housing Data

Decision Tree
Logistic Regression

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

10 100 1000 10000 100000

 A
cc

ur
ac

y

Sample Size

Learning Curve of Californian Housing Data

Decision Tree
Logistic Regression

Learning Curves in Machine Learning. Figure . Typical learning curves in original and log scale

impression of the relevance of the di�erences between

two learning curves as shown in the graphs.

�e �gure also highlights a very important issue in

comparative analysis of di�erent modeling techniques:

learning curves for the same domain and di�erentmod-

els can cross.�is implies an important pitfall as pointed

out by Kibler and Langley (): “Typical empirical

papers report results on training sets of �xed size, which

tells one nothing about how the methods would fare

given more or less data, rather than collecting learning

curves ⋯”. A corollary on the above observation is the
dangers of selecting an algorithm on a smaller subset of

 L Learning from Complex Data

the ultimately available training data either in the con-

text of a proof of concept pre-study or some form of

cross-validation.

Aside from its empirical relevance there has been

signi�cant theoretical work on learning curves - notably

by Cortes, Jackel, Solla, Vapnik, and Denker ().

�ey are addressing the question of predicting the

expected generalization error from the training error

of a model. �eir analysis provides many additional

insights about the generalization performance of di�er-

ent models as a function of not only training size but in

addition the model capacity.

Cross References
7Arti�cial Neural Networks
7Computational Learning�eory
7Decision Tree
7Generalization Performance
7Logistic Regression
7Over�tting

Recommended Reading
Cortes, C., Jackel, L. D., Solla, S. A., Vapnik, V., & Denker, J. S.

(). Learning curves: Asymptotic values and rate of con-

vergence. Advances in Neural Information Processing Systems, ,

–.

Flury, B. W., & Schmid, M. J. (). Error rates in quadratic discrim-

ination with constraints on the covariance matrices. Journal of

Classification, , –.

Kibler, D., & Langley, P. (). Machine learning as an experimental

science. In Proceedings of the third European working session on

learning, Pittman, Glasgow (pp. –). Hingham, MA: Kluwer

Academic Publishers.

Perlich, C., Provost, F., & Simonoff, J. (). Tree induction

vs. logistic regression: A learning-curve analysis. Journal of

Machine Learning Research, , –.

Shavlik, J. W., Mooney, R. J., & Towell, G. G. (). Symbolic

and neural learning algorithms: An experimental comparison.

Machine Learning, , –.

Wozniak, R. H. (). Introduction to memory: Hermann

Ebbinghaus (/). In Classics in the history of psychology.

Bristol, UK: Thoemmes Press.

Wright, T. P. (). Factors affecting the cost of airplanes. Journal

of Aeronautical Sciences, (), –.

Learning from Complex Data

7Learning from Structured Data

Learning from Labeled and
Unlabeled Data

7Semi-Supervised Learning

Learning from Nonpropositional
Data

7Learning from Structured Data

Learning from Nonvectorial Data

7Learning from Structured Data

Learning from Preferences

7Preference Learning

Learning from Structured Data

Tamás Horváth, StefanWrobel

University of Bonn, Sankt Augustin, Germany

Synonyms
Learning from complex data; Learning from non-

propositional data; Learning from nonvectorial data

Definition
Learning from structured data refers to all those

learning tasks where the objects to be considered

as inputs and/or outputs can usefully be thought

of as possessing internal structure and/or as being

interrelated and dependent on each other, thus forming

a structured space. Typical instances of data in struc-

tured learning tasks are sequences as they arise, e.g., in

speech processing or bioinformatics, and trees or gen-

eral graphs such as syntax trees in natural language

processing and document analysis, molecule graphs

in chemistry, relationship networks in social analy-

sis, and link graphs in the World Wide Web. Learn-

ing from structured data presents special challenges,

Learning from Structured Data L 

L

since the commonly used feature vector representa-

tion and/or the i.i.d. (independently and identically

distributed data) assumption are no longer applicable.

Di�erent �avors of learning from structured data are

represented by (overlapping) areas such as 7Inductive
Logic Programming, 7Statistical Relational Learning,
probabilistic relational and logical learning, learning

with structured outputs, sequence learning, learning

with trees and graphs,7graph mining, and7collective
classi�cation.

Motivation and Background
For a long time, learning algorithms had almost exclu-

sively considered data represented in rectangular tables

de�ned by a �xed set of columns and a number of rows

corresponding to the number of objects to be described.

In this representation, each row independently and

completely describes one object, each column contain-

ing the value of one particular property or feature of

the object. Correspondingly, this representation is also

known as feature vector representation, propositional

representation, or vectorial data representation. Statis-

tically, in such a representation, the values in each row

(i.e., the objects) are assumed to be drawn i.i.d. from a

�xed (but unknown) distribution.

However, when working with objects that are inter-

related and/or have internal structure, this represen-

tation is no longer adequate. Consider representing

chemical molecules with varying numbers of atoms

and bonds in a table with a �xed number of columns.

If we wanted each molecule to correspond to one row,

we would have to �t the atoms and bonds into the

columns, e.g., by reserving a certain number of columns

for each one of them and their respective properties.

To do that however, we would have to make the table

wide enough to contain the largest possible molecule,

resulting inmany empty columns for smallermolecules,

and by mapping the component atoms and bonds to

columns, we would assign an order to them that would

not be justi�ed by the underlying problem and that

would consequently mislead any feature vector learning

algorithm.

�e second issue with structured data arises from

objects that are interrelated. Consider, e.g., the task of

speech recognition, i.e., learning tomap an acoustic unit

into the corresponding lexical unit. Clearly, to solve this

task, onemust consider the sequence of such units, since

both on the input and the output sides the probability

of observing a particular unit will strongly depend on

the preceding or subsequent units. �e same is true,

e.g., in classifying pages in the World Wide Web, where

it is quite likely that the classi�cation of the page will

correlate with the classi�cations of neighboring pages.

�erefore, any learning algorithm that would regard

acoustic units or pages as independent and identically

distributed objects is destined to fail, since for a suc-

cessful solution the interdependenciesmust bemodeled

and exploited.

In machine learning, even though there has been

interest in structured representation from the very

beginning of the s (cf. the systems Arch (Winston,

) or INDUCE (Michalski, )), it was only in the

s, triggered by the popularity of logic programming

and Horn clause representation, that learning from

structured datawasmore intensively considered for log-

ical representations in the sub�eld of Inductive Logic

Programming. Outside of (what was then) machine

learning, due to important applications such as speech

processing, probabilistic models for sequence data such

as 7Hidden Markov Models have been considered
much earlier. Toward the end of the s, given an

enormous surge of interest in applications in bioin-

formatics and the World Wide Web, and technical

advances resulting from the integration of probabilis-

tic and statistical approaches into machine learning

(e.g., 7Graphical Models and 7kernel methods), work
on learning from structured data has taken o� and

now represents a signi�cant part of machine learning

research in overlapping subareas such as Inductive

Logic Programming, Statistical Relational Learning,

probabilistic relational and logical learning, learning

with structured outputs, sequence learning, learning

with trees and graphs, graph mining, and collective

inference.

Main Tasks and Solution Approaches
A particular problem setting for learning from struc-

tured data is given by specifying, among others, () the

language representing the input and output of the learn-

ing algorithms, () the type of the input and/or output

data, and () the learning task.

. Beyond attribute-value representation, the most

intensively investigated representation languages

 L Learning from Structured Data

used in learning are 7First-Order Logic, in par-
ticular, the fragment of �rst-order Horn clauses,

and labeled graphs. Although labeled graphs can

be considered as special relational structures and

thus form a special fragment of �rst-order logic,

these two representation languages are handled sep-

arately in machine learning. As an example of �rst-

order representation of labeled graphs, the molec-

ular graph of a benzene ring can be represented as

follows:

atom(a,carbon).,…,atom(a,carbon).,

atom(a,hydrogen).,…,atom(a,hydrogen).,

edge(a,a,aromatic).,…,edge(a,a,aromatic).,

edge(a,a,single).,…,edge(a,a,single).,

edge(X,Y)← edge(Y ,X).

The molecular graph of benzene rings
(carbon atoms are unmarked)

H

H
H

H

H
H

Besides complexity reasons, the above two repre-

sentation languages are motivated also by the dif-

ference in the matching operators typically used

for these two representations. While in case of

�rst-order logic, the matching operator is de�ned

by logical implication or by relational homomor-

phism (o�en referred to as subsumption), which is

a decidable, but thus, incomplete variant of logical

implication, in case of labeled graphs it is de�ned by

subgraph isomorphism (i.e., by injective homomor-

phism).

. Another component de�ning a task for learn-

ing from structured data is the type of the input

and/or output data (see 7Observation Language
and 7Hypothesis Language). For the input, two
main types can be distinguished: the instances are

disjoint structures (structured instances) or sub-

structures of some global structure (structured

instance space). Molecular graphs formed by the

atom-bond structure of chemical compounds are

a common example of structured instances. For

structured instance spaces, the web graph provides

an example of a global structure; for this case, the

set of instances corresponds to the set of vertices

formed by the web sites. �e primary goal of tra-

ditional discriminative learning is to approximate

unknown target functions mapping the underly-

ing instance space to some subset of the set of

real numbers. In some of the applications, how-

ever, the elements of the range of the target func-

tion must also be structured. Such problems are

referred to as learning in structured output spaces.

As an example of structured output, we mention

the protein secondary structure prediction prob-

lem, where the goal is to approximate the function

mapping the primary structures of proteins to their

secondary structures. Notice that primary and sec-

ondary structures can be represented by strings,

which in turn can be considered as labeled directed

paths.

. Finally, the third component de�ning a problem

setting is the learning task. Besides the classical

learning tasks (e.g., supervised, semisupervised,

unsupervised, transductive learning etc.), recent

tasks include new problems such as, e.g., learning

preferences (i.e., a directed graph, where an edge

from vertex u to vertex v denotes that v is pre-

ferred to u), learning rankings (i.e., when the target
preference relation must be a total order), etc.

Several classes of algorithms have been developed for

the problem settings de�ned by the above components.

7Propositionalization techniques (e.g., as in LINUS
(Lavrac et al., )) �rst transform the structured data

into a single table of �xed width by extracting a large

number of propositional features and then use some

propositional learner.

Non-propositionalization rule-based approaches fol-

low mainly general-to-speci�c (top–down) or speci�c-

to-general (bottom-up) search strategies. For top–down

search (e.g., as in FOIL (Quinlan, )), the crucial

step of the algorithms is the de�nition of the re�ne-

ment operators. While for graph structured data the

specialization relation on the hypothesis space is usu-

ally de�ned by subgraph isomorphism and is there-

fore a partial order, for First-Order Logic it is typically

de�ned by subsumption and is therefore only a preorder

(i.e., antisymmetry does not hold), leading to undesir-

able algorithmic properties (e.g., incompleteness). For

bottom–up search (e.g., as in GOLEM (Muggleton &

Learning from Structured Data L 

L

Feng, )), which is less common for graph struc-

tured data, the generalization of hypotheses is usually

de�ned by some variant of Plotkin’s 7Least General
Generalization operator for �rst-order clauses. While

this generalization operator has nice algebraic proper-

ties, its application raises severe complexity issues, as

the size of the hypothesesmay exponentially grow in the

number of examples.

Recent research in structural learning has been

focusing very strongly on distance- and kernel-based

approaches which in terms of accuracy have o�en

turned out superior to rule-based approaches (e.g., in

virtual screening of molecules). In such approaches,

the basic algorithms carry over unchanged from the

propositional case; instead, special distance (e.g., as in

RIBL (Emde & Wettschereck, )) or kernel func-

tions for structural data are developed. Since even for

graphs, computing any complete kernel (i.e., for which

the underlying embedding function into the feature

space is injective) is at least as hard as the graph isomor-

phism problem, most practical and e�cient kernels are

based on examining the structure for the occurrence of

simpler parts (e.g., trees, walks, paths, and cycles) which

are then counted and e�ectively used as feature vectors

in an intersection kernel.

Finally, as a recent class of approaches, we alsomen-

tion Statistical Relational Learning which extends prob-

abilistic Graphical Models (e.g., Bayesian networks or

Markov networks) with relational and logic elements

(e.g., as in Alchemy (Domingos & Richardson, ),

ICL (Poole, ), PRISM (Sato & Kameya, )).

Applications
Virtual compound screening is a representative appli-

cation example of learning from structured data. �is

computational problem in pharmaceutical research is

concerned with the identi�cation of chemical com-

pounds that can be developed into drug candidates.

Since current pharmaceutical compound repositories

contain millions of molecules, the design of e�cient

algorithms for virtual compound screening has become

an integral part of computer-aided drug design. One

of the branches of the learning algorithms concerned

with this prediction problem is based on using the com-

pounds’ D graph structures formed by their atoms and

bonds. Depending on the representation of chemical

graphs, this branch of algorithms can further be clas-

si�ed into logic and graph-based approaches. �e �rst

class of algorithms, developed mostly in Inductive

Logic Programming, treats chemical graphs as rela-

tional structures addressing the problem to the con-

text of learning in logic; the second class of algorithms

regards them as labeled graphs addressing the problem

to7Graph Mining.

Cross References
7Hypothesis Language
7Inductive Logic Programming
7Observation Language
7Statistical Relational Learning
7Structured Induction

Recommended Reading
Cook, D., & Holder, L. (Eds.). (). Mining graph data. New York:

Wiley.

De Raedt, L. (). From inductive logic programming to multi-

relational data mining. Heidelberg: Springer.

Domingos, P., & Richardson, M. (). Markov logic: A unifying

framework for statistical relational learning. In L. Getoor &

B. Taskar (Eds.), Introduction to statistical relational learning

(pp. –). Cambridge, MA: MIT Press.

Emde, W., & Wettschereck, D. (). Relational instance based

learning. In L. Saitta (Ed.), Proceedings of the th international

conference on machine learning (pp. –). San Francisco:

Morgan Kaufmann.

Gärtner, T. (). A survey of kernels for structured data. SIGKDD

Explorations, (), –.

Getoor, L., & Taskar, B. (Eds.). (). Introduction to relational

statistical learning. Cambridge, MA: MIT Press.

Lavrac, N., Dzeroski, S., & Grobelnik, M. (). Learning nonrecur-

sive definitions of relations with LINUS. In Y. Kodratoff (Ed.),

Proceedings of the th European working session on learning. Lec-

ture notes in computer science (Vol. , pp. –). Berlin:

Springer.

Michalski, R. S. (). A theory and methodology of inductive

learning. In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell

(Eds.), Machine learning: An artificial intelligence approach

(pp. –). San Francisco: Morgan Kaufmann.

Muggleton, S. H., & De Raedt, L. (). Inductive logic program-

ming: Theory and methods. Journal of Logic Programming,

,, –.

Muggleton, S. H., & Feng, C. (). Efficient induction of logic

programs. In S. Muggleton (Ed.), Inductive logic programming

(pp. –). London: Academic Press.

Poole, D. (). The independent choice logic and beyond. In

L. De Raedt, P. Frasconi, K. Kersting, & S. Muggleton (Eds.),

Probabilistic inductive logic programming: Theory and applica-

tion. Lecture notes in artificial intelligence (Vol. ). Berlin:

Springer.

Quinlan, J. R. (). Learning logical definitions from relations.

Machine Learning, (), –.

 L Learning from Labeled and Unlabeled Data

Sato, T., & Kameya, Y. (). New advances in logic-based prob-

abilistic modeling by PRISM. In L. De Raedt, P. Frasconi,

K. Kersting, & S. Muggleton (Eds.), Probabilistic inductive logic

programming: Theory and application. Lecture notes in artificial

intelligence (Vol. , pp. –). Berlin: Springer.

Winston, P. H. (). Learning structural descriptions from exam-

ples. In P. H. Winston (Ed.), The psychology of computer vision

(pp. –). New York: McGraw-Hill.

Learning from Labeled and
Unlabeled Data

7Semi-Supervised Text Processing

Learning Graphical Models

Kevin B. Korb

Monash University, Clayton, Victoria, Australia

Synonyms
Bayesian model averaging; Causal discovery; Dynamic

bayesian network; Learning bayesian networks

Definition
Learning graphical models (see Graphical Models)

means to learn a graphical representation of either a

causal or probabilistic model containing the variables

Xj ∈ {Xi}. Although graphical models include more
than directed acyclic graphs (DAGs), the focus here

shall be on learning DAGs, as that is where the majority

of research and application is taking place.

De�nition  (Directed acyclic graph (DAG)) A

directed acyclic graph (DAG) is a set of variables (nodes,

vertices) {Xi} and a set of directed arcs (edges) between

them such that following the arcs in their given direction

can never lead from a variable back to itself.

DAGs parameterized to represent probability distri-

butions are otherwise known as Bayesian networks.

Some necessary concepts and notation for discussing

the learning of graphical models is given in Table .

A key characteristic of multivariate probability dis-

tributions is the conditional independence structure

they give rise to, that is, the complete list of statements

of the form

XA á XB∣XC

true of the distribution. A goal of learning DAGs is

to learn a minimal DAG representation of the condi-

tional independence structure for a distribution given

the Markov condition:

De�nition  (Markov condition) A DAG satis�es the

Markov condition relative to a probability distribution if

and only if for all Xi and Xj in the DAG Xi á Xj∣πXi
so

long as Xj is not a descendant of Xi (i.e., Xj is not in the

transitive closure of the parent relation starting from Xi).

DAGs which violate the Markov condition are not

capable of fully representing the relevant probababil-

ity distribution. Upon discovering such a violation, the

normal response is to �x the model by adding missing

arcs. In the causal discovery literature, this condition is

o�en referred to as the causal Markov condition, which

simply means the arcs are being interpreted as repre-

senting causal relationships and not merely as proba-

bilistic dependencies.

De�nition  (Markov Blanket) �e Markov blanket

(MB) of a node Xi is the minimal set XMB such that for

all other nodes Xj in the model Xi á Xj∣XMB.

�e Markov blanket consists of a node’s parents,

children, and its children’s other parents.

Motivation and Background
Bayesian networks have enjoyed substantial success in

thousands of diverse modeling, prediction, and control

applications, including medical diagnosis, epidemiol-

ogy, so�ware engineering, ecology and environmen-

tal management, agriculture, intelligence and security,

�nance and marketing (see, e.g., http://www.norsys.

com for customers implementing such applications and

more). Many of these networks have been built by the

traditional process of “knowledge engineering,” that is,

by eliciting both structure and conditional probabilities

from human domain experts. �at process is limited by

the availability of expertise and also by the time and cost

of performing such elicitation and subsequent model

validation. In domains where signi�cant quantities of

http://www.norsys.com
http://www.norsys.com

Learning Graphical Models L 

L

Learning Graphical Models. Table  Notation

Notation Description

Xi a random variable

X a set of random variables

{Xi} a set of random variables indexed by i ∈ I

X = xj (or, xj) a random variable taking the value xj

p(x) the probability that X = x

XA á XB XA and XB are independent (i.e., p(XA) = p(XA∣XB))

XA á XB∣XC XA and XB are conditionally independent given XC (i.e.,
p(XA∣XC) = p(XA∣XB,XC))

XA á XB XA and XB are dependent (i.e., p(XA) /= p(XA∣XB))

XA á XB∣XC XA and XB are conditionally dependent given XC
(i.e., p(XA∣XC) /= p(XA∣XB,XC))

πXi

the set of parents of Xi in a DAG
(i.e., nodes Y such that Y → Xi)

data are available it is pertinent to consider whether

automated learning of Bayesian networks might either

replace or compliment knowledge engineering. A vari-

ety of techniques for doing so have been developed, and

the causal discovery of Bayesian networks is by now an

important subindustry of data mining.

Theory
Probability and Causality

�ekey to learningBayesian networks from sample data

is the relation between causal dependence and proba-

bilistic dependence. �is is most easily understood in

reference to undirected chains of variables, as in Fig. .

Where the arcs in Fig.  represent causal dependen-

cies, then the probabilistic dependencies are as the cap-

tion describes.�at is, in common causes and chains the

end nodes A and B are rendered probabilistically inde-

pendent of each other given knowledge of the state ofC.

Contrariwise, when A and B are parents of a common

e�ect, and otherwise unrelated, they are probabilisti-

cally independent given no information (i.e.,marginally

independent), but become dependent given knowledge

of C. �is last relationship is o�en called “explain-

ing away,” because it corresponds to situations where,

when already knowing the presence of, say, some dis-

ease C, the learning of the presence of a causeA reduces

one’s belief in some alternative explanation B of the

disease.

�ese relationships between probabilistic depen-

dence and causal dependence are the key for learn-

ing the causal structure of Bayesian networks because

sample data allow one to estimate probabilistic depen-

dencies directly, and the di�erence between condi-

tional dependency structures in Fig. (a) and (b) ver-

sus its opposite in (c) allows automated learners to

distinguish between these di�erent underlying causal

patterns. (�is is related to d-separation in Graphical

Models.) �is distinction is explicitly made use of in

constraint learners, but also implicitly used by metric

learners.

In addition to structure learning, parameter learn-

ing is necessary, that is, learning the conditional prob-

abilities of nodes given their parent values (conditional

probability tables). Straightforward counting methods

are frequently employed, although Expectation Maxi-

mization, Gibbs Sampling, and other techniques may

come into play when the available data are noisy.

Statistical Equivalence

Two DAGs are said to be statistically equivalent

(or, Markov equivalent) when they contain the same

variables and each can be parameterized so as to rep-

resent any probability distribution that the other can

 L Learning Graphical Models

A B

A C B
A B

C

a b c

C

Learning Graphical Models. Figure . Causality and probabilistic dependence: (a) common cause with A á B∣C; (b)

causal chain with A á B∣C; (c) common effect with Aá B∣C

represent. Verma andPearl () proved thatDAGs are

statistically equivalent just in case they have the same

undirected arc structures and the identical set of uncov-

ered common e�ects, that is, common e�ects such as

in Fig. (c) where the two parents are not themselves

directly connected. �ey dubbed the set of statistically

equivalent models patterns; these can be represented

using partially directed acyclic graphs (PDAGs), that

is, graphs with some arcs le� undirected. Chickering

() showed that statistically equivalent models have

identical maximum likelihoods relative to any given set

of data. �is latter result has suggested to many that

causal learning programs can have no reasonable ambi-

tion to learn anything other than patterns, that is, any

learner’s discrimination between DAGs within a com-

mon pattern can only be based upon prior probability

(e.g., prejudice). �is is suggested, for example, by the

fact that Bayesian learning combines (by multiplying)

prior probabilities and likelihoods, so identical likeli-

hoods will always lead to identical conclusions should

the priors also be the same. One shall note some rea-

son to doubt this supposed limit to causal discovery

below.

Applications
Constraint Learners

�emost direct application of the above ideas to learn-

ing Bayesian networks is exhibited in what may be

called constraint learners.�ese programs assess condi-

tional independencies between paired sets of variables

given some other set of observed variables using sta-

tistical tests on the data, eliminating all DAGs that are

incompatible with the independencies and dependen-

cies asserted by the statistical test. (For this reason these

programs are o�en called “conditional independence

learners”; however, that tag ismisleading, as is explained

below.)�e original such algorithm, the IC algorithm of

Verma and Pearl (), can be described in simpli�ed

form as three rules for constructing a network from Yes

or No answers to questions of the form “Is it the case

that X á Y ∣W?”

Rule I:Put anundirected link between any two vari-
ables X and Y if and only if for every set of variables

W s.t. X,Y /∈W
XáY ∣W

that is, X and Y are directly connected if and only

if they are dependent under every conditioning set

(including ∅).
Rule II: For every undirected structure X − Y − Z,

orient the arcs X → Y←Z if and only if

XáZ∣W

for every W s.t. X,Z /∈W and Y ∈ Z.
that is, Y is an uncovered common e�ect if and only

if the end variables X and Z are dependent under

every conditioning set that includes Y .

Rule I is justi�ed by the need to express the proba-

bilistic dependency between X and Y under all possible

circumstances. Rule II is justi�ed by the asymmetry in

probabilistic dependencies illustrated in Fig. .

Application of these two rules is then followed by

applying a Rule III, which just checks for any arc direc-

tions that are forced by further considerations, such as

avoiding the introduction of cycles or any uncovered

common e�ects not already identi�ed in Rule II, and so

not supported by the conditional independence tests.

�is algorithm was �rst put into practice in the PC

algorithmdistributed as a part of the TETRADprogram

(Spirtes, Glymour, & Scheines, ). Aside from intro-

ducing some algorithmic e�ciencies, PC adds orthodox

statistical tests to answer the conditional independence

questions. In the case of linear models, it uses a statis-

tical sign�cance test for vanishing partial correlations,

Learning Graphical Models L 

L

accepting a dependence when and only when the test

is statistically signi�cant. For discrete networks a χ

test replaces the correlation test. Margaritis and �run

further improve the algorithm’s e�ciency by limiting

conditioning sets to the Markov blankets of the vari-

able under test (Margaritis and �run, ). �e PC

algorithm has become the most widely used Bayesian

network learner, available in weka and many Bayesian
network modeling tools.

Metric Learners

Constraint learners attempt to build up a network using

a sequence of independent statistical tests. One problem

with them is that when one such test gives an incorrect

result, subsequent tests will assume that result, with the

potential for errors to cascade. Metric learners, by con-

trast, use some score applied to a network as a whole

to assess it relative to the data. �e earliest of this kind,

by Cooper and Herskovits, turned the computation of

a Bayesian measure into a counting problem. Under a

number of fairly strong assumptions, such as that chil-

dren variable states are always uniformly distributed

given their parent states, they derived the measure

P(d, e) = P(d)
n

∏
k=

sπ(k)

∏
j=

(sk − )!
(Skj + sk − )!

sk

∏
l=

αkjl!

where d is the DAG being scored, e the data, n the num-

ber of variables, sk the number of values Xk may take,

sπ(k) the number of values the parents of Xk may take,

Skj the number of cases in the datawhere πk takes its j-th

value, and αkjl is the number of cases where Xk takes its

l-th value and πk takes its j-th value. Cooper and Her-

skovits proved that this measure can be computed in

polynomial time. Assuming the adequacy of this proba-

bility distribution, computation of the joint probability

su�ces for Bayesian learning, since by Bayes’ �eo-

rem maximizing P(d, e) is equivalent to maximizing
the posterior probability of d. Cooper and Herskovits

applied thismeasure in the programK, which required

as inputs both the data and a total ordering of the vari-

ables. �e latter input eliminates all problems about

discovering arc orientations, which could be consid-

ered a cheat since, as the discussion of the IC algo-

rithm showed, this is a part of the causal learning prob-

lem. Subsequently, Chow and Liu’s () maximum

weighted spanning tree algorithm (MWST) has been

used as a preprocessor to K, doing a reasonable job of

�nding an ordering based upon themutual information

between pairs of variables.

A wide variety of alternative metrics for DAGs

have been developed since K. Heckerman, Geiger, and

Chickering () generalized the K metric to incor-

porate prior information, yielding BD (Bayesian metric

with Dirichlet priors). Other alternatives include Min-

imum Description Length (MDL) scores (Bouckaert,

; Suzuki, , ), Bayesian Information Cri-

terion (BIC) (Cruz-Ramírez, Acosta-Mesa, Barrientos-

Martínez, & Nava-Fernández , ) and Minimum

Message Length (MML) (Korb&Nicholson, ;Wal-

lace, Korb, & Dai, ). Although all of these measures

score the DAG as a whole relative to some data set,

they are just as (or more) sensitive to the individual

dependencies and independencies between variables as

are the constraint learners. �e di�erence between the

two types of learners is not whether they attend to

the sets of conditional independencies expressed in the

data, but whether they do so serially (which the con-

straint learners do) or collectively (as do the metric

learners).

�e question naturally arises whether constraint

learners as a class are superior to metric learners or

vice versa, or, indeed, which individual learner might

be best. �ere is no settled answer to such questions,

nor, in fact, is there any agreement about how such

questions are best settled, even for �xed domains or

data sets. Perhaps the issue is more general than that

of learning Bayesian networks, since the fundamental

theory ofmachine learning evaluation seems to bemas-

sively underdeveloped (see Algorithm Evaluation). In

consequence, while nearly every new publication claims

superiority in some sense for its preferred algorithm,

the evidential basis for such claims remains suspect. It

is clear, nonetheless, that many of the programs avail-

able are helpful with data analysis and are being so

applied.

Search and Complexity

�e space of DAGs is superexponential in the num-

ber of variables, making the learning process hard;

it is NP-hard to be exact (Chickering, Heckerman,

& Meek, ). In practice there are limits to the

e�ectiveness of each algorithm, imposed by the num-

ber of variables (see Dimensionality), the number of

 L Learning Graphical Models

joint states the variables may take and the amount

of data. �e known limitations for di�erent algo-

rithms are scattered throughout the literature. �e next

section introduces some ideas for scaling up causal

discovery.

Greedy search has frequently been used with both

constraint-based and metric-based learning. �e PC

algorithm searching the space of patterns is an exam-

ple, as it starts with a fully connected graph and searches

greedily for arcs to remove. Chickering and Meek’s

Greedy Equivalence Search (GES) is another greedy

algorithm operating in the pattern space (Chickering

and Meek, ). Cooper and Herskovits’ K is also a

greedy searcher, adding arcs so long as single arc addi-

tions increases the probability score for the network.

Bouckaert adopted this approach with his MDL score

(Bouckaert, ). Greedy searches, of course, tend to

get lost in localmaxima, and Suzuki loosened the search

method for his MDL scoring, using branch and bound

(Suzuki, ).

Genetic algorithms (GAs) have been successfully

applied to learning Bayesian networks. Larrañaga et al.

used GAs over the space of total orderings to max-

imize the K score (Larrañaga, Kuijpers, Murga, &

Yurramendi, ); Neil and Korb developed a GA

searching the DAG space to maximize the MML score

(Neil & Korb, ). A similar approach using MDL is

found in Wong, Lam, and Leung ().

Markov Chain Monte Carlo (MCMC) searches per-

form stochastic sampling over the model space and

have become a popular technique for Bayesian net-

work learning. Gibbs sampling is used in Chickering

and Heckerman (), where they compare a num-

ber of di�erent metrics (and incorrectly con�ate BIC

and MDL scores; see Cruz-Ramírez, ) for learn-

ing a restricted class of Bayesian networks. Another

MCMC approach, the Metropolis-Hastings algorithm,

has been to estimate the posterior probability distribu-

tion over the space of total orderings, using the MML

score (Korb & Nicholson, , Chap. ).

An alternative to model selection — searching for

the single best model — is Bayesian model averaging,

that is, searching for a set ofmodels andweights for each

of them (Chickering &Heckerman, ). And an alter-

native to that is to �nd a single Bayesian network that is

equivalent to an averaged selection of networks (Dash&

Cooper, ).

Markov Blanket Discovery

Recently, interest has grown in algorithms to learn,

speci�cally, the Markov blankets around individual

variables, which is a special kind of feature selection

problem (see Feature Selection). One use for this is

in prediction: since the MB renders all other variables

conditionally independent of a target variable, �nding

the MB means having all the variables required for an

optimal predictor. Tsamardinos et al. describe the max-

min hill-climbing (MMHC) algorithm for MB discov-

ery (Tsamardinos, Brown,&Aliferis, ).Nägele et al.

apply this to learning in very high-dimensional spaces

(Nägele, Dejori, & Stetter, ).

Given the MB for a target variable, one can then

simply apply regression techniques (or any predictive

classi�cation technique) to the discovered variables.

�is works �ne for standard prediction, but does not

generalize to situations where some of the predictor

variables are externally modi�ed rather than observed.

For an interesting collection of papers mostly apply-

ing some kind of Markov blanket discovery approach

to prediction see the collection (Guyon et al., ).

A di�erent use for local discovery is to avoid prob-

lems with computational complexity, whether due to

the “curse of dimensionality” (too many variables) or

the growing availability of very large data sets. Once

the Markov blanket is found, one can employ causal

discovery within the reduced set of variables, yield-

ing local causal discovery. Iterating this will yield

multiple causal subnetworks, when a global causal net-

work might be stitched together from them (Aliferis,

Statnikov, Tsamardinos, Mani, & Koutsoukos, b),

completing the whole causal discovery process while

evading complexity problems. A current review of the

issues and techniques can be found in two companion

articles by Aliferis, Statnikov, Tsamardinos, Mani, and

Koutsoukos (a, b).

Knowledge Engineering with Bayesian Networks

Another approach to dealing with the complexity and

tribulations of global causal discovery is to aid the dis-

covery process with prior information. Bayesian infer-

ence is, a�er all, done by combining priors with like-

lihoods, and the priors need not always be perfectly

�avorless, such as uniform priors over the DAG space.

In almost all applications where data threaten to over-

whelm automated discovery there is also at least some

Learning Graphical Models L 

L

expertise, if only the ability to say, for example, that the

sex of a patient is determined before adult lifestyle prac-

tices are adopted. Such temporal information provided

to a discovery algorithm can provide a huge boost to the

discovery process.

�is quite simple kind of prior information, the tem-

poral tiers within which the variables may be allocated,

has been available in many of the discovery programs

for a long time. PC, for example, allows tiers to be spec-

i�ed. K more restrictively required a total ordering

of the variables. �e methods described by Hecker-

man, Geiger, and Chickering () go beyond tiers.

�ey provide for the speci�cation of a network or sub-

network; the prior probability of any network in the

search space can be computed according to its distance

from the network provided. �ey also introduced the

idea of equivalent sample size, that is, the weight to be

given the prior information relative to the data, mean-

ing that their priors are so� (probabilistic) rather than

hard constraints. O’Donnell et al. () adapted their

MML score to allow so� priors for tiers, dependencies,

direct and indirect causal relations, and networks or

subnetworks, with variable degrees of con�dence.

�e �exible combination of prior information

(expertise) with data in the causal discovery process

allows for a full-�edged knowledge engineering process

in the construction of Bayesian networks. Experts may

be consulted for structural or parametric information,

data may be gathered, and these di�erent contributions

may be weighted or reweighted according to the results

of sensitivity analyses or other tests. �e result can be a

much faster and more useful approach to building and

applying Bayesian networks.

Causal discovery with meaningful priors, by the

way, shows that limiting discovery to patterns is

insu�cient: better priors, or better use of priors, can

make a signi�cant di�erence within patterns of DAGs.

Cross References
7Dimensionality
7Feature Selection
7Graphical Models
7Hidden Markov Models

Recommended Reading
The PC algorithm and variants were initially documented in Spirtes

et al. (); their second edition (Spirtes, Glymour, & Scheines,

) covers more ground. Their TETRAD IV program is avail-

able from their web site http://www.phil.cmu.edu/projects/tetrad/.

PC is contained within (and is available also with the weka machine

learning platform at http://www.cs.waikato.ac.nz/ml/weka/).

A well-known tutorial by David Heckerman () (reprinted

without change in Heckerman, ) is well worth looking at

for background in causal discovery and parameterizing Bayesian

networks. A more current review of many of the topics intro-

duced here is to be found in a forthcoming article (Daly, Shen,

& Aitken, forthcoming). For other good treatments of parameter-

ization see Cowell, Dawid, Lauritzen, and Spiegelhalter () or

Neapolitan ().

There are a number of useful anthologies in the area of learning

graphical models. Learning in Graphical Models (Jordan, ) is one

of the best, including Heckerman’s tutorial and a variety of excellent

reviews of causal discovery methods, such as Markov Chain Monte

Carlo search techniques.

Textbooks treating the learning of Bayesian networks include

Borgelt and Kruse (), Neapolitan (), Korb and Nicholson

(), and Koller and Friedman ().

Aliferis, C. F., Statnikov, A., Tsamardinos, I., Mani, S., & Koutsoukos,

X. D. (a). Local causal and Markov blanket induction for

causal discovery and feature selection for classification. Part

I: Algorithms and empirical evaluation. Journal of Machine

Learning Research, , –.

Aliferis, C. F., Statnikov, A., Tsamardinos, I., Mani, S., & Kout-

soukos, X. D. (b). Local causal and Markov blanket induc-

tion for causal discovery and feature selection for classification.

Part II: Analysis and extensions. Journal of Machine Learning

Research, , –.

Borgelt, C., & Kruse, R. (). Graphical models: Methods for

data analysis and mining. New York: Wiley.

Bouckaert, R. (). Probabilistic network construction using the

minimum description length principle. Lecture Notes in Com-

puter Science, , –.

Chickering, D. M. (). A tranformational characterization of

equivalent Bayesian network structures. In P. Besnard &

S. Hanks (Eds.), Proceedings of the th conference on uncertainty

in artificial intelligence, San Francisco (pp. –).

Chickering, D. M., & Heckerman, D. (). Efficient approxima-

tions for the marginal likelihood of Bayesian networks with

hidden variables. Machine Learning, , –.

Chickering, D. M., Heckerman, D., & Meek, C. (). Large-sample

learning of Bayesian networks is NP-hard. Journal of Machine

Learning Research, , –.

Chickering, D. M., & Meek, C. (). Finding optimal Bayesian

networks. In Proceedings of the th annual conference on uncer-

tainty in AI, San Francisco (pp. –).

Chow, C., & Liu, C. (). Approximating discrete probability dis-

tributions with dependence trees. IEEE Transactions on Infor-

mation Theory, , –.

Cowell, R. G., Dawid, A. P., Lauritzen, St. L., & Spiegelhalter, D. J.

(). Probabilistic networks and expert systems. New York:

Springer.

Cruz-Ramírez, N., Acosta-Mesa, H. G., Barrientos-Martínez, R.

E., & Nava-Fernández, L. A. (). How good are the

Bayesian information criterion and the Minimum Descrip-

tion Length principle for model selection? A Bayesian net-

work analysis. Lecture Notes in Computer Science, ,

–.

http://www.phil.cmu.edu/projects/tetrad/
http://www.cs.waikato.ac.nz/ml/weka/

 L Learning in Logic

Daly, R., Shen, Q., & Aitken, S. (forthcoming). Learning Bayesian

networks: Approaches and issues. The Knowledge Engineering

Review.

Dash, D., & Cooper, G. F. (). Model averaging for prediction

with discrete Bayesian networks. Journal of Machine Learning

Research, , –.

Guyon, I., Aliferis, C., Cooper, G., Elisseeff, A., Pellet, J.-P., Spirtes,

P., et al. (Eds.) (). JMLR workshop and conference pro-

ceedings: Causation and prediction challenge (WCCI ),

volume . Journal of Machine Learning Research.

Heckerman, D. (). A tutorial on learning with Bayesian net-

works. In M. Jordan, (Ed.), Learning in graphical models (pp.

–). Cambridge: MIT.

Heckerman, D. (). A tutorial on learning with Bayesian net-

works. In Innovations in Bayesian networks (pp. –). Berlin:

Springer Verlag.

Heckerman, D., Geiger, D., & Chickering, D. M. (). Learning

Bayesian networks: The combination of knowledge and statisti-

cal data. In Lopes de Mantras & D. Poole (Eds.), Proceedings of

the tenth conference on uncertainty in artificial intelligence, San

Francisco (pp. –).

Jordan, M. I. (). Learning in graphical models. Cambridge, MA:

MIT.

Koller, D., & Friedman, N. (). Probabilistic graphical models:

Principles and techniques. Cambridge, MA: MIT.

Korb, K. B., & Nicholson, A. E. (). Bayesian artificial intelli-

gence. Boca Raton, FL: CRC.

Larrañaga, P., Kuijpers, C. M. H., Murga, R. H., & Yurramendi,

Y. (). Learning Bayesian network structures by search-

ing for the best ordering with genetic algorithms. IEEE

Transactions on Systems, Man and Cybernetics, Part A, ,

–.

Margaritis, D., & Thrun, S. (). Bayesian network induction

via local neighborhoods. In S. A. Solla, T. K. Leen, & K. R.

Müller (Eds.), Advances in neural information processing systems

(Vol. , pp. –). Cambridge: MIT.

Nägele, A., Dejori, M., & Stetter, M. (). Bayesian substructure

learning – Approximate learning of very large network struc-

tures. In Proceedings of the th European conference on machine

learning; Lecture notes in AI (Vol. , pp. –). Warsaw,

Poland.

Neapolitan, R. E. (). Learning Bayesian networks. Upper Saddle

River, NJ: Prentice Hall.

Neil, J. R., & Korb, K. B. (). The evolution of causal models.

In N. Zhong & L. Zhous (Eds.), Third Pacific-Asia Conference

on Knowledge Discovery and Datamining (PAKDD-), Beijing,

China (pp. –). New York: Springer.

O’Donnell, R., Nicholson, A., Han, B., Korb, K., Alam, M., &

Hope, L. (). Causal discovery with prior information. In

Australasian joint conference on artificial intelligence, (pp. –

). New York: Springer.

Spirtes, P., Glymour, C., & Scheines, R. (). Causation, predic-

tion and search. In Lecture notes in statistics (Vol. ). New York:

Springer.

Spirtes, P., Glymour, C., & Scheines, R. (). Causation, prediction

and search. (nd ed.). Cambridge: MIT.

Suzuki, J. (). Learning Bayesian belief networks based on the

minimum description length principle. In L. Saitta (Ed.) Pro-

ceedings of the th international conference on machine learn-

ing, San Francisco (pp. –). Morgan Kaufman.

Suzuki, J. (). Learning Bayesian belief networks based on the

MDL principle: An efficient algorithm using the branch and

bound technique. IEEE Transactions on Information and Sys-

tems, , –.

Tsamardinos, I., Brown, L. E., & Aliferis, C. F. (). The max-min

hill-climbing Bayesian network structure learning algorithm.

Machine learning, (), –.

Verma, T. S., & Pearl, J. (). Equivalence and synthesis of causal

models. In Proceedings of the sixth conference on uncertainty in

AI, Boston (pp. –). San Mateo, CA: Morgan Kaufmann.

Wallace, C. S., Korb, K. B., & Dai, H. (). Causal discovery via

MML. In L. Saitta, (Ed.), Proceedings of the th international

conference on machine learning, San Francisco (pp. –).

Morgan Kaufman.

Wong, M. L., Lam, W., & Leung, K. S. (). Using evolutionary

programming and minimum description length principle for

data mining of Bayesian networks. IEEE Transactions on Pattern

Analysis and Machine Intelligence, (), –.

Learning in Logic

7Inductive Logic Programming

Learning in Worlds with Objects

7Relational Reinforcement Learning

Learning Models of Biological
Sequences

William Stafford Noble, Christina Leslie

University of Washington, Seattle, WA, USA
Memorial Sloan-Kettering Cancer Center,

New York, NY

Definition
Hereditary information is stored in the nucleus of every

living cell as biopolymers of deoxyribonucleic acids

(DNA). DNA thus encodes the blueprint for all known

forms of life. A DNA sequence can be expressed as a

�nite string over an alphabet of {A, C, G, T}, corre-

sponding to the four DNA bases. �e human genome

consists of approximately  billion bases, divided among

 chromosomes.

During its life, each cell makes temporary copies

of short segments of DNA. �ese shortlived copies are

Learning Models of Biological Sequences L 

L

comprised of ribonucleic acid (RNA). Each -mer of

RNA can subsequently be translated, via the universal

genetic code, into one of  amino acids. �e resulting

amino acid sequence is called a protein, and the DNA

sequence that en codes the protein is called a gene.

Machine learning has been used to build models

of many di�erent types of biological sequences. �ese

include models of short, functional elements within

DNA or protein sequences, as well as models of genes,

RNAs, and proteins.

Motivation and Background
Fundamentally, the motivation for building models of

biological sequences is to understand the molecular

mechanisms of the cell and the molecular basis for

human disease. Each subheading below describes a dif-

ferent type ofmodel, each ofwhich attempts to capture a

di�erent facet of the underlying biology. All these mod-

els, ultimately, aim to uncover either evolutionary or

functional relationships among sequences.

Although DNA and protein sequences were avail-

able in small numbers as early as the s, a signi�cant

number of sequences were not available until the s.

Most of the advances in model development occurred

in the s, with the exception of phylogenetic models,

which were already being developed in the s.

Structure of Learning System
Motifs

In the context of biological sequences, a “motif ” is a

short (typically – letters) subsequence that is func-

tionally signi�cant. Amotif may correspond to, e.g., the

location along the DNA strand where a particular pro-

tein binds, or conversely, the location along the protein

that binds to the DNA. �e motif can arise either via

convergent evolution (when two sequences evolve to

look similar to one another) or via evolutionary con-

servation (if sequences that lack the motif are likely to

be eliminated via natural selection).

Motif discovery is the problem of identifying a pre-

viously unknown motif within a given collection of

sequences, by �nding patterns that occur more o�en

than one would expect by chance. �e problem is chal-

lenging in part because two occurences of a given motif

may not resemble each other exactly.

Work onmotif discovery falls into two camps, based

upon how the motifs themselves are represented. One

camp uses position-speci�c scoring matrices (PSSMs),

in which a motif of width w over an alphabet of size

A is represented as a w-by-A probability matrix. In

this matrix, each entry represents the probability that

a given letter occurs at the given position. Early work

in this area used expectation-maximization to identify

proteinmotifs (Lawrence&Reilly, ).�is e�ortwas

signi�cantly extended in the MEME algorithm (Bailey

& Elkan, ), which continues to be widely used

today. A complementary approach uses Gibbs sam-

pling (Lawrence, Altschul, Boguski, Liu, Neuwald, &

Wootton, ), which o�ers several bene�ts, including

avoiding localminima and the ability to samplemultiple

motifs simultaneously.

�eothermotif discovery campuses a discretemotif

representation, in which each motif is represented as a

consensus sequence plus a speci�ed maximum number

of mismatches. In this formalism, enumerative meth-

ods can guarantee solving a given problem to optimality.

For realistic problem sizes, this approach is most appli-

cable to DNA, because of its much smaller alphabet

size. Currently, perhaps the most popular such method

is Weeder (Pavesi, Mereghetti, Mauri, & Pesole, ),

which performed well in a recent comparison of motif

discovery algorithms (Tompa, Li, Bailey, Church,Moor,

Eskin, et al., ).

Proteins

A central problem in computational biology is the

classi�cation of proteins into functional and struc-

tural classes given their amino acid sequences. �e D

structure that a protein assumes a�er folding largely

determines its function in the cell. However, directly

obtaining a protein’s D structure involves di�cult

experimental techniques such as X-ray crystallography

or nuclear magnetic resonance, whereas it is relatively

easy to determine a protein’s sequence. �rough evo-

lution, structure is more conserved than sequence, so

that detecting even very subtle sequence similarities, or

remote homology, is important for predicting function.

Since the early s, researchers have developed

a battery of successively more powerful methods for

detecting protein sequence similarities. �is develop-

ment can be broken into three main stages. Early

methods focused on the pairwise comparison problem

 L Learning Models of Biological Sequences

and assessed the statistical signi�cance of similarities

between two proteins based on pairwise alignment.

�esemethods are only capable of recognizing relatively

close homologies. �e BLAST algorithm (Altschul,

Gish, Miller, Myers, & Lipman, ), based on heuris-

tic alignment, and related tools are the most widely

used methods for pairwise sequence comparison and

database search today.

In the second stage, further accuracy was achieved

by collecting aggregate statistics from a set of sim-

ilar sequences and comparing the resulting statis-

tics to a single, unlabeled protein of interest. One

important example of family-based models are pro-

�le hidden Markov models (HMMs) (Krogh, Brown,

Mian, Sjolander, & Haussler, ), probabilistic gen-

erative models estimated from a multiple alignment of

sequences from a protein family. Pro�le HMMs gener-

ate variable length sequences by allowing insertions and

deletions relative to the core residues of the alignment.

�e third stage introduced discriminative algorithms

based on classi�ers like support vector machines for

protein classi�cation and remote homology detection.

Such methods train both on positive sequences belong-

ing to a protein family as well as negative examples

consisting of sequences unrelated to the family. �ey

require protein sequences to be represented using an

explicit feature mapping or a kernel function in order

to train the classi�er. �e �rst discriminative protein

classi�cation algorithm was the SVM-Fisher method

(Jaakkola, Diekhans, & Haussler, ), which uses a

pro�le HMM to extract a feature vector of Fisher scores

for each input sequence x, de�ned by the gradient vector

∇θ logP(x∣θ)∣θ=θ ,

where logP(x∣θ) is the log likelihood function of the
sequence relative to the HMM and θ is the maximum

likelihood estimate for the model parameters. Another

feature represention that has been used is the empirical

kernel map

Φ(x) = ⟨s(x, x), . . . , s(xm, x)⟩,

where s(x, y) is a function depending on a pairwise
similarity score between x and y and xi, i =  . . .m,
are the training sequences Liano et al. (). In addi-

tion, it is possible to construct useful kernels directly

without explicitly depending on generative models by

using subsequence-based string kernels. For example,

the mismatch kernel (Leslie, Eskin, Weston, & Noble,

) is de�ned by a histogram-like feature map. �e

feature space is indexed by all possible k-length subse-

quences α = aa . . . ak, where each ai is a character

in the alphabet A of amino acids. �e feature map is
de�ned on k-gram α by Φ(α) = (ϕβ(α))

A
k where

ϕβ(α) =  if α is within m mismatches of β,  oth-

erwise, and is extended additively to longer sequences:

Φ(x) = ∑k−grams∈xΦ(α).

Genes

A�er a genome (or a portion of a genome) has been

sequenced, a biologist’s �rst question is usually, “Where

are the genes?” In simple organisms, most of the

genome is translated into proteins, and so the gene-

�nding problem reduces, essentially, to identifying the

boundaries between genes. Inmore complex organisms,

a large proportion of the genome consists of non pro-

tein coding DNA. �e human genome, for example,

is comprised of approximately % non-coding DNA.

�is non-coding DNA is interspersed between coding

regions and even in the midst of a single coding region.

�e gene-�nding problem, canonically, is to identify the

regions of a given DNA sequence that encode proteins.

Initial methods for gene �nding combined scores

produced by di�erent types of detectors. A signal detec-

tor attempts to recognize local, �xed-length features,

such as characterize the boundaries between coding

and non-coding regions within a single gene. A con-

tent detector attempts to recognize larger patterns on

the basis of compositional statistics. Early gene �nding

algorithms combined these various scores in an ad hoc

fashion to identify gene-like regions.

In the mid-s, several research groups began

using HMMs for gene �nding. HMMs provide a

coherent, fully probabilistic method that is capable of

capturing many of the complexities of real genes. Per-

haps the most widely used such method is Genscan

(Burge & Karlin, ), which uses ��h-order Markov

statistics along with variable duration HMMs.

Gene �nding is now a very mature �eld, but

advances continue to be made using, e.g., conditional

random �eldmodels (Bernal, Crammer, Hatzigeorgiou,

& Pereira, ) and large-margin structured output

techniques (Rätsch et al., ).

Learning Models of Biological Sequences L 

L

RNAs

Most RNA molecules are so-called messenger RNAs,

which are used in the production of a corresponding

protein molecule. Some RNAs, however, do not code

for proteins but instead function on their own. �ese

RNAs fall into functional categories, but they are not

easily recognized byHMMsbecause () theRNAs them-

selves are o�en very short, and () functional RNA

typically folds up in a deterministic fashion, and there-

fore exhibits nonlocal dependencies along the RNA

sequence.

Useful RNA modeling is therefore accomplished

using covariance models, which are a subclass of

stochastic context-free grammars. �e foundational

work in this area was due to Eddy and Durbin (),

who addressed both the structure inference problem

and the inference of transition and emission probabil-

ities given the structure. �ey applied these algorithms

to transfer RNAs (tRNAs), and the approach was the

basis for widely used tools such as Rfam.

Much e�ort in RNA covariance models has been

devoted to improving the time and space e�ciency of

the algorithms associated with covariance models. For

example, Eddy () introduced a memory-e�cient

variant of the core dynamic programming algorithm

used to align a covariance model to an RNA sequence.

�is improvement was practically important, since it

reduced the O(N) space requirement for a length N

RNA sequence. Other work has focused on accelerating

database search using the modeled families.

Recent e�orts have focused on algorithms for

genome-wide screens to discover functional non-

coding RNAs as well as small regulatory RNAs like

microRNAs. Various approaches to this problem have

incorporated conservation as well as RNA structure

prediction, both using covariance models and other

methodologies. One such algorithm is RNAz (Washietl,

Hofacker, & Stadler, ), which combines a mea-

sure for thermodynamic stability with a measure for

structure conservation in an SVM approach to detect

functional RNAs in multiple sequence alignments.

Phylogenetic Models

Phylogenetic models attempt to infer the series of evo-

lutionary events (mutations, insertions, deletions, etc.)

that gave rise to an observed collection of DNA or

protein sequences. In most cases, these models ignore

the possibility of copying DNA between individuals or

species, and therefore represent the history as a phylo-

genetic tree, in which leaf nodes represent the observed

sequences, and the internal nodes represent unobserved

ancestral sequences. Of primary interest is inferring the

topology and branch lengths of this tree.

Methods for phylogenetic tree inference can be

divided into three classes: parsimony, distance, and like-

lihood methods, all described in detail in Felsenstein

().

Parsimony methods search for a tree that requires

the smallest number of mutations, insertions or dele-

tions along its branches. Because the search space of

possible tree topologies is so large, this approach is fea-

sible only for relatively small sets of sequences – tens

rather than hundreds. Also, because parsimony mod-

els do not allow for so-called back-mutations – where a

letter mutates to a di�erent letter and then back again

– and other similar events, parsimony models are prov-

ably suboptimal for distantly related sequences.

Distance methods replace parsimony with a

generalized notion of distance, which may include

back-mutation. A series of increasingly sophisticated

distance metrics have been developed in this domain,

starting with the one-parameter Jukes-Cantor model

and the two-parameter Kimura model. Given an

all-versus-all distance matrix, various tree inference

algorithms can be used, including neighbor joining and

agglomerative hierarchical clustering (called UPGMA

in phylogenetics).

�e third class of models use a fully probabilistic

approach and attempt to infer the tree with maximum

likelihood, given the observed sequences.�is approach

was �rst outlined by Felsenstein (), but was not

computationally feasible for large sets of sequences until

recently. Currentmethods employMarkov chainMonte

Carlo methods to carry out the search.

Programs and Data

Following are some of the more popular web sites for

performing biological sequence analysis:

● BLAST and PSI-BLAST (http://www.ncbi.nlm.nih.

gov/BLAST) search a protein or DNA sequence

database with a given, query sequence, and return

a ranked list of homologs.

http://www.ncbi.nlm.nih.gov/BLAST
http://www.ncbi.nlm.nih.gov/BLAST

 L Learning Vector Quantization

● MEME (http://meme.sdsc.edu) searches a given set

of DNA or protein sequences for one or more recur-

rent motif patterns.

● HMMER (http://hmmer.janelia.org) is an HMM

toolkit for training and searching with pro�le

HMMs of proteins.

● Pfam (http://pfam.janelia.org) is a searchable library

of pro�le HMMs corresponding to a curated collec-

tion of homologous protein domains.

● Rfam (http://rfam.janelia.org) is an analagous

database of multiple sequence alignments and

covariance models covering many common non-

coding RNA families.

● PHYLIP (http://evolution.genetics.washington.edu/

phylip.html) is a free so�ware toolkit that includes

many common phylogenetic inference

algorithms.

Recommended Reading
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J.

(). A basic local alignment search tool. Journal of Molecular

Biology, , –.

Bailey, T. L., & Elkan, C. P. (). Fitting a mixture model by

expectation-maximization to discover motifs in biopolymers.

In R. Altman, D. Brutlag, P. Karp, R. Lathrop, & D. Searls (Eds.),

Proceedings of the second international conference on intelligent

systems for molecular biology (pp. –). AAAI Press.

Bernal, A., Crammer, K., Hatzigeorgiou, A., & Pereira, F. ().

Global discriminative learning for higher-accuracy computa-

tional gene prediction. PLoS Computational Biology, , c.

Burge, C., & Karlin, S. (). Prediction of complete gene structures

in human genomic DNA. Journal of Molecular Biology, (),

–.

Eddy, S. R. (). A memory-efficient dynamic programming algo-

rithm for optimal alignment of a sequence to an rna secondary

structure. BMC Bioinformatics, , .

Eddy, S. R., & Durbin, R. (). RNA sequence analysis using

covariance models. Nucleic Acids Research, , –.

Felsenstein, J. (). Maximum-likelihood estimation of evolu-

tionary trees from continuous characters. American Journal of

Human Genetics, , –.

Felsenstein, J. (). Inferring phylogenies. Sunderland MA: Sinauer

Associates, .

Jaakkola, T., Diekhans, M., & Haussler, D. (). A discriminative

framework for detecting remote protein homologies. Journal of

Computational Biology, (-), –.

Krogh, A., Brown, M., Mian, I., Sjolander, K., & Haussler, D. ().

Hidden Markov models in computational biology: Applications

to protein modeling. Journal of Molecular Biology, , –

.

Lawrence, C. E., Altschul, S. F., Boguski, M. S., Liu, J. S., Neuwald, A.

F., & Wootton, J. C. (). Detecting subtle sequence sig-

nals: A Gibbs sampling strategy for multiple alignment. Science,

(), –.

Lawrence, C. E., & Reilly, A. A. (). An expectation maximiza-

tion (EM) algorithm for the identification and characterization

of common sites in unaligned biopolymer sequences. Proteins,

(), –.

Leslie, C., Eskin, E., Weston, J., & Noble, W. S. (). Mismatch

string kernels for SVM protein classification. In S. Becker,

Thrun, & Obermayer (Eds.) Advances in neural information pro-

cessing systems, (pp. –). Cambridge, MA: . MIT

Press.

Liao, Li and William Stafford Noble. “Combining pairwise sequence

similarity and support vector machines for remote protein

homology detection”. In Proceedings of the sixth annual inter-

national conferrence on research in computational molecular

biology, April -, . pp. –.

Pavesi, G., Mereghetti, P., Mauri, G., & Pesole, G. (). Weeder

web: Discovery of transcription factor binding sites in a set of

sequences from co-regulated genes. Nucleic Acids Research, 

(Web server issue), W–.

Rätsch, G., Sonnenburg, S., Srinivasan, J., Witte, H., Müller, K. R.,

Sommer, R., et al. (). Improving the C. elegans genome

annotation using machine learning. PLoS Computational Biol-

ogy, (), e.

Tompa, M., Li, N., Bailey, T. L., Church, G. M., de Moor, B., Eskin, E.,

et al. (). Assessing Computational tools for the discovery of

transcription factor binding sites. Nature Biotechnology, (),

–.

Washietl, S., Hofacker, I. L., & Stadler, P. F. (). Fast and reli-

able prediction of noncoding rnas. Proceedings of the National

Academy of Sciences USA, (), –.

Learning Vector Quantization

Synonyms
LVQ

Definition
Learning vector quantization (LVQ) algorithms pro-

duce prototype-based classi�ers. Given a set of labeled

prototype vectors, each input vector is mapped to the

closest prototype, and classi�ed according to its label.

�e basic LVQ learning algorithm works by itera-

tively moving the closest prototype toward the cur-

rent input if their labels are the same, and away from

the input if not. Some variants of the algorithm have

been shown to approximate Bayes optimal decision

borders. �e algorithm was introduced by Kohonen,

and being prototype-based it bears close resemblance

to 7competitive learning and 7Self-Organizing Maps.
�e di�erences are that LVQ is supervised and the pro-

totypes are not ordered (i.e., there is no neighborhood

function).

http://meme.sdsc.edu
http://hmmer.janelia.org
http://pfam.janelia.org
http://rfam.janelia.org
http://evolution.genetics.washington.edu/phylip.html
http://evolution.genetics.washington.edu/phylip.html

Least-Squares Reinforcement Learning Methods L 

L

Learning with Different
Classification Costs

7Cost-Sensitive Learning

Learning with Hidden Context

7Concept Dri�

Learning Word Senses

7Word Sense Disambiguation

Least-Squares
Reinforcement Learning Methods

Michail G. Lagoudakis

Technical University of Crete

Crete, Greece

Definition
Most algorithms for sequential decision making rely

on computing or learning a value function that cap-

tures the expected long-term return of a decision at

any given state. Value functions are in general com-

plex, nonlinear functions that cannot be represented

compactly as they are de�ned over the entire state or

state-action space.�erefore, most practical algorithms

rely on value function approximation methods and the

most common choice for approximation architecture is

a linear architecture. Exploiting the properties of lin-

ear architectures, a number of e�cient learning algo-

rithms based on least-squares techniques have been

developed. �ese algorithms focus on di�erent aspects

of the approximation problem and deliver diverse solu-

tions, nevertheless they share the tendency to process

data collectively (batch mode) and, in general, achieve

better results compared to their counterpart algorithms

based on stochastic approximation.

Motivation and Background
Consider a7MarkovDecision7Process (MDP) (S ,A,P ,
R, γ,D), where S is the state space, A is the action
space, P(s′∣s, a) is a Markovian transition model,
R(s, a) is a reward function, γ ∈ (, ] is the
discount factor, and D is the initial state distribu-
tion. A linear approximation architecture approximates

the value function Vπ(s) or Qπ(s, a) of a stationary
(stochastic) policy π(a∣s) as a linear weighted com-
bination of linearly-independent basis functions or

features ϕ:

V̂π(s;w) =
k

∑
j=

ϕj(s)wj = ϕ(s)⊺w

Q̂π(s, a;w) =
m

∑
j=

ϕj(s, a)wj = ϕ(s, a)⊺w.

�e parameters or weights of the approximation are the

coe�cients w.

Let Vπ and V̂π be the exact and the approximate,

respectively, state value function of a policy π, both

given as column vectors of size ∣S∣. De�ne ΦV as the

(∣S∣ × k) matrix with elements ϕj(s), where s ∈ S span
the rows and j = , , ..., k span the columns. �en, V̂π

can be expressed compactly as V̂π = ΦVw
π . Similarly,

letQπ and Q̂π be the exact and the approximate, respec-

tively, state-action value function of a policy π, both

given as column vectors of size ∣S∣∣A∣. De�ne ΦQ as

the (∣S∣∣A∣ × m) matrix with elements ϕj(s, a), where
(s, a) ∈ (S × A) span the rows and j = , , ...,m span
the columns. �en, Q̂π can be expressed compactly as

Q̂π = ΦQw
π . In addition, letR be a vector of size ∣S∣∣A∣

with entries R(s, a) that contains the reward function,
P be a stochastic matrix of size (∣S∣∣A∣ × ∣S∣) that con-
tains the transition model (P((s, a), s′) = P(s′∣s, a)),
and Ππ be a stochastic matrix of size (∣S∣ × ∣S∣∣A∣)
that describes policy π (Ππ(s, (s, a)) = π(a∣s)). �e
state value function Vπ and the state-action value

function Qπ are the solutions of the linear Bellman

equations

Vπ = Ππ(R + γPVπ)
Qπ = R + γPΠπQ

π

 L Least-Squares Reinforcement Learning Methods

and also the �xed points of the corresponding linear

Bellman operators

Vπ = Tπ
V(Vπ), where Tπ

V(x) = Ππ(R + γPx)
Qπ = Tπ

Q(Qπ), where Tπ
Q(x) = R + γPΠπx.

If Vπ and Qπ were known, they could be projected

orthogonally onto the space spanned by the basis func-

tions to obtain the optimal least-squares approximation.

(For simplicity of presentation, we consider only uni-

form least-squares criteria in this text, but generaliza-

tion to weighted least-squares criteria is possible in all

cases). For the state value function we have:

V̂π = ΦVw
π = ΦV (Φ⊺

VΦV)
−
Φ⊺

VV
π

wπ = Φ−
V ΦV (Φ⊺

VΦV)
−
Φ⊺

VV
π
,

whereas for the state-action value function we have:

Q̂π = ΦQw
π = ΦQ (Φ⊺

QΦQ)
−
Φ⊺

QQ
π

wπ = Φ−
Q ΦQ (Φ⊺

QΦQ)
−
Φ⊺

QQ
π
.

�e learning algorithms described here strive to �nd a

set of parameters w, such that the approximate value

function is a good approximation to the true one. How-

ever, since the exact value functions are unknown, these

algorithms have to rely on information contained in

the Bellman equations and the Bellman operators to

derive expressions that characterize a good choice for

w. It has been shown that, in many cases, this kind of

learning is equivalent to approximating the MDP using

a linear (compressed) model and solving exactly the

approximate model (Parr et al., ).

Bellman Residual Minimizing Approximation

An obvious approach to deriving a good approximation

is to require that the approximate function satis�es the

linear Bellman equation as closely as possible. Substi-

tuting the approximation V̂π into the Bellman equation

for Vπ yields an overconstrained linear system over the

k parameters wπ :

V̂π ≈ Ππ(R + γPV̂π)
ΦVw

π ≈ Ππ(R + γPΦVw
π)

(ΦV − γΠπPΦV)wπ ≈ ΠπR.

Solving this overconstrained system in the least-squares

sense is a (k × k) system

(ΦV − γΠπPΦV)⊺(ΦV − γΠπPΦV)wπ

= (ΦV − γΠπPΦV)⊺ΠπR ()

whose solution is unique and minimizes

∥Tπ
V(V̂π) −V̂π∥


. Similarly, substituting the approxi-

mation Q̂π into the Bellman equation for Qπ yields an

overconstrained linear system over the m parameters

wπ :

Q̂π ≈ R + γPΠπQ̂
π

ΦQw
π ≈ R + γPΠπΦQw

π

(ΦQ − γPΠπΦQ)wπ ≈ R.

Solving this overconstrained system in the least-squares

sense is a (m ×m) system

(ΦQ − γPΠπΦQ)⊺(ΦQ − γPΠπΦQ)wπ

= (ΦQ − γPΠπΦQ)⊺R ()

whose solution is unique and minimizes

∥Tπ
Q(Q̂π) − Q̂π∥


. In both cases, the solution minimizes

the L norm of the Bellman residual (the di�erence

between the le�-hand side and the right-hand side of

the linear Bellman equation).

Least-Squares Fixed-Point Approximation

Recall that a value function is also the �xed point of

the corresponding linear Bellman operator. Another

way to go about �nding a good approximation is to

force the approximate value function to be a �xed point

under the linear Bellman operator. For that to be pos-

sible, the �xed point has to lie in the space of approx-

imate value functions, which is the space spanned by

the basis functions. Even though the approximate func-

tion itself lies in that space by de�nition, the result of

applying the linear Bellman operator to the approxima-

tion will in general be out of that space and must be

projected back. Considering the orthogonal projection

(Φ(Φ⊺Φ)−Φ⊺) (which minimizes the L norm) onto
the column space of Φ, we seek an approximate value
function that is invariant under one application of the

linear Bellman operator followed by orthogonal pro-

jection onto the space spanned by the basis functions.

Least-Squares Reinforcement Learning Methods L 

L

More speci�cally, for the state value function,we require

that

V̂π = ΦV (Φ⊺

VΦV)
−
Φ⊺

V (Tπ
V(V̂π))

ΦVw
π = ΦV (Φ⊺

VΦV)
−
Φ⊺

V (Ππ(R + γPΦVw
π)) .

Note that the orthogonal projection to the column space

of ΦV is well-de�ned, because the columns of ΦV (the

basis functions) are linearly independent by de�nition.

�e expression above is equivalent to solving a (k × k)
linear system

Φ⊺

V(ΦV − γΠπPΦV)wπ = Φ⊺

VΠπR ()

whose solution is guaranteed to exist for all, but �nitely

many, values of γ (Koller and Parr, ) and mini-

mizes (in fact, zeros out) the projected Bellman residual.

Since the orthogonal projectionminimizes theL norm,

the solution wπ yields a value function V̂π , which is

the least-squares �xed-point approximation to the true

state value function. Similarly, for the state-action value

function, we require that

Q̂π = ΦQ (Φ⊺

QΦQ)
−
Φ⊺

Q (Tπ
Q(Q̂π))

ΦQw
π = ΦQ (Φ⊺

QΦQ)
−
Φ⊺

Q (R + γPΠπΦQw
π) .

�is is equivalent to solving a (m ×m) linear system

Φ⊺Q(ΦQ − γPΠπΦQ)wπ = Φ⊺

QR ()

whose solution is again guaranteed to exist for all, but

�nitely many, values of γ (Koller and Parr, ) and

minimizes (in fact, zeros out) the projected Bellman

residual. Since the orthogonal projectionminimizes the

L norm, the solution wπ yields a value function Q̂π ,

which is the least-squares �xed-point approximation to

the true state-action value function.

Structure of Learning System
Least-Squares Temporal Difference Learning

�e least-squares temporal di�erence (LSTD) learn-

ing algorithm (Bradtke and Barto, ) learns the

least-squares �xed-point approximation to the state

value function Vπ of a �xed policy π. In essence,

LSTD attempts to form and solve the linear system of

Equation  using sampling. Each sample (s, r, s′) indi-
cates a minimal interaction with the unknown process,

whereby in some state s, a decision was made using

policy π, and reward r was observed, as well as a tran-

sition to state s′. LSTD processes a set of samples col-

lectively to derive the weights of the approximate value

function. LSTD is an on-policy method; it requires

that all training samples are collected using the policy

under evaluation. �e LSTD algorithm is summarized

in Algorithm .

LSTD improves upon the temporal di�erence (TD)

learning algorithm for linear architectures by making

e�cient use of data and converging faster. �e main

advantage of LSTD over TD is the elimination of the

slow stochastic approximation and the learning rate that

needs careful adjustment. TD uses samples to make

small modi�cations and then discards them. In con-

trast, with LSTD, the information gathered froma single

sample remains present in thematrices of the linear sys-

tem and is used in full every time the parameters are

computed. In addition, as a consequence of the elim-

ination of stochastic approximation, LSTD does not

diverge.

LSTD(λ) (Boyan, ) is an extension to LSTD
that spans the spectrum between LSTD (λ = ) and
7linear regression over Monte-Carlo returns (λ = )
for λ ∈ [, ]. LSTD(λ) for λ >  requires that samples
come from complete episodes. RLSTD(λ) is a variant
of LSTD(λ) that uses recursive least-squares techniques
for e�cient implementation (Xu et al., ).

Algorithm  Least-Squares Temporal Di�erence
(LSTD)

w = LSTD(D, k, ϕ, γ)
Input: samples D, integer k, basis functions ϕ, dis-
count factor γ

Output:weightsw of the learned state value function

A←  // (k × k)matrix
b←  // (k × ) vector
for each sample (s, r, s′) ∈ D do
A← A + ϕ(s) (ϕ(s) − γϕ(s′))⊺

b← b + ϕ(s)r
end for
w ← A−b
return w

 L Least-Squares Reinforcement Learning Methods

Bellman Residual Minimization Learning

�e main idea behind LSTD can also be used to

learn the Bellman residual minimization approxima-

tion to the state value function Vπ of a �xed policy π.

In this case, the goal is to form and solve the lin-

ear system of Equation  using sampling. However, the

structure of the system, in this case, requires that sam-

ples are “paired,” which means that two independent

samples (s, r, s′) and (s, r, s′′) for the same state s must
be drawn to perform one update. �is is necessary to

obtain unbiased estimates of the system matrices. Each

sample (s, r, s′) again indicates a minimal interaction
with the unknown process, whereby in some state s, a

decision was made using policy π, and reward r was

observed, as well as a transition to state s′. Obtain-

ing paired samples is trivial with a generative model

(a simulator) of the process, but virtually impossible

when samples are drawn directly from a physical pro-

cess. �is fact makes the Bellman residual minimiza-

tion approximation somewhat impractical for learning,

but otherwise a reasonable approach for computing

approximate state value functions from themodel of the

process (Schweitzer and Seidmann, ). �e learning

algorithm for Bellman residual minimization is sum-

marized in Algorithm .

Hybrid Least-Squares Learning

Value function learning algorithms, either in the Bell-

man residual minimization or in the �xed point sense,

have been used within approximate policy iteration

Algorithm  Bellman Residual Minimization Learning

w = BRML(D, k, ϕ, γ)
Input: paired samplesD, integer k, basis functions ϕ,
discount factor γ

Output:weightsw of the learned state value function

A←  // (k × k)matrix
b←  // (k × ) vector
for each pair of samples [(s, r, s′), (s, r, s′′)] ∈ D do
A← A + (ϕ(s) − γϕ(s′)) (ϕ(s) − γϕ(s′′))⊺

b← b + (ϕ(s) − γϕ(s′)) r
end for
w ← A−b
return w

schemes for policy learning, but in practice they exhibit

quite diverse performance. Fixed-point approximations

tend to deliver better policies, whereas Bellman resid-

ualminimization approximations �uctuate less between

di�erent rounds of policy iteration. Motivated by a

desire to combine the advantages of both approxima-

tions, some researchers have focused on learning hybrid

approximations that lie somewhere between these two

extremes. Johns et al. () have proposed two di�er-

ent approaches to combine these two approximations.

�e �rst relies on a derivation that begins with the goal

of minimizing a convex combination of the two objec-

tives (Bellman residual and projected Bellman resid-

ual); the resulting learning algorithm is quite expensive

as it requires the maintenance of three matrices and

two vectors (as opposed to one matrix and one vec-

tor when learning a non-hybrid approximation), as well

as the inversion of one of the three matrices at each

update. �e second approach focuses directly on a con-

vex combination of the linear systems produced by the

two extreme approximations (Equations  and ); the

resulting learning algorithm has the same complexity

as non-hybrid algorithms and in many cases exhibits

better performance than the original approximations.

On the other hand, both hybrid learning algorithms

still have to deal with the paired samples problem and

additionally require tuning of the convex combination

parameter.

Least-Squares Policy Evaluation

�e least-squares policy evaluation (LSPE) learning

algorithm (Nedić and Bertsekas, ), like LSTD,

learns the least-squares �xed-point approximation to

the state value function Vπ of a �xed policy π. Both

LSPE and LSTD strive to obtain the solution to the

same linear system (Equation ), but using di�erent

methods; LSPE uses an iterativemethod, whereas LSTD

uses direct matrix inversion. Unlike LSTD, LSPE begins

with some arbitrary approximation to the value func-

tion (given by a parameter vector w′) and focuses

on the one-step application of the Bellman operator

within the lower dimensional space spanned by the

basis functions aiming at producing an incremental

improvement on the parameters. In that sense, LSPE

can take advantage of a good initialization of the param-

eter vector. Given the current parameters w′ and a set

Least-Squares Reinforcement Learning Methods L 

L

Algorithm  Least-Squares Policy Evaluation (LSPE)
w = LSPE(D, k, ϕ, γ,w′, α)
Input: samples D, integer k, basis functions ϕ, dis-
count factor γ, weights w′, stepsize α

Output:weightsw of the learned state value function

A←  // (k × k)matrix
b←  // (k × ) vector
for each sample (s, r, s′) ∈ D do
A← A + ϕ(s)ϕ(s)⊺
b← b + ϕ(s) (r + γϕ(s′)⊺w′)
end for
w̄ ← A−b
w ← αw′ + ( − α)w̄
return w

{(sk, rk, s′k) : k = , . . . , t} of samples, LSPE �rst com-
putes the solution w̄ to the least-squares problem

min
w

t

∑
k=

(ϕ(sk)⊺w − (rk + γϕ (s′k)
⊺

w′))


and then updatesw′ toward w̄ using a stepsize α ∈ (, ].
�e LSPE algorithm is summarized in Algorithm .

�e LSPE incremental update at the extreme can be

performed whenever a new sample arrives or whenever

a batch of samples becomes available to remedy com-

putational costs. An e�ciency improvement to LSPE

is to use recursive least-squares computations, so that

the least-squares problem can be solved without matrix

inversion. LSPE(λ) for λ ∈ [, ] is an extension of LSPE
to multistep updates in the same spirit as LSTD(λ).
LSPE(λ) for λ >  requires that samples come from
complete episodes.

Least-Squares Policy Iteration

Least-squares policy iteration (LSPI) (Lagoudakis and

Parr, ) is a model-free, reinforcement learning

algorithm for policy learning based on the approxi-

mate policy iteration framework. LSPI learns in a batch

manner by processing multiple times the same set of

samples. LSPI is an o�-policy method; samples can be

collected arbitrarily from the process using any pol-

icy. Each sample (s, a, r, s′) indicates that the learner
observed the current state s, chose an action a, and

observed the resulting next state s′ and the reward

received r. LSPI iteratively learns a (weighted) least-

squares �xed-point approximation of the state-action

value functions (Equation ) of a sequence of improv-

ing (deterministic) policies π. At each iteration, the

value function of the policy is approximated by solv-

ing a (m × m) linear system, formed using the single
sample set and the policy from the previous iteration.

LSPI o�ers a non-divergence guarantee and in most

cases it converges in just a few iterations. LSPI exhibits

excellent sample e�ciency and has been used widely

in many domains. Algorithm  summarizes the LSPI

algorithm.

�e default internal policy evaluation procedure in

LSPI is the variation of LSTD for the state-action value

function (LSTDQ). However, any other value function

learning algorithm, such as BRML or LSPE, could be

used instead; nevertheless, the λ extensions are not

applicable in this case, because the samples in LSPI have

been collected arbitrarily and not by the policy being

evaluated each time. �e variation of LSPI that inter-

nally learns the Bellman residual minimizing approxi-

mation (Equation ) using BRML has produced inferior

policies, in general, and su�ers from the paired samples

problem.

Algorithm  Least-Squares Policy Iteration (LSPI)
w = LSPI(D,m, ϕ, γ, є)
Input: samples D, integer m, basis functions ϕ, dis-
count factor γ, tolerance є

Output: weights w of the learned value function of
the best learned policy

w ← 
repeat
A←  // (m ×m)matrix
b←  // (m × ) vector
w′ ← w

for each sample (s, a, r, s′) in D do
a′ = argmaxa′′∈A ϕ(s′, a′′)⊺w′
A← A + ϕ(s, a) (ϕ(s, a) − γϕ(s′, a′))⊺

b← b + ϕ(s, a)r
end for
w ← A−b
until (∥w −w′∥ < є)
return w

 L Leave-One-Out Cross-Validation

Least-Squares Fitted Q-Iteration

Fitted Q-iteration (FQI) (Ernst et al., ) is a batch

reinforcement learning algorithm for policy learning

based on the popular Q-Learning algorithm. FQI uses

an iterative scheme to approximate the optimal value

function, whereby an improved value function Q is

learned at each iteration by �tting a function approx-

imator to a set of training examples generated using

a set of samples from the process and the Q-Learning

update rule. Any function approximation architecture

and the corresponding supervised learning algorithm

could be used in the iteration. �e simplest choice is to

use least-squares regression alongwith a linear architec-

ture to learn the least-squares �xed-point approxima-

tion of the state-action value function (Equation ).�is

version of least-squares �ttedQ-iteration is summarized

in Algorithm . In a sense, this version of FQI com-

bines ideas from LSPE and LSPI. Like LSPI, FQI is an

o�-policy method; samples can be collected arbitrarily

from the process using any policy. In practice, FQI pro-

duces very good policies within a moderate number of

iterations.

Algorithm  Least-Squares Fitted Q-Iteration
w = LS-FQI(D,m, ϕ, γ,N)
Input: samples D, integer m, basis functions ϕ, dis-
count factor γ, iterations N

Output: weights w of the learned value function of
the best learned policy

i← 
w ← 
while (i < N) do
A←  // (m ×m)matrix
b←  // (m × ) vector
for each sample (s, a, r, s′) in D do
A← A + ϕ(s, a)ϕ(s, a)⊺
b← b + ϕ(s, a) (r + γmaxa′∈A {ϕ(s′, a′)⊺w})
end for
w ← A−b
i← i + 
end while
return w

Cross References
7Curse of Dimensionality
7Feature Selection
7Radial Basis Functions
7Reinforcement Learning
7Temporal Di�erence Learning
7Value Function Approximation

Recommended Reading
Boyan, J. A. (). Least-squares temporal difference learning. Pro-

ceedings of the Sixteenth International Conference on Machine

Learning, Bled, Slovenia, pp. –.

Bradtke, S. J., & Barto, A. G. (). Linear least-squares algorithms

for temporal difference learning. Machine Learning, , –.

Ernst, D., Geurts, P., & Wehenkel, L. (). Tree-based batch mode

reinforcement learning. Journal of Machine Learning Research,

, –.

Johns, J., Petrik, M., & Mahadevan, S. (). Hybrid least-squares

algorithms for approximate policy evaluation. Machine Learn-

ing, (–), –.

Koller, D., & Parr, R. (). Policy iteration for factored MDPs. Pro-

ceedings of the Sixteenth Conference on Uncertainty in Artificial

Intelligence, Stanford, CA, USA, pp. –.

Lagoudakis, M. G., Parr, R. (). Least-squares policy iteration.

Journal of Machine Learning Research, , –.

Nedić, A., & Bertsekas, D. P. (). Least-squares policy evaluation

algorithms with linear function approximation. Discrete Event

Dynamic Systems: Theory and Applications, (–), –.

Parr, R., Li, L., Taylor, G., Painter-Wakefield, C., & Littman, M.

L. (). An analysis of linear models, linear value-function

approximation, and feature selection for reinforcement learn-

ing, Proceedings of the twenty-fifth international conference

on machine learning, Helsinki, Finland, pp. –.

Schweitzer, P. J., & Seidmann, A. (). Generalized polynomial

approximations in Markovian decision processes. Journal of

Mathematical Analysis and Applications, (), –.

Xu, X., He, H. G., & Hu, D. (). Efficient reinforcement learn-

ing using recursive least-squares methods. Journal of Artificial

Intelligence Research, , –.

Leave-One-Out Cross-Validation

Definition
Leave-one-out cross-validation is a special case of

7cross-validation where the number of folds equals the
number of7instances in the7data set.�us, the learn-
ing algorithm is applied once for each instance, using all

other instances as a7training set and using the selected
instance as a single-item7test set.�is process is closely

Linear Discriminant L 

L

related to the statistical method of jack-knife estimation

(Efron, ).

Cross References
7Algorithm Evaluation

Recommended Reading
Efron, B. (). The Jackknife, the Bootstrap and other resam-

pling plans. In CBMS-NSF regional conference series in applied

mathematics . Philadelphia, PA: Society for Industrial and

Applied Mathematics (SIAM).

Leave-One-Out Error

Synonyms
Hold-one-out error; LOO error

Definition
Leave-one-out error is an estimate of 7error obtained
by7leave-one-out cross-validation.

Lessons-Learned Systems

7Case-Based Reasoning

Lifelong Learning

7Cumulative Learning

Life-Long Learning

7Continual Learning

Lift

Li� is ameasure of the relative utility of a7classi�cation
rule. It is calculated by dividing the probability of the

consequent of the rule, given its antecedent by the prior

probability of the consequent:

li�(x → y) = P(Y = y ∣ X = x)/P(Y = y).

In practice, the probabilities are usually estimated from

either7training data or7test data. In this case,

li�(x → y) = F(Y = y ∣ X = x)/F(Y = y)

where F(Y = y ∣ X = x) is the frequency with which the
consequent occurs in the data in the context of the

antecedent and F(Y = y) is the frequency of the conse-
quent in the data.

Linear Discriminant

Novi Quadrianto, Wray L. Buntine

RSISE, ANU and SML, NICTA, Canberra, Australia

Definition
A discriminant is a function that takes an input variable

and outputs a class label for it. A linear discriminant is a

discriminant that is linear in the input variables. �is

article focuses on one such linear discriminant func-

tion called Fisher’s linear discriminant. Fisher’s discrim-

inant works by �nding a projection of input variables

to a lower dimensional space while maintaining a class

separability property.

Motivation and Background
�e curse of dimensionality (7Curse of Dimensional-
ity) is an ongoing problem in applying statistical tech-

niques to pattern recognition problems. Techniques

that are computationally tractable in low-dimensional

spaces can become completely impractical in high-

dimensional spaces. Consequently, various methods

have been proposed to reduce the dimensionality of the

input or feature space in the hope of obtaining a more

manageable problem. �is relies on the fact that real

data will o�en be con�ned to a region of the space hav-

ing lower e�ective dimensionality, and in particular the

directions over which important variations in the out-

put variables occurmay be so con�ned. For example, we

can reduce a d-dimensional problem to one dimension

 L Linear Discriminant

if we project the d-dimensional data onto a line. How-

ever, arbitrary projectionswill usually produce cluttered

projected samples from all of the classes. �us, the aim

is to �nd a good projection so that the projected samples

are well separated. �is is exactly the goal of Fisher’s

linear discriminant analysis.

Fisher’s Discriminant for Two-Category
Problem
Given N observed training data points {(xi, yi)}Ni=
where yi ∈ {, . . . , Ω} is the label for an input variable
xi ∈Rd, our task is to �nd the underlying discrimi-

nant function, f : Rd → {, . . . , Ω}. �e linear dis-
criminant seeks a projection of d-dimensional input

onto a line in the direction of w ∈ Rd, such that

y = wTx. ()

Subsequently, a class label assignment can be performed

by thresholding the projected values, for example y ≥ C

as class  and otherwise as class  for an appropriate

choice of constant C. While the magnitude of w has no

real signi�cance (acts only as a scaling factor to y), the

direction of w plays a crucial role. Inappropriate choice

of w can result in an non-informative heavily cluttered

line. However, by adjusting the components of weight

w, we can �nd a projection that maximizes the class

separability (Fig. ). It is crucial to note that whenever

the underlying data distributions are multimodal and

highly overlapping, it might not be possible to �nd such

a projection.

Consider a two-category problem, Ω and Ω with

N and N number of data points, respectively. �e

d-dimensional sample mean is given by

µ =


N
∑
i∈Ω

xi µ =


N
∑
i∈Ω

xi. ()

�e simplest class separability criterion is the separa-

tion of the projected class mean, that is we can �nd the

weight w that maximizes

m −m =


N
∑
i∈Ω

wTxi −


N
∑
i∈Ω

wTxi = wT(µ − µ),

()

where m and m are the projected class means. An

additional unit length constraint on w, i.e., ∑i w

i = 

should be imposed to have a well-de�ned maximiza-

tion problem.�e above separability criterion produces

a line that is parallel to the line joining the two means.

However, this projection is sub-optimal whenever the

data has distinct covariances depending on class (i.e., it

is un-isotropic).

Fisher’s criterion maximizes a large separation

between the projected class means while also minimiz-

ing a variance within each class. �is criterion can be

expressed as

J(w) = wTSBw

wTSWw
. ()

where the total within-class covariance matrix is

SW = ∑
i∈Ω

(xi−µ)(xi−µ)T+∑
i∈Ω

(xi−µ)(xi−µ)T , ()

Wa

Wb

Linear Discriminant. Figure . Colors encode class labels. Projection of samples onto two different lines. The plot on

the left shows greater separation between the white and black projected points

Linear Regression L 

L

and a between-class covariance matrix is

SB = (µ − µ)(µ − µ)T . ()

�e maximizer of () can be found by setting its �rst

derivative with respect to theweights vector to zero, that

is

(wTSBw)SWw = (wTSWw)SBw. ()

It is clear from (), that SB is always in the direction of

(m −m). As only the direction of w is important, we
can drop the scaling factors in (), those are (wTSBw)
and (wTSWw). Multiplying both sides of () by S−W , we
can then obtain the solution of w that maximizes () as

w = S−W(µ − µ). ()

Fisher’s Discriminant for Multi-category
Problem
For the general Ω-class problem, we seek a projection

from d-dimensional space to a (Ω − )-dimensional
spacewhich is accomplished byΩ− linear discriminant
functions, that is

yc = wT
c x c = , . . . , Ω − . ()

In the matrix notation, y = WTx for W ∈ Rd×(Ω−)

and y ∈ R(Ω−). �e generalization of the within-class
covariance matrix in () to the case of Ω classes is

SW = ∑Ωc= Sc with Sc = ∑i∈c(xi − µc)(xi − µc)T . Fol-
lowing Duda and Hart (), the between-class covari-

ance matrix is de�ned as the di�erence between the

total covariance matrix, ∑N
i=(xi − µ)(xi − µ)T , where

µ denotes the total sample mean of the dataset, and the

within-class covariance matrix. One of the criterion to

be optimized is (Fukunaga, )

J(w) = Trace((WTSWW)−(WTSBW)). ()

�e maximizer of () is eigenvectors of S−WSB associ-

ated with Ω −  largest eigenvalues. It is important to
note that the between-class covariance matrix SB is the

sum of Ω matrices of rank one or less, and because only

Ω −  of these matrices are independent, SB has rank at
most equal to Ω− and so there are atmost Ω− nonzero
eigenvalues. �erefore, we are unable to �nd more than

Ω −  discriminant functions (Fukunaga, ).

Cross References
7Regression
7Support Vector Machines

Recommended Reading
Most good statistical text books cover this.

Bellman, R. E. (). Adaptive control processes. Princeton:

Princeton University Press.

Duda, R. O., & Hart, P. E. (). Pattern classification and scene

analysis. New York: Wiley.

Fukunaga, K. (). Introduction to statistical pattern recognition

(nd ed.). San Diego: Academic.

Linear Regression

Novi Quadrianto, Wray L. Buntine

RSISE, ANU and SML, NICTA, Canberra, Australia

Definition
Linear Regression is an instance of the 7Regression
problem which is an approach to modelling a func-

tional relationship between input variables x and an

output/response variable y. In linear regression, a lin-

ear function of the input variables is used, and more

generally a linear function of some vector function of

the input variables ϕ(x) can also be used. �e linear
function estimates the mean of y (or more generally the

median or a quantile).

Motivation and Background
Assume we are given a set of data points sampled from

an underlying but unknown distribution, each of which

includes input x and output y. �e task of regression

is to learn a hidden functional relationship between x

and y from observed and possibly noisy data points, so

y is to be approximated in some way by f (x). �is is
the task covered in more detail in Regression. A gen-

eral approach to the problem is to make the function

f () be linear. Depending on the optimization criteria
used to �t between the linear function f (x) and the
output y, this can include many di�erent regression

techniques, but optimization is generally easier because

of the linearity.

 L Linear Regression

Theory/Solution
Formally, in a regression problem, we are interested

in recovering a functional dependency yi = f (xi) +
єi from N observed training data points {(xi, yi)}Ni=,
where yi ∈ R is the noisy observed output at input loca-
tion xi ∈ Rd. For the linear parametric technique, we

tackle this regression problem by parameterizing the

latent regression function f () by a parameter w ∈ RH ,

that is f (xi) := ⟨ϕ(xi),w⟩ for H �xed basis functions
{ϕh(xi)}Hh=. Note that the function is a linear function
of the weight vector w. �e simplest form of the lin-

ear parametric model is when ϕ(xi) = xi ∈ Rd, that is

the model is also linear with respect to the input vari-

ables, f (xi) := w + wx

i + ⋯ + wdx

d
i . Here the weight

w allows for any constant o�set in the data. With gen-

eral basis functions such as polynomials, exponentials,

sigmoids, or even more sophisticated Fourier or wave-

lets bases, we can obtain a regression function which is

nonlinear with respect to the input variables although

still linear with respect to the parameters.

In the subsequent section, the simplest and thus

common linear parametric method for solving a regres-

sion problem is covered, the least squares method.

Least Squares Method Let X ∈ RN×d be a matrix of

input variables and y ∈ RN be a vector of output vari-

ables.�e least squaresmethodminimizes the following

sum of squared error,

E(w) = (Xw − y)T(Xw − y) ()

to infer the weight vector w. Note that the above error

function is quadratic in the w, thus the minimization

has a unique solution and leads to a closed-form expres-

sion for the estimated value of the unknown weight

vector w. �e minimizer of the error function in () can

be found by setting its �rst derivative with respect to the

weight vector to zero, that is

∂wE(w) = XT(Xw − y) =  ()

w∗ = (XTX)−XTy. ()

�e term

(XTX)−XT
:= X† ()

is known as the Moore-Penrose pseudo-inverse (Golub

& Van Loan, ) of the matrix X. �is quantity can

be regarded as a generalization of a matrix inverse to

nonsquare matrices. Whenever X is square and invert-

ible, X† ≡ X−. Having computed the optimal weight

vector, we can then predict the output value at a novel

input location xnew simply by taking an inner product:

ynew = ⟨ϕ(xnew),w∗⟩.
Under the assumption of an independent and nor-

mally distributed noise term, єi ∼ N(, σ ), the above
least squares approach can be shown to be equivalent to

the maximum likelihood solution. With the Gaussian

noise term, the log-likelihood model on an output vec-

tor y and an input matrix X is

ln p(y∣X,w) = ln N(Xw, σ I) ()

= −N

ln(πσ ) − 

σ 
(y − Xw)T(y − Xw).

()

Maximizing the above likelihood function with respect

to w will give the optimal weight to be in the form of

(). We can also �nd the maximum likelihood estimate

of the noise variance by setting the �rst derivative of ()

with respect to σ  to zero, that is

σ ML =


N
(y − Xw)T(y − Xw). ()

Geometrical Interpretation of Least Squares Method Let

y be a vector in an N-dimensional space whose axes are

given by {yi}Ni=. Each of theH basis functions evaluated
at N input locations can also be represented as a vector

in the same N-dimensional space. For notational con-

venience, we denote this vector as ψh. �eH vectors ψh

will span a linear subspace of dimensionality H when-

ever the number of basis functions H is smaller than

the number of input locations N (see Fig. ). Denote

Φ ∈ RN×H as a matrix whose rows are the vectors

{ϕh(xi)}Hh=. Our linear prediction model, Φw (in the
simplest form Xw) will be an arbitrary linear combina-

tion of the vectors ψh. �us, it can live anywhere in the

H-dimensional space. �e sum of squared error crite-

rion in () then corresponds to the squared Euclidean

distance between Φw and y. �erefore, the least squares

solution of w corresponds to the orthogonal projection

of y onto the linear subspace. �is orthogonal projec-

tion is associated with the minimum of the squared

Euclidean distance. As a side note, from Fig. , it is clear

that the vector y −Φw is normal (perpendicular) to the
range of Φ thus ΦTΦw = ΦTy is called the normal

equation associated with the least squares problem.

Linear Regression L 

L

2

1

Linear Regression. Figure . Geometrical interpretation

of least squares. The optimal solution w∗ with respect to

the least squares criterion corresponds to the orthogonal

projection of y onto the linear subspace which is formed

by the vectors of the basis functions

Practical note: �e computation of () requires an

inversion of anH byH matrix ΦTΦ (or a d by dmatrix

XTX). A direct inversion of this matrix might lead

to numerical di�culties when two or more basis vec-

tors ψh or input dimensions are (nearly) collinear. �is

problem can be addressed conveniently by using Sin-

gular Value Decomposition (SVD) (Press, Teukolsky,

Vetterling, & Flannery, ). It is important to note

that adding a regularization term (see also the later sec-

tion on ridge regression) ensures the non-singularity of

ΦTΦ matrix, even in the presence of degeneracies.

Sequential Learning of Least Squares Method Compu-

tation of the optimal weight vector in () involves the

whole training set comprisingN data points.�is learn-

ing technique is known as a batch algorithm. Real

datasets can however involve large numbers of data

points which might make batch techniques computa-

tionally prohibitive. In contrast, sequential algorithms

or online algorithms process one data point at a time,

and can be more suited to handle large datasets.

We can use a sequential algorithm called stochastic

gradient descent for learning the optimal weight vector.

�e objective function of () can be decomposed into

∑N
i=(⟨xi,w⟩ − yi). �is transformation suggests a sim-
ple stochastic gradient descent procedure: we traverse

the data point i and update the weight vector using

wt+ ← wt − η(⟨xi,wt⟩ − yi)xi, ()

�is algorithm is known as LMS (Least Mean Squares)

algorithm. In the above equation, t denotes the iteration

number and η denotes the learning rate. �e value of η

needs to be chosen carefully to ensure the convergence

of the algorithm.

Regularized/Penalized Least Squares Method �e issue

of over-�tting as mentioned in Regression is usually

addressed by introducing a regularization or penalty

term to the objective function.�e regularized objective

function is now in the form of

Ereg = E(w) + λR(w). ()

Here E(w) measures the quality (such as least squares
quality) of the solution on the observed data points,

R(w) penalizes complex solutions, and λ is called the

regularization parameter which controls the relative

importance between the two. �is regularized formu-

lation is sometimes called coe�cient shrinkage as it

shrinks coe�cients/weights toward zero (c.f. coe�cient

subset selection formulation where the best k out of

H basis functions are greedily selected). Two simple

penalty terms R(w) are given next, but more gener-
ally measures of curvature can also be used to penalize

non-smooth functions.

Ridge regression �e regularization term is in the form

of

R(w) =
D

∑
d=

wd. ()

Considering E(w) to be in the form of (), the regular-
ized least squares quality function is now

(Xw − y)T(Xw − y) + λwTw. ()

Since the additional term is a quadratic of w, the

regularized objective function is still quadratic in w,

thus the optimal solution is unique and can be found

in closed form. As before, setting the �rst derivative of

() with respect to w to zero, the optimal weight vector

is in the form of

∂wEreg(w) = XT(Xw − y) + λw =  ()

w∗ = (XTX + λI)−XTy. ()

 L Linear Regression Trees

�e e�ect of the regularization term is to put a small

weight for those basis functions which are useful only

in a minor way as the penalty for small weights is very

small.

Lasso regression �e regularization term is in the form

of

R(w) =
D

∑
d=

∣wd∣. ()

In contrast to ridge regression, lasso regression

(Tibshirani, ) has no closed-form solution. In

fact, the non-di�erentiability of the regularization

term has produced many approaches. Most of the

methods involve quadratic programming and recently

coordinate-wise descent algorithms for large lasso prob-

lems (Friedman et al., ). Lasso regression leads to

sparsity in w, that is, only a subset of w is nonzero, so

irrelevant basis functions will be ignored.

Cross References
7Correlation Matrix
7Gaussian Processes
7Regression

Recommended Reading
Statistical textbooks and machine learning textbooks, such as Bishop

() among others, introduce different linear regression models.

For a large variety of built-in linear regression techniques, refer to

R (http://www.r-project.org/).

Bishop, C. (). Pattern recognition and machine learning. New

York: Springer.

Friedman, J., Hastie, T., Hölfling, H., & Tibshirani, R. ().

Pathwise coordinate optimization. Annals of statistics, ():

–.

Golub, G.H., & Van Loan, C.F. ().Matrix computations (rd ed.).

Baltimore: John Hopkins University Press.

Press, W.H., Teukolsky, S.A., Vetterling, W.T., & Flannery, B.P.

(). Numerical recipes in C: The art of scientific comput-

ing (nd ed.). Cambridge: Cambridge University Press. ISBN

---.

Tibshirani, R. (). Regression shrinkage and selection via the

lasso. Journal of the Royal Statistical Society. Series B. Statistical

Methodology, , –.

Linear Regression Trees

7Model Trees

Linear Separability

Two classes are linearly separable if there exists a hyper-

plane that separates the data for each of the classes.

Cross References
7Perceptrons
7Support Vector Machines

Link Analysis

7Link Mining and Link Discovery

Link Mining and Link Discovery

Lise Getoor

University of Maryland, College Park, MD, USA

Synonyms
Link analysis; Network analysis

Definition
Many domains of interest today are best described

as a linked collection of interrelated objects. Datasets

describing these domains may describe homogeneous

networks, in which there is a single-object type and

link type, or richer, heterogeneous networks, in which

there may be multiple object and link types (and possi-

bly other semantic information). Examples of homoge-

neous networks include social networks, such as people

connected by friendship links, or the WWW, a collec-

tion of linked web pages. Examples of heterogeneous

networks include those in medical domains describing

patients, diseases, treatments and contacts, or biblio-

graphic domains describing publications, authors, and

venues. Link mining refers to data mining techniques

that explicitly consider these links when building pre-

dictive or descriptive models of the linked data. Com-

monly addressed link mining tasks include collective

classi�cation, object ranking, group detection, link pre-

diction, and subgraph discovery. Additional important

http://www.r-project.org/

Link Mining and Link Discovery L 

L

components include entity resolution, and other data

cleaning and data mapping operations.

Motivation and Background
“Links,” ormore generically “relationships,” among data

instances are ubiquitous. �ese links o�en exhibit pat-

terns that can indicate properties of the data instances

such as the importance, rank, or category of the

instances. In some cases, not all links will be observed;

therefore, we may be interested in predicting the exis-

tence of links between instances. Or, we may be inter-

ested in identifying unusual or anomalous links. In

other domains, where the links are evolving over time,

our goal may be to predict whether a link will exist in

the future, given the previously observed links. By tak-

ing links into account, more complex patterns may be

discernable as well.�is observation leads to other chal-

lenges focused on discovering substructures, such as

communities, groups, or common subgraphs. In addi-

tion, links can also help in the process of7entity resolu-
tion, or �guring out when two instance references refer

to the same underlying entity.

Link mining is a newly emerging research area

that is at the intersection of the work in link analysis

(Feldman, ; Jensen & Goldberg, ) hypertext

andwebmining (Chakrabarti, ),7relational learn-
ing and 7inductive logic programming (Raedt, ),
and 7graph mining (Cook & Holder, ). We use
the term link mining to put a special emphasis on the

links –moving them up to �rst-class citizens in the data

analysis endeavor.

Theory/Solution
Traditional datamining algorithms such as7association
rule mining, market basket analysis, and cluster anal-

ysis commonly attempt to �nd patterns in a dataset

characterized by a collection of independent instances

of a single relation. �is is consistent with the classi-

cal statistical inference problem of trying to identify

a model given an independent, identically distributed

(IID) sample. One can think of this process as learning

amodel for the node attributes of a homogeneous graph

while ignoring the links between the nodes.

A key emerging challenge for data mining is tack-

ling the problem of mining richly structured, heteroge-

neous datasets. �ese kinds of datasets are commonly

described as networks or graphs. �e domains o�en

consist of a variety of object types; the objects can

be linked in a variety of ways. �us, the graph may

have di�erent node and edge (or hyperedge) types.

Naively applying traditional statistical inference proce-

dures, which assume that instances are independent,

can lead to inappropriate conclusions about the data

(Jensen, ). Care must be taken that potential corre-

lations due to links are handled appropriately. In fact,

object linkage is knowledge that should be exploited.

�is information can be used to improve the predic-

tive accuracy of the learned models: attributes of linked

objects are o�en correlated, and links are more likely to

exist between objects that have some commonality. In

addition, the graph structure itself may be an important

element to include in the model. Structural proper-

ties such as degree and connectivity can be important

indicators.

Data Representation
While data representation and feature selection are sig-

ni�cant issues for traditional machine learning algo-

rithms, data representation for linked data is even more

complex. Consider a simple example from Singh et al.

() of a social network describing actors and their

participation in events. Such social networks are com-

monly called a�liation networks (Wasserman & Faust,

), and are easily represented by three tables rep-

resenting the actors, the events, and the participation

relationships. Even this simple structure can be rep-

resented as several distinct graphs. �e most natural

representation is a bipartite graph, with a set of actor

nodes, a set of event nodes, and edges that represent an

actor’s participation in an event. Other representations

may enable di�erent insights and analysis. For exam-

ple, we may construct a network in which the actors are

nodes and edges correspond to actors who have partici-

pated in an event together.�is representation allows us

to perform a more actor-centric analysis. Alternatively,

wemay represent these relations as a graph in which the

events are nodes, and events are linked if they have an

actor in common. �is representation may allow us to

more easily see connections between events.

�is �exibility in the representation of a graph arises

from a basic graph representation duality. �is duality

is illustrated by the following simple example: Consider

 L Link Mining and Link Discovery

a data set represented as a simple G = (,L), where
 is the set of objects (i.e., the nodes or vertices) and
L is the set of links (i.e., the edges or hyperedges). �e
graph G(,L) can be transformed into a new graph
G′(′,L′), in which the links li, lj in G are objects in

G′ and there exists an link between oi, oj ∈ ′ if and
only if li and lj share an object in G. �is basic graph

duality illustrates one kind of simple data representation

transformation. For graphswithmultiple node and edge

types, the number of possible transformations becomes

immense. Typically, these reformulations are not con-

sidered as part of the link mining process. However, the

representation chosen can have a signi�cant impact on

the quality of the statistical inferences that can bemade.

�erefore, the choice of an appropriate representation is

actually an important issue in e�ective linkmining, and

is o�en more complex than in the case where we have

IID data instances.

Link Mining Tasks
Link mining puts a new twist on some classic data min-

ing tasks, and also poses new problems. One way to

understand the di�erent types of learning and inference

problems is to categorize them in terms of the compo-

nents of the data that are being targeted. Table  gives a

simple characterization. Note that for the object-related

Link Mining and Link Discovery. Table  A simple catego-

rization of different link mining tasks

. Object-related tasks

a. Object classification (collective classification)

b. Object clustering (group detection)

c. Object consolidation (entity resolution)

d. Object ranking

. Link-related tasks

a. Link labeling/classification

b. Link prediction

c. Link ranking

. Graph-related tasks

a. Subgraph discovery

b. Graph classification

tasks, even though we are concerned with classifying,

clustering, consolidating, or ranking the objects, we will

be exploiting the links. Similarly for link-related tasks,

we can use information about the objects that partic-

ipate in the links, and their links to other objects and

so on.

In addition, because of the underlying link struc-

ture, link mining a�ords the opportunity for inferences

and predictions to be collective or dependent on one

another. �e simplest example of this is in collective

classi�cation, where the inferred label of one node can

depend on the inferred label of its neighbors.�ere are a

variety of ways of modeling and exploiting this depen-

dence. Methods include performing joint inference in

the appropriate probabilistic model, use of informa-

tion di�usion models, constructing and optimizing the

appropriate structured prediction using a max margin

approach, and others.

Additional information on di�erent link mining

subtasks is provided in separate entries on collective clas-

si�cation, entity resolution, group detection, and link pre-

diction. Related problems and techniques can be found

in the entries on relational learning, graph mining, and

inductive logic programming.

Cross References
7Collective Classi�cation
7Entity Resolution
7Graph Clustering
7Graph Mining
7Group Detection
7Inductive Logic Programming
7Link Prediction
7Relational Learning

Recommended Reading
Chakrabarti, S. (). Mining the web. San Francisco, CA: Morgan

Kaufman.

Cook, D. J., & Holder, L. B. (). Graph-based data mining. IEEE

Intelligent Systems, (), –. ISSN -. doi: http://dx.

doi.org/./..

Feldman, R. (). Link analysis: Current state of the art. In

Proceedings of the KDD ‘, Edmonton, Alberta, Canada.

Jensen, D. (). Statistical challenges to inductive inference in

linked data. In Seventh international workshop on artificial intel-

ligence and statistics, Fort Lauderdale, FL. San Francisco, CA:

Morgan Kaufmann.

Jensen, D., & Goldberg, H. (). AAAI fall symposium on AI and

link analysis, Orlando, FL. Menlo Park, CA: AAAI Press.

http://dx.doi.org/10.1109/5254.850825
http://dx.doi.org/10.1109/5254.850825

Link Prediction L 

L

Raedt, L. D., (Ed.). (). Logical and relational learning. Berlin:

Springer.

Singh, L., Getoor, L., & Licamele, L. (). Pruning social networks

using structural properties and descriptive attributes. In Inter-

national conference on data mining, . Houston, TX: IEEE

Computer Society.

Wasserman, S., & Faust, K. (). Social network analysis: Methods

and applications. Cambridge: Cambridge University Press.

Link Prediction

Galileo Namata, Lise Getoor

University of Maryland, College Park, Maryland, USA

Synonyms
Edge prediction; Relationship extraction

Definition
Many datasets can naturally be represented as graph

where nodes represent instances and links represent

relationships between those instances. A fundamental

problem with these types of data is that the link infor-

mation in the graph maybe of dubious quality; links

may incorrectly exist between unrelated nodes and links

may be missing between two related nodes. �e goal of

link prediction is to predict the existence of incorrect or

missing links between the nodes of the graph.

Theory/Solution
Inferring the existences of edges between nodes in a

graph has traditionally been referred to as link predic-

tion (Liben-Nowell & Kleinberg, ; Taskar, Wong,

Abbeel, & Koller, ). Link prediction is a chal-

lenging problem that has been studied in various

guises in di�erent domains. For example, in social net-

work analysis, there is work on predicting friendship

links (Zheleva, Getoor, Golbeck, & Kuter, ), event

participation links (i.e., coauthorship (O’Madadhain,

Hutchins, & Smyth, )), communication links (i.e.,

email (O’Madadhain et al., )), and links repre-

senting semantic relationships (i.e., advisor-of (Taskar

et al., ), subordinate-manager (Diehl, Namata, &

Getoor, )). In bioinformatics, there is interest in

predicting the existence of edges representing physical

protein–protein interactions (Yu, Paccanaro, Trifonov,

&Gerstein, ; Szilagyi et al., ), domain–domain

interactions (Deng, Mehta, Sun, & Chen, ), and

regulatory interactions (Albert et al., ). Similarly,

in computer network systems there is work in infer-

ring unobserved connections between routers, as well

as inferring relationships between autonomous systems

and service providers (Spring, Wetherall, & Ander-

son, ). �ere is also work on using link prediction

to improve recommender systems (Farrell, Campbell,

& Myagmar, ), Web site navigation (Zhu, ),

surveillance (Huang & Lin, ), and automatic docu-

ment cross referencing (Milne &Witten, ).

We begin with some basic de�nitions and notation.

We refer to the set of possible edges in a graph as poten-

tial edges. �e set of potential edges depends on the

graph type, and how the edges for the graph are de�ned.

For example, in a directed graph, the set of potential

edges consists of all edges e = (v, v) where v and v
are any two nodes V in the graph (i.e., the number of

potential edges is ∣V ∣ × ∣V ∣). In an undirected bipartite
graph with two subsets of nodes (V,V ∈ V), while

the edges still consist of a pair of nodes, e = (v, v),
there is an added condition such that one node must

be from V and the other node must be from V; this

results in ∣V∣ × ∣V∣ potential edges. Next, we refer to set
of “true” edges in a graph as positive edges, and we refer

to the “true” non-edges in a graph (i.e., pairs of nodes

without edges between them) as negative edges. For a

given graph, typically we only have information about

a subset of the edges; we refer to this set as the observed

edges. �e observed edges can include both positive

and negative edges, though in many formulations there

is an assumption of positive-only information. We can

view link prediction as a probabilistic inference prob-

lem, where the evidence includes the observed edges,

the attribute values of the nodes involved in the poten-

tial edge, and possibly other information about the net-

work, and for any unobserved, potential edge, we want

to compute the probability of it existing. �is can be

reframed as a binary classi�cation problem by choos-

ing some probability threshold, and concluding that

potential edges with existence probability above the

threshold are true edges, and those below the thresh-

old are considered false edges (more complex schemes

are possible as well). For noisy and incomplete net-

works, we use terminology from the machine learning

literature and refer to an edge that is inferred to exists

 L Link Prediction

and is a true edge in the graph as a true positive edge,

an edge that should exist but is not inferred as a false

negative edge, an edge that should not exist and is not

inferred as a true negative edge, and an edge that should

not exist but is incorrectly inferred to exist as a false

positive edge.

One of the early and simple formulations of the link

prediction problem was proposed by Liben-Nowell and

Kleinberg ().�ey proposed a temporal prediction

problem de�ned over a dynamic network where given

a graph Gt(Vt ,Et) at time t, the problem is to infer
the set of edges at the next time step t + . More for-
mally, the objective is to infer a set of edges Enew where

Et+ = Et⋃Enew. We use a more general de�nition of

link prediction proposed by Taskar et al. () where

given a graph G and the set of potential edges in G,

denoted P(G), the problem of link prediction is to pre-
dict for all p ∈ P(G) whether p exists or does not exists,
remaining agnostic on whether G is a noisy graph with

missing edges or a snapshot of a dynamic graph at a

particular time point.

Approaches
In this section, we discuss the two general cate-

gories of the current link prediction models: topology-

based approaches and node attribute-based approaches.

Topology-based approaches aremethods that rely solely

on the topology of the network to infer edges. Node

attribute-based approaches make predictions based on

the attribute values of the nodes incident to the edges.

In addition, there are models that make use of both

structure and attribute values.

Topology-Based Approaches
A number of link prediction models have been pro-

posed, which rely solely on the topology of the network.

�esemodels typically rely on some notion of structural

proximity, where nodes that are close are likely to share

an edge (e.g., sharing common neighbors, nodes with

a small shortest path distance between). �e earliest

topological approach for link prediction was proposed

by Liben-Nowell and Kleinberg (). In this work,

Liben-Nowell and Kleinberg proposed various struc-

ture based similarity scores and applied them over the

unobserved edges of an undirected graph. �ey then

use a threshold k, and only predict edges with the top

k scores as existing. A variety of similarity scores were

proposed, given two nodes v and v, including graph

distance (the length of the shortest path between v
and v), common neighbors (the size of the intersec-

tion of the sets of neighbors of v and v), and more

complex measures such as the Katz measure, (the sum

of the lengths of the paths between v and v expo-

nentially damped by length to count short paths more

heavily). Evaluating over a coauthorship network, the

best performing proximity score measure was the Katz

measure, however the simple measures, which rely only

on the intersection of the set of nodes adjacent to both

nodes, performed surprisingly well. A related approach

was proposed by Yu et al. (), which applies the

link prediction problem to predicting missing protein–

protein interactions (PPI) from PPI networks generated

by high throughput methods. �is work assumes that

interacting proteins tend to form a clique. �us, miss-

ing edges can be predicted by predicting the existence

of edges that will create cliques in the network. More

recent work by Clauset, Moore, and Newman ()

has tried to go beyond predicting edges between neigh-

boring nodes. In their problem domain of food webs,

for example, pairs of predators o�en prey on a shared

prey species but rarely prey on each other.�us, in these

networks, predicting “predator–prey” edges need to go

beyond proximity. For this, they propose a “hierarchi-

cal random graph” approach, which �ts a hierarchical

model to all possible dendrograms of a given network.

�e model is then used to calculate the likelihood of an

edge existing in the network.

Node Attribute-Based Approaches
Although topology is useful in link prediction, topology-

based approaches ignore an important source of infor-

mation in networks, the attributes of nodes. O�en there

are correlations in the attributes of nodes that share

an edge with each other. One approach that exploits

this correlation was proposed by Taskar et al. ().

In their approach, Taskar et al. () applied the rela-

tional Markov network (RMN) framework to link pre-

diction to predicting the existence and class of edges

between Web sites. �ey exploit the fact that certain

links can only exist between nodes of the appropri-

ate type. For example, an “advisor” edge can only exist

between student and faculty.

Link Prediction L 

L

Another approach that uses node attributes was

proposed by Popescul and Ungar (). In that

approach, they used a structured 7logistic regres-
sion model over learned relational features to predict

citation edges in a citation network. �eir relational

features are built over attributes such as the words

used in the paper nodes. O’Madadhain et al. ()

also approached an attribute based approach, con-

structing local conditional probability models based on

the attributes such as node attribute similarity, topic

distribution, and geographical location in predicting

“co-participation” edges in an email communication

network. More recently, there is work on exploiting

other node attributes like the group membership of the

nodes. Zheleva et al. () showed thatmembership in

family groups are very useful in predicting friendship

links in social networks. Similarly, Sprinzak, Altuvia,

& Margalit () showed that using protein complex

information can be useful in predicting protein–protein

interactions. Finally, we note that in link prediction,

as in classi�cation, the quality of predictions can

be improved by making the predictions collectively.

Aside from the relational Markov network approach

by Taskar et al. () mentioned earlier, Markov

logic networks (Richardson & Domingos, ) and

probabilistic relational models (Getoor, Friedman,

Koller, & Taskar, ) have also been proposed for

link prediction and are capable of performing joint

inference.

Issues
�ere are a number of challenges that make link pre-

diction very di�cult. �e most di�cult challenge is the

large class skew between the number of edges that exist

and the number of edges that do not. To illustrate, con-

sider directed graph denoted by G(V ,E). While the
number of edges ∣E∣ is o�en O(∣V ∣), the number of
edges that do not exist is o�en O(∣V ∣). Consequently,
the prior probability edge existence is very small. �is

causesmany supervisedmodels, which naively optimize

for accuracy, to learn a trivial model, which always pre-

dicts that a link does not exist. A related problem in link

prediction is the large number of edges whose existence

must be considered. �e number of potential edges is

O(∣V ∣) and this limits the size of the data sets that can
be considered.

In practice, there are general approaches to address-

ing these issues either prior to or during the link predic-

tion.With both large class skew and number of edges to

contend with, the general approach is to make assump-

tions that reduce the number of edges to consider. One

common way to do this is to partition the set of nodes

where we only consider potential edges between nodes

of the same partition; edges between partitions are not

explicitly modeled, but are assumed not to exist. �is

is useful in many domains where there is some sort of

natural partition among the nodes available (e.g., geog-

raphy in social networks, location of proteins in a cell),

which make edges across partitions unlikely. Another

way is to de�ne some simple, computationally inexpen-

sive distancemeasure such that only edges whose nodes

are within some distance are considered.

Another practical issue in link prediction is that

while real-world data o�en indicates which edges exist

(positive examples), the edges which do not exist (neg-

ative examples) are rarely annotated for use by link

prediction models. In bioinformatics, for example, the

protein–protein interaction network of yeast, the most

and annotated studied organism, is annotated with

thousands of observed edges (physical interactions)

between the nodes (proteins) gathered from numerous

experiments. �ere are currently, however, no major

datasets available that indicate which proteins de�nitely

do not physically interact. �is is an issue not only in

creating and learning models for link prediction, but

is also an issue evaluating them. O�en, it is unclear

whether a predicted edge which is not in our ground

truth data is an incorrectly predicted edge or an edge

resulting from incomplete data.

Related Problems
In addition to the de�nition of link prediction discussed

above, it is also important to mention three closely

related problems: link completion, leak detection, and

anomalous link discovery, whose objectives are di�er-

ent but very similar to link prediction. Link completion

(Chaiwanarom&Lursinsap, ; Goldenberg, Kubica,

Komarek, Moore, & Schneider, ) and leak detec-

tion (Balasubramanyan, Carvalho, &Cohen, ; Car-

valho & Cohen, ), are a variation of link prediction

over hypergraphs. A hypergraph is a graph where the

edges (known as hyperedges) can connect any number

 L Link Prediction

of nodes. For example, in a hypergraph representing

an email communication network, a hyperedge may

connect nodes representing email addresses that are

recipients of a particular email communication. In link

completion, given the set of nodes that participate in

a particular hyperedge, the objective is to infer nodes

that are missing. For the email communication network

example, link completion may involve inferring which

email addresses need to be added to the recipients list

of an email communication. Conversely, in leak detec-

tion, given the set of nodes participating in a particular

hyperedge, the objective is to infer which nodes should

not be part of that hyperedge. For example, in email

communications, leak detection will attempt to infer

which email address nodes are incorrectly part of the

hyperedge representing the recipient list of the email

communication.

�e last problem, anomalous link discovery (Huang

& Zeng, ; Rattigan & Jensen, ), has been pro-

posed as an alternate task to link prediction. As with

link completion, the existence of the edges are assumed

to be observed, and the objective is to infer which of

the observed links are anomalous or unusual. Specif-

ically, anomalous link discovery identi�es which links

are statistically improbable with the idea that these may

be of interest for those analyzing the network. Rattigan

and Jensen () show that some methods that per-

form poorly for link prediction can still perform well

for anomalous link discovery.

Cross References
7Graph Mining
7Statistical Relational Learning

Recommended Reading
Albert, R., DasGupta, B., Dondi, R., Kachalo, S., Sontag, E.,

Zelikovsky, A., et al. (). A novel method for signal trans-

duction network inference from indirect experimental evi-

dence. Journal of Computational Biology, , –.

Balasubramanyan, R., Carvalho, V. R., & Cohen, W. (). Cutonce

recipient recommendation and leak detection in action. In

Workshop on enhanced messaging.

Carvalho, V. R., & Cohen, W. W. (). Preventing information

leaks in email. In SIAM conference on data mining.

Chaiwanarom, P., & Lursinsap, C. (). Link completion using

prediction by partial matching. In International symposium on

communications and information technologies.

Clauset, A., Moore, C., & Newman, M. E. J. (). Hierarchi-

cal structure and the prediction of missing links in networks.

Nature, , .

Deng, M., Mehta, S., Sun, F., & Chen, T. (). Inferring

domain-domain interactions from protein-protein interac-

tions. Genome Research, (), –.

Diehl, C., Namata, G. M., & Getoor, L. (). Relationship identi-

fication for social network discovery. In Proceedings of the nd

national conference on artificial intelligence.

Farrell, S., Campbell, C., &Myagmar, S. (). Relescope: An exper-

iment in accelerating relationships. In Extended abstracts on

human factors in computing systems.

Getoor, L., Friedman, N., Koller, D., & Taskar, B. (). Learn-

ing probabilistic models of link structure. Machine Learning,

, –.

Goldenberg, A., Kubica, J., Komarek, P., Moore, A., & Schneider, J.

(). A comparison of statistical and machine learning algo-

rithms on the task of link completion. In Conference on knowl-

edge discovery and data mining, Workshop on link analysis for

detecting complex behavior.

Huang, Z., & Lin, D. K. J. (). The time-series link predic-

tion problem with applications in communication surveillance.

Informs Journal on Computing, , –.

Huang, Z., & Zeng, D. D. (). A link prediction approach to

anomalous email detection. In IEEE International conference on

systems, man, and cybernetics, Taipei, Taiwan.

Liben-Nowell, D., & Kleinberg, J. (). The link prediction prob-

lem for social networks. In International conference on informa-

tion and knowledge management.

Milne, D., & Witten, I. H. (). Learning to link with wikipedia.

In Proceedings of the th ACM conference on information and

knowledge management.

O’Madadhain, J., Hutchins, J., & Smyth, P. (). Prediction and

ranking algorithms for event-based network data. SIGKDD

Explorations Newsletter, (), –.

Popescul, A., & Ungar, L. H. (). Statistical relational learning

for link prediction. In International joint conferences on arti-

ficial intelligence workshop on learning statistical models from

relational data.

Rattigan, M. J., & Jensen, D. (). The case for anomalous link

discovery. SIGKDD Explorations Newsletter, , –.

Richardson, M., & Domingos, P. (). Markov logic networks.

Machine Learning, , –.

Spring, N., Wetherall, D., & Anderson, T. (). Reverse engineer-

ing the internet. SIGCOMM Computer Communication Review,

(), –.

Sprinzak, E., Altuvia, Y., &Margalit, H. (). Characterization and

prediction of protein-protein interactions within and between

complexes. Proceedings of the National Academy of Sciences,

(), –.

Szilagyi, A., Grimm, V., Arakaki, A. K., & Skolnick, J. (). Predic-

tion of physical protein-protein interactions. Physical Biology,

(), S–S.

Taskar, B., Wong, M.-F., Abbeel, P., & Koller, D. (). Link pre-

diction in relational data. In Advances in neural information

processing systems.

Yu, H., Paccanaro, A., Trifonov, V., & Gerstein, M. (). Predict-

ing interactions in protein networks by completing defective

cliques. Bioinformatics, (), –.

Zheleva, E., Getoor, L., Golbeck, J., & Kuter, U. (). Using friend-

ship ties and family circles for link prediction. In nd ACM

SIGKDD workshop on social network mining and analysis.

Zhu, J. (). Mining web site link structure for adaptive web site

navigation and search. Ph.D. thesis, University of Ulster at

Jordanstown, UK.

Locally Weighted Regression for Control L 

L

Link-Based Classification

7Collective Classi�cation

Liquid State Machine

7Reservoir Computing

Local Distance Metric Adaptation

Synonyms
Supersmoothing; Nonstationary kernels; Kernel

shaping

Definition
In learning systems with kernels, the shape and size of

a kernel plays a critical role for accuracy and general-

ization. Most kernels have a distance metric parameter,

which determines the size and shape of the kernel in

the sense of a Mahalanobis distance. Advanced kernel

learning tune every kernel’s distance metric individu-

ally, instead of turning one global distance metric for all

kernels.

Cross References
7Locally Weighted Regression for Control

Local Feature Selection

7Projective Clustering

Locality Sensitive Hashing Based
Clustering

Xin Jin, Jiawei Han

University of Illinois at Urbana-Champaign

Urbana, IL, USA

�e basic idea of the LSH (Gionis, Indyk, & Motwani,

) technique is usingmultiple hash functions to hash

the data points and guarantee that there is a high prob-

ability of collision for points which are close to each

other and low collision probability for dissimilar points.

LSH schemes exist for many distance measures, such

as Hamming norm, Lp norms, cosine distance, earth

movers distance (EMD), and Jaccard coe�cient.

In LSH, de�ne a familyH = {h : S→ U} as locality-
sensitive, if for any a, the function p(t) = PrH[h(a) =
h(b) : ∣∣a − b∣∣ = x] is decreasing in x. Based on this

de�nition, the probability of collision of points a and b

is decreasing with their distance.

Although LSH was originally proposed for approx-

imate nearest neighbor search in high dimensions, it

can be used for clustering as well (Das, Datar, Garg, &

Rajaram, ; Haveliwala, Gionis, & Indyk, ).�e

buckets could be used as the bases for clustering. Seed-

ing the hash functions several times can help getting

better quality clustering.

Recommended Reading
Das, A. S., Datar, M., Garg, A., & Rajaram, S. (). Google

news personalization: Scalable online collaborative filtering. In

WWW ’: Proceedings of the th international conference on

World Wide Web (pp. –). New York: ACM.

Gionis, A., Indyk, P., & Motwani, R. (). Similarity search in high

dimensions via hashing. In VLDB ’: Proceedings of the th

international conference on very large data bases (pp. –).

San Francisco: Morgan Kaufmann Publishers.

Haveliwala, T. H., Gionis, A., & Indyk, P. (). Scalable techniques

for clustering the web (extended abstract). In Proceedings of the

third international workshop on the web and databases (pp. –

). Stanford, CA: Stanford University.

Locally Weighted Learning

7Locally Weighted Regression for Control

Locally Weighted Regression for
Control

Jo-Anne Ting, Sethu Vijayakumar,, Stefan

Schaal,

University of Edinburgh
University of Southern California
ATR Computational Neuroscience Labs

Synonyms
Kernel shaping; Lazy learning; Local distance metric

adaptation; Locally weighted learning; LWPR; LWR;

Nonstationary kernels supersmoothing

Definition
�is article addresses two topics:7learning control and
locally weighted regression.

 L Locally Weighted Regression for Control

7Learning control refers to the process of acquiring
a control strategy for a particular control system and

a particular task by trial and error. It is usually distin-

guished from adaptive control (Aström &Wittenmark,

) in that the learning system is permitted to fail

during the process of learning, resembling how humans

and animals acquire new movement strategies. In con-

trast, adaptive control emphasizes single trial conver-

gence without failure, ful�lling stringent performance

constraints, e.g., as needed in life-critical systems like

airplanes and industrial robots.

Locally weighted regression refers to 7supervised
learning of continuous functions (otherwise known as

function approximation or 7regression) by means of
spatially localized algorithms, which are o�en discussed

in the context of7kernel regression,7nearest neighbor
methods, or7lazy learning (Atkeson, Moore, & Schaal,
). Most regression algorithms are global learning

systems. For instance, many algorithms can be under-

stood in terms of minimizing a global 7loss function
such as the expected sum squared error:

Jglobal = E [


N

∑
i=

(ti − yi)
] = E [



N

∑
i=

(ti − ϕ (xi)Tβ)


]

()

where E [⋅] denotes the expectation operator, ti the
noise-corrupted target value for an input xi, which is
expanded by basis functions into a basis function vec-

tor ϕ (xi), and β the vector of (usually linear) regression
coe�cients. Classical feedforward 7neural networks,
7radial basis function networks, 7mixture models, or
7Gaussian Process regression are all global function
approximators in the spirit of Eq. ().

In contrast, local learning systems split up concep-

tually the cost function into multiple independent local

function approximation problems, using a cost function

such as the one below:

Jglobal = E [


K

∑
k=

N

∑
i=

wk,i (ti − xTi βk)
]

= 


K

∑
k=

E [
N

∑
i=

wk,i (ti − xTi βk)
] ()

Motivation and Background
Figure  illustrates why locally weighted regression

methods are o�en favored over global methods when

it comes to learning from incrementally arriving data,

especially when dealing with nonstationary input dis-

tributions. �e �gure shows the division of the training

data into two sets: the “original training data” and the

“new training data” (in dots and crosses, respectively).

Initially, a sigmoidal 7neural network and a locally
weighted regression algorithm are trained on the “orig-

inal training data,” using % of the data as a cross-

validation set to assess convergence of the learning. In

a second phase, both learning systems are trained solely

on the “new training data” (again with a similar cross-

validation procedure), but without using any data from

the “original training data.” While both algorithms gen-

eralizewell on the “new training data,” the global learner

incurred catastrophic interference, unlearning what

was learned initially, as seen in Fig. a, b shows that the

locally weighted regression algorithmdoes not have this

problem since learning (along with 7generalization) is
restricted to a local area.

Appealing properties of locally weighted regression

include the following:

● Function approximation can be performed incre-

mentally with nonstationary input and output dis-

tributions and without signi�cant danger of inter-

ference. Locally weighted regression can provide

7posterior probability distributions, o�er con�-
dence assessments, and deal with heteroscedastic

data.

● Locally weighted learning algorithms are compu-

tationally inexpensive to compute. It is well suited

for online computations (e.g., for 7online and
7incremental learning) in the fast control loop of a
robot – typically on the order of – Hz.

● Locallyweighted regressionmethods can implement

continual learning and learning from large amounts

of data without running into severe computational

problems on modern computing hardware.

● Locally weighted regression is a nonparametric

method (i.e., it does not require that the user deter-

mine a priori the number of local models in the

learning system), and the learning systems grows

with the complexity of the data it tries to model.

● Locally weighted regression can include 7feature
selection, 7dimensionality reduction, and 7Baye-
sian inference – all which are required for robust

statistical inference.

Locally Weighted Regression for Control L 

L

• original training data

+ new training data

true y predicted y predicted y after new training data

•••

•

••

•

•

•
•
•••

•

•
•••

•

•

•

•

•

••
••

•

•

•
•

••
••

•
•

•

••

•

•••

•
•••
••••

•

•••

•

•

•
•

••
•
•

•
•

•

••
••

•

••

•

•
••

•

••••
•
••
•

•

•
•
•
•

••

•
•••

•

•
•
•••
•
•

••

••
••
•

•
•
•

•
•
•

•

•

•

•
•

•

••

•

•

•

+
++

+

+

+
+

+
++

+

++

+
++

+

+
+

+
+

+

+

+

+
+
+

+
++
++

+
++
+

+
+++

++
+
+++

+
+
++

++
+

+
++

+++++++
++

+

+

+

++

–6

–5

–4

–3

–2

–1

0

1

2

3

4

–2.5 –2 –1.5 –1 –0.5 0 0.5 1 1.5 2 2.5

y

xa

b

c

Global function fitting with sigmoidal neural
network

•••

•

••

•

•

•
•
•••

•

•
•••

•

•

•

•

•

••
••

•

•

•
•

••
••

•
•

•

••

•

•••

•
•••
••••

•

•••

•

•

•
•

••
•
•

•
•

•

••
••

•

••

•

•••

•

••••
•
••
•

•

•
•
•
•

••

•
•••

•

•
•
•••
•
•

••

••
••
•

•
•
•

•
•
•

•

•

•

•
•

•

••

•

•

•

+
++

+

+

+
+

+
++

+

++

+
++

+

+
+

+
+

+

+

+

+
+
+

+
++
++

+
++
+

+
+++

++
+
+++

+
+
++

++
+

+
++

+++++++
++

+

+

+

++

–2

–1

0

1

2

3

4

y

0

0.5

1

–2.5 –2 –1.5 –1 –0.5 0 0.5 1 1.5 2 2.5
w

x

Learned organization of receptive fields

Local function fitting with receptive fields

–2.5 –2 –1.5 –1 –0.5 0 0.5 1 1.5 2 2.5
x

Locally Weighted Regression for Control. Figure . Function approximation results for the function y = sin(x) +

exp(−x
)+N(, .)with (a) a sigmoidal neural network; (b) a locally weighted regression algorithm (note that the

data traces “true y,” “predicted y,” and “predicted y after new training data” largely coincide); and (c) the organization

of the (Gaussian) kernels of (b) after training. See Schaal and Atkeson () for more details

● Locally weighted regression works favorably with

locally linear models (Hastie & Loader, ), and

local linearizations are of ubiquitous use in control

applications.

Background
Returning to Eqs. () and (), the main di�erences

between both equations are listed below:

(i) A weightwi,k is introduced that focuses the func-

tion approximation on only a small neighbor-

hood around a point of interest ck in input space
(see Eq.  below).

(ii) �e cost function is split into K independent

optimization problems.

(iii) Due to the restricted scope of the function

approximation problem, we do not need a non-

linear basis function expansion and can, instead,

work with simple local functions or local polyno-

mials (Hastie & Loader, ).

�e weights wk,i in Eq. () are typically computed from

some 7kernel function (Atkeson, Moore, & Schaal,

) such as a squared exponential kernel

wk,i = exp(−



(xi − ck)T Dk (xi − ck)) ()

with Dk denoting a positive semide�nite distance met-

ric and ck the center of the kernel. �e number of ker-
nels K is not �nite. In many local learning algorithms,

the kernels are never maintained in memory. Instead,

for every query point xq, a new kernel is centered at
ck = xq, and the localized function approximation is
solved with weighted7regression techniques (Atkeson
et al., ).

Locally weighted regression should not be con-

fused with mixture of experts models (Jordan & Jacobs,

). 7Mixture models are global learning systems

since the experts compete globally to cover train-

ing data. Mixture models address the 7bias-variance
dilemma (Intuitively, the 7bias-variance dilemma
addresses how many parameters to use for a func-

tion approximation problem to �nd an optimal bal-

ance between 7over�tting and oversmoothing of the
training data) by �nding the right number of local

experts. Locally weighted regression addresses the

7bias-variance dilemma in a local way by �nding the

 L Locally Weighted Regression for Control

optimal distance metric for computing the weights

in the locally weighted regression (Schaal & Atkeson,

). We describe some algorithms to �ndDk next.

Structure of Learning System
For a locally linear model centered at the query point

xq, the regression coe�cients would be

βq = (XTWqX)
−
XTWqt ()

where X is a matrix that has all training input data
points in its rows (with a column of s added in the last

column for the o�set parameter in7linear regression).
Wq is a diagonal matrix with the corresponding weights

for all data points, computed from Eq. () with ck = xq,
and t is the vector of regression targets for all train-
ing points. Such a “compute-the-prediction-on-the-�y”

approach is o�en called lazy learning (�e approach

is “lazy” because the computational of a prediction is

deferred until the last moment, i.e., when a predic-

tion is needed) and is a memory-based learning system

where all training data is kept in memory for making

predictions.

Alternatively, kernels can be created as needed to

cover the input space, and the su�cient statistics of

the weighted regression are updated incrementally with

recursive least squares (Schaal & Atkeson, ). �is

approach does not require storage of data points in

memory. Predictions of neighboring local models can

be blended, improving function �tting results in the

spirit of committee machines.

Memory-Based Locally Weighted
Regression (LWR)
�e original locally weighted regression algorithm was

introduced by Cleveland () and popularized in the

machine learning and learning control community by

Atkeson (). �e algorithm is largely summarized

by Eq. () (for algorithmic pseudo-code, see (Schaal,

Atkeson, & Vijayakumar, )):

● All training data is collected in the matrix X and the
vector t (For simplicity, only functions with a scalar
output are addressed. Vector-valued outputs can be

learned either by �tting a separate learning system

for each output or by modifying the algorithms to

�t multiple outputs (similar to multi-output linear

regression)).

● For every query point xq, the weighting kernel is
centered at the query point.

● �e weights are computed with Eq. ().

● �e local regression coe�cients are computed

according to Eq. ().

● A prediction is formed with yq = [xTq ] βq.

As in all kernel methods, it is important to optimize

the kernel parameters in order to get optimal function

�tting quality. For LWR, the critical parameter deter-

mining the7bias-variance tradeo� is the distance met-
ric Dq. If the kernel is too narrow, it starts �tting noise.

If it is too broad, oversmoothing will occur. Dq can be

optimizedwith leave-one-out cross-validation to obtain

a globally optimal value, i.e., the same Dq = D is used
throughout the entire input space of the data. Alter-

natively, Dq can be locally optimized as a function of

the query point, i.e., obtain a Dq as a function of the

query point (as already indicated by the subscript “q”).

In the recent machine learning literature (in particular,

work related to kernel methods), such input dependent

kernels are referred to as nonstationary kernels.

Locally Weighted Projection Regression
(LWPR)
Schaal and Atkeson () suggested a memoryless ver-

sion of LWR in order to avoid the expensive 7nearest
neighbor computations – particularly for large training

data sets – of LWR and to have fast real-time (In most

robotic systems, “real-time”means on the order ofmax-

imally –ms computation time, corresponding to a

–Hz control loop) prediction performance.�e

main ideas of the RFWR algorithm (Schaal & Atkeson,

) are listed below:

● Create new kernels only if no existing kernel in

memory covers a training point with some minimal

activation weight.

● Keep all created kernels in memory and update the

weighted regression with weighted recursive least

squares for new training points {x, t}:

βn+
k = βn

k +wPn+x̃ (t − x̃Tβn
k)

where Pn+k = 
λ

⎛
⎝
Pnk −

Pnk x̃x̃
TPnk

λ
w
+ x̃TPnk x̃

⎞
⎠

and x̃ = [xT ]T . ()

Locally Weighted Regression for Control L 

L

● Adjust the distance metric Dq for each kernel with

a gradient descent technique using leave-one-out

cross-validation.

● Make a prediction for a query point taking a weig-

hted average of predictions from all local models:

yq =
∑K

k= wq,kŷq,k
∑K

k= wq,k

()

Adjusting the distance metric Dq with leave-one-

out cross-validation without keeping all training data

in memory is possible due to the PRESS residual.

�e PRESS residual allows the leave-one-out cross-

validation error to be computed in closed form with-

out needing to actually exclude a data point from the

training data.

Another de�ciency of LWR is its inability to

scale well to high-dimensional input spaces since the

7covariance matrix inversion in Eq. () becomes
severely ill-conditioned. Additionally, LWR becomes

expensive to evaluate as the number of local models

to be maintained increases. Vijayakumar, D’Souza and

Schaal () suggested local 7dimensionality reduc-
tion techniques to handle this problem. Partial least

squares (PLS) regression is a useful 7dimensionality
reduction method that is used in the LWPR algo-

rithm (Vijayakumar et al., ). In contrast to PCA

methods, PLS performs7dimensionality reduction for
7regression, i.e., it eliminates subspaces of the input
space that minimally correlate with the outputs, not just

parts of the input space that have low variance.

LWPR is currently one of the best developed locally

weighted regression algorithms for control (Klanke,

Vijayakumar, & Schaal, ) and has been applied

to learning control problems with over  input

dimensions.

A Full Bayesian Treatment of Locally
Weighted Regression
Ting, Kalakrishnan, Vijayakumar, and Schaal ()

proposed a fully probabilistic treatment of LWR in

an attempt to avoid cross-validation procedures and

minimize any manual parameter tuning (e.g., gradient

descent rates, kernel initialization, and forgetting rates).

�e resulting Bayesian algorithm learns the distance

metric of local linear model (For simplicity, a local lin-

ear model is assumed, although local polynomials can

be used as well) probabilistically, can cope with high

input dimensions, and rejects data outliers automati-

cally. �e main ideas of Bayesian LWR are listed below

(please see Ting () for details):

● Introduce hidden variables z to the local linear
model (as inVariational Bayesian least squares (Ting

et al., )) to decompose the statistical estima-

tion problem into d individual estimation prob-

lems (where d is the number of input dimensions).

�e result is an iterative Expectation-Maximization

(EM) algorithm that is of linear 7computational
complexity in d and the number of training data

samples N, i.e., O(Nd).
● Associate a scalar weight wi with each training data

sample {xi, ti}, placing a Bernoulli7prior probabil-
ity distribution over a weight for each input dimen-

sion so that the weights are positive and between 

and :

wi =
d

∏
m=

wim where

wim ∼ Bernoulli (qim) for i = , ..,N;m = , ..,d
()

where the weight wi is decomposed into indepen-

dent components in each input dimension wim and

qim is the parameter of the Bernoulli 7probability
distribution.�e weightwi indicates a training sam-

ple’s contribution to the local model. An outlier

will have a weight of  and will, thus, be automati-

cally rejected.�e formulation of qim determines the

shape of the weighting function applied to the local

model. �e weighting function qim used in Bayesian

LWR is listed below:

qim = 

 + (xim − xqm)

hm
for i = , ..,N;m = , ..,d

()

where xq ∈ Rd× is the query input point and hm
is the bandwidth parameter/distance metric of the

local model in the m-th input dimension (�e dis-

tance metric/bandwidth is assumed to be a diagonal

matrix, i.e., bandwidths in each input dimension are

independent. �at is to say, D = H, where h is the
diagonal vector and hm are the coe�cients of h).

 L Locally Weighted Regression for Control

● Place a Gamma7prior probability distribution over
the distance metric hm:

hm ∼ Gamma (ahm, bhm) ()

where {ahm, bhm} are the prior parameter values of
the Gamma distribution.

● Treat the model as an EM-like 7regression prob-
lem, using 7variational approximations to achieve
analytically tractable inference of the 7posterior
probability distributions.

�e initial parameters {ahm, bhm} should be set so
that the7prior probability distribution over hm is unin-
formative andwide (e.g., ahm = bhm = −).�e other
7prior probability distribution that needs to be speci-
�ed is the one over the noise variance random variable –

and this is best set to re�ect how noisy the data set is

believed to be.More details can be found inTing ().

�is Bayesian method can can also be applied as

general kernel shaping algorithm for global 7kernel
learning methods that are linear in the parameters (e.g.,

to realize nonstationary 7Gaussian processes (Ting
et al., ), resulting in an augmented nonstationary

7Gaussian Process).

Figure  illustrates Bayesian kernel shaping’s band-

width adaptation abilities on several synthetic data sets,

comparing it to a stationary 7Gaussian Process and
the augmented nonstationary 7Gaussian Process. For
the ease of visualization, the following one-dimensional

functions are considered: (i) a function with a disconti-

nuity, (ii) a spatially inhomogeneous function, and (iii)

a straight line function. �e data set for function (i)

consists of  training samples,  test inputs (evenly

spaced across the input space), and output noise with

variance of .; the data set for function (ii) consists

of  training samples,  test inputs, and an output

signal-to-noise ratio (SNR) of ; and the data set for

function (iii) has  training samples,  test inputs, and

an output SNR of . Figure  shows the predicted out-

puts of all three algorithms for data sets (i)–(iii). �e

local kernel shaping algorithm smoothes over regions

where a stationary 7Gaussian Process over�ts and yet,
it still manages to capture regions of highly varying

curvature, as seen in Figs. a and b.

It correctly adjusts the bandwidths h with the cur-

vature of the function. When the data looks linear, the

algorithm opens up the weighting kernel so that all data

samples are considered, as Fig. c shows.

−2 −1 0 1 2
−4

−2

0

2

x

y

−2 −1 0 1 2

−1

0

1

2

x

y

Training data
Stationary GP
Aug GP
Kernel Shaping

−2 −1 0 1 2
−2

−1

0

1

2

x

y

0

1

w

−2 −1 0 1 2
100

103

107

x
Function (i)a

h

w
xq

0

1

w

−2 −1 0 1 2
100

106

x

h

Function (ii)b

0

1

w

−2 −1 0 1 2

10−6

100

106

x

h

Function (iii)c

Locally Weighted Regression for Control. Figure . Predicted outputs using a stationary Gaussian Process (GP), the

augmented nonstationary GP and local kernel shaping on three different data sets. Figures on the bottom row show

the bandwidths learned by local kernel shaping and the corresponding weighting kernels (in dotted black lines) for

various input query points (shown in red circles)

Locally Weighted Regression for Control L 

L

From the viewpoint of 7learning control,

7over�tting – as seen in the 7Gaussian Process in
Fig.  – can be detrimental since 7learning control
o�en relies on extracting local linearizations to derive

7controllers (see Applications section). Obtaining the
wrong sign on a slope in a local linearizationmay desta-

bilize a7controller.
In contrast to LWPR, the Bayesian LWR method

is memory-based, although memoryless versions could

be derived. Future work will also have to address how

to incorporate7dimensionality reduction methods for
robustness in high dimensions. Nevertheless, it is a �rst

step toward a probabilistic locally weighted regression

methodwithminimal parameter tuning required by the

user.

Applications
Learning Internal Models with LWPR

Learning an internal model is one of most typical

applications of LWR methods for control. �e model

could be a forward model (e.g, the nonlinear di�er-

ential equations of robot dynamics), an inverse model

(e.g., the equations that predict the amount of torque

to achieve a change of state in a robot), or any other

function that models associations between input and

output data about the environment. �e models are

used, subsequently, to compute a 7controller e.g., an
inverse dynamics controller similar to Eq. (). Mod-

els for complex robots such as humanoids exceed easily

a hundred input dimensions. In such high-dimensional

spaces, it is hopeless to assume that a representative data

set can be collected for o�ine training that can general-

ize su�ciently to related tasks. �us, the LWR philoso-

phy involves having a learning algorithm that can learn

rapidly when entering a new part of the state space such

that it can achieve acceptable 7generalization perfor-
mance almost instantaneously.

Figure  demonstrates 7online learning of an
inverse dynamics model for the elbow joint (cf. Eq. )

for a SarcosDexterous RobotArm.�e robot starts with

no knowledge about this model, and it tracks some ran-

domly varying desired trajectories with a proportional-

derivative (PD) controller.During itsmovements, train-

ing data consisting of tuples (q, q̇, q̈, τ) – which model
a mapping from joint position, joint velocities and joint

accelerations (q, q̇, q̈) tomotor torques τ – are collected

(at about every ms). Every data point is used to train a

LWPR function approximator, which generates a feed-

forward command for the controller. �e 7learning
curve is shown in Fig. a.

Using a test set created beforehand, the model pre-

dictions of LWPR are compared every , training

points with that of a parameter estimation method.

�e parameter estimation approach �ts the minimal

number of parameters to an analytical model of the

robot dynamics under an idealized rigid body dynam-

ics (RBD) assumptions, using all training data (i.e.,

not incrementally). Given that the Sarcos robot is a

0

2

4

6

8

10

12

14

16

18

20

0

50

100

150

200

250

300

350

100001000010010 0005211

M
S

E
 o

n
te

st
 s

et

#R
ec

ep
tiv

e
fie

ld
s

#Training data points
Learning curve locally weighted projection

regression (LWPR) online learninga

Parameter
Estimation

LWPR

Seven Degree-of-Freedom Sarcos Robot Armb

Locally Weighted Regression for Control. Figure . Learning an inverse dynamics model in real-time with a high-

performance anthropomprohic robot arm

 L Locally Weighted Regression for Control

hydraulic robot, the RBD assumption is not very suit-

able, and, as Fig. a shows, LWPR (in thick red line)

outperforms the analytical model (in dotted blue line)

a�er a rather short amount of training. A�er about

min of training (about , data points), very good

performance is achieved, using about  local models.

�is example demonstrates (i) the quality of func-

tion approximation that can be achieved with LWPR

and (ii) the online allocation of more local models as

needed.

Learning Paired Inverse-Forward Models

Learning inverse models (such as inverse kinematics

and inverse dynamics models) can be challenging since

the inverse model problem is o�en a relation, not a

function, with a one-to-many mapping. Applying any

arbitrary nonlinear function approximation method to

the inverse model problem can lead to unpredictably

bad performance, as the training data can form non-

convex solution spaces, in which averaging is inap-

propriate. Architectures such as 7mixture models (in
particular, mixture density networks) have been pro-

posed to address problems with non-convex solution

spaces. A particularly interesting approach in control

involves learning linearizations of a forward model

(which is proper function) and learning an inversemap-

ping within the local region of the forward model.

Ting et al. () demonstrated such a forward-

inverse model learning approach with Bayesian LWR

to learn an inverse kinematics model for a haptic robot

arm (shown in Fig. ) in order to control the end-

e�ector along a desired trajectory in task space. Training

Locally Weighted Regression for Control. Figure .

SensAble Phantom haptic robotic arm

data was collected while the arm performed random

sinusoidalmovements within a constrained box volume

of Cartesian space. Each sample consists of the arm’s

joint angles q, joint velocities q̇, end-e�ector position in
Cartesian space x, and end-e�ector velocities ẋ. From
this data, a forward kinematics model is learned:

ẋ = J(q)q̇ ()

where J(q) is the Jacobian matrix. �e transformation
from q̇ to ẋ can be assumed to be locally linear at a
particular con�guration q of the robot arm. Bayesian
LWR is used to learn the forward model, and, as in

LWPR, local models are only added if a training point

is not already su�ciently covered by an existing local

model. Importantly, the kernel functions in LWR are

localized only with respect to q, while the regression
of each model is trained only on a mapping from q̇ to
ẋ – these geometric insights are easily incorporated as
priors in Bayesian LWR, as they are natural to locally

linear models. Incorporating these priors in other func-

tion approximators, e.g.,7Gaussian Process regression,
is not straightforward.

�e goal of the robot task is to track a desired trajec-

tory (x, ẋ) speci�ed only in terms of x, z positions and
velocities, i.e., the movement is supposed to be in a ver-

tical plane in front of the robot, but the exact position

of the vertical plane is not given. �us, the task has one

degree of redundancy, and the learning system needs to

generate a mapping from {x, ẋ} to q̇. Analytically, the
inverse kinematics equation is

q̇ = J#(q)ẋ − α(I − J#J) ∂g
∂q

()

where J#(q) is the pseudo-inverse of the Jacobian. �e
second term is an gradient descent optimization term

for redundancy resolution, speci�ed here by a cost func-

tion g in terms of joint angles q.
To learn an inverse kinematics model, the local

regions of q from the forward model can be re-used
since any inverse of J is locally linear within these
regions. Moreover, for locally linear models, all solution

spaces for the inverse model are locally convex, such

that an inverse can be learned without problems. �e

redundancy issue can be solved by applying an addi-

tional weight to each data point according to a reward

function. Since the experimental task is speci�ed in

Locally Weighted Regression for Control L 

L

0.2

0.1

0

–0.1

z
(m

)

x (m)
Analytical solutiona

–0.1 –0.05 0.05 0.10

Desired
Analytical IK

z
(m

)

x (m)

0.2

0.1

0

–0.1
–0.1 –0.05 0 0.05 0.1

Desired
Learnt IK

Learned solutionb

Locally Weighted Regression for Control. Figure . Desired versus actual trajectories for SensAble Phantom robot arm

terms of {ẋ, ż}, a reward is de�ned, based on a desired
y coordinate, ydes, and enforced as a so� constraint.

�e resulting reward function, is g = e−


h(k(ydes−y)−ẏ)



,

where k is a gain and h speci�es the steepness of the

reward. �is ensures that the learned inverse model

chooses a solution that pushes ẏ toward ydes. Each for-

ward local model is inverted using a weighted 7linear
regression, where each data point is weighted by the

kernel weight from the forward model and addition-

ally weighted by the reward. �us, a piecewise locally

linear solution to the inverse problem can be learned

e�ciently.

Figure  shows the performance of the learned

inverse model (Learnt IK) in a �gure-eight tracking

task. �e learned model performs as well as the ana-

lytical inverse kinematics solution (Analytical IK), with

root mean squared tracking errors in positions and

velocities very close to that of the analytical solution.

Learning Trajectory Optimizations

Mitrovic, Klanke, andVijayakumar () have explored

a theory for sensorimotor adaptation in humans, i.e.,

how humans replan their movement trajectories in the

presence of perturbations. �ey rely on the iterative

Linear Quadratic Gaussian (iLQG) algorithm (Todorov

& Li, ) to deal with the nonlinear and chang-

ing plant dynamics that may result from altered mor-

phology, wear and tear, or external perturbations. �ey

take advantage of the “on-the-�y” adaptation of locally

weighted regression methods like LWPR to learn the

forward dynamics of a simulated arm for the purpose of

optimizing amovement trajectory between a start point

and an end point.

Figure a shows the diagram of a two degrees-of-

freedom planar human arm model, which is actuated

by four single-joint and two double-joint antagonis-

tic muscles. Although kinematically simple, the sys-

tem is over-actuated and, therefore, it is an interesting

testbed because large redundancies in the dynamics

have to be resolved. �e dimensionality of the con-

trol signals makes adaptation processes (e.g., to external

force �elds) quite demanding.

�e dynamics of the arm is, in part, based on stan-

dard RBD equations of motion:

τ =M (q) q̈ +C (q, q̇) q̇ ()

where τ are the joint torques; q and q̇ are the joint
angles and velocities, respectively; M(q) is the two-
dimensional symmetric joint space inertia matrix; and

C (q, q̇) accounts for Coriolis and centripetal forces.
Given the antagonistic muscle-based actuation, it is not

possible to command joint torques directly. Instead, the

e�ective torques from the muscle activations u – which
happens to be quadratic in u – should be used. As a
result, in contrast to standard torque-controlled robots,

the dynamics equation in Eq. () is nonlinear in the

control signals u.
�e iLQG algorithm (Todorov & Li, ) is used

to calculate solutions to “localized” linear and quadratic

approximations, which are iterated to improve the

global control solution. However, it relies on an ana-

lytical forward dynamics model ẋ = f (x,u) and �nite
di�erence methods to compute gradients. To alleviate

this requirement and to make iLQG adaptive, LWPR

can be used to learn an approximation of the plant’s

forward dynamics model. Figure  shows the control

 L Locally Weighted Regression for Control

Shoulder

Human arm modela

Elbow

x

y

q1

q2

1

2

3

4

5

6

1 2 3 4 5 6
1

25

49

Muscles
ILQGb

k
(t

im
e)

−10 0 10 20
30

40

50

60

Locally Weighted Regression for Control. Figure . (a) Human arm model with  muscles; (b) Optimized control

sequence (left) and resulting trajectories (right) using the known analytic dynamics model. The control sequences (left

target only) for each muscle (–) are drawn from bottom to top, with darker grey levels indicating stronger muscle

activation

ILQG u Plant+

Feedback
controller

x, dx

L, x

u

u

Perturbationsx

δ
– + δu

Cost function
(incl. target)

Learned
dynamics model

u–

–

Locally Weighted Regression for Control. Figure . Illustration of learning and control scheme of the iterative Linear

Quadratic Gaussian (iLQG) algorithm with learned dynamics

diagram, where the “learned dynamics model” (the for-

ward model learned by LWPR) is then updated in an

online fashion with every iteration to cope with changes

in dynamics. �e resulting framework is called iLQG-

LD (iLQG with learned dynamics).

Movements of the arm model in Fig. a are stud-

ied for �xed time horizon reaching movement. �e

manipulator starts at an initial position q and reaches
towards a target qtar. �e cost function to be optimized
during the movement is a combination of target accu-

racy and amount of muscle activation (i.e., energy con-

sumption). Figure b shows trajectories of generated

movements for three reference targets (shown in red

circles) using the feedback controller from iLQG with

the analytical plant dynamics. �e trajectories gener-

ated with iLQG-LD (where the forward plant dynamics

are learned with LWPR) are omitted as they are hardly

distinguishable from the analytical solution.

A major advantage of iLQG-LD is that it does

not rely on an accurate analytic dynamics model; this

enables the framework to predict adaptation behav-

ior under an ideal observer planning model. Reaching

movements were studied where a constant unidirec-

tional force �eld acting perpendicular to the reach-

ing movement was generated as a perturbation (see

Fig.  (le�)). Using the iLQG-LD model, the manip-

ulator gets strongly de�ected when reaching for the

target because the learned dynamics model cannot

yet account for the “spurious” forces. However, when

the de�ected trajectory is used as training data and

the dynamics model is updated online, the tracking

improves with each new successive trial (Fig.  (le�)).

Please refer to Mitrovic et al. () for more details.

A�ere�ects upon removing the force �eld, very simi-

lar to those observed in human experiments, are also

observed.

Locally Weighted Regression for Control L 

L

0 10
30

40

50

60

1 2 3 4 5 6
1

25

49

muscles
k

(t
im

e)

1 2 3 4 5 6
1

25

49

muscles

k
(t

im
e)

Locally Weighted Regression for Control. Figure . Adaptation to a unidirectional constant force field (indicated by the

arrows). Darker lines indicate better trained models. In particular, the left-most trajectory corresponds to the “initial”

control sequence, which was calculated using the LWPR model before the adaptation process. The fully “adapted”

control sequence results in a nearly straight line reaching movement

Cross References
7Bias and Variance
7Dimensionality Reduction
7Incremental Learning
7Kernel Function
7Kernel Methods
7Lazy Learning
7Linear Regression
7Mixture Models
7Online Learning
7Over�tting
7Radial Basis Functions
7Regression
7Supervised Learning

Programs and Data
http://www-clmc.usc.edu/so�ware

http://www.ipab.inf.ed.ac.uk/slmc/so�ware/

Recommended Reading
Aström, K. J., & Wittenmark, B. (). Adaptive control. Reading,

MA: Addison-Wesley.

Atkeson, C., Moore, A., & Schaal, S. (). Locally weighted learn-

ing. AI Review, , –.

Atkeson, C. (). Using local models to control movement.

In Proceedings of the advances in neural information pro-

cessing systems  (pp. –). San Francisco, CA: Morgan

Kaufmann.

Cleveland, W. S. (). Robust locally weighted regression and

smoothing scatterplots. Journal of the American Statistical Asso-

ciation, , –.

Hastie, T., & Loader, C. (). Local regression: Automatic kernel

carpentry. Statistical Science, , –.

Jordan, M. I., & Jacobs, R. (). Hierarchical mixtures of experts

and the EM algorithm. Neural Computation, , –.

Klanke, S., Vijayakumar, S., & Schaal, S. (). A library for locally

weighted projection regression. Journal of Machine Learning

Research, , –.

Mitrovic, D., Klanke, S., & Vijayakumar, S. (). Adaptive optimal

control for redundantly actuated arms. In Proceedings of the th

international conference on the simulation of adaptive behavior,

Osaka, Japan (pp. –). Berlin: Springer-Verlag.

Schaal, S., & Atkeson, C. G. (). Constructive incremental learn-

ing from only local information. Neural Computation, (),

–.

Schaal, S., Atkeson, C. G., & Vijayakumar, S. (). Scalable tech-

niques from nonparametric statistics. Applied Intelligence, ,

–.

Ting, J., D’Souza, A., Yamamoto, K., Yoshioka, T., Hoffman, D.,

Kakei, S., et al. (). Predicting EMG data from M neu-

rons with variational Bayesian least squares. In Proceedings

of advances in neural information processing systems , Cam-

bridge: MIT Press.

Ting, J., Kalakrishnan, M., Vijayakumar, S., & Schaal, S. ().

Bayesian kernel shaping for learning control. In Proceedings

of advances in neural information processing systems  (pp.

–). Cambridge: MIT Press.

Ting, J. (). Bayesian methods for autonomous learning systems.

Ph.D. Thesis, Department of Computer Science, University of

Southern California, .

http://www-clmc.usc.edu/software
http://www.ipab.inf.ed.ac.uk/slmc/software/

 L Logic of Generality

Todorov, E., & Li, W. (). A generalized iterative LQG method

for locally-optimal feedback control of constrained nonlinear

stochastic systems. In Proceedings of st international confer-

ence of informatics in control, automation and robotics, Setúbal,

Portugal.

Vijayakumar, S., D’Souza, A., & Schaal, S. (). Incremental online

learning in high dimensions. Neural Computation, , –

.

Logic of Generality

Luc De Raedt

Katholieke Universiteit Leuven

Heverlee, Belgium

Synonyms
Generality and logic; Induction as inverted deduction;

Inductive inference rules; Is more general than; Is more

speci�c than; Specialization

Definition
One hypothesis is more general than another one if it

covers all instances that are also covered by the latter

one. �e former hypothesis is called a 7generalization

of the latter one, and the latter a 7specialization of the

former.When using logical formulae as hypotheses, the

generality relation coincides with the notion of logical

entailment, which implies that the generality relation

can be analyzed from a logical perspective. �e logical

analysis of generality, which is pursued in this chap-

ter, leads to the perspective of induction as the inverse

of deduction. �is forms the basis for an analysis of

various logical frameworks for reasoning about gener-

ality and for traversing the space of possible hypothe-

ses. Many of these frameworks (such as for instance,

θ-subsumption) are employed in the �eld of7inductive
logic programming and are introduced below.

Motivation and Background
Symbolic machine learning methods typically learn by

searching a hypothesis space.�e hypothesis space can

be (partially) ordered by the7generality relation, which
serves as the basis for de�ning operators to traverse the

space as well as for pruning away unpromising parts

of the search space. �is is o�en realized through the

use of7re�nement operators, that is, generalization and

specialization operators. Because many learning meth-

ods employ a 7hypothesis language that is logical or
that can be reformulated in logic, it is interesting to ana-

lyze the generality relation from a logical perspective.

When using logical formulae as hypotheses, the gener-

ality relation closely corresponds to logical entailment.

�is allows us to directly transfer results from logic

to a machine learning context. In particular, machine

learning operators can be derived from logical inference

rules. �e logical theory of generality provides a frame-

work for transferring these results. Within the standard

setting of inductive logic programming, learning from

entailment, specialization is realized through deduc-

tion, and generalization through induction, which is

considered to be the inverse of deduction. Di�erent

deductive inference rules lead to di�erent frameworks

for generalization and specialization. �e most popu-

lar one is that of θ-subsumption, which is employed

by the vast majority of contemporary inductive logic

programming systems.

Theory
A hypothesis g ismore general than a hypothesis s if and

only if g covers all instances that are also covered by s,

more formally, if covers(s) ⊆ covers(g), in which case,
covers(h) denotes the set of all instances covered by the
hypothesis h.

�ere are several possibleways to represent hypothe-

ses and instances in logic (De Raedt, , ), each

of which results in a di�erent setting with a correspond-

ing covers relation. Some of the best known settings are

learning from entailment, learning from interpretations,

and learning from proofs.

Learning from Entailment

In learning from entailment, both hypotheses and

instances are logical formulae, typically de�nite clauses,

which underlie the programming language Prolog

(Flach, ). Furthermore, when learning from entail-

ment, a hypothesis h covers an instance e if and only

if h ⊧ e, that is, when h logically entails e, or equiva-

lently, when e is a logical consequence of h. For instance,

consider the hypothesis h:

flies :- bird, normal.
bird :- blackbird.
bird :- ostrich.

Logic of Generality L 

L

�e�rst clause or rule can be read asflies if normal
and bird, that is, normal birds �y. �e second and
third states that blackbirds are birds. Consider now the

examples e:

flies :- blackbird, normal, small.

and e:

flies :- ostrich, small.

Example e is covered by h, because it is a logical conse-

quence of h, that is, h ⊧ e. On the other hand, example

e is not covered, which we denote as h /⊧ e.

When learning fromentailment, the following prop-

erty holds:

Property  A hypothesis g is more general than a

hypothesis s if and only if g logically entails s, that is, g ⊧ s.

�is is easy to see. Indeed, g is more general than s

if and only if covers(s) ⊆ covers(g) if and only if for all
examples e : (s ⊧ e) → (g ⊧ e), if and only if g ⊧ s. For

instance, consider the hypothesis h:

flies :- blackbird, normal.

Because h ⊧ h, it follows that h covers all examples

covered by h, and hence, h generalizes h.

Property  states that the generality relation coin-

cideswith logical entailmentwhen learning from entail-

ment. In other learning settings, such as when learning

from interpretations, this relationship also holds though

the direction of the relationship might change.

Learning from Interpretations

In learning from interpretations, hypotheses are logical

formulae, typically sets of de�nite clauses, and instances

are interpretations. For propositional theories, interpre-

tations are assignments of truth-values to propositional

variables. For instance, continuing the flies illustra-
tion, two interpretations could be

{blackbird, bird, normal, flies} and
{ostrich, small}

where we specify interpretations through the set of

propositional variables that are true. An interpretation

speci�es a kind of possible world. A hypothesis h then

covers an interpretation if and only if the interpreta-

tion is a model for the hypothesis. An interpretation is

a model for a hypothesis if it satis�es all clauses in the

hypothesis. In our illustration, the �rst interpretation is

a model for the theory h, but the second is not. Because

the condition part of the rule bird :- ostrich.
is satis�ed in the second interpretation (as it contains

ostrich), the conclusion part, that is, bird, should
also belong to the interpretation in order to have a

model. �us, the �rst example is covered by the theory

h, but the second is not.

When learning from interpretations, a hypothesis g

is more general than a hypothesis s if and only if for all

examples e: (e is a model of s) → (e is a model of g), if
and only if s ⊧ g.

Because the learning from entailment setting is

more popular than the learning from interpretations

setting, we shall employ in this section the usual con-

vention that states that one hypothesis g is more general

than a hypothesis s if and only if g ⊧ s.

An Operational Perspective

Property  lies at the heart of the theory of induc-

tive logic programming and generalization because it

directly relates the central notions of logic with those

of machine learning (Muggleton & De Raedt, ). It

is also extremely useful because it allows us to directly

transfer results from logic to machine learning.

�is can be illustrated using traditional deductive

inference rules, which start from a set of formulae and

derive a formula that is entailed by the original set.

For instance, consider the resolution inference rule for

propositional de�nite clauses:

h← g, a, . . . , an and g ← b, . . . , bm

h← b, . . . , bm, a, . . . , an
. ()

�is inference rule starts from the two rules above the

line and derives the so-called resolvent below the line.

�is rule can be used to infer h from h. An alternative

deductive inference rule adds a condition to a rule:

h← a, . . . , an

h← a, a, . . . , an
. ()

 L Logic of Generality

�is rule can be used to infer thath ismore general than

the clause used in example e. In general, a deductive

inference rule can be written as

g

s
. ()

If s can be inferred from g and the operator is sound,

then g ⊧ s. �us, applying a deductive inference rule

realizes specialization, and hence, deductive inference

rules can be used as specialization operators. A spe-

cialization operator maps a hypothesis onto a set of its

specializations. Because specialization is the inverse of

generalization, generalization operators – which map a

hypothesis onto a set of its generalizations – can be

obtained by inverting deductive inference rules. �e

inverse of a deductive inference rule written in for-

mat () works from bottom to top, that is, from s to g.

Such an inverted deductive inference rule is called an

inductive inference rule.�is leads to the view of induc-

tion as the inverse of deduction. �is view is opera-

tional as it implies that each deductive inference rule

can be inverted into an inductive one, and, also, that

each inference rule provides an alternative framework

for generalization.

An example of a generalization operator is obtained

by inverting the adding condition rule (). It corre-

sponds to the well-known “dropping condition” rule

(Michalski, ). As will be seen soon, it is also possible

to invert the resolution principle ().

Before deploying inference rules, it is necessary to

determine their properties. Two desirable properties are

soundness and completeness. �ese properties are based

on the repeated application of inference rules. �ere-

fore, we write g ⊢r s when there exists a sequence of

hypotheses h, . . . ,hn such that

g

h
,
h

h
, . . . ,

hn

s
using r. ()

A set of inference rules r is sound whenever g ⊢r s

implies g ⊧ s; and complete whenever g ⊧ s implies

g ⊢r s. In practice, soundness is always enforced though
completeness is not always required in amachine learn-

ing setting. When working with incomplete rules, one

should realize that the generality relation “⊢r” is weaker
than the logical one “⊧.”

�e most important logical frameworks for reason-

ing about generality, such as θ-subsumption and resolu-

tion, are introduced below using the above introduced

logical theory of generality.

Frameworks for Generality
Propositional Subsumption

Many propositional learning systems employ hypothe-

ses that consist of rules, o�en de�nite clauses as in the

flies illustration above. �e propositional subsump-
tion relation de�nes a generality relation among clauses

and is de�ned through the adding condition rule ().

�e properties follow from this inference rule by apply-

ing the logical theory of generalization presented above.

More speci�cally, the generality relation ⊢a induced by
the adding condition rule states that a clause g is more

general than a clause s, if s can be derived from g by

adding a sequence of conditions to g. Observing that

a clause h ← a, . . . , an is a disjunction of literals h ∨
¬a ∨ ⋯ ∨ ¬an allows us to write it in set notation as
{h,¬a, . . . ,¬an}. �e soundness and completeness of
propositional subsumption then follow from

g ⊢a s if and only if g ⊆ s if and only if g ⊧ s, ()

which also states that g subsumes s if and only if g ⊆ s.

�e propositional subsumption relation induces a

complete lattice on the space of possible clauses. A com-

plete lattice is a partial order – a re�exive, antisymmet-

ric, and transitive relation – where every two elements

posses a unique least upper and greatest lower bound.

An example lattice for rules de�ning the predicate

flies in terms of bird, normal, and small is
illustrated in the Hasse diagram depicted in Fig. .

�eHasse diagram also visualizes the di�erent oper-

ators that can be used. �e generalization operator ρg

maps a clause to the set of its parents in the diagram,

whereas the specialization operator ρs maps a clause to

the set of its children. So far, we have de�ned such oper-

ators implicitly through their corresponding inference

rules. In the literature, they are o�en de�ned explicitly:

ρg(h← a, . . . , an)
= {h← a, . . . , ai−, ai+, . . . , an∣i = , . . . ,n}. ()

In addition to using the inference rules directly,

some systems such as Golem (Muggleton & Feng, )

Logic of Generality L 

L

flies.

flies :- normal. flies :- small.

flies :-bird, normal. flies :- bird, small. flies :- small, normal.

flies :-bird, normal, small.

flies :- bird.

Logic of Generality. Figure . The Hasse diagram for the predicate flies

also exploit the properties of the underlying lattice by

computing the least upper bound of two formulae. �e

least upper bound operator is known under the name of

least general generalization (lgg) in the machine learn-

ing literature. It returns the least common ancestor in

the Hasse diagram. Using a set notation for clauses, the

de�nition of the lgg is:

lgg(c, c) = c ∩ c. ()

�e least general generalization operator is used by

machine learning systems that follow a cautious gener-

alization strategy. �ey take two clauses corresponding

to positive examples and minimally generalize them.

θ-Subsumption

�e most popular framework for generality within

inductive logic programming is θ-subsumption (Plotkin,

). It provides a generalization relation for clausal

logic and it extends propositional subsumption to �rst

order logic.

A de�nite clause is an expression of the form

h ← a, . . . , an where h and the ai are logical atoms. An

atom is an expression of the form p(t, . . . , tm) where
p is a predicate name (or, the name of a relation) and

the ti are terms. A term is either a constant (denot-

ing an object in the domain of discourse), a variable, or

a structured term of the form f (u, . . . ,uk) where f is
a functor symbol (denoting a function in the domain

of discourse) and the ui are terms, see Flach () for

more details. Consider for instance the clauses

likes(X,Y) :- neighbours(X,Y).
likes(X,husbandof(Y)) :- likes(X,Y).

likes(X,tom) :- neighbours(X,tom),
male(X).

�e �rst clause states that X likes Y if X is a
neighbour of Y. �e second one that X likes the
husband of Y if X likes Y. �e third one that all
male neighbours of tom like tom.

θ-Subsumption is based not only on the adding

condition rule () but also on the substitution rule:

g

gθ
. ()

�e substitution rule applies a substitution θ to the def-

inite clause g. A substitution {V/t, . . . ,Vn/tn} is an
assignment of terms to variables. Applying a substitu-

tion to a clause c yields the instantiated clause, where

all variables are simultaneously replaced by their corre-

sponding terms.

θ-subsumption is then the generality relation induced

by the substitution and the adding condition rules.

Denoting this set of inference rules by t, we obtain our

de�nition of θ-subsumption:

g θ-subsumes s if and only if g ⊢t s if and only if
∃θ : gθ ⊆ s. ()

For instance, the �rst clause for likes subsumes the
third one with the substitution {Y/tom}.

θ-subsumption has some interesting properties:

● θ-subsumption is sound.

● θ-subsumption is complete for clauses that are not

self-recursive. It is incomplete for self-recursive

clauses such as

 L Logic of Generality

nat(s(X)) :- nat(X)
nat(s(s(Y))) :- nat(Y)

for which one can use resolution to prove that the

�rst clause logically entails the second one, even

though it does not θ-subsume it.

● Deciding θ-subsumption is an NP-complete prob-

lem.

Because θ-subsumption is relatively simple and

decidable whereas logical entailment between single

clauses is undecidable, it is used as the generality rela-

tion by the majority of inductive logic programming

systems.�ese systems typically employ a specialization

or re�nement operator to traverse the search space. To

guarantee systematic enumeration of the search space,

the specialization operator ρs can be employed. ρs(c) is
obtained by applying the adding condition or substitu-

tion rule with the following restrictions.

● �e adding condition rule only adds atoms of the

form p(V, . . . ,Vn), where the Vi are variables not

yet occurring in the clause c.

● �e substitution rule only employs elementary sub-

stitutions, which are of the form

– {X/Y}, where X and Y are two variables appear-
ing in c

– {V/ct}, where V is a variable in c and ct a con-
stant

– {V/f (V, . . . ,Vn)}, whereV is a variable in c, f a
functor of arity n and the Vi are variables not yet

occurring in c.

A generalization operator can be obtained by invert-

ing ρs, which requires one to invert substitutions.

Inverting substitutions is not easy. While applying a

substitution θ = {V/a} to a clause c replaces all occur-
rences of V by a and yields a unique clause cθ, apply-
ing the substitution rule in the inverse direction does

not necessarily yield a unique clause. If we assume the

elementary substitution applied to c with

c

q(a,a)
. ()

was {V/a}, then there are at least three possibilities for
c: q(a,V), q(V,a), and q(V,V).

θ-subsumption is re�exive, transitive but unfortu-

nately not anti-symmetric, which can be seen by con-

sidering the clauses

parent(X,Y) :- father(X,Y).
parent(X,Y) :- father(X,Y),

father(U,V).

�e�rst clause clearly subsumes the second one because

it is a subset.�e second one subsumes the �rst with the

substitution {X/U, V/Y}. �e two clauses are there-
fore equivalent under θ-subsumption, and hence also

logically equivalent.�e loss of the anti-symmetry com-

plicates the search process. �e naive application of the

specialization operator ρs may yield syntactic special-

izations that are logically equivalent. �is is illustrated

above where the second clause for parent is a re�ne-
ment of the �rst one using the adding condition rule. In

this way, useless clauses are generated, and if the result-

ing clauses are further re�ned, there is a danger that the

search will end up in an in�nite loop.

Plotkin () has studied the quotient set induced

by θ-subsumption and proven various interesting

properties. �e quotient set consists of classes of

clauses that are equivalent under θ-subsumption. �e

class of clauses equivalent to a given clause c is

denoted by

[c] = {c′∣c′ is equivalent with c under
θ-subsumption}. ()

Plotkin proved that

● �equotient set iswell-de�nedw.r.t. θ-subsumption.

● �ere is a representative, a canonical form, of each

equivalence class, the so-called reduced clause. �e

reduced clause of an equivalence class is the short-

est clause belonging to class. It is unique up to

variable renaming. For instance, in the parent
example above, the �rst clause is in reduced

form.

● �e quotient set forms a complete lattice, which

implies that there is a least general generalization of

two equivalence classes. In the inductive logic pro-

gramming literature, one o�en talks about the least

general generalization of two clauses.

Logic of Generality L 

L

Several variants of θ-subsumption have been devel-

oped. One of the most important ones is that of

OI-subsumption (Esposito, Laterza, Malerba, & Semer-

aro, ). For functor-free clauses, it modi�es the sub-

stitution rule by disallowing substitutions that unify

two variables or that substitute a variable by a constant

already appearing in the clause. �e advantage is that

the resulting relation is anti-symmetric, which avoids

some of the abovementioned problemswith re�nement

operators. On the other hand, the minimally general

generalization of two clauses is not necessary unique,

and hence, there exists no least general generalization

operator.

Inverse Resolution

Applying resolution is a sound deductive inference rule

and therefore realizes specialization. Reversing it yields

inductive inference rules or generalization operators

(Muggleton, ; Muggleton & Buntine, ). �is is

typically realized by combining the resolution princi-

ple with a copy operator. �e resulting rules are called

absorption () and identi�cation (). �ey start from

the clauses below and induce the clause above the line.

�ey are shown here only for the propositional case, as

the �rst order case requires one to deal with substitu-

tions as well as inverse substitutions.

h← g, a, . . . , an and g ← b, . . . , bm

h← b, . . . , bm, a, . . . , an and g ← b, . . . , bm
, ()

h← g, a, . . . , an and g ← b, . . . , bm

h← b, . . . , bm, a, . . . , an and h← g, a, . . . , an
. ()

Other interesting inverse resolution operators per-

form predicate invention, that is, they introduce new

predicates that were not yet present in the original data.

�ese operators invert two resolution steps. One such

operator is the intra-construction operator (). Apply-

ing this operator frombottom to top introduces the new

predicate q that was not present before.

q← l , . . . , lk and p← k , . . . , kn , q and q← l
′, . . . , lm

′

p← k , . . . , kn , l , . . . , lk and p← k , . . . , kn , l′, . . . , lm′
. ()

�e idea of inverting the resolution operator is very

appealing because it aims at inverting the most popular

deductive inference operator, but is also rather com-

plicated due to the non-determinism and the need to

invert substitutions. Due to these complications, there

are only few systems that employ inverse resolution

operators.

Background Knowledge
Inductive logic programming systems employ back-

ground knowledge during the learning process. Back-

ground knowledge typically takes the form of a set

of clauses B, which is then used by the covers rela-

tion. When learning from entailment in the presence of

background knowledge B an example e is covered by a

hypothesis h if and only if B∪ h ⊧ e. �is notion of cov-

erage is employed inmost of thework on inductive logic

programming. In the intial flies example, the two
clauses de�ning bird would typically be considered
background knowledge.

�e incorporation of background knowledge in the

induction process has resulted in the frameworks for

generality relative to a background theory. More for-

mally, a hypothesis g is more general than a hypothesis

s relative to the background theory B if and only if

B ∪ g ⊧ s. �e only inference rules that deal with

multiple clauses are those based on (inverse) resolu-

tion. �e other frameworks can be extended to cope

with this generality relation following the logical the-

ory of generalization. Various frameworks have been

developed along these lines. Some of the most impor-

tant ones are relative subsumption (Plotkin, ) and

generalized subsumption (Buntine, ), which extend

θ-subsumption and the notion of least general general-

ization toward the use of background knowledge. Com-

puting the least general generalization of two clauses

relative to the background theory is realized by �rst

computing the most speci�c clauses covering the exam-

ples with regard to the background theory and then

generalizing them using the least general generalization

operator of θ-subsumption.

�e �rst step is the most interesting one, and has

been tackled under the name of saturation (Rouveirol,

) and bottom-clauses (Muggleton, ). We illus-

trate it within the framework of inverse entailment due

toMuggleton ().�e bottom clause �(c) of a clause
c with regard to a background theory B is the most

speci�c clause �(c) such that

B ∪ �(c) ⊧ c. ()

 L Logic of Generality

If B consist of

polygon :- rectangle.
rectangle :- square.
oval :- circle.

and the example c is

positive :- red, square.

�en the bottom-clause �(c) is

positive :- red, rectangle, square,
polygon.

�e bottom-clause is useful because it only lists those

atoms that are relevant to the example, and only gener-

alizations (under θ-subsumption) of �(c)will cover the
example. For instance, in the illustration, the bottom-

clause mentions neither oval nor circle as clauses
for pos containing these atoms will never cover the
example clause c. Once the bottom-clause covering an

example has been found the search process continues as

if no background knowledge were present. Either spe-

cialization operators (typically under θ-subsumption)

would search the space of clauses more general than

�(c), or the least general generalization of multiple
bottom-clauses would be computed.

Equation () is equivalent to

B ∪ ¬c ⊧ ¬�(c), ()

which explains why the bottom-clause is computed by

�nding all factual consequences of B ∪ ¬c and then
inverting the resulting clause again. On the example:

¬c = {¬ positive, red, square}

and the set of all consequences is

¬�(c) = ¬c∪{rectangle, polygon}

which then yields �(c) mentioned above. When deal-
ing with �rst order logic, bottom-clauses can become

in�nite, and therefore, one typically imposes further

restrictions on the atoms that appear in bottom-clauses.

�ese restrictions are part of the language bias.

�e textbook by Nienhuys-Cheng and De Wolf

() is the best reference for an in-depth formal

description of various frameworks for generality in

logic, in particular, for θ-subsumption and some of

its variants. �e book by De Raedt () contains

a more complete introduction to inductive logic pro-

gramming and relational learning, and also introduces

the key frameworks for generality in logic. An early

survey of inductive logic programming and the log-

ical theory of generality is contained in Muggleton

and De Raedt (). Plotkin (, ) pioneered the

use θ-subsumption and relative subsumption (under

a background theory) for machine learning. Buntine

() extended these frameworks toward generalized

subsumption, and Esposito et al. () introduced OI-

subsumption. Inverse resolution was �rst used in the

system Marvin (Sammut & Banerji, ), and then

elaborated by Muggleton () for propositional logic

and byMuggleton and Buntine () for de�nite clause

logic. Various learning settings are studied by De Raedt

() and discussed extensively by De Raedt ().

�ey are also relevant to 7probabilistic logic learning
and7statistical relational learning.

Recommended Reading
Buntine, W. (). Generalized subsumption and its application to

induction and redundancy. Artificial Intelligence, , –.

De Raedt, L. (). Logical settings for concept learning. Artificial

Intelligence, , –.

De Raedt, L. (). Logical and relational learning. New York:

Springer.

Semeraro, G., Esposito, F., & Malerba, D. (). Ideal Refinement of

Datalog Programs. In Proceedings of the th International Work-

shop on Logic Program Synthesis and Transformation, Lecture

notes in computer science (Vol. , pp. –). Springer.

Flach, P. A. (). Simply logical: Intelligent reasoning by example.

New York: Wiley.

Michalski, R. S. (). A theory and methodology of inductive

learning. Artificial Intelligence, (), –.

Muggleton, S. (). Duce, an oracle based approach to constructive

induction. In Proceedings of the th International Joint con-

ference on Artificial Intelligence (pp. –). San Francisco:

Morgan Kaufmann.

Muggleton, S. (). Inverse entailment and Progol. New Genera-

tion Computing, (–), –.

Muggleton, S., & Buntine, W. (). Machine invention of first

order predicates by inverting resolution. In Proceedings of the

th International Workshop on Machine Learning (pp. –).

San Francisco: Morgan Kaufmann.

Muggleton, S., & De Raedt, L. (). Inductive logic programming:

Theory and methods. Journal of Logic Programming, /, –

.

Muggleton, S., & Feng, C. (). Efficient induction of logic pro-

grams. In Proceedings of the st conference on Algorithmic Learn-

ing Theory (pp. –). Ohmsma, Tokyo, Japan.

Logit Model L 

L

Nienhuys-Cheng, S.-H., & de Wolf, R. (). Foundations of induc-

tive logic programming. Berlin: Springer.

Plotkin, G. D. (). A note on inductive generalization. InMachine

intelligence (Vol. , pp. –). Edinburgh: Edinburgh Univer-

sity Press.

Plotkin, G. D. (). A further note on inductive generalization.

In Machine Intelligence (Vol. , pp. –). Edinburgh: Edin-

burgh University Press.

Rouveirol, C. (). Flattening and saturation: Two represen-

tation changes for generalization. Machine Learning, (),

–.

Sammut, C., & Banerji, R. B. (). Learning concepts by

asking questions. In R. S. Michalski, J. G. Carbonell, &

T. M. Mitchell (Eds.), Machine learning: An artificial intelli-

gence approach (Vol. , pp. –). San Francisco: Morgan

Kaufmann.

Logic Program

A logic program is a set of logical rules or 7clauses.
Logic programs are employed to answer queries using

the 7resolution inference rule. For example, consider
the following logic program:

grandparent(X,Y) :- parent(X,Z),
parent(Z,Y).

parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).

father(charles, william).
mother(diana, william).

father(philip, charles).
mother(elizabeth, charles).

father(john, diana).
mother(frances, diana).

Using resolution we obtain the following answers to the

query :-grandparent(X,Y):

X = philip, Y = william ;
X = john, Y = william ;
X = elizabeth, Y = william ;
X = frances, Y = william.

Cross References
7Clause
7First-Order Logic
7Prolog

Logical Consequence

7Entailment

Logical Regression Tree

7First-Order Regression Tree

Logistic Regression

Synonyms
Logit model

Definition
Logistic regression provides a mechanism for applying

the techniques of 7linear regression to 7classi�cation
problems. It utilizes a linear regression model of

the form

z = β + βx + βx +⋯ + βnxn

where x to xn represent the values of the n attributes

and β to βn represent weights. �is model is mapped

onto the interval [,] using

P(c ∣ x . . . xn) =


 + e−z

where c represents class .

Recommended Reading
Hastie, T., Tibshirani, R., & Friedman, J. (). The elements of

statistical learning (nd ed.). New York: Springer.

Logit Model

7Logistics Regression

 L Log-Linear Models

Log-Linear Models

7Maximum Entropy Models for Natural Language

Processing

Long-Term Potentiation of Synapses

By a suitable induction protocol, the connection bet-

ween two neurons can be strengthened. If this change

persists for hours, the e�ect is called a long-term

potentation.

LOO Error

7Leave-One-Out Error

Loopy Belief Propagation

Loopy belief propagation is a heuristic inference algo-

rithm for7Bayesian networks. See7Graphical Models
for details.

Loss

Synonyms
Cost

Definition
�e cost or loss of a prediction y′, when the correct value

is y, is a measure of the relative utility of that prediction

given that correct value. A common loss function used

with 7classi�cation learning is 7zero-one loss. Zero-

one loss assigns  to loss for a correct classi�cation and

 for an incorrect classi�cation. 7Cost sensitive clas-
si�cation assigns di�erent costs to di�erent forms of

misclassi�cation. For example, misdiagnosing a patient

as having appendicitis when he or she does not might

be of lower cost than misdiagnosing the patient as not

having it when he or she does. A common loss func-

tion used with 7regression is 7error squared. �is is
the square of the di�erence between the predicted and

true values.

Loss Function

Synonyms
Cost function

Definition
A loss function is a function used to determine7loss.

LWPR

7Locally Weighted Regression for Control

LWR

7Locally Weighted Regression for Control

	L
	L1-Distance
	Label
	Labeled Data

	Language Bias
	Definition
	Cross References

	Laplace Estimate
	Latent Class Model
	Latent Factor Models and MatrixFactorizations
	Definition

	Lazy Learning
	Definition
	Discussion
	Cross References

	Learning as Search
	Definition
	Background
	Representation
	Version Spaces and Subsumption
	Noisy Data
	Cross References
	Recommended Reading

	Learning Bayesian Networks
	Learning Bias
	Learning By Demonstration
	Learning By Imitation
	Learning Classifier Systems
	Learning Control
	Learning Control Rules
	Learning Curves in Machine Learning
	Synonyms
	Definition
	Motivation and Background
	Use of Learning Curves in Machine Learning
	Artificial Neural Networks
	General Machine Learning

	Cross References
	Recommended Reading

	Learning from Complex Data
	Learning from Labeled andUnlabeled Data
	Learning from NonpropositionalData
	Learning from Nonvectorial Data
	Learning from Preferences
	Learning from Structured Data
	Synonyms
	Definition
	Motivation and Background
	Main Tasks and Solution Approaches
	Applications
	Cross References
	Recommended Reading

	Learning from Labeled and Unlabeled Data
	Learning Graphical Models
	Synonyms
	Definition
	Motivation and Background
	Theory
	Probability and Causality
	Statistical Equivalence

	Applications
	Constraint Learners
	Metric Learners
	Search and Complexity
	Markov Blanket Discovery
	Knowledge Engineering with Bayesian Networks

	Cross References
	Recommended Reading

	Learning in Logic
	Learning in Worlds with Objects
	Learning Models of Biological Sequences
	Definition
	Motivation and Background
	Structure of Learning System
	Motifs
	Proteins
	Genes
	RNAs
	Phylogenetic Models
	Programs and Data

	Recommended Reading

	Learning Vector Quantization
	Synonyms
	Definition

	Learning with DifferentClassification Costs
	Learning with Hidden Context
	Learning Word Senses
	Least-Squares Reinforcement Learning Methods
	Definition
	Motivation and Background
	Bellman Residual Minimizing Approximation
	Least-Squares Fixed-Point Approximation

	Structure of Learning System
	Least-Squares Temporal Difference Learning
	Bellman Residual Minimization Learning
	Hybrid Least-Squares Learning
	Least-Squares Policy Evaluation
	Least-Squares Policy Iteration
	Least-Squares Fitted Q-Iteration

	Cross References
	Recommended Reading

	Leave-One-Out Cross-Validation
	Definition
	Cross References
	Recommended Reading

	Leave-One-Out Error
	Synonyms
	Definition

	Lessons-Learned Systems
	Lifelong Learning
	Life-Long Learning
	Lift
	Linear Discriminant
	Definition
	Motivation and Background
	Fisher's Discriminant for Two-Category Problem
	Fisher's Discriminant for Multi-category Problem
	Cross References
	Recommended Reading

	Linear Regression
	Definition
	Motivation and Background
	Theory/Solution
	Least Squares Method
	Geometrical Interpretation of Least Squares Method
	Practical note:

	Sequential Learning of Least Squares Method
	Regularized/Penalized Least Squares Method
	Ridge regression
	Lasso regression

	Cross References
	Recommended Reading

	Linear Regression Trees
	Linear Separability
	Cross References

	Link Analysis
	Link Mining and Link Discovery
	Synonyms
	Definition
	Motivation and Background
	Theory/Solution
	Data Representation
	Link Mining Tasks
	Cross References
	Recommended Reading

	Link Prediction
	Synonyms
	Definition
	Theory/Solution
	Approaches
	Topology-Based Approaches
	Node Attribute-Based Approaches
	Issues
	Related Problems
	Cross References
	Recommended Reading

	Link-Based Classification
	Liquid State Machine
	Local Distance Metric Adaptation
	Synonyms
	Definition
	Cross References

	Local Feature Selection
	Locality Sensitive Hashing Based Clustering
	Recommended Reading

	Locally Weighted Learning
	Locally Weighted Regression for Control
	Synonyms
	Definition
	Motivation and Background
	Background
	Structure of Learning System
	Memory-Based Locally Weighted Regression (LWR)
	Locally Weighted Projection Regression (LWPR)
	A Full Bayesian Treatment of Locally Weighted Regression
	Applications
	Learning Internal Models with LWPR
	Learning Paired Inverse-Forward Models
	Learning Trajectory Optimizations

	Cross References
	Programs and Data
	Recommended Reading

	Logic of Generality
	Synonyms
	Definition
	Motivation and Background
	Theory
	Learning from Entailment
	Learning from Interpretations
	An Operational Perspective

	Frameworks for Generality
	Propositional Subsumption
	-Subsumption
	Inverse Resolution

	Background Knowledge
	Recommended Reading

	Logic Program
	Cross References

	Logical Consequence
	Logical Regression Tree
	Logistic Regression
	Synonyms
	Definition
	Recommended Reading

	Logit Model
	Log-Linear Models
	Long-Term Potentiation of Synapses
	LOO Error
	Loopy Belief Propagation
	Loss
	Synonyms
	Definition

	Loss Function
	Synonyms
	Definition
	LWPR
	LWR

