O

! Object

»Instance

! Object Consolidation

»Entity Resolution

! Object Space

» Example Space

! Observation Language

HENDRIK BLOCKEEL

Katholieke Universiteit Leuven, Belgium
Leiden Institute of Advanced Computer Science
The Netherlands

Synonyms
Instance language

Definition

The observation language used by a machine learning
system is the language in which the observations it
learns from are described.

Motivation and Background

Most machine learning algorithms can be seen as a pro-
cedure for deriving one or more hypotheses from a set
of observations. Both the input (the observations) and
the output (the hypotheses) need to be described in
some particular language and this language is called
the observation language or the »Hypothesis Language

respectively. These terms are mostly used in the con-
text of symbolic learning, where these languages are
often more complex than in subsymbolic or statistical
learning.

The following sections describe some of the key
observation languages.

Attribute-Value Learning

Probably the most used setting in machine learn-
ing is the attribute-value setting (see » Attribute-Value
Learning). Here, an example (observation) is described
by a fixed set of attributes, each of which is given a value
from the domain of the attribute. Such an observation is
often called a vector or, in relational database terminol-
ogy, a tuple. The attributes are usually atomic (i.e., not
decomposable in component values) and single-valued
(i.e., an attribute has only one value, not a set of values).
So we have an instance space (or space of observations)

O=A1X“'XAn,

elements of which are denoted using an observation
language that typically has the same structure:

Lo=La xxLy
(the language contains tuples of objects that represent
the attribute values).

The attribute-value framework easily allows for both
supervised and unsupervised learning; in the super-
vised learning setting, the label of an instance is sim-
ply included as an attribute in the tuple, where as for
unsupervised learning, it is excluded.

The attribute-value setting assumes that all instances
can be represented using the same fixed set of attributes.
When instances can be of different types or are variable-
sized (e.g., when an instance is set-valued), this assump-
tion may not hold, and more powerful languages may
have to be used instead.

Claude Sammut & Geoffrey I. Webb (eds.), Encyclopedia of Machine Learning, DOI10.1007/978-0-387-30164-8,

© Springer Science+Business Media LLC 2011

734

Observation Language

We here consider the case in which a single instance
is a graph, or a node in a graph. Note that trees and
sequences are special cases of graphs.

A graph is defined as a pair (V,E), where V is a set
of vertices and E a set of edges each edge being a pair
of vertices. If the pair is ordered, the graph is directed;
otherwise it is undirected. For simplicity, we restrict
ourselves to undirected graphs.

A graph can, in practice, not be encoded in attribute-
value format without the loss of information. That is,
one could use a number of properties of graphs as
attributes in the encoding, but several graphs may then
still map onto the same representation, which implies
loss of information. In theory, one could imagine defin-
ing a total order on (certain classes of) graphs and
representing each graph by its rank in that order (which
is a single numerical attribute), thus representing graphs
as numbers without loss of information; but then it is
not obvious how to map patterns in this numerical rep-
resentation to patterns in the original representation.
No such approaches have been proposed till now.

Describing the instance space is more difficult here
than in the attribute value case. Consider a task of
graph classification, where in observations are of the
form (G, y) with G a graph and y a value for a target
attribute Y. Then we can define the instance space as

O={(V,E)[VENAECV’} xY,

where N is the set of all natural numbers. (For each
graph, there exists a graph defined over N that is iso-
morphic with it, so O contains all possible graphs up to
isomorphism.)

A straightforward observation language in the case
of graph classification is then

{(GY|G=(V,E)yAVCLyAECV*AyeY]},

where Ly is some alphabet for representing nodes.

In learning from graphs, there are essentially two
settings: those where a prediction is made for entire
graphs, and those where a prediction is made for sin-
gle nodes in a graph. In the first case, observations are
of the form (G, y), where as, in the second case, they
are of the form (G, v, y), where G = (V,E) and v € V.
That is, a node is given together with the graph in which
it occurs (its “environment”), and a prediction is to be
made for this specific node, using the information about
its environment.

In many cases, the set of observations one learns
from is of the form (G, v;, y;), where each instance is a
different node of exactly the same graph G. This is the
case when, for instance, classifying web pages, we take
the whole web as their environment.

In a labeled graph, labels are associated with each
node or edge. Often these are assumed atomic, being
elements of a finite alphabet or real numbers, but they
can also be vectors of reals.

In »relational learning, it is assumed that relationships
may exist between different instances of the instance
space, or an instance may internally consist of multiple
objects among which relationships exist.

This essentially corresponds to learning from graphs,
except that in a graph only one binary relation exists (the
edges E), whereas here there may be multiple relations
and they may be non binary. The expressiveness of the
two settings is the same, however, as any relation can be
represented using only binary relations.

In the attribute-value setting, one typically uses one
table where each tuple represents all the relevant infor-
mation for one observation. In the relational setting,
there may be multiple tables, and information on a sin-
gle instance is contained in multiple tuples, possibly
belonging to multiple relations.

Examplel Assume we have a database about students,
courses, and professors (see Fig. 1). We can define a single
observation as all the information relevant to one student,
that is: the name, year of entrance, etc. of the student and
also the courses they take and the professors teaching these
courses.

Anne 1997 Anne Algebra 1998|A
Bernard |1999 Anne Calculus [1998(B
Celine |1996 Bernard | Databases [2000({A
Daniel |1999 Celine Biology 1999|B
Elisa 1997 Celine Databases [2000|B
Fabian |1999 Celine Calculus [1998|A
Algebra Adams | Algebra 1998 Adams
Biology Adams | Calculus [1999 Baeck
Calculus Baeck Biology 1999 Cools
Databases Cools Calculus 1998

Cools Databases |1999

Observation Language. Figure1. A small database of
students

Observation Language

735

The most obvious link to the graph representation
is as follows: create one node for each tuple, labeled
with that tuple, and create a link between two nodes if
the corresponding tuples are connected by a foreign key
relationship.

Defining a single observation as a set of tuples that
are connected through foreign keys in the database cor-
responds to representing each observation (G, v,y) as
(G',v,y), where G’ is the connected component of G
that contains v. The actual links are usually not explicitly
written in this representation, as they are implicit: there
isan edge between two tuples if they have the same value
for a foreign key attribute.

In »inductive logic programming, a language based
on first order logic is used to represent the observa-
tions. Typically, an observation is then represented by
a ground fact, which basically corresponds to a sin-
gle tuple in a relational database. In some settings an
observation is represented by an interpretation, a set
of ground facts, which corresponds to the set of tuples
mentioned in the previous subsection.

While the target variable can always be represented
as an additional attribute, ILP systems often learn from
examples and counterexamples of a concept. The target
variable is then implicit: it is true or false depending on
whether the example is in the positive or negative set,
but it is not explicitly included in the fact.

Typical for the inductive logic programming setting
is that the input of a system may contain, besides the
observations, background knowledge about the appli-
cation domain. The advantage of the ILP setting is that
no separate language is needed for such background
knowledge: the same first order logic-based language
can be used for representing the observations as well as
the background knowledge.

Example 2 Take the following small dataset:

sibling(bart, lisa).
sibling(lisa,bart).
bart) .
:— sibling(lisa, lisa).
bart) .
bart)
lisa).
)

:— sibling(bart,

father (homer,
mother (marge,
father (homer,

(lisa

mother (marge,

There are positive and negative (preceded by :-)
examples of the Sibling relation. The following hypothesis
might be learned:

sibling (X,Y) :- father(z,X),
father(z,Y), X # Y.

sibling (X,Y) :- mother(zZ,X),
mother(z,Y), X # Y.

If the following clauses as included as background knowl-
edge:

parent (X,Y) :— father(X,Y).
parent (X,Y) :— mother(X,Y).

then the same ILP system might learn the following more
compact definition:

sibling (X,Y) :- parent(Z,X),
parent (Z,Y), X # Y.

Further Reading

Most of the literature on hypothesis and observation
languages is found in the area of inductive logic pro-
gramming. Excellent starting points to become familiar
with this field are Relational Data Mining by Lavra¢ and
Dzeroski (2001) and Logical and Relational Learning by
De Raedt (2008).

De Raedt (1998) compares a number of differ-
ent observation and hypothesis languages with respect
to their expressiveness, and indicates relationships
between them.

Cross References

» Hypothesis Language
»Inductive Logic Programming
» Relational Learning

Recommended Reading

De Raedt, L. (1998). Attribute-value learning versus inductive logic
programming: the missing links (extended abstract). In D. Page
(Ed.), Proceedings of the eighth international conference on
inductive logic programming. Lecture notes in artificial intelli-
gence (Vol. 1446, pp. 1-8). Berlin: Springer.

De Raedt, L. (2008). Logical and relational learning. Berlin:
Springer.

Dzeroski, S., & Lavra¢, N. (Eds.). (2001). Relational data mining.
Berlin: Springer. vfill

736

Occam'’s Razor

[
Occam’s Razor

GEOFFREY I. WEBB
Monash University, Victoria 3800, Australia

Synonyms
Ockham’s razor

Definition
Occam’s Razor is the maxim that “entities are not to be
multiplied beyond necessity;” or as it is often interpreted
in the modern context “of two hypotheses H and H;
both of which explain E, the simpler is to be preferred”
(Good, 1977).

Motivation and Background

Most attempts to learn a »model from »data con-
front the problem that there will be many models that
are consistent with the data. In order to learn a single
model, a choice must be made between the available
models. The factors taken into account by a learner
in choosing between models are called its »inductive
biases (Mitchell, 1980). A preference for simple models
is a common inductive bias and is embodied in many
learning techniques including »pruning, »minimum
message length and P»minimum description length.
> Regularization is also sometimes viewed as an appli-
cation of Occams’ Razor.

Occam’s Razor is an imperative, rather than a propo-
sition. That is, it is neither true nor false. Rather, it is a
call to act in a particular way without making any claim
about the consequences of doing so. In machine learn-
ing the so-called Occam thesis is sometimes assumed,
that

» given a choice between two plausible classifiers that
perform identically on the training set, the simpler
classifier is expected to classify correctly more objects
outside the training set (Webb, 1996).

While there are many practical advantages in hav-
ing an inductive bias toward simple models, there
remains controversy as to whether the Occam thesis is
true (Blumer, Ehrenfeucht, Haussler, & Warmuth, 1987;
Domingos, 1999; Webb, 1996).

Recommended Reading

Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. K.
(1987). Occam’s razor. Information Processing Letters, 24(6),
377-380.

Domingos, P. (1999). The role of Occam’s razor in knowl-
edge discovery. Data Mining and Knowledge Discovery, 3(4),
409-425.

Good, I. J. (1977). Explicativity: A mathematical theory of expla-
nation with statistical applications. Proceedings of the Royal
Society of London Series A, 354, 303-330.

Mitchell, T. M. (1980). The need for biases in learning generaliza-
tions. Tech. Rep. CBM-TR-117. Rutgers University, Department
of Computer Science.

Webb, G. 1. (1996). Further experimental evidence against the utility
of Occams razor. Journal of Artificial Intelligence Research, 4,
397-417; Menlo Park: AAAI Press.

[
Ockham'’s Razor

»Occam’s Razor

| Offline Learning

»Batch Learning

[
One-Step Reinforcement Learning

» Associative Reinforcement Learning

| Online Learning

PETER AUER
University of Leoben,
Leoben, Austria

Synonyms
Mistake-bounded learning; Perceptron; Prediction with
expert advice; Sequential prediction

Definition

In the online learning model the learner needs to make
predictions about a sequence of instances, one after
the other, and receives a reward or loss after each pre-
diction. Typically, the learner receives a description of

Online Learning

737

the instance before making a prediction. The goal of
the learner is to maximize the accumulated reward (or
equivalently minimize the accumulated losses).

The online learning model is essentially a worst-case
model of learning, as it makes no statistical assumptions
on how the sequence of inputs and rewards is generated.
In particular, it is not assumed that inputs and obser-
vations are generated by a probability distribution. In
contrast, they might be generated by an adversary who
tries to fool the learner.

To compensate for the adversarial nature of the
model, in most cases the performance guarantees for
online learning algorithms are relative to the perfor-
mance of the best predictor from a certain class. Often
these performance guarantees are quite strong, show-
ing that the learner can do nearly as well as the best
predictor from a large class of predictors.

Motivation and Background

Online learning is one of the main models of learning
theory, complementing the statistical approach of the
»PAC learning model by making no statistical assump-
tions. The distinctive properties of the online learning
model are:

o Learning proceeds in trials.

o There is no designated learning phase, but perfor-
mance of the learner is evaluated for each trial.

e No assumptions on the generation of the inputs to
the learner are made; they may depend even on
previous predictions of the learner.

e In most cases no assumptions on the losses or
rewards are made; they may be selected by an adver-
sary.

o The sequential predictions model an interaction
between the learner and its environment.

e Performance guarantees for learning algorithms are
typically in terms of the performance of the best pre-
dictor from some given class, after some number of
observations.

The first explicit models of online learning were
proposed by Angluin (1988) and Littlestone (1988), but
related work on repeated games by Hannan (1957) dates
back to 1957. Littlestone proposed online learning as a
sequence of trials, in each of which the learner receives
some input, makes a prediction of the associated output,

and receives the correct output. It was assumed that
some function from a known class maps the inputs to
correct outputs. The performance of the learner is mea-
sured by the number of mistakes made by a learner,
before it converges to the correct predictor. Angluins
equivalence query model of learning is formulated
differently but is essentially equivalent to Littlestone’s
model.

Many (including Littlestone (1991), Vovk (1990), and
Littlestone and Warmuth (1994)) later removed the
restriction that there must be a function that correctly
predicts all the outputs. In their setting the learner com-
petes with the best predictor from a given class. As the
class of predictors can be seen as a set of experts advis-
ing the learner about the correct predictions, this led
to the term “prediction with expert advice” A com-
prehensive treatment of binary predictions with expert
advice can be found in Cesa-Bianchi et al. (1997). Rela-
tions of online learning to several other fields (e.g.,
compression, competitive analysis, game theory, and
portfolio selection) are discussed in the excellent book
on sequential prediction by Cesa-Bianchi and Lugosi
(2006).

Structure of Learning System
The online learning model is formalized as follows. In

each trial t = 1,2,.. ., the learner
1. Receives input x; € X

2. Makes prediction y; € Y

3. Receives response z; € Z

4. Incurs loss & = €(y1, ;)

where £ : Y x Z — R is some loss function. The per-
formance of a learner up to trial T is measured by its
accumulated loss Ly = Y., €.

Performance bounds for online learning algo-
rithms are, typically, in respect to the performance
of an optimal predictor (or expert) E* from some
class £, E*e&. A predictor E maps the past given by
(x1,¥1,21)5 -« « > (Xt-1, ¥1-1, 221) and the current input x;
to a prediction y. As for the learner, the performance
of a predictor is measured by its accumulated loss L. =
YL, €8, where €F = ¢ (yf,zt). Most bounds for the loss
of online algorithms are of the form

Ly <aminL: + bC(E),
Ee&

738

Online Learning

where the constants a and b depend on the loss function
and C(&) measures the complexity of the class of pre-
dictors. (e.g., the complexity C(£) could be log|€| for a
finite class £.) Often it is possible to trade the constant
a against the constant b such that bounds

Lr<Ly+o(L})

can be achieved, where L} = mingeg LI% is the loss of the
best predictor up to time T. These bounds are of partic-
ular interest as they show that the loss of the learning
algorithm is only little larger than the loss of the best
predictor. For such bounds the regret Ry of the learning
algorithm,

Ry=Lp-L%,

is the relevant quantity that measures the cost of not
knowing the best predictor in advance. Again, it needs
to be emphasized that these bounds hold for any
sequence of inputs and responses without any addi-
tional assumptions. Such bounds are achieved by online
learning algorithms that rely on the outputs of the pre-
dictors in & to form their own predictions.

The next section makes this general definition of
online learning more concrete by presenting some
important online learning algorithms, and it also dis-
cusses the related equivalence query model.

Theory/Solution

The weighted majority algorithm developed by Little-
stone and Warmuth (1994) is one of the fundamental
online learning algorithms, with many relatives using
similar ideas. It will be presented for the basic scenario
with a finite set of experts £, binary predictions y;
{0,1}, binary responses z; € {0,1}, and the discrete loss
which just counts mistakes, £(y,z) = |y — 2|, such that
(y,z) = 0ify = zand €(y,z) = 1if y # z. (We will
use the terms experts and predictors interchangeably. In
the literature finite sets of predictors are mostly called
experts.)

The weighted majority algorithm maintains a weight
wE for each expert E € & that are initialized as wf = 1.
The weights are used to combine the predictions y*
of the experts by a weighted majority vote: y, = 1if
YWyl 2 3 Ypwr,and y, = 0 otherwise. After receiv-
ing the response z;, the weights of experts that made
incorrect predictions are reduced by multiplying with

some constant B < 1, wE, = Bwf if y¥ 2 z, and
wE,, = wE if yF = z,. As a performance bound for the
weighted majority algorithm one can achieve

Ly <2L% +2\/2L% log |€] + 4log €|

with L} = mingeg L} and an appropriate f8. (Better con-
stants on the square root and the logarithmic term are
possible.)

While in this bound the loss of the deterministic
weighted majority algorithm is twice the loss of the best
expert, the randomized version of the weighted major-
ity algorithm almost achieves the loss of the best expert.
Instead of using a deterministic prediction, the ran-
domized weighted majority algorithm tosses a coin and
predicts y; = 1 with probability ¥ wEyf/ 3. wE.

Since a prediction of the randomized algorithm
matches the prediction of the deterministic algorithm
with probability at least 1/2, an incorrect prediction of
the deterministic algorithm implies that the random-
ized algorithm will predict incorrectly with probability
at least 1/2. Thus, the loss of the deterministic algo-
rithm is at most twice the expected loss of the ran-
domized algorithm. This can be used to transfer bounds
for the randomized algorithm to the deterministic
algorithm.

Below, the following bound will be proved on the
expected loss of the randomized algorithm,

E[Ly] < lof%ﬁ)L; +

1
log|£&|. 1
= og|€| ey
Approximately optimizing for § yields f = 1 - ¢, where

€ = min {1/2, \ /2(10g|6|)/L;}, and
E[Ly] <L} ++/2L%1og|E| + 2log|E|. (2)

The expectation in these bounds is only in respect to
the randomization of the algorithm, no probabilistic
assumptions on the experts or the sequence of responses
are made. These bounds hold for any set of experts and
any fixed sequence of responses. This type of bounds
assumes that the sequence of inputs and responses does
not depend on the randomization of the algorithm.
If the inputs x; and the responses z; may depend on
the past predictions of the algorithm, y1,...,y,, then

Online Learning

739

L7 also becomes a random variable and the following

bound is achieved:
E[Lr] <E[L}] ++\/2E[L%]log|E| +2log|E].

It can be even shown that the following similar bound

holds with probability 1 — § (in respect to the random-
ization of the algorithm):

Ly < L} ++/Tlog(|€]/6).

The proof of bound (1) shows many of the ideas used
in the proofs for online learning algorithms. Key ingre-
dients are a potential function and how the changes
of the potential function relate to losses incurred by
the learning algorithm. For the weighted majority algo-
rithm a suitable potential function is the sum of the
weights, W, = ¥ wE. Then, since the losses are 0 or 1,

Win B YE Wf+1 _ ZEﬁefo _ >E [1_ (1—ﬁ)€f] Wf

W, Ypwh Ypwr TEwr
€E E
:1_(1_/3)&71?_
2EW

Since the probability that the randomized weighted
majority algorithm makes a mistake is given by E [¢;] =
Y EwE | ¥ wE, we get by taking logarithms that

log Wiy —log W, = log(1-(1-B)E[£/]) < —~(1-B)E[]

(since log(1 - x) < —x for x € (0,1)). Summing over all
trialst =1,..., T we find

log Wr, —logW; < —(1- B)E[L¢].

Since W = |€] and Wryy = Ypwh, = ZEﬁL? > pl,
rearranging the terms gives (1).

Extensions and Modifications of the Weighted Major-
ity Algorithm Variants and improved versions of the
weighed majority algorithm have been analyzed for
various learning scenarios. An excellent coverage of
the material can be found in Cesa-Bianchi and Lugosi
(2006). This section mentions a few of them.

General loss functions. The analysis of the weighted
majority algorithm can be generalized to any convex set
of predictions Y and any set of outcomes Z, as long as

the loss function £(y,z) is bounded and convex in the
first argument. Vovk (1998) analyzed for quite general
Y, Z, and loss functions ¢, which constants a and b allow
a learning algorithm with loss bound

Ly <aL% + blogl&].

Of particular interest is the smallest b for which a loss
bound with a = 1 can be achieved.

Tracking the best expert and other structured experts.
For a large number of experts, the loss bound of the
weighted majority algorithm is still interesting since it
scales only logarithmically with the number of experts.
Nevertheless, the weighted majority algorithm and
other online learning algorithms become computation-
ally demanding as they need to keep track of the perfor-
mance of all experts (computation time scales linearly
with the number of experts). If the experts exhibit a suit-
able structure, then this computational burden can be
avoided.

As an example, the problem of tracking the best
expert is considered. Let & be a small set of base
experts. The learning algorithm is required to com-
pete with the best sequence of at most S experts from
&o: the trials are divided into S periods, and in each
period another expert might predict optimally. Thus,
the minimal loss of a sequence of S experts is given by

s T,
Lig= min S min Y &,
© 0=ToSTi<To<<To=T 4 Eelo _f~

where the trials are optimally divided into S peri-
ods [Ti—; + 1, T;], and the best base expert is chosen for
each period. Such sequences of base experts can be seen
as experts themselves, but the number of such com-
pound experts is (g:ll)|€o|s and thus computationally
prohibitive. Fortunately, a slightly modified weighted
majority algorithm applied to the base experts, achieves
almost the same performance as the weighted majority
algorithm applied to the compound experts (Herbster
& Warmuth, 1998). The modification of the weighted
majority algorithm just lower bounds the relative weight
of each base expert. This allows the relative weight of
a base expert to grow large quickly if this expert pre-
dicts best in the current period. Hence, also the learning
algorithm will predict almost optimally in each period.

740

Online Learning

Other examples of structured experts include tree
experts and shortest path problems (see Cesa-Bianchi
and Lugosi (2006) for further references).

The doubling trick. The optimal choice of 8 in the per-
formance bound (1) requires knowledge about the loss
of the best expert L7. If such knowledge is not available,
the doubling trick can be used. The idea is to start with
an initial guess L* and choose f8 according to this guess.
When the loss of the best expert exceeds this guess, the
guess is doubled, 8 is modified, and the learning algo-
rithm is restarted. The bound (2) increases only slightly
when L7 is not known and the doubling trick is used. It
can be shown that still

E[Ly] <L} + /L3 log|E| + c;log|€|

for suitable constants ¢; and ¢,. A thorough analysis of
the doubling trick can be found in Cesa-Bianchi et al.
(1997). Variations of the doubling trick can be used for
many online learning algorithms to “guess” unknown
quantities. A drawback of the doubling trick is that it
restarts the learning algorithm and forgets about all
previous trials. An alternative approach is an iterative
adaptation of the parameter 3, which can be shown to
give better bounds than the doubling trick. The advan-
tage of the doubling trick is that its analysis is quite
simple.

Follow the perturbed leader. Follow the perturbed leader
is a simple prediction strategy that was originally pro-
posed by Hannan (1957). In each trial ¢, it gener-
ates identically distributed random values y for every
expert E, adds these random values to the losses of the
experts so far, and predicts with the expert that achieves
the minimum sum,

E, =argminLf | +yF,
Ee&
_E
Ye=yi'

For suitably chosen distributions of the £, this simple
prediction strategy achieves loss bounds similar to the
more involved weighted majority like algorithms.

Prediction with limited feedback and the multiarmed
bandit problem. In some online learning scenarios,
the learner might not receive the original response z;

but only a projected version z; = {(y:,z;) for some
(: Y xZ - Z. The value of the incurred loss
2(y+,z;) might be unknown to the learner. A general
model for this situation is called prediction with partial
monitoring. With suitable assumptions there are pre-
diction strategies for partial monitoring that achieve a
regret of order O(T*?).

A special case of partial monitoring is the multi-
armed bandit problem. In the multiarmed bandit prob-
lem the learner chooses a prediction y; € Y = {1,...,K}
and receives the loss of the chosen prediction ¢(y;) =
2(y1,2z¢). The losses of the other predictions, €(y),
y # y;, are not revealed to the learner. The goal of
the learner is to compete with the loss of the single
best prediction, L% = min,ey I, L. = ¥/, €,(y). The
multiarmed bandit problem looks very much like the
original online learning problem with the predictions
y € Y as experts. But the main difference is that in the
multiarmed bandit problem only the loss of the cho-
sen expert/prediction is revealed, while in the original
online learning problem the losses of all experts can be
calculated by the learner. Therefore, algorithms for the
multiarmed bandit problem estimate the unseen losses
and use these estimates to make their predictions. Since
accurate estimates need a sufficient amount of data,
this leads to a trade-off between choosing the (appar-
ently) best prediction to minimize loss, and choosing
another prediction for which more data need to be
collected. This exploration—exploitation trade-off also
appears elsewhere in online learning, but it is most
clearly displayed in the bandit problem. An algorithm
that deals well with this trade-oft is again a simple vari-
ant of the weighted majority algorithm. This algorithm
does exploration trials with some small probability, and
in such exploration trials it chooses a prediction uni-
formly at random. This algorithm has been analyzed
in Auer, Cesa-Bianchi, Freund, and Schapire (2002) for
gains instead of losses. Formally, this is equivalent to
considering negative losses, £ € [-1,0], with the equiv-
alent gain g = —¢. For losses € € [-1,0] a bound for the
algorithm is

E[Ly] < L% +3\/K|L}|logK,

which for gains translates into

E[Gr] > G} - 34/KG}logK

Online Learning

M

where Gt and G} denote the accumulated gains. Com-
pared with (2), the regret increases only by a factor
of VK. Auer et al. (2002) show that the order of the
regret is essentially optimal. They also present similar
bounds that hold with high probability, and analyze
several extensions of the bandit problem.

The Perceptron Algorithm This section considers an
example for an online learning algorithm that competes
with a continuous set of experts, in contrast to the finite
sets of experts considered so far. This algorithm - the
perceptron algorithm (Rosenblatt 1958)- was among
the first online learning algorithms developed. Another
of this early online learning algorithms with a con-
tinuous set of experts is the Winnow algorithm by
Littlestone (1988). A unified analysis of these algorithms
can be found in Cesa-Bianchi and Lugosi (2006). This
analysis covers a large class of algorithms, in particular
the p-norm perceptrons (Grove, Nittlestone & Schuur-
mans, 2001), which smoothly interpolate between the
perceptron algorithm and Winnow.

The perceptron algorithm aims at learning a linear
classification function. Thus inputs are from a Euclidean
space, X = R, the predictions and responses are binary,
Y = Z = {0,1}, and the discrete misclassification loss is
used. Each expert is a linear classifier, represented by its
weight vector v € RY, whose linear classification is given
by ®,: X - {0,1},®,(x) =lifv-x > 0and @, g(x) = 0
ifv-x<O.

The perceptron algorithm maintains a weight vec-
tor w, € RY that is initialized as w; = (0,...,0).
After receiving input x;, the perceptron’s prediction is
calculated using this weight,

Yt = q)wt(xt),

and the weight vector is updated,
Wiyl = Wr + ﬂ(zt —)/t)xt,

where 1 > 0 is a learning rate parameter. Thus, if the
prediction is correct, y; = z; then the weights are
not changed. Otherwise, the product w4, - x; is moved
into the correct direction: since wy,; - X = Wy - X+
n(ze = yollxel?s weer - x0 > wy - %, if y, = Obut z, = 1,
and wyi - x¢ < wy - x if y; = 1 but z, = 0.

It may be assumed that the inputs are normalized,
||x¢|| = 1, otherwise a normalized x; can be used in the

update of the weight vector. Furthermore, it is noted
that the learning rate # is irrelevant for the performance
of the perceptron algorithm, since it scales only the size
of the weights but does not change the predictions. Nev-
ertheless, the learning rate is kept since it will simplify
the analysis.

Analysis of the perceptron algorithm. To compare the
perceptron algorithm with a fixed (and optimal) linear
classifier v a potential function ||w, — v||* is again used.
For the change of the potential function when y; # z,
one finds

l[weer = vI[* = llwe = vl

= |lwe + 1(z = y)xe = VI[P = [lwe = vI?

= [[we = vI” +2n(z — yo) (we = v) - x
+ 17 (2t =y lxell” = [lwe = v

=2n(ze —yr) (W - —v-x;) + 112.

Since wy - x; < 0if y, = 0 and w; - x¢ > 0 if y, = 1, we get
(zt = y¢)(we - %) < 0and

[[weer = I = [lwe = vI* < =2n(z = y0) (v-x0) + 1,

Analogously, the linear classifier v makes a mistake
in trial ¢ if (z; — y,)(v - x;) < 0, and in this case
—(zt = y¢)(v- x¢) <||v||. Hence, summing over all trials
(where y; # z;) gives

[[wra = vlI* = llwr = v

<27 Z

£:6,=1,/=0

[vxi| + 2nllvlIL; + 7L,

where the sum is over all trials where the perceptron
algorithm makes a mistake but the linear classifier v
makes no mistake. To proceed, it is assumed that for the
correct classifications of the linear classifier v, the prod-
uct v - x; is bounded away from 0 (which describes the
decision boundary). It is assumed that |v - x| > y, > 0.
Then

[wrar = vI* = [l = vlI* < =2y, (L1 - L)

+2n|W|L} + 7Ly,
and

L2y, — n*) < |WII* + Ly (2ny, + 21|])),

742

Online Learning

since ||[wry1 — V|| > 0 and wy = (0,...,0). For 5 = y,
the following loss bound for the perceptron algorithm
is achieved:

Ly <|W[*/ys + 27 (1+ [l/y)-

Thus, the loss of the perceptron algorithm does not
only depend on the loss of a (optimal) linear classifier v,
but also on the gap by which the classifier can separate
the inputs with z; = 0 from the inputs with z; = 1. The
size of this gap is essentially given by y,/||v||.

Relation between the perceptron algorithm and support
vector machines. The gap y,/||v|| is the quantity max-
imized by support vector machines, and it is the main
factor determining the prediction accuracy (in a prob-
abilistic sense) of a support vector machine. It is not
coincidental that the same quantity appears in the per-
formance bound of the perceptron algorithm, since it
measures the difficulty of the classification problem.

As for support vector machines, kernels K(-,-) can
be used in the perceptron algorithm. For that, the dot
product w; - x; is replaced by the kernel representation
Y7\ (z: = y:)K (%1, x). Obviously this has the disadvan-
tage that all previous inputs for which mistakes were
made must be kept available.

Learning with Equivalence Queries In the learning with
equivalence queries model (Angluin, 1988) the learner
has to identify a function f : X - {0,1} from a class
F by asking equivalence queries. An equivalence query
is a hypothesis h : X — {0,1} about the function f. If
h = f then the answer to the equivalence query is YES,
otherwise a counterexample x € X with f(x) # h(x)
is returned. The performance of a learning algorithm is
measured by the number of counter examples received
as response to equivalence queries.

The equivalence query model is essentially equiva-
lent to the online learning model with F as the set of
experts, Y = Z = {0,1}, and the discrete misclassifica-
tion loss. First, it is considered how a learner for the
equivalence query model can be used as a learner in
the online learning model: For making a prediction y;,
the equivalence query learner uses its current hypothe-
sis, ¥t = hy(x;). If the prediction is correct, the hypoth-
esis is not changed. If the prediction is incorrect, the
input x; is used as a counterexample for the hypo-
thesis h;.

Second, it is considered how a deterministic online
learner can be used in the equivalence query model. The
current prediction function of the online learner that
maps inputs to predictions, can be used as a hypothesis
h; in the equivalence query model. A counterexample x;
is interpreted as an input for which the response z; dis-
agrees with the prediction y; of the online learner. Thus
the online learner might update its prediction function,
which gives a new hypothesis for an equivalence query.

These reductions show that the counterexamples of
the equivalence query learner and the mistakes of the
online learner coincide. Thus, the performance bounds
for the equivalence query model and the online model
are the same. (Here it is assumed that there is an expert
that incurs no loss. If this is not the case, then an
extension of the equivalence query model can be con-
sidered, where a number of equivalence queries might
be answered with incorrect counterexamples.)

Cross References
»Incremental Learning

Recommended Reading

Angluin, D. (1988). Queries and concept learning. Machine Learning,
2, 319-342.

Auer, P., Cesa-Bianchi, N., Freund, Y., & Schapire, R. (2002). The
nonstochastic multiarmed bandit problem. SIAM Journal on
Computing, 32, 48-77.

Cesa-Bianchi, N., Freund, Y., Haussler, D., Helmbold, D., Schapire,
R., & Warmuth, M. (1997). How to use expert advice. Journal of
the ACM, 44, 427-485.

Cesa-Bianchi, N., & Lugosi, G. (2006). Prediction, learning, and
games. New York, USA: Cambridge University Press.

Grove, A. J., Nittlestone, N., & Schuurmans, D. (2001). General
convergence results for linear discriminant updates. Machine
Learning, 43, 173-210.

Hannan, J. (1957). Approximation to Bayes risk in repeated play.
Contributions to the Theory of Games, 3, 97-139.

Herbster, M., & Warmuth, M. (1998). Tracking the best expert.
Machine Learning, 32, 151-178.

Littlestone, N. (1988). Learning quickly when irrelevant attributes
abound: A new linear-threshold algorithm. Machine Learning,
2, 285-318.

Littlestone, N. (1991). Redundant noisy attributes, attribute errors,
and linear-threshold learning using winnow. In Proceedings of
the fourth annual workshop on computational learning theory,
Santa Cruz, California (pp. 147-156). San Francisco: Morgan
Kaufmann.

Littlestone, N., & Warmuth, M. (1994). The weighted majority algo-
rithm. Information and Computation, 108, 212-261.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for
information storage and organization in the brain. Psychological
Review, 65, 386-408.

Overall and Class-Sensitive Frequencies

743

Vovk, V. (1990). Aggregating strategies. In Proceedings of third
annual workshop on computational learning theory, Rochester,
New York (pp. 371-386). San Francisco: Morgan Kaufmann.

Vovk, V. (1998). A game of prediction with expert advice. Journal of
Computer and System Sciences, 56, 153-173.

| Ontology Learning

Different approaches have been used for building
ontologies, most of them to date mainly using man-
ual methods (»Text Mining for the Semantic Web).
An approach to building ontologies was set up in the
CYC project, where the main step involved manual
extraction of common sense knowledge from different
sources. Ontology construction methodologies usually
involve several phases including identifying the purpose
of the ontology (why to build it, how will it be used, the
range of the users), building the ontology, evaluation and
documentation. Ontology learning relates to the phase
of building the ontology using semiautomatic methods
based on text mining or machine learning.

! Opinion Mining

Opinion mining is the application of mining methods
concerned not with the topic a document is about, but
with the opinion it expresses. Opinion mining builds on
techniques from »text mining, »information retrieval,
and computational linguistics. It is especially popular
for analyzing documents that are often or even by def-
inition opinionated, including blogs (»text mining for
news and blogs analysis) and online product reviews.

Opinion mining is also known as sentiment anal-
ysis (sentiment mining, sentiment classification, ...) or
opinion extraction.

| Optimal Learning

»Bayesian Reinforcement Learning

" OPUS

»Rule Learning

[
Ordered Rule Set

» Decision List

[
Ordinal Attribute

An ordinal attribute classifies data into categories
that can be ranked. However, the differences between
the ranks cannot be calculated by arithmetic. See
> Attribute and »>Measurement Scales.

| Out-of-Sample Data

Out-of-sample data are data that were not used to learn
a »model. »Holdout evaluation creates out-of-sample
data for evaluation purposes.

| Out-of-Sample Evaluation

Definition

Out-of-sample evaluation refers to »-algorithm evalua-
tion whereby the learned model is evaluated on »out-
of-sample data. Qut-of-sample evaluation provides an
unbiased estimate of learning performance, in contrast
to »-in-sample evaluation.

Cross References
» Algorithm Evaluation

' Overall and Class-Sensitive
Frequencies

The underlying idea for learning strategies processing
»missing attribute values relies on the class distribu-
tion; i.e., the class-sensitive frequencies are utilized. As
soon as we substitute a missing value by a suitable one,
we take the desired class of the example into consid-
eration in order not to increase the noise in the data
set. On the other hand, the overall (class-independent)
frequencies are applied within classification.

744

Overfitting

! Overfitting

GEOFFREY 1. WEBB
Monash University, Victoria, Australia

Synonyms
Overtraining

Definition

A »model overfits the »-training data when it describes
features that arise from noise or variance in the data,
rather than the underlying distribution from which the
data were drawn. Overfitting usually leads to loss of
»accuracy on Pout-of-sample data.

Discussion

In general there is a trade-off between the size of the
space of distinct models that a »learner can produce
and the risk of overfitting. As the space of models
between which the learner can select increases, the risk
of overfitting will increase. However, the potential for
finding a model that closely fits the true underling dis-
tribution will also increase. This can be viewed as one
facet of the »bias and variance trade-off.

Figure 1 illustrates overfitting. The points are drawn
randomly from a distribution in which y=x + ¢, where
¢ is random noise. The best single line fit to this dis-
tribution is y=x. »Linear regression finds a model
y = 0.02044 + 0.92978 x x, shown as the solid line in
Fig. 1. In contrast, second degree polynomial regres-
sion finds the model —0.6311 + 0.5128 x x + 0.2386 x x?,
shown as the dashed line. The space of second degree
polynomial models is greater than that of linear models,
and so the second degree polynomial more closely fits
the example data, returning the lower »squared error.
However, the linear model more closely fits the true
distribution and is more likely to obtain lower squared
error on future samples.

While this example relates to »regression, the same
effect also applies to Pclassification problems. For
example, an overfitted »decision tree may include splits
that reflect noise rather than underlying regularities in
the data.

-4 -2 0 2 4

Overfitting. Figure 1. Linear and polynomial models fit-
ted to random data drawn from a distribution for which
the linear model is a better fit

The many approaches to avoiding overfitting include

o Using low »variance learners;

e »Minimum Description Length and »Minimum
Message Length techniques

e P Pruning

e P Regularization

e »Stopping criteria

Cross References

» Bias and Variance

» Minimum Description Length
»Minimum Message Length
»Pruning

»Regularization

! Overtraining

» Overfitting

	O
	Object
	Object Consolidation
	Object Space
	Observation Language
	Synonyms
	Definition
	Motivation and Background
	Attribute-Value Learning
	Learning from Graphs, Trees, or Sequences
	Relational Learning
	Inductive Logic Programming

	Further Reading
	Cross References
	Recommended Reading

	Occam’s Razor
	Synonyms
	Definition
	Motivation and Background
	Recommended Reading

	Ockham’s Razor
	Offline Learning
	One-Step Reinforcement Learning
	Online Learning
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	Theory/Solution
	TheWeighted Majority Algorithm
	Extensions and Modifications of the Weighted MajorityAlgorithm
	General loss functions.
	Tracking the best expert and other structured experts.
	The doubling trick.
	Followthe perturbed leader.
	Prediction with limited feedback and the multiarmedbandit problem.
	The Perceptron Algorithm
	Analysis of the perceptron algorithm.
	Relation between the perceptron algorithm and supportvector machines.
	Learning with Equivalence Queries

	Cross References
	Recommended Reading

	Ontology Learning
	Opinion Mining
	Optimal Learning
	OPUS
	Ordered Rule Set
	Ordinal Attribute
	Out-of-Sample Data
	Out-of-Sample Evaluation
	Definition
	Cross References

	Overall and Class-SensitiveFrequencies
	Overfitting
	Synonyms
	Definition
	Discussion
	Cross References

	Overtraining

