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Definition

Game playing is a major application area for research
in artificial intelligence in general (Schaeffer & van den
Herik, 2002) and for machine learning in particular
(Furnkranz & Kubat, 2001). Traditionally, the field is
concerned with learning in strategy games such as tic-
tac-toe (Michie, 1963), checkers (»Samuel’s Checkers
Player), backgammon (»TD-Gammon), chess (Baxter
et al,, 2000; Bjornsson & Marsland, 2003; Donninger
& Lorenz, 2006; Sadikov & Bratko, 2006), Go (Stern
et al, 2006), Othello (Buro, 2002), poker (Billings,
Pefia, Schaeffer, & Szafron, 2002), or bridge (Amit &
Markovitch, 2006). However, recently computer and
video games have received increased attention (Laird
& van Lent, 2001; Ponsen, Mufoz-Avila, Spronck, &
Aha, 2006; Spronck, Ponsen, Sprinkhuizen-Kuyper, &
Postma, 2006).

Motivation and Background

Since the early days of the field, game playing applica-
tions have been popular testbeds for machine learning.
This has several reasons:

o Games allow to focus on intelligent reasoning: Other
components of intelligence, such as perception or
physical actions can be ignored.

o Games are easily accessible: A typical game-playing
environment can be implemented within a few

days, often hours. Exceptions are real-time computer
games, for which only a few open-source test beds
exist.

o Games are very popular: It is not very hard to
describe the agent’s task to the general public, and
they can easily appreciate the achieved level of intel-
ligence.

There are various types of problems that keep reoc-
curring in game-playing applications, for which solu-
tions with machine learning methods are desirable,
including opening book learning, learning of evaluation
functions, player modeling, and others, which will be
dealt with here.

Structure of the Learning System
Game-playing applications offer various challenges for
machine learning. A wide variety of learning techniques
have been used for tackling these problems. We cannot
provide details on the learning algorithms here but will
instead focus on the problems and give some of the most
relevant and recent pointers to the literature. A more
detailed survey can be found in Fiirnkranz (2001).

Learning of Evaluation Functions

The most extensively studied learning problem in game
playing is the automatic adjustment of the weights of
an evaluation function. Typically, the situation is as fol-
lows: the game programmer has provided the program
with a library of routines that compute important fea-
tures of the current board position (e.g., the number of
pieces of each kind on the board, the size of the ter-
ritory controlled, etc.). What is not known is how to
combine these pieces of knowledge and how to quantify
their relative importance. Most frequently, these param-
eters are combined linearly, so that the learning task is
to adjust the weights of a weighted sum. The main prob-
lem is that there are typically no direct target values that
could be used as training signals. Exceptions are games
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or endgames that have been solved completely, which
are treated further below. However, in general, algo-
rithms use »Preference Learning (where pairs of moves
or positions are labeled according to which one is pre-
ferred by an expert player) or »Reinforcement Learning
(where moves or positions are trained based on infor-
mation about the eventual outcome of the game) for
tuning the evaluation functions.

The key problem with reinforcement learning
approaches is the »Credit Assignment problem, i.e.,
even though a game has been won (lost), there might
be bad (good) moves in the game. Reinforcement learn-
ing takes a radical stance at this problem, giving all
positions the same reinforcement signal, hoping that
erroneous signals will be evened out over time. An early
classic in this area is MENACE (Michie, 1963), a tic-tac-
toe player who simulates reinforcement learning with
delayed rewards using a stack of matchboxes, one for
each position. Each box contains a number of beads
in different colors, which represent the different legal
moves in the position. Moves are selected by randomly
drawing a bead out of the box that represents the cur-
rent position. After a game is won, all played moves
are reinforced by adding beads of the corresponding
colors to these boxes, and in the case of a lost game,
corresponding beads are removed, thereby decreas-
ing the probability that the same move will be played
again.

The premier example of a system that has tuned
its evaluation function to expert strength by play-
ing millions of games against itself is the backgam-
mon program »TD-Gammon. Its key innovation was
the use of a P»Neural Network instead of a posi-
tion table, so that the reinforcement signal can be
generalized to new unseen positions. Many authors
have tried to copy TD-GaMMmoON’s learning method-
ology to other games (Ghory, 2004). None of these
successors, however, achieved a performance that was
as impressive as TD-GaMMON’s. The reason for this
seems to be that backgammon has various character-
istics that make it perfectly suited for learning from
self-play. Foremost among these are the fact that the
dice rolls guarantee sufficient variability, which allows
to use training by self-play without the need for an
explicit exploration/exploitation trade-off, and that it
only requires a very limited amount of search, which
allows to ignore the dependencies of search algorithm

and search heuristic. These points have, for example,
been addressed with limited success in the game of
chess, where the program KNIGHTCAP (Baxter et al.,
2000), which integrates »Temporal Difference Learn-
ing into a game tree search by using the final positions
of the principal variation for updates, and by using play
on a game server for exploration.

Many aspects of evaluation function learning are
still discussed in the current literature, including whether
there are alternatives to reinforcement learning (e.g.,
evolutionary algorithms), which training strategies
should be used (e.g., self-play vs. play against a teacher),
etc. One of the key problems, which has already
been mentioned in Samuel’s Checkers Player, namely
the automated construction of useful features remains
largely unsolved. Some progress has, e.g., been made
in the game of Othello, where a simple algorithm, very
much like »APriori has been shown to produce valu-
able conjunctions of basic features (Buro, 2002).

A more challenging, but considerably less investigated
task is to automatically tune the various parameters
that control the search in game-playing programs.
These parameters influence, for example, the degree to
which the search algorithm is aggressive in pruning the
unpromising parts of the search tree and the lines that
are explored in more depth. The key problem here is that
these parameters are intertwined with the search algo-
rithm, and cannot be optimized independently, making
the process very tedious and expensive.

There have been a few attempts to use »Explanation-
Based Learning to automatically learn predicates that
indicate which branches of the search tree are the most
promising to follow. These approaches are quite related
to various uses of PExplanation-Based Learning in
Planning, but these could not be successfully be carried
over to game-tree search.

Bjornsson & Marsland (2003) present a gradient
descent approach that minimizes the total number of
game positions that need to be searched in order to suc-
cessfully solve a number of training problems. The idea
is to adjust each parameter in proportion to its sensitiv-
ity to changes in the number of searched nodes, which
is estimated with additional searches. The amount of
positions that can be searched for each training position
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is bounded to avoid infinite solution times for individ-
ual problems, and simulated annealing is used to ensure
convergence.

Human game players not only rely on their ability to
estimate the value of moves and positions but are often
also able to play certain positions “by heart,” i.e., without
having to think about their next move. This is the result
of home preparation, opening study, and rote learning
of important lines and variations. As computers do not
forget, the use of an opening book provides an easy
way for increasing their playing strength. However, the
construction of such opening books can be quite labo-
rious, and the task of keeping it up-to-date is even more
challenging.

Commercial game-playing programs, in particular
chess programs, have thus resorted to tools that sup-
port the automatic construction of opening from large
game databases. The key challenge here is that one can-
not rely on statistical information alone: a move that has
been successfully employed in hundreds of games may
be refuted in a single game. (Donninger & Lorenz, 2006)
describe an approach that evaluates the “goodness” of
a move based on a heuristic formula that has been
found by experimentation. This value is then added
to the result of a regular alpha-beta search. The tech-
nique has been so successful, that the chess program
HyYDRa, probably the strongest chess program today, has
abandoned conventional large man-made (and there-
fore error-prone) error books. Similar techniques have
also been used in games like Othello (Buro, 2002).

In addition to databases of common openings and huge
game collections, which are mostly used for the tuning
of evaluation functions or the automatic generation of
opening books (see above), many games or subgames
have already been solved, i.e., databases in which the
game-theoretic value of positions of these subgames can
be looked up are available. For example, all endgames
with up to six pieces in chess have been solved. Other
games, such as Connect-4, are solved completely, i.e., all
possible positions have been evaluated and the game-
theoretic value of the starting position has been deter-
mined. The largest game that has been solved so far

is checkers Many of these databases are readily avail-
able, some of them (in the domains of chess, Connect-4,
and tic-tac-toe) are part of the »UCI Repository for
machine-learning databases.

The simplest learning task is to train a classifier that
is able to decide whether a given game position is a
game-theoretical win or loss (or draw). In many cases,
this is insufficient. For example, in the chess endgame
king-rook-king, any position in which the white rook
cannot be immediately captured, and in which black is
not stalemate is, in principle, won by white. However,
in order to actually win the game it is not sufficient
to simply make moves that avoid rook captures and
stalemates. Thus, most databases contain the maximal
number of moves that are needed for winning the posi-
tion. Predicting this is a much harder, largely unsolved
problem (some recent work can be found in (Sadikov &
Bratko, 2006)). In addition to the game-specific knowl-
edge that could be gained by the extraction of pat-
terns that are indicative of won positions, another major
application could be a knowledge-based compression of
these databases (the collection of all perfect-play chess
endgame databases with up to six men is 1.2 Terabytes in
avery compressed database format, the win/loss check-
ers databases with up to ten men contain about 4 x
10" positions compressed into 215GB (Schaeffer et al.,
2003)).

Player modeling is an important research area in game
playing, which can serve several purposes. The goal of
opponent modeling is to improve the capabilities of the
machine player by allowing it to adapt to its opponent
and exploit his weaknesses. Even if a game-theoretical
optimal solution to a game is known, a system that
has the capability to model its opponent’s behavior may
obtain a higher reward. Consider, for example, the game
of rock-paper-scissors aka RoShamBo, in which either
player can expect to win one third of the game (with
one third of draws) if both players play their opti-
mal strategies (i.e., randomly select one of their three
moves). However, against a player who always plays
rock, a player who is able to adapt his strategy to always
playing paper can maximize his reward, while a player
who sticks with the “optimal” random strategy will still
win only one third of the game. One of the grand chal-
lenges in this line of work are games such as poker, in
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which opponent modeling is crucial to improve over
game-theoretical optimal play (Billings et al., 2002).

Player modeling is also of increasing importance
in commercial computer games (see below). For one,
»Behavioral Cloning techniques could be used to
increase the playing strength or credibility of artificial
characters by copying the strategies of expert human
players. Moreover, the playing strength of the char-
acters can be adapted to the increasing skill level of
the human player. Finally, agents that can be trained
by non-programmers can also play an important role.
For example, in massive multiplayer online role-playing
games (MMORGS), an avatar that is trained to simulate
a user’s game-playing behavior could take his creator’s
place at times when the human player cannot attend to
his game character.

In recent years, the computer games industry has dis-
covered Artificial Intelligence as a necessary ingredi-
ent to make games more entertaining and challenging
and, vice versa, Al has discovered computer games as
an interesting and rewarding application area (Laird &
van Lent, 2001). In comparison to conventional strategy
games, computer game applications are more demand-
ing, as the agents in these game typically have to interact
with a large number of partner or enemy agents in a
highly dynamic, real-time environment, with incom-
plete knowledge about its states. Tasks include off-line
or on-line player modeling (see above), virtual agents
with learning capabilities, optimization of plans and
processes, etc.

Computer players in games are often controlled
with scripts. Dynamic scripting (Spronck et al., 2006)
is an on-line »Reinforcement Learning technique that
is designed to be integrated into scripting languages
of game playing agents. Contrary to conventional rein-
forcement learning agents, it updates the weights of all
actions for a given state simultaneously. This sacrifices
guaranteed convergence, but this is desirable in a highly
dynamic game environment. The approach was success-
fully applied to improving the strength of computer-
controlled characters and increasing the entertainment
value of the game by automated scaling of the diffi-
cult level of the game AI to the human player’s skill
level. Similar to the problem of constructing suitable
features for the use in evaluation functions, the basic

tactics of the computer player had to be handcoded.
Ponsen et al. (2006) extend dynamic scripting with an
»Evolutionary Algorithm for automatically construct-
ing the tactical behaviors.

Machine learning techniques are not only used for
controlling players, but also for tasks like skill estima-
tion. For example, Trueskill TM (Herbrich et al., 2007),
a Bayesian skill rating system which is used for ranking
players in games on the Microsoft’s Xbox 360. SAGA-
ML (Southey et al,, 2005) is a machine learning sys-
tem for supporting game designers in improving the
playability of a game.

Despite the large commercial potential, research in
this area has just started, and the number of workshops
and publications on this topic is rapidly increasing. For
more information on AI Game Development we refer
to http://aigamedev.com.
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Definition

The prevalence of information technology (IT) across
all segments of society, greatly improves the accessibility
of information, however, it also provides more oppor-
tunities for individuals to act with malicious intent.
Intrusion detection is the task of identifying attacks
against computer systems and networks. Based on
data/behavior observed in the past, machine learning
methods can automate the process of building detectors
for identifying malicious activities.

Motivation and Background

Cyber security often focuses on preventing attacks
using authentication, filtering, and encryption tech-
niques, but another important facet is detecting attacks
once the preventive measures are breached. Consider a
bank vault: thick steel doors prevent intrusions, while
motion and heat sensors detect intrusions. Prevention
and detection complement each other to provide a more
secure environment.

How do we know if an attack has occurred or
has been attempted? This requires analyzing huge vol-
umes of data gathered from the network, host, or
file systems to find suspicious activities. Two general
approaches exist for this problem: misuse detection
(also known as signature detection), where we look for
patterns signaling well-known attacks, and anomaly
detection, where we look for deviations from normal
behavior.

Misuse detection usually works reliably on known
attacks (though false alarms and missed detections are
not uncommon), but has the obvious disadvantage of
not being capable of detecting new attacks. Though
anomaly detection can detect novel attacks, it has the
drawback of not being capable of discerning intent;
it can only signal that some event is unusual, but
not necessarily hostile, thus generating false alarms. A
desirable system would employ both approaches. Mis-
use detection methods are more well understood and
widely applied; however, anomaly detection is much less
understood and more challenging.

Can we automate the process of building software
for misuse and anomaly detection? Machine learning
techniques hold promise in efficiently analyzing large
amounts of recent activities, identifying patterns, and
building detectors.

Besides computer attacks, spam email messages,
though not intended to damage computer systems
or data, are annoying and waste system resources.
To construct spam detectors from large amounts of
email messages, machine learning techniques have been
used (see References and Recommended Reading for
more).

Structure of Learning System
Machine learning can be used to construct models for
misuse as well as anomaly detection.
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For misuse detection, the machine learning goal is to
identify characteristics of known attacks. One approach
is to learn the difference between attacks and normal
events, which can be casted as a classification problem.
Given examples of labeled attacks and normal events, a
learning algorithm constructs a model that differenti-
ates attacks from normal events.

Lee, Stolfo, and Mok (1999) apply machine learn-
ing to detect attacks in computer networks. They first
identify frequent episodes, associations of features that
frequently appear within a time frame, in attack and
normal data separately. Frequent episodes that only
appear in attack data help construct features for the
models. For example, if the SYN flag is set for a http con-
nection is a frequent episode within 2 s and the episode
only appears in the attack data, a feature is constructed
for the number of http connections with the SYN flag
set within a period of 2 s. Using RIPPER and based on
different sets of features, they construct three models:
traffic, host-based traffic, and content models. The three
models are then combined using meta-learning.

Ghosh and Schwartzbard (1999) use neural net-
works to identify attacks in operating systems. Based
on system calls in the execution traces of normal and
attack programs, they first identify a number of “exam-
plar” sequences of system calls. For each system call
sequence, they calculate the distance from the examplar
sequences. The number of input nodes for the neural
network is equal to the number of examplars and values
for the input nodes are distances from those examplar
sequences. The value for the output node is whether
the system call sequence is from an attack or normal
program.

For anomaly detection, the machine learning goal is
to characterize normal behavior. The learned models
of normal behavior are then used to identify events
that are anomalies, events that deviate from the models.
Since anomalies are not always attacks, to reduce false
alarms, the learned models usually provide a scoring
mechanism to indicate the degree of anomaly.
Warrender, Forrest, and Pearlmutter (1999) identify
anomalies in system calls in the operating systems. The
model is a table of system call sequences from execu-
tion traces of normal programs. During detection, a

sequence that is not in the table or occurs less than
0.001% in the training data is considered a mismatch.
The number of mismatches within a locality frame of
20 sequences is the anomaly score.

Mahoney and Chan (2003) introduce the LERAD
algorithm for learning rules that identify anomalies in
network traffic. LERAD first uses a randomized algo-
rithm to generate candidate rules that represent asso-
ciations. It then finds a set of high quality rules that
can succinctly cover the training data. Each rule has
an associated probability of violating the rule. During
detection, based on the probability, LERAD provides a
score for anomalous events that do not conform to the
rules in the learned model.

Misuse Detection: Schultz, Eskin, Zadok, and
Stolfo (2001) with program executables, Maxion and
Townsend (2002) with user commands.

Anomaly Detection: Sekar, Bendre, Dhurjati, and
Bollinen (2001) with program execution, Apap, Honig,
Hershkop, Eskin, and Stolfo (2002) with Windows Reg-
istry, Anderson, Lunt, Javitz, Tamaru, and Valdes (1995)
with system resources, Lane and Brodley (1999) with
user commands.

Spam detection: Bratko, Filipic, Cormack, Lynam,
and Zupan (2006) with text, Fumera, Pillai, and Roli
(2006) with text and embedded images.
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Synonyms
City Block distance; L,-distance; 1-norm distance; Taxi-
cab norm distance

Definition

The Manhattan distance between two points x =
(x1,%2, ..., xy) andy = (y1, 2, - -
space is the sum of the distances in each dimension.

.»¥n) in n-dimensional

n

d(xy) = z; | xi=yil.

i=
It is called the Manhattan distance because it is the
distance a car would drive in a city (e.g., Manhattan)
where the buildings are laid out in square blocks and
the straight streets intersect at right angles. This explains
the other terms City Block and taxicab distances. The
terms L; and 1-norm distances are the mathematical

descriptions of this distance.

Cross References
> Case-Based Reasoning
»Nearest Neighbor

! Margin

Definition
In a »Support Vector Machine, a margin is the distance
between a hyperplane and the closest example.

Cross References
»Support Vector Machines

| Market Basket Analysis

»Basket Analysis

[
Markov Blanket

» Graphical Models

[
Markov Chain

» Markov Process

[
Markov Chain Monte Carlo
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Synonyms
MCMC

Definition

A Markov Chain Monte Carlo (MCMC) algorithm
is a method for sequential sampling in which each
new sample is drawn from the neighborhood of its
predecessor. This sequence forms a »Markov chain,
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since the transition probabilities between sample val-
ues are only dependent on the last sample value.
MCMC algorithms are well suited to sampling in high-
dimensional spaces.

Motivation

Sampling from a probability density function is nec-
essary in many kinds of approximation, including
Bayesian inference and other applications in Machine
Learning. However, sampling is not always easy, espe-
cially in high-dimensional spaces. Mackay (2003) gives
a simple example to illustrate the problem. Suppose we
want to find the average concentration of plankton in a
lake, whose profile looks like this:

If we do not know the depth profile of the lake, how
would we know where to sample from? If we take a boat
out, would we have to sample almost exhaustively by
fixing a grid on the surface of the lake and sinking our
instrument progressively deeper, sampling at fixed inter-
vals until we hit the bottom? This would be prohibitively
expensive and if we had a similar problem, but with more
dimensions, the problem becomes intractable. If we try
to simplify the problem by drawing a random sample,
how do we ensure that enough samples are taken from
the canyons in the lake and not just the shallows, which
account for most of the surface area?

The Algorithm

The general approach adopted in MCMC algorithms
is as follows. We start sampling in some random ini-
tial state, represented by vector, x. At each state, we
can evaluate the probability density function, P(x). We
then choose a candidate next state, x’, near the current
state and evaluate P(x"). Comparing the two, we decide
whether to accept or reject the candidate. If we accept
it, the candidate becomes the new current state and the
process repeats for a fixed number of steps or until some
convergence criterion is satisfied.

Algorithm 1 The Metropolis Algorithm
Given: target probability density function P(x)
a proposal distribution, Q, e.g., a Gaussian
the number of iterations, N
Output: a set of samples {x;} drawn from P(x)
Randomly select initial state vector, x,
fori=0toN -1
create a new candidate x’ = x; + Ax,
where Ax is randomly chosen from Q(Ax)

P(x')
P(xi)
if & > 1 or with probability «

seta =

accept the new candidate and set x;,; = &’
else
reject the candidate and set x4 = x;

The Metropolis Algorithm
There are several variants of the general algorithm pre-
sented above. Each variant must specify how a can-
didate state is proposed and what criterion should be
used to accept or reject the candidate. The Metropo-
lis algorithm assumes that the next candidate is drawn
from a symmetric distribution, Q(x), centered on the
current state, for example, a Gaussian distribution
(Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller,
1953; Metropolis & Ulam, 1949). This distribution is
called the proposal distribution. The Metropolis algo-
rithm is shown in Algorithm I.

To decide if a candidate should be accepted or
rejected, the algorithm calculates,

_P(x)
P (x)

where x; is the current state and x’ is the candidate
state. If & > 1, the candidate is immediately accepted.
If & < 1, then a stochastic choice is made with the candi-
date being accepted with probability «, otherwise, it is
rejected.

Hastings (1970) introduced a variant, the Metropolis—
Hastings algorithm, which allows the proposal distri-
bution to be asymmetric. In this case, the accept/reject
calculation is:

. P(x)Q(x;x)
P(x;)Q(x";x;)
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Burn-in and Convergence

It can be difficult to decide how many iterations are
needed before an MCMC algorithm achieves a sta-
ble distribution. Several factors affect the length of the
Markov chain needed. Depending on the start state,
many of the initial samples may have to be discarded,
called burn-in, as illustrated below. The ellipses repre-
sent contours of the distribution.

The variance of the proposal distribution can also
affect the chain length. If the variance is large, the
jumps are large, meaning that there is varied sam-
pling. However, this is also likely to mean that fewer
samples are accepted. Narrowing the variance should
increase acceptance but may require a long chain to
ensure wide sampling, which is particularly necessary
if the distribution has several peaks. See Andrieu et al.
(2003) for a discussion of methods for improving con-
vergence times.

Gibbs Sampling

An application of MCMC is inference in a »Bayesian
network, also known as »Graphical Models. Here, we
sample from evidence variables to find a probability
for non-evidence variables. That is, we want to know
what unknowns we can derive from the knowns and
with what probability. Combining the evidence across a
large network is intractable because we have to take into
account all possible interactions of all variables, sub-
ject to the dependencies expressed in the network. Since
there are too many combinations to compute in a large
network, we approximate the solution by sampling.

The Gibbs sampler is a special case of the Metropolis—
Hastings algorithm that is well suited to sampling from
distributions over two or more dimensions. It proceeds
as in Algorithm 1, except that when a new candidate
is generated, only one dimension is allowed to change
while all the others are held constant. Suppose we have
n dimensions and x = (x;,...,%,). One complete pass
consists of jumping in one dimension, conditioned on
the values for all the other dimensions, then jumping in
the next dimension, and so on. That is, we initialise x to
some value, and then for each x; we resample P(x;|xj-¢; )
for j in 1...n. The resulting candidate is immediately
accepted. We then iterate, as in the usual Metropolis
algorithm.

Cross References
»Bayesian Network

» Graphical Models
»Learning Graphical Models
» Markov Chain
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Synonyms
Policy search

Definition

A Markov Decision Process (MDP) is a discrete, stochas-
tic, and generally finite model of a system to which some
external control can be applied. Originally developed
in the Operations Research and Statistics communities,
MDPs, and their extension to »-Partially Observable
Markov Decision Processes (POMDPs), are now com-
monly used in the study of »reinforcement learning
in the Artificial Intelligence and Robotics communities
(Bellman, 1957; Bertsekas & Tsitsiklis, 1996; Howard,
1960; Puterman, 1994). When used for reinforcement
learning, firstly the parameters of an MDP are learned
from data, and then the MDP is processed to choose a
behavior.

Formally,an MDP is defined asa tuple: < S, A, T,R >,
where S is a discrete set of states, A is a discrete set of
actions, T : § x A - (S — R) is a stochastic transi-
tion function, and R : § x A — R specifies the expected
reward received for performing the given action in each
state.

An MDP carries the Markov label because both the
transition function, T, and the reward function, R, are
Markovian; i.e., they are dependent only upon the cur-
rent state and action, not previous states and actions.
To be a valid transition function, the distribution over
the resulting states, (S — R), must be a valid prob-
ability distribution, i.e., non-negative and totalling 1.
Furthermore, the expected rewards must be finite.

The usual reason for specifying an MDP is to find
the optimal set of actions, or policy, to perform. We

formalize the optimality criteria below. Let us first con-
sider how to represent a policy. In its most general
form the action, a € A, indicated by a policy, 7, might
depend upon the entire history of the agent; 7 : (Sx
A)* xS - A. However, for each of the common opti-
mality criteria considered below a Markov policy, 7 :
S — A, will be sufficient. i.e., for every MDD, for each
of the optimality criteria below, there exists a Markov
policy that performs as well as the best full policy. Sim-
ilarly, there is no requirement for an MDP that a policy
be stochastic or mixed.

Informally, one wants to choose a policy so as to max-
imise the long term sum of immediate rewards. Unfor-
tunately the naive sum, Y ;- r: where r; is the expected
immediate reward received at time ¢, usually diverges.
There are different optimality criteria that can than be
used as alternatives.

Finite Horizon The easiest way to make sure that the
sum of future expected rewards is bounded is to only
consider a fixed, finite time into the future; i.e., find a
policy that maximises Y}, ; for each state.

Infinite Horizon Discounted Rather than limiting the
distance we look into the future, another approach is
to discount rewards we will receive in the future by a
multiplicative factor, y, for each time-step. This can be
justified as an inflation rate, as an otherwise unmodelled
probability that the simulation ends each time-step, or
simply as a mathematical trick to make the criteria
converge. Formally we want a policy that maximises
Yoo y'r, for each state.

Average Reward Unfortunately, the infinite horizon
discounted optimality criterion adds another parame-
ter to our model: the discount factor. Another approach
is to optimize the average reward per time-step, or gain,
by finding a policy that maximizes lim, ... + Y., ¢ for
each state. This is very similar to using sensitive discount
optimality; finding a policy that maximizes the infi-
nite horizon discounted reward as the discount factor
approaches 1, lim,_,; 3,2, y'r, for each state.

When maximizing average reward, any finite devia-
tion from the optimal policy will have negligible effect
on the average over an infinite timeframe. This can
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make the agent “lazy” To counteract this, often a series
of increasingly strict optimality criteria are used. The
first is the “gain” optimality criterion given above -
optimizing the long term average reward. The next is
a “bias” optimality which selects from among all gain
optimal policies the ones that also optimize transient
initial rewards.

For the finite horizon, infinite horizon discounted, or
bias optimality criteria, the optimality criteria can be
calculated for each state, or for each state-action pair,
giving a value function. Once found, the value function
can then be used to find an optimal policy.

Bellman Equations The standard approach to find-
ing the value function for a policy over an MDP is
a dynamic programming approach using a recursive
formulation of the optimality criteria. That recursive
formulation is known as the Bellman Equation.

There are two, closely related, common forms for a
value function; the state value function, V : S - Rand
the state-action value function, Q : S x A — R. For
a finite horizon undiscounted optimality criterion with
time horizon » and policy 7

Qi(s,a)=>r
t=0
= R(S’ a) + Es’ET(s,u) V:Z—l (S,)
_R(sa)+ Y T(sa)(s) V(S

s'eS

Vi(s) = Qs m(s))

For the infinite horizon discounted case:

Q" (s,a) =R(s,a) +y Y. T(s,a)(s)V™(s")

s'eS

V7i(s) = Q"(s,m(s))

These equations can be turned into a method for
finding the value function by replacing the equality with
an assignment:

Q"(s,a) « R(s,a) +y Y T(s,a)(s)Q"(s', n(s"))

s'eS

Aslongas this update rule is followed infinitely often
for each state/action pair, the Q-function will converge.

Prioritised sweeping: Rather than blindly updating each
state/action, intelligent choice of where to update will
significantly speed convergence. One technique for this
is called Prioritized Sweeping (Andre et al., 1997; Moore
& Atkeson, 1993).

A vpriority queue of states is kept. Initially one
complete pass of updates over all states is performed,
but thereafter states are updated in the order they
are pulled from the priority queue. Any time the
value of a state, V”(s), changes, the priorities of all
states, s’, that can reach state s are updated; we update
{s" | T(s',n(s"))(s) # 0}. The priorities are increased
by the absolute change in V7 (s).

The effect of the priority queue is to focus computa-
tion where values are changing rapidly.

Linear Programming Solutions Rather than using the
Bellman equation and dynamic programming, an alter-
native approach is to set up a collection of inequalities
and use linear programming to find an optimal value
function. In particular if we minimize,

> V'(s)

seS

subject to the constraints

Vs 0< V™(s) = |R(s,a) +y ,ZS T(s,a)(s')V"(s')] ,

then the resulting V" accurately estimates the expected
sum of discounted reward.

Bellman Error Minimization A third approach to value
determination is similar to the dynamic programming
solution above. Rather than replacing the equality in the
Bellman equation with an assignment, it turns the equa-
tion into an error function and adjusts the Q function to
minimise the sum of squared Bellman residuals (Baird,
1995):

Residual(s) = Q"(s,a) - [R(s,a) +y > T(s,a)(s")

s'eS

Q™ (s, ﬂ(s'))] Err = ) Residual(s)’

seS
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The previous section gave us a way to obtain a value
function for a particular policy, but what we usually
need is a good policy, not a value function for the policy
we already have. For an optimal policy, for each state:

n(s) = argmax,, ,Q"(s,a)

If a policy, 7, is not optimal then its value function
can be used to find a better policy, 7’. It is common to
use the greedy policy for the value function:

n'(s) < argmax,  ,Q" (s, a)

This process can be used iteratively to find the opti-
mal policy.
Policy iteration: Policy iteration alternates between
value determination and greedy policy updating steps
until convergence is achieved. The algorithm starts with
a policy, m. The value function is calculated for that
policy, V™. A new policy is then found from that
value function, m,. This alternation between finding
the optimal value function for a given policy and then
improving the policy continues until convergence. At
convergence the policy is optimal.
Value iteration: Rather than explicitly updating the pol-
icy, value iteration works directly with the value func-
tion. We define an update,

Q(s.a) < R(s,a) +y ), T(s,a)(s") maxQ(s',a),
s'eS

with a maximization step included. As long as this
update is performed often enough in each state, Q will
converge. Once Q has converged, the greedy policy will
be optimal.

Mixed policy iteration: The two previous methods, pol-
icy and value iteration, are two extremes of a spectrum.
In practice updates to the policy and value function can
occur asynchronously as long as the value and policy in
each state are updated often enough.

In the above discussion we have discussed a number
of functions, but not discussed how these functions are
represented. The default representation is an array or
tabular form which has no constraints on the function
it can represent. However, the »curse of dimension-
ality suggests that the number of states will, in gen-
eral, be exponential in the problem size. This can make

even a single complete iteration over the state space
intractable. One solution is to represent the functions
in a more compact form so that they can be updated
efficiently. This approach is known as function approxi-
mation. Here we review some common techniques.

A class of representations is chosen to represent the
functions we need to process: e.g., the transition, T,
reward, R, Value, V or Q, and/or policy, 7, functions.
A particular function is selected from the chosen class
by a parameter vector, 0.

There are two important questions that must be
answered by any scheme using function approximation;
does the resulting algorithm converge to a solution, and
does the resulting solution bear any useful relationship
with the optimal solution?

A simple approach when using a differentiable func-
tion to represent the value function is to use a form of
»temporal difference learning. For a given state, s, and
action, g, the Bellman equation is used to calculate a
new value, Q"% (s,a), and then 6 is updated to move
the value function toward this new value. This gradient
based approach usually has a learning rate, a € [0,1], to
adjust the speed of learning.

Q*V(s,a) < R(s,a) +y Y, T(s,a)(s") V(s

s'eS

_ a£ new _ old
As,aO—(xao (Q"™(s,a) —Q%%(s,a))

This approach is known not to converge in general,

although it does converge in some special cases. A simi-
lar approach with full Bellman Error minimization will
not oscillate, but it may cause the 0 to diverge even as
the Bellman residual converges.
Contraction mappings: The first class of function
approximators that was shown to converge with the
above update, apart from a complete tabular represen-
tation, was the class of contraction mappings (Gordon,
1995). Simply put, these are function approximation
classes where changing one value by a certain amount
changes every other value in the approximator by no
more than that amount. For example, linear interpo-
lation and tile coding (Tile codings are also known
as Cerebellar Motor Action Controllers (CMAC) in
early work (Albus, 1981)) are each contraction mappings
whereas linear extrapolation is not.
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Formally, let S be a vector space with max norm
[|-]loo- A function f is a contraction mapping if,

Va,beS,[|f(a) = f(0)llo <l bl

The class of function approximations that form
contraction mappings includes a number of common
approximation techniques including tile coding. Tile
coding represents a function as a linear combination of
basis functions, ¢(s,a),

Q(s,a) =0.¢(s,a),

where the individual elements of ¢ are binary features
on the underlying state.

Linear approximations: The linear combination of basis
functions can be extended beyond binary features. This
will converge when temporal differencing updates are
performed in trajectories through the state space fol-
lowing the policy being evaluated (Tsitsiklis & Van Roy,
1997).

Variable resolution techniques: One technique for rep-
resenting value functions over large state spaces is use
a non-parametric representation. Munos gives a tech-
nique that introduces more basis functions for their
approximation over time as needed (Munos & Moore,
2001).

Dynamic Bayesian networks: »Bayesian Networks are
an efficient representation of a factored probability dis-
tribution. Dynamic Bayesian Networks use the Bayesian
Network formalism to represent the transition func-
tion, 7, in an MDP (Guestrin et al., 2003). The reward
and value functions are usually represented with lin-
ear approximations. The policy is usually represented
implicitly by the value function.

Decision diagrams: Arithmetic Decision Diagrams
(ADDs) are a compact way of representing functions
from a factored discrete domain to a real range. ADDs
can also be efficiently manipulated, with operators for
the addition and multiplication of ADDs as well as
taking the maximum of two ADDs. As the Bellman
equation can be re-written using operators, it is possible
to implement mixed policy iteration using this efficient
representation (St-Aubin et al., 2000).

Hierarchical representations: »Hierarchical Reinforce-
ment Learning factors out common substructure in the
functions that represent an MDP in order to solve it

efficiently. This has been done in many different ways.
Dietterich's MAXQ hierarchy allowed a prespecified
hierarchy to re-use common elements in a value func-
tion (Dietterich, 2000). Sutton’s Options framework
focussed on temporal abstraction and re-use of policy
elements (Sutton et al., 1998). Moore’s Airports hier-
archy allowed automatic decomposition of a problem
where the specific goal could change over time, and
so was made part of the state (Moore et al., 1999).
Andre’s A-Lisp system takes the hierarchical represen-
tation to an extreme by building in a Turing complete
programming language (Andre & Russell, 2002).

In the previous sections the control problem was solved
using a greedy policy for a value function. If the value
function was approximate, then the resulting policy
may be less than optimal. Another approach to improv-
ing the policy is to introduce search during execution.
Given the current state, the agent conducts a forward
search looking for the sequence of actions that produces
the best intermediate reward and resulting state value
combination.

These searches can be divided into two broad cat-
egories: deterministic and stochastic searches. Deter-
ministic searches, such as LAO* (Hansen & Zilberstein,
1998), expand through the state space using the supplied
model of the MDP. In contrast stochastic, or Monte-
Carlo, approaches sample trajectories from the model
and use statistics gathered from those samples to choose
a policy (Kocsis & Szepesvari, 2006).

Cross References

»Bayesian Network

» Curse of Dimensionality

» Monte-Carlo Simulation

» Partially Observable Markov Decision Processes
» Reinforcement Learning

» Temporal Difference Learning
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Markov Network

Synonyms
Markov net; Markov random field

Definition
A Markov network is a form of undirected »graphical
model for representing multivariate probability

distributions.

Cross References
» Graphical Models

|
Markov Process

Synonyms
Markov chain; Markov model

A stochastic process in which the conditional probabil-
ity distribution of future states of the process, given the
present state and all past states, depends only upon the
present state. A process with this property may be called
Markovian. The best known Markovian processes are
Markov chains, also known as Markov Models, which
are discrete-time series of states with transition proba-
bilities. Markov chains are named after Andrey Markov
(1865-1922), who introduced several significant new
notions to the concept of stochastic processes. Brown-
ian motion is another well-known phenomenon that, to
close approximation, is a Markov process.

Recommended Reading

Meyn, S. P., & Tweedie, R. L. (1993). Markov chains and stochastic
stability. Springer-Verlag, London
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Markov Random Field

» Markov Network

|
Markovian Decision Rule

Synonyms
Randomized decision rule

Definition

Ina »Markov decision process, a decision rule, d;, deter-
mines what action to take, based on the history to date
at a given decision epoch and for any possible state. It is
deterministic if it selects a single member of A(s) with
probability 1 for each s € S and for a given A, and it
is randomized if it selects a member of A(s) at random
with probability g4, () (a). It is Markovian if it depends
on h; only through s;. That is, d;(h;) = d;(s;).

|
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»Maximum Entropy Models for Natural Language
Processing

' Maximum Entropy Models for
Natural Language Processing

ADWAIT RATNAPARKHI
Yahoo! Labs, Santa Clara
California, USA

Synonyms
Log-linear models; Maxent models; Statistical natural
language processing

Definition
The term maximum entropy refers to an optimization
framework in which the goal is to find the probability
model that maximizes entropy over the set of models
that are consistent with the observed evidence.

The information-theoretic notion of entropy is a
way to quantify the uncertainty of a probability model;

higher entropy corresponds to more uncertainty in the
probability distribution. The rationale for choosing the
maximum entropy model - from the set of models that
meet the evidence - is that any other model assumes
evidence that has not been observed (Jaynes, 1957).

In most natural language processing problems,
observed evidence takes the form of co-occurrence
counts between some prediction of interest and some
linguistic context of interest. These counts are derived
from a large number of linguistically annotated exam-
ples, known as a corpus. For example, the frequency in
a large corpus with which the word that co-occurs with
the tag corresponding to determiner, or DET, is a piece
of observed evidence. A probability model is consistent
with the observed evidence if its calculated estimates
of the co-occurrence counts agree with the observed
counts in the corpus.

The goal of the maximum entropy framework is to
find a model that is consistent with the co-occurrence
counts, but is otherwise maximally uncertain. It pro-
vides a way to combine many pieces of evidence into
a single probability model. An iterative parameter esti-
mation procedure is usually necessary to find the max-
imum entropy probability model.

Motivation and Background

The early 1990s saw a resurgence in the use of statisti-
cal methods for natural language processing (Church &
Mercer, 1993). In particular, the IBM TJ] Watson
Research Center was a prominent advocate in this field
for statistical methods such as the maximum entropy
framework. Language modeling for speech recognition
(Lau, Rosenfeld, & Roukos, 1993) and machine trans-
lation (Berger, Della Pietra, & Della Pietra, 1996) were
among the early applications of this framework.

Structure of Learning System

The goal of a typical natural language processing appli-
cation is to automatically produce linguistically moti-
vated categories or structures over freely occurring text.
In statistically based approaches, it is convenient to pro-
duce the categories with a conditional probability model
p such that p(a|b) is the probability of seeing a pre-
diction of interest a (e.g., a part-of-speech tag) given a
linguistic context of interest b (e.g., a word).
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The maximum entropy framework discussed here
follows the machine learning approach to NLP, which
assumes the existence of a large corpus of linguistically
annotated examples. This annotated corpus is used to
create a training set, which in turn is used to estimate
the probability model p.

Evidence for the maximum entropy model is derived
from the training set. The training set is a list of
(prediction, linguistic context) pairs that are generated
from the annotated data. However, in practice, we do
not record the entire linguistic context. Instead, lin-
guistically motivated Boolean-valued questions reduce
the entire linguistic context to a vector of question
identifiers. Therefore, each training sample looks like:

Prediction Question vector

a G- -qn
where a is the prediction and where ¢; . .. g, is a vector
of questions that answered true for the linguistic context
corresponding to this training sample. The questions
must be designed by the experimenter in advance, and
are specifically designed for the annotated data and the
problem space.

In the framework discussed here, any piece of evi-
dence is represented with a feature. A feature f; corre-
lates a prediction a with an aspect of a linguistic context
b, captured by some question:

1 ifa=xandq(b) =true
fi(a,b) =

0 otherwise

The maximum entropy framework provides a way to
combine all the features into a probability model. In
the conditional maximum entropy formulation (Berger
et al., 1996), the desired model p* is given by:

pP= {p|EP i = E[,f},] =1... k}, (1)
H(p) = - Eb:ﬁ(h)P(alb) logp(alb),

p* = argmax,epH(p),

where H( p) is the conditional entropy of p, p(b) is the
observed probability of the linguistic context b in the

training set, and P is the set of models that are consistent
with the observed data. A model p is consistent if its own
feature expectation E,f; is equal to the observed feature
expectation Epfj, for all j = 1...k features. Ejf; can be
interpreted as the observed count of f; in the training
sample, normalized by the training sample size. Both are
defined as follows:

Eyfj = Zbﬁ(b)P(alb)ﬁ(a, b),
Eyfj = Zl;ﬁ(% b)fi(a,b).

According to the maximum entropy framework, the
optimal model p* is the most uncertain model among
those that satisfy the feature constraints. It is possible to
show that the form of the optimal model must be log-

linear:
. 1 fi(a.b)
pralb)=——< 1] &, 2
Z(b) 5k !
Z(b) _ Z (X]Tfj(“,’b).
a’ j=l...k

Here Z(b) is a normalization factor, and «;> 0. Each
model parameter «; can be viewed as the “strength” of
its corresponding feature f;; the conditional probability
is the normalized product of the feature weights of the
active features.

The maximum entropy framework described here has
an alternate interpretation under the more commonly
used technique of maximum likelihood estimation.

Q= {P|P(a|b) = %b) I1 ajﬁ(a,b)},
j

j=1...k

L(p) = Z;i?(a, b)logp(alb),

q" = argmaxpeqL( p).

Here Q is the set of models of form (2), p(a,b) is
the observed probability of prediction a together with
linguistic context b, L(p) is the log-likelihood of the
training set, and q* is the maximum likelihood model.
It can be shown that p* = ¢*; maximum likelihood esti-
mation for models of the form (2) gives the same
answer as maximum entropy estimation over the con-
straints on feature counts (1). The difference between
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approaches is that the maximum likelihood approach
assumes the form of the model, whereas the maximum
entropy approach assumes the constraints on feature
expectations, and derives the models form.

The Generalized Iterative Scaling (GIS) algorithm
(Darroch & Ratcliff, 1972) is the easiest way to esti-
mate the parameters for this kind of model. The iterative
updates are given below:

(0) _
o= 1,
ocj(n) = 06]-(”71) [Eﬁfj]c .
Eyf;

GIS requires the use of a “correction” feature g and con-
stant C>0, which are defined so that g(a,b) = C -
Yjo1.kfi(a, b) for any (a,b) pair in the training set.
Normally, the correction feature ¢ must be trained in the
model along with the k original features, although Cur-
ran and Clark (2003) show that GIS can converge even
without the correction feature. The number of itera-
tions needed to achieve convergence depends on certain
aspects of the data, such as the training sample size
and the feature set size, and is typically tuned for the
problem at hand.

Other algorithms for parameter estimation include
the Improved Iterative Scaling (Berger et al., 1996) algo-
rithm and the Sequential Conditional GIS (Goodman,
2002) algorithm. The list given here is not complete;
many other numerical algorithms can be applied to
maximum entropy parameter estimation, see (Malouf,
2002) for a comparison.

It is usually difficult to assess the reliability of fea-
tures that occur infrequently in the training set, espe-
cially those that occur only once. When the parameters
are trained from low frequency feature counts, maxi-
mum entropy models — as well as many other statistical
learning techniques - have a tendency to “overfit” the
training data. In this case, performance on training data
appears very high, but performance on the intended test
data usually suffers. Smoothing algorithms are designed
to alleviate this problem for statistical models; some
smoothing techniques for maximum entropy models
are reviewed in (Chen & Rosenfeld, 1999).

Applications
This framework has been used as a generic machine
learning toolkit for many problems in natural language

processing. Like other generic machine learning tech-
niques, the core of the maximum entropy framework
is invariant across different problem spaces. However,
some information is specific to each problem space:

Predictions: The space of predictions for this model.

2. Questions: The space of questions for this model.

3. Feature Selection: Any possible (question, predic-
tion) pair can be used as a feature. In complex mod-
els, only a small subset of all the possible features
are used in a model. The feature selection strategy
specifies how to choose the subset.

For a given application, it suffices to give the above
three pieces of information to fully specify a maximum
entropy probability model.

Part-of-speech tagging is a well-known task in compu-
tational linguistics in which the goal is to disambiguate
the part-of-speech of all the words in a given sentence.
For example, it can be non trivial for a computer to dis-
ambiguate the part-of-speech of the word flies in the
following famous examples:

e Fruit flies like a banana
e Time flies like an arrow

The word flies behaves like a noun in the first case, and
like a verb in the second case. In the machine learn-
ing approach to this problem, co-occurrence statistics
of tags and words in the linguistic context are used to
create a predictive model for part-of-speech tags.

The computational linguistics community has cre-
ated annotated corpora to help build and test algorithms
for tagging. One such corpus, known as the Penn tree-
bank (Marcus, Santorini, & Marcinkiewicz, 1994), has
been used extensively by machine learning and statisti-
cal NLP practitioners for problems like tagging. In this
corpus, roughly 1M words from the Wall Street Journal
have manually been assigned part-of-speech tags. This
corpus can be converted into a set of training samples,
which in turn can be used to train a maximum entropy
model.

Model Specification For tagging, the goal is a maximum
entropy model p that will produce a probability of see-
ing a tag at position i, given the linguistic context of
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the ith word, the surrounding words, and the previ-
ously predicted tags, written as p(#;]ti-1 ... f, Wi ... wy).
The intent is to use the model left-to-right, one word
at a time. The maximum entropy model for tagging
(Ratnaparkhi, 1996) is specified as:

1. Predictions: The 45 part-of-speech tags of the Penn
treebank
2. Questions: Listed below are the questions and ques-
tion patterns. A question pattern has a placeholder
variable (e.g., X, Y) that is instantiated by scanning
the annotated corpus for examples in which the pat-
terns match. Let i denote the position of the current
word in the sentence, and let w; and t; denote the
word and tag at position i, respectively.
e Doesw; =X?
e Doesw;_| = X?
e Doesw;_, = X?
e Doesw; = X?
e Does wj, = X?
e Doesti_; =X?
e Doestiti,=X,Y?
o For words that occur fewer than 5 times in the
training set:
— Arethefirst K (for K < 4) characters X; .. . Xg?
— Arethelast K (for K < 4) characters X; ... Xg?
- Does the current word contain a number?
- Does the current word contain a hyphen?
- Does the current word contain an uppercase
character?
3. Feature Selection: Any (question, prediction) pair
whose count in the training data is >10 is retained
as a feature.

While the features for each probability decision could
in theory look at the entire linguistic context, they actu-
ally only look at a small window of words surround-
ing the current word, and a small window of tags to
the left. Therefore each decision effectively makes the
Markov-like assumption given in (3).

ptiltiy ..t Wi owy)
= p(ti|ti—lti—ZWi—ZW,‘_IWiWi+1Wi+2) (3)

H O(fj(tivt[—lti—ZWi—ZWi—IWIWHlWH-Z)
=1k %

Z(titioa Wia Wi WiWi Wis2)

(4)

Equation (4) is the maximum entropy model for tag-
ging. Each conditional probability of a prediction ¢
given some context ti_jti_ Wi aWi_1WiWi Wiy is the
product of the features that are active for that (predic-
tion, context) pair.

Training Data The training set is created by applying the
questions to each word in the training set. For example,
when scanning the word flies in the sentence “Time flies
like an arrow” the training example would be:

Prediction Question vector

verb w; = flies, w;_; = Time, w;_, = *bd~,

Wiy = like, wi,» = an,

ti_1 = noun, ti_1ti_, = noun,*bd*
Here *bd* is a special symbol for boundary. The tags
have been simplified for this example; the actual tags in
the Penn treebank are more fine-grained than noun and
verb.

Hundreds of thousands of training samples are used
to create candidate features. Any possible (prediction,
question) pair that occurs in training data is a candi-
date feature. The feature selection strategy is a way to
eliminate unreliable or noisy features from the candi-
date set. For the part-of-speech model described here, a
simple frequency threshold is used to implement feature
selection.

Given a selected feature set, the GIS algorithm is
then used to find the optimal value for the correspond-
ing a; parameters. For this application, roughly 50 iter-
ations of GIS sufficed to achieve convergence.

Search for Best Sequence The probability model
described thus far will produce a distribution over tags,
given a linguistic context including and surrounding
the current word. In practice we need to tag entire
sentences, which means that the model must produce
a sequence of tags. Tagging is typically performed
left-to-right, so that each decision has the left context
of previously predicted tags. The probability of the best
tag sequence for an n-word sentence is factored as:

plti.. . tywr...wy)

= P(tilticitica Wi Wi Wiwia Witz ).
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The desired tag sequence is the one with the highest
conditional sequence probability:

*

t .ty =arg, maxp(ty. . tlwr . wy).

A dynamic programming procedure known as the
Viterbi algorithm is typically used to find the highest
probability sequence.

Other NLP applications have used maximum entropy
models to predict a wide variety of linguistic struc-
ture. The statistical parser in (Ratnaparkhi, 1999) uses
separate maximum entropy models for part-of-speech,
chunk, and parse structure prediction. The system in
(Borthwick, 1999) uses maximum entropy models for
named entity detection, while the system in (Itty-
cheriah, Franz, Zhu, & Ratnaparkhi, 2001) uses them as
sub-components for both answer type prediction and
named entity detection. Typically, such applications do
not need to change the core framework, but instead
need to modify the meaning of the predictions, ques-
tions, and feature selection to suit the intended task of
the application.

Future Directions

Conditional random fields (Lafferty, McCallum, &
Pereira, 2001), or CRFs, are an alternative to maximum
entropy models that address the label bias issue. Label
bias affects sequence models that predict one element
at a time, in which features at a given state (or word, in
the case of POS tagging) compete with each other, but
do not compete with features at any other state in the
sequence. In contrast, a CRF model has a single model
for the probability of the entire sequence, and therefore
allows global competition of features across the entire
sequence. Parameter estimation for CRFs is related to
the GIS algorithm used for maximum entropy models.
See Sha & Pereira (2003) for an example of CRFs applied
to noun phrase chunking.
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! McDiarmid’s Inequality

Synonyms
Bounded differences inequality

Definition
McDiarmid’s inequality shows how the values of a
bounded function of independent random variables
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MCMC

concentrate about its mean. Specifically, suppose f :
X" — Rsatisfies the bounded differences property. That
is, foralli = 1,...,n there is a ¢; > 0 such that for all

Xiyens Xy X €X

|f(x1w . .,xn) —f(xl,.. .

IfX = (Xi,...,X,) € X" is a random variable drawn
according to P" and p = Ep:[ f(X)] then for all e > 0

!
s Xi—1>X 5 Xigls -« ')xn)| < ¢

P (X) -uze) p(z)
- i
McDiarmid’s is a generalization of Hoeffding’s inequal-
ity, which can be obtained by assuming X = [a,b]
and choosing f(X) = ¥, X;. When applied to empir-
ical risks this inequality forms the basis of many
»generalization bounds.

" MCcMC

» Markov Chain Monte Carlo

' MDL

»Minimum Description Length Principle

[
Mean Absolute Deviation

» Mean Absolute Error

[
Mean Absolute Error

Synonyms
Absolute error loss; Mean absolute deviation; Mean
error

Definition

Mean Absolute Error is a »model evaluation metric
used with »regression models. The mean absolute error
of a model with respect to a »test set is the mean of
the absolute values of the individual prediction errors
on over all »-instances in the P-test set. Each prediction

error is the difference between the true value and the
predicted value for the instance.

Yicy abs (yi — A(x;))

n

mae =

where y; is the true target value for test instance x;, A(x;)
is the predicted target value for test instance x;, and # is
the number of test instances.

Cross References
»Mean Squared Error

|
Mean Error

» Mean Absolute Error

[
Mean Shift

XIN JIN, JTIAWETI HAN
University of Illinois at Urbana-Champaign
Urbana, IL, USA

Mean shift (Comaniciu & Meer, 2002) is a nonparamet-
ric algorithm for »partitional clustering which does not
require specifying the number of clusters, and can form
any shape of clusters.

Given n data points x;,i=1,...,n, in the d-dimens-
ional space RY, the multivariate kernel density estimator
obtained with kernel K(x) and window radius & is given

b
Y ) = 1 z”:K(x—xi) 1)
nhd h )

Given the gradient of the density estimator, the mean
shift is defined as the difference between the weighted
(using the kernel as weights) mean and x, the center of
the kernel,

2
Z?:] xig( x;lxx' )
mp(x) = - X. (2)

2
Z?:lg( )

The mean shift vector is proportional to the normal-
ized density gradient estimate, and thus points to the

X—Xi

h
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direction of the maximum increase in the density. By
successively computing the mean shift vector and trans-
lating the kernel (window) by the vector, the mean shift
procedure can guarantee converging at a nearby point
where the gradient of density function is zero.

Recommended Reading

Comaniciu, D., & Meer, P. (2002). Mean shift: A robust approach
toward feature space analysis. IEEE Transactions of the Pattern
Analysis and Machine Intelligence, 24(5), 603-619.

! Mean Squared Error

Synonyms
Quadratic loss; Squared error loss

Definition

Mean Squared Error is a »model evaluation metric
often used with »regression models. The mean squared
error of a model with respect to a »-test set is the mean
of the squared prediction errors over all »instances
in the »test set. The prediction error is the difference
between the true value and the predicted value for an
instance.

S (i = Ax)*

n

mse =

where y; is the true target value for test instance x;, A(x;)
is the predicted target value for test instance x;, and # is
the number of test instances.

Cross References
» Mean Absolute Error

[
Measurement Scales

YING YANG
Australian Taxation Office, Box Hill, Australia

Definition

Turning to the authority of introductory statistical text-
books (Bluman, 1992; Samuels & Witmer, 1999), there
are two parallel ways to classify data into different
types. Data can be classified into either »categorical
or »numeric. Data can also be classified into different
levels of »measurement scales.

There are two parallel ways to classify data into dif-
ferent types. Data can be classified into either categori-
cal or numeric. Data can also be classified into different
levels of measurement scales.

Categorical versus Numeric

Varjables can be classified as either categorical or
numeric. Categorical variables, also often referred to
as qualitative variables, are variables that can be placed
into distinct categories according to some character-
istics. Categorical variables sometimes can be arrayed
in a meaningful rank order. But no arithmetic opera-
tions can be applied to them. Examples of categorical
variables are

e Gender of a fish: male and female
e Student evaluation: fail, pass, good, and excellent

Numeric variables, also often referred to as quantitative
variables, are numerical in nature. They can be ranked in
order. They can also have meaningful arithmetic oper-
ations. Numeric variables can be further classified into
two groups, discrete or continuous.

A discrete variable assumes values that can be
counted. The variable cannot assume all values on the
number line within its value range. An example of a
discrete variable is the number of children in a family.

A continuous variable can assume all values on the
number line within the value range. The values are
obtained by measuring. An example of a continuous
variable is Fahrenheit temperature.

Levels of Measurement Scales

In addition to being classified as either categorical or
numeric, variables can also be classified by how they
are categorized, counted, or measured. This type of
classification uses measurement scales, and four com-
mon types of scales are used: nominal, ordinal, interval,
and ratio.

The nominal level of measurement scales classifies
data into mutually exclusive (nonoverlapping), exhaus-
tive categories in which no order or ranking can be
imposed on the data. An example of a nominal variable
is gender of a fish: male and female.

The ordinal level of measurement scales classifies
data into categories that can be ranked. However, the
differences between the ranks cannot be calculated by
arithmetic. An example of an ordinal variable is student
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evaluation, with values fail, pass, good, and excellent. It
is meaningful to say that the student evaluation of pass
ranks is higher than that of fail. It is not meaningful in
the same way to say that the gender female ranks higher
than the gender male.

The interval level of measurement scales ranks the
data, and the differences between units of measure can
be calculated by arithmetic. However, zero in the inter-
val level of measurement means neither “nil” nor “noth-
ing” as zero in arithmetic means. An example of an
interval variable is Fahrenheit temperature. It is mean-
ingful to say that the temperature A is two points higher
than the temperature B. It is not meaningful in the same
way to say that the student evaluation of pass is two
points higher than that of fail. Besides, 0°F does not
mean the absence of heat.

The ratio level of measurement scales possesses all
the characteristics of interval measurement, and there
exists a zero that, the same as arithmetic zero, means
“nil” or “nothing” In consequence, true ratios exist
between different units of measure. An example of a
ratio variable is number of children in a family. It is
meaningful to say that the number of children in the
family A is twice that of the family B. It is not meaningful
in the same way to say that the Fahrenheit temperature
A is twice that of B.

The nominal level is the lowest level of measure-
ment scales. It is the least powerful in terms of including
data information. The ordinal level is higher. The inter-
val level is even higher. The ratio level is the high-
est level. Any data conversion from a higher level of
measurement scales to a lower level of measurement
scales, such as P-discretization, will lose information.
Table 1 gives a summary of the characteristics of differ-
ent levels of measurement scales.

Measurement Scales. Table 1 Characteristics of
different levels of measurement scales

Nominal No No No
Ordinal Yes No No
Interval Yes Yes No
Ratio Yes Yes Yes

Summary
In summary, the following taxonomy applies to variable

types:

o Categorical (qualitative) variables:
Nominal
Ordinal

¢ Numeric (quantitative) variables:
Interval, either discrete or continuous
Ratio, either discrete or continuous

Recommended Reading

Bluman, A. G. (1992). Elementary statistics: A step by step approach.
Wm. C. Brown Publishers Dubuque, Iowa, USA.

Samuels, M. L. & Witmer, J. A. (1999). Statistics for the life sciences
(2nd ed.). Upper Saddle River, NJ: Prentice-Hall Publishers,
USA.

' Medicine: Applications of Machine
Learning

KATHARINA MORIK
Technische Universitit Dortmund, Dortmund,
Germany

Motivation

Health care has been an important issue in computer
science since the 1960s. In addition to databases stor-
ing patient records, library resources (e.g., PubMed, a
service of the U.S. National Library of Medicine that
includes over 16 million citations from journals for
biomedical articles back to the 1950s), administrative
and financial systems, more sophisticated support of
health care has been the aim of artificial intelligence
(AI) from the very beginning on. Starting with expert
systems which abstract laboratory findings and other
vital parameters of a patient before they heuristically
classify the patient into one of the modeled diagnoses
(Shortliffe, 1976), knowledge acquisition was discov-
ered to be the bottleneck of systems for the automatic
medical diagnosis. Machine learning came into play as
a means of knowledge acquisition. Learning rules for
(medical) expert systems focused on the heuristic classi-
fication step within expert systems. Given conveniently
abstracted measurements of the patient’s state, the clas-
sification was learned in terms of rules or »decision
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trees. Since the early days, the use of machine learning
for health care progressed in two ways:

o The abstraction of measurements of a patient’s vital
parameters is a learning task in its own right. Diverse
kinds of data are to be handled: laboratory data,
online measurements at the bedside, x-rays or other
imaging data, genetic data,... Machine learning is
confronted with a diversity of representations for the
examples.

o Diagnosis is just one task in which physicians are
to be supported. There are many more tasks which
machine learning can ease. In intensive care, the
addressee of the learning results can be a machine,
e.g., the respirator. Financing health care and plan-
ning the medical resources (e.g., for a predicted epi-
demia) are yet another important issue. Machine
learning is placed in a diversity of medical tasks.

The urgent need for sophisticated support of health
care follows from reports which estimate up to 100,000
deaths in the USA each year due to medical error (Kohn,
Corrigan, & Donaldson, 2000).

Structure of the Problem

The overall picture of the medical procedures shows the
kinds of data and how they are entered into the database
of health records (a synonym is “patient database’”)
A monitoring system is given in intensive care units,
which acquires »time series from minute measure-
ments. The observations at the bedside are entered
manually into the system. The information from the
hospital is entered via a local area network. The physi-
cian accesses information from libraries and research
databases (dashed lines). Libraries, research databases,
and biomedical research also influence the develop-
ment of guidelines, protocols, and clinical pathways
(dotted lines). Guidelines are rather abstract. Proto-
cols of certain actions are integrated to become a clin-
ical pathway which is a plan of both diagnostic and
therapeutical actions for a typical patient with a spe-
cific diagnosis. The bold arrow shows the intended
high-quality therapy. Guidelines and protocols promote
evidence-based practices, reduce inter-clinician prac-
tice variations and support decision-making in patient
care while constraining the costs of care. Computer-
ized protocols can be generated based on guidelines.
They have been proved useful in improving the quality

and consistency of healthcare but the protocol develop-
ment process is time-consuming (Ten Teije, Lucas, &
Miksch, 2006). This is where machine learning offers
support. Usually, ontologies (e.g., in description logic)
or other knowledge-based techniques (in medicine-
specific formats like the Arden Syntax, GuideLine Inter-
change Format (GLIF), PROforma, Asbru, and EON)
are used to support the development of protocols
(de Clercq, Blomb, Korstenb, & Hasman, 2004). By
contrast, machine learning induces the current prac-
tices and their outcome from the health records (Smith,
Doctor, Meyer, Kalet & Philips, 2009). To reflect such
use of Machine Learning, the bold arrows of the picture
would need to be turned the other way around, proto-
cols are learned from the data or evaluated based on the
data. All (reversed) arrows mark possible applications
of machine learning.

Diversity of Representations
The overall health record of a patient includes several
types of data, not all of them are digital.

e Laboratory data consist of attributes almost always
with numerical values, sometimes with discrete
ordinal values, sometimes just binary values like
“positive,” “negative”

o DPlain text states anamneses, diagnosis, and observa-
tions. From the text, key words can be transformed
into attributes for machine learning.

e Online measurements at the bedside are time series.
They are analyzed in order to find level changes
or trends (Gather, Schettlinger, & Fried, 2006) and
alarm the physician (Sieben & Gather, 2007). In
order to exploit the time series for further learn-
ing tasks, they often are abstracted (e.g., Bellazzi,
Larizza, Magni, & Bellazi (2002)). Recently, online
measurements from body sensors have raised atten-
tion in the context of monitoring patients at home
(Amft & Troster, 2008).

e Sequences can also be considered time series, but the
measurements are not equidistant and not restricted
to numerical values. Examples are data gathered at
doctors’ visits and long-term patient observations.

e X-rays or other imaging data (e.g., ultrasound imag-
ing or more novel molecular imaging techniques like
positron emission tomography, magnetic resonance
imaging, or computer tomography) cannot be
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analyzed directly by machine learning algorithms.
They require the extraction of features. It has been
shown that the adequate extraction of features is
more important than the selection of the best
suited learning algorithm (Mavroforakis, Georgiou,
Dimitropoulos, Cavouras, & Theodoridis, 2006).
The number of extracted features can become quite
large. For instance, from 1,619 images of skin lesion,
each 752 x 582 pixels, 107 features were extracted
in order to detect melanoma using diverse learn-
ing algorithms (Dreiseitl et al., 2001). Hence, feature
selection is also an important task in medical appli-
cations (Lucaces, Taboada, Albaiceta, Domingues,
Enriques & Bahamonde, 2009; Withayachumnankul
et al.,, 2006). Often, different techniques are applied
to gather data for the detection of the same dis-
ease. For instance, glaucoma detection uses stan-
dard automated perimetry or scanning laser or
Heidelberg Retina Tomograph or stratus optical
coherence tomography. It is not yet clear how impor-
tant the choice among measurement types (devices)
is with respect to feature extraction and machine
learning.

Tissue and blood: In vitro “data” also belong to
health records. Immediately after biopsy or surgery,
the tissue is transferred to the pathology depart-
ment. After the pathologist has taken the sample

needed for proper diagnosis, a representative tis-
sue sample will be snap frozen and stored in lig-
uid nitrogen or at —800C. Also blood cells are
stored in a blood bank. From the specimen, the
RNA is extracted and the so-called microarrays of
gene expressions are developed and then scaled. The
huge prognostic value of gene expression in patients
with breast cancer has been shown by van’t Veer
et al. (2002). Genome research aims at revealing the
impact of gene regulation and protein expression-
regulation (taking into account the regulation of
protein synthesis, protein ubiquitination, and post-
translational modification) on, e.g., cancer diagnosis
and response to therapies. Machine learning, par-
ticularly clustering, frequent itemset mining, and
classification have been applied successfully (see
»learning from gene expression microarray data).

In addition to patient records, there are knowledge
bases describing particular diseases or computerized
protocols for particular therapies.

Medical Tasks

Diagnosis is primarily a classification task. Given the
description of the patients state and a set of dis-
eases, the learning algorithm outputs the classification
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into one of the classes. If physicians want to inspect
the learned classifier, logic-based algorithms are pre-
ferred. Decision trees and the conceptual clustering
algorithm AQ were used to diagnose breast cancer from
nine abstracted descriptions like tumor size: 0-4,
5-9,---,50 — 54,55 - 59 (Cestnik, Kononenko, & Bratko,
1987; Michalski, Mozetic, Hong, & Lavrac, 1986).

»Bayesian methods were used to classify, e.g.,
diseases of the lymph node. Based on the examina-
tion of the extracted tissue, a pathologist enters the
description. The Bayesian network (BN) outputs not
only just one diagnosis, but the conditional probabili-
ties for the diseases (Heckerman, 1990). In particular,
diagnosis for rather vague symptoms such as abdomi-
nal pain or lower back pain is well supported by BNs
(McNaught, Clifford, Vaughn, Foggs, & Foy, 2001). BNs
are capable of incorporating given expert knowledge as
priors. In order to combine textbook knowledge with
empirical data, electronic literature was transformed
into priors for BN structures. Then, from health records,
the BN was learned as a model of ovarian tumors (Antal,
Fannes, Timmerman, Moreau, & De Moor, 2004).

»Inductive logic programming (ILP) also allows
to take into account background knowledge. This was
used for an enhanced learning of medical diagnos-
tic rules (Lavrac, Dzeroski, Prinat, & Krizman, 1993).
The identification of glaucomatous eyes was effectively
learned by ILP (Mizoguchi, Ohwada, Daidoji, & Shirato,
1997). One advantage of ILP is that the learned logic
clauses can easily be integrated into a knowledge-based
system and, hence, become operational for clinical
practice.

Since some tests which deliver information about
the patient’s state can be costly - both, financially and in
terms of a risk for the patient — »-cost-sensitive learning
may be applied.

Since the error of classifying a patient as ill where
he or she is not (false positives) is less harmful than
classifying a patient as healthy where he or she is not
(false negatives), the evaluation of the learning result
most often is used in a biased way. The evaluation can
be summarized in Table 1.

Precision is the proportion
A

A

A+B’
proportion 7. Sensitivity is synonymous to recall.

In medical applications, sensitivity is balanced with
respect to specificity being the proportion % (syn-

onym false positives rate). The analysis of the Receiver

and recall is the

Medicine: Applications of Machine Learning. Table 1
Evaluation measures

Predicted + A B

Predicted — C D

Operator Characteristic (ROC) allows to evaluate learn-
ing according to sensitivity and specificity (see »ROC
analysis).

If not the understandability but only sensitivity
and specificity are important, numerical learning algo-
rithms are used to classify the patient’s data. In par-
ticular, if the patient’s state is described by numerical
features, no discretization is necessary for numerical
learners as is needed for the logic-based ones. Multi-
layer perceptrons (see »Neural Networks), »support
vector machines (SVM), »mixtures of Gaussians, and
mixture of generalized Gaussian classifiers were trained
on the numerical data of 189 normal eyes and 156 glau-
comatous eyes (Goldbaum et al., 2002). The numerical
description of the visual field is given by standard auto-
mated threshold perimetry. The medical standard pro-
cedure to interpret the visual field is to derive global
indices. The authors compared performance of the clas-
sifiers with these global indices, using the area under
the ROC curve. Two human experts were judged against
the machine classifiers and the global indices by plotting
their sensitivity-specificity pairs. The mixture of Gaus-
sian had the greatest area under the ROC curve of the
machine classifiers, and human experts were not better
at classifying visual fields than the machine classifiers or
the global indices.

Other approaches to glaucoma detection use differ-
ent features describing the patient’s state (Zangwill et al.,
2004) or other numerical learners, e.g., »logistic regres-
sion (Huang, Chen, & Hung, 2006). For testing the
learning from numerical attributes, the UCI Machine
Learning Repository offers the arrhythmia database.
The aim is to distinguish between the presence and
absence of cardiac arrhythmia and to classify it in one
of the 16 groups. About 279 attributes are given, 206 of
them being numerical ones.

As has been shown in an application to intensive
care, medication can be transformed into a set of classi-
fication tasks (Morik, Imhoff, Brockhausen, Joachims,
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& Gather, 2000). Given measurements of eight vital
signs, a decision is made for each of six drugs, whether
to increase or to decrease it. This gives a set of clas-
sification tasks, which the »SVM learned. Depending
on the drug, the accuracy ranged from 81.3% with 2.5
standard error to 86.9% with 7 standard error. Addition-
ally, on 41 cases, the SVM decision was compared with
an experts decisions when confronted with the same
data. In 32 cases the expert chose the same direction
of change as did the learned decision function. In 34
cases the learned decision was equal to the actual ther-
apy. Another set of classification tasks were to decide
every minute whether to increase, decrease, or leave
the doses as it is. Again, each of these classifiers was
learned by the SVM. From 1,319 examples decision func-
tions were learned and tested on 473 examples. For
training, an unbalanced cost function was used. The
SVM cost factor for error was chosen according to
G = merof et canpl e reils again differed
depending on the drug. For adrenaline, 79% of the test
cases were equally handled by the physician and the
decision function. For adrenaline as well as for dobu-
tamine, only in 1.5% of the test cases the learned rule
recommended the opposite direction of change. Again,
a blind test with an expert showed that the learned
recommendations” deviation from actual therapy was

comparable to that of the human expert. Combining
the two sets of classifications, for each minute and each
patient, the support vector machine’s decision func-
tion outputs a recommendation of treatment (Morik,
Imhoff, Brockhausen, Joachims, & Gather, 2000).

Prognosis or outcome prediction is important for the
evaluation of the quality of care provided. The standard
statistical models use only a small set of covariates and
a score variable, which indicates the severity of the ill-
ness. Machine learning may also rely on the aggregated
score features, but is in addition capable of handling the
features underlying the scores. Given health records of
patients including the therapy, machine learning is to
predict the outcome of care, e.g., classifies into mor-
tal or surviving cases. The prediction of breast cancer
survivability has been tested on a very large database
comparing three learning methods (Delen, Walker, &
Kadam, 2004). The results indicated that decision trees

(here: C5) result in the best predictor with 93.6% accu-
racy on the holdout sample (this prediction accuracy
is better than any reported in the literature), artifi-
cial neural networks came out to be the second with
91.2% accuracy, and the »logistic regression models
came out to be the worst of the three with 89.2%
accuracy.

Prediction of survival is a hard task for patients with
serious stroke, because there is a long-term risk after
the stay at the hospital. The scoring schemes (e.g., the
Glasgow coma scale and the Ranking score) are not suf-
ficient for predicting the outcome. In a data situation
where 29 attributes (or features) were given for only
327 patient records, BNs were learned and compared
with a handmade causal network. The results were
encouraging — as soon as more electronic health records
become available, the BNs will become closer to medical
knowledge. Moreover, the discovery of relations on the
basis of empirical data may enhance medical knowledge
(Wu, Lucas, Kerr, & Dijkhuisen, 2001).

Carcinogenesis prediction was performed using ILP
methods. As has become usual with cancer diagno-
sis and prognosis, there is a close link with micro-
biology (Srinivasan, Muggleton, King, & Sternberg,
1994)(see Learning from gene expression microarray
data).

Prognosis need not be restricted to mortality rates.
In general, it is a means of quality assessment of clini-
cal treatments. For instance, hemodialysis services have
been assessed through temporal data mining by Bellazzi
et al. (2002).

Finding subgroups of patients with devious reac-
tions to a therapy might lead to a better understanding
of a certain medical process (Atzmueller, Baumeister,
Hensing, Richter, & Puppe, 2005). While the before
mentioned study aims at an enhanced expert - system
interaction, a Dutch study aims at a more precise mod-
eling of prognoses (Abu-Hanna & Lucas, 2001). In an
extensive study for eight different hospitals and 7,803
patients, two different models were combined: one for
determining the subgroups and the other for build-
ing a model for each subgroup. For the prognoses of
patients in an intensive care unit, subgroups have been
detected using decision trees. The decision tree was
trained to classify patients into the survival class and
the mortality class on the basis of the nonaggregated
features underlying the illness score. The leaves of the
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tree become subgroups. These are then used for training
a logistic regression model of mortality based on the
aggregated features.

Verification is the process of testing a model against a
specification. In medicine, this often means to check
clinical practice against expert protocols, or to check
an actual diagnosis against one derived from textbook
knowledge. Since many logic-based machine learning
algorithms consist of a generalization and a specializa-
tion step, they can be used for verification. Generaliza-
tion delivers rules from clinical data which can then be
compared with given expert rules (protocols). Special-
ization is triggered by facts that contradict a learning
hypothesis. Hence, using an expert rule as hypothesis,
the learning algorithm counts the contradicting clin-
ical cases and specializes the rule. For an early case
study on verification and rule enhancement see, e.g.,
(Morik, Potamias, Moustakis, & Charissis, 1994). A
more recent study compares a given clinical protocol
for intensive care with actual therapies at another hospi-
tal (Scholz, 2002). Decision trees and association rules
have been learned in order to inspect and enhance
the knowledge base of a web-based teledermatology
system (Ou, West, Lazarescu, & Clay, 2007). While
verification means to build the system right, valida-
tion means to build the right system. The borderline
between verification and validation is fuzzy. On the
one hand, medical practice is investigated with respect
to the guidelines (verification), on the other hand, the
guidelines are enhanced on the basis of medical practice
(validation).

Moreover, learned models can be verified with
respect to expert knowledge and validated with respect
to clinical practice. A study on the hemodynamic mon-
itoring of the critically ill integrated machine learning
into a knowledge-based approach to evidence-based
medicine. A knowledge base on drug effects was ver-
ified using patient records. Only 18% of the observa-
tions showed vital signs of patients in the opposite
direction than predicted by the knowledge base. Then,
the knowledge base was used to validate therapeuti-
cal interventions proposed by a learned model. Accu-
racy measures of a model only reflect how well the
learning result fits actual behavior of the physician and

not how well it fits the “gold standard” Hence, a pro-
posed intervention should be validated with respect
to its effects on the patient. If the known effects push
vital signs in the direction of the desired value range,
the recommendation is considered sound, otherwise
it is rejected. Using past data, the learned model was
found to recommend an intervention with the desired
effects in 81% of the cases (Morik, Joachims, Imhoff,
Brockhausen, & Riiping, 2002).

Intelligent search in the overwhelming number of
research publications supplies the information when
it is needed. ILP has been successfully put to use for
finding relevant medical documents (Dimec, Dze-
roski, Todorovski, & Hristovski, 1999). Also the intel-
ligent search in clinical free-text guidelines is an issue
(Moskovitch et al., 2006). The techniques for text cate-
gorization can be applied to medical texts in the usual
way. If the search engine not only labels the overall doc-
ument but, in addition, phrases within it, the search
could become more focused and also deliver paragraphs
instead of complete texts. The biomedical challenge for
named entity recognition requires the automatic extrac-
tion and classification of words referring to DNA, RNA,
proteins, cell types, and cell lines from texts (Kim, Ohta,
Tsuruoka, Tateisi, & Collier, 2004). Even more diffi-
cult is the discovery of medical knowledge from texts
(Sanchez & Moreno, 2005).

Understanding the transmission of infectious dis-
eases and forecasting epidemics is an important task,
since infections are distributed globally. Statistical
approaches to spatio-temporal analysis of scan data are
regularly used. There, a grid partitions the map into
regions where occurrences of the disease are shown
as points. “Hot spot” partitions are those of high den-
sity. By contrast, clustering detects hot spot regions
depending on the data, hence, the shape of regions
is flexible. Taking into account the a priori density of
the population, a risk-adjusted nearest neighbor hier-
archical clustering discovers “hot spot” regions. Also
a risk-adjusted support vector machine with Gaussian
kernel has successfully been applied to the problem of
detecting regions with infectious disease outbreak. The
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discovery of hot spot regions can be exploited for pre-
dicting virus activity, if an indicator is known which
can easily be observed. For instance, dead crows indi-
cate activity of the West Nile virus. An overview of
infectious disease informatics is given by (Zeng, Chen,
Lynch, Eidson, & Gotham, 2005).

Machine learning can also contribute to the under-
standing of the transmission of infectious diseases.
A case study on tuberculosis epidemiology uses BNs
to identify the distribution of tuberculosis patient
attributes. The learning results captured the known sta-
tistical relationships. A relational model learned from
the database directly using structured statistical mod-
els revealed several novel associations (Getoor, Rhee,
Koller, & Small, 2004).
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Meta-Combiner

|
Meta-Combiner

A meta-combiner is a form of Pensemble learn-
ing technique
ues. Its common topology involves base learners and
classifiers at the first level, and meta-learner and meta-
classifier at the second level. The meta-classifier com-

used with Pmissing attribute val-

bines the decisions of all the base classifiers.
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A metaheuristic is a set of concepts that can be used to
define heuristic methods that can be applied to a wide
set of different problems. In other words, a metaheuris-
tic can be seen as a general algorithmic framework that
can be applied to different optimization problems with
relatively few modifications. Examples of metaheuris-
tics include simulated annealing, tabu search, iterated
local search, evolutionary algorithms, and ant colony
optimization.
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Synonyms

Adaptive learning; Dynamic selection of bias; Learn-
ing to learn; Ranking learning methods; self-adaptive
systems

Definition

Metalearning allows machine learning systems to ben-
efit from their repetitive application. If a learning sys-
tem fails to perform efficiently, one would expect the
learning mechanism itself to adapt in case the same

task is presented again. Metalearning differs from base-
learning in the scope of the level of adaptation; whereas
learning at the base-level is focused on accumulating
experience on a specific task (e.g., credit rating, medical
diagnosis, mine-rock discrimination, fraud detection,
etc.), learning at the metalevel is concerned with accu-
mulating experience on the performance of multiple
applications of a learning system.

Briefly stated, the field of metalearning is focused
on the relation between tasks or domains, and learn-
ing algorithms. Rather than starting afresh on each new
task, metalearning facilitates evaluation and compari-
son of learning algorithms on many different previous
tasks, establishes benefits and disadvantages, and then
recommends the learning algorithm, or combination of
algorithms that maximizes some utility function on the
new task. This problem can be seen as an algorithm
selection task (Rice, 1976).

The utility or usefulness of a given learning algo-
rithm is often determined through a mapping between
characterization of the task and the algorithm’s estimated
performance (Brazdil & Henery, 1994). In general, met-
alearning can recommend more than one algorithm.
Typically, the number of recommended algorithms is
significantly smaller than the number of all possible
(available) algorithms (Brazdil, Giraud-Carrier, Soares,
& Vilalta, 2009).

Motivation and Background

The application of machine learning systems to
»classification and Pregression tasks has become a
standard, not only in research but also in commerce
and industry (e.g., finance, medicine, and engineering).
However, most successful applications are custom-
designed, the result of skillful use of human exper-
tise. This is due, in part, to the large, ever increasing
number of available machine learning systems, their
relative complexity, and the lack of systematic meth-
ods for discriminating among them. The problem is
further compounded by the fact that, in »Knowledge
Discovery from Databases, each operational phase (e.g.,
preprocessing, model generation) may involve a choice
among various possible alternatives (e.g., progressive
vs. random sampling, neural network vs. decision tree
learning), as observed by Bernstein, Provost, and Hill
(2005).
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Current data mining systems are only as power-
ful as their users. These tools provide multiple algo-
rithms within a single system, but the selection and
combination of these algorithms must be performed
before the system is invoked, generally by an expert
user. For some researchers, the choice of learning and
data transformation algorithms should be fully auto-
mated if machine learning systems are to be of any use
to nonspecialists. Others claim that full automation of
the data mining process is not within the reach of cur-
rent technology. An intermediate solution is the design
of assistant systems aimed at helping to select the right
learning algorithm(s). Whatever the proposed solution,
there seems to be an implicit agreement that meta-
knowledge should be integrated seamlessly into the data
mining system. Metalearning focuses on the design and
application of learning algorithms to acquire and use
metaknowledge to assist machine learning users with
the process of model selection. A general framework for
this purpose, together with a survey of approaches, is in
(Smith-Miles, 2008).

Metalearning is often seen as a way of redefining the
space of inductive hypotheses searched by the learning
algorithm(s). This issue is related to the idea of »search
bias, that is, search factors that affect the definition
or selection of inductive hypotheses (Mitchell, 1997).
In this sense, metalearning studies how to choose the
right bias dynamically and thus, differs from base-level
learning, where the bias is fixed or user-parameterized.
Metalearning can also be viewed as an important fea-
ture of self-adaptive systems, that is, learning systems
that increase in efficiency through experience (Vilalta
& Drissi, 2002).

Structure of the Metalearning System

A metalearning system is essentially composed of two
parts. One part is concerned with the acquisition of
metaknowledge for machine learning systems. The
other part is concerned with the application of meta-
knowledge to new problems, with the objective of iden-
tifying an optimal learning algorithm or technique. The
latter part — application of metaknowledge - can be
used to help select or adopt suitable machine learn-
ing algorithms. So, for instance, if we are dealing with
a Pclassification task, metaknowledge can be used to
select a suitable »-classifier for the new problem. Once

this has been done, one can train the classifier and apply
it to some unclassified sample for the purpose of class
prediction.

In the following sections we begin by describing
scenarios corresponding to the case when metaknowl-
edge has already been acquired. We then provide an
explanation of how this knowledge is acquired.

The aim of this section is to show that metaknowledge
can be useful in many different settings. We start by
considering the problem of selecting suitable machine
learning algorithms from a given set. The problem can
be seen as a search problem. The search space includes
the individual machine learning algorithms, and the
aim is to identify the best algorithm. This process can
be divided into two separate phases (see Fig. 1). In the
first phase the aim is to identify a suitable subset of
machine learning algorithms based on an input dataset.
The selection method used in this process can exploit
metaknowledge. This is in general advantageous, as it
often leads to better choices. In some work the result
of this phase is represented in the form of a ranked
subset of machine learning algorithms. The subset of
algorithms represents the reduced bias space. The rank-
ing (i.e., ordering of different algorithms) represents the
procedural search bias.

The second phase is used to search through the
reduced space. Each option is evaluated using a given
performance criteria (e.g., accuracy). Typically, cross-
validation will be used to identify the best alternative.

We note that metaknowledge does not completely
eliminate the need for the search process, but rather
provides a more effective search. The effectiveness of the
search depends on the quality of metaknowledge.

Let us return to the algorithm selection problem. A met-
alearning approach to solving this problem relies on
dataset characteristics or metafeatures to provide some
information that would differentiate the performance of
a set of given learning algorithms. These include various
types of measures discussed in detail below.

Much previous work in dataset characterization has
concentrated on extracting statistical and information-
theoretic parameters estimated from the training set.
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Metalearning. Figure 1. Selection of machine learning algorithms: Determining the reduced space and selecting the

best alternative

Measures include number of classes, number of features,
ratio of examples to features, degree of correlation
between features and target concept, average class
entropy, etc. (Engels & Theusinger, 1998). The disad-
vantage of this approach is that there is a limit to how
much information these features can capture, given that
all these measures are uni- or bi-lateral measures only
(i.e., they capture relationships between two attributes
only or between one attribute and the class).

Another idea is based on what are called landmark-
ers; these are simple and fast learners (Pfahringer, Ben-
susan & Giraud-Carrier, 2000). The accuracy of these
simplified algorithms is used to characterize a dataset
and to identify areas where each type of learner can be
regarded as an expert. An important class of measures
related to landmarkers uses information obtained on
simplified versions of the data (e.g., samples). Accuracy
results on these samples serve to characterize individual
datasets and are referred to as subsampling landmarks.

One different class of techniques does not acquire
the information in one step, but rather uses a kind
of p-active learning approach. This approach has been
used to characterize algorithms by exploiting perfor-
mance results on samples. The process of obtaining a
characterization is divided into several steps. The result

of one step affects what is done in the next step. In each
step, a decision as to whether the characterization pro-
cess should be continued is made first. If the answer
is positive, the system determines which characteristics
should be obtained in the next step (Brazdil et al., 2009).

All the measures discussed above are used to iden-
tify a subset of learning algorithms to reduce the search
space (Fig. 1). The second phase in the algorithm selec-
tion problem can be done using a metalevel system
that maps data characteristics to learning algorithms.
One particular approach uses the k-NN method at the
metalevel. The k-NN method is used to identify the
most similar datasets. For each of these datasets, a rank-
ing of the candidate algorithms is generated based on
user-defined performance criteria, such as accuracy and
learning time (Nakhaeizadeh & Schnabl, 1997). The
rankings obtained are aggregated to generate a final
recommended ranking of algorithms.

We now address how metaknowledge can be acquired.
One possibility is to rely on expert knowledge. Another
possibility is to use an automatic procedure. We explore
both alternatives briefly below.
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One way of representing metaknowledge is in the
form of rules that match domain (dataset) character-
istics with machine learning algorithms. Such rules
can be hand-crafted, taking into account theoretical
results, human expertise, and empirical evidence. For
example, in decision tree learning, a heuristic rule can
be used to switch from univariate tests to linear tests
if there is a need to construct nonorthogonal parti-
tions over the input space. This method has serious
disadvantages, however. First, the resulting rule set is
likely to be incomplete. Second, timely and accurate
maintenance of the rule set as new machine learning
algorithms become available is problematic. As a result,
most research has focused on automatic methods, dis-
cussed next.

One other way of acquiring metaknowledge relies
on automatic experimentation. For this we need a pool
of problems (datasets) and a set of machine learning
algorithms that we wish to consider. Then we need to
define also the experimental method which determines
which alternatives we should experiment with and in
which order (see Fig. 2 for details).

Suppose that we have a dataset (characterized
using certain metafeatures), in combination with cer-
tain machine learning algorithms. The combination
is assessed using an evaluation method (e.g., cross-
validation) to produce performance results. The results,
together with the characterization, represent a piece
of metadata that is stored in the metaknowledge base.
The process is then repeated for other combinations of
datasets and algorithms.

In this context it is useful to distinguish between two
different types of methods potentially available at the
metalevel. One group involves »lazy learning methods.
These delay the generalization of metadata to the appli-
cation phase. The other group involves learning algo-
rithms whose aim is to generate a generalization model
(e.g., a decision tree or decision rules). This generaliza-
tion model, applied to the metadatabase, represents in
effect the acquired metaknowledge.

As we mentioned before, learning should not be viewed
as an isolated task that starts from scratch on every

Learning
algorithms

Datasets

/

Selection

|

Experimental Method

Datasets + Metafeatures
Chosen algorithms

Evaluation Method

'

Evaluation

l

| Performance Results

=

Metaknowledge base
(see Fig 1)

Metalearning. Figure 2. Acquisition of metadata for the metaknowledge base
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new problem. As experience accumulates, the learning
mechanism is expected to perform increasingly better.
One approach to simulate the accumulation of experi-
ence is by transferring metaknowledge across domains
or tasks. This process is known as inductive transfer. In
many cases the goal is not simply to generate explicit
metaknowledge, but rather to incorporate it in the
given base-level system(s). The resulting base-level sys-
tem thus becomes a generic solution applicable across
domains. More details about this can be found in a
separate entry on this topic.
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Definition

The original “general” minimum description length
(MDL) principle for estimation of statistical properties
in observed data y", or the model f (y"; 0, k), represented
by parameters 0 = 0y,. . ., 0%, can be stated thus,

o “Find the model with which observed data and the
model can be encoded with shortest code length”:

n;1kn [logl/f(y";0,k) + L(6,k)],

where L(6,k) denotes the code length for the para-
meters.

The principle is very general and produces a model
defined by the estimated parameters. It leaves the selec-
tion of L(6,k) open, and in complex applications the
code length can be calculated by visualizing a coding

process. The only requirement is that the data must be
decodable.

Motivation and Background

The MDL principle is based on the fact that it is not
possible to compress data well without taking advan-
tage of the regular features in them. Hence, estimation
and data compression have similar goals although they
are not identical. In estimation, we must describe the
model explicitly, while the algorithm to compress the
data may take advantage of regular features implicitly
without isolating them. This means that such an algo-
rithm does not produce any model that could be used
for machine learning.
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We describe here a new sharper Complete MDL
principle, which corrects the shortcomings of the old
principle. It also separates estimation from data com-
pression and delivers an explicit model. The objective in
this entry is to show that the complete MDL principle is
not only intuitively appealing but it plays a fundamental
role in all estimations, and in all inductive inferences for
that matter, since any meaningful inference about data
must be based on a good model of it. In fact, we argue
that there cannot be a rational comprehensive theory of
estimation unless it is founded on the MDL principle or
some of its equivalent forms.

Theory

We begin by outlining the problem of model building
and estimation. The objective is to fit parametric models
oftype f(y"|x", 8) todatay” =y, ...
tory variables X" = x;,...,X,, where 8 = 60,,...,0
are real-valued parameters. To simplify the notations
we drop the explanatory variables and consider classes
of models My = {f(y";6)}. For fixed number k
of parameters the fitting is done by some estimator
function

,¥n> given explana-

0():y" = 00"
taking data to parameter values, which in turn pick
out estimated models of data. For simplicity we discuss
first the estimation of the real-valued parameters. We
do not assume the existence of a special “true” model
defined by a parameter 0, which raises the problem
of how to assess the goodness of the estimators and the
estimated models. Clearly, it cannot be done by any dis-
tance measure between the estimate 6(y") and 0*. We
think that the only way the assessment can be done in
general without narrow and special criteria is in terms
of the probability which the estimator 6(-) assigns to
the observed data. A large probability means a good
fit while a small probability means a bad fit. How do
we calculate this probability? Importantly, notice that it
cannot be the number f(y"; 8(y")), bearing the mysti-
cal name “likelihood,” because its integral over all data
y" is not unity. However, by normalization we get a valid
yardstick for the goodness measure

j-(yn;k) :f(yn; C(i’n))k)

Ce= [ 10750070,

where we now show the number of parameters k. When
even the number of parameters is to be estimated, the
yardstick is as follows

FOm =705k (D
C=F [ SO @

where k(y") denotes an estimator for k.

Optimal Yardstick

We view estimation as analogous to measuring a physi-
cal property like weight or mass of an object: The object
here is the observed data and the property is the model
in a selected class defined by the parameters, while
the probability an estimated model assigns to the data
corresponds to the accuracy.

We need a yardstick as the instrument like the scale
with which the measuring is done. It will be defined
by a special estimator and the distribution it defines.
Clearly, the yardstick must not depend on the data set
whose property we want to measure no more than the
scale for weighing an object must not depend on the
object. The requirement then is that it should be deter-
mined by the model class. We also want a yardstick that
assigns a large probability to the data, or, equivalently,
a small negative logarithm of the probability, which can
be interpreted as code length. However, there is the fun-
damental difficulty that no distribution f(y";k) exists
which assigns the largest probability to all data. Quite
remarkably, there is a unique yardstick that satisfies the
two requirements, repeated here:

1. f(-;k) to be determined by the model class M
2. Minimal code length log1/f(y"; k) for all data y"

and, similarly, when even the number of parameters is
to be estimated.

The unique yardstick when the real-valued para-
meters are estimated is defined by the ML (maximum
Likelihood) estimator, 8(y"), which maximizes the
probability the model assigns to data, or maxgf(y";
0,k):

Josky = LVE0TK) (3)
Ck

Ce= [ £0/500") K"
= [ db 6, kdy". (4
Jab [, Josenat @
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The proof of that there is a unique distribution
F(y"sk) =f (y"; k) satisfying the two requirements amo-
unts to noticing that the ratio f(y"; k) cannot be maxi-
mum unless the numerator is maximized. Notice that
the famous maximized likelihood, the numerator of
F(y";k), in itself means nothing.

The unique yardstick when even the number of
parameters is estimated is

maxg f (y"; ?(J’"))k)/ék

FO" = = (5)
C=% [ JORY©

where k(y"), or the maximizing k, is not the maximum
likelihood estimator.

The evaluation of these yardsticks on an observed
data string y" gives the MDL criterion. The calcu-
lation of the normalizing coefficients is the main
problem. It can be evaluated most easily for finite alpha-
bets. Asymptotically the optimal estimation criterion
amounts to this

A k n

in [log1/f(y";0(y"), k) + - log —

mkm[og IFB"5007)k) + 5 log
+ log f |](0)|1/2d9],

where

1(6) = lim n_lE{az log1/f(y"; 6,K) }

36,96,

is the Fisher information matrix. Hence, this term is a
positive constant and can be ignored for large amounts
of data.
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Synonyms
Minimum encoding inference

Definition
Minimum message length (MML) is a theory of
»inductive inference whereby the preferred model
is the one minimizing the expected message length
required to explain the data with the prior
information.

Given data, represented in a finite binary string, E,
is an “Pexplanation” of the data which is a two-part
»message or binary string encoding the data to be sent
between a sender and receiver. The first part of the
message (the “P-assertion”) states a hypothesis, model,
or theory about the source of the data. The second part
(the “»detail”) states those aspects of E which cannot
be deduced from this assertion and prior knowledge.
The sender and receiver are assumed to have agreed
on the prior knowledge, the assertion code, and the
detail code before the message is constructed and sent.
The shared prior knowledge captures their belief about
the data prior to seeing the data and is needed to pro-
vide probabilities or, equivalently, optimum codes, for
the set of models. The assertion and detail codes can
be equivalently considered to be the shared language
for describing models (for the assertion code) and for
describing data (for the detail code).

Out of all possible models which might be advanced
about the data, MML considers the best inference as
that model which leads to the shortest explanation.
The length of the explanation can be calculated using
»Shannon’s information, L(E) = —log(P(E)), where
L(E) is the length of the shortest string encoding an
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L(M_1) L(h_1) L( XIM_1,h_1)
L(M_2) L(h_2) L(X|M_2,h_2)
L(M_3) L(h_3) L( X|M_3,h_3)
X, S & J
Y Y
Assertion Detail

Minimum Message Length. Figure1. A view of model
selection by minimum message length (MML). The
data is coded assuming a model and parameters in the
assertion. The model and parameters are coded in the
assertion. As shown here, often different models have
same probability, while the code lengths for model
parameters and data detail differ between the models

event, E, and P() is the probability of a message con-
taining E.

To compare models, we calculate the explanation
length for each and prefer the one with shortest expla-
nation length. Figure 1 shows three models being evalu-
ated and the different lengths of the assertion and details
for each. Model 2 is preferred as it has the MML.

Motivation and Background
The original motivation for MML inductive inference
is the idea that the best explanation of the facts is the
shortest (Wallace & Boulton, 1968). By inductive infer-
ence, we mean the selection of a best model of truth.
This goal is distinct from a best model for prediction
of future data or for choosing a model for making the
most beneficial decisions. In the field of Machine Learn-
ing, greater focus has been on models for prediction and
decision, but inferences of the best models of truth have
an important separate application.

For discrete models, MML looks like Bayesian
model selection since choosing H to minimize the
explanation length of data X:

-logP(H) - log P(X|H) = —log(P(H)P(X|H),

is often, but not always, as discussed below, equivalent
to choosing H to maximize the probability

P(HIX) :
P(H)P(X|H)

P(H|X) = —=— 0

>

where P(X) is a constant for a given detail code.

For models with real-valued parameters, the equiv-
alence between MML and Bayesian model selection
always breaks down (Wallace, 2005, p. 117). Stating
the P(H) in a message requires real-valued param-
eters in H to be stated to a limited precision. The
MML coding approach replaces a continuum of pos-
sible hypotheses with a discrete subset of values, and
assigns a nonzero prior probability to each discrete the-
ory. The discrete subsets are chosen to optimize the
expected message length given the prior knowledge
assumptions.

For models with only discrete-valued parameters,
the equivalence between MML and Bayesian model
selection may break down if the discrete values cho-
sen involve the merging of values in the assumed prior
distribution, P(H) (Wallace, 2005, p. 156). This may
occur with a small dataset if the data is insufficient to
justify a codebook distinguishing individual members
of H.

Other than a discretized hypothesis space, MML
shares many properties of Bayesian learning such
as sufficiency, avoidance of overfitting, and consis-
tency (Wallace, 2005). One difference arising from
the discretized hypothesis space is that MML allows
inductive inference to be invariant under arbitrary
monotonic transformations of parameter spaces. The
Bayesian learning options for model choice such as
the maximum a posteriori (MAP) estimate are not
invariant under such transformations. Other theoreti-
cal benefits include consistency and guarantees against
overfitting.

Message lengths of an explanation can be based
on the theory of algorithmic complexity (AC) (Wal-
lace & Dowe, 1999), instead of Shannon’s information.
The AC of a string with respect to a Universal Turing
Machine, T, can be related to Shannon’s information by




670

Minimum Message Length

regarding T as defining a probability distribution over
binary strings, P(S), such that:
Prs) =27 8C®) v,

The connection with AC has some appeal for applica-
tions involving data that are not random in a probabilis-
tic sense, such as function approximation where data
seems to be from a deterministic source. In these cases,
after fitting a model, the data residuals can be encoded
using AC randomness, since the probabilistic sense of
randomness does not apply (Wallace, 2005, p. 275).

Theory
Strict MML (SMML) estimators refer to the estimator
functions which exactly minimize the expected message
length (Wallace & Boulton, 1975). Most practical MML
estimators are not strict and are discussed in a separate
section on Approximations.

An SMML estimator requires (Dowe, Gardner, &
Oppy, 2007):

e X, a data space, and a set of observations from the
dataspace, {x; :i€ N}

e p(x]h), a conditional probability function over data
given a model, h

e H is a model space. For example, H can be a simple
continuum of known dimension k

e P(h): a prior probability density on the parameter
space H : [, P(h)dh =1

X, H, and the functions P(h), p(x|h) are assumed to be
known a priori by both sender and receiver of the expla-
nation message. Both sender and receiver agree on a
code for X, using knowledge of X, H, p(h), and f(x|h)
only.

The marginal prior probability of the data x follows
from the assumed background knowledge:

r(x) = fH p(x|n)P(h) dh.

The SMML estimator is a functionm : X -H : m(x) =h,
which names the model to be selected.

The assertion, being a finite string, can name
at most a countable subset of H. Call the subset
H*={h;:j = 1,2,3,...}. The choice of H* implies a

coding distribution over H* :f(h;) =q;>0:j=1,2,3,...
with }; g; = 1. So choice of H* and g; lead to a message
length:

—logg; —logp(x|h;).

The sender, given x, will choose an & to make the expla-
nation short. This choice is described by an estimator
function: m(x): X — H so that the length of the expla-
nation is:

Li(x) = -logq(m(x)) - log p(x|m(x)),

and the expected length is (Wallace, 2005, p. 155)

Iy == 3 r(x)[logq(m(x)) +log p(xi|m(x:))].

xeX

Consider how to choose H* and coding distribution
gj to minimize I;. This will give the shortest explana-
tion on average, prior to the sender seeing the actual
data.

Define tj={x:m(x)=h;}, so that t; is the set of
data which results in assertion h; being used in the
explanation. I; can now be written as two terms:

Z Z i logp(x,|h])

hjEHstarl Xi€t;

b B (En)es

hjEHs!art Xi€t;

The first term of I; is minimized by choosing:

q4= 7

Xi€lj

So the coding probability assigned to estimate h; is the
sum of the marginal probabilities of the data values
resulting in h;. It is the probability that estimate h; will
be used in the explanation based on the assumptions
made.

The second term of I is the average of the log
likelihood over the data values used in A;.

This section describes the SMML estimator for the bino-
mial distribution. For this problem with 100 indepen-
dent trials giving success or failure, we have p(x|p) =
p"(1-p)'°° — s, h(p) = 1, where s is the observed num-
ber of successes and p is the unknown probability of
success.
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Minimum Message Length. Table 1 A strict MML (SMML)
estimator for binomial distribution (Farr & Wallace, 2002;
Wallace, 2005, p. 159)

1 0 0

2 1-6 0.035
3 7-17 0.12
4 18-32 0.25
5 33-49 0.41
6 50-66 0.58
7 67-81 0.74
8 82-93 0.875
9 94-99 0.965
10 100 1

We have an SMML estimator minimizing [, in
Table 1. I has 52.068 nits. Note that the partition p;
in Table 1 is not unique due to asymmetry in having
10 partitions of 101 success counts. Note the difference
between the SMML estimate, p;, and the MAP estimate
5/100 in this case. For example of 50 observed successes,
the MAP estimate is 0.5 while SMML estimate is 0.58.
With 49 successes, the SMML estimate jumps to 0.41,
so it is very discrete. The SMML estimate spacings are
consistent with the expected error and so the MAP esti-
mates are arguably overly precise and smooth. This is
less than 0.2 nits more than the optimal one-part code
based on the marginal probability of the data —log r(x).

SMML estimators are hard to find in practice and vari-
ous approximations of SMML estimators have been sug-
gested. We focus on the quadratic approximation here,
often called the MML estimator or MML87 (Wallace &
Freeman 1987). Other useful approximations have been
developed and are described in Wallace, (2005). The
use of approximations in applications requires careful
checking of the assumptions made by the approxima-
tion (such as various regularity conditions) to ensure

that the desirable theoretical properties of MML induc-
tive inference still apply.

f(H)

where F(h) is the Fisher Information:

0.5F (I, x)
F(w) ~°

Ii(x) ~ —log +[-logp(x|h")] +

2

d
(an'y?

F(W') = ~E—— logp(x|H")

2

- = T PO s o).

The assumptions are (Wallace, 2005; Wallace & Free-
man, 1987):

f(x|h) is approximately quadratic on theta near its
maximum

H has a locally Euclidean metric

e Fisher information is defined everywhere in H

f(h)and F(h) vary little over theta of order 1/1/F(h)

A further approximation has the third term simplify to
0.5 only (Wallace, 2005, p. 226) which assumes F(h, x) ~
F(h).

The MML estimator is a discretized MAP estimator
with the prior P(h) being discretized as:

P(H)

VEW)

In practice, note that the Fisher Information may be
difficult to evaluate. Various approximations have been
made for the Fisher Information where appropriate for
particular applications.

f(H')~

Applications

MML estimators have been developed for various prob-
ability distributions such as binomial, multinomial, and
Poisson. MML estimators have also been developed for
probability densities such as Normal, von-Mises, and
Student’s ¢ (Wallace, 2005). These estimators and asso-
ciated coding schemes are then useful components for
addressing more complex model selection problems in
Machine Learning.
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There have been many applications of MML estima-
tors to model spaces from Machine Learning (Allison,
2009; O’'Donnell, Allison, & Korb, 2006; Wallace, 2005).
We will now briefly note MML applications for mix-
ture models, regular grammars, decision trees, and
causal nets. MML estimators have also been developed
for multiple »linear regression (Wallace, 2005), poly-
nomial regression (Wallace, 2005), »neural networks
(Allison, 2009), ARMA time series, Hidden Markov
Models (Edgoose & Allison, 1999), sequence alignment
(Allison, 2009), phylogenetic trees (Allison, 2009), fac-
tor analysis (Wallace, 2005), cut-point estimation (Wal-
lace, 2005), and image segmentation.

Clustering was the first MML application from Wallace
and Boulton’s 1968 paper (Wallace & Boulton, 1968).
Some changes to the coding scheme have occurred over
the decades. A key development was the switch from
definite assignment of classes to things to probabilis-
tic assignment in the 1980s. The MML model selection
and a particularly efficient search involving dynamic
splitting and merging of clusters was implemented in a
FORTRAN program called Snob (since it discriminated
between things).
The assertion code consists of:

1. The number of classes
2. For each class
(a) The population proportion
(b) Parameters of the statistical distribution for
each attribute (or an insignificant flag)

The detail code consists of, for each datum the class
to which it belongs and attribute values assuming the
distribution parameters of the class. Bits-back coding
is used to partially or probabilistically assign a class to
each datum. This efficiency is needed to get consistent
estimates.

Probabilistic finite state machines (PFSM) can represent
probabilistic regular grammars (Wallace, 2005). A sim-
ple assertion code for the discrete finite state machines
(FSM) structure, as developed by Wallace and Georgeft,
is as follows:

e Provide number of states, S, using a prior P(S)

e For each state, code the number of arcs leaving the
state, log(K +1) where K +1 is maximum number of
arcs possible

o Code the symbols labeling the arcs, log (Kg 1)

as
e For each arc, code the destination state, a,1og S

The number of all states other than state 1is arbitrary, so
the code permits (S—1)!, equal length, different descrip-
tions of the same FSM. This inefliciency can be adjusted
for by subtracting log(S - 1)!

A candidate detail code used to code the sentences
is an incremental code where each transition from state
to state is coded incrementally, using log ng. + 1/v; + as,
where ng is the number of times this arc has already
been followed and v, is the number of times the state
has already been left.

This application illustrates some general issues
about assertion codes for discrete structures:

1. There can be choices about what to include in the
assertion code. For example, the transition proba-
bilities are not part of the assertion code above, but
could be included, with adjustments, in an alterna-
tive design (Wallace, 2005).

2. Simple approaches with interpretable priors may
be desirable even if using non-optimal codes. The
assumptions made should be validated. For exam-
ple, arcs between states in FSMs are usually rela-
tively sparse (a_s = S) so a uniform distribution is
not a sensible prior here.

3. Redundancy comes from being able to code equiv-
alent models with different descriptions. For some
model spaces, determining equivalence is either not
possible or very expensive computationally.

4. Redundancy can come from the code allowing
description of models that cannot arise. For exam-
ple, the example assertion code could describe a
FSM with states with no arcs.

5. Exhaustive search of model space can only be done
for small FSMs. For larger applications, the perfor-
mance of the MML model selection is conflated
with performance of the necessary search space
heuristics. This issue also occurs with decision trees,
causal nets, etc.
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In a particular application, it may be appropriate to
trade-off redundancy with interpretability in assertion
code design.

Assertion codes for Decision trees and graphs have been
developed (Wallace, 2005; Wallace & Patrick, 1993).
An assertion describes the structure of the tree, while
the detail code describes the target labels. The num-
ber of attributes, the arity of each attribute, an agreed
attribute order, and probability that a node is a leaf or
split node are assumed known by sender and receiver.
Like the PFSM transition probabilities, the leaf class
distributions are not explicitly included in the decision
tree model (a point of distinction from Bayesian tree
approaches).

An assertion code can be constructed by perform-
ing a prefix traversal of the tree describing each node.
Describing a node requires —log_2 P_L if it is a leaf
and —log 2 P_s if it is a split node. If it is a split node,
the attribute that it splits on must be specified, requir-
ing log 2 (number of available attributes). If it is a leaf
node, the data distribution model should be specified,
for example, the parameters of a binomial distribution
if the data consists of two classes.

(Dai, Korb, Wallace, & Wu, 1997; Neil, Wallace, & Korb,
1999; O’'Donnell et al., 2006)

The assertion code has two parts.

First part: DAG:

. Specify an ordering of variables, log N!
2. Specify which of M_a possible arcs are present,
log(N(N -1)/2) bits on assumption probability an
arc is present is 0.5

Second part: Parameters:

1. For each variable, state form of conditional distri-
bution, then parameters of the distribution. Then
encode all N values of v_j according to the distri-
bution (Fig. 2)

Note that the assertion code is intermixed with the
detail code for each variable (Wallace, 2005). Further

0.0 bits i ;
) 4.58 bits
2.0 bits
5.58 bits
5.58 bits %
9.58 bits
10.58 bits

Minimum Message Length. Figure 2. Assertion code len-
gths for different DAGS using the example coding scheme

adjustments are made to deal with grouping of causal
nets with various equivalences or near-equivalences.
This requires a further approximation because no
attempt is made to code the best representative causal
net from the group of causal nets described.

Future Directions

There seems potential for further development of
feasible approximations that maintain the key SMML
properties. Crossover of exciting new developments
in coding theory may also help with development of
MML estimators. Examples include stochastic encoding
such as bits-back coding, discovered by Wallace (1990)
and since expanded to many new application areas
showing connections between MML with variational
learning and ensemble learning (Honkela & Valpola,
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2004). Another area is the relationship between opti-
mum hypothesis discretization and indices of resolv-
ability and rate-distortion optimization (Lanterman,
2001).

MML estimators will continue to be developed for
the new model spaces that arise in Machine Learning.
MML relevance seems assured because with complex
models, such as social networks, the best model is the
useful outcome, rather than a prediction or posterior
distribution of networks.

Open source software using MML estimators for
difference machine learning models is available (MML
software).
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! Missing Attribute Values
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Synonyms
Missing values; Unknown attribute values; Unknown
values

Definition

When inducing »decision trees or Pdecision rules
from real-world data, many different aspects must be
taken into account. One important aspect, in particu-
lar, is the processing of missing (unknown) »attribute
values. In machine learning (ML), instances (objects,
observations) are usually represented by a list of
attribute values; such a list commonly has a fixed length
(i.e., a fixed number of attributes).

The topic of missing attribute values has been ana-
lyzed in the field of ML in many papers (Brazdil &
Bruha, 1992; Bruha and Franek, 1996; Karmaker &
Kwer, 2005; Long & Zhang, 2004; Quinlan, 1986, 1989).
Grzymala-Basse (2003) and Li and Cercone (2006) dis-
cuss the treatment of missing attribute values using the
rough set strategies.
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There are a few directions in which missing
(unknown) attribute values as well as the corre-
sponding routines for their processing may be stud-
ied and designed. First, the source of “unknownness”
should be investigated; there are several such sources
(Kononenko, 1992):

o A value is missing because it was forgotten or lost

e A certain attribute is not applicable for a given
instance (e.g., it does not exist for a given observa-
tion)

e An attribute value is irrelevant in a given context

o For a given observation, the designer of a training
database does not care about the value of a certain
attribute (the so-called dont-care value)

The first source may represent a random case, while the
remaining ones are of structural character.

Moreover, it is important to define formulas for
matching instances (examples) containing missing attri-
bute values with decision trees and decision rules as
different matching routines vary in this respect.

Strategies for Missing Value Processing

The aim of this section is to survey the well-known
strategies for the processing of missing attribute val-
ues. Quinlan (1989) surveys and investigates quite a
few techniques for processing unknown attribute val-
ues processing for the TDIDT family. This chapter first
introduces the seven strategies that are applied in many
ML algorithms. It then discusses particular strategies
for the four paradigms: Top Down Induction Deci-
sion Trees (TDIDT), (also known as the decision tree
paradigm, or divide-and-conquer), covering paradigm
(also known as the decision rules paradigm), Naive
Bayes, and induction of Passociation rules. The con-
clusion compares the above strategies and then portrays
possible directions in combining these strategies into a
more robust system.

To deal with real-world situations, it is necessary
to process incomplete data - ie., data with miss-
ing (unknown) attribute values. Here we introduce
the seven strategies (routines) for processing missing-
attribute-values. They differ in the style of the solution
of their matching formulae. There are the following nat-
ural ways of dealing with unknown attribute values:

1. Ignore the example (object, observation) with miss-
ing values: strategy Ignore (I)

2. Consider the missing (unknown) value as an addi-
tional regular value for a given attribute: strategy
Unknown (U) or

3. Substitute the missing (unknown) value for match-
ing purposes by a suitable value which is either
e The most common value: strategy Common (C)
e A proportional fraction: strategy Fraction (F)

e Any value: strategy Anyvalue (A)

e Random value: strategy Random (Ran)

o A value determined by a ML approach: strat-
egy Meta-Fill-In (M) of the known values of the
attribute that occur in the training set

Dealing with missing attribute values is in fact deter-
mined by matching a selector (see the corresponding
definitions below) with an instance. A matching proce-
dure of a selector with a fully specified instance returns
the uniform solution: the instance either matches or not.
Dilemmas arise when a partially defined instance is to
be matched.

We now informally introduce a couple of defini-
tions. An inductive algorithm generates a knowledge
base (decision tree or a set of decision rules) from
a training set of K training examples, each accom-
panied by its desired »class C,,r = 1,...,R. Exam-
ples are formally represented by N »-attributes, which
are either discrete (symbolic) or numerical (continu-
ous). A discrete attribute A,,n = 1...,N, comprises
J(n) distinct values V1, ..., Vj(,). A numerical attribute
may attain any value from a continuous interval. The
symbolic/logical ML algorithms usually process the
numerical attributes by Pdiscretization/fuzzification
procedures, either on-line or oft-line; see e.g., Bruha and
Berka (2000).

An example (object, observation) can thus be
expressed as an N-tuple x = [xi,...,xy], involving N
attribute values. A selector S,, is defined as an attribute-
value pair of the form x,, = V}, where V; is the jth value
of the attribute A, (or the jth interval of a numerical
attribute A,,).

To process missing values, we should know in
advance (forr=1,...,Rn=1,...,N,j=1,...,J](n)):

o The overall absolute frequencies F,, ; that express the
number of examples exhibiting the value V; for each
attribute A,
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o The class-sensitive absolute frequencies F,,; that
express the number of examples of the class C,
exhibiting the value V; for each attribute A,

o The overall relative frequencies f, ; of all known val-
ues V; for each attribute A,

o 'The class-sensitive relative frequencies f,,; of all
known values V; for each attribute A, and for a given
class C,

The underlying idea for learning relies on the class dis-
tribution; i.e., the class-sensitive frequencies (overall
and class-sensitive frequencies) are utilized. As soon as
we substitute a missing value by a suitable one, we take
the desired class of the example into consideration in
order not to increase the noise in the data set. On the
other hand, the overall frequencies are applied within
classification.

We can now define the matching of an example x
with a selector S,, by the so-called matching ratio = 0 if
Xn # V;

p(x,8,){=1ifx, = V; ey
€ [0;1] if x, is unknown (missing)

A particular value of the matching ratio is deter-
mined by the selected routine (strategy) for missing
value processing.

(I) Strategy Ignore: Ignore Missing Values: This strat-
egy simply ignores examples (instances) with at least
one missing attribute value before learning. Hence,
no dilemma arises when determining matching ratios
within learning. However, this approach does not con-
tribute to any enhancement of processing of noisy or
partly specified data.

As for classification, a missing value does not match
any regular (known) value of a selector. Thus, a selec-
tor’s matching ratio is equal to 0 for any missing value.
Consequently, only a path of nodes in a decision tree
or a decision rule that tests only the regular values dur-
ing classification may succeed. If there is no such path
of nodes in a decision tree or such a rule has not been
found, then the default principle is applied; i.e., the
instance with missing value(s) is classified as belonging
to the majority class.

(U) Strategy Unknown: Unknown Value as a Regular
One: An unknown (missing) value is considered as an

additional attribute value. Hence, the number of val-
ues is increased by one for each attribute that depicts an
unknown value in the training set. The matching ratio
of a selector comprising the test of the selector S,, and an
instance with the nth attribute missing is equal to 1 if this
test (selector) is of the form x,, =? where “?,” represents
the missing (unknown) value.

Note that selectors corresponding to the numeri-
cal (continuous) attributes are formed by tests x,, € V;

(where V; is a numerical interval) or x,, =?.

(C) Strategy Common: The Most Common Value: This
routine needs the class-sensitive absolute frequencies
F, ,j to be known before the actual learning process,
and the overall frequencies F,, ; before the classification.
A missing value of a discrete attribute A, of an example
belonging to the class C, is replaced by the class-sensitive
common value, which maximizes the Laplacian formula
I;]—’;} over j for the given r and . If the maximum is
reached for more than one value of A, then the value
V; with the greatest frequency F, ,; is selected as the
common value.

A missing value within the classification is replaced
by the overall common value, which maximizes F, ; over
the subscript j. Consequently, the matching ratio yields
0 or1, as every missing value is substituted by a concrete,
known value.

The Laplacian formula utilized within the learn-
ing phase prefers those attribute values that are more
predictive for a given class, contrary to the conven-
tional “maximum frequency” scheme. For instance, let
an attribute have two values: the value V; with the
absolute frequencies [4, 2] for the classes C; and C,,
and the value V, with frequencies [3, 0] for these two
classes. Then, when looking for the most common value
of this attribute for the class C;, the maximum fre-
quency chooses the value V; as the most common value,
whereas the Laplacian formula prefers the value V, as
the more predictive for the class C;.

(F) Strategy Fraction: Split into Proportional Fractions:
o Learning phase

The learning phase requires that the relative frequen-
cies f.,j above the entire training set be known. Each
example x of class C, with a missing value of a discrete
attribute A, is substituted by a collection of examples
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before the actual learning phase, as follows: the miss-
ing value of A,, is replaced by all known values V; of A,
and C,. The weight of each split example (with the value
V;) is

W] = W(X) *fr,n,j)j = 1, .o ,](n)

where w(x) is the weight of the original example x. The
weight is assigned by the designer of the training set
and represents the designer’s subjective judgment of the
importance of that particular example within the entire
training set. The matching ratio of the split examples is
accomplished by (1) in a standard way.

If a training example involves more missing attribute
values, then the above splitting is done for each missing
value. Thus, the matching ratio may rapidly decrease.
Therefore, this strategy, Fraction, should involve a
methodology to avoid explosion of examples, so that
only a predefined number of split examples with the
largest weights is used for replacement of the original
example.

o Classification phase

The routine Fraction works for each paradigm in a dif-
ferent way. In case of a decision tree, the example with
a missing value for a given attribute A, is split along all
branches, with the weights equal to the overall relative
frequencies f, ;.

As for the decision rules, the matching ratio for a
selector x,, = Vj is defined by (1) as u = f,,; for a missing
value of A,. An instance with a missing value is tested
with the conditions of all the rules, and is attached to
the rule whose condition yields the maximum matching
ratio - i.e., it is assigned to the class of this rule.

(A) Strategy Anyvalue: Any Value Matches: A miss-
ing value matches any existing attribute value, both
in learning and classification. Therefore, a matching
ratio y of any selector is equal to 1 for any missing
value.

It should be noticed that there is no uniform scheme
in machine learning for processing the “any-value” In
some systems, an example with a missing value for
attribute A,, is replaced by J(n) examples in which the
missing value is in turn substituted by each regular value
Vi,j = 1,...,J(n). In other systems, the missing “any-
value” is substituted by any first attribute value involved
in a newly generated rule when covered examples are

being removed from the training set; see Bruha and
Franek (1996) for details.

(Ran) Strategy Random: Substitute by Random Value
A missing value of an attribute A, is substituted by
a randomly selected value from the set of its values
Vi,j =1...,]J(n).In case of the numerical attributes, the
process used in the routine Common is first applied,
i.e,, the entire numerical range is partitioned into
a pre-specified number of equal-length intervals. A
missing value of the numerical attribute is then sub-
stituted by the mean value of a randomly selected
interval.

At least two possibilities exist in the random proce-
dure. Either

e A value is randomly chosen according to the uni-
form distribution - i.e., all the values have the same
chance

e Avalueis chosen in conformity with the value distri-
bution - i.e., the most frequent value has the greatest
chance of being selected

To illustrate the difference of the strategies Anyvalue
and Random, consider this scheme. Let the attribute A
have three possible values, Vy, V,, V; with the relative
distribution [0.5, 0.3, 0.2]. (Here, of course, we con-
sider class-sensitive distribution for the learning phase,
overall one for classification.)

Strategy Anyvalue for TDIDT replaces the miss-
ing value A =? by each possible value A = Vj, j =
1,2, 3, and these selectors (attribute-value pairs) are uti-
lized for selecting a new node (during learning), or
pushed down along an existing decision tree (classi-
fication).

Strategy Anyvalue for covering algorithms: if the
corresponding selector in a complex is for example,

A = Vj; then the selector A =? in an instance is
replaced by A = V3, so that the matching always
succeeds.

Let the pseudo-random number be for example, 0.4
in the strategy Random. Then, in the first case - ie.,
uniform distribution (one can consider the relative dis-
tribution has been changed to [0.33, 0.33, 0.33]) — the
missing value A =? is replaced by A = V. In the second
possibility - i.e., the actual distribution - the missing
value is replaced by A = V.
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(M) Strategy Meta Fill In: Use Another Learning Topol-
ogy for Substitution: This interesting strategy utilizes
another ML algorithm in order to fill in the miss-
ing attribute values. This second (or meta) learning
algorithm uses the remaining attribute values of a
given example (instance, observation) for determining
(inducing) the missing value of the attribute A,. There
are several approaches to this strategy.

The first one was designed by Breiman; it uses a sur-
rogate split in order to determine the missing attribute
value. We can observe that a surrogate attribute has the
highest correlation with the original one.

Quinlan (1989) was the first to introduce the meta-
fill-in strategy; in fact, this method was proposed by A.
Shapiro during their private communication. It builds a
decision tree for each attribute that attempts to derive
a value of the attribute with a missing value for a given
instance in terms of the values of other attributes of the
given instance.

Lakshminarayan et al. (1996) introduced a more
robust approach where a ML technique (namely, C4.5)
is used to fill in the missing values.

Ragel and Cremilleux (1998) developed a fill-in
strategy by using the association rules paradigm. It
induces a set of association rules according to the entire
training set. This method is able to efficiently process
the missing attribute values.

Missing Value Processing Techniques in
Various ML Paradigms

As mentioned above, various missing value process-
ing techniques have been embedded into various ML
paradigms. We introduce four such systems.

Quinlan (1986, 1989) applied missing value tech-
niques into ID3, the most famous TDIDT (decision tree
inducing) algorithm. His list exhibits two additional
routines that were not discussed above:

— 'The evaluation of an attribute uses the routines I,
C, M, and R (i.e., reduce the apparent information
gain from evaluating an attribute by the proportion
of training examples with the missing value for this
attribute)

- When partitioning a training set using the selected
attribute, the routines I, U, C, F, A, M were used

- The classification phase utilizes the strategies U, C,
F, M, and H (i.e., halt the classification and assign
the instance to the most likely class)

Quinlan then combined the above routine into triples
each representing a different overall strategy; however,
not all the possible combinations of these routines make
sense.

His experiments revealed that the strategies starting
with R or C behave reasonably accurately among them
the strategy RFF is the best. Brazdil and Bruha (1992)
improved this strategy for partitioning a training set.
They combined the strategies U and F; therefore, they
call it R(UF)(UF) strategy.

Bruha and Franek (1996) discusses the embedding
of missing value strategies into the covering algorithm
CN4 (Bruha and Kockova 1994), a large extension of the
well-known CN2 (Clark and Niblett 1989). A condition
of a decision rule has the form:

Cmplx = §; &...&S,,,
where Sy, m = 1,.. ., M, is the mth selector testing the
jth value V; of the g,,th attribute, (i.e., exhibiting the
form x,,, = V;). For the purposes of processing missing
values, we need to define the matching ratio of the exam-
ple x and the rule’s condition Cond. (Bruha and Franek

1996) uses two definitions:

- The product of matching ratios of its selectors:

M
#(x, Cmplx) = w(x) H u(x, Sqm) (2)
m=1

- or their average:

M
W(-x) Zly(x,sqm), (3)

, Cmplx) =
#(x, Cmplx) v

where w(x) is the weight of the example x (1 by default),
and yp on the right-hand side is the selector’s matching
ratio (1).

The Naive Bayes algorithm can process missing
attribute values in a very simple way, because the prob-
abilities it works with are, in fact, the relative frequen-
cies discussed above: the class-sensitive relative fre-
quencies f , ; (for the learning phase) and the overall
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relative frequencies f,; (for the purposes of classifi-
cation). When learning relative frequencies, all strate-
gies can by applied. Only routine Fraction is useless
because it copies the distribution of the rest of a train-
ing set. When classifying an instance with missing value
A, =%, all strategies can be applied as well. Section
Fraction substitutes this instances with J(n) instances
by each known attribute value, and each “fractioned”
instance is attached by the weight f,;, and classified
separately.

Ragel and Cremilleux (1998) present the missing
value processing strategy for the algorithm that induced
»association rules. Their algorithm uses a modified
version of the routine Ignore. The instances with miss-
ing attribute values are not removed from the train-
ing database but the missing values are ignored (or
“hidden”).

The experiments with the above techniques for
handling missing values have revealed the following.
In both decision tree and decision rules inducing algo-
rithms, the routine Ignore is evidently the worst strategy.
An Interesting issue is that the association rule induc-
ing algorithms use its modified version. In case of the
decision tree inducing algorithms, the strategy Fraction
is one of the best; however, the decision rules induc-
ing algorithms found it not so efficient. The explanation
for this fact is based on different ways of processing
examples in these two paradigms: in TDIDT, all training
examples are eventually incorporated into the decision
tree generated by the learning algorithm; on the other
hand, the covering paradigm algorithm generates rules
that may not cover all of the examples from the train-
ing set (as some of the examples are found not to be
representable).

Although the routine Unknown is one of the “win-
ners” (at least in the rule inducing algorithms and
Brazdil and Bruha (1992), it is not quite clear how one
can interpret, on a philosophical as well as a semantic
level, a branch in a decision tree or a decision rule that
involves a selector with an attribute equal to “?” (miss-
ing value). Strategy Fraction can be faced by “problems”
if an example /instance exhibits too many missing val-
ues, then this strategy generates too many “fractioned”
examples with very negligible weights.

One can find out that each dataset has more or
less its own “favorite” routine for processing missing
attribute values. It evidently depends on the magnitude

of noise and the source of unknownness in each dataset.
The problem of a “favorite” strategy can be solved by
various approaches. One possibility is to create a small
“window” within a training set, and to check the effi-
ciency of each strategy in this window, and then choose
the most efficient one. Bruha (2003) discusses another
possibility: investigating the advantages of utilizing the
external background (domain-specific, expert) knowl-
edge on an attribute hierarchical tree.

Also, the concept of the so-called »meta-combiner
(Fan, Chan & Stolfo, 1996) can be utilized. A learn-
ing algorithm processes a given training base for each
strategy for missing values independently; thus, all the
missing value strategies are utilized in parallel and the
meta-classifier makes up its decision from the results of
the base level (Bruha, 2004).

The above issue - i.e., selection or combination of
various strategies for missing value processing - is an
open field for future research.
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Synonyms
Finite mixture model; Latent class model; Mixture dis-
tribution; Mixture modeling

Definition
A mixture model is a collection of probability distri-
butions or densities Dy, ..., Dy and mixing weights or

proportions wj,...,wy, where k is the number of
component distributions (Duda, Hart, & Stork, 2000;
Lindsey, 1996; McLachlan & Peel, 2000).

The mixture model, P(x|Dy,..

.,Dk,Wl,...,Wk) =

j: w;P(x|D;), is a probability distribution over the
data conditional on the component distributions of the
mixture and their mixing weights. It can be used for
density estimation, model-based clustering or unsuper-
vised learning, and classification.

Figure 1 shows one-dimensional data plotted along
the x-axis with tick marks and a histogram of that data.
The probability densities of two mixture models fitted
to that data are then shown. The one-component mix-
ture model is a Gaussian density with mean around 2
and standard deviation of 2.3. The two-component mix-
ture model has one component with mean around 0
and the other with mean around 4, which reflects how
these simple example data was artificially generated.
This model can be used for clustering by considering
each of its components as a cluster and assigning cluster
membership based on the relative probability of a data
item belonging to that component. Data less than 2 will
have higher probability of belonging to the Gaussian
with mean 0 component.

Mixture models fitted to 50 samples from
Gaussian(1,1) and 50 samples from Gaussian(4,1)
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Mixture Model. Figure 1. Mixture model example for
one-dimensional data
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Motivation and Background

Mixture models are easy and convenient to apply. They
trade off good power in data representation with relative
ease in building the models. When used in clustering,
a mixture model will have a component distribution
covering each cluster, while the mixing weights reflect
the relative proportion of a cluster’s population. For
example, a two-component mixture model of seal skull
lengths from two different seal species may have one
component with relative proportion 0.3 and the other
with 0.7 reflecting the relative frequency of the two
components.

Estimation

In order to use mixture models, the following choices
need to be made by the modeler or by the mixture model
software, based on the characteristics of a particular
problem domain and its datasets:

1. Thetype of the component distributions (e.g., Gaus-
sian, multinomial etc.)

2. 'The number of component distributions, k

3. 'The parameters for the component distributions
(e.g., a one-dimensional Gaussian has a mean
and standard deviation as parameters, a higher-
dimensional Gaussian has a mean vector and
covariance matrix as parameters)
Mixing weights, w;

5. (Optional) component labels, ¢; for each datum x;,
where j =1...n and n is the number of data

The fifth item above, component labels, are optional,
because they are only used in latent class mixture
model frameworks where a definite component mem-
bership is part of the model specification. Other mix-
ture model frameworks use probabilistic membership
of each datum to each component distribution and so
do not need explicit component labels.

The most common way of fitting distribution
parameters and mixture weights is to use the expectation-
maximization (EM) algorithm to find the maximum
likelihood estimates. The EM algorithm is an iterative
algorithm that, starting with initial guesses of parameter
values, computes the mixing weights (the expectation
step). The next step is to then compute the parame-
ter values based on these weights (the maximization
step). The Expectation and Maximization steps iterate

and convergence is assured (Redner & Walker, 2004).
However, there is no guarantee that a global optimum
has been found and so a number of random restarts
may be required to find what other optima exist (Xu &
Jordan, 1996).

As an alternative to random restarts, a good search
strategy can be used to modify the current best solu-
tion, perhaps by choosing to split, merge, delete, or add,
component distributions at random. This can also be a
way to explore mixture models with different number
of components (Figueiredo & Jain, 2002).

Since mixture models are a probabilistic model class,
besides EM, other methods such as Bayesian methods
or methods for graphical models can be used. These
include Markov Chain Monte Carlo inference and Vari-
ational learning (Bishop, 2006).

Choosing the Number of Components

The number of components in a mixture model is often
unknown when used for clustering real-world data.
There have been many methods for choosing the num-
ber of components. The global maximum for maxi-
mum likelihood chooses a component for every data
item, which is usually undesirable. Criteria based on
information theory or Bayesian model selection choose
reasonable numbers of components in many domains
(McLachlan & Peel, 2000, Chap. 6, 5). There is no
universally accepted method, because there is no uni-
versally accepted optimality criteria for clustering or
density estimation. Use of an infinite mixture model, by
using an infinite number of components, is one way to
avoid the number of components problem (Rasmussen,
2000).

Types of Component Distributions
Besides Gaussian, other distributions can be used such
as Poisson (for count data), von Mises (for data involv-
ing directions or angles), and Weibull. Heavy-tailed
distributions require particular care, because standard
estimation may not work when mean or variance is infi-
nite (Dasgupta, Hopcroft, Kleinberg, & Sandler, 2005).
Another commonly needed variation is a mixture
model to handle a mix of continuous and categorical
features (McLachlan & Peel, 2000). For example, a bino-
mial distribution can be used to model male/female
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gender proportions and Gaussian to model length for
data relating to a seal species sample.

A further extension is to allow components to
depend on covariates, leading to mixtures of regression
models (McLachlan & Peel, 2000). This leads to models
such as mixtures of experts and hierarchical mixtures of
experts (Bishop, 2006; McLachlan & Peel, 2000), which
are flexible models for nonlinear regression. The combi-
nation of mixture models with Hidden Markov models
allows the modeling of dependent data (McLachlan &
Peel, 2000).

Large Datasets
The EM algorithm can be modified to find mix-
ture models for very large datasets (Bradley, Reina, &
Fayyad, 2000). The modification allows for a single
scan of the data and involves identifying compressible
regions of the data.

Theory
A key issue for mixture models is learnability (Chaudri,
2010). The more the component distributions overlap,
the harder they are to learn. Higher-dimensional data
also makes learning harder. Sometimes, these prob-
lems can be overcome by increasing the data quantity,
but, in extremely hard cases, this will not work (Srebo,
Shakhnarovich, & Roweis, 2006; Xu & Jordan, 1996).
Another issue is the relationship between adequate
sample size and the number of components. A prag-
matic policy is to set minimum mixing weights for
component distributions. For example, for a dataset of
size 100, if mixing weights are required to be greater
than 0.1, this implies a maximum of ten components are
possible to be learnt from the data with these parameter
settings.

Applications

Mixture model software is often available in the cluster-
ing or density estimation parts of general statistical and
data mining software. More specialized mixture mod-
eling software for clustering data have included Auto-
class (Autoclass, 2010), Snob (Snob, 2010), and mclust
(Mclust, 2010).

Cross References
»Density-Based Clustering

» Density Estimation

» Gaussian Distribution

» Graphical Models
»Learning Graphical Models
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» Unsupervised Learning
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Model evaluation is the process of assessing a property
or properties of a »model.

Motivation and Background

It is often valuable to assess the efficacy of a model
that has been learned. Such assessment is frequently
relative—an evaluation of which of several alternative
models is best suited to a specific application.

Processes and Techniques

There are many metrics by which a model may be
assessed. The relative importance of each metric varies
from application to application.

The primary considerations often relate to predic-
tive eflicacy—how useful will the predictions be in the
particular context it is to be deployed. Measures relating
to predictive efficacy include »Accuracy, »Lift, > Mean
Absolute Error, »Mean Squared Error, »Negative Pre-
dictive Value, »Positive Predictive Value, »Precision,
»Recall, »-Sensitivity, »-Specificity, and various metrics
based on »ROC analysis.

Computational issues may also be important, such
as a model’s size or its execution time.

In many applications one of the most important
considerations is the ease with which the model can be
understood by the users or how consistent it is with the
users’ prior beliefs and understanding of the application
domain.

When assessing the predictive efficacy of a model
learned from data, to obtain a reliable estimate of its
likely performance on new data, it is essential that it
is not assessed by considering its performance on the
data from which it was learned. A learning algorithm
must interpolate appropriate predictions for regions of
the »instance space that are not included in the train-
ing data. It is probable that the inferred model will
be more accurate for those regions represented in the
training data than for those that are not, and hence
predictions are likely to be less accurate for instances
that were not included in the training data. Estimates
that have been computed on the training data are called
»resubstitution estimates. For example, the error of a
model on the training data from which it was learned
is called resubstitution error.

Algorithm evaluation techniques such as P»cross-
validation, »holdout evaluation, and »bootstrap sam-
pling are designed to provide more reliable estimates
of the accuracy of the models learned by an algorithm
than would be obtained by assessing them on the train-
ing data.
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Model selection is the process of choosing an appropri-
ate mathematical model from a class of models.
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Synonyms
Functional trees; Linear regression trees; Piecewise lin-
ear models

Definition

Model trees are supervised learning methods that
obtain a type of tree-based »Regression model, similar
to »Regression Trees, with the particularity of having
functional models in the leaves instead of constants.
These methods address multiple regression problems.
In these problems we are usually given a training sample
of n observations of a target continuous variable Y and
of a vector of k predictor variables, x = Xj, -+, X§. Model
trees provide an approximation of an unknown regres-
sion function Y = f(x) + ¢ with Y € R and ¢, a normally
distributed noise component with mean 0 and o vari-
ance. The leaves of these trees usually contain »linear
regression models, although some works also consider
other types of models.

Motivation and Background

Model trees are motivated by the purpose of over-
coming some of the known limitations of regression
trees caused by their piecewise constant approxima-
tion. In effect, by using constants at the leaves, regres-
sion trees provide a coarse grained function approx-
imation leading to poor accuracy in some domains.
Model trees try to overcome this by using more com-
plex models on the leaves. Trees with linear models
in the leaves were first considered in Breiman and
Meisel (1976) and Friedman (1979). Torgo (1997) has
extended the notion of model trees to other types of
models in the tree leaves, namely, kernel regression,
later extended to other types of local regression mod-
els (Torgo, 1999, 2000). The added complexity of the
models used in the leaves increases the computational
complexity of model trees when compared to regression
trees, and also decreases their interpretability. In this
context, several works Chaudhuri, Huang, Loh, & Yao

(1994); Dobra & Gehrke (2002); Loh (2002); Malerba,
Appice, Ceci, & Monopoli (2002); Natarajan & Pednault
(2002); Torgo (2002); Malerba, Esposito, Ceci, & Appice
(2004); Potts & Sammut (2005); Vogel, Asparouhov, &
Schefter (2007) have focused on obtaining model trees
in a computationally efficient form.

Structure of Learning System

Approaches to model trees can be distinguished along
two dimensions: the criterion used to select the best
splits at each node, that is, the criterion guiding the par-
titioning obtained by the tree; and the type of models
used in the leaves. The choices along the first dimen-
sion are mainly driven by considerations of computa-
tional efficiency. In effect, the selection of the best split
node involves evaluating many candidate splits. The
evaluation of a binary split (the most common splits
in tree-based models) consists in calculating the error
reduction produced by the split, that is,

A(s, ) = Err(t) - (’;‘Tf < Err(ty) + 2% Err(tR)) W

t

where ¢ is a tree node with sub-nodes #; and # origi-
nated by the split test s, while ny, ny,, ny, are the cardi-
nalities of the respective sets of observations on each of
these nodes, and Err() is a function that estimates the
error on a node being defined as,

Er() =~ 3 (i-g(Dy))? )

t (xi,yi)eDy

where Dy is the sample of cases in node t, n; is the car-
dinality of this set, and g(D;) is a function of the cases
in node ¢.

In standard regression trees the function g() is the
average of the target variable Y, that is, n% X (xigieD, Vi-
This corresponds to assuming a constant model on each
leaf of the tree. The evaluation of each candidate split
requires obtaining the models at the respective left and
right branches (Eq. 1). If this model is an average, rather
efficient incremental algorithms can be used to evaluate
all candidate splits. On the contrary, if g() is a »linear
regression model or even other more complex models,
this evaluation is not so simple and it is computation-
ally very demanding, as a result of which systems that
use this strategy (Karalic, 1992) become impractical for
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large problems. In this context, several authors have
adopted the alternative of growing the trees assuming
constant values in the leaves and then fitting the com-
plex models on each of the obtained leaves (e.g., Quin-
lan, 1992; Torgo, 1997, 1999, 2000). This only requires
fitting as many models as there are leaves in the final
tree. The main drawback of this approach is that the
splits for the tree nodes are selected assuming the leaves
will have averages instead of the models that in effect
will be used. This may lead to splits that are suboptimal
for the models that will fit on each leaf (Malerba et al.,
2002, 2004). Several authors have tried to maintain the
consistency of the split selection step with the models
used in the leaves by proposing efficient algorithms for
evaluating the different splits. In Malerba et al. (2002,
2004) linear models are obtained in a stepwise man-
ner during tree growth. In Chaudhuri et al. (1994),
Loh (2002), and Dobra and Gehrke (2002) the com-
putational complexity is reduced by transforming the
original regression problem into a classification prob-
lem. In effect, the best split is chosen by looking at the
distribution of the sign of the residuals of a linear model
fitted locally. In Natarajan and Pednault (2002); Torgo
(2002); Vogel et al. (2007) the problem is addressed by
proposing more efficient algorithms to evaluate all can-
didate splits. Finally, Potts and Sammut (2005) proposes
an incremental algorithm to obtain model trees that
fights the complexity of this task by imposing a limit
on the number of splits that are considered for each
node.

The most common form of model used in leaves is
»linear regression. Still, there are systems considering
kernel models (Torgo, 1997), local linear models (Torgo,
1999), and partial linear models (Torgo, 2000). These
alternatives provide smoother function approximation,
although with increased computational costs and less
interpretable models.

»Pruning in model trees does not bring any addi-
tional challenges when compared to standard regres-
sion trees and so similar methods are used for this
over-fitting avoidance task. The same occurs with the
use of model trees for obtaining predictions for new
test cases. Each case is “dropped-down” the tree from
the root node, following the branches according to the
logical tests in the nodes, till a leaf is reached. The
model in this leaf is used to obtain the prediction for the
test case.

Cross References
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Definition

Model-based clustering is a statistical approach to data
clustering. The observed (multivariate) data is assumed
to have been generated from a finite mixture of com-
ponent models. Each component model is a probability
distribution, typically a parametric multivariate distri-
bution. For example, in a multivariate Gaussian mixture
model, each component is a multivariate Gaussian dis-
tribution. The component responsible for generating a
particular observation determines the cluster to which
the observation belongs. However, the component gen-
erating each observation as well as the parameters for
each of the component distributions are unknown.
The key learning task is to determine the component
responsible for generating each observation, which in
turn gives the clustering of the data. Ideally, observa-
tions generated from the same component are inferred
to belong to the same cluster. In addition to infer-
ring the component assignment of observations, most
popular learning approaches also estimate the param-
eters of each component in the process. The strength
and popularity of the methods stem from the fact that
they are applicable for a wide variety of data types,
such as multivariate, categorical, sequential, etc., as long
as suitable component generative models can be con-
structed. Such methods have found applications in sev-
eral domains such as text clustering, image processing,
computational biology, and climate sciences.

Structure of Learning System

Let X ={xy,...,x, | be a dataset on which a k-clustering
is to be performed. Let p(x|6:),...,p(x|0%) be k dis-
tributions which form the components of the mixture
model from which the observed data is assumed to
have been generated, and let 7= (7y,...,7) denote a
prior distribution over the components. Then ® = (7, 0)
constitutes the (unknown) parameters of the gen-
erative mixture model, where 0={6;,...,6;} and
m={m,. .., 7}

Given the model, an observation is assumed to be
generated by the following two-step process: (1) ran-
domly pick a component following the discrete distri-
bution 7 over the components, i.e., the hth component
is chosen with the probability of m;,; (2) the observa-
tion is sampled from the component distribution, e.g.,
if the hth component was chosen, we draw a sam-
ple x ~ p(x|6;). Each observation is assumed to be
statistically independent so that they are all generated
independently following the same two-step process.

Figure 1 gives an example of data drawn from
a mixture of three (k=3) 2-dimentional multivari-
ate Gaussians. In the example, the discrete distri-
bution over the component Gaussians is given by
n=(0.2,0.3,0.5). The parameter set 0, h =1,2, 3 for any
individual multivariate Gaussian consists of the mean
vector yy, and the covariance matrix 2. For the exam-
ple, we have y; =[1,2], u2=[%8], y3=[16,3],and X, =

[0453196 0'51196]’ 2, = [71.3321 71'§321]> 23 = [3.03984 3'05984]'

X4

Model-Based Clustering. Figure 1. Three 2-dimensional
Gaussians
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O1.x

Model-Based Clustering. Figure 2. Bayesian network for
a finite mixture model

The generative process could be represented as a
Bayesian network as shown in Fig. 2, where the arrows
denote the dependencies among variables/parameters.
In the Bayesian network, (7, 8) are the parameters of
the mixture model, x; are the observations and z; are the
latent varijables corresponding to the component which
generates x,i=1...,n. To generate an observation x;,
the model first samples a latent variable z; from the dis-
crete distribution 7, and then samples the observation

x; from component distribution p(x|6,,).

, X, } assumed
to have been generated from a finite mixture model, the

Given a set of observations X = {xi,...

learning task is to infer the latent variables z; for each
observation as well as estimate the model parameters
©® = (7,6). In the Gaussian mixture model example,
the goal would be to infer the component responsible
for generating each observation and estimate the mean
and covariance for each component Gaussian as well
as the discrete distribution 7 over the three Gaussians.
After learning model parameters, the posterior prob-
ability p(h|x;,®) of each observation x; belonging to
each component Gaussian gives a (soft) clustering for
the observation.

The most popular approach for learning mixture
models is based on maximum likelihood estimation
(MLE) of the model parameters. In particular, given the
set of observations X, one estimates the set of model
parameters which maximizes the (log-)likelihood of
observing the entire dataset X. For the finite mixture
model, the likelihood of observing any data point x; is
given by

k
p(xil®) = > mp(xi|6n) - )
h=1

Since the data points in X are assumed to be sta-
tistically independent, the log-likelihood. (In practice,
one typically focuses on maximizing the log-likelihood
logp(X|®) instead of the likelihood p(X|®) due to
both numerical stability and analytical tractability). of
observing the entire dataset X is given by

I%MM®»A%(ﬁpmwﬁﬂ

n
i=

k
Zlog( ﬂhp(xi|9h)) )
[

1

A direct application of MLE is difficult since the log-
likelihood cannot be directly optimized with respect
to the model parameters. The standard approach to
work around this issue is to use the expectation max-
imization (EM) algorithm which entails maximizing a
tractable lower bound to the log-likelihood log p(X|®).
To this end, a latent variable z; is explicitly introduced
for each x; to inform the component that x; is generated
from. The joint distribution of (x;,z;) is p(x;, zi|7m, 0) =
., p(xi|0,,). Let Z = {z1,..., 2, } denote the set of latent
variables corresponding to X = {xj,...,x,}. The joint
log-likelihood of (X, Z) then becomes

logp(X,Z|0) = 3. logp(x:,2(0)
i=1

=) (logm, +logp(xi6;)). (3)

1

L=

For a given set Z, it is easy to directly optimize (3) with
respect to the parameters ® = (7, 6). However, Z is
actually a random vector whose exact value is unknown.
Hence, the log-likelihood logp(X,Z|®) is a random
variable depending on the distribution of Z. As a result,
EM focuses on optimizing the following lower bound
based on the expectation of logp(X,Z|®) where the
expectation is taken with respect to some distribution
p(Z) over the latent variable set Z. In particular, for any
distribution g(Z), we consider the lower bound

L(q,©) = Ez4[logp(X, Z|0)] + H(q(Z)), (4)
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where the expectation on the first term is with respect
to the posterior distribution q(Z) and H(q(Z)) denotes
the Shannon entropy of the latent variable set Z ~ q(Z).
A direct calculation shows that the difference between
the true log-likelihood in (2) and the lower bound in
(4) is exactly the relative entropy between q(Z) and the
posterior distribution p(Z|X, ®), i.e.,

logp(X|®) - L(g,0) = KL(q(2)[[p(Z|X,©)) 20 (5)
= logp(X|®) > L(q,0), (6)

where KL(]|) denotes the KL-divergence or relative
entropy. As a result, when g(Z) = p(Z|X, ®), the lower
bound is exactly equal to the log-likelihood log p(X|®).
EM algorithms for learning mixture models work by
alternately optimizing the lower bound L(gq,®) over
q and ©. Starting with an initial guess ®(*) of the
parameters, in iteration ¢ such algorithms perform the
following two steps:

E-step Maximize L(g, ®(“")) with respect to g(Z) to
obtain

49(2) = argmax L(q(Z), 00
a(2)
=p(2ZX,007). @)
M-step Maximize L(q("), ®) with respect to ), i.e.,

0" = argmax L(q\V (2),0), (8)
)
which is equivalent to
0" = argmax > E. [logp(xi,zi®)]
e i

since the second term in (4) does not depend
on O.

Model-based clustering of multivariate data is often
performed by learning a Mixture of Gaussians (MoG)
using the EM algorithm. In a MoG model, the param-
eters corresponding to each component are the mean
and covariance for each Gaussian given by (up,Zp),
h = 1,...,k For a given dataset X, the EM algo-
rithm for learning MoG starts with an initial guess ©)

for the parameters where ®(°):{(7T;(IO),/4,(10),2,(10)),
h=1,...,k}. At iteration ¢, the following updates are
done:

E-step Update distributions over latent variables
zj,i =
1,...,nas

9" (z = h) = p(z = hlx;, 07)

n;t—l)p(xi‘ylgt—l) , Zlgt—l) )

= — — —— . 9)
Sk al D p (0, 20

M-step Optimizing the lower bound over {(7y, yn, Z1),
h=1,...,k} yields

1 n
ﬂlst) = ; ZP(MJC;&@U_I)) , (10)

i=1

m X hxi)®(t—1)
‘uflt) _ Zz-l p( |(t) ) k (11)
nim,
(0 _ Sl - ) (i = ) Tp (i, 04
i 0 . (12)
nm,

The iterations are guaranteed to lead to monotoni-
cally non decreasing improvements of the lower bound
L(q,®). The iterations are typically run till a suitable
convergence criterion is satisfied. On convergence, one
gets the estimates ® = {(7, pp, Zp),h = 1,...,k} of
the component parameters as well as the soft cluster-
ing p(h|x;, ®) of individual data points. The alternating
maximization algorithm outlined above can get stuck in
alocal minima or saddle point of the objective function.
In general, the iterations are not guaranteed to converge
to a global optima. In fact, different initializations ®(®)
of parameters can yield different final results. In prac-
tice, one typically tries a set of different initializations
and picks the best among them according to the final
value of the lower bound obtained. Extensive empiri-
cal research has gone into devising good initialization
schemes for EM algorithm in the context of learning
mixture models.

Recent years have seen progress in the design and
analysis of provably correct algorithms for learning
mixture models for certain well behaved distributions,
where the component distributions are assumed to be
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separated from each other in a well-defined sense. Such
algorithms typically involve projecting data to a suit-
able lower-dimensional space where the components
separate out and the clustering becomes simpler. One
family of algorithms rely on random projections and
are applicable to variety of problems including that
of learning mixture of Gaussians. More recent devel-
opments include algorithms based on spectral pro-
jections and are applicable to any log-concave distri-
butions.

Model-based clustering is intimately related to a wide
variety of centroid-based partitional clustering algo-
rithms. In particular, the popular kmeans clustering
algorithm can be viewed as a special case of learning
mixture of Gaussians with a specific covariance struc-
ture. Given a dataset X, the kmeans problem is to find
a partitioning C = {Cp,,h = 1,...,k} of X such that the
following objective is minimized:

k
J(C) =hZ > Nl = pnll?

=1xeCp

where py, is the mean of the points in Cj,. Starting from
an initial guess at the cluster means, the kmeans algo-
rithm alternates between assigning points to the nearest
cluster and updating the cluster means till convergence.
Consider the problem of learning a mixture of Gaus-
sians on X such that each Gaussian has a fixed covari-
ance matrix X, = 1, where I is the identity matrix and
pB > 01is a constant. Then, as § — 0, maximizing the
scaled lower bound SL(g, ®) corresponding to the mix-
ture modeling problem becomes equivalent to minimiz-
ing the kmeans objective. Further, the EM algorithm
outlined above reduces to the popular kmeans algo-
rithm. In fact, such a reduction holds for a much larger
class of centroid-based clustering algorithms based on
Bregman divergences, which are a general class of diver-
gence measures derived from convex function and have
popular divergences such as squared Euclidean distance
and KL-divergence as special cases. Centroid-based
clustering with Bregman divergences can be viewed as
a special case of learning mixtures of exponential fam-
ily distributions with a reduction similar to the one

from mixture of Gaussians to kmeans. Further, non lin-
ear clustering algorithms such as kernel kmeans can be
viewed as a special case of learning mixture of Gaussians
in a Hilbert space.

Recent years have seen generalizations of mixture
models to mixed membership models and their non
parametric extensions. Latent Dirichlet allocation is an
example of such a mixed membership model for topic
modeling in text corpora. The key novelty of mixed
membership models is that they allow a different com-
ponent proportions 7, for each observation x instead of
a fixed proportion 7 as in mixture models. The added
flexibility yields superior performance in certain prob-
lem domains.
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Synonyms
Indirect reinforcement learning

Definition

Model-based Reinforcement Learning refers to learning
optimal behavior indirectly by learning a model of the
environment by taking actions and observing the out-
comes that include the next state and the immediate
reward. The models predict the outcomes of actions and
are used in lieu of or in addition to interaction with the
environment to learn optimal policies.

Motivation and Background

»Reinforcement Learning (RL) refers to learning to
behave optimally in a stochastic environment by taking
actions and receiving rewards (Sutton & Barto, 1998).
The environment is assumed Markovian in that there
is a fixed probability of the next state given the cur-
rent state and the agent’s action. The agent also receives
an immediate reward based on the current state and
the action. Models of the next-state distribution and
the immediate rewards are referred to as “action mod-
els” and, in general, are not known to the learner.
The agent’s goal is to take actions, observe the out-
comes including rewards and next states, and learn a
policy or a mapping from states to actions that opti-
mizes some performance measure. Typically the perfor-
mance measure is the expected total reward in episodic
domains, and the expected average reward per time step
or expected discounted total reward in infinite-horizon
domains.

The theory of »Markov Decision Processes (MDPs)
implies that under fairly general conditions, there is a
stationary policy, i.e., a time-invariant mapping from
states to actions, which maximizes each of the above
reward measures. Moreover, there are MDP solution
algorithms, e.g., value iteration and policy iteration
(Puterman, 1994), which can be used to solve the MDP

exactly given the action models. Assuming that the
number of states is not exceedingly high, this suggests
a straight-forward approach for model-based reinforce-
ment learning. The models can be learned by interacting
with the environment by taking actions, observing the
resulting states and rewards, and estimating the param-
eters of the action models through maximum likelihood
methods. Once the models are estimated to a desired
accuracy, the MDP solution algorithms can be run to
learn the optimal policy.

One weakness of the above approach is that it seems
to suggest that a fairly accurate model needs to be
learned over the entire domain to learn a good policy.
Intuitively it seems that we should be able to get by
without learning highly accurate models for subopti-
mal actions. A related problem is that the method does
not suggest how best to explore the domain, i.e., which
states to visit and which actions to execute to quickly
learn an optimal policy. A third issue is one of scaling
these methods, including model learning, to very large
state spaces with billions of states.

The remaining sections outline some of the app-
roaches explored in the literature to solve these
problems.

Theory and Methods

Systems that solve MDPs using value-based methods
can take advantage of models in at least two ways. First,
with an accurate model, they can use offline learning
algorithms that directly solve the modeled MDPs. Sec-
ond, in an online setting, they can use the estimated
models to guide exploration and action selection. Algo-
rithms have been developed that exploit MDP models in
each of these ways. We describe some such algorithms
below.

Common approaches to solving MDPs given a model
are value or policy iteration (Kaelbling, Littman, &
Moore, 1996; Sutton & Barto, 1998). In these app-
roaches, the algorithms start with a randomly ini-
tialized value function or policy. In value iteration,
the algorithm loops through the state space, updat-
ing the value estimates of each state using Bellman
backups, until convergence. In policy iteration, the
algorithm calculates the value of the current pol-
icy and then loops through the state space, updating
the current policy to be greedy with respect to the
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backed up values. This is repeated until the policy
converges.

When the model is unknown but being estimated
as learning progresses, we could use value or policy
iteration in the inner loop: after updating our current
model estimate using an observed sample from the
MDP, we could solve the updated MDP offline and
take an action based on the solution. However, this
is computationally very expensive. To gain efficiency,
algorithms such as »Adaptive Real-time Dynamic Pro-
gramming (ARTDP) (Barto, Bradtke, & Singh, 1995)
and DYNA (Sutton, 1990) perform one or more Bellman
updates using the action models after each real-world
action and corresponding update to either a state-based
or state-action-based value function. Other approaches,
such as prioritized sweeping (Moore & Atkeson, 1993)
and Queue-Dyna (Peng & Williams, 1993), have consid-
ered the problem of intelligently choosing which states
to update after each iteration.

A different approach to discovering the optimal pol-
icy is to use algorithms that calculate the gradient of the
utility measure with respect to some adjustable policy
parameters. The standard policy gradient approaches
that estimate the gradient from immediate rewards suf-
fer from high variance due to the stochasticity of the
domain and the policy. Wang and Dietterich propose
a model-based policy gradient algorithm that allevi-
ates this problem by learning a partial model of the
domain (Wang & Dietterich, 2003). The partial model is
solved to yield the value function of the current policy
and the expected number of visits to each state, which
are then used to derive the gradient of the policy in
closed form. The authors observe that their approach
converges in many fewer exploratory steps compared
with model-free policy gradient algorithms in a number
of domains including a real-world resource-controlled
scheduling problem.

One of the many challenges in model-based rein-
forcement learning is that of efficient exploration of
the MDP to learn the dynamics and the rewards. In
the “Explicit Explore and Exploit” or E* algorithm, the
agent explicitly decides between exploiting the known
part of the MDP and optimally trying to reach the
unknown part of the MDP (exploration) (Kearns &
Singh, 2002). During exploration, it uses the idea of
“balanced wandering,” where the least executed action
in the current state is preferred until all actions are

executed a certain number of times. In contrast, the R-
Max algorithm implicitly chooses between exploration
and exploitation by using the principle of “optimism
under uncertainty” (Brafman & Tennenholtz, 2002).
The idea here is to initialize the model parameters opti-
mistically so that all unexplored actions in all states are
assumed to reach a fictitious state that yields maximum
possible reward from then on regardless of which action
is taken. Both these algorithms are guaranteed to find
models whose approximate policies are close to the opti-
mal with high probability in time polynomial in the size
and mixing time of the MDP.

Since a table-based representation of the model
is impractical in large state spaces, efficient model-
based learning depends on compact parameterization
of the models. Dynamic Bayesian networks offer an
elegant way to represent action models compactly by
exploiting conditional independence relationships, and
have been shown to lead to fast convergence of mod-
els (Tadepalli & Ok, 1998). In some cases, choosing an
appropriate prior distribution over model parameters
can be important and lead to faster learning. In recent
work, the acquisition of a model prior has been inves-
tigated in a multi-task setting (Wilson, Fern, Ray, &
Tadepalli, 2007). In this work, the authors use a hier-
archical Bayesian model to represent classes of MDPs.
Given observations from a new MDP, the algorithm
uses the model to infer an appropriate class (creat-
ing a new class if none seem appropriate). It then
uses the distributions governing the inferred class as
a prior to guide exploration in the new MDP. This
approach is able to significantly speed up the rate of
convergence to optimal policy as more environments
are seen.

In recent work, researchers have explored the pos-
sibility of using approximate models coupled with pol-
icy gradient approaches to solve hard control prob-
lems (Abbeel, Quigley, & Ag, 2006). In this work, the
approximate model is used to calculate gradient direc-
tions for the policy parameters. When searching for
an improved policy, however, the real environment is
used to calculate the utility of each intermediate pol-
icy. Observations from the environment are also used
to update the approximate model. The authors show
that their approach improves upon model-based algo-
rithms which only used the approximate model while
learning.
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Applications
In this section, we describe some domains where
model-based reinforcement learning has been applied.

Model-based approaches have been commonly used
in RL systems that play two-player games (Baxter,
Tridgell, & Weaver, 1998; Tesauro, 1995). In such sys-
tems, the model corresponds to legal moves in the game.
Such models are easy to acquire and can be used to
perform lookahead search on the game tree. For exam-
ple, the TD-LEAF(A) system (Baxter et al., 1998) uses the
values at the leaves of an expanded game tree at some
depth to update the estimate of the value of the cur-
rent state. After playing a few hundred chess games, this
algorithm was able to reach the play level of a US Master.

Model-based reinforcement learning has been used
in a spoken dialog system (Singh, Kearns, Litman, &
Walker, 1999). In this application, a dialog is modeled
as a turn-based process, where at each step the system
speaks a phrase and records certain observations about
the response and possibly receives a reward. The system
estimates a model from the observations and rewards
and uses value iteration to compute optimal policies
for the estimated MDP. The authors show empirically
that, among other things, the system finds sensible poli-
cies and is able to model situations that involve “distress
features” that indicate the dialog is in trouble.

It was shown that in complex real-world control
tasks such as pendulum swing-up task on a real anthro-
pomorphic robot arm, model-based learning is very
effective in learning from demonstrations (Atkeson &
Schaal, 1997). A model is learned from the human
demonstration of pendulum swing-up, and an opti-
mal policy is computed using a standard approach
in control theory called linear quadratic regulation.
Direct imitation of the human policy would not work
in this case due to the small differences in the tasks
and the imperfections of the robot controller. On the
other hand, model-based learning was able to learn
successfully from short demonstrations of pendulum
swing up. However, on a more difficult swing-up task
that includes pumping, model-based learning by itself
was inadequate due to the inaccuracies in the model.
They obtained better results by combining model-based
learning with learning appropriate task parameters such
as the desired pendulum target angle at an interme-
diate stage where the pendulum was at its highest
point.

In more recent work, model-based RL has been used
to learn to fly a remote-controlled helicopter (Abbeel,
Coates, Quigley, & Ng, 2007). Again, the use of model-
free approaches is very difficult, because almost any
random exploratory action results in an undesirable
outcome (i.e., a crash). To learn a model, the system
bootstraps from a trajectory that is observed by watch-
ing an expert human fly the desired maneuvers. In each
step, the system learns a model with the observed tra-
jectory and finds a controller that works in simulation
with the model. This controller is then tried with the real
helicopter. If it fails to work well, the model is refined
with the new observations and the process is repeated.
Using this approach, the system is able to learn a con-
troller that can repeatedly perform complex aerobatic
maneuvers, such as flips and rolls.

Model-based RL has also been applied to other
domains, such as robot juggling (Schaal & Atkeson,
1994) and job-shop scheduling (Zhang & Dietterich,
1995). Some work has also been done that compares
model-free and model-based RL methods (Atkeson &
Santamaria, 1997). From their experiments, the authors
conclude that, for systems with reasonably simple
dynamics, model-based RL is more data efficient, finds
better policies, and handles changing goals better than
model-free methods. On the other hand, model-based
methods are subject to errors due to inaccurate model
representations.

Future Directions

Representing and learning richer action models for sto-
chastic domains that involve relations, numeric quanti-
ties, and parallel, hierarchical, and durative actions is a
challenging open problem. Efficient derivation of opti-
mal policies from such rich representations of action
models is another problem that is partially explored in
»symbolic dynamic programming. Constructing good
policy languages appropriate for a given action model
or class of models might be useful to accelerate learning
near-optimal policies for MDPs.

Cross References

» Adaptive Real-Time Dynamic Programming

» Autonomous Helicopter Flight Using Reinforcement
Learning

»Bayesian Reinforcement Learning
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Synonyms
Maximally general hypothesis

Definition

A hypothesis, h, is a most general hypothesis if it cov-
ers none of the negative examples and there is no other
hypothesis &’ that covers no negative examples, such
that h is strictly more specific than h'.
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Definition

Multi-agent learning (MAL) refers to settings in which
multiple agents learn simultaneously. Usually defined in
a game theoretic setting, specifically in repeated games
or stochastic games, the key feature that distinguishes
multi-agent learning from single-agent learning is that
in the former the learning of one agent impacts the
learning of others. As a result, neither the problem
definition for multi-agent learning nor the algorithms
offered follow in a straightforward way from the single-
agent case. In this first of two entries on the subject we
focus on the problem definition.

Background
The topic of multi-agent learning (MAL henceforth) has
a long history in game theory, almost as long as the

history of game theory itself (Another more recent term
for the area within game theory is interactive learning).
In artificial intelligence (AI) the history of single-agent
learning is of course as rich if not richer; one need not
look further than this Encyclopedia for evidence. And
while it is only in recent years that Al has branched
into the multi-agent aspects of learning, it has done so
with something of a vengeance. If in 2003 one could
describe the Al literature on MAL by enumerating the
relevant articles, today this is no longer possible. The
leading conferences routinely feature articles on MAL,
as do the journals (We acknowledge a simplification of
history here. There is definitely MAL work in Al that
predates the last few years, though the relative deluge
is indeed recent. Similarly, we focus on Al since this
is where most of the action is these days, but there
are also other areas in computer science that feature
MAL material; we mean to include that literature here
as well).

While the AI literature maintains a certain flavor
that distinguishes it from the game theoretic litera-
ture, the commonalities are greater than the differ-
ences. Indeed, alongside the area of mechanism design,
and perhaps the computational questions surrounding
solution concepts such as the Nash equilibrium, MAL
is today arguably one of the most fertile interaction
grounds between computer science and game theory.
The key aspect of MAL, which ties the work together,
and which distinguishes it from single-agent learning,
is the fact that in MAL one cannot separate the process
of learning from the process of teaching. The learn-
ing of one agent causes it to change its behavior; this
causes other agents to adapt their behavior, which in
turn causes the first agent to keep adapting too. Such
reciprocal - or interactive — learning calls not only for
different types of learning algorithms, but also for dif-
ferent yardsticks by which to evaluate learning. For this
reason, the literature on MAL can be confusing. Not
only do the learning techniques vary, but the goal of
learning and the evaluation measures are diverse, and
often left only implicit.

We will couch our discussion in the formal setting
of stochastic games (a.k.a. Markov games). Most of the
MAL literature adopts this setting, and indeed most of
it focuses on the even more narrow class of repeated
games. Furthermore, stochastic games also generalize
Markov decision problems (MDPs), the setting from
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which much of the relevant learning literature in Al
originates. These are defined as follows.

A stochastic game can be represented as a tuple:
(N,S,A,R,T). N is a set of agents indexed 1,...,7. S is
a set of n-agent stage games. A = Ay, ..., A,, with A; the
set of actions (or pure strategies) of agent i (note that
we assume the agent has the same strategy space in all
games; this is a notational convenience, but not a sub-
stantive restriction). R= Ri,...,R,,withR;:S xA >R
giving the immediate reward function of agent i for
stage game S. T : S x A — TI(S) is a stochastic tran-
sition function, specifying the probability of the next
stage game to be played based on the game just played
and the actions taken in it.

We also need to define a way for each agent to aggre-
gate the set of immediate rewards received in each state.
For finitely repeated games we can simply use the sum
or average, while for infinite games the most common
approaches are to use either the limit average or the sum
of discounted awards Yo, 8'r;, where 7, is the reward
received at time t.

A repeated game is a stochastic game with only one
stage game, while an MDP is a stochastic game with
only one agent. (Note: While most of the MAL litera-
ture lives happily in this setting, we would be remiss
not to acknowledge the literature that does not. Cer-
tainly, one could discuss learning in the context of
extensive-form games of incomplete and/or imperfect
information. Even farther afield, interesting studies of
learning exist in large population games and evolution-
ary models, particularly replicator dynamics (RD) and
evolutionary stable strategies (ESS).)

What is there to learn in stochastic games? Here
we need to be explicit about some aspects of stochas-
tic games that were glossed over so far. Do the agents
know the stochastic game, including the stage games
and the transition probabilities? If not, do they at least
know the specific game being played at each stage, or
only the actions available to them? What do they see
after each stage game has been played - only their own
rewards, or also the actions played by the other agent(s)?
Do they perhaps magically see the other agent(s)” mixed
strategy in the stage game? And so on.

In general, games may be known or not, play may be
observable or not, and so on. We will focus on known,
fully observable games, where the other agent’s strat-
egy (or agents’ strategies) is not known a priori (though

in some cases there is a prior distribution over it).
In our restricted setting there are two possible things
to learn. First, the agent can learn the opponent’s (or
opponents’) strategy (or strategies), so that the agent
can then devise a best (or at least a good) response.
Alternatively, the agent can learn a strategy of his own
that does well against the opponents, without explicitly
learning the opponent’s strategy. The first is sometimes
called model-based learning, and the second model-free
learning.

In broader settings there is more to learn. In par-
ticular, with unknown games, one can learn the game
itself. Some will argue that the restricted setting is not a
true learning setting, but (a) much of the current work
on MAL, particularly in game theory, takes place in
this setting, and (b) the foundational issues we wish to
tackle surface already here. In particular, our comments
are intended to also apply to the work in the AI lit-
erature on games with unknown payofls, work which
builds on the success of learning in unknown MDPs.
We will have more to say about the nature of “learn-
ing” in the setting of stochastic games in the following
sections.

Problem Definition

When one examines the MAL literature one can iden-
tify several distinct agendas at play, which are often
left implicit and conflated. A prerequisite for success
in the field is to be very explicit about the problem
being addressed. Here we list five distinct coherent goals
of MAL research. They each have a clear motivation
and a success criterion. They can be caricatured as
follows:

Computational
Descriptive

Normative

Prescriptive, cooperative

A

Prescriptive, non-cooperative

The first agenda is computational in nature. It views
learning algorithms as an iterative way to compute
properties of the game, such as solution concepts. As
an example, fictitious play was originally proposed as a
way of computing a sample Nash equilibrium for zero-
sum games, and replicator dynamics has been proposed
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for computing a sample Nash equilibrium in symmetric
games. These tend not to be the most efficient com-
putation methods, but they do sometimes constitute
quick-and-dirty methods that can easily be understood
and implemented.

The second agenda is descriptive - it asks how natu-
ral agents learn in the context of other learners. The goal
here is to investigate formal models of learning that
agree with people’s behavior (typically, in laboratory
experiments), or possibly with the behaviors of other
agents (e.g., animals or organizations). This problem is
clearly an important one, and when taken seriously calls
for strong justification of the learning dynamics being
studied. One approach is to apply the experimental
methodology of the social sciences.

The centrality of equilibria in game theory under-
lies the third agenda we identify in MAL, which for
lack of a better term we called normative, and which
focuses on determining which sets of learning rules are
in equilibrium with each other. More precisely, we ask
which repeated-game strategies are in equilibrium; it
just so happens that in repeated games, most strategies
embody a learning rule of some sort. For example, we
can ask whether fictitious play and Q-learning, appro-
priately initialized, are in equilibrium with each other in
a repeated Prisoner’s Dilemma game.

The last two agendas are prescriptive; they ask how
agents should learn. The first of these involves dis-
tributed control in dynamic systems. There is some-
times a need or desire to decentralize the control of
a system operating in a dynamic environment, and in
this case the local controllers must adapt to each other’s
choices. This direction, which is most naturally mod-
eled as a repeated or stochastic common-payoft (or
“team”) game. Proposed approaches can be evaluated
based on the value achieved by the joint policy and the
resources required, whether in terms of computation,
communication, or time required to learn the policy.
In this case there is rarely a role for equilibrium anal-
ysis; the agents have no freedom to deviate from the
prescribed algorithm.

In our final agenda, termed “prescriptive, non-
cooperative,” we ask how an agent should act to obtain
high reward in the repeated (and more generally,
stochastic) game. It thus retains the design stance of Al,
asking how to design an optimal (or at least effective)
agent for a given environment. It just so happens that

this environment is characterized by the types of agents
inhabiting it, agents who may do some learning of their
own. The objective of this agenda is to identify effec-
tive strategies for environments of interest. An effective
strategy is one that achieves a high reward in its envi-
ronment, where one of the main characteristics of this
environment is the selected class of possible opponents.
This class of opponents should itself be motivated as
being reasonable and containing opponents of interest.
Convergence to an equilibrium is not a goal in and of
itself.

Recommended Reading

Requisite background in game theory can be obtained from the
many introductory texts, and most compactly from Leyton-Brown
and Shoham (2008). Game theoretic work on multi-agent learning
is covered in Fudenberg and Levine (1998) and Young (2004). An
expanded discussion of the problems addressed under the header
of MAL can be found in Shoham et al. (2007), and the responses
to it in Vohra and Wellman (2007). Discussion of MAL algorithms,
both traditional and more novel ones, can be found in the above
references, as well as in Greenwald and Littman (2007).

Fudenberg, D., & Levine, D. (1998). The theory of learning in games.
Cambridge: MIT Press.

Greenwald, A., & Littman, M. L. (Eds.). (2007). Special issue on
learning and computational game theory. Machine Learning
67(1-2).

Leyton-Brown, K., & Shoham, Y. (2008). Essentials of game theory.
San Rafael, CA: Morgan and Claypool.

Shoham, Y., Powers, W. R., & Grenager, T. (2007). If multiagent
learning is the answer, what is the question? Artificial Intelli-
gence, 171(1), 365-377. Special issue on foundations of multi-
agent learning.

Vohra, R., & Wellman, M. P. (Eds.). (2007). Special issue on founda-
tions of multiagent learning. Artificial Intelligence, 171(1).
Young, H. P. (2004). Strategic learning and its limits. Oxford: Oxford

University Press.

! Multi-Agent Learning ll: Algorithms

Yoav SHOHAM, RoB POWERS
Stanford University, Stanford, CA, USA

Definition

Multi-agent learning (MAL) refers to settings in which
multiple agents learn simultaneously. Usually defined in
a game theoretic setting, specifically in repeated games
or stochastic games, the key feature that distinguishes
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MAL from single-agent learning is that in the for-
mer the learning of one agent impacts the learning of
others. As a result, neither the problem definition for
multi-agent learning nor the algorithms offered follow
in a straightforward way from the single-agent case. In
this second of two entries on the subject we focus on
algorithms.

Some MAL Techniques

We will discuss three classes of techniques — one repre-
sentative of work in game theory, one more typical of
work in artificial intelligence (AI), and one that seems
to have drawn equal attention from both communities.

The first approach to learning we discuss, which is com-
mon in the game theory literature, is the model-based
one. It adopts the following general scheme:

1. Start with some model of the opponent’s strategy.

2. Compute and play the best response.

3. Observe the opponent’s play and update your model
of his/her strategy.

4. Go to step 2.

Among the earliest, and probably the best-known,
instance of this scheme is fictitious play. The model is
simply a count of the plays by the opponent in the
past. The opponent is assumed to be playing a station-
ary strategy, and the observed frequencies are taken to
represent the opponent’s mixed strategy. Thus after five
repetitions of the Rochambeau game (R) in which the
opponent played (R,S,P,R,P), the current model of
his/her mixed strategy is R = 0.4,P = 0.4,5 = 0.2.

There exist many variants of the general scheme, for
example, those in which one does not play the exact
best response in step 2. This is typically accomplished
by assigning a probability of playing each pure strat-
egy, assigning the best response the highest probability,
but allowing some chance of playing any of the strate-
gies. A number of proposals have been made of differ-
ent ways to assign these probabilities such as smooth
fictitious play and exponential fictitious play.

A more sophisticated version of the same scheme
is seen in rational learning. The model is a distribution
over the repeated-game strategies. One starts with some

prior distribution; for example, in a repeated Rocham-
beau game, the prior could state that with probability 0.5
the opponent repeatedly plays the equilibrium strategy
of the stage game, and, for all k > 1, with probability 27
she plays R k times and then reverts to the repeated equi-
librium strategy. After each play, the model is updated
to be the posterior obtained by Bayesian conditioning of
the previous model. For instance, in our example, after
the first non-R play of the opponent, the posterior places
probability 1 on the repeated equilibrium play.

An entirely different approach that has been commonly
pursued in the Al literature is the model-free one, which
avoids building an explicit model of the opponent’s
strategy. Instead, over time one learns how well one’s
own various possible actions fare. This work takes place
under the general heading of reinforcement learning (we
note that the term is used somewhat differently in the
game theory literature), and most approaches have their
roots in the Bellman equations. We start our discussion
with the familiar single-agent Q-learning algorithm for
computing an optimal policy in an unknown Markov
Decision Problem (MDP).

Q(s,a) < (1- a;)Q(s,a) + a;[R(s,a) +yV(s')]
V(s) < max Q(s,a).

As is well known, with certain assumptions about
the way in which actions are selected at each state over
time and constraints on the learning rate schedule, «;,
Q-learning can be shown to converge to the optimal
value function V*.

The Q-learning algorithm can be extended to the
multi-agent stochastic game setting by having each
agent simply ignore the other agents and pretend that
the environment is passive:

Qi(s,a;) <« (1-a,)Qi(s,a;) + a;[Ri(s,a) + yVi(s')]

Vi(s) < max Q;(s, a;).
a;€A;

Several authors have tested variations of the basic
Q-learning algorithm for MAL. However, this approach
ignores the multi-agent nature of the setting entirely.
The Q-values are updated without regard for the actions
selected by the other agents. While this can be justi-
fied when the opponents’ distributions of actions are
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stationary, it can fail when an opponent may adapt its
choice of actions based on the past history of the game.

A first step in addressing this problem is to define
the Q-values as a function of all the agents’ actions:

Qi(s,a) <« (1-a)Qi(s,a) + a[R;(s,a) + yVi(s')].

We are, however, left with the question of how to
update V, given the more complex nature of the Q-
values.

For (by definition, two-player) zero-sum Stochas-
tic Games (SGs), the minimax-Q learning algorithm
updates V with the minimax of the Q-values:

Vi(s max min Pi(a s, (aj,ar)).
1( )ePleH(Al)azeAzuZ%l 1( 1)Q1( ( 1 2))

Later work proposed other update rules for the
Q and V functions focusing on the special case of
common-payoff (or “team”) games. A stage game is
common-payoff if at each outcome all agents receive
the same payoff. The payoff is, in general, different in
different outcomes, and thus the agents’ problem is that
of coordination; indeed, these are also called games of
pure coordination.

The work on zero-sum and common-payoft games
continues to be refined and extended; much of this work
has concentrated on provably optimal tradeoffs between
exploration and exploitation in unknown, zero-sum
games. Other work attempted to extend the “Bellman
heritage” to general-sum games (as opposed to zero-
sum or common-payoff games), but the results here
have been less conclusive.

Our third and final example of prior work in MAL is
no-regret learning. It is an interesting example for two
reasons. First, it has some unique properties that distin-
guish it from the work above. Second, both the AI and
game theory communities appear to have converged on
it independently. The basic idea goes back to early work
on how to evaluate the success of learning rules in the
mid-1950s, and has since been extended and rediscov-
ered numerous times over the years under the names of
universal consistency, no-regret learning, and the Bayes’
envelope. The following algorithm is a representative
of this body of work. We start by defining the regret,
r{(aj,s;) of agent i for playing the sequence of actions

s; instead of playing action a;, given that the opponents
played the sequence s_;.

t
ri(ajsils-i) = YR (aj,slfi) -R (sf,sli,-) .
k=1

The agent then selects each of its actions with proba-
bility proportional to max(rf (aj>si) 0) at each time step
t+1L

Some Typical Results

One sees at least three kinds of results in the literature
regarding the learning algorithms presented above, and
others similar to them. These are:

1. Convergence of the strategy profile to an (e.g., Nash)
equilibrium of the stage game in self-play (i.e., when
all agents adopt the learning procedure under con-
sideration).

2. Successful learning of an opponent’s strategy (or
opponents’ strategies).

3. Obtaining payoffs that exceed a specified threshold.

Each of these types comes in many flavors; here
are some examples. The first type is perhaps the most
common in the literature, in both game theory and AL
For example, while fictitious play does not in general
converge to a Nash equilibrium of the stage game, the
distribution of its play can be shown to converge to
an equilibrium in zero-sum games, 2 x 2 games with
generic payoffs, or games that can be solved by iter-
ated elimination of strictly dominated strategies. Sim-
ilarly in AI, minimax-Q learning is proven to converge
in the limit to the correct Q-values for any zero-sum
game, guaranteeing convergence to a Nash equilibrium
in self-play. This result makes the standard assumptions
of infinite exploration and the conditions on learning
rates used in proofs of convergence for single-agent
Q-learning.

Rational learning exemplifies results of the second
type. The convergence shown is to correct beliefs about
the opponent’s repeated game strategy; thus it follows
that, since each agent adopts a best response to their
beliefs about the other agent, in the limit the agents
will converge to a Nash equilibrium of the repeated
game. This is an impressive result, but it is limited by
two factors: the convergence depends on a very strong
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assumption of absolute continuity; and the beliefs con-
verged to are correct only with respect to the aspects
of history that are observable given the strategies of
the agents. This is an involved topic, and the reader is
referred to the literature for more details.

The literature on no-regret learning provides an
example of the third type of result, and has perhaps been
the most explicit about criteria for evaluating learn-
ing rules. For example, one pair of criteria that have
been suggested are as follows. The first criterion is that
the learning rule should be “safe,” which is defined as
the requirement that the learning rule must guarantee
at least the minimax payoff of the game. (The mini-
max payoff is the maximum expected value a player
can guarantee against any possible opponent.) The sec-
ond criterion is that the rule should be “consistent”
In order to be “consistent,” the learning rule must guar-
antee that it does at least as well as the best response to
the empirical distribution of play when playing against
an opponent whose play is governed by independent
draws from a fixed distribution. “Universal consistency”
is then defined as the requirement that a learning rule
does at least as well as the best response to the empirical
distribution regardless of the actual strategy the oppo-
nent is employing (this implies both safety and consis-
tency). The requirement of “universal consistency” is in
fact equivalent to requiring that an algorithm exhibits
no-regret, generally defined as follows, against all oppo-
nents.

1
Ve >0, (lim,_,mf [ max rf(aj,si|s_i)] < 6)
b ajed;

In both game theory and artificial intelligence, a
large number of algorithms have been shown to satisfy
universal consistency or no-regret requirements.

Recommended Reading

Requisite background in game theory can be obtained from the
many introductory texts, and most compactly from Leyton-Brown
and Shoham (2008). Game theoretic work on multiagent learning
is covered in Fudenberg and Levine (1998) and Young (2004). An
expanded discussion of the problems addressed under the header
of MAL can be found in Shoham, Powers, and Grenager (2007), and
the responses to it in Vohra and Wellman (2007). Discussion of MAL
algorithms, both traditional and more novel ones, can be found in
the above references, as well as in Greenwald and Littman (2007).

Fudenberg, D., & Levine, D. (1998). The theory of learning in games.

Cambridge: MIT Press.

Greenwald, A., & Littman, M. L. (Eds.). (2007). Special issue on
learning and computational game theory. Machine Learning,
67(1-2).

Leyton-Brown, K., & Shoham, Y. (2008). Essentials of game theory.
San Rafael, CA: Morgan and Claypool.

Shoham, Y., Powers, W. R., & Grenager, T. (2007). If multiagent
learning is the answer, what is the question? Artificial Intelli-
gence, 171(1), 365-377. Special issue on foundations of multia-
gent learning.

Vohra, R., & Wellman, M. P. (Eds.). (2007). Special issue on founda-
tions of multiagent learning. Artificial Intelligence, 171(1).
Young, H. P. (2004). Strategic learning and its limits. Oxford: Oxford
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Definition

MultiBoosting (Webb, 2000) is an approach to »multi-
strategy ensemble learning that combines features of
»>AdaBoost and »Bagging. The insight underlying
MultiBoosting is that the primary effect of AdaBoost
is »-bias reduction, while the primary effect of bagging
is »variance reduction. By combining the two tech-
niques, it is possible to obtain both bias and variance
reduction, the cumulative effect often being a greater
reduction in error than can be obtained with the equiv-
alent amount of computation by either AdaBoost or
Bagging alone. Viewed from another perspective, as
the size of an ensemble formed by either AdaBoost or
Bagging is increased, each successive addition to the
ensemble has decreasing effect. Thus, if the benefit of the
first few applications of AdaBoost can be combined with
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the benefit of the first few applications of Bagging, the
combined benefit may be greater than simply increasing
the number of applications of one or the other.

Algorithm

MultiBoosting operates by dividing the ensemble of
classifiers that is to be created into a number of sub-
committees. Each of these subcommittees is formed
by Wagging (Baner & Kohavi, 1999), a variant of Bag-
ging that utilizes weighted instances and, hence, is

MultiBoosting. Table 1 MultiBoost Algorithm

more readily integrated with AdaBoost. The ensemble
is formed by applying AdaBoost to these subcommit-
tees. The resulting algorithm is presented in Table 1. The
learned ensemble classifier is C, and the tth member of
the ensemble is C;. Each §; is a vector of n weighted
training objects whose weights always sum to n. The
weights change from turn to turn (the turns indicated
by the subscript t). The base training algorithm Base-
Learn should more heavily penalize errors on training
instances with higher weights. ¢, is the weighted error

MultiBoost

input:

e So, a sequence of m labeled examples ((x1, 1), . .» (Xm> ¥ )) with labels y; € Y.

o base learning algorithm BaseLearn.
o integer T specifying the number of iterations.

o vector of integers I; specifying the iteration at which each subcommittee i > 1 should terminate.

L. § = Sp with instance weights assigned to be 1.

2. setk=1

3. Fort=1toT

4. If Iy = t then

5. reweight S;.

6. increment k.

7. C; = BaseLearn(S").

8. ¢ = ijeS[:C,(xj);tyj Weight(xj) ‘

m

9. if ; > 0.5 then

10. reweight S;.

11. increment k.

12. goto7.

13. otherwise if ¢; = 0 then

14. set B; to 10719,

15. reweight ;.

16. increment k.

17. otherwise,

18. Bi=—1

(1-¢)

19. Ste1 =St
20. For each x; € S;,1,

21 divide weight(x;) by 2¢, if C;(x;) # yj and 2(1 - ¢;) otherwise.
22. if weight(x;) <107%, set weight(x;) to 107%.

Output the final classifier:  C*(x) = argmax Y.

yeY  £:Ci(x)=y

1
logE.
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of C; on §;. B is a weight assigned to the tth classi-
fier, C;. The operation rewieght S; sets the weights of the
objects in S; to random values drawn from the contin-
uous Poisson distribution and then standardizes them
to sum to n. The code set with a grey background is the
code added to AdaBoost in order to create MultiBoost.

Cross References

» AdaBoost

»Bagging

»Ensemble Learning

» Multistrategy Ensemble Learning

Recommended Reading

Bauer, E., & Kohavi, R. (1999). An empirical comparison of vot-
ing classification algorithms: Bagging, boosting, and variants.
Machine Learning, 36(1), 105-139.

Webb, G. I. (2000). MultiBoosting: A technique for combining
boosting and wagging. Machine Learning, 40(2), 159-196.
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Synonyms
Multiple-instance learning

Definition

Multiple-Instance (MI) learning is an extension of the
standard supervised learning setting. In standard super-
vised learning, the input consists of a set of labeled
instances each described by an attribute vector. The
learner then induces a concept that relates the label of
an instance to its attributes. In MI learning, the input

consists of labeled examples (called “bags”) consisting
of multisets of instances, each described by an attribute
vector, and there are constraints that relate the label of
each bag to the unknown labels of each instance. The MI
learner then induces a concept that relates the label of a
bag to the attributes describing the instances in it. This
setting contains supervised learning as a special case: if
each bag contains exactly one instance, it reduces to a
standard supervised learning problem.

Motivation and Background

The MI setting was introduced by Dietterich, Lathrop,
and Lozano-Perez (1997) in the context of drug activ-
ity prediction. Drugs are typically molecules that fulfill
some desired function by binding to a target. If we wish
to learn the characteristics responsible for binding, a
possible representation of the problem is to represent
each molecule as a set of low energy shapes or confor-
mations, and describe each conformation using a set of
attributes. Each such bag of conformations is given a
label corresponding to whether the molecule is active
or inactive. To learn a classification model, an algorithm
assumes that every instance in a bag labeled negative is
actually negative, whereas at least one instance in a bag
labeled positive is actually positive with respect to the
underlying concept.

From a theoretical viewpoint, MI learning occu-
pies an intermediate position between standard propo-
sitional supervised learning and first-order relational
learning. Supervised learning is a special case of MI
learning, while MI learning is a special case of first-
order learning. It has been argued that the MI setting
is a key transition between standard supervised and
relational learning DeRaedt (1998). At the same time,
theoretical results exist that show that, under certain
assumptions, certain concept classes that are probably
approximately correct (PAC)-learnable (see PAC Learn-
ing) in a supervised setting remain PAC-learnable in an
MI setting. Thus, the MI setting is able to leverage some
of the rich representational power of relational learn-
ers while not sacrificing the efficiency of propositional
learners. Figure 1 illustrates the relationships between
standard supervised learning, MI learning, and rela-
tional learning.

Since its introduction, a wide variety of tasks
have been formulated as MI learning problems. Many
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new algorithms have been developed, and well-known
supervised learning algorithms extended, to learn MI
concepts. A great deal of work has also been done to
understand what kinds of concepts can and cannot be
learned efficiently in this setting. In the following sec-
tions, we discuss the theory, methods, and applications
of MI learning in more detail.

90 DoQOa DOl

a b

e

Structure of the Problem

The general MI classification task in shown in Fig. 2.
The MI regression task is defined analogously by substi-
tuting a real-valued response for the classification label.
In this case, the constraint used by the learning algo-
rithm is that the response of any bag is equal to the

2 o 0 o

C

Multi-Instance Learning. Figure 1. The relationship between supervised, multiple-instance (Ml), and relational learn-
ing. (a) In supervised learning, each example (geometric figure) is labeled. A possible concept that explains the example
labels shown is “the figure is a rectangle.” (b) In Ml learning, bags of examples are labeled. A possible concept that
explains the bag labels shown is “the bag contains at least one figure that is a rectangle.” (c) In relational learning,
objects of arbitrary structure are labeled. A possible concept that explains the object labels shown is “the object is a

stack of three figures and the bottom figure is a rectangle”

B? — {Bils-“,Bin,—}-

Given: A set of bags {B,...By} each with label ¢; € {0,1}. Each B; is a multiset of n; instances,

Constraints: There exists a concept ¢ such that:
e For every B; with £; =1, ¢(B;;) = 1 for at least one j, and
e For every B; with £; =0, ¢(B;;) =0 for all j.

Do: Learn a concept that maps a bag B; to its label £;.

Multi-Instance Learning. Figure 2. Statement of the multiple-instance classification problem
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response of at least one of the instances in it, for exam-
ple, it could be equal to the largest response over all the
instances.

Notice the following problem characteristics:

o The number of instances in each bag can vary inde-
pendently of other bags. This implies in particu-
lar that an MI algorithm must be able to handle
bags with as few as one instance (this is a super-
vised learning setting) to bags with large numbers
of instances.

o The number of instances in any positive bag that are
“truly positive” could be many more than one - in
fact, the definition does not rule out the case where
all instances in a positive bag are “truly positive”

e The problem definition does not specify how the
instances in any bag are related to each other.

Theory and Methods

In this section we discuss some of the key algorithms
and theoretical results in MI learning. We first discuss
the methods and results for MI classification. Then we
discuss the work on MI regression.

Axis-Parallel Rectangles (APRs) are a concept class that
early work in MI classification focused on. These gen-
erative concepts specify upper and lower bounds for all
numeric attributes describing each instance. An APR is
said to “cover” an instance if the instance lies within it.
An APR covers a bag if it covers at least one instance
within it. The learning algorithm tries to find an APR
such that it covers all positive bags and does not cover
any negative bags.

An algorithm called “iterated-discrimination” was
proposed by Dietterich et al. (1997) to learn APRs from
MI data. This algorithm has two phases. In the first
phase, it iteratively chooses a set of “relevant” attributes
and grows an APR using this set. This phase results
in the construction of a very “tight” APR that covers
just positive bags. In the second phase, the algorithm
expands this APR so that with high probability a new
positive instance will fall within the APR. The key steps
of the algorithm are outlined below. Note that initially,
all attributes are considered to be “relevant”

The algorithm starts by choosing a random instance
in a positive bag. Let us call this instance I;. The smallest

APR covering this instance is a point. The algorithm
then expands this APR by finding the smallest APR
that covers any instance from a yet uncovered positive
bag; call the newly covered instance I,. This process
is continued, identifying new instances I3, . . ., I, until
all positive bags are covered. At each step, the APR is
“backfitted” in a way that is reminiscent of the later
Expectation-Maximization (EM) approaches: each ear-
lier choice is revisited, and I; is replaced with an instance
from the same bag that minimizes the current APR
(which may or may not be the same as the one that
minimized it at step ).

This process yields an APR that imposes maxi-
mally tight bounds on all attributes and covers all pos-
itive bags. Based on this APR, a new set of “relevant”
attributes is selected as follows. An attribute’s relevance
is determined by how strongly it discriminates against
negative instances, i.e., given the current APR bounds,
how many negative instances the attribute excludes.
Features are then chosen iteratively and greedily accord-
ing to how relevant they are until all negative instances
have been excluded. This yields a subset of (presum-
ably relevant) attributes. The APR growth procedure in
the previous paragraph is then repeated, with the size
of an APR redefined as its size along relevant attributes
only. The APR growth and attribute selection phases are
repeated until the process converges.

The APR thus constructed may still be too tight,
as it fits narrowly around the positive bags in the
dataset. In the second phase of the algorithm, the APR
bounds are further expanded using a kernel density
estimate approach. Here, a probability distribution is
constructed for each relevant attribute using Gaussian
distributions centered at each instance in a positive
bag. Then, the bounds on that attribute are adjusted so
that with high probability, any positive instance will lie
within the expanded APR.

Theoretical analyses of APR concepts have been
performed along with the empirical approach, using
Valiant’s “probably approximately correct” (PAC) learn-
ing model (Valiant, 1984). In early work (Long & Tan,
1998), it was shown that if each instance was drawn
according to a fixed, unknown product distribution
over the rational numbers, independently from every
other instance, then an algorithm could PAC-learn
APRs. Later, this result was improved in two ways (Auer,
Long, & Srinivasan, 1998). First, the restriction that the
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individual instances in each bag come from a prod-
uct distribution was removed. Instead, each instance
is generated by an arbitrary probability distribution
(though each instance in a bag is still generated inde-
pendently and identically distributed (iid) according to
that one distribution). Second, the time and sample
complexities for PAC-learning APRs were improved.
Specifically, the algorithm described in this work PAC-
learns APRs in

3,2
O(d n log ndlog(1/8) logd)

e € 6

using

dn*  d
0] ( = log 8)

time-labeled training bags. Here, d is the dimension of
each instance, n is the (largest) number of instances
per training bag, and € and § are parameters to the
algorithm. A variant of this algorithm was empirically
evaluated and found to be successful (Auer, 1997).

Diverse Density (Maron, 1998; Maron & Lozano-
Pérez, 1998) is a probabilistic generative framework for
MI classification. The idea behind this framework is
that, given a set of positive and negative bags, we wish
to learn a concept that is “close” to at least one instance
from each positive bag, while remaining “far” from
every instance in every negative bag. Thus, the concept
must describe a region of instance space that is “dense”
in instances from positive bags, and is also “diverse” in
that it describes every positive bag. More formally, let

DD(t) = % (H Pr(tlB) ] pr(tB;)) ,

where ¢ is a candidate concept, B; represents the ith
positive bag, and B; represents the ith negative bag. We
seek a concept that maximizes DD(t). The concept gen-
erates the instances of a bag, rather than the bag itself.
To score a concept with respect to a bag, we combine
t’s probabilities for instances using a function based on
noisy-OR Pearl (1998):

Pr(t[B}) o< (1- H(1 ~Pr(Bj; €t))) (1)
J

Pr(t|B;) o< H(l ~Pr(Bj €t)) (2)
J

Here, the instances B; and Bj; belonging to t are the

“causes” of the “event” that “¢ is the target” The concept

class investigated by Maron (1998) is the class of gener-

ative Gaussian models, which are parameterized by the
1

mean y and a “scale” s = 5 5:

Pr(Bjet) < e Sk (Big—pue)”)

where k ranges over attributes. Figure 3 illustrates a
concept that Diverse Density might learn when applied
to an MI dataset.

Diverse Density with k disjuncts is a variant of
Diverse Density that has also been investigated (Maron,
1998). This is a class of disjunctive Gaussian concepts,
where the probability of an instance belonging to a con-
cept is given by the maximum probability of belonging
to any of the disjuncts.

EM-DD (Zhang & Goldman, 2001) is an example
of a class of algorithms that try to identify the “cause”
of a bag’s label using EM. These algorithms some-
times assume that there is a single instance in each
bag that is responsible for the bag’s label (though vari-
ants using “soft EM” are possible). The key idea behind
this approach is as follows: from each positive bag, we
take a random instance and assume that this instance
is the relevant one. We learn a hypothesis from these
relevant instances and all negative bags. Next, for each
positive bag, we replace the current relevant instance by
the instance most consistent with the learned hypoth-
esis (which will initially not be the chosen instance
in general). We then relearn the hypothesis with these
new instances. This process is continued until the set
of chosen instances does not change (or alternatively,
the objective function of the classifier reaches a fixed
point). This procedure has the advantage of being com-
putationally efficient, since the learning algorithm only
uses one instance from each positive bag. This approach
has also been used in MI regression described later.

“Upgraded” supervised learning algorithms can be
used in a MI setting by suitably modifying their objec-
tive functions. Below, we summarize some of the algo-
rithms that have been derived in this way.

1. »Decision Tree induction algorithms have been
adapted to the MI setting (Blockeel, Page, &
Srinivasan, 2005). The standard algorithm measures
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Multi-Instance Learning. Figure 3. An illustration of the concept that Diverse Density searches for on a simple Mi
dataset with three positive bags and one negative bag, where each instance (represented by the geometric figures)
is described by two attributes, f; and f,. Each type of figure represents one bag, i.e., all triangles belong to one bag, all
circles belong to a second bag, and so forth. The bag containing the red circles is negative, while the other bags are
positive. Region C is a region of high density, because several instances belong to that region. Region A is a region of
high “Diverse Density,” because several instances from different positive bags belong to that region, and no instances
from negative bags are nearby. Region B shows a concept that might be learned if the learning algorithm assumed that
all instances in every positive bag are positive. Figure adapted from Maron (1998)

the quality of a split on an attribute by considering
the class label distribution in the child nodes pro-
duced. In the MI case, this distribution is uncertain,
because the true instance labels in positive bags are
unknown. However, some rules have been identi-
fied that lead to empirically good MI trees: (1) use
an asymmetric heuristic that favors early creation of
pure positive (rather than negative) leaves, (2) once
a positive leaf has been created, remove all other
instances of the bags covered by this leaf; (3) aban-
don the depth-first or breadth-first order in which
nodes are usually split, adopting a best-first strat-
egy instead (indeed, because of (2), the result of tree
learning is now sensitive to the order in which the
nodes are split).

2. wArtificial Neural Networks have been adapted
to the MI setting by representing the bag classi-
fier as a network that combines several copies of
a smaller network, which represents the instance
classifier, with a smooth approximation of the
max combining function (Ramon & DeRaedt,
2000). Weight update rules for a backpropaga-
tion algorithm working on this network have been
derived. Later work on MI neural networks has
been performed independently by others (Zhou &
Zhang, 2002).

3. »Logistic Regression has been adapted to the MI set-
ting by using it as an instance-based classifier and
combining the instance-level probabilities using
functions like softmax (Ray & Craven, 2005) and
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arithmetic and geometric averages (Xu & Frank,
2004).

4. The Wwk-Nearest Neighbor algorithm has been
adapted to the MI setting by using set-based
distance metrics, such as variants based on the
Hausdorft distance. However, this alone does not
solve the problem - it is possible for a positive bag
to be mistakenly classified negative if it contains a
“true negative” instance that happens to be much
closer to negative instances in other negative bags.
To solve this, a “Citation-kNN” (Wang & Zucker,
2000) approach has been proposed that also con-
siders, for each bag B, the labels of those bags for
which B is a nearest neighbor.

5. »Support Vector Machines have been adapted to
the MI setting in several ways. In one method, the
constraints in the quadratic program for SVMs is
modified to account for the fact that certain instance
labels are unknown but have constraints relat-
ing them (Andrews, Tsochantaridis, & Hofmann,
2003). In another method, new kernels are designed
for MI data by modifying standard supervised SVM
kernels (Gartner, Flach, Kowalczyk, & Smola, 2002)
or designing new kernels (Tao, Scott, & Vinod-
chandran, 2004). The modification allows these
MI kernels to distinguish between positive and
negative bags if the supervised kernel could dis-
tinguish between (“true”) positive and negative
instances.

6. »Rule learning algorithms have been adapted to the
MI setting in two ways. One method has investi-
gated upgrading a supervised rule-learner, the rRip-
PER system (Cohen, 1995), to the MI setting by
modifying its objective function to account for bags
and addressing several issues that resulted. Another
method has investigated using general purpose rela-
tional algorithms, such as FoIL (Quinlan, 1990) and
TILDE (Blockeel & De Raedt, 1998), and provid-
ing them with an appropriate »inductive bias so
that they learn the MI concepts. Further, it has
been observed that techniques from MI learning
can also be used inside relational learning algo-
rithms (Alphonse & Matwin, 2002).

A large-scale empirical analysis of several such
propositional supervised learning algorithms and their
MI counterparts has been performed (Ray & Craven,

2005). This analysis concludes that (1) no single MI
algorithm works well across all problems. Thus, differ-
ent inductive biases are suited to different problems, (2)
some MI algorithms consistently perform better than
their supervised counterparts but others do not (hence
for these biases there seems room for improvement),
and (3) assigning a larger weight to false positives than
to false negatives is a simple but effective method to
adapt supervised learning algorithms to the MI setting.
It was also observed that the advantages of MI learn-
ers may be more pronounced if they would be evaluated
on the task of labeling individual instances rather than
bags.

Along with “upgrading” supervised learning algo-
rithms, a theoretical analysis of supervised learnerslearn-
ing with MI data has been carried out (Blum & Kalai,
1998). In particular, the MI problem has been related
to the problem of learning in the presence of classifi-
cation noise (i.e., each training example’s label is flipped
with some probability < 1/2). This implies that any con-
cept class that is PAC-learnable in the presence of such
noise is also learnable in the MI learning model when
each instance of a bag is drawn iid. Since many con-
cept classes are learnable under this noise assumption
(using e.g., statistical queries Kearns, 1998), Blum and
Kalai’s result implies PAC learnability of many concept
classes. Further, they improved on previous learnabil-
ity results (Auer et al., 1998) by reducing the number
of training bags required for PAC learning by about a
factor of n with only an increase in time complexity of
about log n/e.

Besides these positive results, a negative learnabil-
ity result describing when it is hard to learn concepts
from MI data is also known (Auer et al., 1998). Specifi-
cally, if the instances of each bag are allowed collectively
to be generated according to an arbitrary distribution,
learning from MI examples is as hard as PAC-learning
disjunctive normal form (DNF) formulas from single-
instance examples, which is an open problem in learn-
ing theory that is believed to be hard. Further, it has
been showed that if an efficient algorithm exists for
the non-iid case that outputs as its hypothesis an axis-
parallel rectangle, then NP = RP (Randomized Polyno-
mial time, see e.g., Papadimitriou, 1994), which is very
unlikely.

Learning from structured MI data has received some
attention (McGovern & Jensen, 2003). In this work,
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each instance is a graph, and a bag is a set of graphs
(e.g., abag could consist of certain subgraphs of a larger
graph). To learn the concepts in this structured space,
the authors use a modified form of the Diverse Density
algorithm discussed above. As before, the concept being
searched for is a point (which corresponds to a graph
in this case). The main modification is the use of the
size of the maximal common subgraph to estimate the
probability of a concept - i.e., the probability of a con-
cept given a bag is estimated as proportional to the size
of the maximal common subgraph between the concept
and any instance in the bag.

Regression problems in an MI setting have received
less attention than the classification problem. Two key
directions have been explored in this setting. One direc-
tion extends the well-known standard »linear regres-
sion method to the MI setting. The other direction
considers extending various MI classification methods
to a regression setting.

In MI Linear Regression (Ray & Page, 2001) (referred
to as multiple-instance regression in the cited work),
it is assumed that the hypothesis underlying the data
is a linear model with Gaussian noise on the value of
the dependent variable (which is the response). Fur-
ther, it is assumed that it is sufficient to model one
instance from each bag, i.e., that there is some primary
instance which is responsible for the real-valued label.
Ideally, one would like to find a hyperplane that mini-
mizes the squared error with respect to these primary
instances. However, these instances are unknown dur-
ing training. The authors conjecture that, given enough
data, a good approximation to the ideal is given by the
“best-fit” hyperplane, defined as the hyperplane that
minimizes the training set squared error by fitting one
instance from each bag such that the response of the
fitted instance most closely matches the bag response.
This conjecture will be true if the nonprimary instances
are not a better fit to a hyperplane than the primary
instances. However, exactly finding the “best-fit” hyper-
plane is intractable. It is shown that the decision prob-
lem “Is there a hyperplane which perfectly fits one
instance from each bag?” is NP-complete for arbitrary
numbers of bags, attributes, and at most three instances
per bag. Thus, the authors propose an approximation
algorithm which iterates between choosing instances

and learning linear regression models that best fit
them, similar to the EM-DD algorithm described
earlier.

Another direction has explored extending MI clas-
sification algorithms to the regression setting. This
approach (Dooly, Zhang, Goldman, & Amar, 2002)
uses algorithms like Citation-kNN and Diverse Density
to learn real-valued concepts. To predict a real value,
the approach uses the average of the nearest neighbor
responses or interprets the Gaussian “probability” as a
real number for Diverse Density.

Recent work has analyzed the Diverse Density-
based regression in the online model (Angluin, 1988;
Littlestone, 1988) (see »online learning). In the online
model, learning proceeds in trials, where in each trial
a single example is selected adversarially and given to
the learner for classification. After the learner predicts
a label, the true label is revealed and the learner incurs
a loss based on whether its prediction was correct. The
goal of the online learner is to minimize the loss over
all trials. Online learning is harder than PAC learning in
that there are some PAC-learnable concept classes that
are not online learnable.

In the regression setting above (Dooly, Goldman, &
Kwek, 2006), there is a point concept, and the label of
each bag is a function of the distance between the con-
cept and the point in the bag closest to the target. It is
shown that similar to Auer et al’s lower bound, learn-
ing in this setting using labeled bags alone is as hard
as learning DNFE. They then define an MI membership
query (MI-MQ) in which an adversary defines a bag
B={p1,...,p,}and thelearner is allowed to ask an ora-
cle for the label of bag B+7v = {p; +7¥,...,p, + v} for any
d-dimensional vector v. Their algorithm then uses this
MI-MQ oracle to online learn a real-valued MI concept
in time O(dn?).

Applications
In this section, we describe domains where MI learning
problems have been formulated.

Drug activity was the motivating application for the
MI representation (Dietterich et al., 1997). Drugs are
typically molecules that fulfill some desired function
by binding to a target. In this domain, we wish to pre-
dict how strongly a given molecule will bind to a tar-
get. Each molecule is a three-dimensional entity and
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takes on multiple shapes or conformations in solution.
We know that for every molecule showing activity, at
least one of its low energy conformations possesses the
right shape for interacting with the target. Similarly,
if the molecule does not show drug-like activity, none
of its conformations possess the right shape for inter-
action. Thus, each molecule is represented as a bag,
where each instance is a low energy conformation of the
molecule. A well-known example from this domain is
the MUSK dataset. The positive class in this data consists
of molecules that smell “musky” This dataset has two
variants, MUSK1 and MUSK2, both with similar num-
bers of bags, with MUSK2 having many more instances
per bag.

Content-Based Image Retrieval is another domain
where the MI representation has been wused
(Maron & Lozano-Pérez, 1998; Zhang, Yu, Goldman, &
Fritts, 2002). In this domain, the task is to find images
that contain objects of interest, such as tigers, in a
database of images. An image is represented by a bag.
An instance in a bag corresponds to a segment in the
image, obtained by some segmentation technique. The
underlying assumption is that the object of interest is
contained in (at least) one segment of the image. For
example, if we are trying to find images of mountains
in a database, it is reasonable to expect most images of
mountains to have certain distinctive segments charac-
teristic of mountains. An MI learning algorithm should
be able to use the segmented images to learn a con-
cept that represents the shape of a mountain and use the
learned concept to collect images of mountains from the
database.

The identification of protein families has been framed
asan MI problem (Tao et al., 2004). The objective in that
work is to classify given protein sequences according
to whether they belong to the family of thioredoxin-
fold proteins. The given proteins are first aligned with
respect to a motif that is known to be conserved in the
members of the family. Each aligned protein is repre-
sented by a bag. A bag is labeled positive if the pro-
tein belongs to the family, and negative otherwise. An
instance in a bag corresponds to a position in a fixed
length sequence around the conserved motif. Each posi-
tion is described by a vector of attributes; each attribute
describes the properties of the amino acid at that posi-
tion, and is smoothed using the same properties from
its neighbors.

Text Categorization is another domain that has used
the MI representation (Andrews et al., 2003; Ray &
Craven 2005). In this domain, the task is to classify a
document as belonging to a certain category or not.
Often, whether the document belongs to the specified
category is the function of a few passages in the doc-
ument. These passages are however not labeled with
the category information. Thus, a document could be
represented as a set of passages. We assume that each
positive document (i.e., that belongs to the specified
category) has at least one passage that contains words
that indicate category membership. On the other hand,
a negative document (that does not belong to the cat-
egory) has no passage that contain words indicating
category membership. This formulation has been used
to classify whether MEDLINE documents should be
annotated with specific MeSH terms (Andrews et al.)
and to determine if specific documents should be anno-
tated with terms from the Gene Ontology (Ray &
Craven, 2005).

Time-series data from the hard drives have been
used to define an MI problem (Murray, Hughes, &
Kreutz-Delgado, 2005). The task here is to distinguish
drives that fail from others. Each hard drive is a bag.
Each instance in the bag is a fixed-size window over
timepoints when the drive’s state was measured using
certain attributes. In the training set, each drive is
labeled according to whether it failed during a window
of observation. An interesting aspect to prediction in
this setting is that it is done online, i.e., the algorithm
learns a classifier for instances, which is applied to each
instance as it becomes available in time. The authors
learn a naive Bayes model using an EM-based approach
to solve this problem.

Discovering useful subgoals in reinforcement learning
has been formulated as an MI problem (McGovern &
Barto, 2001). Imagine that a robot has to get from one
room to another by passing through a connecting door.
If the robot knew of the existence of the door, it could
decompose the problem into two simpler subproblems
to be solved separately: getting from the initial location
in the first room to the door, and then getting from the
door to its destination. How could the robot discover
such a “useful subgoal?” One approach formulates this
as an MI problem. Each trajectory of the robot, where
the robot starts at the source and then moves for some
number of time steps, is considered to be a bag. An
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instance in a bag is a state of the world, that records
observations such as, “is the robot’s current location a
door?” Trajectories that reach the destination are pos-
itive, while those that do not are negative. Given this
data, we can learn a classifier that predicts which states
are more likely to be seen on successful trajectories than
on unsuccessful ones. These states are taken to be use-
ful subgoals. In the previous example, the MI algorithm
could learn that the state “location is a door” is a useful
subgoal, since it appears on all successful trajectories,
but infrequently on unsuccessful ones.

Future Directions

MI learning remains an active research area. One direc-
tion that is being explored relaxes the “Constraints” in
Fig. 2 in different ways (Tao et al., 2004; Weidmann,
Frank, & Pfahringer 2003). For example, one could con-
sider constraints where at least a certain number (or
fraction) of instances have to be positive for a bag to
be labeled positive. Similarly, it may be the case that
a bag is labeled positive only if it does not contain a
specific instance. Such relaxations are often studied as
“generalized multiple-instance learning”

One such generalization of MI learning has been
formally studied under the name “geometric patterns”
In this setting, the target concept consists of a col-
lection of APRs, and a bag is labeled positive if and
only if (1) each of its points lies in a target APR, and
(2) every target APR contains a point. Noise-tolerant
PAC algorithms (Goldman & Scott, 1999) and online
algorithms (Goldman, Kwek, & Scott, 2001) have been
presented for such concept classes. These algorithms
make no assumptions on the distribution used to gen-
erate the bags (e.g., instances might not be generated
by an iid process). This does not violate Auer et al’s
lower bound since these algorithms do not scale with
the dimension of the input space.

Another recent direction explores the connections
between MI and semi-supervised learnings. Semi-
supervised learning generally refers to learning from
a setting where some instance labels are unknown.
MI learning can be viewed as one example of this
setting. Exploiting this connection between MI learn-
ing and other methods for semi-supervised learning,
recent work (Rahmani & Goldman, 2006) proposes an
approach where an MI problem is transformed into a

semi-supervised learning problem. An advantage of the
approach is that it automatically also takes into account
unlabeled bags.
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! Multi-Objective Optimization

Synonyms
MOO; Multi-criteria optimization; Vector optimization

Definition

Multi-criteria optimization is concerned with the opti-
mization of a vector of objectives, which can be the
subject of a number of constraints or bounds. The goal
of multi-objective optimization is usually to find or to
approximate the set of Pareto-optimal solutions. A solu-
tion is Pareto-optimal if it cannot be improved in one
objective without getting worse in another one.
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| Multiple Classifier Systems

»Ensemble Learning

I . .
Multiple-Instance Learning

» Multi-Instance Learning

| Multi-Relational Data Mining

Luc DE RAEDT
Katholieke Universiteit Leuven,
Heverlee, Belgium

Synonyms
Inductive logic programming; Relational learning;
Statistical relational learning

Definition
Multi-relational data mining is the subfield of knowl-
edge discovery that is concerned with the mining of
multiple tables or relations in a database. This allows
it to cope with structured data in the form of com-
plex data that cannot easily be represented using a sin-
gle table, or an Pattribute as is common in machine
learning.

Relevant techniques of multi-relational data min-
ing include those from relational learning, statistical
relational learning, and inductive logic programming.

Cross References
»Inductive Logic Programming

Recommended Reading

Dzeroski, S., & Lavrac, N. (Eds.). (2001). Relational data mining.
Berlin: Springer.

| Multistrategy Ensemble Learning

Definition

Every »ensemble learning strategy might be expected
to have unique effects on the base learner. Combining
multiple ensemble learning algorithms might hence
be expected to provide benefit. For example, »Multi-
Boosting combines »AdaBoost and a variant of
»Bagging, obtaining most of AdaBoost’s »bias reduc-
tion coupled with most of Bagging’s »variance reduc-
tion. Similarly, »Random Forests combines Bagging’s
variance reduction with »Random Subspaces bias
reduction.

Cross References
»Ensemble Learning
» MultiBoosting
»Random Forests

Recommended Reading

Webb, G. 1., & Zheng, Z. (2004). Multistrategy ensemble learning:
Reducing error by combining ensemble learning techniques.
IEEE Transactions on Knowledge and Data Engineering, 16(8),
980-991.

[
Must-Link Constraint

A pairwise constraint between two items indicating that
they should be placed into the same cluster in the final
partition.
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