P

|
PAC Identification

»PAC Learning

' PAC Learning

THOMAS ZEUGMANN
Hokkaido University
Sapparo, Japan

Synonyms
Distribution-free learning; Probably approximately cor-
rect learning; PAC identification

Motivation and Background

A very important learning problem is the task of learn-
ing a concept. »Concept learning has attracted much
attention in learning theory. For having a running
example, we look at humans who are able to distinguish
between different “things,” e.g., chair, table, car, airplane,
etc. There is no doubt that humans have to learn how
to distinguish “things” Thus, in this example, each con-
cept is a thing. To model this learning task, we have
to convert “real things” into mathematical descriptions
of things. One possibility to do this is to fix some lan-
guage to express a finite list of properties. Afterward, we
decide which of these properties are relevant for the par-
ticular things we want to deal with and which of them
have to be fulfilled or not to be fulfilled, respectively.
The list of properties comprises qualities or traits such as
“has four legs,” “has wings,” “is green,” “has a backrest,”
“has a seat,” etc. So, these properties can be regarded
as Boolean predicates and, provided the list of proper-
ties is large enough, each thing can be described by a
conjunction of these predicates. For example, a chair is
described as “has four legs and has a backrest and has a

seat and has no wings.” Note that the color is not relevant
and thus, “is green” has been omitted.

Assume that we have n properties, where n is a
natural number. In the easiest case, we can denote
the n properties by Boolean variables x;, . . ., x,,, where
range(x;) € {0,1} for j = 1,.. ., n. The semantics is then
obviously defined as follows: Setting x; = 1 means prop-
erty j is fulfilled, while x; = 0 refers property j is not
fulfilled. Now, setting £,, = {x1, %1, %2, X2 . . ., Xy, X } (set
ofliterals), we can express each thing as a conjunction of
literals. As usual, we refer to any conjunction of literals
as a monomial.

Therefore, formally we have as learning domain (also
called winstance space), the set of all Boolean vectors
of length n, i.e., {0,1}" and, in the learner’s world, each
thing (concept) is just a particular subset of {0,1}". As
far as our example is concerned, the concept chair is
then the set of all Boolean vectors for which the mono-
mial “has four legs and has a backrest and has a seat and
has no wings” evaluates to 1.

Furthermore, it is usually assumed that the concept ¢
to be learned (the target concept) is taken from a pre-
specified class C of possible concepts called the concept
class. In our example above, the concept class is the
set of all concepts describable by a monomial. Con-
sequently, we see that formally learning a concept is
equivalent to identifying (exact or approximately) a set
from a given set of possibilities by learning a suitable
description (synonymously called representation) of it.

As in complexity theory, we usually assume that the
representations are reasonable ones. Then they can be
considered as strings over some fixed alphabet, and the
set of representations constitutes the »representation
language. Note that a concept may have more than one
representation in a given representation language (and
should have at least one), and that there may be dif-
ferent representation languages for one and the same
concept class. For example, every Boolean function can
be expressed as a »conjunctive normal form (CNF) and
»disjunctive normal form (DNF), respectively. For a

Claude Sammut & Geoffrey I. Webb (eds.), Encyclopedia of Machine Learning, DOI10.1007/978-0-387-30164-8,

© Springer Science+Business Media LLC 2011

746

PAC Learning

fixed representation language, the size of a concept is
defined to be the length of a shortest representation
for it. Since we are interested in a model of efficient
learning, usually the following additional requirements
are made: Given any string over the underlying alpha-
bet, one can decide in time polynomial in the length of
the string whether or not it is a representation. Further-
more, given any element x from the underlying learning
domain and a representation r for any concept, one can
uniformly decide in time polynomial in the length of
both inputs whether or not x belongs to the concept ¢
described by r.

So, we always have a representation language used
to define the concept class. As we shall see below; it may
be advantageous to choose a possibly different repre-
sentation language used by the learner. The class of all
sets described by this representation language is called
hypothesis space (denoted by H) and the elements of it
are said to be hypotheses (commonly denoted by h).

The learner is specified to be an algorithm. Further
details are given below. We still have to specify the infor-
mation source, the criterion of success, the hypothesis
space, and the prior knowledge in order to define what
PAC learning is.

The abbreviation PAC stands for probably approx-
imately correct and the corresponding learning model
has been introduced by Valiant (1984), while its name
was dubbed by Angluin (1988). Valiant’s (1984) pio-
neering paper triggered a huge amount of research, the
results of which are commonly called Computational
Learning Theory (COLT) (see also the COLT and ALT
conference series). Comprehensive treatises of this topic
include Anthony and Biggs (1992), Kearns and Vazirani
(1994) as well as Natarajan (1991).

Informally, this means that the learner has to find,
on input a randomly drawn set of labeled examples
(called sample), with high probability, a hypothesis such
that the error of it is small. Here, the error is measured
with respect to the same probability distribution D with
respect to which the examples are drawn.

Let X # & be any learning domain and let C € p(X)
be any nonempty concept class (here p(X) denotes the
power set of X). If X is infinite we need some mild mea-
sure theoretic assumptions to ensure that the probabili-
ties defined below exist. We refer to such concept classes
as well-behaved concept classes. In particular, each c € C

has to be a Borel set. For a more detailed discussion see
Blumer, Ehrenfeucht, Haussler, & Warmuth (1989).
Next, we formally define the information source.
We assume any unknown probability distribution D
over the learning domain X. No assumption is made
concerning the nature of D and the learner has no
knowledge concerning D. There is a sampling oracle
EX(), which has no input. Whenever EX() is called, it
draws an element x € X according to D and returns the
element x together with an indication of whether or not
x belongs to the target concept c. Thus, every example
returned by EX() may be written as (x,c(x)), where
c(x) = 1if x € ¢ (positive examples) and ¢(x) = 0 oth-
erwise (negative examples). If we make s calls to the
example EX() then the elements xj,...x, are drawn
independently from one another. Thus, the resulting
probability distribution over all s-tuples of elements
from X is the s-fold product distribution of D, i.e.,

Pr(xy,.... %) = li[D(xi), 4]
i=1

where Pr(A) denotes the probability of event A.
Hence, the information source for a target con-
cept ¢ is any randomly drawn s-sample S(c,%) =
(x1,¢(x1), . . ., %5, ¢(x;)) returned by EX().

The criterion of success, i.e., probably approximately
correct learning, is parameterized with respect to two
quantities, the accuracy parameter € and the confidence
parameter 8§, where ¢, 8 € (0,1]. Next, we define the dif-
ference between two sets ¢, ¢’ ¢ X with respect to the
probability distribution D as

d(c,c) = Z D(x),

xecAc!

where ¢ A ¢ denotes the symmetric difference, i.e.,
c A =c~cud N\ c. We say that hypothesis 4 is an
¢ approximation of a concept ¢, if d(¢, h) < . A learner
is successful, if it computes an ¢ approximation of the
target concept and it should do so with a probability at
least1 - 4.

The »hypothesis space H is any set such that C ¢ H,
and the only prior knowledge is that the target concept
is from the concept class.

A further important feature of the PAC learning
model is the demand to learn efficiently. Usually, in the

PAC Learning

747

PAC learning model, the efficiency is measured with
respect to the number of examples needed and the
amount of computing time needed, and in both cases,
the requirement is to learn with an amount that is poly-
nomial in the “size of the problem” In order to arrive at
a meaningful definition, one has to discuss the problem
size and in addition, look at the asymptotic difficulty of
the learning problem. That is, instead of studying the
complexity of some fixed learning problems, we always
look at infinite sequences of similar learning problems.
Such infinite sequences are obtained by allowing the size
(dimension) of the learning domain to grow or by allow-
ing the complexity of the concepts considered to grow.
In both cases, we use 7 to denote the relevant parameter.

Definition

A learning method A is said to probably approximately
correctly learn a target concept ¢ with respect to a
hypothesis space H and with sample complexity s =
s(&, 8) (or s = s(e,8,n)), if for any distribution D over
X and for all €,8 € (0,1), it makes s calls to the oracle
EX(), and after having received the answers produced
by EX() (with respect to the target c), it always stops and
outputs a representation of a hypothesis h € H such that

Pr(d(c,h) <e)21-4.

A learning method A is said to probably approxi-
mately correctly identify a target concept class C with
respect to a hypothesis space H and with sample com-
plexity s = s(&,8), if it probably approximately correctly
identifies every concept ¢ € C with respect to H and with
sample complexity s.

A learning method A is said to be efficient, if there
exists a polynomial pol such that the running time
of A and the number s of examples seen is at most

pol(1/e,1/8,n).

This looks complicated, and so, some explanation is in
order. First, the inequality

Pr(d(c,h)<e)>1-§6

says that with high probability (quantified by §), there
is not too much difference (quantified by ¢) between the

conjectured concept (described by /) and the target c.
Formally, let A be any fixed learning method, and let ¢
be any fixed target concept. For any fixed ¢, € (0,1],
let s = s(&0) be the actual sample size. We have
to consider all possible outcomes of A when run on
every labeled s-sample S(¢, x) = (x1,¢(x1), . . ., x5, ¢(x5))
returned by EX(). Let h(S(c, %)) be the hypothesis
produced by A when processing S(¢, x). Then, we have
to consider the set W of all s-tuples over X such that
d(c,h(S(c,%))) < e The condition Pr(d(c,h) < ¢€) >
1 - & can now be formally rewritten as Pr(W) > 1- 4.
Clearly, one has to require that Pr(W) is well defined.
Note that the sample size is not allowed to depend on
the distribution D.

To exemplify this approach, recall that our set of
all concepts describable by a monomial over £, refers
to the set of all things. We consider a hypothetical
learner (e.g., a student, a robot) that has to learn the
concept of a chair. Imagine that the learner is told
by a teacher whether or not particular things visible
by the learner are instances of a chair. What things
are visible depends on the environment the learner is
in. The formal description of this dependence is pro-
vided by the unknown distribution D. For example, the
learner might be led to a kitchen, a sitting room, a book
shop, a beach, etc. Clearly, it would be unfair to teach
the concept of a chair in a book shop and then test-
ing the learning success at a beach. Thus, the learning
success is measured with respect to the same distribu-
tion D with respect to which the sampling oracle has
drawn its examples. However, the learner is required
to learn with respect to any distribution. That is, inde-
pendently of whether the learner is led to a kitchen, a
book shop, a sitting room, a beach, etc., it has to learn
with respect to the place it has been led to. The sample
complexity refers to the amount of information needed
to ensure successful learning. Clearly, the smaller the
required distance of the hypothesis produced and the
higher the confidence desired, the more examples are
usually needed. But there might be atypical situations.
To have an extreme example, the kitchen the learner is
led to turned out to be empty. Since the learner is
required to learn with respect to a typical kitchen
(described by the distribution D), it may well fail under
this particular circumstance. Such failure has to be
restricted to atypical situations, and this is expressed

748

PAC Learning

by demanding the learner to be successful with
confidence 1 - 6.

This corresponds to real-life situations. For exam-
ple, a student who has attended a course in learning
theory might well suppose that she is examined in
learning theory and not in graph theory. However, a
good student, say in computer science, has to pass all
examinations successfully, independently of the par-
ticular course attended. That is, she must successfully
pass examinations in computability theory, complexity
theory, cryptology, parallel algorithms, etc. Hence, she
has to learn a whole concept class. The sample com-
plexity refers to the time of interaction performed by
the student and teacher. Also, the student may come up
with a different representation of the concepts taught
than the teacher. If we require C = #, then the resulting
model is referred to as proper PAC learning.

The Finite Case

Having reached this point, it is natural to ask which
concept classes are (efficiently) PAC learnable. We start
with the finite case, i.e., learning domains X of finite
cardinality. As before, the s-sample of ¢ generated by
% is denoted by S(c,x) = (x,¢c(x1),. ., %m c(x5)). A
hypothesis h € H is called consistent for an s-sample
S(c,x),if h(x;) = c(x;) forall1 <i <s. A learner is said
to be consistent if all its outputs are consistent hypothe-
ses. Then the following strategy may be used to design
a PAC learner:

1. Draw a sufficiently large sample from the oracle
EX(), say s examples.

2. Find some h € H that is consistent with all the s
examples drawn.

3. Output h.

This strategy has a couple of remarkable features.
First, provided the learner can find a consistent hypoth-
esis, it allows for a uniform bound of the number of
examples needed. That is,

sz%(1n|H|+1n(%)) @

examples will always suffice (here |S| denotes the cardi-
nality of any set S).

The first insight obtained here is that increasing the
confidence is exponentially cheaper than reducing the
error.

Second, we see why we have to look at the asymp-
totic difficulty of the learning problem. If we fix {0,1}"
as learning domain and define C to be the set of all con-
cepts describable by a Boolean function, then there are
2%" many concepts over {0,1}". Consequently, In |#| =
O(2") resulting in a sample complexity that is for sure
infeasible if n > 50. Thus, we set X,, = {0,1}", consider
Cn S p(X,), and study the relevant learning problem
for (X,,,Cy) us1- So, finite means that all X, are finite.

Third, using inequality (2), it is not hard to see that
the set of all concepts over {0,1}" that are describ-
able by a monomial is efficiently PAC learnable. Let
H, be the set of all monomials containing each literal
from £, at most once plus the conjunction of all liter-
als (denoted by m,y) (representing the empty concept).
Since there are 3" + 1 monomials in H,, by (2), we see
that O(1/e- (n+1n(1/8))) many examples suffice. Note
that 2n is also an upper bound for the size of any concept
from H,,.

Thus it remains to deal with the problem to find a
consistent hypothesis. The learning algorithm can be
informally described as follows. After having received
the s examples, the learner disregards all negative exam-
ples received and uses the positive ones to delete all
literals from m,); that evaluate to 0 on at least one pos-
itive example. It then returns the conjunction of the
literals not deleted from m,;. After a bit of reflection,
one verifies that this hypothesis is consistent. This is
essentially Haussler’s (1987) Wholist algorithm and its
running time is O(1/e - (n* +1In(1/8))). Also note that
the particular choice of the representation for the empty
concept was crucial here. It is worth noticing that the
sample complexity is tight up to constant factors.

Using similar ideas, one can easily show that the
class of all concepts over {0,1}" describable by a k-
CNF or k-DNF (where k is fixed) is efliciently PAC
learnable by using all k-CNF and k-DNE, respectively
as hypothesis space (cf. Valiant, 1984).

So, what can we say in general concerning the prob-
lem to find a consistent hypothesis? Answering this
question gives us the insight to understand why it is
sometimes necessary to choose a hypothesis space that
is different from the target concept class. This phe-
nomenon was discovered by Pitt and Valiant (1988).

PAC Learning

749

First, we look at the case where we have to efficiently
PAC learn any C, with respect to C,. Furthermore, an
algorithm is said to solve the consistency problem for C,
if, on input any s-sample S(¢, X), where ¢ € X,,, it outputs
a hypothesis consistent with S(¢,x) provided there is
one, and “there is no consistent hypothesis,” otherwise.

Since we are interested in efficient PAC learning, we
have to make the assumption that |C,| < 27°/") (cf.
inequality (2)). Also, it should be noted that for the
proof of the following result, the requirement that 4 (x)
is polynomial time computable is essential (cf. our dis-
cussion of representations). Furthermore, we need the
notion of an RP-algorithm (randomized polynomial
time). The input is any s-sample S(c, %), where ¢ € X,,
and the running time is uniformly bounded by a poly-
nomial in the length of the input. In addition to its
input, the algorithm can flip a coin in every step of its
computation and then branch in dependence of the out-
come of the coin-flip. If there is no hypothesis consistent
with (¢, x), the algorithm must output “there is no con-
sistent hypothesis,” independently of the sequence of
coin-flips made. If there is a hypothesis consistent with
S(¢, x), then the R'P-algorithm is allowed to fail with a
probability at most 6.

Interestingly, under the assumptions made above,
one can prove the following equivalence for efficient
PAC learning.

PAC learning C,, with respect to C, is equivalent
to solving the consistency problem for C, by an RP-
algorithm.

We continue by looking at the class of all concepts
describable by a k-term DNF,. A term is conjunction
of literals from £,, and a k-term DNF, is a disjunction
of at most k terms. Consequently, there are (3" + 1)
many k-term DNFs and thus the condition |C,,| < 2P°/(")
is fulfilled. Then one can show the following: For all
integers k > 2, if there is an algorithm that efficiently
learns k-term DNF, with respect to k-term DNF,,, then
RP =NP.

For a formal definition of the complexity classes R P
and NP we refer the reader to Arora and Barak (2009).
This result is proved by showing that deciding the con-
sistency problem for k-term DNF, is N'P-complete
for every k > 2. The difference between deciding and
solving the consistency problem is that we only have
to decide if there is a consistent hypothesis in k-term
DNF,.. However, by the equivalence established above,

we know that an efficient proper PAC learner for k-term
DNF,, can be transformed into an RP-algorithm even
solving the consistency problem. It should be noted that
we currently do not know whether or not RP = N'P
(only RP ¢ NP has been shown) but it is widely
believed that RP # N'P. On the other hand, it easy to
see that every concept describable by a k-term DNF,
is also describable by a k-CNF,, (but not conversely).
Thus, we can finally conclude that there is an algorithm
that efficiently PAC learns k-term DNF,, with respect to
k-CNEF,,.

For more results along this line of research, we refer
the reader to Pitt and Valiant (1988). As long as we
do not have more powerful lower bound techniques
allowing one to separate the relevant complexity classes
RP and NP or P and NP, no unconditional negative
result concerning PAC learning can be shown. Another
approach to show hardness results for PAC learning is
based on cryptographic assumptions, and recently, one
has also tried to base cryptographic assumptions on the
hardness of PAC learning (cf., e.g., Xiao 2009 and the
references therein).

Further, positive results comprise the efficient
proper PAC learnability of k-decision lists for any
fixed k.

Finally, it must be noted that the bounds on the
sample size obtained via inequality (2) are not the best
possible. Sometimes, better bounds can be obtained by
using the VC Dimension (see inequality (4)).

The Infinite Case

Let us start our exposition concerning infinite concept
classes with an example due to Blumer, Ehrenfeucht,
Haussler, & Warmuth (1989). Consider the problem
of learning concepts such as “medium built” animals.
For the sake of presentation, we restrict ourselves
to the parameters “weight” and “length” To describe
“medium built” we use intervals “from-to.” For exam-
ple, a medium built cat might have a weight rang-
ing from 3 to 7kg and a length ranging from 25
to 50 cm. By looking at a finite database of ran-
domly chosen animals, giving their respective weight
and length and their classification (medium built or
not), we want to form a rule that approximates the
true concept of “medium built” for each animal under
consideration.

750

PAC Learning

This learning problem can be formalized as follows.
Let X = E? be the two-dimensional Euclidean space,
and let C ¢ p(E?) be the set of all axis-parallel rect-
angles, ie., products of intervals on the x-axis with
intervals on the y-axis. Furthermore, let D be any prob-
ability distribution over X. Next, we show that C is
efficiently PAC learnable with respect to C by the fol-
lowing Algorithm LR

Algorithm LR: On input any &8 €
oracle EX() s times, where s = 4/e - In(4/9).
Let (r,c(r1),72,¢(r2),. .., 15, c(rs)) be the s-sample
returned by EX(), where r; = (x5, :),i=1,...s.
Compute Xy, = min{x; |1<i<s, ¢(r;) =1}

(0,1], call the

Xmax = max{x; [1<i<s, ¢(r;) =1}

Ymin = min{y; [1<i<s, o(ri) =1}

Ymax = max{y; | 1<i<s, c(ri) =1}
Output & = [Xmin> Xmax | X D/mina)’max]- In case there

is no positive example, return h = &.
end.

It remains to show that Algorithm LR PAClearns the
concept class C with respect to C. Let ¢ = [a,b] x [¢,d]
be the target concept. Since LR computes its hypothe-
sis from positive examples, only, we get h C c. That is,
h is consistent. We have to show that d(c, k) < & with
probability at least 1 — §. We distinguish the following
cases.

Casel.D(c) <¢

Thend(c,h)= ¥ D(r)= ¥ hD(r) <D(c) <e.

recAh rec\
Hence, in this case we are done.

Case2.D(c) > ¢

We define four minimal side rectangles within c that
each cover an area of probability of at least /4. Let

Left = [a,x] x [c,d], where x = inf{X | D([a,X] x
[c,d]) > e/4}

Right = [z,b] x [c,d], where z = inf{X | D([X,b] x
[c.d]) > ¢/4}

Top = [a,b] x [y,d], where y = inf{X | D([a,b] x
(%, d]) > e/4}

Bottom = [a,b] x [c,t], where t = inf{X | D([a,b] x

[c.X]) > ¢/4}

All those rectangles are contained in ¢, since
D(c) >e¢. If the sample size is s, the probability that
a particular rectangle from {Left, Right, Top, Bottom}
contains no positive example is at most (1-¢/4)°. Thus,
the probability that some of those rectangles does not
contain any positive example is at most 4(1 — ¢/4)°.
Hence, incorporating s = 4/¢ - In(4/8) gives:

4(1-€/4)° < 4e~ (/5 = 4o~ 104/ = 5,

Therefore, with probability at least 1- 8, each of the four
rectangles Left, Right, Top, Bottom contains a positive
example. Consequently, we get:

d(c,h)= Y D(r)= Y. D(r) =D(c) - D(h).

recAh rec\h

Furthermore, by construction

D(h) > D(c) — D(Left) — D(Right) — D(Top)
— D(Bottom) > D(c) — ¢

and hence d(c, h) < ¢.

Having reached this point, it is only natural to
ask what makes infinite concept classes PAC learn-
able. Interestingly, there is a single parameter telling us
whether or not a concept class is PAC learnable. This
is the so-called Vapnik-Chervonenkis dimension com-
monly abbreviated as »VC Dimension. In our exam-
ple of axis-parallel rectangles, the VC Dimension of C
is 4.

In order to state this result, we have to exclude trivial
concept classes. A concept class C is said to be trivial if
ICl=1orC = {c},c;} witheine; =@ and X = ¢y U c,.
C is called nontrivial iff C is not trivial. Then Blumer,
Ehrenfeucht, Haussler, & Warmuth (1989) showed the
following:

A nontrivial well-behaved concept class is PAC learn-
able if and only if its VC dimension is finite.

Moreover, if the VC dimension is finite, essentially
the same strategy as in the finite case applies, i.e., it suf-
fices to construct a consistent hypothesis from C (or
from a suitably chosen hypothesis space H which must
be well behaved) in random polynomial time.

PAC Learning

751

So, it remains to estimate the sample complexity.
Let d be the VC dimension of . Blumer, Ehrenfeucht,
Haussler, & Warmuth (1989) showed that

s>max{élo 2 %lo E} 3)
- e 88 ¢ 8

examples do suffice. This upper bound has been
improved by Anthony et al. (1990) to

s> ﬁ [log(Ci/(i_l)) +2dlog(i)]. (4)

Based on the work of Blumer et al. (1989) (and the
lower bound they gave), Ehrenfeucht, Haussler, Kearns,
& Valiant (1988) showed that if C is nontrivial, then no

i
2¢
. These results give a precise characterization of the

learning function exists (for any H) if s <
d-1
64e
number of examples needed (apart from the gap of a

factor of O (log %)) in terms of the VC dimension. Also
note the sharp dichotomy here either any consistent

log% +

learner (computable or not) will do or no learner at all
exists.

Two more remarks are in order here. First, these
bounds apply to uniform PAC learning, i.e., the learner
is taking € and § as input, only. As outlined in our dis-
cussion just before we gave the formal definition of PAC
learning, it is meaningful to look at the asymptotic diffi-
culty of learning. In the infinite case, we can increment
the dimension 7 of the learning domain as we did in
the finite case. We may set X,, = E” and then con-
sider similar concept classes C, € p(X,). For example,
the concept classes similar to axis-parallel rectangles
are axis-parallel parallelepipeds in E”. Then the VC
dimension of C, is 2n and all what is left is to add
n as input to the learner and to express d as a func-
tion of # in the bound (4). Clearly, the algorithm LR
can be straightforwardly generalized to a learner for
(Xm Cn)nzl-

Alternatively, we use n to parameterize the com-
plexity of the concepts to be learned. As an example,
consider X = E and let C, be the set of all unions of
at most n (closed or open) intervals. Then the »VC
Dimension of C, is 2n, and one can design an efficient

learner for (X, C,),»1. Another example is obtained for
X = E? by defining C, to be the class of all convex
polygons having at most #n edges (cf. Linial, Mansour,
& Rivest, 1991).

Second, all the results discussed so far are deal-
ing with static sampling, i.e., any sample containing
the necessary examples is drawn before any com-
putation is performed. So, it is only natural to ask
what can be achieved when dynamic sampling is
allowed. In dynamic sampling mode, a learner alter-
nates between drawing examples and performing com-
putations. Under this sampling mode, even concepts
classes having an infinite VC dimension are learn-
able (cf. Linial, Mansour, & Rivest, 1991 and the refer-
ences therein). The main results in this regard are that
enumerable concepts classes and decomposable con-
cept classes are PAC learnable when using dynamic
sampling.

Let us finish the general exposition of PAC learning
by pointing to another interesting insight, i.e., learn-
ing is in some sense data compression. As we have
seen, finding consistent hypotheses is a problem of
fundamental importance in the area of PAC learning.
Clearly, the more expressive the representation lan-
guage for the hypothesis space, the easier it may be to
find a consistent hypothesis, but it may be increasingly
difficult to say something concerning its accuracy (in
machine learning this phenomenon is also known as
the over-fitting problem). At this point, Occam’s Razor
comes into play. If there is more than one explanation
for a phenomenon, then Occam’s Razor requires to “pre-
fer simple explanations” So, an Occam algorithm is an
algorithm which, given a sample of the target concept,
outputs a consistent and relatively simple hypothesis.
That is, it is capable of some data compression. Let
us first look at the Boolean case, ie., X, = {0,1}".
Then an Occam algorithm is a randomized polyno-
mial time algorithm 4 such that there is a polynomial
p and a constant & € [0,1) fulfilling the following
demands.

For every n > 1, every target concept ¢ € C, of size
at most m and every ¢ € (0,1), on input any s-sample
for ¢, algorithm A outputs with probability at least
1 - ¢, the representation of a consistent hypothesis from
C,, having size at most p(n,m,1/¢) - s*

752

PAC Learning

So, the parameter « < 1 expresses the amount
of compression required. If we have such an Occam
algorithm, then (X,,,C,) is properly PAC learnable (cf.
Blumer, Ehrenfeucht, Haussler, & Warmuth, 1987). The
proof is based on the observations that a hypothesis
with large error is unlikely to be consistent with a large
sample, and that there are only few short hypotheses.
If we replace in the definition of an Occam algorithm
the demand on the existence of a short hypotheses by
the existence of a hypothesis space having a small VC
dimension, then a similar result can be obtained for
the continuous case (cf. Blumer, Ehrenfeucht, Haussler,
& Warmuth, 1989). To a certain extend, the converse
is also true, i.e., under quite general conditions, PAC
learnability implies the existence of an Occam algo-
rithm. We refer the reader to Kearns and Vazirani (1994)
for further details.

Variations
Further variations of PAC learning are possible and
have been studied. So far, we have only considered one
sampling oracle. So, a natural variation is to have two
sampling oracles EX,() and EX_() and two distri-
butions D, and D_, i.e., one for positive examples and
one for negative examples. Clearly, further natural vari-
ations are possible. A larger number of them has been
shown to be roughly equivalent and we refer the reader
to Haussler, Kearns, Littlestone, & Warmuth (1991) for
details.

We continue with another natural variation that
turned out to have a fundamental impact to the whole
area of machine learning, i.e., weak learning.

An interesting variation of PAC learning is obtained
if we weaken the requirements concerning the confi-
dence and the error. That is, instead of requiring the
PAC learner to succeed for every e and §, one may relax
this demand as follows. We only require the learner
to succeed for ¢ = 1/2 — 1/pol(n) (n is as above) and
8 = 1/poly(n) (n is as above), where pol and poly are
any two fixed polynomials. The resulting model is called
weak PAC learning.

Quite surprisingly, Schapire (1990) could prove that
every weak learner can be efficiently transformed into
an ordinary PAC learner. While it is not too difficult
to boost the confidence, boosting the error is much

more complicated and has subsequently attracted a lot
of attention. We refer the reader to Schapire (1990) as
well as Kearns and Vazirani (1994) and the references
therein for a detailed exposition. Interesting enough,
the techniques developed to prove the equivalence of
weak PAC learnability and PAC learnability have an
enormous impact to machine learning and may be sub-
sumed under the title »>Boosting.

Relations to Other Learning Models

Finally, we point out some relations of PAC learning
to other learning models. Let us start with the mis-
take bound model also called online prediction model.
The mistake-bound model has its roots in »Inductive
Inference and was introduced by Littlestone (1988). It is
conceptionally much simpler than the PAC model, since
it does not involve probabilities. For the sake of presen-
tation, we assume a finite learning domain X, and any
Cn S p(X,) here.

In this model the following scenario is repeated
indefinitely. The learner receives an instance x and has
to predict c(x). Then it is given the true label ¢(x). If
the learner’s prediction was incorrect, then a mistake
occurred. The learner is successful if the total number of
mistakes is finite. In order to make this learning prob-
lem non-trivial, one additionally requires a polynomial
pol such that for every ¢ € C, and any ordering of the
examples, the total number of mistakes is bounded by
pol(n,size(c)). In the mistake-bound model, a learner
is said to be efficient if its running time per stage is
uniformly polynomial in # and size(c).

Then, the relation to PAC learning is as follows:

If algorithm A learns a concept class C in the mistake-
bound model, then A also PAC learn C. Moreover, if A
makes at most M mistakes, then the resulting PAC learner
needs % -In % many examples.

So, efficient mistake-bound learning translates into
efficient PAC learning.

Another interesting relation is obtained when look-
ing at the »Query-Based Learning model, where
the only queries allowed are equivalence queries. As
pointed out by Angluin (1988, 1992), any learning
method that uses equivalence queries only and achieves
exact identification can be transformed into a PAC
learner. The number of equivalence queries necessary to

PAC-MDP Learning

753

achieve success in the query learning model is polyno-
mially related to the number of calls made to the sample
oracle.

However, the converse is not true. This insight
led to the definition of a minimally adequate teacher
(cf. Angluin, 1988 and the references therein). In this
setting, the teacher answers equivalence queries and
membership queries. Maas and Turan (1990) provide
a detailed discussion of the relationship between the
different models.

These results in turn led to another modification
of the PAC model, where the learner is, in addition to
the s-sample returned, also allowed to ask membership
queries, i.e., PAC learning with membership queries.

Let us finish this article by mentioning that the PAC
model has been criticized for two reasons. The first one
is the independence assumption, i.e., the requirement to
learn with respect to any distribution. This is, however,
also a very strong part of the theory, since it provides
universal performance guarantees. Clearly, if one has
additional information concerning the underlying dis-
tributions, one may be able to prove better bounds.
The second reason is the “noise-free” assumption, i.e.,
the requirement to the sample oracle to return exclu-
sively correct labels. Clearly, in practice, we never have
noise-free data. So, one has also studied learning in the
presence of noise and we refer the reader to Kearns and
Vazirani (1994) as well as to conference series COLT and
ALT for results along this line.

Cross References
»Statistical Machine Learning
»Stochastic Finite Learning
»VC Dimension

Recommended Reading

Angluin, D. (1988). Queries and concept learning. Machine Learning,
2(4), 319-342.

Angluin, D. (1992). Computational learning theory: Survey and
selected bibliography. In Proceedings of the twenty-fourth
annual ACM symposium on theory of computing (pp. 351-369).
New York: ACM Press.

Anthony, M., & Biggs, N. (1992). Computational learning theory:
Cambridge tracts in theoretical computer science (No. 30). Cam-
bridge: Cambridge University Press.

Anthony, M., Biggs, N., & Shawe-Taylor, J. (1990). The learnability
of formal concepts. In M. A. Fulk & J. Case (Eds.), Proceedings

of the third annual workshop on computational learning theory
(pp. 246-257). San Mateo, CA: Morgan Kaufmann.

Arora, S., & Barak, B. (2009). Computational complexity: A modern
approach. Cambridge: Cambridge University Press.

Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. K.
(1987). Occam’s razor. Information Processing Letters, 24(6),
377-380.

Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. K. (1989).
Learnability and the Vapnik-Chervonenkis dimension. Journal
of the ACM, 36(4), 929-965.

Ehrenfeucht, A., Haussler, D., Kearns, M., & Valiant, L. (1988). A
general lower bound on the number of examples needed for
learning. In D. Haussler & L. Pitt (Eds.), COLT ’88, Proceed-
ings of the 1988 workshop on computational learning theory,
August 3-5, 1988, MIT (pp. 139-154). San Francisco: Morgan
Kaufmann.

Haussler, D. (1987). Bias, version spaces and Valiant’s learning
framework. In P. Langley (Ed.), Proceedings of the fourth inter-
national workshop on machine learning (pp. 324-336). San
Mateo, CA: Morgan Kaufmann.

Haussler, D., Kearns, M., Littlestone, N., & Warmuth, M. K. (1991).
Equivalence of models for polynomial learnability. Information
and Computation, 95(2), 129-161.

Kearns, M. J., & Vazirani, U. V. (1994). An introduction to computa-
tional learning theory. Cambridge, MA: MIT Press.

Linial, N., Mansour, Y., & Rivest, R. L. (1991). Results on learnabil-
ity and the Vapnik-Chervonenkis dimension. Information and
Computation, 90(1), 33-49.

Littlestone, N. (1988). Learning quickly when irrelevant attributes
abound: A new linear-threshold algorithm. Machine Learning,
2(4), 285-318.

Maas, W., & Turan, G. (1990). On the complexity of learning from
counterexamples and membership queries. In Proceedings of
the thirty-first annual symposium on Foundations of Computer
Science (FOCS 1990), St. Louis, Missouri, October 22-24, 1990
(pp. 203-210). Los Alamitos, CA: IEEE Computer Society.

Natarajan, B. K. (1991). Machine learning: A theoretical approach. San
Mateo, CA: Morgan Kaufmann.

Pitt, L., & Valiant, L. G. (1988). Computational limitations on learn-
ing from examples. Journal of the ACM, 35(4), 965-984.

Schapire, R. E. (1990). The strength of weak learnability. Machine
Learning, 5(2), 197-227.

Valiant, L. G. (1984). A theory of the learnable. Communications of
the ACM, 27(11), 1134-1142.

Xiao, D. (2009). On basing ZK # BPP on the hardness of PAC learn-
ing. In Proceedings of the twenty-fourth annual IEEE Conference
on Computational Complexity, CCC 2009, Paris, France, July
15-18, 2009 (pp. 304-315). Los Alamitos, CA: IEEE Computer
Society.

' PAC-MDP Learning

»Efficient Exploration in Reinforcement Learning

754

Parallel Corpus

|
Parallel Corpus

A parallel corpus (pl. corpora) is a document collection
composed of two or more disjoint subsets, each writ-
ten in a different language, such that documents in each
subset are translations of documents in each other sub-
set. Moreover, it is required that the translation relation
is known, i.e., that given a document in one of the sub-
set (i.e., languages), it is known what documents in the
other subset are its translations. The statistical analysis
of parallel corpora is at the heart of most methods for
»cross-language text mining.

! Part of Speech Tagging

»POS Tagging

! Partially Observable Markov
Decision Processes

PAsCAL POUPART
University of Waterloo

Synonyms
POMDPs; Belief state Markov decision processes;
Dynamic decision networks; Dual control

Definition

A partially observable Markov decision process
(POMDP) refers to a class of sequential decision-
making problems under uncertainty. This class includes
problems with partially observable states and uncertain
action effects. A POMDP is formally defined by a tuple
(S, A, O, T, Z, R, by, h, y) where S is the set of states
s, A is the set of actions a, O is the set of observations
0, T(s, a, s") = Pr(s'|s, a) is the transition function indi-
cating the probability of reaching s’ when executing a
ins,Z(a,s’,0") = Pr(o|a,s’) is the observation func-
tion indicating the probability of observing o’ in state
s’ after executing a, R(s,a) € N is the reward function
indicating the (immediate) expected utility of executing
ains, by = Pr(sp) is the distribution over the initial state
(also known as initial belief), 4 is the planning horizon

(which may be finite or infinite), and y € [0,1] is a dis-
count factor indicating by how much rewards should
be discounted at each time step. Given a POMDP, the
goal is to find a policy to select actions that maximize
rewards over the planning horizon.

Motivation and Background

Partially observable Markov decision processes
(POMDPs) were first introduced in the Operations
Research community (Drake, 1962; Astrom, 1965) as
a framework to model stochastic dynamical systems
and to make optimal decisions. This framework was
later considered by the artificial intelligence commu-
nity as a principled approach to planning under uncer-
tainty (Kaelbling et al., 1998). Compared to other
methods, POMDPs have the advantage of a well-
founded theory. They can be viewed as an extension
of the well-known, fully observable »Markov deci-
sion process (MDP) model (Puterman, 1994), which
is rooted in probability theory, utility theory, and
decision theory. POMDPs do not assume that states
are fully observable, but instead that only part of
the state features are observable, or more generally,
that the observable features are simply correlated with
the underlying states. This naturally captures the fact
that in many real-world problems, the information
available to the decision maker is often incomplete
and typically measured by noisy sensors. As a result,
the decision process is much more difficult to opti-
mize. POMDP applications include robotics (Pineau &
Gordon, 2005), assistive technologies (Hoey et al,
2010), health informatics (Hauskrecht & Fraser, 2010),
spoken dialogue systems (Thomson & Young, 2010),
and fault recovery (Shani & Meek, 2009).

Structure of Model and Solution
Algorithms

We describe below the POMDP model, some policy
representations, the properties of optimal value func-
tions, and some solution algorithms.

Figure 1 shows the graphical representation of a
POMDP, using the notation of influence diagrams: cir-
cles denote random variables (e.g., state variables S; and
observation variables Oy), squares denote decision vari-
ables (e.g., action variables A;), and diamonds denote

Partially Observable Markov Decision Processes

755

utility variables (e.g., Uy’s). The variables are indexed
by time and grouped in time slices, reflecting the fact
that each variable may take a different value at each
time step. Arcs indicate how nodes influence each other
over time. There are two types of arcs: probabilistic
and informational arcs. Arcs pointing to a chance node
or a utility node indicate a probabilistic dependency
between a child and its parents, whereas arcs pointing
to a decision node indicate the information available
to the decision maker (i.e., which nodes are observable
at the time of each decision). Probabilistic dependen-
cies for the state and observation variables are quanti-
fied by the conditional distributions Pr(S¢.1|S;, A;) and
Pr(Oy41/St41,A¢), which correspond to the transition
and observation functions. Note that the initial state
variable Sy does not have any parent, hence its dis-
tribution Pr(Sy) is unconditioned and corresponds to
the initial belief b, of the decision maker. Probabilistic
dependencies for the utility variables are also quantified
by a conditional distribution Pr(U|S;, A;) such that its
expectation Y, Pr(u|S;, A;)u = R(S;, A;) corresponds
to the reward function.

Fully observable MDPs are a special case of POMDPs
since they arise when the observation function deter-
ministically maps each state to a different unique
observation. POMDPs can also be viewed as »hidden
Markov models (HMM:s) (Rabiner, 1989) extended with
decision and utility nodes since the transition and
observation distributions essentially define an HMM.
POMDPs also correspond to a special case of deci-
sion networks called dynamic decision networks (Buede,
1999) where it is assumed that the transition, observa-
tion, and reward functions are stationary (i.e., they do
not depend on time) and Markovian (i.e., the parents of

Partially Observable Markov Decision Processes. Figure 1.
POMDP represented as an influence diagram

each variable are in the same time slice or immediately
preceding time slice).

Given a tuple (S, A, O, T, Z, R, by, h, y) specify-
ing a POMDP, the goal is to find a policy 7 to select
actions that maximize the rewards. The informational
arcs indicate that each action a; can be selected based
on the history of past actions and observations. Hence,
(b(),]’lt> —> dy
is a mapping from initial beliefs b, and histories h; =
(09, a0,01,41,...,0:_1,a:-1,0;) to actions a,. For a fixed
initial belief, the mapping can be represented by a tree
such as the one in Fig. 2. We will refer to such pol-
icy trees as conditional plans since in general a policy
may consist of several conditional plans for different ini-
tial beliefs. The execution of a conditional plan follows
a branch from the root to some leaf by executing the
actions of the nodes traversed and following the edges
labeled by the observations received.

Unfortunately, as the number of steps increases,
the number of histories grows exponentially and it is
infeasible to represent mappings over all such histories.
Furthermore, infinite-horizon problems require map-
pings over arbitrarily long histories, which limit the use
of trees to problems with a short horizon. Note, how-
ever, that it is possible to have mappings over infinite
cyclic histories. Such mappings can be represented by
a finite state controller (Hansen, 1997), which is essen-
tially a cyclic graph of nodes labeled by actions and
edges labeled by observations (see Fig. 3 for an exam-
ple). Similar to conditional plans, finite state controllers
are executed by starting at an initial node, executing the
actions of the nodes traversed, and following the edges
of the observations received.

in its most general form, a policy 7 :

Conditional plan

Stages to go

Partially Observable Markov Decision Processes. Figure 2.
Three representation of a three-step conditional plan

756

Partially Observable Markov Decision Processes

OK
&7 o

Partially Observable Markov Decision Processes. Figure 3.

Finite state controller for a simple POMDP with two
actions and two observations

Alternatively, it is possible to summarize histories
by a sufficient statistic that encodes all the relevant
information from previous actions and observations for
planning purposes. Recall that the transition, reward,
and observation functions exhibit the Markov prop-
erty, which means that the outcome of future states,
rewards, and observations depend only on the current
state and action. If the decision maker knew the current
state of the world, then she would have all the desired
information to make an optimal action choice. Thus,
histories of past actions and observations are only rel-
evant to the extent that they provide information about
the current state of the world. Let b; be the belief of
the decision maker about the state of the world at time
step t, which we represent by a probability distribution
over the state space S. Using Bayes theorem (see »Bayes
Rules), one can compute the current belief b; from the
previous belief b;_;, previous action a;_;, and current
observation o;:

bi(s') =k > by (s)Pr(s']s, @) Pr(ofar, s') (1)
seS

where k denotes a normalizing constant. Hence, a pol-
icy 7 can also be represented as a mapping from beliefs
b, to actions a,. While this gets around the exponen-
tially large number of histories, the space of beliefs is
an |S| - 1-dimensional continuous space, which is also
problematic. However, a key result by Smallwood and
Sondik (1973) allows us to circumvent the continuous
nature of the belief space. But first, let us introduce value
functions and then discuss Smallwood and Sondik’s
solution.

Value Functions Given a set of policies, we need a
mechanism to evaluate and compare them. Roughly
speaking, the goal is to maximize the amount of reward

earned over time. This loosely defined criterion can
be formalized in several ways: one may wish to maxi-
mize total (accumulated) or average reward, expected or
worst-case reward, discounted or undiscounted reward.
The rest of this article assumes an expected total dis-
counted reward criterion, since it is by far the most
popular in the literature. We define the value V" (by)
of executing some policy 7 starting at belief b, to be the
expected sum of the discounted rewards earned at each
time step:

h
V™(by) = Z Y Z bi(s)R(s, (by)) (2)

t=0 seS

where 7(b;) denotes the action prescribed by policy 7 at
belief b;. A policy n* is optimal when its value function
V* is at least as high as any other policy for all beliefs
(ie, V*(b) > V*(b)VD).

As with policies, representing a value function can
be problematic because its domain is an (|S| - 1)-
dimensional continuous space corresponding to the
belief space. However, Smallwood and Sondik (1973)
showed that optimal value functions for finite-horizon
POMDPs are piecewise-linear and convex. The value
of executing a conditional plan from any state is con-
stant. If we do not know the precise underlying state,
but instead we have a belief corresponding to a distri-
bution over states, then the value of the belief is simply
a weighted average (according to b) of the values of the
possible states. Thus, the value function V() of a con-
ditional plan f is linear with respect to b. This means
that V¥ (b) can be represented by a vector aj of size |S|
such that V7 (b) = Z,b(s)ag(s).

For a finite horizon h, an optimal policy 7" con-
sists of the best conditional plans for each initial belief.
More precisely, the best conditional plan * for some
belief b is the one that yields the highest value: f* =
argmax, V#(b). Although there are uncountably many
beliefs, the set of h-step conditional plans is finite and
therefore an h-step optimal value function can be rep-
resented by a finite collection I"* of a-vectors. For infi-
nite horizon problems, the optimal value function may
require an infinite number of a-vectors.

Figure 4 shows an optimal value function for a
simple two-state POMDP. The horizontal axis repre-
sents the belief space and the vertical axis indicates the
expected total reward. Assuming the two world states

Partially Observable Markov Decision Processes

757

are s and 5, then a belief is completely determined by the
probability of s. Therefore, the horizontal axis represents
a continuum of beliefs determined by the probability
b(s). Each line in the graph is an a-vector, which corre-
sponds to the value function of a conditional plan. The
upper surface of those a-vectors is a piecewise-linear
and convex function corresponding to the optimal value
function V*(b) = max,epn a(b).

Note that an optimal policy can be recovered from
the optimal value function represented by a set T' of
a-vector. Assuming that an action is stored with each
a-vector (this would typically be the root action of the
conditional plan associated with each a-vector), then
the decision maker simply needs to look up the maxi-
mal a-vector for the current belief to retrieve the action.
Hence, value functions represented by a set of a-vectors,
each associated with an action, implicitly define a map-
ping from beliefs to actions.

Optimal value functions also satisfy Bellman’s equa-
tion

V"*(b) = max,R(b,a)+y Y. Pr(o’|b, a)V'"(6™) (3)

where R(b,a) = Zb(s)R(s,a), Pr(o'|b,a) = Z;¢b(s)
Pr(s'|s,a)Pr(0’|s’, a), and b* is the updated belief after
executing a and observing b according to Bayes theorem
(Eq. 1). Intuitively, this equation says that the optimal
value for h + 1 steps to go consists of the highest sum
of the current reward with the future rewards for the
remaining h steps. Since we do not know exactly what
rewards will be earned in the future, an expectation
(with respect to the observations) is used to estimate

— Optimal value function

e oy
]
=
o
5 %
L
o o
3 3
3

[09
L% 4

s

0 b(s) 1

Belief space

Partially Observable Markov Decision Processes. Figure 4.
Geometric view of value function

future rewards. For discounted infinite horizon prob-
lems, the optimal value function V* is a fixed point of
Bellman’s equation:

V*(b) = max,R(b,a) +y Y Pr(o'|b, a) V*(b)

There are two general classes of solution algorithms
to optimize a policy. The first class consists of online
algorithms that plan while executing the policy by grow-
ing a search tree. The second class consists of offline
algorithms that precompute a policy which can be exe-
cuted with minimal online computation. In practice, it
is best to combine online and offline techniques since
we may as well obtain the best policy possible in an
offline phase and then refine it with an online search at
execution time.

Forward Search Online search techniques generally
optimize a conditional plan for the current belief by
performing a forward search from that belief. They
essentially build an expecti-max search tree such that
expectations over observations and maximizations over
actions are performed in alternation. Figure 5 illustrates
such a tree for a two-step horizon (i.e., two alterna-
tions of actions and observations). An optimal policy is
obtained by computing the beliefs associated with each
node in a forward pass, followed by a backward pass
that computes the optimal value at each node. A recur-
sive form of this approach is described in Algorithm 1.

Expecti-max search tree

Stages to go

2

Partially Observable Markov Decision Processes. Figure 5.
Two-step expecti-max search tree

758

Partially Observable Markov Decision Processes

Algorithm 1 Forward Search

Algorithm 2 Value Iteration

Inputs: Belief b and horizon h
Outputs: Optimal value V*

if h = 0 then
V¥« 0
else

forall g, o do
b2’ (s') < kY, b(s)Pr(s'|s,a)Pr(o’|s, ') Vs’
V' < forward Search(b® ,h 1)
end for
V* « max, R(b,a) +y ¥, Pr(o’|b,a) V*
end if

Inputs: Horizon h
Outputs: Optimal value function I'"
I« {0}
fort=1to hdo
forallac A, (a,..
a’'(s) < R(s,a)+
Y o Pr(s’ls,a)Pr(o’|s’,a) ey (s)Vs
I« T'u{a}
end for

Qo)) € (11 do

end for

Beliefs are propagated forward according to Bayes the-
orem, while rewards are accumulated backward accord-
ing to Bellman’s equation.

Since the expecti-max search tree grows exponen-
tially with the planning horizon A, in practice, the com-
putation can often be simplified by pruning suboptimal
actions by branch and bound and sampling a small set
of observations instead of doing an exact expectation
(Ross et al., 2008). Also, the depth of the search can be
reduced by using an approximate value function at the
leaves instead of 0.

The value functions computed by offline techniques
can often be used for this purpose.

Value Iteration Value iteration algorithms form an
important class of offline algorithms that iteratively esti-
mate the optimal value function according to Bellman’s
equation (3). Most algorithms exploit the piecewise-
linear and convex properties of optimal value functions
to obtain a finite representation. In other words, opti-
mal value functions V" are represented by a set ' of
a-vectors that correspond to conditional plans. Algo-
rithm 2 shows how to iteratively compute I' by dynamic
programming for an increasing number of time
steps t.

Unfortunately, the number of a-vectors in each I'*
increases exponentially with |O| and doubly exponen-
tially with ¢. While several approaches can be used to
prune a-vectors that are not maximal for any belief,
the number of a-vectors still grows exponentially for
most problems. Instead, many approaches compute a
parsimonious set of a-vectors, which defines a lower

Algorithm 3 Point Based Value Iteration

Inputs: Horizon h and set of beliefs B
Outputs: Value function I
M « {0}
fort=1to hdo
forall b e 5 do
forallac A, o' e O do
b (') « k Z, b(s)Pr(s'|s,a)Pr(o|s', a) Vs’
a® argmaxalphaert_loc(b“",)
end for
a* < argmax, R(b,a) + yZoPr(0'|b,)’
o' (s)R(s,a) + yZy ¢ Pr(s'|s,a) Pr(o|s', a)
oy (s")Vs
I« T'u{a}
end for
end for

bound on the optimal value function. The class of point-
based value iteration (Pineau et al., 2006) algorithms
computes the maximal a-vectors only for a set B of
beliefs. Algorithm 2 describes how the parsimonious
set T of a-vectors associated with a given set B of
beliefs can be computed in time linear with h and
|O| by dynamic programming. Most point-based tech-
niques differ in how they choose B (which may vary
at each iteration), but the general rule of thumb is to
include beliefs reachable from the initial belief b since
these are the beliefs that are likely to be encountered at
execution time.

Policy Search Another important class of offline algo-
rithms consists of policy search techniques. These tech-
niques search for the best policy in a predefined space
of policies. For instance, finite state controllers are

Partially Observable Markov Decision Processes

759

a popular policy space due to their generality and
simplicity. The search for the best (stochastic) con-
troller of N nodes can be formulated as a non-convex
quadratically constrained optimization problem Amato
etal., 2007:

max »_ by(s) ao(s)
p.z 5 ,

st. ay(s) = > [Pr(aln) R(s, a)

— a4 S———

x y
+y > Pr(s|s,a)

s',o',n’

Pr(o'ls’,a) Pr(a,n'|n,0") a, (s)] Vs, n
—_— —— —
z X

Pr(a,n’|n,0") 20Va,n',n, o
[—
X

> Pr(a,n’|n,0) =1Vn,o0
n @ ———
z

> Pr(a,n’|n,0") = Pr(aln) Va,n,o
o —
z y
The variables of the optimization problem are

the a-vectors and the parameters of the controller
(Pr(a|n) and Pr(a, n’|n,0")). Here, Pr(a|n) is the action
distribution for each node n and Pr(a,n'|n,0’) =
Pr(a|n)Pr(n’|a, n,o') is the product of the action distri-
bution and successor node distribution for each n,0’-
pair. While there does not exist any algorithm that
reliably finds the global optimum due to the non-
convex nature of the problem, several techniques can be
used to find locally optimal policies, including sequen-
tial quadratic programming, bounded policy iteration,
expectation maximization, stochastic local search, and
gradient descent.

Although this entry assumes that states, actions, and
observations are defined by a single variable, multi-
ple variables can be used to obtain a factored POMDP
(Boutilier & Poole, 1996). As a result, the state, obser-
vation, and action spaces often become exponentially
large. Aggregation (Shani et al., 2008; Sim et al., 2008)
and compression techniques (Poupart & Boutilier,
2004; Roy et al., 2005) are then used to speed up compu-
tation. POMDPs can also be defined for problems with

continuous variables. The piecewise-linear and con-
vex properties of optimal value functions still hold in
continuous spaces, which allows value iteration algo-
rithms to be easily extended to continuous POMDPs
Porta et al., 2006. When a planning problem can nat-
urally be thought as a hierarchy of subtasks, hierarchical
POMDPs (Theocharous & Mahadevan, 2002; Pineau
et al., 2003; Toussaint et al., 2008) can be used to exploit
this structure.

In this article, we also assumed that the transition,
observation, and reward functions are known, but in
many domains they may be (partially) unknown and
therefore the decision maker needs to learn about them
while acting. This is a problem of reinforcement learn-
ing. While several policy search techniques have been
adapted to simultaneously learn and act (Meuleau et al.,
1999; Aberdeen & Baxter, 2002), it turns out that one
can treat the unknown parameters of the transition,
observation, and reward functions as hidden state vari-
ables, which lead to a Bayes-adaptive POMDP (Ross
et al,, 2007; Poupart & Vlassis, 2008). We also assumed
a single decision maker, however POMDPs have been
extended for multiagent systems. In particular, decen-
tralized POMDPs (Amato et al., 2009) can model mul-
tiple cooperative agents that share a common goal and
interactive POMDPs Gmytrasiewicz & Doshi, 2005 can
model multiple competing agents.

Cross References
» Markov Decision Process

Recommended Reading

Aberdeen, D., & Baxter, J. (2002). Scalable internal-state policy-
gradient methods for POMDPs. In International Conference on
Machine Learning, pp. 3-10.

Amato, C., Bernstein, D. S., & Zilberstein, S. (2009). Optimizing
fixed-size stochastic controllers for POMDPs and decentral-
ized POMDPs. Journal of Autonomous Agents and Multi-Agent
Systems, 21, 293-320.

Amato, C., Bernstein, D. S., & Zilberstein, S. (2007). Solving
POMDPs using quadratically constrained linear programs. In
International Joint Conferences on Artificial Intelligence, pp.
2418-2424.

Astrom, K. J. (1965). Optimal control of Markov decision processes
with incomplete state estimation. Journal of Mathematical Anal-
ysis and Applications, 10, 174-2005.

760

Particle Swarm Optimization

Boutilier, C., & Poole, D. (1996). Computing optimal policies for
partially observable decision processes using compact repre-
sentations. In Proceedings of the Thirteenth National Conference
on Artificial Intelligence, pp. 1168-1175

Buede, D. M. (1999). Dynamic decision networks: An approach for
solving the dual control problem. Cincinnati: Spring INFORMS.

Drake, A. (1962). Observation of a Markov Process through a noisy
channel. PhD thesis, Massachusetts Institute of Technology.

Hansen, E. (1997). An improved policy iteration algorithm for
partially observable MDPs. In Neural Information Processing
Systems, pp. 1015-1021.

Hauskrecht, M., & Fraser, H. S. F. (2010). Planning treatment of
ischemic heart disease with partially observable Markov deci-
sion processes. Artificial Intelligence in Medicine, 18, 221-244.

Hoey, J., Poupart, P.,, von Bertoldi, A., Craig, T., Boutilier, C., &
Mihailidis, A. (2010). Automated handwashing assistance for
persons with dementia using video and a partially observable
markov decision process. Computer Vision and Image Under-
standing, 114, 503-519.

Kaelbling, L. P., Littman, M., & Cassandra, A. (1998). Planning
and acting in partially observable stochastic domains. Artificial
Intelligence, 101, 99-134.

Meuleau, N., Peshkin, L., Kim, K.-E., & Kaelbling, L. P. (1999).
Learning finite-state controllers for partially observable envi-
ronments. In Uncertainty in Artificial Intelligence, pp. 427-436.

Pineau, J. & Gordon, G. (2005). POMDP planning for robust
robot control. In International Symposium on Robotics Research,
pp. 69-82.

Pineau, J., Gordon, G. J., & Thrun, S. (2003). Policy-contingent
abstraction for robust robot control. In Uncertainty in Artificial
Intelligence, pp. 477-484.

Pineau, J., Gordon, G., & Thrun, S. (2006). Anytime point-based
approximations for large pomdps. Journal of Artificial Intelli-
gence Research, 27, 335-380.

Piotr, J. (2005). Gmytrasiewicz and Prashant Doshi. A framework for
sequential planning in multi-agent settings. Journal of Artificial
Intelligence Research, 24, 49-79.

Porta, J. M., Vlassis, N. A, Spaan, M. T. J., & Poupart, P. (2006).
Point-based value iteration for continuous POMDPs. Journal of
Machine Learning Research, 7, 2329-2367.

Poupart, P., & Boutilier, C. (2004). VDCBPI: An approximate scal-
able algorithm for large POMDPs. In Neural Information Pro-
cessing Systems, pp. 1081-1088.

Poupart, P.,, & Vlassis, N. (2008). Model-based Bayesian reinforce-
ment learning in partially observable domains. In International
Symposium on Artificial Intelligence and Mathematics (ISAIM).

Puterman, M. L. (1994). Markov decision processes. New York: Wiley.

Rabiner, L. R. (1989). A tutorial on hidden markov models and
selected applications in speech recognition. Proceedings of the
IEEE, 77, 257-286.

Ross, S., Chaib-Draa, B., & Pineau, J. (2007). Bayes-adaptive
POMDPs. In Advances in Neural Information Processing Systems
(NIPS).

Ross, S., Pineau, J., Paquet, S., & Chaib-draa, B. (2008). Online plan-
ning algorithms for POMDPs. Journal of Artificial Intelligence
Research, 32, 663-704.

Roy, N., Gordon, G. J., & Thrun, S. (2005). Finding approximate
POMDP solutions through belief compression. Journal of Arti-
ficial Intelligence Research, 23, 1-40.

Shani, G., & Meek, C. (2009). Improving existing fault recovery
policies. In Neural Information Processing Systems.

Shani, G., Brafman, R. L., Shimony, S. E., & Poupart, P. (2008).
Efficient ADD operations for point-based algorithms. In Inter-
national Conference on Automated Planning and Scheduling, pp.
330-337.

Sim, H. S., Kim, K.-E., Kim, J. H., Chang, D.-S., & Koo, M.-W. (2008).
Symbolic heuristic search value iteration for factored POMDPs.
In Twenty-Third National Conference on Artificial Intelligence
(AAAI), pp. 1088-1093.

Smallwood, R. D., & Sondik, E. J. (1973). The optimal control of
partially observable Markov decision processes over a finite
horizon. Operations Research, 21,1071-1088.

Theocharous, G., & Mahadevan, S. (2002). Approximate planning
with hierarchical partially observable Markov decision process
models for robot navigation. In IEEE International Conference
on Robotics and Automation, pp. 1347-1352.

Thomson, B., & Young, S. (2010). Bayesian update of dialogue state:
A pomdp framework for spoken dialogue systems. Computer
Speech & Language, 24, 562-588.

Toussaint, M., Charlin, L., & Poupart, P. (2008). Hierarchical
POMDP controller optimization by likelihood maximization.
In Uncertainty in Artificial Intelligence, pp. 562-570.

[. e ...
Particle Swarm Optimization

JaAMES KENNEDY
U.S. Bureau of Labor Statistics
Washington, DC, USA

The Canonical Particle Swarm

The particle swarm is a population-based stochas-
tic algorithm for optimization which is based on
social-psychological principles. Unlike »evolutionary
algorithms, the particle swarm does not use selec-
tion; typically, all population members survive from the
beginning of a trial until the end. Their interactions
result in iterative improvement of the quality of problem
solutions over time.

A numerical vector of D dimensions, usually ran-
domly initialized in a search space, is conceptualized
as a point in a high-dimensional Cartesian coordinate
system. Because it moves around the space testing new
parameter values, the point is well described as a parti-
cle. Because a number of them (usually 10 < N < 100)
perform this behavior simultaneously, and because they
tend to cluster together in optimal regions of the search
space, they are referred to as a particle swarm.

Particle Swarm Optimization

761

Besides moving in a (usually) Euclidean problem
space, particles are typically enmeshed in a topologi-
cal network that defines their communication pattern.
Each particle is assigned a number of neighbors to
which it is linked bidirectionally.

The most common type of implementation defines
the particles’ behaviors in two formulas. The first adjusts
the velocity or step size of the particle, and the second
moves the particle by adding the velocity to its previous
position.

On each dimension d:

vf;”) « (xvf;) +U(0,B) (p,vd —xl.(;))

+U0,B) (pga - xi7) (1)
D) o
where i is the target particle’s index, d is the dimension,
X; is the particle’s position, ¥; is the velocity, p; is the best
position found so far by j, g is the index of i’s best neigh-
bor, a and f3 are constants, and U(0, §) is a uniform
random number generator.

Though there is variety in the implementations of
the particle swarm, the most standard version uses « =
0.7298 and = y/2, where v = 2.9922, following
an analysis published in Clerc and Kennedy (2002).
The constant « is called an inertia weight or constric-
tion coefficient, and B is known as the acceleration
constant.

The program evaluates the parameter vector of par-
ticle i in a function f(X) and compares the result to the
best result attained by i thus far, called pbest;. If the cur-
rent result is i’s best so far, the vector p; is updated with
the current position X;, and the previous best function
result pbest; is updated with the current result.

When the system is run, each particle cycles around
a region centered on the centroid of the previous bests
pi and pg; as these variables are updated, the particle’s
trajectory shifts to new regions of the search space, the
particles begin to cluster around optima, and improved
function results are obtained.

Classical social psychology theorists considered the
pursuit of cognitive consistency to be an important moti-
vation for human behavior (Abelson et al., 1968; Fes-
tinger, 1957; Heider, 1958). Cognitive elements might

have emotional or logical aspects to them which could
be consistent or inconsistent with one another; sev-
eral theorists identified frameworks for describing the
degree of consistency and described the kinds of pro-
cesses that an individual might use to increase consis-
tency or balance, or decrease inconsistency or cognitive
dissonance.

Contemporary social and cognitive psychologists
frequently cast these same concepts in terms of con-
nectionist principles. Cognitive elements are conceptu-
alized as a network with positive and negative vertices
among a set of nodes. In some models, the elements are
given and the task is to reduce error by adjusting the
signs and values of the connections between them, and
in other models the connections are given and the goal
of optimization is to find activation values that maxi-
mize coherence (Thagard, 2000), harmony (Smolensky,
1986), or some other measure of consistency. Typically,
this optimization is performed by gradient-descent pro-
grams which psychologically model processes that are
private to the individual and are perfectly rational, that
is, the individual always decreases error or increases
consistency among elements. The particle swarm sim-
ulates the optimization of these kinds of structures
through social interaction; it is commonly observed, not
only in the laboratory but in everyday life, that a person
faced with a problem typically solves it by talking with
other people.

A direct precursor of the particle swarm is seen in
Nowak, Szamrej, and Latané’s (1990) cellular automaton
simulation of social impact theory’s predictions about
interaction in human social populations. Social impact
theory predicted that an individual was influenced to
hold an attitude or belief in proportion to the Strength,
Immediacy, and Number of sources of influence hold-
ing that position, where Strength was a measure of the
persuasiveness or prestige of an individual, Immedi-
acy was their proximity, and Number was literally the
number of sources of influence holding a particular
attitude or belief. In the simulation, individuals iter-
atively interacted, taking on the prevalent state of a
binary attitude in their neighborhood, until the system
reached equilibrium.

The particle swarm extends this model by suppos-
ing that various states can be evaluated, for instance,
that different patterns of cognitive elements may be
more or less dissonant; it assumes that individuals hold

762

Particle Swarm Optimization

more than one attitude or belief, and that they are
not necessarily binary; and Strength is replaced with a
measure of self-presented success. One feature usually
found in particle swarms and not in the paper by Nowak
et al. is the phenomenon of persistence or momen-
tum, the tendency of an individual to keep changing
or moving in the same direction from one time-step to
the next.

Thus, the particle swarm metaphorically represents
the interactions of a number of individuals, none know-
ing what the goal is, each knowing its immediate state
and its best performance in the past, each presenting its
neighbors with its best success-so-far at solving a prob-
lem, each functioning as both source and target of influ-
ence in the dynamically evolving system. As individuals
emulate the successes of their neighbors, the population
begins to cluster in optimal regions of a search space,
reliably discovering good solutions to difficult problems
featuring, for instance, nonlinearity, high dimension,
deceptive gradients, local optima, etc.

Several kinds of topologies have been most widely used
in particle swarm research; the topic is a current focus
of much research. In the gbest topology, the popula-
tion is conceptually fully connected; every particle is
linked to every other. In practice, with the best neigh-
bor canonical version, this is simpler to implement than
it sounds, as it only means that every particle receives
influence from the best performing member of the
population.

The Ibest topology of degree K; comprises a ring
lattice, with the particle linked to its K; nearest
neighbors on both sides in the wrapped population
array.

Another structure commonly used in particle
swarm research is the von Neumann or “square” topol-
ogy. In this arrangement, the population is laid out in
rows and columns, and each individual is connected
to the neighbors above, below, and on each side of it
in the toroidally wrapped population. Numerous other
topologies have been used, including random (Sugan-
than, 1999), hierarchical (Janson & Middendorf, 2005),
and adaptive ones (Clerc, 2006).

The most important effect of the population topol-
ogy is to control the spread of proposed problem solu-
tions through the population. As a particle finds a good

region of the search space, it may become the best
neighbor to one of the particles it is connected to.
That particle then will tend to explore in the vicinity
of the first particle’s success, and may eventually find
a good solution there, too; it could then become the
best neighbor to one of its other neighbors. In this way,
information about good regions of the search space
migrates through the population.

When connections are parallel, e.g., when the mean
degree of particles is relatively high, then information
can spread quickly through the population. On uni-
modal problems this may be acceptable, but where
there are local optima there may be a tendency for
the population to converge too soon on a subopti-
mal solution. The gbest topology has repeatedly been
shown to be vulnerable to the lure of locally optimal
attractors.

On the other hand, where the topology is sparse, as
in the Ibest model, problem solutions spread slowly, and
subpopulations may search diverse regions of the search
space in parallel. This increases the probability that the
population will end up near the global optimum. It also
means that convergence will be slower.

The particle swarm has evolved very much since it
was first reported by Kennedy and Eberhart (1995) and
Eberhart and Kennedy (1995). Early versions required a
system constant Vimax to limit the velocity. Without this
limit, the particles’ trajectories would swing wildly out
of control.

Following presentation of graphical representa-
tions of a deterministic form of the particle swarm
by Kennedy (1998), early analyses by Ozcan and
Mohan (1999) led to some understanding of the nature
of the particles trajectory. Analytical breakthroughs
by Clerc (reported in Clerc and kennedy (2002)),
and empirical discoveries by Shi and Eberhart (1998),
resulted in the application of the a constant in concert
with appropriate values of the acceleration constant f.
These parameters brought the particle under control,
allowed convergence under appropriate conditions, and
made Vmax unnecessary. It is still used sometimes, set
to very liberal values such as a half or third of the ini-
tialization range of a variable for more efficient swarm
behavior, but it is not necessary.

Particle Swarm Optimization

763

Step size in the particle swarm is inherently scaled to
consensus among the particles. A particle goes in one
direction on each dimension until the sign of its veloc-
ity is reversed by the accumulation of (p — x) differ-
ences; then it turns around and goes the other way.
As it searches back and forth, its oscillation on each
dimension is centered on the mean of the previous bests
(pia+Pga) /2, and the standard deviation of the distribu-
tion of points that are tested is scaled to the difference
between them. In fact this function is a very simple
one: the standard deviation of a particle’s search, when
pia and pgg are constants, is approximately |(pia — pga)!-
This means that when the particles’ previous best points
are far from one another in the search space, the par-
ticles will take big steps, and when they are nearer the
particles will take little steps.

Over time, this usually means that exploring behav-
ior is seen in early iterations and exploiting behavior
later on as particles come to a state of consensus. If
it happens, however, that a particle that has begun to
converge in one part of the search space receives infor-
mation about a good region somewhere else, it can
return to the exploratory mode of behaving.

Mendes (2004) reported a version of swarm that fea-
tured an alternative to the best neighbor strategy. While
the canonical particle is influenced by its own previous
success and the previous success of its best neighbor,
the fully informed particle swarm (FIPS) allowed influ-
ence by all of a particle’s neighbors. The acceleration
constants were set to f = /2 in the traditional ver-
sion; it was defined in this way because what mattered
was their sum, which could be distributed among any
number of difference terms. In the standard algorithm
there were two of them, and thus the sum was divided
by 2. In FIPS a particle of K; degree has coefficients
B =v/Ki.

The FIPS particle swarm removed two aspects that
were considered standard features of the algorithm.
First of all, the particle i no longer influenced itself
directly, e.g., there is no p; in the formula. Second, the
best neighbor is now averaged in with the others; it was
not necessary to compare the successes of all neighbors
to find the best one.

Mendes found that the FIPS swarm was more sen-
sitive than the canonical versions to the differences in
topology. For instance, while in the standard versions
the fully connected gbest topology meant influence
by the best solution known to the entire population,
in FIPS gbest meant that the particle was influenced
by a stochastic average of the best solutions found by
all members of the population; the result tended to
be near-random search.

The lesson to be learned is that the meaning of a
topology depends on the mode of interaction. Topo-
logical structure (and Mendes tested more than 1,340
of them) affects performance, but the way it affects the
swarm’s performance depends on how information is
propagated from one particle to another.

Generalizing the Notation

Equation 2 above shows that the position is derived
from the previous iteration’s position plus the current
iteration’s velocity. By rearranging the terms, it can be
shown that the current iteration’s velocity Dfm) is the
difference between the new position and the previous
one: ﬁfm) = fci(m) - Icft). Since this happened on the
previous time-step as well, it can be shown that th) =
Fcft) - ?ci(t_l); this fact makes it possible to combine the
two formulas into one:

g e v (5 - xG)
|4
+>U (0, E) (Pkd - xl.(;)) (3)

where K; is the degree of node i, k is the index of i’s kth
neighbor, and adapting Clerc’s (Clerc & Kennedy, 2002)
scheme « = 0.7298 and y = 2.9922.

In the canonical best neighbor particle swarm, K; =
2,Vi:i=12,...,Nandk € (i,g), that is, k takes the
values of the particle’s own index and its best neighbor’s
index. In FIPS, K; may vary, depending on the topology,
and k takes on the indexes of each of i’s neighbors. Thus,
Eq.3 is a generalized formula for the trajectories of the
particles in the particle swarm.

This notation can be interpreted verbally as:

NEW POSITION = CURRENT POSITION
+ PERSISTENCE
+ SOCIAL INFLUENCE = (4)

764

Particle Swarm Optimization

That is, on every iteration, every particle on every
dimension starts at the point it last arrived at, persists
some weighted amount in the direction it was previ-
ously going, then makes some adjustments based on the
differences between the best previous positions of its
sources of influence and its own current position in the
search space.

The Evolving Paradigm

The particle swarm paradigm is young, and investiga-
tors are still devising new ways to understand, explain,
and improve the method. A divergence or bifurcation
of approaches is observed: some researchers seek ways
to simplify the algorithm (Owen & Harvey, 2007; Pefia,
Upegui, & Eduardo Sanchez, 2006), to find its essence,
while others improve performance by adding features
to it, e.g., (Clerc, 2006). The result is a rich unfolding
research tradition with innovations appearing on many
fronts.

Although the entire algorithm is summarized in
one simple formula, it is difficult to understand how
it operates or why it works. For instance, while the
Social Influence terms point the particle in the direction
of the mean of the influencers’ successes, the Persis-
tence term offsets that movement, causing the particle to
bypass what seems to be a reasonable target. The result
is a spiral-like trajectory that goes past the target and
returns to pass it again, with the spiral tightening as
the neighbors come to consensus on the location of the
optimum.

Further, while authors often talk about the parti-
cle’s velocity carrying it “toward the previous bests,” in
fact the velocity counterintuitively carries it away from
the previous bests as often as toward them. It is more
accurate to say the particle “explores around” the pre-
vious bests, and it is hard to describe this against-the-
grain movement as “gradient descent,” as some writers
would like.

It is very difficult to visualize the effect of ever-
changing sources of influence on a particle. A different
neighbor may be best from one iteration to the next;
the balance of the random numbers may favor one or
another or some compromise of sources; the best neigh-
bor could remain the same one, but may have found a
better p; since the last turn; and so on. The result is that

the particle is pulled and pushed around in a complex
way, with many details changing over time.

The paradoxical finding is that it is best not to
give the particle information that is too good, espe-
cially early in the search trial. Premature convergence
is the result of amplified consensus resulting from too
much communication or overreliance on best neigh-
bors, especially the population best. Various researchers
have proposed ways to slow the convergence or cluster-
ing of particles in the search space, such as occasional
reinitialization or randomization of particles, repelling
forces among them, etc., and these techniques typically
have the desired effect. In many cases, however, implicit
methods work as well and more parsimoniously; the
effect of topology on convergence rate has been men-
tioned here, for instance.

A binary particle swarm 1is easily created by treating
the velocity as a probability threshold (Kennedy &
Eberhart, 1997). Velocity vector elements are squashed
in a sigmoid or other function, for instance S(v) = 1/(1+
exp(-v)), producing a result in (0..1). A random num-
ber is generated and compared to S(v;4) to determine
whether x;; will be a 0 or a 1. Though discrete systems
of higher cardinality have been proposed, it is difficult
to define such concepts as distance and direction in a
meaningful way within nominal data.

As was noted above, the particle’s search is centered
around the mean of the previous bests that influence it,
and its variance is scaled to the differences among them.
This has suggested to several researchers that perhaps
the trajectory formula can be replaced, wholly or partly,
by some type of random number generator that directly
samples the search space in a desirable way.

Kennedy (2003) suggested simple Gaussian sam-
pling, using a random number generator (RNG)
G(mean,s.d.) with the mean centered between p; and
Pg> and with the standard deviation defined on each
dimension as s.d. = |(pia — pga)|. This “bare bones”
particle swarm eliminated the velocity component; it
performed rather well on a set of test functions, but not
as well as the usual version.

Particle Swarm Optimization

765

Krohling (2004) simply substituted the absolute val-
ues of Gaussian-distributed random numbers for the
uniformly distributed values in the canonical parti-
cle swarm. He and his colleagues have had success on
a range of problems using this approach. Richer and
Blackwell (2006) replaced the Gaussian distribution of
bare bones with a Lévy distribution. The Lévy distri-
bution is bell-shaped like the Gaussian but with fatter
tails. It has a parameter o which allows interpolation
between the Cauchy distribution (« = 1) and Gaussian
(a = 2) and can be used to control the fatness of the
tails. In a series of trials, Richer and Blackwell (2006)
were able to emulate the performance of a canonical
particle swarm using & = 1.4. Kennedy (2005) used a
Gaussian RNG for the social influence term of the usual
formula, keeping the “persistence” term found in the
standard particle swarm. Variations on this format pro-
duced results that were competitive with the canonical
version.

Numerous other researchers have begun exploring
ways to replicate the overall behavior of the particle
swarm by replacing the traditional formulas with alter-
native probability distributions. Such experiments help
theorists understand what is essential to the swarm’s
behavior and how it is able to improve its performance
on a test function over time.

Simulation of the canonical trajectory behavior with
RNGs is a topic that is receiving a great deal of atten-
tion at this time, and it is impossible to predict where
the research is leading. As numerous versions have been
published showing that the trajectory formulas can be
replaced by alternative strategies for selecting a series of
points to sample, it becomes apparent that the essence
of the paradigm is not to be found in the details of the
movements of the particles, but in the nature of their
interactions over time, the structure of the social net-
work in which they are embedded, and the function
landscape with which they interact, with all these fac-
tors working together gives the population the ability to
find problem solutions.

Recommended Reading

Abelson, R. P, Aronson, E., McGuire, W. J., Newcomb, T. M.,
Rosenberg, M. J., & Tannenbaum, R. H. (Eds.), (1968). Theories
of cognitive consistency: A sourcebook. Chicago: Rand McNally.

Clerc, M. (2006). Particle swarm optimization. London: Hermes
Science Publications.

Clerc, M., & Kennedy, J. (2002). The particle swarm: Explo-
sion, stability, and convergence in a multi-dimensional com-
plex space. IEEE Transactions on Evolutionary Computation, 6,
58-73.

Eberhart, R.C., & Kennedy, J. (1995). A new optimizer using
particle swarm theory. In Proceedings of the 6th interna-
tional symposium on micro machine and human science,
(Nagoya, Japan) (pp. 39-43). Piscataway, NJ: IEEE Service
Center.

Festinger, L. (1957). A theory of cognitive dissonance. Stanford, CA:
Stanford University Press.

Heider, F. (1958). The psychology of interpersonal relations. New
York: Wiley.

Janson, S., & Middendorf, M. (2005). A hierarchical particle swarm
optimizer and its adaptive variant. I[EEE Transactions on Sys-
tems, Man, and Cybernatics - Part B: Cybernatics, 35(6), 1272
1282.

Kennedy, J. (1998). The behavior of particles. In V. W. Porto,
N. Saravanan, D. Waagen, & A. E. Eiben (Eds.), Evolutionary
programming VII. Proceedings of the 7th annual conference on
evolutionary programming.

Kennedy, J. (2003). Bare bones particle swarms. In Proceedings of
the IEEE swarm intelligence symposium (pp. 80-87). Indianapo-
lis, IN.

Kennedy, J. (2005). Dynamic-probabilistic particle swarms. In Pro-
ceedings of the genetic and evolutionary computation conference
(GECCO-2005) (pp. 201-207). Washington, DC.

Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization.
In Proceedings of the 1995 IEEE international conference on neu-
ral networks (Perth, Australia) (pp. 1942-1948). Piscataway, NJ:
IEEE Service Center.

Kennedy, J., & Eberhart, R. C. (1997). A discrete binary version
of the particle swarm algorithm. In Proceedings of the 1997
conference on systems, man, and cybernetics (pp. 4104-4109).
Piscataway, NJ: IEEE Service Center.

Krohling, R. A. (2004). Gaussian Swarm. A novel particle
swarm optimization algorithm. Proceedings of the 2004 IEEE
conference on cybernetics and intelligent systems (vol. 1,
pp. 372-376).

Mendes, R. (2004). Population topologies and their influence in parti-
cle swarm performance. Doctoral thesis, Escola de Engenharia,
Universidade do Minho, Portugal.

Nowak, A., Szamrej, J., & Latané, B. (1990). From private atti-
tude to public opinion: A dynamic theory of social impact.
Psychological Review, 97, 362-376.

Owen, A., & Harvey, I. (2007). Adapting particle swarm optimisation
for fitness landscapes with neutrality. In Proceedings of the 2007
IEEE swarm intelligence symposium (pp. 258-265). Honolulu,
HI: IEEE Press.

Ozcan, E., & Mohan, C. K. (1999). Particle swarm optimization:
Surfing the waves. In Proceedings of the congress on evolution-
ary computation, Mayflower hotel, Washington D.C. (pp. 1939-
1944). Piscataway, NJ: IEEE Service Center.

Pena, J., Upegui, A., & Eduardo Sanchez, E. (2006). Particle swarm
optimization with discrete recombination: An online optimizer
for evolvable hardware. In Proceedings of the 1st NASA/ESA
conference on adaptive hardware and systems (AHS-2006),
Istanbul, Turkey (pp. 163-170). Piscataway, NJ: IEEE Service
Center.

766

Partitional Clustering

Richer, T. J., & Blackwell, T. M. (2006). The Levy particle swarm.
In Proceedings of the 2006 congress on evolutionary computation
(CEC-2006). Piscataway, NJ: IEEE Service Center.

Shi, Y., & Eberhart, R. C. (1998). Parameter selection in particle
swarm optimization. In Evolutionary Programming VII: Proc.
EP98 (pp. 591-600). New York: Springer.

Smolensky, P. (1986). Information processing in dynamical sys-
tems: Foundations of harmony theory. In D. E. Rumelhart,
J. L. McClelland, & the PDP Research Group, (Eds.), Paral-
lel distributed processing: Explorations in the microstructure of
cognition. Vol. 1, Foundations (pp. 194-281). Cambridge, MA:
MIT Press.

Suganthan, P. N. (1999). Particle swarm optimisation with a neigh-
bourhood operator. In Proceedings of congress on evolutionary
computation. Washington DC, USA.

Thagard, P. (2000). Coherence in thought and action. Cambridge,
MA: MIT Press.

[. .
Partitional Clustering

XIN JIN, JTAWEI HAN
University of Illinois at Urbana-Champaign
Urbana, IL, USA

Definition
Partitional clustering decomposes a data set into
a set of disjoint clusters. Given a data set of N
points, a partitioning method constructs K (N >K)
partitions of the data, with each partition repre-
senting a cluster. That is, it classifies the data into
K groups by satisfying the following requirements:
(1) each group contains at least one point, and (2) each
point belongs to exactly one group. Notice that for fuzzy
partitioning, a point can belong to more than one group.
Many partitional clustering algorithms try to min-
imize an objective function. For example, in K-means
and K-medoids the function (also referred to as the
distortion function) is

ICi|
Dist(x;, center(7)), (1)

M=

1

=1

Il
—_
-

where |C;| is the number of points in cluster i,
Dist(x;, center(i)) is the distance between point x; and
center i. Many distance functions can be used, such as
Euclidean distance and L; norm.

The following entries describe several representative
algorithms for partitional data clustering - »K-means

clustering, »K-medoids clustering, »Quality Thresh-
old Clustering, »Expectation Maximization Cluster-
ing, »mean shift, »Locality Sensitive Hashing Based
Clustering, and »K-way Spectral Clustering. In the
K-means algorithm, each cluster is represented by
the mean value of the points in the cluster. For the
K-medoids algorithm, each cluster is represented by
one of the points located near the center of the clus-
ter. Instead of setting cluster number K, the Quality
Threshold algorithm uses the maximum cluster diam-
eter as a parameter to find clusters with guaranteed
quality. Expectation Maximization clustering performs
expectation-maximization analysis based on statistical
modeling of the data distribution, and it has more
parameters. Mean Shift is a nonparameter algorithm to
find any shape of clusters using density estimator. Local-
ity Sensitive Hashing performs clustering by hashing
similar points to the same bin. K-way spectral cluster-
ing represents the data as a graph and performs graph
partitioning to find clusters.

Recommended Reading

Han, J., & Kamber, M. (2006). Data mining: Concepts and techniques
(2nd ed.). San Francisco: Morgan Kaufmann Publishers.

' Passive Learning

A wppassive learning system plays no role in the selec-
tion of its Ptraining data. Passive learning stands in
contrast to P-active learning.

' PCA

» Principal Component Analysis

' PCFG

» Probabilistic Context-Free Grammars

Phase Transitions in Machine Learning

767

' Phase Transitions in Machine
Learning

LORENZA SAITTA!, MICHELE SEBAG®
"Universita del Piemonte Orientale, Alessandria, Italy
2CNRS - INRIA - Université Paris-Sud, Orsay, France

Synonyms
Statistical Physics of learning; Threshold phenomena in
learning; Typical complexity of learning

Definition

Phase transition (PT) is a term originally used in physics
to denote the transformation of a system from a lig-
uid, solid, or gas state (phase) to another. It is used, by
extension, to describe any abrupt and sudden change
in one of the order parameters describing an arbitrary
system, when a control parameter approaches a critical
value (While early studies on PTs in computer science
inverted the notions of order and control parameters,
this article will stick to the original definition used in
Statistical Physics.).

Far from being limited to physical systems, PTs
are ubiquitous in sciences, notably in computational
science. Typically, hard combinatorial problems dis-
play a PT with regard to the probability of exis-
tence of a solution. Note that the notion of PT can-
not be studied in relation to single-problem instances:
it refers to emergent phenomena in an ensemble of
problem instances, governed by a given probability
distribution.

Motivation and Background

Cheeseman, Kanefsky, and Taylor (1991) were most
influential in starting the study of PTs in Artificial Intel-
ligence, experimentally showing the presence of a PT
containing the most difficult instances for various NP-
complete problems. Since then, the literature flourished
both in breadth and depth, witnessing an increasing
transfer of knowledge and results between Statistical
Physics and Combinatorics.

As far as machine learning (ML) can be formulated
as a combinatorial optimization problem (Mitchell,
1982), it is no surprise that PTs emerge in many of
its facets. Early results have been obtained in the field
of relational learning, either logic- (Botta, Giordana,

Saitta, & Sebag, 2003; Giordana & Saitta, 2000) or
kernel- (Gaudel, Sebag, & Cornuéjols, 2008) based. PTs
have been studied in Neural Networks (Demongeot &
Sené, 2008; Engel & Van den Broeck, 2001), Grammati-
cal inference (Cornuéjols & Sebag, 2008), propositional
classification (Baskiotis & Sebag, 2004; Riickert & De
Raedt, 2008), and sparse regression (Donoho & Tanner,
2005).

Two main streams of research work emerge from
the study of PT in computational problems. On the
one hand, locating the PT enables to generate very dif-
ficult problem instances, most relevant to benchmark
and comparatively assess new algorithms. On the other
hand, PT studies stimulate the analysis of algorith-
mic typical case complexity, as opposed to the standard
worst-case analysis of algorithmic complexity. It is well
known that while many algorithms require exponential
resources in the worst case, they are effective for a vast
majority of problem instances. Studying their typical
runtime thus makes sense in a probabilistic perspective
(The typical runtime not only reflects the most proba-
ble runtime; overall, the probability of deviating from
this typical complexity goes to 0 as the problem size
increases.).

Relational Learning

In a seminal paper, Mitchell characterized ML as a
search problem (Mitchell, 1982). Much attention has
ever since been devoted to every component of a search
problem: the search space, the search goal, and the
search engine.

The search space H reflects the language £ chosen
to express the target knowledge, termed »hypothesis
language. The reader is referred to other entries of the
encyclopedia (> Attribute-value representation, P First-
order logic, ™ Relational learning, and »Inductive Logic
Programming) for a comprehensive presentation of the
hypothesis languages and related learning approaches.

Typically, a learner proceeds iteratively: given aset £
of examples labeled after a target concept w, the learner
maintains a list of candidate hypotheses, assessing their
completeness (the proportion of positive examples they
cover) and their consistency (the proportion of nega-
tive examples they do not cover) using a »-covering test.
The covering test, checking whether some hypothesis
h covers some example e, thus is a key component of

768

Phase Transitions in Machine Learning

the learning process, launched a few hundred thou-
sand times in each learning run on medium-size
problems.

While in propositional learning the covering test is
straightforward and computationally efficient, in First-
Order Logics one must distinguish between learning
from interpretation (h covers a set of facts e iff e is a
model for h) and learning from entailment (h covers
a clause e iff h entails e) (De Raedt, 1997). A correct
but incomplete covering test, the »0-subsumption test
defined by Plotkin (1970) is most often used for its
decidability properties, and much attention has been
paid to optimizing it (Maloberti & Sebag, 2004).

As shown by Giordana and Saitta (2000), the
0-subsumption test is equivalent to a constraint satis-
faction problem (CSP). A finite CSP is a tuple (X, R,
D), where X = {x;,...x,} is a set of variables, R =
{Ry,...R.} is a set of constraints (relations), and D is
the variable domain. Each relation R, involves a sub-
set of variables x;,...,x; in X; it specifies all tuples
of values (a;,,...,a;) in D¥ such that the assignment
([xi, = ay] A ... A[x;, = a;]) satisfies R,. A CSP is
satisfiable if there exists a tuple (ay,...,a,) € D" such
that the assignment ([x; = a;],i = 1,...,n) satisfies all
relations in R. Solving a CSP amounts to finding such a
tuple (solution) or showing that none exists.

Psol

100

50

(@)
Phase Transitions in Machine Learning. Figure 1. PT of the covering test (h, e) versus the number m of predicates in h
and the number L of constants in e. The number n of variables is set to 10 and the number N of literals per predicate is
set t0 100. (a) Percentage of times the covering test succeeds. (b) Runtime of the covering test, averaged over 100 pairs
(h, e) independently generated for each pair (m, L)

The probability for a random CSP instance to be sat-
isfiable shows a PT with respect to the constraint density
(control parameter p; = ﬁ) and constraint tight-
ness (p = 1- L—I\;), where N denotes the cardinality of
each constraint (assumed to be equal for all constraints)
and L is the number of constants in the example (the
universe).

The relational covering test being a CSP, a PT was
expected; it has been confirmed from ample empirical
evidence (Botta, Giordana, & Saitta, 1999; Giordana &
Saitta, 2000). The order parameter is the probability for
hypothesis h to cover example e; the control parame-
ters are the number m of predicates and the number n
of variables in 4, on the one hand, and the number N of
literals built on each predicate symbol (relation) and the
number L of constants in example e, on the other hand.
As shown in Fig. la, the covering probability is close
to 1 (YES region) when F is general comparatively to e;
it abruptly decreases to 0 (NO region) as the number
m of predicates in h increases and/or the number L of
constants in e decreases. In the PT region a high peak
of empirical complexity of the covering test is observed
(Fig. 1b).

The PT of the covering test has deep and far reach-
ing effects on relational learning. By definition, non-
trivial hypotheses (covering some examples but not all)

10000

5000

(b)

Phase Transitions in Machine Learning

769

mostly belong to the PT region. The learner, searching
for hypotheses covering the positive and rejecting the
negative examples, is bound to explore this region and
thus cannot avoid the associated computational cost.
More generally, the PT region acts as an attractor for any
learner aimed at complete and consistent hypotheses.

Secondly, top-down learners are bound to traverse
the plateau of overly general hypotheses (YES region)
before arriving at the PT region. In the YES region, as all
hypotheses cover most examples, the learner does not
have enough information to make relevant choices; the
chance of gradually arriving at an accurate description
of the target concept thus becomes very low. Actually,
a blind spot has been identified close to the PT (Botta
et al., 2003): when the target concept lies in this region
(relatively to the available examples) every state-of-the-
art top-down relational learner tends to build random
hypotheses, that is, the learned hypotheses behave like
random guessing on the test set (Fig 2).

This negative result has prompted the design of new
relational learners, aimed at learning in the PT region
and using either prior knowledge about the size of the
target concept (Ales Bianchetti, Rouveirol, & Sebag,
2002) or near-miss examples (Alphonse & Osmani,
2008).

Relational Kernels and MIL Problems

Relational learning has been revisited through the so-
called kernel trick (Cortes & Vapnik, 1995), first pio-
neered in the context of »Support Vector Machines.
Relational kernels, inspired from Haussler’s convolu-
tional kernels (Haussler, 1999), have been developed
for, e.g., strings, trees, or graphs. For instance, K(x,x")
might count the number of patterns shared by relational
structures x and x’. Relational kernels thus achieve
a particular type of Ppropositionalization (Kramer,

] 1 1 Ll 1 45
U
Y
o
! 1
Ly 140
vk e+ +. +
L o +++++ . ++
H4 ++ +++ ++ o+
b L+ + + +
FlE 0+ ++ + 4+ .+ 4+ - 35
i Bt O S S R A
e R T S T e i
r+ ., .+ + + + + + +
5+ + .+ o+ 4.+
B o ++ . o+ + o+ + -30
P d .+ +++ + 4+ + o+
Moo de & > + ool e o + L
+M 0+ 4+ o+
HU e o+ 0+t
R 5 . I e 125
+ 4+ k. : + ++ 4+ + A+ ++
" ++++ . ++++++++
Eo N ek + ++ L+ o+
+ + N5 % 5 B T
o L F L. 4+ + . . +.420
+ 4+ . T +++ .+ o+ + .
~ g 4
fss Mg Catb. @ E : i
£ F e Bp Taee Yo o 5 .+
+ o+ 4+ T T e L :
-+ ol e AT S Tl TR .15
+ + + 4+ 4+ TN TS TS e ..
+ E + + . + R N e o s e
+ 4+ + o+ + + 4+ il o A S R
1 1 1 1 1 10
5 10 15 20 25 30
m

Phase Transitions in Machine Learning. Figure 2. Competence map of FOIL versus number m of predicates in the target
concept and number L of constants in the examples. The target concept involves n = 4 variables and each example
contains N = 100 literals built on each predicate symbol. For each pair (m, L), a target concept w has been generated
independently, balanced 200-example training and test sets have been generated and labeled after w. FOIL has been
launched on the training set and the predictive accuracy of the hypothesis has been assessed on the test set. Symbol

“—" indicates a predictive accuracy greater than 90%; symbol “—

random guessing)

”

indicates a predictive accuracy close to 50% (akin

770

Phase Transitions in Machine Learning

Lavrac, & Flach, 2001), mapping every relational exam-
ple onto a propositional space defined after the training
examples.

The question of whether relational kernels enable
avoiding the PT faced by relational learning, described
in the previous section, was investigated by Gaudel,
Sebag, and Cornuéjols (2007), focusing on the so-
called »multi-instance learning (MIL) setting. The
MIL setting, pioneered by Dietterich, Lathrop, and
Lozano-Perez (1997), is considered to be the “missing
link” between relational and propositional learning (De
Raedt, 1998).

Formally, an MI example x is a bag of (propositional)
instances noted x(l), e x(N), where x(/) € R?. In the
original MI setting (Dietterich et al., 1997), an exam-
ple is labeled positive iff it includes at least one instance
satisfying some target concept C:

pos(x)iff Jiel...Ns.t. C(xM).

More generally, in application domains such as image
categorization, the example label might depend on the
properties of several instances:

pos(x)iff Vj=1...m, Jijel...Ns.t. Cj(x(if)).

In this more general setting, referred to as presence-
based setting, it has been shown that MIL kernels do
have a PT too (Gaudel et al., 2007).

Let us consider bag kernels K, built on the top of
propositional kernels k on R? as follows, where x =
(x,..,xM™M)andxp = (' D,...,x’ X)) denote two
MI examples:

!/

N N
K(xx) =f(x) ()3 S k(x®,)y @

k=1 ¢=1

where f(x) corresponds to a normalization term, e.g.,
f(x) =lor1/N or1/\/K(x,x).

By construction, such MI-kernels thus consider the
average similarity among the example instances while
relational learning is usually concerned with finding
existential concepts.

After Botta et al. (2003) and Giordana and Saitta
(2000), the competence of MI-kernels was experimen-
tally assessed using artificial problems. Each problem
involves m sub-concept s C;: a given sub-concept corre-
sponds to a region of the d-dimensional space, and it is
satisfied by an MI example x if at least one instance in x
belongs to this region. An instance is said to be relevant
if it belongs to some C; region.

Let n (respectively n’) denote the number of relevant
instances in positive (respectively negative) examples.
Let further 7 denote the number of sub-concept s not
satisfied by negative examples (by definition, a positive
example satisfies all sub-concept s).

Ample empirical investigations (Gaudel et al., 2007)
show that:

e The n = n’ region is a failure region, where hypothe-
ses learned by relational MI-SVMs do no better than
random guessing (Fig 3). In other words, while MI-
SVMs grasp the notion of relevant instances, they
still fail in the “truly relational region” where positive
and negative examples only differ in the distribution
of the relevant instances.

e The width of the failure region increases as 7
increases, i.e., when fewer sub-concept s are satis-
fied by negative examples. This unexpected result
is explained from the variance of the kernel-
based propositionalization: the larger 7, the more
the distribution of the positive and negative pro-
positionalized examples overlap, hindering the
discrimination.

100
0.5
80 0.4
0.3
60 0.2
= 0.1
40 0

20

0
30 40 50 60 70 80 90 100
n
Phase Transitions in Machine Learning. Figure 3. MI-
SVM Failure Region in the (n, n’) plane. Each (n, n’) point
reports the test error, averaged on 40 artificial problems

Phase Transitions in Machine Learning

77

Propositional Learning and Sparse Coding
Interestingly, the emergence of a PT is not limited
to relational learning. In the case of (Context Free)
» Grammar induction for instance (Cornuéjols & Sebag,
2008), the coverage of the candidate grammar was
found to abruptly go to 1 along (uniform) generaliza-
tion, as depicted in Fig. 4.

Propositional learning also displays some PTs both
in the classification (Baskiotis & Sebag, 2004; Riickert
& De Raedt, 2008) and in the regression (Cands, 2008;
Donoho & Tanner, 2005) context.

Given a target hypothesis language, classification in dis-
crete domains most often aims at the simplest expres-
sion complying with the training examples.

Considering randomly generated positive and neg-
ative examples, Riickert and De Raedt (2008) investi-
gated the existence of k-term DNF solutions (disjunc-
tion of at most k conjunctions of literals) and showed
that the probability of solution abruptly drops as the
number of negative examples increases. They proposed
a combinatorial optimization algorithm to find a k-term
DNF complying with the training examples except at
most €% of them (Riickert & De Raedt, 2008).

100 ! ' ' !
90 1
80
70 & 1
60

50 o 1
Generalization

Coverage rate

40 -
30 1
20 1
10 ‘ “ 1
¢ 0 200 400 600 800 1000 1200 "
UA Number of states PTA

Phase Transitions in Machine Learning. Figure 4. Gap
emerging during learning in the relationship between
the number of nodes of the inferred grammar and the
coverage rate

Considering positive and negative examples gener-
ated after some k-term DNF target concept w, Baskiotis
and Sebag examined the solutions built by C4.5-Rules
(Quinlan, 1993), among the oldest and still most used
discrete learning algorithms. The observed variable is
the generalization error on a test set; the order variables
are the coverage of w and the average coverage of the
conjuncts in . Interestingly, C4.5 displays a PT behav-
ior (Fig. 5): the error abruptly increases as the coverage
and average coverage decrease.

»Linear regression aims at expressing the target vari-
able as the weighted sum of the N descriptive variables
according to some vector w. When the number N of
variables is larger than the number # of examples, one
is interested in finding the most sparse w complying
with the training examples (s.t. < w,x; >= y;). The
sparsity criterion consists of minimizing the Ly, norm
of w (number of nonzero coefficients in w), which
defines an NP optimization problem. A more tractable
formulation is obtained by minimizing the L; norm
instead:

Find arg min {||wl}; subjectto < w,x; > =y;,
weRN

i=1...n} (2)

A major result in the field of sparse coding can be
stated as: Let w* be the solution of Eq. (2); if it
is sufficiently sparse, w* also is the most sparse vec-
tor subject to < w,x; > =y; (Donoho & Tanner,
2005). In such cases, the Ly norm minimization can
be solved by L; norm minimization (an NP optimiza-
tion problem is solved using linear programming).
More generally, the equivalence between L, and L;
norm minimization shows a PT behavior: when the
sparsity of the solution is lower than a given thresh-
old wr.t the problem size (lower curve in Fig. 6),
the NP/LP equivalence holds strictly; further, there
exists a region (between the upper and lower curves in
Fig. 6) where the NP/LP equivalence holds with high
probability.

This highly influential result bridges the gap between
the statistical and algorithmic objectives. On the sta-
tistical side, the importance of sparsity in terms of
robust coding (hence learning) is acknowledged since

772

Phase Transitions in Machine Learning

- Error vs coverage (K=10) fr——r——
[Foion. k10 ‘
r < k=15 |]
30 f”kzzg
§ L
L
<
O 8
10+
0 ool b b b b b b b s Loy
0.1 0.3 0.5 0.7 0.9
(@ Coverage P_c

—— Error vs average term coverage (K=100) |
L —— k=10
30 1\ 0|
M) --—- k=25
S v
£ 20 -
L Font
o L
<
O L
10} -
0 ; = —TiT I T f:.*fi
PN S T S T S T S T ST ST S TN ST SO SO N SO SO S
0 0.1 0.2 0.3 0.4 0.5
(b) Average term coverage

Phase Transitions in Machine Learning. Figure 5. C4.5 error versus concept coverage (a) and average term coverage

(b) in k-term DNF languages. The reported curve is obtained by Gaussian convolution with empirical data (15,000
learning problems, each one involving a 800-example dataset)

09 f
08
07
06
05
0.4
03
02f
01 "

Six
T T 7T

0.5 0.6 0.7 0.8 0.9
n/N

Phase Transitions in Machine Learning. Figure 6. Strong and weak PT in sparse regression (Donoho & Tanner, 2005).

The x-axis is the ratio between the number n of constraints and the number N of variables; the y-axis is the ratio

between the number k of variables involved in the solution, and n

the beginnings of Information Theory; on the algo-
rithmic side, the sparsity criterion cannot be directly
tackled as it boils down to solving a combinatorial opti-
mization problem (minimizing a Ly norm). The above
result reconciles sparsity and tractability by noting that
under some conditions the solution of the Ly minimiza-
tion problem can be found by solving the (tractable)
L, minimization problem: whenever the solution of
the latter problem is “sufficiently” sparse, it is also the
solution of the former problem.

Perspectives

Since the main two formulations of ML involve con-
straint satisfaction and constrained optimization, it is
no surprise that CSP PTs manifest themselves in ML.
The diversity of these manifestations, ranging from rela-
tional learning (Botta et al., 2003) to sparse regression

(Donoho & Tanner, 2005), has been illustrated in this
entry, without pretending to exhaustivity.

Along this line, the research agenda and methodol-
ogy of ML can benefit from the lessons learned in the
CSP field. Firstly, algorithms must be assessed on prob-
lems lying in the PT region; results obtained on prob-
lems in the easy regions are likely to be irrelevant
(playing in the sandbox Hogg, Huberman, & Williams,
1996).

In order to do so, the PT should be localized through
defining control and order parameters, thus delineat-
ing several regions in the control parameter space (ML
landscape). These regions expectedly correspond to dif-
ferent types of ML difficulty, beyond the classical com-
putational complexity perspective.

Secondly, the response of a given algorithm to these
difficulties can be made available through a competence

Piecewise Linear Models

773

map, depicting its average performance conditionally
to the value of the control parameters as shown in
Figs. 2-3.

Finally, such competence maps can be used to tell
whether a given algorithm is a priori relevant in a given
region of the control parameter space, and support the
algorithm selection task (a.k.a. meta-learning; see e.g.,
http:// www.cs.bris.ac.uk/ Research/ MachineLearning/
metal.html).

Recommended Reading

Ales Bianchetti, J., Rouveirol, C., & Sebag, M. (2002). Constraint-
based learning of long relational concepts. In C. Sammut
(Ed.), Proceedings of international conference on machine
learning, ICML02, (pp. 35-42). San Francisco, CA: Morgan
Kauffman.

Alphonse, E., & Osmani, A. (2008). On the connection between the
phase transition of the covering test and the learning success
rate. Machine Learning, 70(2-3), 135-150.

Baskiotis, N., & Sebag, M. (2004). C4.5 competence map: A
phase transition-inspired approach. In Proceedings of interna-
tional conference on machine learning, Banff, Alberta, Canada
(pp- 73-80). Morgan Kaufman.

Botta, M., Giordana, A., & Saitta, L. (1999). An experimental study
of phase transitions in matching. In Proceedings of the 16th
international joint conference on artificial intelligence, Stock-
holm, Sweden (pp. 1198-1203).

Botta, M., Giordana, A., Saitta, L., & Sebag, M. (2003). Relational
learning as search in a critical region. Journal of Machine
Learning Research, 4, 431-463.

Cands, E. J. (2008). The restricted isometry property and its impli-
cations for compressed sensing. Compte Rendus de 'Academie
des Sciences, Paris, Serie I, 346, 589-592.

Cheeseman, P., Kanefsky, B., & Taylor, W. (1991). Where the really
hard problems are. In R. Myopoulos & J. Reiter (Eds.), Pro-
ceedings of the 12th international joint conference on artificial
intelligence, Sydney, Australia (pp. 331-340). San Francisco, CA:
Morgan Kaufmann.

Cornuéjols, A., & Sebag, M. (2008). A note on phase transitions and
computational pitfalls of learning from sequences. Journal of
Intelligent Information Systems, 31(2), 177-189.

Cortes, C., & Vapnik, V. N. (1995). Support-vector networks.
Machine Learning, 20, 273-297.

De Raedt, L. (1997). Logical setting for concept-learning. Artificial
Intelligence, 95, 187-202.

De Raedt, L. (1998). Attribute-value learning versus inductive logic
programming: The missing links. In Proceedings inductive
logic programming, ILP, LNCS, (Vol. 2446, pp. 1-8). London:
Springer.

Demongeot, J., & Sené, S. (2008). Boundary conditions and phase
transitions in neural networks. Simulation results. Neural Net-
works, 21(7), 962-970.

Dietterich, T., Lathrop, R., & Lozano-Perez, T. (1997). Solving the
multiple-instance problem with axis-parallel rectangles. Artifi-
cial Intelligence, 89(1-2), 31-71.

Donoho, D. L., & Tanner, J. (2005). Sparse nonnegative solu-
tion of underdetermined linear equations by linear program-
ming. Proceedings of the National Academy of Sciences, 102(27),
9446-9451.

Engel, A., & Van den Broeck, C. (2001). Statistical mechanics of
learning. Cambridge: Cambridge University Press.

Gaudel, R., Sebag, M., & Cornuéjols, A. (2007). A phase transition-
based perspective on multiple instance kernels. In Proceedings
of international conference on inductive logic programming, ILP,
Corvallis, OR (pp. 112-121).

Gaudel, R., Sebag, M., & Cornuéjols, A. (2008). A phase transition-
based perspective on multiple instance kernels. Lecture notes in
computer sciences, (Vol. 4894, pp. 112-121).

Giordana, A., & Saitta, L. (2000). Phase transitions in relational
learning. Machine Learning, 41(2), 17-251.

Haussler, D. (1999). Convolutional kernels on discrete struc-
tures. Tech. Rep., Computer Science Department, University of
California at Santa Cruz.

Hogg, T., Huberman, B. A., & Williams, C. P. (Eds.). (1996).
Artificial intelligence: Special Issue on frontiers in prob-
lem solving: Phase transitions and complexity, (Vol. 81(1-2)).
Elsevier.

Kramer, S., Lavrac, N., & Flach, P. (2001). Propositionalization
approaches to relational data mining. In S. Dzeroski & N. Lavrac
(Eds.), Relational data mining, (pp. 262-291). New York:
Springer.

Maloberti, J., & Sebag, M. (2004). Fast theta-subsumption with con-
straint satisfaction algorithms. Machine Learning Journal, 55,
137-174.

Mitchell, T. M. (1982). Generalization as search. Artificial Intelli-
gence, 18, 203-226.

Plotkin, G. (1970). A note on inductive generalization. In Machine
Intelligence, (Vol. 5). Edinburgh University Press.

Quinlan, J. R. (1993). C4.5: Programs for machine learning. San
Francisco, CA: Morgan Kaufmann.

Riickert, U., & De Raedt, L. (2008). An experimental evaluation
of simplicity in rule learning. Artificial Intelligence, 172(1),
19-28.

! Perceptron

»Online Learning

|
Piecewise Constant Models

»Regression Trees

Piecewise Linear Models

» Model Trees

http://www.cs.bris.ac.uk/Research/MachineLearning/metal.html
http://www.cs.bris.ac.uk/Research/MachineLearning/metal.html

774

Plan Recognition

! Plan Recognition

»Inverse Reinforcement Learning

! Policy Gradient Methods

JaN PETERS!, J. ANDREW BAGNELL?

'Max Planck Institute for Biological Cybernetics,
Tuebingen, Baden-Wuertemberg, Germany
2Carnegie Mellon University, Pittsburgh, PA, USA

Synonyms
Policy search

Definition

A policy gradient method is a »-reinforcement learning
approach that directly optimizes a parametrized control
policy by a variant of gradient descent. These methods
belong to the class of »policy search techniques that
maximize the expected return of a policy in a fixed pol-
icy class, in contrast with traditional »value function
approximation approaches that derive policies from a
value function. Policy gradient approaches have various
advantages: they enable the straightforward incorpora-
tion of domain knowledge in policy parametrization
and often an optimal policy is more compactly repre-
sented than the corresponding value function; many
such methods guarantee to convergence to at least a
locally optimal policy; the methods naturally handle
continuous states and actions and often even imper-
fect state information. The counterveiling drawbacks
include difficulties in off-policy settings, the potential
for very slow convergence and high sample complexity,
as well as identifying local optima that are not globally
optimal.

Structure of the Learning System

Policy gradient methods center around a parametrized
policy 7y, also known as a direct controller, with param-
eters 6 that define the selection of actions a given
the state s. Such a policy may be either deterministic
a = mg(s) or stochastic a ~ mg(als). This choice also
affects the policy gradient approach (e.g., a determin-
istic policy requires a model-based formulation when

used for likelihood ratio policy gradients), chooses
how the exploration-exploitation dilemma is addressed
(e.g., a stochastic policy tries new actions while a
deterministic policy requires the perturbation of pol-
icy parameters or sufficient stochasticity in the system),
and may affect the optimal solution (e.g., for a time-
invariant or stationary policy, the optimal policy can
be stochastic (Sutton, McAllester, Singh, & Mansour,
2000)). Frequently used policies include Gibbs distri-
butions 7g(als) = exp(¢(s,a)70)/ >, exp(p(s, b))
for discrete problems (Bagnell, 2004; Sutton et al,
2000) and, for continuous problems, Gaussian poli-
cies mg(als) = N(¢(s,a)T6,0,) with an explo-
ration parameter 6, (Peters & Schaal, 2008; Williams,
1992).

Policy gradient methods seek to optimize the expected
return of a policy 7,

1(0) - zyE{i ykrk},
k=0

where y € [0,1] denotes a discount factor, Z, a normal-
ization constant, and H the planning horizon. For finite
H, we have an episodic reinforcement learning scenario
where the truly optimal policy is non-stationary and the
normalization does not matter. For an infinite horizon
H = oo, we choose the normalization to be Z, = (1-y)
fory < land Z; = lim,_,(1 - y) = 1/H for »average
reward reinforcement learning problem where y = 1.

Policy gradient methods follow an estimate of the gra-
dient of the expected return

Os1 = O + g (6k)

where g(0x) ~ VJ(0)[s_p, is a gradient estimate
at the parameters 6 = 0 after update k with ini-
tial policy 6y and aj; denotes a learning rate. If the
gradient estimator is unbiased, Y72, ax — oo while
Y 5o a2 remains bounded, convergence to a local min-
imum can be guaranteed. In optimal control, model-
based policy gradient methods have been used since
the 1960s, see the classical textbooks by Jacobson &

Policy Gradient Methods

775

Mayne (1970) and by Hasdorft (1976). While these
are used machine learning community (e.g., differen-
tial dynamic programming with learned models), they
may be numerically brittle and must rely on accurate,
deterministic models. Hence, they may suffer signifi-
cantly from optimization biases and are not generally
applicable, particularly not in a model-free case nor in
problems that include discrete elements. Several model-
free alternatives can be found in the simulation opti-
mization literature (Fu, 2006), including, for example,
finite-difference gradients, likelihood ratio approaches,
response-surface methods, and mean-valued, “weak”
derivatives. The advantages and disadvantages of these
different approaches are still a fiercely debated topic (Fu,
2006). In machine learning, the first two approaches
have been dominating the field.

The simplest policy gradient approaches with perhaps
the most practical applications (see Peters & Schaal,
2008 for robotics application of this method) estimate
the gradient by perturbing the policy parameters. For
a current policy 0 with expected return J(6y), this
approach will create explorative policies 0, = 0 +
00; with the approximated expected returns given by
J(6) ~ J(6i) + 607 g where g = Vel (79)lg-g,- In this
case, it suffices to determine the gradient by »linear
regression, that is, we obtain

g=(A0TA®)ABT A,

with parameter perturbations A® = [§0,...,86,] and
the mean-subtracted rollout returns 8], = J(6;) —J(6%)
form AJ] = [&)1,...,08],]. The choice of the param-
eter perturbation largely determines the performance
of the approach (Spall, 2003). Limitations particular to
this approach include the following: the need for many
exploratory samples; the sensitivity of the system with

respect to each parameter may differ by orders of mag-
nitude; small changes in a single parameter may render
a system unstable; and stochasticity requires particu-
lar care in optimization (e.g., multiple samples, fixed
random seeds, etc.) (see Glynn, 1990; Spall, 2003). This
method is also referred to as the naive Monte-Carlo
policy gradient.

The likelihood-ratio method relies on the stochasticityll
of either the policy for model-free approaches or the
system in the model-based case, and, hence, requires
no explicit exploration and may cope better with noise
and the parameter perturbation sensitivity problems.
Denoting a time-indexed sequence of states, actions,
and rewards of the joint system composed of the pol-
icy and environment as a path, a parameter setting
induces a path distribution py(7) and rewards R(7) =
Z, ZZI:O y*ri along a path 7. Thus, you may write the
gradient of the expected return as

Vol(8)= o [po(nR()dr

= fpg(T)Ve logpe(7T)R(7)dT
=E{Vglogpe(7)R(7)}.

If our system p(s'|s,a) is Markovian, we may use
po(r) = p(so) [Tilo p(skelsk ar)mo(axlsk) for a
stochastic policy a ~ mg(als) to obtain the model-
free policy gradient estimator known as episodic REIN-
FORCE (Williams, 1992)

H H
Vol (6) = ZYE{Z ka9 log g (ak|sk) Z ykhrk} ,
h=0 k=h

and for the deterministic policy a = mg(s), the model-
based policy gradient

H
Vol(0) = ZyE{Z Y (Va, log p(skrilsr ax) "
=0

Voo (st)) i)’k_hrk}
k=h

follows from pg(7) = p(so) [T12o P(skslsis o (5x))-
Note that all rewards preceeding an action may be omit-
ted as the cancel out in expectation. Using a state—action
value function Q™ (s,a,h) = E{ YL, Yl s, a, M}
(see »Value Function Approximation), we can rewrite
REINFORCE in its modern form

H
Vol(0) = Z),E{Z kaQ log g (ak|sk)

h=0

(@™ (s.a.h) - b(s,h»},

776

Policy Search

known as the policy gradient theorem where the base-
line b(s,h) is an arbitrary function that may be used
to reduce the variance, and Q™ (s,a, h) represents the
action-value function.

While likelihood-ratio gradients have been known
since the late 1980s, they have recently experienced an
upsurge of interest due to their demonstrated effective-
ness in applications (see, for example, Peters & Schaal,
2008), progress toward variance reduction using opti-
mal baselines (Lawrence, Cowan, & Russell, 2003), rig-
orous understanding of the relationships between value
functions and policy gradients (Sutton et al., 2000), pol-
icy gradients in reproducing kernel Hilbert space (Bag-
nell, 2004) as well as faster, more robust convergence
using natural policy gradients (Bagnell, 2004; Peters &
Schaal, 2008).

Cross References

» Markov Decision Process
»Reinforcement Learning

» Value Function Approximation

Recommended Reading

Bagnell, J. A. (2004). Learning decisions: Robustness, uncertainty,
and approximation. Doctoral dissertation, Robotics Institute,
Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh,
PA 15213.

Fu, M. C. (2006). Handbook on operations research and management
science: Simulation (Vol. 13, pp. 575-616) (Chapter 19: Stochastic
gradient estimation). ISBN 10: 0-444-51428-7, Elsevier.

Glynn, P. (1990). Likelihood ratio gradient estimation for stochastic
systems. Communications of the ACM, 33(10), 75-84.

Hasdorff, L. (1976). Gradient optimization and nonlinear control.
John Wiley & Sons.

Jacobson, D. & H., Mayne, D. Q. (1970). Differential Dynamic
Programming. New York: American Elsevier Publishing
Company, Inc.

Lawrence, G., Cowan, N., & Russell, S. (2003). Efficient gradient
estimation for motor control learning. In Proceedings of the
international conference on uncertainty in artificial intelligence
(UAI), Acapulco, Mexico.

Peters, J., & Schaal, S. (2008). Reinforcement learning of motor skills
with policy gradients. Neural Networks, 21(4), 682-97.

Spall, J. C. (2003). Introduction to stochastic search and optimization:
Estimation, simulation, and control. Hoboken: Wiley.

Sutton, R. S., McAllester, D., Singh, S., & Mansour, Y. (2000). Policy
gradient methods for reinforcement learning with function
approximation. In S. A. Solla, T. K. Leen, & K.-R. Mueller,
(Eds.), Advances in neural information processing systems
(NIPS), Denver, CO. Cambridge: MIT Press.

Williams, R. J.
algorithms for connectionist reinforcement learning. Machine
Learning, 8, 229-256.

(1992). Simple statistical gradient-following

! Policy Search

» Markov Decision Processes
» Policy Gradient Methods

' POMDPs

» Partially Observable Markov Decision Processes

' POS Tagging

WALTER DAELEMANS
CLIPS University of Antwerp, Antwerpen, Belgium

Synonyms
Grammatical tagging; Morphosyntactic disambigua-
tion; Part of speech tagging; Tagging

Definition

Part-of-speech tagging (POS tagging) is a process in
which each word in a text is assigned its appropriate
morphosyntactic category (for example noun-singular,
verb-past, adjective, pronoun-personal, and the like). It
therefore provides information about both morphology
(structure of words) and syntax (structure of sentences).
This disambiguation process is determined both by con-
straints from the lexicon (what are the possible cate-
gories for a word?) and by constraints from the context
in which the word occurs (which of the possible cate-
gories is the right one in this context?). For example,
a word like table can be a noun-singular, but also a
verb-present (as in I table this motion). This is lexical
knowledge. It is the context of the word that should be
used to decide which of the possible categories is the
correct one. In a sentence like Put it on the table, the
fact that table is preceded by the determiner the, is a
good indication that it is used as a noun here. Systems
that automatically assign parts of speech to words in
text should take into account both lexical and contex-
tual constraints, and they are typically found in imple-
mentations as a lookup module and a disambiguation
module.

POS Tagging

777

Motivation and Background

In most natural language processing (NLP) applica-
tions, POS tagging is one of the first steps to allow
abstracting away from individual words. It is not to
be confused with lemmatization, a process that reduces
morphological variants of words to a canonical form
(the citation form, for example, infinitive for verbs
and singular for nouns). Whereas lemmatization allows
abstraction over different forms of the same word, POS
tagging abstracts over sets of different words that have
the same function in a sentence. It should also not be
confused with tokenization, a process that detects word
forms in text, stripping off punctuation, handling abbre-
viations, and so on. For example, the string don’t could
be converted to do not. Normally, a POS tagging system
would take tokenized text as input. More advanced tok-
enizers may even handle multiword items, for example
treating in order to not as three separate words but as a
single lexical item.

Applications. A POS tagger is the first disambigua-
tion module in text analysis systems. In order to deter-
mine the syntactic structure of a sentence (and its
semantics), we have to know the parts of speech of
each word. In earlier approaches to syntactic analysis
(parsing), POS tagging was part of the parsing process.
However, individually trained and optimized POS tag-
gers have increasingly become a separate module in
shallow or deep syntactic analysis systems. By exten-
sion, POS tagging is also a foundational module in text
mining applications ranging from information extrac-
tion and terminology/ontology extraction to summa-
rization and question answering.

Apart from being one of the first modules in any
text analysis system, POS tagging is also useful in lin-
guistic studies (corpus linguistics) — for example for
computing frequencies of disambiguated words and of
superficial syntactic structures. In speech technology,
knowing the part of speech of a word can help in speech
synthesis (the verb “subJECT” is pronounced differently
from the noun “SUBject”), and in speech recognition,
POS taggers are used in some approaches to language
modeling. In spelling and grammar checking, POS tag-
ging plays a role in increasing the precision of such
systems.

Part-of-speech tag sets. The inventory of POS tags
can vary from tens to hundreds depending on the
richness of morphology and syntax that is represented

and on the inherent morphological complexity of a
language. For English, the tag sets most used are
those of the Penn Treebank (45 tags; Marcus, San-
torini, & Marcinkiewicz, 1993), and the CLAWS C7
tag set (146 tags; Garside & Smith, 1997). Tag sets are
most often developed in the context of the construc-
tion of annotated corpora. There have been efforts to
standardize the construction of tag sets to increase
translatability between different tag sets, such as
Eagles. (http://www.ilc.cnr.it/EAGLES96/browse.html)
and ISO/TC 37/SC 4. (http://www.tc37sc4.org/)

The following example shows both tag sets. By con-
vention, a tagged word is represented by attaching the
POS tag to it, separated by a slash.

Pierre/NNP Vinken/NNP ,/, 61/CD years/NNS old/
JJ ./, will/MD join/VB the/DT board/NN as/IN a/DT
nonexecutive/J] director/NN Nov./NNP 29/CD ./. [Penn
Treebank]

Pierre/NP1 Vinken/NP1,/, 61/MC years/NNT2 old/
JJ ./, will/VM join/VVI the/AT Board/NN1 as/II a/AT1
nonexecutive/]] director/NN1 Nov./NPM1 29/MC ./.
[CLAWS C7]

As can be seen, the tag sets differ in level of detail.
For example, NNT2 in the C7 tag set indicates a plu-
ral temporal noun (as a specialization of the word class
noun), whereas the Penn Treebank tag set only special-
izes to plural noun (NNS).

Like most tasks in NLP, POS tagging is a dis-
ambiguation task, and both linguistic knowledge-
based handcrafting methods and corpus-based learning
methods have been proposed for this task. We will
restrict our discussion here to the statistical and
machine learning approaches to the problem, which
have become mainstream because of the availability
of large POS tagged corpora and because of better
accuracy in general than handcrafted systems. A state
of the art system using a knowledge-based approach
is described in Karlsson, Voutilainen, Heikkild, and
Anttila (1995).

A decade old now, but still a complete and infor-
mative book-length introduction to the field of POS
tagging is van Halteren (1999). It discusses many impor-
tant issues that are not covered in this article (perfor-
mance evaluation, history, handcrafting approaches, tag
set development issues, handling unknown words, and
more.). A more recent introductory overview is Chap. 5
in Jurafsky and Martin (2008).

http://www.ilc.cnr.it/EAGLES96/browse.html
http://www.tc37sc4.org/

778

POS Tagging

Statistical and Machine Learning
Approaches to Tagging

In the late 1970s, statistical approaches based on n-gram
probabilities (probabilities that sequences of n tags
occur in a corpus) computed on frequencies in tagged
corpora have already been proposed by the UCREL
team at the University of Lancaster (Garside & Smith,
1997). These early models lacked a precise mathematical
framework and a principled solution to working with
zero- or low probability frequencies. It was realized that
Hidden Markov Models (HMM) in use in speech recog-
nition were applicable to the tagging problem as well.

HMMs

HMMs are probabilistic finite state automata that are
flexible enough to combine n-gram information with
other relevant information to a limited extent. They
allow supervised learning by computing the probabili-
ties of n-grams from tagged corpora, and unsupervised
learning using the Baum-Welch algorithm. Finding
the most probable tag sequence given a sequence of
words (decoding) is done using the Viterbi search. In
combination with smoothing methods for low-frequency
events and special solutions for handling unknown
words, this approach results in a state-of-the-art tag-
ging performance. A good implementation is TnT (Tri-
gramsn Tags, Brants, 2000).

Transformation-Based Error-Driven
Learning (Brill-Tagging)

Transformation-based learning is an eager learning
method in which the learner extracts a series of rules,
each of which transforms a tag into another tag given
a specific context. Learning starts with an initial anno-
tation (e.g., tag each word in a text by the POS tag it
is most frequently associated with in a training cor-
pus), and compares this annotation with a gold standard
annotation (annotated by humans). Discrepancies trig-
ger the generation of rules (constrained by templates),
and in each cycle, the best rule is chosen. The best rule is
the one that most often leads to a correct transformation
in the whole training corpus (Brill, 1995a). An unsuper-
vised learning variant (using a lexicon with word-tag
probabilities) is described in Brill (1995b). Fully unsu-
pervised POS tagging can also be achieved using distri-
butional clustering techniques, as pioneered by Schiitze
(1995). However, these methods are hard to evaluate
and compare to supervised approaches. The best way to

evaluate them is indirectly, in an application-oriented
way, as in Ushioda (1996).

Other Supervised Learning Methods
As a supervised learning task, POS tagging has been
handled mostly as in a sliding window representation.
Instances are created by making each word in each sen-
tence a focus feature of an instance, and adding the left
and right context as additional features. The class to
be predicted is the POS tag of the focus word. Instead
of using the words themselves as features, information
about them can be used as features as well (e.g., capital-
ized or not, hyphenated or not, the POS tag of the word
for left context words as predicted by the tagger previ-
ously, a symbol representing the possible lexical cate-
gories of the focus word and right context words, first
and last letters of the word in each position, and so on.).
The following table lists the structure of instance
representations for part of the sentence shown earlier.
In this case the words themselves are feature values, but
most often other derived features would replace these
because of sparseness problems.

= = Pierre Vinken | , NNP
= Pierre Vinken | , 61 NNP
Pierre Vinken | , 61 years | ,
Vinken | , 61 years old D

Most classification-based, supervised machine learning
methods can be, and have been applied to this prob-
lem, including decision tree learning (Schmid, 1994b),
memory-based learning (Daelemans, Zavrel, Berck,
& Gillis, 1996), maximum entropy models (Ratna-
parkhi, 1996), neural networks (Schmid, 1994a), ensem-
ble methods (van Halteren et al., 2001), and many oth-
ers. All these methods seem to converge to a 96-97%
accuracy rate on the Wall Street Journal corpus using
the Penn Treebank tag set. In a systematic compari-
son of some of the methods listed here, van Halteren
et al. (2001) found that TnT outperforms maximum
entropy and memory-based learning methods, which
in turn outperform Brill tagging. Non-propositional
supervised learning methods have been applied to the
task as well (Cussens, 1997) with grammatical structure

Positive Semidefinite

779

as background knowledge with similar results. The best
results reported on the WS]J corpus so far is bidirectional
perceptron learning (Shen, Satta, & Joshi, 2007) with a
97.33% accuracy.

Because of these high scores, POS tagging (at least
for English) is considered by many a solved problem.
However, as for most machine-learning based NLP sys-
tems, domain adaptation is still a serious problem for
POS tagging. A tagger trained to high accuracy on
newspaper language will fail miserably on other types
of text, such as medical language.

Cross References

» Classification

» Clustering

» Decision Trees

»ILP

» Information Extraction
»Lazy Learning

» Maxent Models

»Text Categorization
»Text Mining

Recommended Reading

Brants, T. (2000). TnT - A statistical part-of-speech tagger. In
Proceedings of the sixth applied natural language processing
conference ANLP-2000. Seattle, WA.

Brill, E. (1995a). Transformation-based error-driven learning and
natural language processing: a case study in part-of-speech
tagging. Computional Linguistics, 21(4), 543-565.

Brill, E. (1995b). Unsupervised learning of disambiguation rules for
part of speech tagging. In Proceedings of the third workshop on
very large corpora (pp. 1-13). Ohio State University, Ohio.

Cussens, J. (1997). Part-of-speech tagging using progol. In
N. Lavrac, & S. Dzeroski (Eds.), Proceedings of the seventh
international workshop on inductive logic programming, Lec-
ture Notes in Computer Science (Vol. 1297 pp. 93-108). London:
Springer.

Daelemans, W., Zavrel, J., Berck, P, & Gillis, S. (1996). MBT: A
memory-based part of speech tagger generator. In Proceed-
ings of the fourth workshop on very large corpora (pp. 14-27).
Copenhagen, Denmark

Garside, R., & Smith, N. (1997). A hybrid grammatical tagger:
CLAWS4. In R. Garside, G. Leech, & A. McEnery (Eds.), Corpus
annotation: Linguistic information from computer text corpora
(pp- 102-121). London: Longman.

Jurafsky, D., & Martin, J. (2008). Speech and language processing: An
introduction to natural language processing, computational lin-
guistics, and speech recognition (2nd ed.). Upper Saddle River,
NJ: Prentice Hall.

Karlsson, F., Voutilainen, A., Heikkili, J., & Anttila, A. (1995). Con-
straint grammar. A language-independent system for parsing

unrestricted text (p. 430). Berlin and New York: Mouton de
Gruyter.

Marcus, M., Santorini, B., & Marcinkiewicz, M. (1993). Building a
large annotated corpus of English: The Penn Treebank. Compu-
tational Linguistics, 19(2), 313-330.

Ratnaparkhi, A. (1996). A maximum entropy part of speech tag-
ger. In Proceedings of the ACL-SIGDAT conference on empirical
methods in natural language processing (pp. 17-18). Philadel-
phia, PA.

Schmid, H. (1994a). Part-of-speech tagging with neural networks. In
Proceedings of COLING-94 (pp. 172-176). Kyoto, Japan.

Schmid, H. (1994b). Probabilistic part-of-speech tagging using deci-
sion trees. In Proceedings of the international conference on
new methods in language processing (NeMLaP), (pp. 44-49).
Manchester, UK.

Schutze, H. (1995). Distributional part-of-speech tagging. In Pro-
ceedings of EACL 7 (pp. 141-148). Dublin, Ireland.

Shen, L., Satta, G., & Joshi, A. (2007). Guided learning for bidirec-
tional sequence classification. In Proceedings of the 45th annual
meetings of the association of computational linguistics (ACL
2007) (pp. 760-767). Prague, Czech Republic.

Ushioda, A. (1996). Hierarchical clustering of words and applica-
tions to NLP tasks. In Proceedings of the fourth workshop on very
large corpora (pp. 28-41). Somerset, NJ.

van Halteren, H. (Ed.). (1999). Syntactic wordclass tagging. Boston:
Kluwer Academic Publishers.

van Halteren, H. Zavrel, J., & Daelemans, W. (2001) Improving accu-
racy in NLP through combination of machine learning systems.
Computational Linguistics, 27(2), 199-229.

[
Positive Definite

» Positive Semidefinite

|
Positive Predictive Value

» Precision

Positive Semidefinite

Synonyms
Positive definite

Definition
A symmetric m x m matrix K satisfying Vx € ¢”
x*Kx > 0 is called positive semidefinite. If the equality
only holds for x = 0 the matrix is positive definite.

A function k : X x X — ¢, X # @, is positive
,Xm € X the
m x m matrix K with elements Kj; := k(x;, x;) is positive

(semi-) definite if for all m € nand all xy, . ..

(semi-) definite.

780

Posterior

Sometimes the term strictly positive definite is used
instead of positive definite, and positive definite refers
then to positive semidefiniteness.

[R
Posterior

» Posterior Probability

! Posterior Probability

GEOFFREY 1. WEBB
Monash University

Synonyms
Posterior

Definition

In Bayesian inference, a posterior probability of a value
x of a random variable X given a context a value y of a
random variable Y, P(X = x | Y = y), is the probabil-
ity of X assuming the value x in the context of Y = y.
It contrasts with the »prior probability, P(X = x), the
probability of X assuming the value x in the absence of
additional information.

For example, it may be that the prevalence of a par-
ticular form of cancer, exoma, in the population is 0.1%,
so the prior probability of exoma, P(exoma = true), is
0.001. However, assume 50% of people who have skin
discolorations of greater than 1 cm width (sd>lcm) have
exoma. It follows that the posterior probability of exoma
given sd>lcm, P(exoma = true | sd>lcm = true), is 0.500.

Cross References
> Bayesian Methods

! Post-Pruning

Definition

Post-pruning is a > Pruning mechanism that first learns
a possibly »Overfitting hypothesis and then tries to
simplify it in a separate learning phase.

Cross References
»Overfitting

» Pre-Pruning
»Pruning

! Postsynaptic Neuron

The neuron that receives signals via a synaptic con-
nection. A chemical synaptic connection between two
neurons allows to transmit signals from a presynaptic
neuron to a postsynaptic neuron.

[. .
Precision

Ka1 MinG TING
Monash University, Victoria, Australia

Synonyms
Positive predictive value

Definition
Precision is defined as a ratio of true positives (TP)
and the total number of positives predicted by a model.
This is defined with reference to a special case of the
»confusion matrix, with two classes; one designated
the positive class, and the other the negative class, as
indicated in Table 1.

Precision can then be defined in terms of true posi-
tives and false positives (FP) as follows.

Precision = TP/(TP + FP)

Cross References
» Precision and Recall

Precision. Table 1 The outcomes of classification into
positive and negative classes
Assigned Class
Positive Negative

Zei1{17= | True Positive (TP) | False Negative (FN)

|\ E1{1/=| False Positive (FP) | True Negative (TN)

Predicate Invention

781

|
Precision and Recall

Kar MinG TiNG
Monash University, Vic, Australia

Definition

»Precision and recall are the measures used in the
information retrieval domain to measure how well an
information retrieval system retrieves the relevant doc-
uments requested by a user. The measures are defined
as follows:

Precision = Total number of documents retrieved
that are relevant/Total number of documents that are
retrieved.

Recall = Total number of documents retrieved that
are relevant/Total number of relevant documents in the
database.

We can use the same terminology used in a
»confusion matrix to define these two measures. Let
relevant documents be positive examples and irrelevant
documents, negative examples. The two measures can
be redefined with reference to a special case of the con-
fusion matrix, with two classes, one designated the pos-
itive class, and the other the negative class, as indicated
in Table 1.

Recall = True positives/Total number of actual pos-
itives = TP/(TP + FN)

Precision = True positives/Total number of positives
predicted = TP/(TP + FP)

Instead of two measures, they are often combined to
provide a single measure of retrieval performance called
the »F-measure as follows:

F-measure = 2 * Recall * Precision/(Recall + Preci-
sion)

Cross References
» Confusion Matrix

Precision and Recall. Table 1 The outcomes of classifi-
cation into positive and negative classes

True Positive (TP) | False Negative (FN)

False Positive (FP)| True Negative (TN)

|
Predicate

A predicate or predicate symbol is used in logic to
denote properties and relationships. Formally, if P is a
predicate with arity n, and #,...,t, is a sequence of
n terms (i.e., constants, variables, or compound terms
built from function symbols), then P(#,...,t,) is an
atomic formula or atom. Such an atom represents a
statement that can be either true or false. Using logi-
cal connectives, atoms can be combined to build well-
formed formulae in P-first-order logic or »clauses in
»logic programs.

Cross References
»Clause

» First-Order Logic
»Logic Program

|
Predicate Calculus

» First-Order Logic

|
Predicate Invention

Definition

Predicate invention is used in »inductive logic pro-
gramming to refer to the automatic introduction of
new relations or predicates in the hypothesis language.
Inventing relevant new predicates is one of the hardest
tasks in machine learning, because there are so many
possible ways to introduce such predicates and because
it is hard to judge their quality. As an example, con-
sider a situation where in the predicates fatherof
and motherof are known. Then it would make sense
to introduce a new predicate that is true whenever
fatherof or motherof is true. The new predi-
cate that would be introduced this way corresponds to
the parentof predicate. Predicate invention has been
introduced in the context of inverse resolution.

782

Predicate Logic

Cross References
»Inductive Logic Programming
»Logic of Generality

| Predicate Logic

» First-Order Logic

[
Prior Probabilities

» Bayesian Nonparametric Models

| Prior Probability

GEOFFREY I. WEBB
Monash University

Synonyms
Prior

Definition

In Bayesian inference, a prior probability of a value x of
a random variable X, P(X = x), is the probability of X
assuming the value x in the absence of (or before obtain-
ing) any additional information. It contrasts with the
> posterior probability, P(X = x| Y = y), the probability
of X assuming the value x in the context of Y = y.

For example, it may be that the prevalence of a par-
ticular form of cancer, exoma, in the population is 0.1%,
so the prior probability of exoma, P(exoma = true), is
0.001. However, assume 50% of people who have skin
discolorations of greater than 1 cm width (sd>lcm) have
exoma. It follows that the posterior probability of exoma
given sd>lcm, P(exoma = true | sd>lcm = true), is 0.500.

Cross References
» Bayesian Methods

! Prediction with Expert Advice

»Online Learning

[
Predictive Software Models

»Predictive Techniques in Software Engineering

' Predictive Techniques in Software
Engineering

JELBER SAYYAD SHIRABAD
University of Ottawa
Ottawa, ON, Canada

Synonyms
Predictive software models

Introduction

Software engineering (SE) is a knowledge- and decision-
intensive activity. From the initial stages of the software
life cycle (i.e., requirement analysis), to the later stage of
testing the system, and finally maintaining the software
through its operational life, decisions need to be made
which impact both its success and failure. For instance,
during project planning one needs to be able to forecast
or predict the required resources to build the system.
At the later stages such as testing or maintenance it is
desirable to know which parts of the system may be
impacted by a change, or are more risky or will require
more intensive testing.

The process of developing software can potentially
create a large amount of data and domain knowledge.
The nature of the data, of course, depends on the phase
in which the data were generated. During the require-
ment analysis, this data most times is manifested in the
form of documentations. As the process moves forward,
other types of artifacts such as code and test cases are
generated. However, what, when, how accurately, and
how much is recorded varies from one organization to
the next. More mature organizations have a tendency
to maintain larger amount of data about the software
systems they develop.

The data generated as part of the software engineer-
ing process captures a wide range of latent knowledge
about the system. Having such a source of information,
the question one needs to ask is that whether there is
any technology that can leverage this potentially vast
amount of data to:

Predictive Techniques in Software Engineering

783

o Better understand a system

e Make more informative decisions as needed through
the life of an existing system

o Apply lessons learned from building other systems
to the creation of a new system

As this chapter will show, machine learning (ML),
which provides us with a host of algorithms and tech-
niques to learn from data, is such a technology. In
preparing this entry we have drawn from over two
decades of research in applying ML to various software
engineering problems. The number of potential uses of
ML in SE is practically enormous and the list of applica-
tions is expanding over time. The focus of this chapter is
a subset of these applications, namely the ones that aim
to create models for the purpose of making a prediction
regarding some aspect of a software system. One could
dedicate a separate article for some of these prediction
tasks, as there is a large body of research covering dif-
ferent aspects of interest, such as algorithms, estimation
methods, features used, and the like. However, due to
space constraints, we will only mention a few repre-
sentative research examples. The more general topic of
the application of ML in SE can be studied from dif-
ferent points of view. A good discussion of many such
aspects and applications can be found in Zhang and
Tsai (2003).

Traditionally, regression-based techniques have been
used in software engineering for building predictive
models. However, this requires making a decision as
to what kind of regression method should be used
(e.g., linear or quadratic), or alternatively what kind of
curve should be fit to the data. This means that the
general shape of the function is determined first, and
then the model is built. Some researcher, have used ML
as a way to delegate such decisions to the algorithm.
In other words, it is the algorithm that would pro-
duce the best fit to the data. Some of the most com-
mon replacements in the case of regression problems
have been neural networks (NN) and genetic pro-
gramming (GP). However, obviously the use of such
methods still requires other types of decisions, such as
the topology of the network, the number of generations,
or the probability of mutations to be made by humans.
Sometimes, a combination of different methods such as
genetic algorithms and neural networks are used, where

one method explores possible parameters for the actual
method used to build the model.

Software engineering-related datasets, similar to
many other real world datasets, are known to contain
noise. Another justification for the use of ML in soft-
ware engineering applications is that it provides algo-
rithms that are less sensitive to noise.

The Process of Applying ML to SE
To apply ML to SE, similar to other applications, one
needs to follow certain steps, which include:

Understanding the problem. This is an essential step that
heavily influences the decisions to follow. Examples of
typical problems in the software engineering domain
are the need to be able to estimate the cost or effort
involved in developing a software, or to be able to char-
acterize the quality of a software system, or to be able
to predict what modules in a system are more likely to
have a defect.

Casting the original problem as a learning problem. To
use ML technology, one needs to decide on how to for-
mulate the problem as a learning task. For instance,
the problem of finding modules that are likely to be
faulty can be cast as a classification problem, (e.g., is
the module faulty or not) or a numeric prediction prob-
lem (e.g., what the estimated fault density of a module
is). This mapping is not always straightforward, and
may require further refinement of the original problem
statement or breaking down the original problem into
sub-problems, for some of them ML may provide an
appropriate solution.

Collection of data and relevant background knowledge.
Once the ML problem for a particular SE application is
identified, one needs to collect the necessary data and
background knowledge in support of the learning task.
In many SE applications data is much more abundant
or easier to collect than the domain theory or back-
ground knowledge relevant to a particular application.
For instance, collecting data regarding faults discov-
ered in a software system and changes applied to the
source to correct a fault is a common practice in soft-
ware projects. On the other hand, there is no com-
prehensive and agreed upon domain theory describing
software systems. Having said that, in the case of some

784

Predictive Techniques in Software Engineering

applications, if we limit ourselves to incomplete back-
ground knowledge, then it can be automatically gen-
erated by choosing a subset that is considered to be
relevant. For instance, in Cohen and Devanbu (1999),
the authors apply inductive logic programming to the
task of predicting faulty modules in a software system.
They describe the software system in terms of cohesion
and coupling-based relations between classes, which are
generated by parsing the source code.

Data preprocessing and encoding. Preprocessing the data
includes activities such as reducing the noise, selecting
appropriate subsets of the collected data, and deter-
mining a proper subset of features that describe the
concept to be learned. This cleaner data will be input
to a specific algorithm and implementation. There-
fore, the data and background knowledge, if any, may
need to be described and formatted in a manner
that complies with the requirements of the algorithm
used.

Applying machine learning and evaluating the results.
Running a specific ML algorithm is fairly straightfor-
ward. However, one needs to measure the goodness
of what is learned. For instance, in the case of clas-
sification problems, models are frequently assessed in
terms of their accuracy by using methods such as hold-
out and cross-validation. In case of numeric prediction,
other standard measures such as mean magnitude of
relative error (MMRE) are commonly used. Addition-
ally, software engineering researchers have sometimes
adopted other measures for certain applications. For
instance PRED(x), which is percentage of the examples
(or samples) with magnitude of relative error (MRE)
< x. According to Pfleeger and Atlee (2003), most man-
agers use PRED(25) to assess cost, effort, and schedule
models, and consider the model to function well if the
value of PRED(25) is greater than 75%. As for MMRE,
a value of less than 25% is considered to be good; how-
ever, other researchers, such as Boehm, would recom-
mend a value of 10% or less. Assessing the usefulness
of what is learned sometimes requires feedback from
domain experts or from end users. If what is learned is
determined to be inadequate, one may need to either
retry this step by adjusting the parameters of the algo-
rithms used, or reconsider the decisions made in earlier
stages and proceed accordingly.

Field testing and deployment. Once what is learned is
assessed to be of value, it needs to actually be used by
the intended users (e.g., project managers and software
engineers). Unfortunately, despite the very large body of
research in software engineering in general and use of
ML in specific applications in SE, the number of articles
discussing the actual use and impact of the research in
industry is relatively very small. Very often, the reason
for this is the lack of desire to share what the indus-
try considers to be confidential information. However,
there are numerous research articles that are based on
industrial data, which is an indication of the practical
benefits of ML in real-world SE.

Applications of Predictive Models in SE

The development of predictive models is probably the
most common application of ML in software engi-
neering. This observation is consistent with findings of
previous research (Zhang & Tsai, 2003). In this sec-
tion, we mention some of the predictive models one
can learn from software engineering data. Our goal is
to provide examples of both well established and newer
applications. It should be noted that the terminology
used by researchers in the field is not always consistent.
As such, one may argue that some of these examples
belong to more than one category. For instance, in Fen-
ton and Neil (1999) the authors consider predicting
faults as a way of estimating software quality and main-
tenance effort. The paper could potentially belong to any
of the categories of fault, quality, or maintenance effort
prediction.

Software size estimation is the process of predicting the
size of a software system. As software size is usually
an input to models that estimate project cost schedule
and planning, an accurate estimation of software size is
essential to proper estimation of these dependent fac-
tors. Software size can be measured in different ways,
most common of which is the number of lines of code
(LOC); however, other alternatives, such as function
points, which are primarily for effort estimation, also
provide means to convert the measure to LOC. There
are different methods for software sizing, one of which
is the component-based method (CBM). In a study to
validate the CBM method, Dolado, (2000) compared
models generated by multiple »-linear regression (MLR)

Predictive Techniques in Software Engineering

785

with the ones obtained by neural networks and genetic
programming. He concluded that both NN- and GP-
based models perform as well or better than the MLR
models. One of the cited benefits of NN was its ability to
capture non-linear relations, which is one of the weak-
nesses of MLR, while GP was able to generate models
that were interpretable. Regolin, de Souza, Pozo, and
Vergilio (2003) also used NN- and GP-based models to
predict software size in terms of LOC. They use both
function points and number of components metrics for
this task. Pendharkar (2004) uses decision tree regres-
sion to predict the size of OO components. The total
size of the system can be calculated after the size of its
components is determined.

The ISO 9126 quality standard decomposes quality to
functionality, reliability, efficiency, usability, maintain-
ability, and portability factors. Other models such as
McCall’s, also define quality in terms of factors that
are themselves composed of quality criteria. These
quality criteria are further associated with measurable
attributes called quality metrics, for instance fault or
change counts (Fenton & Pfleeger, 1998) However, as
stated in Fenton and Pfleeger (1998), many software
engineers have a narrower view of quality as the lack
of software defects. A de facto standard for software
quality is fault density. Consequently, it is not surpris-
ing to see that in many published articles the problem
of predicting the quality of a system is formulated as
prediction of faults. To that end, there has been a large
body of work over the years that has applied various
ML techniques to build models to assess the quality of
a system. For instance, Evett and Khoshgoftar (1998)
used genetic programming to build models that predict
the number of faults expected in each module. Neural
networks have appeared in a number of software qual-
ity modeling applications such as Khoshgoftaar, Allen,
Hudepohl, and Aud (1997), which applied the technique
to a large industrial system to classify modules as fault-
prone or not fault-prone, or Quah and Thwin (2003)
who used object-oriented design metrics as features in
developing the model. In El Emam, Benlarbi, Goel, and
Rai (2001) the authors developed fault prediction mod-
els for the purpose of identifying high-risk modules.
In this study, the authors investigated the effect of vari-
ous parameter settings on the accuracy of these models.

The models were developed using data from a large real-
time system. More recently, Xing, Guo, and Lyu (2005)
used SVMs and Seliya and Khoshgoftaar (2007) used
an EM semi-supervised learning algorithm to develop
software quality models. Both these works cite the abil-
ity of these algorithms to generate models with good
performance in the presence of a small amount of
labeled data.

Software cost prediction typically refers to the process
of estimating the amount of effort needed to develop
a software system. As this definition suggests, cost and
effort estimations are often used interchangeably. Var-
ious kinds of cost estimations are needed throughout
the software life cycle. Early estimation allows one to
determine the feasibility of a project. More detailed esti-
mation allows managers to better plan for the project.
As there is less information available in the early stages
of the project, early predictions have a tendency to be
the least accurate. Software cost and effort estimation
models are among some of the oldest software pro-
cess prediction models. There are different methods of
estimating costs including:

(1) Expert opinion; (2) analogy based on similarity
to other projects; (3) decomposition of the project in
terms of components to deliver or tasks to accomplish,
and to generate a total estimate from the estimates of the
cost of individual components or activities; and (4) the
use of estimation models (Fenton & Pfleeger, 1998).

In general, organization-specific cost estimation
datasets tend to be small, as many organizations deal
with a limited number of projects and do not systemati-
cally collect process level data, including the actual time
and effort expenditure for completion of a project. As
cost estimation models are numeric predictors, many of
the original modeling techniques were based on regres-
sion methods.

The study in Briand, El Emam, Surmann, and
Wieczorek (1999) aims to identify methods that gener-
ate more accurate cost models, as well as to investigate
the effects of the use of organization-specific versus
multi-organization datasets. The authors compared the
accuracy of models generated by using ordinary least
squares regression, stepwise ANOVA, CART, and anal-
ogy. The measures used were MMRE, median of MRE
(MdMRE), and PRED(25). While their results did not

786

Predictive Techniques in Software Engineering

show a statistical difference between models obtained
from these methods, they suggest that CART models are
of particular interest due to their simplicity of use and
interpretation.

Shepperd and Schofield (1997) describes the use of
analogies for effort prediction. In this method, projects
are characterized in terms of attributes such as the num-
ber of interfaces, the development method, or the size of
the functional requirements document. The prediction
for a specific project is made based on the characteris-
tics of projects most similar to it. The similarity measure
used in Shepperd and Schofield (1997) is Euclidean dis-
tance in n-dimensional space of project features. The
proposed method was validated on nine different indus-
trial datasets, covering a total of 275 projects. In all
cases, the analogy-based method outperforms algorith-
mic models based upon stepwise regression when mea-
sured in terms of MMRE. When results are compared
using PRED(25) the analogy-based method generates
more accurate models in seven out of nine datasets.
Decision tree and neural network-based models are
also used in a number of studies on effort estimation
models.

In a more recent paper, (Oliveira, 2006), a compar-
ative study of support vector regression (SVR), radial
basis function »neural networks (RBFNs), and »linear
regression-based models for estimation of a software
project effort is presented. Both linear as well as RBF
kernels were used in the construction of SVR mod-
els. Experiments using a dataset of software projects
from NASA showed that SVR significantly outperforms
RBFNs and linear regression in this task.

In research literature one comes across different def-
initions for what constitutes a defect: fault and fail-
ure. According to Fenton and Pfleeger (1998) a fault is
a mistake in some software product due to a human
error. Failure, on the other hand, is the departure of the
system from its required behavior. Very often, defects
refer to faults and failures collectively. In their study
of defect prediction models, Fenton and Neil observed
that, depending on the study, defect count could refer
to a post-release defect, the total number of known
defects, or defects that are discovered after some arbi-
trary point in the life cycle. Additionally, they note

that defect rate, defect density, and failure rate are used
almost interchangeably in the literature (Fenton & Neil,
1999). The lack of an agreed-upon definition for such a
fundamental measure makes comparison of the mod-
els or published results in the literature difficult. Two
major reasons cited in research literature for developing
defect detection models are assessing software quality
and focusing testing or other needed resources on mod-
ules that are more likely to be defective. As a result, we
frequently find ourselves in a situation where a model
could be considered both a quality prediction model
and a defect prediction model. Therefore, most of the
publications we have mentioned under software quality
prediction could also be referred to in this subsection.
Fenton and Neil suggest using Bayesian Belief Networks
as an alternative to other existing methods (Fenton &
Neil, 1999).

The ANSI Software Reliability Standard defines soft-
ware reliability as:

» “the probability of failure-free operation of a computer
program for a specified time in a specified environ-
ment.”

Software reliability is an important attribute of soft-
ware quality. There are a number of publications on
the use of various neural network-based reliability pre-
diction models, including Sitte (1999) where NN-based
software reliability growth models are compared with
models obtained through recalibration of parametric
models. Results show that neural networks are not only
much simpler to use than the recalibration method, but
that they are equal or better trend predictors. In Pai
and Hong (2006) the authors use SVMs to predict soft-
ware reliability. They use simulated annealing to select
the parameters of the SVM model. Results show that an
SVM-based model with simulated annealing performs
better than existing Bayesian models.

The use of existing software artifacts or software knowl-
edge is known as software reuse. The aim of soft-
ware reuse is to increase the productivity of software
developers, and increase the quality of end product,

Predictive Techniques in Software Engineering

787

both of which contribute to overall reduction in soft-
ware development costs. While the importance of soft-
ware reuse was recognized as early as 1968 by Douglas
Mcllroy, applications of ML in predicting reusable com-
ponents are relatively few and far between. The typical
approach is to label the reusable piece of code (i.e., a
module or a class) as one of reusable or non-reusable,
and to then use software metrics to describe the exam-
ple of interest. An early work by Esteva (1990) used
ID3 to classify Pascal modules from different applica-
tion domains as either reusable or not-reusable. These
modules contained different number of procedures.
Later work in Mao, Sahraoui, and Lounis (1998) uses
models built using C4.5 as a means to verify three
hypothesis of correlation between reusability and the
quantitative attributes of a piece of software: inheri-
tance, coupling, and complexity. For each hypothesis,
a set of relevant metrics (e.g., complexity metrics for
a hypothesis on the relation between complexity and
reuse) is used to describe examples. Each example is
labeled as one of four classes of reusability, ranging
from “totally reusable” to “not reusable at all” If the
learned model performs well then this is interpreted
as the existence of a hypothesized relation between
reuse and one of the abovementioned quantitative
attributes.

In this section, we discuss some of the more recent uses
of ML techniques in building predictive models for soft-
ware engineering applications that do not fall into one
the above widely researched areas.

In Padberg, Ragg, and Schoknecht (2004) models
are learned to predict the defect content of documents
after software inspection. Being able to estimate how
many defects are in a software document (e.g., specifi-
cations, designs) after the inspection, allows managers
to decide whether to re-inspect the document to find
more defects or pass it on to the next development step.
To capture the non-linear relation between the inspec-
tion process metrics, such as total number of defects
found by the inspection team and the number of defects
in the document, the authors train a neural network.
They conclude that these models yield much more accu-
rate estimates than standard estimation methods such
as capture-recapture and detection profile.

Predicting the stability of object-oriented software,
defined as the ease by which a software system or com-
ponent can be changed while maintaining its design,
is the subject of research in Grosser, Sahraoui, and
Valtchev (2002). More specifically, stability is defined as
preservation of the class interfaces through evolution of
the software. To accomplish the above task, the authors
use Cased-Base Reasoning. A class is considered stable
if its public interface in revision J is included in revi-
sion J + 1. Each program class or case is represented by
structural software metrics, which belong to one of the
four categories of coupling, cohesion, inheritance, and
complexity.

Models that predict which defects will be escalated
are developed in Ling, Sheng, Bruckhaus, and Mad-
havji (2006). Escalated defects are the ones that were not
addressed prior to release of the software due to factors
such as deadlines and limited resources. However, after
the release, these defects are escalated by the customer
and must be immediately resolved by the vendor at a
very high cost. Therefore, the ability to predict the risk of
escalation for existing defect reports will prevent many
escalations, and result in large savings for the vendor.
The authors in this paper show how the problem of max-
imizing net profit (the difference in cost of following
predictions made by the escalation prediction model
versus the existing alternative policy) can be converted
to cost-sensitive learning. The assumption here is that
net profit can be represented as a linear combination
of true positive, false positive, true negative, and false
negative prediction counts, as is done for cost-sensitive
learning that attempts to minimize the weighted cost
of the abovementioned four factors. The results of the
experiments performed by the authors show that an
improved version of the CSTree algorithm can produce
comprehensible models that generate a large positive
unit net profit.

Most predictive models developed for software engi-
neering applications, including the ones cited in this
article, make prediction regarding a single entity - for
instance, whether a module is defective, how much
effort is needed to develop a system, is a piece of code
reusable, and so on. Sayyad Shirabad, Lethbridge, and
Matwin (2007) introduced the notion of relevance rela-
tions among multiple entities in software systems. As an
example of such relations, the authors applied historic

788

Predictive Techniques in Software Engineering

problem report and software change data to learned
models for the Co-update relation among files in a
large industrial telecom system. These models predict
whether changing one source file may require a change
in another file. Different sets of attributes, includ-
ing syntax-based software metrics as well as textual
attributes such as source file comments and problem
reports, are used to describe examples of the Co-update
relation. The C5.0 decision tree induction algorithm was
used to learn these predictive models. The authors con-
cluded that text-based attributes outperform syntactic
attributes in this model-building task. The best results
are obtained for text-based attributes extracted from
problem reports. Additionally, when these attributes are
combined with syntactic attributes, the resulting models
perform slightly better.

Future Directions

As we mentioned earlier due to its decision-intensive
nature, there is potential for learning a large number
of predictive models for software engineering tasks. A
very rich area of research for future applications of pre-
dictive models in software engineering is in Autonomic
Computing. Autonomic computing systems, as was put
forward in Ganek and Corbi (2003), should be:

o Self-configuring: able to adapt to changes in the sys-
tem in a dynamic fashion.

o Self-optimizing: able to improve performance and
maximize resource allocation and utilization to
meet end users’ needs while minimizing human
intervention.

o Self-healing: able to recover from mistakes by detect-
ing improper operations proactively or reactively
and then initiate actions to remedy the problem
without disrupting system applications.

o Self-protecting: able to anticipate and take actions
against intrusive behaviors as they occur, so as to
make the systems less vulnerable to unauthorized
access.

Execution of actions in support of the capabilities
mentioned above follows the detection of a triggering
change of state in the environment. In some scenarios,
this may entail a prediction about the current state of the
system; in other scenarios, the prediction may be about
the future state of the system. In a two-state scenario,

the system needs to know whether it is in a normal
or abnormal (undesired) state. Examples of undesired
states are needs optimization or needs healing. The detec-
tion of the state of a system can be cast as a classification
problem. The decision as to what attributes should be
used to represent each example of a normal or an abnor-
mal state depends on the specific prediction model that
we would like to build and on the monitoring capabili-
ties of the system. Selecting the best attributes among a
set of potential attributes will require empirical analysis.
However, the process can be further aided by:

o Expert knowledge: Based on their past experience,
hardware and software experts typically have evi-
dence or reasons to believe that some attributes are
better indicators of desired or undesired states of the
system.

o Documentation: System specification and other doc-
uments sometimes include the range of acceptable
values for certain parameters of the system. These
parameters could be used as attributes.

o Feature selection: This aims to find a subset of avail-
able features or attributes that result in improv-
ing a predefined measure of goodness, such as
the accuracy of the model. Reducing the number
of features may also result in a simpler model.
One of the benefits of such simpler models is the
higher prediction speed, which is essential for timely
responses by the autonomic system to changes in the
environment.

Obviously, given enough examples of different system
states, one can build multi-class models, which can
make finer predictions regarding the state of the system.

In the context of autonomic computing, besides
classification models, numeric predictors can also be
used for resource estimation (e.g., what is the appro-
priate database cache size considering the current state
of the system). Furthermore, an autonomic system can
leverage the ability to predict the future value of a vari-
able of interest, such as the use of a particular resource
based on its past values. This can be accomplished
through »time series predictions. Although researchers
have used neural networks and support vector machines
for time series prediction in various domains, we are not
aware of an example of the usage of such algorithms in
autonomic computing.

Preference Learning

789

Recommended Reading

Briand, L., El Emam, K., Surmann, D., & Wieczorek, 1. (1999). An
assessment and comparison of common software cost estima-
tion modeling techniques. In Proceedings of 21st international
conference on software engineering (pp. 313-322).

Cohen, W., & Devanbu, P. (1999). Automatically exploring hypothe-
ses about fault prediction: A comparative study of inductive
logic programming methods. International Journal of Software
Engineering and Knowledge Engineering, 9(5), 519-546.

Dolado, J. J. (2000). A validation of the component-based method
for software size estimation. IEEE Transactions on Software
Engineering, 26(10), 1006-1021.

El Emam, K., Benlarbi, S., Goel, N., & Rai, S. (2001). Compar-
ing case-based reasoning classifiers for predicting high risk
software components. Journal of Systems and Software, 55(3),
301-320.

Esteva, J. C. (1990). Learning to recognize reusable software mod-
ules using an inductive classification system. In Proceedings
of the fifth Jerusalem conference on information technology
(pp. 278-285).

Evett, M., & Khoshgoftar, T. (1998). GP-based software quality pre-
diction. In Proceedings of the third annual conference on genetic
programming (pp. 60-65).

Fenton, N. E., & Pfleeger, S. L. (1998). Software metrics: A rigorous
and practical approach (2nd ed.). Boston: PWS.

Fenton, N., & Neil, M. (1999). A critique of software defect predic-
tion models. IEEE Transactions on Software Engineering, 25(5),
675-689.

Ganek, A. G., & Corbi T. A. (2003). The dawning of autonomic
computing era. IBM Systems Journal, 42(1), 5-18.

Grosser, D., Sahraoui, H. A., & Valtchev, P. (2002). Predicting soft-
ware stability using case-based reasoning. In Proceedings of 17th
IEEE international conference on automated software engineer-
ing (ASE) (pp. 295-298).

Khoshgoftaar, T., Allen, E., Hudepohl, J., & Aud, S. (1997). Applica-
tions of neural networks to software quality modeling of a very
large telecommunications system. IEEE Transactions on Neural
Networks, 8(4), 902-909.

Ling, C., Sheng, V., Bruckhaus, T., & Madhavji, N. (2006). Maxi-
mum profit mining and its application in software development.
In Proceedings of the 12th ACM international conference on
knowledge discovery and data mining (SIGKDD) (pp. 929-934).

Mao, Y., Sahraoui, H., & Lounis, H. (1998). Reusability hypoth-
esis verification using machine learning techniques: A case
study. In Proceedings of the 13th IEEE international conference
on automated software engineering (pp. 84-93).

Oliveira, A. (2006). Estimation of software project effort with sup-
port vector regression. Neurocomputing, 69(13-15), 1749-1753.

Padberg, F., Ragg, T., & Schoknecht, R. (2004). Using machine learn-
ing for estimating the defect content after an inspection. IEEE
Transactions on Software Engineering, 30(1), 17-28.

Pai, P. F,, & Hong, W. C. (2006). Software reliability forecasting by
support vector machines with simulated annealing algorithms.
Journal of Systems and Software, 79(6), 747-755.

Pendharkar, P. C. (2004). An exploratory study of object-oriented
software component size determinants and the application of
regression tree forecasting models. Information and Manage-
ment, 42(1), 61-73.

Pfleeger, S. L., & Atlee J. M. (2003). Software engineering: Theory and
practice. Upper Saddle River, NJ: Prentice-Hall.

Quah, T. S, & Thwin, M. M. T. (2003). Application of neural networks
for software quality prediction using object-oriented metrics. In
Proceedings of international conference on software maintenance
(pp. 22-26).

Regolin, E.N., de Souza, G. A., Pozo, A. R. T., & Vergilio, S. R. (2003).
Exploring machine learning techniques for software size estima-
tion. In Proceedings of the 23rd international conference of the
Chilean computer science society (SCCC) (pp. 130-136).

Sayyad Shirabad, J., Lethbridge, T. C., & Matwin, S. (2007). Mod-
eling relevance relations using machine learning techniques.
In J. Tsai & D. Zhang (Eds.), Advances in machine learning
applications in software engineering (pp. 168-207). IGI.

Seliya, N. & Khoshgoftaar, T. M. (2007). Software quality estimation
with limited fault data: a semi-supervised learning perspective.
Software Quality Journal, 15(3), 327-344.

Shepperd, M., & Schofield, C. (1997). Estimating software project
effort using analogies. IEEE Transactions on Software Engineer-
ing, 23(11), 736-743.

Sitte, R. (1999). Comparison of software-reliability-growth pre-
dictions: neural networks vs parametric-recalibration. IEEE
Transactions on Reliability, 48(3), 285-291.

Xing, E, Guo, P, & Lyu, M. R. (2005). A novel method for early
software quality prediction based on support vector machine.
In Proceedings of IEEE international conference on software
reliability engineering (pp. 213-222).

Zhang, Du., & Tsai, J. P. (2003). Machine learning and software
engineering. Software Quality Journal, 11(2), 87-119.

[.
Preference Learning

JoHANNES FOURNKRANZ!, EYKE HULLERMEIER?
I'TU Darmstadt
ZPhilipps-Universitit Marburg

Synonyms
Learning from preferences

Definition

Preference learning refers to the task of learning to
predict an order relation on a collection of objects
(alternatives). In the training phase, preference learn-
ing algorithms have access to examples for which the
sought order relation is (partially) known. Depend-
ing on the formal modeling of the preference context
and the alternatives to be ordered, one can distinguish
between object ranking problems and label ranking
problems. Both types of problems can be approached in
two fundamentally different ways, either by modeling
the binary preference relation directly, or by inducing
this relation indirectly via an underlying (latent) utility
function.

790

Preference Learning

Motivation and Background

Preference information plays a key role in automated
decision making and appears in various guises in Arti-
ficial Intelligence (AI) research, notably in fields such as
agents, non-monotonic reasoning, constraint satisfac-
tion, planning, and qualitative decision theory (Doyle,
2004). Preferences provide a means for specifying
desires in a declarative way, which is a point of critical
importance for AL In fact, considering AT’s paradigm of
arationally acting (decision-theoretic) agent, the behav-
ior of such an agent has to be driven by an underlying
preference model, and an agent recommending deci-
sions or acting on behalf of a user should clearly reflect
that user’s preferences. Therefore, the formal modeling
of preferences can be considered an essential aspect of
autonomous agent design.

Drawing on past research on knowledge represen-
tation and reasoning, Al offers qualitative and sym-
bolic methods for modeling and processing preferences
that can reasonably complement standard approaches
from economic decision theory, namely numerical util-
ity functions and binary preference relations.

In practice, preference modeling can still become
a rather cumbersome task if it must be done by hand.
This is an important motivation for preference learn-
ing, which is meant to support and partly automatize the
design of preference models. Roughly speaking, prefer-
ence learning is concerned with the automated acquisi-
tion of preference models from data, that is, data from
which (possibly uncertain) preference information can
be deduced in a direct or indirect way.

Computerized methods for revealing the pref-
erences of individuals (users) are useful not only
in AI, but also in many related fields, notably in
areas such as information retrieval, information sys-
tems, and e-commerce, where an increasing trend
toward personalization of products and services can be
recognized.Correspondingly, a number of methods and
tools, such as recommender systems and collaborative
filtering, have been proposed in the recent literature,
which could in principle be subsumed under the head-
ing of preference learning. In fact, one should real-
ize that preference learning is a relatively recent and
emerging topic. A first attempt for setting a common
framework in this area can be found in Fiirnkranz and
Hiillermeier (2010). In this article, we shall therefore
focus on two particular learning tasks that have been

studied in the realm of machine learning and can be
considered as extensions of classical machine learning
problems.

Before proceeding, we introduce some basic nota-
tion that will be used later on. A weak preference rela-
tion > on a set A is a reflexive and transitive binary
relation. Such a relation induces a strict preference >
and an indifference relation ~ as follows: a > biff (a > b)
and (b # a); moreover, a ~ biff (a > b) and (b > a).
In agreement with our preference semantics, we shall
interpret a > b as “alternative a is at least as good as
alternative b Let us note, however, that the term “pref-
erence” should not be taken literally and instead always
be interpreted in a wide sense as a kind of order rela-
tion. Thus, a > b may indeed mean that alternative a is
more liked by a person than b, but also, e.g., that a is an
algorithm that outperforms b on a certain problem, or
that a is a student finishing her studies before another
student b.

Subsequently, we shall focus on an especially simple
type of preference structure, namely total strict orders
or rankings, that is, relations > which are total, irreflex-
ive, and transitive. If A is a finite set {a,...,am}, a
ranking of A can be identified with a permutation
7 of {1,...,m}, as there is a unique permutation 7 such
that a; > a; if and only if 7(i) < 7(j) (7(i) is the posi-
tion of a; in the ranking). We shall denote the class
,m} by S,,. Moreover, by
abuse of notation, we shall sometimes employ the terms

of all permutations of {1,...

ranking” and “permutation” synonymously.

Structure of the Learning System

As mentioned before, a considerable number of diverse
approaches have been proposed under terms like rank-
ing and preference learning. In the following, we shall
distinguish between object ranking problems, where the
task is to order subsets of objects, and label ranking prob-
lems, where the task is to assign a permutation of a fixed
set of labels to a given instance. An important difference
between these problems concerns the formal represen-
tation of the preference context and the alternatives to
be ordered: In object ranking, the objects themselves
are characterized by properties, typically in terms of an
attribute-value representation. Thus, the ranking model
can refer to properties of the alternatives and can there-
fore be applied to arbitrary sets of such alternatives. In

Preference Learning

791

label ranking, the alternatives to be ranked are labels
as in classification learning, i.e., mere identifiers with-
out associated properties. Instead, the ranking context
is characterized in terms of a (ranking) instance from
a given instance space, and the task of the model is to
rank alternatives depending on properties of the context.
Thus, the context may now change (as opposed to object
ranking, where it is implicitly fixed) but the objects to be
ranked remain the same. Or, stated differently, object
ranking is the problem to rank varying sets of objects
under invariant preferences, whereas label ranking is
the problem to rank an invariant set of objects under
varying preferences.

For both problem types, there are two principal ways
to approach them. One possibility is to learn a utility
function that induces the sought ranking by evaluating
individual objects. The alternative is to compare pairs of
objects, that is, to learn a binary preference relation.

Note that the first approach implicitly assumes an
underlying total order relation, since numerical (or at
least totally ordered) utility scores enforce the compa-
rability of alternatives. The second approach is more
general in this regard, as it also allows for partial
order relations. On the other hand, this approach
may lead to complications if the target is indeed a
total order, since a set of hypothetical binary prefer-
ences induced from empirical data is not necessarily
transitive.

Given:

¢ A (potentially infinite) set X" of objects (each object
typically represented by a feature vector)

o A finite set of pairwise preferences x; > xj, (xi,%;) €
X xX

Find:

e A ranking function r(-) that, given a set of objects
O ¢ X as input, returns a permutation (ranking) of
these objects

The most frequently studied problem in learning
from preferences is to induce a ranking function r(-)
that is able to order any subset O of an underlying class
X of objects. That is, r(-) assumes as input a subset
O = {x1,...,x,} C X of objects and returns as output

,n}. The interpretation of this
permutation is that object x; is preferred to x; whenever
7(i) < 7(j). The objects themselves are typically char-
acterized by a finite set of features as in conventional
attribute-value learning. The training data consists of
a set of exemplary pairwise preferences. A survey of
object ranking approaches can be found in Kamishima
et al. (2010).

Note that, in order to evaluate the predictive perfor-
mance of a ranking algorithm, an accuracy measure is
needed that compares a predicted ranking with a given
reference. To this end, one can refer, for example, to

a permutation 7 of {1,...

so-called »rank correlation measures that have been
proposed in statistics. In the context of ranking, such
measures play the role of, say, the classification rate in
classification learning.

As an example of object ranking consider the prob-
lem of learning to rank query results of a search engine
(Joachims, 2002). The training information could be
provided implicitly by the user who clicks on some of
the links in the query result and not on others. This
information can be turned into binary preferences by
assuming that the selected pages are preferred over
nearby pages that are not clicked on (Radlinski et al.,
2010).

Given:

e A set of training instances {xx|k=1,...,n} € X
(each instance typically represented by a feature vec-
tor)

o Asetoflabels £={A;|i=1,...,m}

e For each training instance x: a set of associated
pairwise preferences of the form A; >,, A;

Find:

e A ranking function in the form of an X — S,
mapping that assigns a ranking (permutation) >, of
Ltoeveryxe X

In this learning scenario, the problem is to predict,
for any instance x (e.g., a person) from an instance space
X, a preference relation (ranking) >, ¢ £ x £ among
a finite set £ = {A,,..
where A; >, A; means that instance x prefers the label

.»Am} of labels or alternatives,

792

Preference Learning

A; to the label A;. More specifically, as we are espe-
cially interested in the case where >, is a total strict
order, the problem is to predict a permutation of £. The
training information consists of a set of instances for
which (partial) knowledge about the associated prefer-
ence relation is available. More precisely, each training
instance x is associated with a subset of all pairwise
preferences. Thus, despite the assumption of an under-
lying (“true”) target ranking, the training data is not
expected to provide full information about such rank-
ings. Besides, in order to increase the practical useful-
ness of the approach, learning algorithms should even
allow for inconsistencies, such as pairwise preferences
which are conflicting due to observation errors.

The above formulation follows (Hiillermeier et al.
2008), similar formalizations have been proposed inde-
pendently by several authors (Dekel et al, 2004;
Firnkranz and Hillermeier, 2003; Har-Peled et al.,
2002). A survey can be found in Vembu and Gértner
(2010). Aiolli and Sperduti (2010) proposed an inter-
esting generalization of this framework that allows one
to specify both qualitative and quantitative preference
constraints on an underlying utility function. In addi-
tion to comparing pairs of alternatives, it is possible to
specify constraints of the form A; >, ¢, which means that
the utility score of alternative x reaches the numerical
threshold ¢.

Label ranking contributes to the general trend of
extending machine learning methods to complex and
structured output spaces (Fiirnkranz and Hiillermeier,
2010; Tsochantaridis et al., 2004). Moreover, label rank-
ing can be viewed as a generalization of several stan-
dard learning problems. In particular, the following
well-known problems are special cases of learning label
preferences:

e »Classification: A single class label A; is assigned
to each example x;. This is equivalent to the set of
preferences {A; >, A;|1<j#i<m}.

e P Multi-label classification: Each training example x
is associated with a subset L € L of possible labels.
This is equivalent to the set of preferences {A; >, ;|
/\,’ € Lk,Aj eL~ Lk}.

In each of the former scenarios, the sought prediction
can be obtained by post-processing the output of a
ranking model f : X — S, in a suitable way. For
example, in classification learning, where only a single

label is requested, it suffices to project a label ranking to
the top-ranked label.

Applications of this general framework can be found
in various fields, for example in marketing research;
here, one might be interested in discovering depen-
dencies between properties of clients and their pref-
erences for products. Another application scenario is
»meta-learning, where the task is to rank learning algo-
rithms according to their suitability for a new dataset,
based on the characteristics of this dataset. Moreover,
every preference statement in the well-known CP-nets
approach (Boutilier et al., 2004), a qualitative graphi-
cal representation that reflects conditional dependence
and independence of preferences under a ceteris paribus
interpretation, formally corresponds to a label ranking
function that orders the values of a certain attribute
depending on the values of the parents of this attribute
(predecessors in the graph representation).

A natural way to represent preferences is to evaluate
the alternatives by means of a utility function. In the
object preferences scenario, such a function is a map-
ping f : X — U that assigns a utility degree f(x) to
each object x and, thereby, induces a linear order on X;
the utility scale I/ is usually given by the real numbers RR,
but sometimes an ordinal scale is preferred (note that an
ordinal scale will typically produce many ties, which is
undesirable if the target is a ranking). In the label prefer-
ences scenario, a utility function f; : X — U is needed
for every label A;, i = 1,...,m. Here, f;(x) is the util-
ity assigned to alternative A; by instance x. To obtain
a ranking for x, the alternatives are ordered according
to their utility scores, i.e., a ranking >, is derived that
satisfies A; >, A; = fi(x)>f;(x).

If the training data offers the utility scores directly,
preference learning reduces to a standard regression
(up to a monotonic transformation of the utility val-
ues) or an ordinal regression problem, depending on
the underlying utility scale. This information can rarely
be assumed, however. Instead, usually only constraints
derived from comparative preference information of the
form “This object (or label) should have a higher util-
ity score than that object (or label)” are given. Thus,
the challenge for the learner is to find a function that
is as much as possible in agreement with a set of such
constraints.

Preference Learning

793

For object ranking approaches, this idea has first
been formalized by Tesauro (1989) under the name
comparison training. He proposed a symmetric neural-
network architecture that can be trained with represen-
tations of two states and a training signal that indicates
which of the two states is preferable. The elegance of this
approach comes from the property that one can replace
the two symmetric components of the network with a
single network, which can subsequently provide a real-
valued evaluation of single states. Similar ideas have also
been investigated for training other types of classifiers,
in particular support vector machines. We already men-
tioned Joachims (2002) who analyzed “click-through
data” in order to rank documents retrieved by a search
engine according to their relevance. Earlier, Herbrich
et al. (1998) have proposed an algorithm for train-
ing SVMs from pairwise preference relations between

objects.
For the case of label ranking, a corresponding
method for learning the functions fi(-), i = 1,...,m,

from training data has been proposed in the frame-
work of constraint classification (Har-Peled et al., 2002).
The learning method proposed in this work constructs
two training examples, a positive and a negative one,
for each given preference A; >, A;, where the original
N-dimensional training example (feature vector) x is
mapped into an (m x N)-dimensional space. The pos-
itive example copies the original training vector x into
the components ((i—1) x N+1) ... (ix N) and its nega-
tion into the components ((j —1) x N +1)...(j x N)
of a vector in the new space; the remaining entries are
filled with 0. The negative example has the same ele-
ments with reversed signs. In this (m x N')-dimensional
space, the learner tries to find a hyperplane that sep-
arates the positive from the negative examples. For
classifying a new example xo, the labels are ordered
according to the response resulting from multiplying
xo with the ith N-element section of the hyperplane
vector.

As mentioned before, instead of learning a latent utility
function that evaluates individual objects, an alternative
approach to preference learning consists of comparing
pairs of objects (labels) in terms of a binary preference
relation. For object ranking problems, this pairwise
approach has been pursued in Cohen et al. (1999). The
authors propose to solve object ranking problems by

learning a binary preference predicate Q(x,x"), which
predicts whether x is preferred to x” or vice versa. A
final ordering is found in a second phase by deriv-
ing a ranking that is maximally consistent with these
predictions.

For label ranking problems, the pairwise approach
has been introduced in Fiirnkranz and Hiillermeier
(2003) as a natural extension of pairwise classification, a
well-known »class binarization technique. The idea is
to train a separate model (base learner) M, for each
pair of labels (A;,4;) € £,1 < i < j < m; thus,
a total number of m(m — 1)/2 models is needed. For
training, a preference information of the form A; >, A,
is turned into a (classification) example (x,y) for the
learner M}, where a = min(i,j) and b = max(i,).
Moreover, y = 1ifi < jand y = 0 otherwise. Thus,
M, is intended to learn the mapping that outputs
1if A, >x Apand 0if A, >, A :

1 if Ay>c Ay
x>)

0 if Ap>y A,

The mapping (1) can be realized by any binary clas-
sifier. Instead of a {0,1}-valued classifier, one can of
course also employ a scoring classifier. For example, the
output of a probabilistic classifier would be a number
in the unit interval [0,1] that can be interpreted as a
probability of the preference A, >, Ap.

At classification time, a query xp € X is submit-
ted to the complete ensemble of binary learners. Thus,
a collection of predicted pairwise preference degrees
Mij(x), 1 < i,j < m, is obtained. The problem,
then, is to turn these pairwise preferences into a rank-
ing of the label set £. To this end, different ranking
procedures can be used. The simplest approach is to
extend the (weighted) voting procedure that is often
applied in pairwise classification: For each label A,
a score

Si = Z Mi,j (.X'())
1j#i<m
is derived (where M;;(xo) = 1 - M;;(xy) for
i > j), and then all labels are ordered according to these
scores. Despite its simplicity, this ranking procedure has
several appealing properties. Apart from its computa-
tional efficiency, it turned out to be relatively robust
in practice and, moreover, it possesses some provable

794

Preference Learning

optimality properties in the case where Spearman’s rank
correlation is used as an underlying accuracy measure.
Roughly speaking, if the binary learners are unbiased
probabilistic classifiers, the simple “ranking by weighted
voting” procedure yields a label ranking that maximizes
the expected Spearman rank correlation (Hiillermeier
and Firnkranz, 2010). Finally, it is worth mentioning
that, by changing the ranking procedure, the pairwise
approach can also be adjusted to accuracy measures
other than Spearman’s rank correlation.

Future Directions

As we already mentioned, preference learning is an
emerging topic and, as a subfield of machine learning,
still in its infancy. In particular, one may expect that,
apart from the object and label ranking problems, other
settings and frameworks will be studied in the future.
But even for object and label ranking as introduced
above, there are several open questions and promising
lines of future research. The most obvious extension
concerns the type of preference structure predicted as
an output: For many applications, it is desirable to pre-
dict structures which are more general than rankings,
e.g., which allow for incomparability (partial orders)
or indifference between alternatives. In a similar vein,
the pairwise approach to label ranking has recently
been extended to the prediction of so-called “calibrated”
rankings in Flirnkranz et al. (2008). A calibrated rank-
ing is a ranking with an additional “zero-point” that
separates between a positive and a negative part, thereby
integrating the problems of label ranking and multi-
label classification.

Cross References
» Classification
»Meta-Learning
»Rank Correlation

Recommended Reading

Aiolli, F.,, & Sperduti, A. (2010). A preference optimization based
unifying framework for supervised learning problems. In J.
Firnkranz & E. Hiillermeier (Eds.), Preference learning (pp. 19-
40). Springer.

Boutilier, C., Brafman, R., Domshlak, C., Hoos, H., & Poole, D.
(2004). CP-nets: a tool for representing and reasoning with

conditional ceteris paribus preference statements. Journal of
Artificial Intelligence Research, 21, 135-191.

Cohen, W. W., Schapire, R. E., & Singer, Y. (1999). Learning to
order things. Journal of Artificial Intelligence Research, 10,
243-270.

Dekel, O., Manning, C. D., & Singer, Y. (2004). Log-linear models for
label ranking. In S. Thrun, L. K. Saul, & B. Schélkopf, (Eds.),
Advances in neural information processing systems (NIPS-03)
(pp. 497-504). Cambridge: MIT Press.

Doyle, J. (2004). Prospects for preferences. Computational Intelli-
gence, 20(2), 111-136.

Firnkranz, J., & Hiillermeier, E. (2003). Pairwise preference learn-
ing and ranking. In N. Lavra¢, D. Gamberger, H. Blockeel, &
L. Todorovski (Eds.), Proceedings of the 14th European Confer-
ence on Machine Learning (ECML-03), volume 2837 of Lecture
Notes in Artificial Intelligence, Springer, Cavtat, Croatia, pp.
145-156.

Firnkranz, J., & Hillermeier, E. (Eds.). (2010). Preference learning.
Springer.

Firnkranz, J., & Hiillermeier, E. (2010). Preference learning and
ranking by pairwise comparison. In J. Fiirnkranz & E. Hiller-
meier (Eds.), Preference Learning (pp. 63-80). Springer.

Firnkranz, J., & Hillermeier, E. (2010). Preference learning: an
introduction. In J. Fiirnkranz & E. Hilllermeier (Eds.), Prefer-
ence Learning (pp. 1-18). Springer.

Firnkranz, J., Hiillermeier, E., Loza Mencia, E., & Brinker, K. (2008).
Multilabel classification via calibrated label ranking. Machine
Learning, 73(2), 133-153.

Har-Peled, S., Roth, D., & Zimak, D. (2002). Constraint classifica-
tion: a new approach to multiclass classification. In N. Cesa-
Bianchi, M. Numao, & R. Reischuk, (Eds.), Proceedings of the
13th International Conference on Algorithmic Learning Theory
(ALT-02) (pp. 365-379), Springer, Liibeck, Germany.

Herbrich, R., Graepel, T., Bollmann-Sdorra, P., & Obermayer, K.
(1998). Supervised learning of preference relations. Proceed-
ings des Fachgruppentreffens Maschinelles Lernen (FGML-98),
pp. 43-47.

Hillermeier, E., & Fiirnkranz, J. (2010). On predictive accuracy
and risk minimization in pairwise label ranking. Journal of
Computer and System Sciences, 76(1), 49-62.

Hillermeier, E., Firnkranz, J., Cheng, W., & Brinker, K. (2008).
Label ranking by learning pairwise preferences. Artificial Intel-
ligence, 172, 1897-1916.

Joachims, T. (2002). Optimizing search engines using clickthrough
data. Proceedings of the 8th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining (KDD-02), ACM
Press, pp. 133-142.

Kamishima, T., Kazawa, H., & Akaho, S. (2010). A survey and empir-
ical comparison of object ranking methods. In J. Fiirnkranz & E.
Hiillermeier (Eds.), Preference learning (pp. 175-195). Springer.

Radlinski, E, Kurup, M., & Joachims, T. (2010). Evaluating search
engine relevance with click-based metrics. In J. Flirnkranz & E.
Hiillermeier (Eds.), Preference learning (pp. 329-353). Springer.

Tesauro, G. (1989). Connectionist learning of expert preferences by
comparison training. In D. Touretzky (Ed.), Advances in Neu-
ral Information Processing Systems 1 (NIPS-88) (pp. 99-106),
Morgan Kaufmann.

Tsochantaridis, I., Hofmann, T., Joachims, T., & Altun, Y. (2004).
Support vector machine learning for interdependent and struc-
tured output spaces. ICML.

Privacy-Related Aspects and Techniques

795

Vembu, S., & Girtner, T. (2010). Label ranking algorithms: a sur-
vey. InJ. Firnkranz & E. Hiillermeier (Eds.), Preference learning
(pp. 43-61). Springer.

| Privacy-Preserving Data Mining

»Privacy-Related Aspects and Techniques

! Pre-Pruning

Synonyms
Stopping criteria

Definition

Pre-pruning is a »Pruning mechanism that monitors
the learning process and prevents further refinements if
the current hypothesis becomes too complex.

Cross References
» Overfitting

» Post-Pruning
»Pruning

| Presynaptic Neuron

The neuron that sends signals across a synaptic con-
nection. A chemical synaptic connection between two
neurons allows to transmit signals from a presynaptic
neuron to a postsynaptic neuron.

| Principal Component Analysis

Synonyms
PCA

Definition

Principal Component Analysis (PCA) is a
»dimensionality reduction technique. It is described in

»covariance matrix.

.
Prior

» Prior Probability

| Privacy-Related Aspects and
Techniques

STAN MATWIN
University of Ottawa, Ottawa, ON, Canada and Polish
Academy of Sciences, Warsaw, Poland

Synonyms
Privacy-preserving data mining

Definition

The privacy-preserving aspects and techniques of
machine learning cover the family of methods and
architectures developed to protect the privacy of people
whose data are used by machine learning (ML) algo-
rithms. This field, also known as privacy-preserving
data mining (PPDM), addresses the issues of data pri-
vacy in ML and data mining. Most existing methods
and approaches are intended to hide the original data
from the learning algorithm, while there is emerging
interest in methods ensuring that the learned model
does not reveal private information. Another research
direction contemplates methods in which several par-
ties bring their data into the model-building process
without mutually revealing their own data.

Motivation and Background

The key concept for any discussion of the privacy
aspects of data mining is the definition of privacy. After
Alan Westin, we understand privacy as the ability “of
individuals. .. to determine for themselves when, how,
and to what extent information about them is com-
municated to others” (Westin, 1967). One of the main
societal concerns about modern computing is that the
storing, keeping, and processing of massive amounts of
data may jeopardize the privacy of individuals whom
the data represent. In particular, ML and its power to
find patterns and infer new facts from existing data
makes it difficult for people to control information

796

Privacy-Related Aspects and Techniques

about themselves. Moreover, the infrastructure nor-
mally put together to conduct large-scale model build-
ing (e.g., large data repositories and data warehouses),
is conducive to misuse of data. Personal data, amassed
in large collections that are easily accessed through
databases and often available online to the entire world,
become - as phrased by Moor in an apt metaphor
(Moor, 2004) - “greased” It is difficult for people to
control the use of this data.

Theory/Solutions

Privacy-related techniques can be characterized by:
(1) the kind of source data modification they perform,
e.g., data perturbation, randomization, generalization,
and hiding; (2) the ML algorithm that works on the
data and how is it modified to meet the privacy require-
ments imposed on it; and (3) whether the data are
centralized or distributed among several parties, and -
in the latter case — on what the distribution is based.
But even at a more basic level, it is useful to view
privacy-related techniques along just two fundamental
dimensions.

The first dimension defines what is protected as pri-
vate — is it the data itself, or the model (the results of data
mining)? As we show below, the knowledge of the latter
can also lead to identifying and revealing information
about individuals. The second dimension defines the
protocol of the use of the data: are the data centralized
and owned by a single owner, or are the data distributed
among multiple parties? In the former case, the owner
needs to protect the data from revealing information
about individuals represented in the data when that
data is being used to build a model by someone else.
In the latter case, we assume that the parties have lim-
ited trust in each other: they are interested in the results
of data mining performed on the union of the data of
all the parties, while not trusting the other parties to
see their own data without first protecting it against
disclosure of information about individuals to other
parties.

Moreover, work in PPDM has to apply a framework
that is broader than the standard ML methodology.
When privacy is an important goal, what matters in
performance evaluation is not only the standard ML
performance measures, but also some measure of the

privacy achieved, as well as some analysis of the robust-
ness of the approach to attacks.

In this article, we structure our discussion of the
current work on PPDM in terms of the taxonomy pro-
posed above. This leads to the following bird’s-eye view
of the field.

This subfield emerged in 2000 with the seminal paper
by Agrawal and Srikant (2000). They stated the prob-
lem as follows: given data in the standard P-attribute-
value representation, how can an accurate »decision
tree be built so that, instead of using original attribute
values x;, the decision tree induction algorithm takes
input values x; + r, where r belongs to a certain dis-
tribution (Gaussian or uniform). This is a data per-
turbation technique: the original values are changed
beyond recognition, while the distributional properties
of the entire data set that decision tree »induction uses
remain the same, at least up to a small (empirically,
less than 5%) degradation in accuracy. There is a clear
trade-off between the privacy assured by this approach
and the quality of the model compared to the model
obtained from the original data. This line of research has
been continued in Evfimievski, Srikant, Agrawal, and
Gehrke (2002) where the approach is extended to asso-
ciation rule mining. As a note of caution about these
results, Kargupta, Datta, and Wang (2003) have shown,
in 2003, how the randomization approaches are sen-
sitive to attack. They demonstrate how the noise that
randomly perturbs the data can be viewed as a ran-
dom matrix, and that the original data can be accurately
estimated from the perturbed data using a spectral fil-
ter that exploits some theoretical properties of random
matrices.

The simplest and most widely used privacy preser-
vation technique is anonymization of data (also called
de-identification). In the context of de-identification, it
is useful to distinguish three types of attributes.

Explicit identifiers allow direct linking of an instance
to a person (e.g., a cellular phone number or a driver’s
license number to its holder).

Quasi-identifiers, possibly combined with other
attributes, may lead to other data sources capable of
unique identification. For instance, Sweeney (2001)
shows that the quasi-identifier triplet < date of birth,
5 digit postal code, gender >, combined with the voters’

Privacy-Related Aspects and Techniques

797

list (publicly available in the USA) uniquely identifies
87% of the population of the country. As a convincing
application of this observation, using quasi-identifiers,
Sweeney was able to obtain health records of the gover-
nor of Massachusetts from a published dataset of health
records of all state employees in which only explicit
identifiers have been removed.

Finally, non-identifying attributes are those for
which there is no known inference linking to an explicit
identifier. Usually performed as part of data prepa-
ration, anonymization removes all explicit identifiers
from the data.

While anonymization is by far the most common
privacy-preserving technique used in practice, it is also
the most fallible one. In August 2006, for the benefit of
the Web Mining Research community, AOL published
20 million search records (queries and URLs the mem-
bers had visited) from 658,000 of its members. AOL
had performed what it believed was anonymization, in
the sense that it removed the names of the members.
However, based on the queries — which often contained
information that would identify a small set of mem-
bers or a unique person - it was easy, in many cases,
to manually re-identify the AOL member using sec-
ondary public knowledge sources. An inquisitive New
York Times journalist identified one member and inter-
viewed her.

L. Sweeney is to be credited with sensitizing the
privacy community to the fallacy of anonymization:
“Shockingly, there remains a common incorrect belief
that if the data look anonymous, it is anonymous”
(Sweeney, 2001). Even if information is de-identified
today, future data sources may make re-identification
possible. As anonymization is very commonly used
prior to model building from medical data, it is inter-
esting that this type of data is prone to specific kinds of
re-identification, and therefore anonymization of medi-
cal data should be done with particular skill and under-
standing of the data. Malin (2005) shows how the four
main de-identification techniques used in anonymiza-
tion of genomic data are prone to known, published
attacks that can re-identify the data. Moreover, he
points out that there will never be certainty about de-
identification for quasi-identifiers, as new attributes and
data sources that can lead to a linkage to explicitly iden-
tifying attributes are constantly being engineered as part
of genetics research.

Other perturbation approaches targeting binary
data involve changing (flipping) values of selected
attributes with a given probability (Du & Zhan, 2003;
Zhan & Matwin, 2004), or replacing the original
attribute with a value that is more general in some
pre-agreed taxonomy (Iyengar, 2002). Generalization
approaches often use the concept of k-anonymity: any
instance in the database is indistinguishable from other
k-1 instances (for every row in the database there
are k-1 identical rows). Finding the least general k-
anonymous generalization of a database (i.e., mov-
ing the least number of edges upward in a given
taxonomy) is an optimization task, known to be
NP-complete. There are heuristic solutions proposed
for it; e.g., Iyengar (2002) uses a Pgenetic algorithm
for this task. Friedman, Schuster, and Wolff (2006)
shows how to build k-anonymity into the decision
tree induction. Lately, PPDM researchers have pointed
out some weaknesses of the k-anonymity approach.
In particular, attacks on data with some proper-
ties (e.g., skewed distribution of values of a sensi-
tive attribute, or specific background knowledge) have
been described, and techniques to prevent such attacks
have been proposed. The notion of p-sensitivity or
[-diversity proposed in Machanavajjhala, Kifer, Gehrke,
and Venkitasubramaniam (2007) addresses these weak-
nesses of k-anonymity by modifying k-anonymity
techniques so that the abovementioned attacks do not
apply. Furthermore, t-closeness (Ninghui, Tiancheng &
Venkatasubramanian, 2007) shows certain shortcom-
ings of these techniques and the resulting potential
attacks, and proposes a data perturbation technique
which ensures that the distribution of the values of
the sensitive attribute in any group resulting from
anonymization is close to its distribution in the origi-
nal table. Some authors, e.g., Domingo-Ferrer, Sebé, and
Solanas (2008), propose the integration of several tech-
niques addressing shortcomings of k-anonymity into a
single perturbation technique. The drawback of these
solutions is that they decrease the utility of the data
more than the standard k-anonymity approaches.

Is it true that when the data are private, there will be
no violation of privacy? The answer is no. In some
circumstances, the model may reveal private informa-
tion about individuals. Atzori, Bonchi, Giannotti, and

798

Privacy-Related Aspects and Techniques

Pedreschi (2005) gives an example of such a situation
for association rules: suppose the P-association rule
ajAa; Aaz=ay has support sup = 80, confidence conf =
98.7%. This rule is 80-anonymous, but considering that

sup({ai,az,a3,a4}) 80

= ~81.05
conf 0.0987

sup({a1,a2,a3}) =

and given that the pattern aj;Ad;Aa3Aas holds for
80 individuals, and the pattern a;Aa;Aa; holds for 81
individuals, clearly the pattern a;Ag;AazA-ay holds
for just one person. Therefore, the rule unexpectedly
reveals private information about a specific person.
Atzori et al. (2005) proposes to apply k-anonymity to
patterns instead of data, as in the previous section. The
authors define inference channels as Pitemsets from
which it is possible to infer other itemsets that are
not k-anonymous, as in the above example. They then
show an efficient way to represent and compute infer-
ence channels, which, once known, can be blocked
from the output of an association rule finder. The infer-
ence channel problem is also discussed in Oliveira,
Zaiane, and Saygin (2004), where itemset “sanitiza-
tion” removes itemsets that lead to sensitive (non-k-
anonymous) rules.

This approach is an interesting continuation of
Sweeney’s classical work (Sweeney, 2001), and it
addresses an important threat to privacy ignored by
most other approaches based on data perturbation or
cryptographic protection of the data.

Most of the work mentioned above addresses the case
of centralized data. The distributed situation, however,
is often encountered and has important applications.
Consider, for example, several hospitals involved in
a multi-site medical trial that want to mine the data
describing the union of their patients. This increases
the size of the population subject to data analysis,
thereby increasing the scope and the importance of
the trial. In another example, a car manufacturer per-
forming data analysis on the set of vehicles exhibiting
a given problem wants to represent data about differ-
ent components of the vehicle originating in databases
of the suppliers of these components. In general, if
we abstractly represent the database as a table, there
are two collaborative frameworks in which data is dis-
tributed. Horizontally partitioned data is distributed by

rows (all parties have the same attributes, but different
instances — as in the medical study example). Verti-
cally partitioned data is distributed by columns (all
parties have the same instances; some attributes belong
to specific parties, and some, such as the class, are
shared among all parties - as in the vehicle data analysis
example).

An important branch of research on learning from
distributed data while parties do not reveal their data
to each other is based on results from computer secu-
rity, specifically from cryptography and from the secure
multiparty computation (SMC). Particularly interesting
is the case when there is no trusted external party — all
the computation is distributed among parties that col-
lectively hold the partitioned data. SMC has produced
constructive results showing how any Boolean function
can be computed from inputs belonging to different par-
ties, so that the parties never get to know input values
that do not belong to them. These results are based on
the idea of splitting a single data value between two
parties into “shares,” so that none of them knows the
value but they can still do computation on the shares
using a gate such as exclusive or Yao (1986). In par-
ticular, there is an SMC result known as secure sum:
k parties have private values x; and they want to com-
pute X x; without disclosing their x; to any other party.
This result, and similar results for value comparison
and other simple functions, are the building blocks of
many privacy-preserving ML algorithms. On that basis,
a number of standard »classifier induction algorithms,
in their horizontal and vertical partitioning versions,
have been published, including decision tree (»ID3)
induction (Friedman, Schuster & Wolff, 2006), » Naive
Bayes, the »Apriori association rule mining algorithm
(Kantarcioglu & Clifton, 2004; Vaidya & Clifton, 2002),
and many others.

We can observe that data privacy issues extend to
the use of the learned »model. For horizontal parti-
tioning, each party can be given the model and apply
it to the new data. For vertical partitioning, however,
the situation is more difficult: the parties, all knowing
the model, have to compute their part of the decision
that the model delivers, and have to communicate with
selected other parties after this is done. For instance, for
decision trees, a node n applies its test and contacts the
party holding the attribute in the child ¢ chosen by the
test, giving ¢ the test to perform. In this manner, a single

Privacy-Related Aspects and Techniques

799

party n only knows the result of its test (the correspond-
ing attribute value) and the tests of its children (but not
their outcomes). This is repeated recursively until the
leaf node is reached and the decision is communicated
to all parties.

A different approach involving cryptographic tools
other than Yao’s circuits is based on the concept of
homomorphic encryption (Paillier, 1999). Encryption e
is homomorphic with respect to some operation * in
the message space if there is a corresponding operation
*"in the ciphertext space, such that for any messages
ml, m2, e(ml)*'e(m2) = e(ml1*m2). The standard RSA
encryption is homomorphic with * being logical mul-
tiplication and * logical addition on sequences of bytes.
To give a flavor of the use of homomorphic encryption,
let us see in detail how this kind of encryption is used
in computing the scalar product of two binary vectors.

Assume just two parties, Alice and Bob. They both

have their private binary vectors A; ~- In asso-

..........

ciation rule mining, A; and B, represent As and B’s
transactions projected on the set of items whose fre-
quency is being computed. In our protocol, one of the
parties is randomly chosen as a key generator. Assume
Alice is selected as the key generator. Alice generates an
encryption key (e) and a decryption key (d). She applies
the encryption key to the sum of each value of A and a
digital envelope R*X of A; (i.e., e(A;i + R;*X)), where
R; is arandom integer and X is an integer that is greater
than N. She then sends e(A; + R; *X)s to Bob. Bob com-
putes the multiplication M = Hjlil [e(Aj + R; *X)x Bj]
when B; = 1 (as when B; = 0, the result of multiplica-
tion does not contribute to the frequency count). Now,

M=e(Ay+Ay+--+Aj+ (R +Ry + - +Ry) “X) due
to the property of homomorphic encryption. Bob sends
the result of this multiplication to Alice, who computes
[d(e(A1 + Ay + -+ Aj + (Ri + Ry + - + Ry) *X)])
mod X = (A +Ay +-+A;+ (R + Ry ++--+R;) *X) mod
X and obtains the scalar product. This scalar product is
directly used in computing the frequency count of an
itemset, where N is the number of items in the itemset,
and A;, B; are Alice’s and Bob’s transactions projected
on the itemset whose frequency is computed.

While more efficient than the SMC-based
approaches, homomorphic encryption methods
are more prone to attack, as their security is based on
a weaker security concept (Paillier, 1999) than Yao's
approach. In general, cryptographic solutions have the
advantage of protecting the source data while leaving
it unchanged: unlike data modification methods, they
have no negative impact on the quality of the learned
model. However, they have a considerable cost impact
in terms of complexity of the algorithms, compu-
tation cost of the cryptographic processes involved,
and the communication cost for the transmission
of partial computational results between the parties
(Subramaniam, Wright & Yang, 2004). Their practical
applicability on real-life-sized datasets still needs to be
demonstrated.

The discussion above focuses on protecting the data.
In terms of our diagram in Table 1, we have to address
its right column. Here, methods have been proposed
to mainly address mainly the north-east entry of the
diagram. In particular, in Vaidya and Clifton (2002)
propose a method to compute association rules in an

Privacy-Related Aspects and Techniques. Table 1 Classification taxonomy to systematize the discussion of the current
work in PPDM

Data centralized Data distributed

Protecting the data

Agrawal and Srikant (2000),
Evfimievski, Srikant, Agrawal, and
Gehrke (2002), Du and Zhan (2003),
and lyengar (2002)

Vaidya and Clifton, (2002), Vaidya,
Clifton, Kantarcioglu and
Patterson, (2008), and Kantarcioglu
and Clifton, (2004)

Protecting the model

Oliveira, Zaiane and Saygin, (2004),
Atzori, Bonchi, Giannotti, and
Pedreschi (2005), Felty and

Matwin (2002), Friedman, Schuster,
and Wolff (2006)

Jiang and Atzori (2006)

800

Privacy-Related Aspects and Techniques

environment where data is distributed. In particular,
their method addresses the case of vertically partitioned
data, where different parties hold different attribute sets
for the same instances. The problem is solved with-
out the existence of a trusted third party, using SMC.
Independently, we have obtained a different solution
to this task using homomorphic encryption techniques
(Zhan, Matwin & Chang, 2007). Many papers have pre-
sented solutions for both vertically and horizontally
partitioned data, and for different data mining tasks,
e.g., Friedman, Schuster, and Wolff (2006) and Vaidya,
Zhu, and Clifton (2006).

Moreover, Jiang and Atzori (2006) have obtained a
solution for the model-protection case in a distributed
setting (south-east quadrant in Table 1). Their work
is based on a cryptographic technique, and addresses
the case of vertical partitioning of the data among
parties.

Evaluation

The evaluation of privacy-related techniques must
be broader than standard ML evaluation. Besides
evaluating the performance of the ML component using
the appropriate tool (e.g., Paccuracy, »ROC, sup-
port/confidence), one also needs to evaluate the various
privacy aspects of a learned model. This is difficult, as
there is no commonly accepted definition of privacy.
Even if there were one, it would not be in quantita-
tive, operational terms that can be objectively measured,
but most certainly with references to moral and social
values. For instance, Clifton (2005) points out that a
definition of privacy as the “freedom from unautho-
rized intrusion” implies that we need to understand
what constitutes an intrusion and that we can measure
its extent. For these reasons, most definitions in current
privacy-preserving data mining research are method-
specific, without any comparison between different
methods. For example, the classic work of Agrawal and
Srikant (2000) measures privacy after data perturbation
as the size of the interval to which the original value
can be estimated. If we know that the original value
was 0.5, and following a perturbation its best estimate
is, with 95% confidence, within the interval [0.3, 0.7],
then the amount of privacy is the size of this interval,
(i.e., 0.4, with a confidence of 95%). Later, Agrawal and
Aggrawal (2001) proposed a more general measure of

data privacy measuring this property of a dataset that
has been subject to one of the data perturbation tech-
niques. The idea is that if noise from a random variable
A is added to the data, we can measure the uncertainty
of the perturbed values using differential entropy inher-
ent in A. Specifically, if we add noise from a random
variable A, the privacy is

f4 (@) logy £ (a) da
A

H(A):z_fn ,

where Q4 is the domain of A. Privacy is 0 if the exact
value is known (the entropy is o0); if it is known that
the data is in the interval of length a, [T(A) = a.

Clifton (2005) argues that if disclosure is only possi-
ble to a group of people rather than a single person, then
the size of the group is a natural measure of privacy. This
is the case for k-anonymity methods. He further argues
that a good evaluation measure should not only capture
the likelihood of linking an ML result to an individual,
but should also capture how intrusive this linking is.
For instance, an association rule with a support value
of 50 and a confidence level of 100% is 50-anonymous,
but it also reveals the consequent of the rule to all 50
participants.

Finally, the style of evaluation needs to take into
account attack analysis, as in Malin (2005).

Future Directions
One of the most pressing challenges for the commu-
nity is to work out a quantifiable and socially com-
prehensible definition of privacy for the purpose of
privacy-preserving techniques. This is clearly a difficult
problem, likely not solvable by ML or even computer
science alone. As privacy has basic social and economic
dimensions, economics may contribute to an acceptable
definition, as already explored in Rossi (2004).

Another important question is the ability to analyze
data privacy, including inference from data using ML, in
the context of specific rules and regulations, e.g., HIPAA
(Health and Services, 2003) or the European Privacy
Directive (1995). First forays in this direction using
formal methods have already been made, e.g., Barth,
Datta, Mitchell, and Nissenbaum (2006) and Felty and
Matwin (2002).

Finally, the increasing abundance and availability of
data tracking mobile devices will bring new challenges
to the field. People will become potentially identifiable

Privacy-Related Aspects and Techniques

801

by knowing the trajectories their mobile devices leave
in fixed times and time intervals. Clearly such data,
already collected, present an important asset from the
public security point of view, but also a very consid-
erable threat from a privacy perspective. There is early
work in this area (Gianotti, Pedreschi 2008). Such data
are already being collected. This is an important asset
for public security, but also a considerable threat for
privacy.

Recommended Reading

Agrawal, D., & Aggarwal, C. C. (2001). On the design and quantifi-
cation of privacy preserving data mining algorithms. Proceed-
ings of the 20th ACM SIGMOD-SIGACT-SIGART symposium on
principles of database systems. Santa Barbara, CA: ACM.

Agrawal, R., & Srikant, R. (2000). Privacy-preserving data mining,
ACM SIGMOD record (pp. 439-450).

Atzori, M., Bonchi, F., Giannotti, F., & Pedreschi, D. (2005).
k-Anonymous patterns. Proceedings of the ninth European
conference on principles and practice of knowledge discovery in
databases (PKDD 05). Porto, Portugal.

Barth, A., Datta, A., Mitchell, J. C., & Nissenbaum, H.
(2006). Privacy and contextual integrity: Framework and
applications. IEEE Symposium on Security and Privacy,
184-198.

Clifton, C. W. (2005). What is privacy? Critical steps for privacy-
preserving data mining, workshop on privacy and security aspects
of data mining.

Directive 95/46/EC of the European Parliament on the protection
of individuals with regard to the processing of personal data
and on the free movement of such data. Official Journal of the
European Communities. (1995).

Domingo-Ferrer, J., Sebé, F., & Solanas, A. (2008). An anonymity
model achievable via microaggregation VLDB workshop on
secure data management. Springer, (pp. 209-218).

Du, W., & Zhan, Z. (2003). Using randomized response techniques
for privacy-preserving data mining. Proceedings of the ninth
ACM SIGKDD international conference on knowledge discovery
and data mining (Vol. 510).

Evfimievski, A., Srikant, R., Agrawal, R., & Gehrke, J. (2002). Privacy
preserving mining of association rules. Proceedings of the eighth
ACM SIGKDD international conference on Knowledge discovery
and data mining (pp. 217-228).

Felty, A., & Matwin, S. (2002). Privacy-oriented data mining by proof
checking. Sixth European conference on principles of data mining
and knowledge discovery (Vol. 2431) (pp. 138-149).

Friedman, A., Schuster, A., & Wolff, R. (2006). k-Anonymous deci-
sion tree induction, PKDD 2006 (pp. 151-162).

Health, U. D. o., & Services, H. (Eds.) (2003). Summary of HIPAA
privacy rule.

Gianotti, F, & Pedreschi, D. (2008). Mobility, Data Mining and
Privacy: Geographic Knowledge Discovery, Springer.

Iyengar, V. S. (2002). Transforming data to satisfy privacy con-
straints. Proceedings of the eighth ACM SIGKDD international
conference on knowledge discovery and data mining (pp. 279-
288).

Jiang, W., & Atzori, M. (2006). Secure distributed k-Anonymous pat-
tern mining, proceedings of the sixth international conference
on data mining. IEEE Computer Society.

Kantarcioglu, M. & Clifton, C. (2004). Privacy-preserving dis-
tributed mining of association rules on horizontally partitioned
data. IEEE Transactions on Knowledge and Data Engineering, 16,
1026-1037.

Kargupta, H., Datta, S., & Wang, Q. (2003). On the privacy pre-
serving properties of random data perturbation techniques.
Third IEEE international conference on data mining. ICDM 2003
(pp. 99-106).

Machanavajjhala, A., Kifer, D., Gehrke, J., & Venkitasubrama-
niam, M. (2007). L -diversity: Privacy beyond k-anonymity.
ACM Transactions on Knowledge Discovery from Data, 1, 3.

Malin, B. A. (2005). An evaluation of the current state of genomic
data privacy protection technology and a roadmap for the
future. Journal of the American Medical Informatics Association,
12, 28.

Moor, J. (2004). Towards a theory of privacy in the information
age. In T. Bynum, & S. Rodgerson (Eds.), Computer Ethics and
Professional Responsibility. Blackwell.

Ninghui, L., Tiancheng, L., & Venkatasubramanian, S. (2007).
t-Closeness: Privacy beyond k-Anonymity and l-Diversity.
IEEE 23rd international conference on data engineering. ICDE
2007 (pp. 106-115).

Oliveira, S. R. M., Zaiane, O. R., & Saygin, Y. (2004). Secure
association rule sharing. Proceedings of the eighth PAKDD
and advances in knowledge discovery and data mining (pp.
74-850).

Paillier, P. (1999). The 26th international conference on privacy and
personal data protection, advances in cryptography - EURO-
CRYPT’99 (pp. 23-38).

Rossi, G. (2004). Privacy as quality in modern economy, the 26th
international conference on privacy and personal data protection.

Subramaniam, H., Wright, R. N., & Yang, Z. (2004). Experimen-
tal analysis of privacy-preserving statistics computation. Pro-
ceedings of the VLDB worshop on secure data management
(pp. 55-66).

Sweeney, L. (2001). Computational disclosure control: a primer on
data privacy protection. Cambridge, MA: Massachusetts Insti-
tute of Technology, Deptartment of Electrical Engineering and
Computer Science.

Vaidya, J., & Clifton, C. (2002). Privacy preserving association rule
mining in vertically partitioned data. Proceedings of the eighth
ACM SIGKDD international conference on Knowledge discovery
and data mining (pp. 639-644) Edmonton, Alberta: ACM.

Vaidya, J., Clifton, C., Kantarcioglu, M., & Patterson, A. S. (2008).
Privacy-preserving decision trees over vertically partitioned
data. ACM Transactions on Knowledge Discovery from Data, 2,
1-27.

Vaidya, J., Zhu, Y. M., & Clifton, C. W. (2006). Privacy preserving
data mining. New York: Springer.

Website of the GeoPKDD Project.(2006).

Westin, A. (1967). Privacy and freedom. New York: Atheneum.

Yao, A. (1986). How to generate and exchange secrets. 27th FOCS.

Zhan, J., Matwin, S., & Chang, L. (2007). Privacy-preserving col-
laborative association rule mining. Journal of Network and
Computer Appliactions, 30, 1216-1227.

Zhan, J. Z. & Matwin, S. (2004). Privacy-prteserving data mining in
electronic surveys, ICEB 2004 (pp. 1179-1185).

802

Probabilistic Context-Free Grammars

I Probabilistic Context-Free
Grammars

YASUBUMI SAKAKIBARA
Keio University, Hiyoshi, Kohoku-ku, Japan

Synonyms
PCFG

Definition

In formal language theory, formal grammar (phrase-
structure grammar) is developed to capture the gener-
ative process of languages (Hopcroft & Ullman, 1979).
A formal grammar is a set of productions (rewrit-
ing rules) that are used to generate a set of strings,
that is, a language. The productions are applied iter-
atively to generate a string, a process called deriva-
tion. The simplest kind of formal grammar is a regular
grammar.

Context-free grammars (CFG) form a more pow-
erful class of formal grammars than regular grammars
and are often used to define the syntax of programming
languages. Formally, a CFG consists of a set of non-
terminal symbols N, a terminal alphabet X, a set P of
productions (rewriting rules), and a special nontermi-
nal S called the start symbol. For a nonempty set X of
symbols, let X* denote the set of all finite strings of sym-
bols in X. Every CFG production has the form S - «,
where S € Nand a € (NUZ)*. That s, the left-hand side
consists of one nonterminal and there is no restriction
on the number or placement of nonterminals and ter-
minals on the right-hand side. The language generated
by a CFG G is denoted L(G).

A probabilistic context-free grammar (PCFG) is
obtained by specifying a probability for each production
for a nonterminal A in a CFG, such that a probability
distribution exists over the set of productions for A.

A CFG G = (N, %,P,S) is in Chomsky normal form
if each production rule is of the form A - BCor A — g,
where A,B,Ce Nand a € X.

Given a PCFG Gand a string w = g; . . . ay,, there are
three basic problems:

1. Calculating the probability Pr(w|G) that the gram-
mar G assigns to w

2. Finding the most likely derivation (parse tree) of
wby G

3. Estimating the parameters of G to maximize
Pr(w|G)

The first two problems, calculating the probability
Pr(w|G) of a given string w assigned by a PCFG
G and finding the most likely derivation of w by
G, can be solved using dynamic programming meth-
ods analogous to the Cocke-Younger-Kasami or Early
parsing methods. A polynomial-time algorithm for
solving the second problem is known as Viterbi algo-
rithm, and a polynomial-time algorithm for the third
problem is known as the inside-outside algorithm (Lari
& Young, 1990).

Derivation Process
A derivation is a rewriting of a string in (N U 2)*
using the production rules of a CFG G. In each step of
the derivation, a nonterminal from the current string
is chosen and replaced with the right-hand side of a
production rule for that nonterminal. This replacement
process is repeated until the string consists of terminal
symbols only. If a derivation begins with a nonterminal
A and derives a string a € (N U £)*, we write A = a.
For example, the grammar in Fig. 1 generates
an RNA sequence AGAAACUUGCUGGCCU by the
following derivation: Beginning with the start symbol
S, any production with S left of the arrow can be cho-
sen to replace S. If the production S - AX; U is selected
(in this case, this is the only production available), the
effect is to replace S with AX;U. This one derivation
step is written S = AX;U, where the double arrow
signifies application of a production. Next, if the pro-
duction X; - GX,C is selected, the derivation step is
AX,U = AGX,CU. Continuing with similar derivation
operations, each time choosing a nonterminal symbol
and replacing it with the right-hand side of an appro-
priate production, we obtain the following derivation
terminating with the desired sequence:

S= AX,U = AGX,CU = AGX;X4CU
= AGAX;UX,CU = AGAAX,UUX,CU
= AGAAACUUX,CU = AGAAACUUGX;;CCU
= AGAAACUUGCX;,GCCU
= AGAAACUUGCUGGCCU.

Probabilistic Context-Free Grammars

Gv'na (1V~ x, P, 5)
JT = {S:Xl """ Xlﬁ}: Z = {AC‘G'U}
S — AX U,
X1 — Gch, Xg — X3X4, Xg g AX{,U, X4 b GX]EC, X5 — AXﬁU,
P = Xﬁ — AC, Xﬁ — XTXg X7 — AXQU Xg — GXIEC, Xq — GXl[]C,
Xip — AXyy, Xy — UG, Xip — AX13U, Xi3 — AXy, X — GG,
X]E,‘}CX]GG, X]GHUG

Probabilistic Context-Free Grammars. Figure 1. This set of productions P generates RNA sequences with a certain

restricted structure. S, X, . . ., Xi¢ are nonterminals; A, U, G, and C are terminals representing the four nucleotides. Note

that only for X; is there a choice of productions

Such a derivation can be arranged in a tree structure
called a parse tree.

The language generated by a CFG G is denoted L(G),
that is, L(G) = {w | S = w,w € £*}. Two CFGs G and
G’ are said to be equivalent if and only if L(G) = L(G).

Probability Distribution

A PCFG assigns a probability to each string which it
derives and hence defines a probability distribution on
the set of strings. The probability of a derivation can be
calculated as the product of the probabilities of the pro-
ductions used to generate the string. The probability of
a string w is the sum of probabilities over all possible
derivations that could generate w, written as follows:

Pr(w|G)= > Pr(S L w | G)

all derivations d

= > Pr(S=a|G) -Pr(ay = ay | G)

ay, Xn

< Pr(a, = w|G).

Parsing Algorithm

Efficiently computing the probability of a string w,
Pr(s| G), presents a problem because the number of
possible derivations for w is exponential in the length
of the string. However, a dynamic programming tech-
nique analogous to the Cocke-Kasami-Young or Earley
methods for nonprobabilistic CFGs can accomplish this
task efficiently (in time proportional to the cube of the
length of w).

The CYK algorithm is a polynomial time algo-
rithm for solving the parsing (membership) problem
of CFGs using dynamic programming. The CYK algo-
rithm assumes Chomsky normal form of CFGs, and the
essence of the algorithm is the construction of a trian-
gular parse table T. Given a CFG G = (N, X, P,S) and an

input string w = @14, ...4a, in £* to be parsed accord-
ing to G, each element of T, denoted t;j, for1 < i < n
and 1 < j < n—i+ 1, has a value which is a subset
of N. The interpretation of T is that a nonterminal A
is in t;; if and only if A = a;a;;;... a4y, that is, A
derives the substring of w beginning at position i and of
length j. To determine whether the string w is in L(G),
the algorithm computes the parse table T and look to
see whether S is in entry f; ,,.

In the first step of constructing the parse table, the
CYK algorithm sets t;; = {A | A - a; isin P}. In the
jth step, the algorithm assumes that #; has been com-
puted for1 < i < mand1 < j < j, and it computes t;
by examining the nonterminals in the following pairs
of entries:

(tinstisnj1)s (tios tivaj2)s- oo (tijots tivjor1)

andif Bisin t;x and Cisin ¢;, j_ for some k (1 < k <)
and the production A — BCisin P, A is added to ¢; ;.

For example, we consider a simple CFG G = (N, Z,
P,S) of Chomsky normal form where N = {S, A},
% ={a,b} and

P={S—>AA S—>AS,S—>b A—SA, A—a}.

This CFG generates a string “abaaa,” that is, S = abaaa,
and the parse table T for abaaa is shown in Fig. 2. The
parse table can efficiently store all possible parse trees of
G for abaaa.

Learning

The problem of learning PCFGs from example strings
has two aspects: determining a discrete structure (topol-
ogy) of the target grammar and estimating probabilistic
parameters in the grammar (Sakakibara, 1997). Based

804

Probabilistic Context-Free Grammars

on the maximum likelihood criterion, an efficient esti-
mation algorithm for probabilistic parameters has been
proposed: the inside-outside algorithm for PCFGs. On
the other hand, finding an appropriate discrete structure
of a grammar is a harder problem.

The procedure to estimate the probabilistic parame-
ters of a PCFG is known as the inside-outside algorithm.
Just like the forward-backward algorithm for HMMs,
this procedure is an expectation-maximization (EM)
method for obtaining maximum likelihood of the gram-
mar’s parameters. However, it requires the grammar to
be in Chomsky normal form, which is inconvenient to
handle in many practical problems (and requires more
nonterminals). Further, it takes time at least propor-
tional to #n®, whereas the forward-backward procedure
for HMMs takes time proportional to 7%, where 7 is the
length of the string w. There are also many local max-
ima in which the method can get caught. Therefore, the
initialization of the iterative process is crucial since it
affects the speed of convergence and the goodness of the
results.

5185, A
418, A S A
3185, A S S, A
2 S A S S
j=1 A S A A A
i=1 2 3 4 5
a b a a a

Probabilistic Context-Free Grammars. Figure 2. The
parse table T of G for “abaaa”

PN
G X5 C
X/ \X
TN
PN PN
A XG\U c /X16
X7/ X, e
& [AN G/ X\f"\c
9 12
G;Xm\ A;XK&\
S
VRN AN
U G G C

Application to Bioinformatics

An effective method for learning and building PCFGs
has been applied to modeling a family of RNA
sequences (Durbin, Eddy, Krogh, & Mitchison, 1998;
Sakakibara, 2005). In RNA, the nucleotides adenine (A),
cytosine (C), guanine (G), and uracil (U) interact in
specific ways to form characteristic secondary-structure
motifs such as helices, loops, and bulges. In general,
the folding of an RNA chain into a functional molecule
is largely governed by the formation of intramolecular
A-U and G-C Watson-Crick pairs. Such base pairs con-
stitute the so-called biological palindromes in a genome
and can be clearly described by a CFG. In particular,
productions of the forms X - AY U, X - U Y A,
X - GYC,and X - CY Gdescribe astructure in RNA
due to Watson-Crick base pairing. Using productions
of this type, a CFG can specify a language of biological
palindromes.

For example, the application of productions in the
grammar shown in Fig. 1 generates the RNA sequence
CAUCAGGGAAGAUCUCUUG and the derivation
can be arranged in a tree structure of a parse tree (Fig. 3,
left). A parse tree represents the syntactic structure of a
sequence produced by a grammar. For the RNA
sequence, this syntactic structure corresponds to the
physical secondary structure (Fig. 3, right). PCFGs
are applied to perform three tasks in RNA sequence
analysis: to discriminate RNA-family sequences from
nonfamily sequences, to produce multiple alignments,
and to ascertain the secondary structure of new
sequences.

Probabilistic Context-Free Grammars. Figure 3. A parse tree (left) generated by a simple context-free grammar (CFG)

for RNA molecules and the physical secondary structure (right) of the RNA sequence which is a reflection of the parse

tree

Programming by Example

805

Recommended Reading

Durbin, R., Eddy, S., Krogh, A., & Mitchison, G. (1998). Biological
sequence analysis. Cambridge, UK: Cambridge University Press.

Hopcroft, J. E., & Ullman, J. D. (1979). Introduction to automata the-
ory, languages and computation. Reading, MA: Addison-Wesley.

Lari, K., & Young, S. J. (1990). The estimation of stochastic context-
free grammars using the inside-outside algorithm. Computer
Speech and Language, 4, 35-56.

Sakakibara, Y. (1997). Recent advances of grammatical inference.
Theoretical Computer Science, 185, 15-45.

Sakakibara, Y. (2005). Grammatical inference in bioinformatics.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
27,1051-1062.

| Probably Approximately Correct
Learning

»PAC Learning

| Process-Based Modeling

»Inductive Process Modeling

! Program Synthesis From Examples

»Inductive Programming

[. .
Programming by Demonstration

Pierre FLENER"?, UTE ScHMID’

!Sabanci University, Orhanly, Tuzla, Turkey
*Uppsala University, Uppsala, Sweden
3University of Bamberg, Bamberg, Germany

Synonyms
Programming by example

Definition

Programming by demonstration (PBD) describes a
collection of approaches for the support of end-user
programming with the goal of making the power of
computers fully accessible to all users. The general
objective is to teach computer systems new behavior by
demonstrating (repetitive) actions on concrete exam-
ples. A user provides examples of how a program should

operate, either by demonstrating trace steps or by show-
ing examples of the inputs and outputs, and the sys-
tem infers a generalized program that achieves those
examples and can be applied to new examples. Typical
areas of application are macro generation (e.g., for text
editing), simple arithmetic functions in spreadsheets,
simple shell programs, XML transformations, or query-
replace commands, as well as the generation of helper
programs for web agents, geographic information sys-
tems, or computer-aided design. The most challenging
approach to PBD is to obtain generalizable examples by
minimal intrusion, where the user’s ongoing actions are
recorded without an explicit signal for the start of an
example and without explicit confirmation or rejection
of hypotheses. An example of such a system is EAGER
(Cypher, 1993a).

Current PBD approaches incorporate some simple
forms of »generalization learning, but typically no or
only highly problem-dependent methods for the induc-
tion of loops or recursion from examples or traces
of repetitive commands. Introducing »inductive pro-
gramming or »trace-based programming methods into
PBD applications could significantly increase the possi-
bilities of end-user programming support.

Acknowledgement

Most of the work by this author was done while on leave
of absence in 2006/2007 as a Visiting Faculty Member
and Erasmus Exchange Teacher at Sabanci University.

Cross References
»Inductive Programming
»Trace-Based Programming

Recommended Reading

Cypher, A. (1993a). Programming repetitive tasks by demonstra-
tion. In A. Cypher (Ed.), Watch what I do: Programming by
demonstration (pp. 205-217). Cambridge, MA: MIT Press.

Cypher A. (Ed.) (1993b). Watch what I do: Programming by demon-
stration. Cambridge, MA: MIT Press.

Lieberman, H. (Ed.) (2001). Your wish is my command: Programming
by example. San Francisco, CA: Morgan Kaufmann.

| Programming by Example

»Programming by Demonstration

806

Programming from Traces

| .
Programming from Traces

> Trace-Based Programming

| . . .
Projective Clustering

CEecILiA M. Procoriuc
AT&T Labs, Florham Park, NJ, USA

Synonyms
Local feature selection; Subspace clustering

Definition

Projective clustering is a class of problems in which the
input consists of high-dimensional data, and the goal is
to discover those subsets of the input that are strongly
correlated in subspaces of the original space. Each sub-
set of correlated points, together with its associated
subspace, defines a projective cluster. Thus, although
all cluster points are close to each other when pro-
jected on the associated subspace, they may be spread
out in the full-dimensional space. This makes projec-
tive clustering algorithms particularly useful when min-
ing or indexing datasets for which full-dimensional
clustering is inadequate (as is the case for most high-
dimensional inputs). Moreover, such algorithms com-
pute projective clusters that exist in different subspaces,
making them more general than global dimensionality-
reduction techniques.

Motivation and Background
Projective clustering is a type of data mining whose
main motivation is to discover correlations in the input
data that exist in subspaces of the original space. This
is an extension of traditional full-dimensional clus-
tering, in which one tries to discover point subsets
that are strongly correlated in all dimensions. Fig-
ure la shows an example of input data for which
full-dimensional clustering cannot discover the three
underlying patterns. Each pattern is a projective
cluster.

It is well known (Beyer, Goldstein, Ramakrishnan, &
Shaft, 1999) that for a broad class of data distributions, as
the dimensionality increases, the distance to the nearest

neigbor of a point approaches the distance to its farthest
neighbor. This implies that full-dimensional clustering
will fail to discover significantly correlated subsets on
such data, since the diameter of a cluster is almost the
same as the diameter of the entire dataset. In prac-
tice, many applications from text and image processing
generate data with hundreds or thousands of dimen-
sions, which makes them extremely bad candidates for
full-dimensional clustering methods.

One popular technique to classify high-dimensional
data is to first project it onto a much lower-dimensional
subspace, and then employ a full-dimensional cluster-
ing algorithm in that space. The projection subspace
is the same for all points, and is computed so that
it best “fits” the data. A widely used dimensionality-
reduction technique, called Pprincipal component
analysis (PCA), defines the best projection subspace to
be the one that minimizes least-square error. While this
approach has been proven successful in certain areas
such as text mining, its effectiveness depends largely on
the characteristics of the data. The reason is that there
may be no way to choose a single projection subspace
without encountering a significant error; or alterna-
tively, setting a maximum bound on the error resultsin a
subspace with high dimensionality. Figure 1b shows the
result of PCA on a good candidate set. The points are
projected on the subspace spanned by vectors V1 and
V2, along which they have greatest variance. However,
for the example in Fig.la, no plane or line fits the data
well enough. Projective clustering can thus be viewed
as a generalized dimensionality-reduction method, in
which different subsets of the data are projected on
different subspaces.

There are many variants of projective clustering,
depending on what quality measure one tries to opti-
mize for the clustering. Most such measures, however,
are expressed as a function of the distances between
points in the clusters. The distance between two clus-
ter points is computed with respect to the subspace
associated with that cluster. Alternative quality mea-
sures consider the density of cluster points inside the
associated subspace.

Meggido and Tamir (1982) showed that it is NP-
Hard to decide whether a set of #n points in the plane
can be covered by k lines. This early result implies
not only that most projective clustering problems are
NP-Complete even in the planar case, but also that

Projective Clustering

807

Vi V2

V3

[J
(4

(b)

Projective Clustering. Figure 1. Dimensionality reduction via (a) projective clustering and (b) principal component

analysis

approximating the objective function within a constant
factor is NP-Complete. Nevertheless, several approxi-
mation algorithms have been proposed, with running
time polynomial in the number of points n and expo-
nential in the number of clusters k. Agrawal, Gehrke,
Gunopulos, and Raghavan (1998) proposed a sub-
space clustering method based on density measure
that computes clusters in a bottom-up approach (from
lower to higher dimensions). Aggarwal, Wolf, Yu, Pro-
copiuc, and Park (1999) designed a partitioning-style
algorithm.

Theory

Many variants of projective clustering problems use
a distance-based objective function and thus have a
natural geometric interpretation. In general, the opti-
mization problem is stated with respect to one or more
parameters that constrain the kind of projective clus-
ters one needs to investigate. Examples of such param-
eters are: the number of clusters, the dimensionality
(or average dimensionality) of the clusters, the max-
imum size of the cluster in its associated subspace,
the minimum density of cluster points, etc. Below we
present the most frequently studied variants for this
problem.

Distance-Based Projective Clustering Given a set S of
points in R? and two integers k < n and q < d, find
k g-dimensional flats hy,...,h; and partition S into k
subsets Cj, . .., Ci so that one of the following objective
functions is minimized:

maxmaxd(p, h;) (k-center)

1<i<k peC;

> dp.hi) (k-median)
1<i<k peC;
Z Z d*(p,h;) (k-means)
1<i<k peC;

These types of problems are also referred to as geo-
metric clustering problems. They require all cluster sub-
spaces to have the same dimensionality, i.e., d — g (the
subspace associated with C; is orthogonal to h;). The
number of clusters is also fixed, and the clustering must
be a partitioning of the original points.

Further variants are defined by introducing slight
modifications in the above framework. For example,
one can allow the existence of outliers, i.e., points that
do not belong to any projective cluster. This is generally
done by providing an additional parameter, which is the
maximum percentage of outliers. The problems can also
be changed to a dual formulation, in which a maximum
value for the objective function is specified, and the goal
is to minimize the number of clusters k.

Special cases for the k-center objective function are
q = d-1and g = 1 In the first case, the problem
is equivalent to finding k hyper-strips that contain S
so that the maximum width of a hyper-strip is mini-
mized. If ¢ = 1, then the problem is to cover S by k
congruent hyper-cylinders of smallest radius. Since this
is equivalent to finding the k lines that are the axes of
the hyper-cylinders, this problem is also referred to as
k-line-center. Figure la is an example of 3-line-center.

In addition, k-median problems have also been
studied when cluster subspaces have different dimen-
sionalities. In that case, distances computed in each
cluster are normalized by the dimensionality of the
corresponding subspace.

808

Projective Clustering

Density-Based Projective Clustering A convex region in
a subspace is called dense if the number of data points
that project inside it is larger than some user-defined
threshold. For a fixed subspace, the convex regions of
interest in that subspace are defined in one of sev-
eral ways, as detailed below. Projective clusters are then
defined to be connected unions of dense regions of
interest. The different variants for defining regions of
interest can be broadly classified in three classes:

(e-Neighborhoods) Regions of interest are L,-balls of
radius & centered at the data points. In general, L, is
either L, (hyper-spheres) or Lo, (hyper-cubes).

(Regular Grid Cells) Regions of interest are cells
defined by an axis-parallel grid in the subspace. The grid
hyper-planes are equidistant along each dimension.

(Irregular Grid Cells) Regions of interest are cells
defined by an irregular grid in the subspace. Parallel
grid hyper-planes are not necessarily equidistant, and
they may also be arbitrarily oriented.

Another variant of projective clustering defines a
so-called quality measure for a projective cluster, which
depends both on the number of cluster points and the
number of dimensions in the associated subspace. The
goal is to compute the clusters that maximize this mea-
sure. Projective clusters are required to be L,-balls of
fixed radius in their associated subspace, which means
that clusters in higher dimensions tend to have fewer
points, and vice-versa. Hence, the quality measure pro-
vides a way to compare clusters that exist in different
number of dimensions. It is related to the notion of
dense e-neighborhoods.

Many other projective clustering problems are appli-
cation driven and do not easily fit in the above clas-
sification. While they follow the general framework of
finding correlations among data in subspaces of the
original space, the notion of projective cluster is specific
to the application. One such example is presented later
in this section.

Distance-based projective clustering problems are NP-
Complete when the number of clusters k is an input
parameter. Moreover, k-center problems cannot be
approximated within a constant factor, unless P =
NP. This follows from the result of Meggido and
Tamir (1982), who showed that it is NP-Hard to decide

whether a set of # points in the plane can be covered by
k lines.

Agarwal and Procopiuc (2003) first proposed approx-
imation algorithms for k-center projective clustering in
two and three dimensions. The algorithms achieve con-
stant factor approximation by generating more clusters
than required.

Subsequent work by several other authors led to the
development of a general framework in which (1 + ¢)-
approximate solutions can be designed for several types
of full-dimensional and projective clustering. In partic-
ular, k-center and k-means projective clustering can be
approximated in any number of dimensions. The idea is
to compute a so-called coreset, which is a small subset
of the points, such that the optimal projective clusters
for the coreset closely approximate the projective clus-
ters for the original set. Computing the optimal solution
for the coreset has (super) exponential dependence on
the number of clusters k, but it is significantly faster
than computing the optimal solution for the original
set of points. The survey by Agarwal, Har-Peled, and
Varadarajan (2005) gives a comprehensive overview of
these results.

While the above algorithms have approximation
guarantees, they are not practical even for moderate val-
ues of n, k, and d. As a result, heuristic methods have
also been developed for these problems. The general
approach is to iteratively refine a current set of clus-
ters, either by re-assigning points among them, or by
merging nearby clusters. When the set of points in a
cluster changes, the new subspace associated with the
cluster is also recomputed, in a way that tries to optimize
the objective function for the new clustering. Aggarwal
et al. (1999) proposed the PROCLUS algorithm for k-
median projective clustering with outliers. The clus-
ter subspaces can have different dimensionalities, but
they must be orthogonal to coordinate axes. Aggar-
wal and Yu (2000) subsequently extended the algo-
rithm to arbitrarily oriented clusters, but with the same
number of dimensions. Agarwal and Mustafa (2004)
proposed a heuristic approach for k-means projec-
tive clustering with arbitrary orientation and different
dimensionalities.

The first widely used method for density-based pro-
jective clustering was proposed by Agrawal et al. (1998).
The algorithm, called CLIQUE, computes projective

Projective Clustering

809

clusters based on regular grid cells in orthogonal sub-
spaces, starting from the lowest-dimensional subspaces
(i.e., the coordinate axes) and iterating to higher dimen-
sions. Pruning techniques are used to skip subspaces
in which a large fraction of points lie outside dense
regions. Subsequent strategies improved the running
time and accuracy by imposing irregular grids and
using different pruning criteria.

Bohm, Kailing, Kroger, and Zimek (2004) designed
an algorithm called 4C for computing density-connected
e-neighborhoods in arbitrarily oriented subspaces. The
method is agglomerative: It computes the local dimen-
sionality around each point p by using PCA on all
points inside the (full-dimensional) e-neighborhood
of p. If the dimensionality is small enough and the
neighborhood is dense, then p and its neighbors
form a projective cluster. Connected projective clusters
with similarly oriented subspaces are then repeatedly
merged.

The OptiGrid algorithm by Hinneburg and
Keim (1999) was the first method to propose irregular
grid cells of arbitrary (but fixed) orientation. Along
each grid direction, grid hyper-planes are defined to
pass through the local minima of a probability density
function. This significantly reduces the number of cells
compared with a regular grid that achieves similar
overall accuracy. The probability density function is
defined using the kernel-density estimation framework.
Input points are projected on the grid direction, and
their distribution is extrapolated to the entire line by
the density function

]

i=1

where s;,...,s, denote the projections of the input
points, and A is a parameter. The function K(x), called
the kernel, is usually the Gaussian function, although
other kernels can also be used.

The DOC algorithm proposed by Procopiuc, Jones,
Agarwal, and Murali (2002) approximates optimal
clusters for a class of quality measures. Orthogonal
projective clusters are computed iteratively via random
sampling. If a sample is fully contained in a cluster then
it can be used to determine the subspace of that cluster,
as well as (a superset of) the other cluster points. Such

a sample is called a discriminating set. Using the prop-
erties of the quality measure, the authors show that a
discriminating set is found with high probability after a
polynomial number of trials.

An overview of most of these practical methods,
as well as of subsequent work expanding their results,
can be found in the survey by Parsons, Haque, and
Liu (2004).

Similar to full-dimensional clustering, projective clus-
tering methods provide a way to efficiently orga-
nize databases for searching, as well as for pattern
discovery and data compression. In a broad sense,
they can be used in any application that handles
high-dimensional data, and which can benefit from
indexing or mining capabilities. In practice, addi-
tional domain-specific information is often neces-
sary. We present an overview of the generic database
usage first, and then discuss several domain-specific
applications.

Data Indexing An index tree is a hierarchical struc-
ture defined on top of a data set as follows. The root
corresponds to the entire data set. For each internal
node, the data corresponding to that node is parti-
tioned in some pre-defined manner, and there is a child
of the node corresponding to each subset in the par-
tition. Often, the partitioning method is a distance-
based clustering algorithm. In addition, each node
stores the boundary of a geometric region that contains
its points, to make searching the structure more effi-
cient. For many popular indexes, the geometric region
is the minimum axis-parallel bounding box. Index trees
built with full-dimensional clustering methods become
inefficient for dimensionality about 10 or higher, due
to the large overlap in the geometric regions of sib-
ling nodes. Chakrabarti and Mehrotra (2000) first pro-
posed an index tree that uses projective clustering as a
partitioning method. In that case, each node also stores
the subspace associated with the cluster.

Pattern Discovery A projective cluster, by definition, is
a pattern in the data, so any of the above algorithms
can be used in a pattern discovery application. How-
ever, most applications restrict the projective clusters to

810

Projective Clustering

be orthogonal to coordinate axes, since the axes have
special interpretations. For example, in a database of
employees, one axis may represent salary, another the
length of employment, and the third one the employ-
ees’ age. A projective cluster in the subspace spanned
by salary and employment length has the following
interpretation: there is a correlation between salaries in
range A and years of employment in range B, which is
independent of employees’ age.

Data Compression As discussed in the introduction,
projective clusters can be used as a dimensionality-
reduction technique, by replacing each point with its
projection on a lower dimensional subspace. The pro-
jection subspace is orthogonal to the subspace of the
cluster that contains the point. In general, this method
achieves smaller information loss and higher compres-
sion ratio than a global technique such as PCA.

Image Processing A picture can be represented as a
high-dimensional data point, where each pixel repre-
sents one dimension, and its value is equal to the RGB
color value of the pixel. Since this representation loses
pixel adjacency information, it is generally used in con-
nection with a smoothing technique, which replaces the
value of a pixel with a function that depends both on
the old pixel value, and the values of its neighbors. A
projective cluster groups images that share some simi-
lar features, while they differ significantly on others. The
DOC algorithm has been applied to the face detection
problem as follows: Projective clusters were computed
on a set of (pre-labeled) human faces, then used in a
classifier to determine whether a new image contained
a human face.

Document Processing Text documents are often repre-
sented as sparse high-dimensional vectors, with each
dimension corresponding to a distinct word in the doc-
ument collection. Several methods are used to reduce
the dimensionality, e.g., by eliminating so-called stop
words such as “and,” “the,” and “of” A non zero entry
in a vector is usually a function of the correspond-
ing word’s frequency in the document. Because of the
inherent sparsity of the vectors, density-based clus-
tering, as well as k-center methods, are poor choices

for such data. However, k-means projective cluster-
ing has been successfully applied to several document
corpora (Li, Ma, & Ogihara, 2004).

DNA Microarray Analysis A gene-condition expression
matrix, generated by a DNA microarray, is a real-valued
matrix, such that each row corresponds to a gene, and
each column corresponds to a different condition. An
entry in a row is a function of the relative abundance
of the mRNA of the gene under that specific condition.
An orthogonal projective cluster thus represents several
genes that have similar expression levels under a subset
of conditions. Genetics researchers can infer connec-
tions between a disease and the genes in a cluster. Due to
the particularities of the data, different notions of simi-
larity are often required. For example, order preserving
clusters group genes that have the same tendency on a
subset of attributes, i.e., an attribute has the same rank
(rather than similar value) in each projected gene. See
the results of Liu and Wang (2003).

Principal Component Analysis

PCA also referred to as the Karhunen-Loeve Trans-
form, is a global »dimensionality reduction technique,
as opposed to projective clustering, which is a local
dimensionality reduction method. PCA is defined as an
orthogonal linear transformation with the property that
it transforms the data into a new coordinate system,
such that the projection of the data on the first coordi-
nate has the greatest variance among all projections on
a line, the projection of the data on the second coordi-
nate has the second greatest variance, and so on. Let X
denote the data matrix, with each point written as a col-
umn vector in X, and modified so that X has empirical
mean zero (i.e., the mean vector is subtracted from each
data point). Then the eigenvectors of the matrix XX are
the coordinates of the new system. To reduce the dimen-
sionality, keep only the eigenvectors corresponding to
the largest few eigenvalues.

Coresets

Let P ¢ R? be a set of points, and y be a measure func-
tion defined on subsets of R?, such that y is monotone
(i.e., for Py € Py, u(Py) < u(P;)). A subset Q C Pis

Prolog

8

an e-coreset with respect to p if (1 - ¢)u(P) < u(Q).
The objective functions for k-center, k-median, and k-
means projective clustering are all examples of measure
functions p.

Cross References

» Clustering

» Curse of Dimensionality
»Data Mining

» Dimensionality Reduction
»k-Means Clustering

»Kernel Methods

» Principal Component Analysis

Recommended Reading

Agarwal, P. K., Har-Peled, S., & Varadarajan, K. R. (2005). Geometric
approximation via coresets. Combinatorial and Computational
Geometry (pp. 1-30).

Agarwal, P. K., & Mustafa, N. (2004). k-means projective clustering.
In Proceeding of ACM SIGMOD-SIGACT-SIGART symposium
principles of database systems (pp. 155-165).

Agarwal, P. K., & Procopiuc, C. M. (2003). Approximation algo-
rithms for projective clustering. Journal of Algorithms, 46(2),
115-139.

Agrawal, R., Gehrke, J., Gunopulos, D., & Raghavan, P. (1998). Auto-
matic subspace clustering of high dimensional data for data
mining applications. In Proceeding of ACM SIGMOD interna-
tional conference management of data (pp. 94-105).

Aggarwal, C. C,, Procopiuc, C. M., Wolf,]. L., Yu, P. S, & Park, J. S.
(1999). Fast algorithms for projected clustering. In Proceeding
of ACM SIGMOD international conference management of data
(pp. 61-72).

Aggarwal, C. C., & Yu, P. S. (2000). Finding generalized pro-
jected clusters in high dimensional spaces. In Proceeding of
ACM SIGMOD international conference management of data
(pp. 70-81).

Beyer, K., Goldstein, J., Ramakrishnan, R., & Shaft, U. (1999). When
is “nearest neighbour” meaningful? In Proceeding of 7th inter-
national conference data theory (Vol. 1540, pp. 217-235).

Bohm, C., Kailing, K., Kroger, P., & Zimek, A. (2004). Comput-
ing clusters of correlation connected objects. In Proceeding of
ACM SIGMOD international conference management of data
(pp. 455-466).

Chakrabarti, K., & Mehrotra, S. (2000). Local dimensionality reduc-
tion: A new approach to indexing high dimensional spaces. In
Proceeding of 26th international conference very large data bases
(pp- 89-100).

Hinneburg, A., & Keim, D. A. (1999). Optimal grid-clustering:
Towards breaking the curse of dimensionality in high-
dimensional clustering. In Proceeding of 25th international
conference very large data bases (pp. 506-517).

Li, T., Ma, S., & Ogihara, M. (2004). Document clustering via
adaptive subspace iteration. In Proceeding of 27th international
ACM SIGIR conference research and development in information
retrieval (pp. 218-225).

Liu, J., & Wang, W. (2003). Op-cluster: Clustering by tendency in
high dimensional space. In Proceeding of international confer-
ence on data mining (pp. 187-194).

Megiddo, N., & Tamir, A. (1982). On the complexity of locating linear
facilities in the plane. Operations Research Letters, 1,194-197.

Parsons, L., Haque, E., & Liu, H. (2004). Subspace clustering for
high dimensional data: A review. ACM SIGKDD Explorations
Newsletter, 6(1), 90-105.

Procopiuc, C. M., Jones, M., Agarwal, P. K., & Murali, T. M. (2002).
A monte carlo algorithm for fast projective clustering. In Pro-
ceeding of ACM SIGMOD international conference management
of data (pp. 418-427).

! Prolog

Prolog is a declarative programming language based on
logic. It was conceived by French and British computer
scientists in the early 1970s. A considerable number of
public-domain and commercial Prolog interpreters are
available today. Prolog is particularly suited for appli-
cations requiring pattern matching or search. Prolog
programs are also referred to as »logic programs.

In machine learning, classification rules for struc-
tured individuals can be expressed using a subset of
Prolog. Learning Prolog programs from examples is
called »inductive logic programming (ILP). ILP sys-
tems are sometimes — but not always — implemented in
Prolog. This has the advantage that classification rules
can be executed directly by the Prolog interpreter.

Cross References

»Clause

> First-Order Logic

»Inductive Logic Programming
»Logic Program

Recommended Reading

Colmerauer, A., Kanoui, H., Pasero, R., & Roussel, P. (1973) Un
systéme de communication homme-machine an Frangais. Rep.,
Groupé d’Intelligence Artificielle, Univ. d’Aix Marseille II.
Luminy, France.

Kowalski, R. A. (1972) The predicate calculus as a programming lan-
guage. In Proceedings of the International Symposium and Sum-

812

Property

mer School on Mathematical Foundations of Computer Science.
Jablonna, Poland.

Roussel, P. (1975). Prolog: Manual de reference et dutilization.
Technical report, Groupe d’Intelligence Artificielle, Marseille-
Luminy.

! Property

» Attribute

! Propositional Logic

Propositional logic is the logic of propositions, i.e.,
expressions that are either true or false. Complex propo-
sitions are built from propositional atoms using logical
connectives. Propositional logic is a special case of pred-
icate logic, where all »predicates have zero arity; see the
entry on first-order logic for details.

Cross References
» First-Order Logic
» Propositionalization

| ere . .
Propositionalization

NicoLAS LACHICHE
University of Strasbourg, Strasbourg, France

Definition

Propositionalization is the process of explicitly trans-
forming a »Relational dataset into a propositional
dataset.

The input data consists of examples represented by
structured terms (cf. »Learning from Structured Data),
several predicates in PFirst-Order Logic, or several
tables in a relational database. We jointly refer to these as
relational representations. The output is an > Attribute-
value representation in a single table, where each
example corresponds to one row and is described by its
values for a fixed set of attributes. New attributes are
often called features to emphasize that they are built
from the original attributes. The aim of propositional-
ization is to pre-process relational data for subsequent

analysis by attribute-value learners. There are several
reasons for doing this, the most important of which are:
to reduce the complexity and speed up the learning; to
separate modeling the data from hypothesis construc-
tion; or to use familiar attribute-value (or propositional)
learners.

Motivation and Background

Most domains are naturally modeled by several tables
in a relational database or several classes in an object-
oriented language, for example: customers and their
transactions; molecules, their atoms and bonds; or
patients and their examinations. A proper relational
dataset involves at least two tables linked together. Typ-
ically, one table of the relational representation corre-
sponds to the individuals of interest for the machine
learning task, and the other tables contain related
information that could be useful. The first table is the
individual, or the primary table, the other tables are
complementary tables.

Examplel Let us consider a simplified medical domain
as an example. This is inspired by a real medical dataset
(Tomeckovd, Rauch, & Berka, 2002). It consists of four
tables.

The patient table is the primary table. It contains data
on each patient such as the patient identifier (pid), name,
date of birth, height, job, the identifier of the company
where the patient works, efc.:

Patient

I Smith [15/06/1956 | 1.67 | manager a

Il Blake |13/02/1968 | 1.82 |salesman a

The company table contains its name, its location,
and so on. There is a many-to-one relationship from
the patient table to the company table: A patient works
for a single company, but a company may have several
employees.

The examination table contains the information on
all examinations of all patients. For each examination,
its identifier (eid), the patient identifier (pid), the date,

Propositionalization

Company

a Eiffel Paris

the patient’s weight, whether the patient smokes, his or
her blood pressure, etc. are recorded. Of course, each
examination corresponds to a single patient, and a given
patient can have several examinations, i.e., there is a
one-to-many relationship from the patient table to the
examination table.

Additional tests can be prescribed at each examina-
tion. Their identifiers (tid), corresponding examinations
(eid), names, values, and interpretations are recorded in
the additional_test table:

Examination
1 | 10/10/1991 60 yes 10
2 | 04/06/1992 64 yes 12
23 Il 20/12/1992 80 yes 10
24 Il 15/11/1993 78 no 1

Additional_test

1237 | 1 | 19/10/1991 |red blood cells| 35 bad
t238| 1 | 23/10/1991 | radiography |nothing| good
t574 | 2 |07/06/1992 | red blood cells| 43 good

Several approaches exist to deal directly with
relational data, e.g., »Inductive Logic Programming,
»Relational Data Mining (DZeroski & Lavra¢, 2001),

or M-Statistical Relational Learning. However, if the
relational representation does not require recursion or
complex quantifiers, relational hypotheses can be trans-
formed into propositional expressions.

Generally, a richer representation language permits
the description of more complex concepts, however, the
cost of this representational power is that the search
space for learning greatly increases. Therefore, map-
ping a relational representation into a propositional one
generally reduces search complexity.

A second motivation of propositionalization is to
focus on the construction of features before combin-
ing them into an hypothesis (Srinivasan, Muggleton,
King, & Theories, 1996). This is related to Feature Con-
struction, and to the use of background knowledge.
One could say that propositionalization aims at building
an intermediate representation of the data in order to
simplify the hypothesis subsequently found by a propo-
sitional learner.

A third motivation is pragmatic. Most available
machine learning systems deal with propositional data
only, but tend to include a range of algorithms in a single
environment, whereas relational learning systems tend
to concentrate on a single algorithm. Propositional sys-
tems are therefore often more versatile and give users
the possibility to work with the algorithms they are
used to.

Solutions

There are various ways to propositionalize relational
data consisting of at least two tables linked together
through a relationship. We first focus on a single rela-
tionship between two tables. Most approaches can then
iteratively deal with several relationships as explained
below.

Propositionalization mechanisms depend on whether
that relationship is functional or non-determinate. This
distinction explains most common mistakes made by
newcomers.

When the primary table has a many-to-one or one-to-
one relationship to the complementary table, each row
of the primary table links to one row of the comple-
mentary table. A simple join of the two tables results
in a single table where each row of the primary table

814

Propositionalization

is completed with the information derived from the
complementary table.

Example 2 In our simplified medical domain, there is
a many-to-one relationship from each patient to his or
her company. Let us focus on those two tables only. A
join of the two tables results in a single table where each
row describes a single patient and the company he or she
works for:

The resulting table is suitable for any attribute-value
learner.

Propositionalization is less trivial in a non-determinate
context, when there is a one-to-many or many-to-many
relationship from the primary table to the complemen-
tary table, i.e., when one individual of the primary table
is associated to a set of rows of the complementary
table.

A propositional attribute is built by applying an
aggregation function to a column of the complemen-
tary table over a selection of rows. Of course a lot of
conditions can be used to select the rows. Those con-
ditions can involve other columns than the aggregated
column. Any aggregation function can be used, e.g., to
check whether the set is not empty, to count how many
elements there are, to find the mean (for numerical) or
the mode (for categorical) values, etc.

Example 3 In our simplified medical domain, there is
a one-to-many relationship from the patient to his or her
examinations. Let us focus on those two tables only. Many
features can be constructed. Simple features are aggrega-
tion functions applied to a scalar (numerical or categor-
ical) column. The number of occurrences of the different
values of every categorical attributes can be counted. For
instance, the f60 feature in the table below counts in how
many examinations the patient stated he or she smoked.
The maximum, minimum, average, and standard devi-
ation of every numerical columns can be estimated, e.g.,
the f84 and f85 features in the table below respectively esti-
mates the average and the maximum blood pressure of
the patient over his or her examinations. The aggregation
functions can be applied to any selection of rows, e.g., the

f135 feature in the table below estimates the average blood
pressure over the examinations when the patient smoked.

Patient and his/her examinations

I Smith | ... | 2 |...| T 22 ... 1N

Il Blake | ... | 1 |...[105| T |...| 10

From this example, it is clear that non-determinate rela-
tionships can easily lead to a combinatorial explosion of
the number of features.

Two mistakes are frequent when machine learning
practitioners face a propositionalization problem, i.e.,
when they want to apply a propositional learner to an
existing relational dataset (Lachiche, 2005).

The first mistake is to misuse the (universal) join.
Join is valid in a functional context, as explained ear-
lier. When applied to a non-determinate relationship,
it produces a table where several rows correspond to a
single individual, leading to a multiple instance prob-
lem (Dietterich, Lathrop, & Lozano-Pérez, 1997) (cf.
» Multi-Instance Learning).

Example 4 In our simplified medical domain, there is
a one-to-many relationship from the patient table to the
examination table. If a join is performed, each row of
the examination table is completed with the information
on the examined patient, i.e., there are as many rows as
examinations.

Examination and its patient

1 [10/10/1991 60 yes |10 |...| | [Smith|...
2 |04/06/1992| 64 yes [12|...] | |Smith]...
23 [20/12/1992 80 yes |10|...| Il |Blake]...
24 [15/11/1993 78 no M|...| Il |Blake|...

Propositionalization

815

Patient and his/her company

| Smith 15/06/1956 1.67

manager a

Eiffel Paris

Il Blake 13/02/1968 1.82

salesman a

Eiffel Paris

In this example, the joined table deals with the exam-
inations rather than with the patients. An attribute-value
learner could be used to learn hypotheses about the exam-
inations, not about the patients.

This example reinforces a key representation rule in
attribute-value learning: “Each row corresponds to a
single individual, and vice-versa”

The second mistake is a meaningless column con-
catenation. This is more likely when a one-to-many
relationship can be misinterpreted as several one-to-
one relationships, i.e., when the practitioner is led to
think that a non-determinate relationship is actually
functional.

Example 5 In our simplified medical domain, let us
assume that the physician numbered the successive exam-
inations (1, 2, 3, and so on) of each patient. Then given
that each patient has a first examination, it is tempting to
consider that there is a functional relationship from the
patient to his or her “first” examination, “second” exami-
nation, and so on . This would result in a new patient table
with concatenated columns: weight at the first examina-
tion, whether he or she smoked at the first examination,
.., weight at the second examination, etc.

Patient and his or her examinations (incorrect represen-
tation!)

Two aspects should warn the user of such a rep-
resentation problem: first, the number of columns
depends on the dataset, and as a consequence lots
of columns are not defined for all individuals. More-
over, when the absolute numbering does not make
sense, there is no functional relationship. Such a mis-
understanding can be avoided by remembering that
in an attribute-value representation, “each column is
uniquely defined for each row”

The first complementary table can itself have a non-
determinate relationship with another complementary
table, and so on. Two approaches are available.

A first approach is to consider the first comple-
mentary table, the one having a one-to-many rela-
tionship, as a new primary table in a recursive
propositionalization.

Example 6 In our simplified medical domain, the
examination table has a one-to-many relationship with
the additional test table. The propositionalization of the
examination and additional test tables will lead to a new
examination table completed with new features, such as
a count of how many tests were bad:

Examination and its additional_tests

I |Smith|...| 60 yes |...| 64 yes

Il |Blake|...| 80 yes |...| 78 no

This could easily lead to an attribute-value learner
generalizing over a patient’s weight at their i-th exami-
nation, which is very unlikely to be meaningful.

10/10/1991 60 yes |10]... 1

04/06/1992| 64 yes |12]... 0

Then the propositionalization of the patient table and
the already propositionalized examination tables is per-
formed, producing a new patient table completed with
new features such as the mean value for each patient of

816

Propositionalization

the number of bad tests among all his or her examinations

(f248):

Patient, his or her examinations and additional_tests

| Smith 2 1

It is not necessarily meaningful to aggregate at an
intermediate level. An alternative is to join comple-
mentary tables first, and apply the aggregation at the
individual level only.

Example 7 In our simplified medical domain, it is per-
haps more interesting to first relate all additional tests to
their patients, then aggregate on similar tests. First the
complementary tables are joined:

Additional_test and its examination

1237 | red blood cells | 35 bad 1 | 60
1238 | radiography nothing good 1 | 60
t574 | red blood cells | 43 good 2 | 64

Let us emphasize the difference with the proposi-
tionalized examination and its additional_tests table of
example 6.

There is a one-to-many relationship from the patient
table to that new additional_test and its examination
table. Aggregation functions can be used to build features
such as the minimum percentage of red blood cells (f352):

Finally, different propositionalization approaches
can be combined, by a simple join.

Future Directions

Propositionalization explicitly aims at leaving attribute
selection to the propositional learner applied after-
ward. The number of potential features is large. No
existing propositionalization system is able to enu-
merate all imaginable features. Historically existing
approaches have focused on a subset of potential
features, e.g., numerical aggregation functions without

selection (Knobbe, de Haas, & Siebes, 2001), selection
based on a single elementary condition and existential
aggregation (Flach & Lachiche, 1999; Kramer, Lavra¢, &
Flach, 2001). Most approaches can be combined to pro-
vide more features. The propositionalization should be
guided by the user.

Propositionalization is closely related to knowl-
edge representation. Specific representational issues
require appropriate propositionalization techniques,
e.g., Perlich and Provost (2006) introduce new propo-
sitionalization operators to deal with high-cardinality
categorical attributes. New data sources, such as geo-
graphical or multimedia data, will need an appropriate
representation and perhaps appropriate propositional-
ization operators to apply off-the-shelf attribute-value
learners.

Propositionalization raises three fundamental ques-
tions. The first question is related to knowledge rep-
resentation. The question is whether the user should
adapt to existing representations and accept a need to
propositionalize, or whether data can be mined from
the data sources, requiring the algorithms to be adapted
or invented. The second question is whether proposi-
tionalization is needed. Propositionalization explicitly
allows the user to contribute to the feature elabora-
tion and invites him or her to guide the search thanks
to that »language bias. It separates feature elaboration
from model extraction. Conversely, relational data min-
ing techniques automate the elaboration of the relevant
attributes during the model extraction, but at the same
time leave less opportunity to select the features by
hand.

The third issue is one of efficiency. A more expres-
sive representation necessitates a more complex search.
Relational learning algorithms face the same dilemma
as attribute-value learning in the form of a choice
between an intractable search in the complete search
space and an ad hoc heuristic/search bias (cf. »Search
Bias). They only differ in the size of the search space (cf.
» Hypothesis Space). Propositionalization is concerned
with generating the search space. Generating all poten-
tial features is usually impossible. So practitioners have
to constrain the propositionalization, e.g., by choosing
the aggregation functions, the complexity of the selec-
tions, etc., by restricting the numbers of operations,
and so on. Different operators fit different problems
and might lead to differences in performance (Krogel,
Rawles, Zeleznéy, Flach, Lavraé, & Wrobel, 2003).

Pruning Set

817

Patient, his or her additional_tests and examinations

| Smith Ao0 2 noe 35

Cross References

» Attribute

» Feature Construction

» Feature Selection

»Inductive Logic Programming
»Language Bias

»Learning from Structured Data
» Multi-Instance learning

» Relational Learning
»Statistical Relational Learning

Recommended Reading

Dietterich, T. G., Lathrop, R. H., & Lozano-Pérez, T. (1997). Solv-
ing the multiple-instance problem with axis-parallel rectangles.
Artificial Intelligence, 89(1-2), 31-71.

Dzeroski, S., & Lavra¢, N. (Ed.). (2001). Relational data mining.
Berlin: Springer.

Flach, P, & Lachiche, N. (1999). 1BC: A first-order bayesian
classifier. In S. Dzeroski & P. Flach (Eds.), Proceedings of
the ninth international workshop on inductive logic program-
ming (ILP’99), Vol. 1634 of lecture notes in computer science
(pp- 92-103). Berlin: Springer.

Knobbe, A.J., de Haas, M., & Siebes, A. (2001). Propositionalization
and aggregates. In Proceedings of the sixth European conference
on principles of data mining and knowledge discovery, Vol. 2168
of lecture notes in artificial intelligence (pp. 277-288). Berlin:
Springer.

Kramer, S., Lavra¢, N., & Flach, P. (2001). Propositionalization
approaches to relational data mining. In S. Dzeroski & N. Lavrac¢
(Eds.), Relational data mining (Chap. 11, pp. 262-291). Berlin:
Springer.

Krogel, M.-A., Rawles, S., Zelezny, F.,, Flach, P. A., Lavrag, N., &
Wrobel, S. (2003). Comparative evaluation of approaches to
propositionalization. In T. Horvath & A. Yamamoto (Eds.),
Proceedings of the thirteenth international conference on induc-
tive logic programming, Vol. 2835 of lecture notes in artificial
intelligence (pp. 197-214). Berlin: Springer.

Lachiche, N. (2005). Good and bad practices in propositionaliza-
tion. In S. Bandini & S. Manzoni (Eds.), Proceedings of advances
in artificial intelligence, ninth congress of the Italian association
for artificial intelligence (AI*IA’05), Vol. 3673 of lecture notes in
computer science (pp. 50-61). Berlin: Springer.

Perlich, C., & Provost, F. (2006). Distribution-based aggregation for
relational learning with identifier attributes. Machine Learning,
62, 62-105.

Srinivasan, A., Muggleton, S., King, R. D., & Stenberg, M. (1996).
Theories for mutagenicity: A study of first-order and feature
based induction. Artificial Intelligence, 85(1-2), 277-299.

Tomeckovd, M., Rauch, J., & Berka, P. (2002). Stulong data
from longitudinal study of atherosclerosis risk factors.
In P. Berka (Ed.), Discovery challenge workshop notes.
ECML/PKDD’02, Helsinki, Finland. http://lisp.vse.cz/l
challenge/ecmlpkdd2002/proceedings/Tomeckova.pdf

! Pruning

JOHANNES FURNKRANZ
TU Darmstadt, Fachbereich Informatik, Darmstadt,
Germany

Definition

Pruning describes the idea of avoiding »Overfitting by
simplifying a learned concept, typically after the actual
induction phase. The word originates from »Decision
Tree learning, where the idea of improving the deci-
sion tree by cutting some of its branches is related to
the concept of pruning in gardening.

One can distinguish between »Pre-Pruning, where
pruning decisions are taken during the learning process,
and »Post-Pruning, where pruning occurs in a separate
phase after the learning process. Pruning techniques are
particularly important for state-of-the-art decision tree
and »Rule Learning algorithms.

The key idea of pruning is essentially the same as
»Regularization in statistical learning, with the key
difference that regularization incorporates a complex-
ity penalty directly into the learning heuristic, whereas
pruning uses a separate pruning criterion or pruning
algorithm.

Cross References
» Decision Tree
»Pre-Pruning
»Post-Pruning
»Regularization
»Rule Learning

! Pruning Set

Definition

A pruning set is a subset of a »training set contain-
ing data that are used by a »learning system to evaluate
models that are learned from a »growing set.

Cross References
» Data Set

http://lisp.vse.cz/lchallenge/ecmlpkdd2002/proceedings/Tomeckova.pdf
http://lisp.vse.cz/lchallenge/ecmlpkdd2002/proceedings/Tomeckova.pdf

	P
	PAC Identification
	PAC Learning
	Synonyms
	Motivation and Background
	Definition
	Remarks

	The Finite Case
	The Infinite Case
	Variations
	Weak Learning

	Relations to Other Learning Models
	Cross References
	Recommended Reading

	PAC-MDP Learning
	Parallel Corpus
	Part of Speech Tagging
	Partially Observable MarkovDecision Processes
	Synonyms
	Definition
	Motivation and Background
	Structure of Model and SolutionAlgorithms
	POMDP Model
	Policies
	Solution Algorithms
	RelatedWork

	Cross References
	Recommended Reading

	Particle Swarm Optimization
	The Canonical Particle Swarm
	The Social–Psychological Metaphor
	The Population Topology
	Vmax and Convergence
	Step Size and Consensus
	The Fully Informed Particle Swarm (FIPS)

	Generalizing the Notation
	The Evolving Paradigm
	Binary Particle Swarms
	Alternative Probability Distributions

	Recommended Reading

	Partitional Clustering
	Definition
	Recommended Reading

	Passive Learning
	PCA
	PCFG
	Phase Transitions in MachineLearning
	Synonyms
	Definition
	Motivation and Background
	Relational Learning
	Relational Kernels and MIL Problems
	Multi-Instance Learning: Background and Kernels
	The MI-SVM PT

	Propositional Learning and Sparse Coding
	Propositional Classification
	Propositional Regression

	Perspectives
	Recommended Reading

	Perceptron
	Piecewise Constant Models
	Piecewise Linear Models
	Plan Recognition
	Policy Gradient Methods
	Synonyms
	Definition
	Structure of the Learning System
	Expected Return
	Gradient Descent in Policy Space
	Finite Difference Gradients
	Likelihood-Ratio Gradients

	Cross References
	Recommended Reading

	Policy Search
	POMDPs
	POS Tagging
	Synonyms
	Definition
	Motivation and Background
	Statistical and Machine LearningApproaches to Tagging
	HMMs
	Transformation-Based Error-DrivenLearning (Brill-Tagging)
	Other Supervised Learning Methods
	Cross References
	Recommended Reading

	Positive Definite
	Positive Predictive Value
	Positive Semidefinite
	Synonyms
	Definition

	Posterior
	Posterior Probability
	Synonyms
	Definition
	Cross References

	Post-Pruning
	Definition
	Cross References

	Postsynaptic Neuron
	Precision
	Synonyms
	Definition

	Cross References

	Precision and Recall
	Definition
	Cross References

	Predicate
	Cross References

	Predicate Calculus
	Predicate Invention
	Definition
	Cross References

	Predicate Logic
	Prior Probabilities
	Prior Probability
	Synonyms
	Definition
	Cross References

	Prediction with Expert Advice
	Predictive Software Models
	Predictive Techniques in SoftwareEngineering
	Synonyms
	Introduction
	The Process of Applying ML to SE
	Applications of Predictive Models in SE
	Software size prediction
	Software quality prediction
	Software Cost Prediction
	Software Defect Prediction
	Software Reliability Prediction
	Software Reusability Prediction
	Other Applications

	Future Directions
	Recommended Reading

	Preference Learning
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Learning from Object Preferences
	Learning from Label Preferences
	Learning Utility Functions
	Learning Preference Relations

	Future Directions
	Cross References
	Recommended Reading

	Pre-Pruning
	Synonyms
	Definition
	Cross References

	Presynaptic Neuron
	Principal Component Analysis
	Synonyms
	Definition

	Prior
	Privacy-Preserving Data Mining
	Privacy-Related Aspects andTechniques
	Synonyms
	Definition
	Motivation and Background
	Theory/Solutions
	Basic Dimensions of Privacy Techniques
	Protecting Centralized Data
	Protecting the Model (Centralized Data)
	Distributed Data

	Evaluation
	Future Directions
	Recommended Reading

	Probabilistic Context-FreeGrammars
	Synonyms
	Definition
	Derivation Process
	Probability Distribution
	Parsing Algorithm
	Learning
	Application to Bioinformatics
	Recommended Reading

	Probably Approximately CorrectLearning
	Process-Based Modeling
	Program Synthesis From Examples
	Programming by Demonstration
	Synonyms
	Definition
	Acknowledgement
	Cross References
	Recommended Reading

	Programming by Example
	Programming from Traces
	Projective Clustering
	Synonyms
	Definition
	Motivation and Background
	Theory
	Algorithms
	Applications

	Principal Component Analysis
	Coresets
	Cross References
	Recommended Reading

	Prolog
	Cross References
	Recommended Reading

	Property
	Propositional Logic
	Cross References

	Propositionalization
	Definition
	Motivation and Background
	Solutions
	Functional Relationship (Many-To-One, One-To-One)
	Non-Determinate Relationship (One-To-Many,Many-To-Many)
	CommonMistakes and Key Rules to Avoid them
	Further Relationships

	Future Directions
	Recommended Reading

	Pruning
	Definition
	Cross References

	Pruning Set
	Definition
	Cross References

