
T

Tagging

7POS Tagging

TAN

7Tree Augmented Naive Bayes

Taxicab Norm Distance

7Manhattan Distance

TD-Gammon

Definition
TD-Gammon is a world-champion strength backgam-

mon program developed by Gerald Tesauro. Its

development relied heavily on machine learning

techniques, in particular on 7Temporal-Di�erence
Learning. Contrary to successful game programs in

domains such as chess, which can easily out-search

their human opponents but still trail these ability

of estimating the positional merits of the current

board con�guration, TD-Gammon was able to excel

in backgammon for the same reasons that humans

play well: its grasp of the positional strengths and

weaknesses was excellent. In , it lost a -game

competition against the world champion with only

 points. Its sometimes unconventional but very solid

evaluation of certain opening strategies had a strong

impact on the backgammon community and was soon

adapted by professional players.

Description of the Learning System
TD-Gammon is a conventional game-playing program

that uses very shallow search (the �rst versions only

searched one ply) for determining its move. Candidate

moves are evaluated by a 7Neural Network, which
is trained by TD(λ), a well-known algorithm for

Temporal-Di�erence Learning (Tesauro, ). �is

evaluation function is trained on millions of games that

the program played against itself. At the end of each

game, a reinforcement signal that indicates whether the

game has been lost or won is passed through all moves

of the game. TD-Gammon developed useful concepts

in the hidden layer of its network. Tesauro () shows

examples for two hidden units of TD-Gammon that he

interpreted as a race-oriented feature detector and an

attack-oriented feature detector.

TD-Gammon clearly surpassed its predecessors, in

particular the Computer Olympiad champion Neu-

rogammon, which was trained with 7Preference
Learning (Tesauro, ). In fact, early versions of

TD-Gammon, which only used the raw board infor-

mation as features, already learned to play as well as

Neurogammon, which used a sophisticated set of fea-

tures. Adding more sophisticated features to the input

representation further improved TD-Gammon’s play-

ing strength. Over time, TD-Gammon not only that

increase the number of training games that it played

against itself, but Tesauro also increased the search

depth and changed the network architecture, so that

TD-Gammon eventually reached world-championship

strength (Tesauro, ).

Cross References
7Machine Learning and Game Playing

Recommended Reading
Tesauro, G. (). Connectionist learning of expert preferences by

comparison training. In D. Touretzky (Ed.), Proceedings of the
advances in neural information processing systems  (NIPS-)
(pp. –). San Francisco: Morgan Kaufmann.

Tesauro, G. (). Practical issues in temporal difference learning.

Machine Learning, , –. http://mlis.www.wkap.nl/mach/
abstracts/absvp.htm.

Claude Sammut & Geoffrey I. Webb (eds.), Encyclopedia of Machine Learning, DOI ./----,
© Springer Science+Business Media LLC 

http://mlis.www.wkap.nl/mach/abstracts/absv8p257.htm
http://mlis.www.wkap.nl/mach/abstracts/absv8p257.htm

 T TDIDT Strategy

Tesauro, G. (). Temporal difference learning and TD-Gammon.

Communications of the ACM, (), –. http://www.
research.ibm.com/massdist/tdl.html.

TDIDT Strategy

7Divide-and-Conquer Learning

Temporal Credit Assignment

7Credit Assignment

Temporal Data

7Time Series

Temporal Difference Learning

William Uther

NICTA and the University of New South Wales

Definition
Temporal Di�erence Learning, also known as

TD-Learning, is a method for computing the long term

utility of a pattern of behavior from a series of inter-

mediate rewards (Sutton, , ; Sutton and Barto,

). It uses di�erences between successive utility esti-

mates as a feedback signal for learning. �e Temporal

Di�erencing approach to model-free 7reinforcement
learningwas introduced by, and is o�en associatedwith,

R.S. Sutton. It has ties to both the arti�cial intelligence

and psychological theories of reinforcement learning

as well as 7dynamic programming and operations
research from economics (Bellman, ; Bertsekas &

Tsitsiklis, ; Puterman, ; Samuel, ; Watkins,

).

While TD learning can be formalised using the the-

ory of 7Markov Decision Processes, in many cases it
has been used more as a heuristic technique and has

achieved impressive results even in situations where

the formal theory does not strictly apply, e.g., Tesauro’s

TD-Gammon (Tesauro, ) achieved world cham-

pion performance in the game of backgammon. �ese

heuristic results o�en did not transfer to other domains,

but over time the theory behind TD learning has

expanded to cover large areas of reinforcement learning.

Formal Definitions

Consider an agent moving through a world in discrete

time steps, t, t, At each time step, t, the agent is
informed of both the current state of the world, st ∈ S ,
and its reward, or utility, for the previous time step,

rt− ∈ R.
As the expected long term utility of a pattern of

behavior can change depending upon the state, the util-

ity is a function of the state, V : S → R. V is known
as the value function or state-value function. �e phrase
“long term utility” can be formalized in multiple ways.

Undiscounted sum of reward:
�e simplest de�nition is that long term reward is

the sum of all future rewards.

V(st) = rt + rt+ + rt+ +⋯

=
∞
∑
δ=

rt+δ

Unfortunately, the undiscounted sum of reward is

only well de�ned if this sum converges. Convergence

is usually achieved by the addition of a constraint that

the agent’s experience terminates at some, �nite, point

in time and all rewards a�er that point are zero.

Discounted sum of reward:
�e discounted utility measure discounts rewards

exponentially into the future.

V(st) = rt + γrt+ + γrt+ +⋯ γ ∈ [, ]

=
∞
∑
δ=

γδrt+δ

Note that when γ =  the discounted and undis-
counted regimes are identical. When γ < , the dis-
counted reward scheme does not require that the agent

experience terminates at some �nite time for conver-

gence. �e discount factor γ can be interpreted as an
in�ation rate, a probability of failure for each time

step, or simply as a mathematical trick to achieve

convergence.

http://www.research.ibm.com/massdist/tdl.html
http://www.research.ibm.com/massdist/tdl.html

Temporal Difference Learning T 

T

Average reward:
Rather than consider a sum of rewards, the average

reward measure of utility estimates both the expected
reward per future time step, also known as the gain, and
the current di�erence from that long-term average, or

bias.

G(st) = lim
n→∞



n

n

∑
δ=

rt+δ

B(st) =
∞
∑
δ=

[rt+δ −G(st+δ)]

A system where any state has a nonzero probabil-

ity of being reached from any other state is known as

an ergodic system. For such a system the gain, G(s),
will have the same value for all states and the bias, B(s),
serves a similar purpose toV(s) above in indicating the
relative worth of di�erent states. While average reward

has a theoretical advantage in that there is no discount

factor to choose, historically average reward has been

considered more complex to use than the discounted

reward regimes and so has been less used in practice.

�ere is a strong theoretical relationship between aver-

age reward and discounted reward in the limit as the

discount factor approaches one.

Here we focus on discounted reward.

Estimating Discounted Sum of Reward �e temporal

di�erencing estimation procedure is based on recur-

sive reformulation of the above de�nitions. For the

discounted case:

V(st) = rt + γrt+ + γrt+ + γrt+ +⋯
= rt + γ[rt+ + γrt+ + γrt+ +⋯]
= rt + γV(st+)

From the recursive formulation we can see that the

long term utility for one time step is closely related to

the long term utility at the next time step. If there is

already an estimate of the long term utility at st , V(st),
then we could calculate a change in that value given a

new trajectory as follows:

∆t = [rt + γV(st+)] −V(st)

If we are dealing with a stochastic system, then we

may not want to update V(st) to the new value in one

jump, but rather only move part way toward the new

value:

∆t = α(rt + γV(st+) −V(st))

where α is a learning rate between  and . As an
assignment, this update can be written in a number of

equivalent ways, the two most common being:

V(st) ← V(st) + α(rt + γV(st+) −V(st)) or,

V(st) ← ( − α)V(st) + α(rt + γV(st+))

�is update, error, learning or delta rule is the core of
temporal di�erence learning. It is from this formulation,

which computes a delta based on the di�erence in esti-

mated long term utility of the world at two consecutive

time steps, that we get the term temporal di�erencing.

Having derived this update rule, we can now apply it

to �nding the long term utility of a particular agent. In

the simplest case we will assume that there are a �nite

number of Markov states of the world, and that these

can be reliably detected by the agent at run time. We

will store the function V as an array of real numbers,
with one number for each world state.

A�er each time step, t, we will use the knowledge of
the previous state, st , the instantaneous reward for the
time step, rt , and the resulting state, st+, to update the
value of the previous state, V(st), using the delta rule
above:

V(st) ← V(st) + α(rt + γV(st+) −V(st))

Eligibility Traces and TD(λ)

Basic temporal di�erencing as represented above can be

quite slow to converge in many situations. Consider, for

example, a simple corridor with a single reward at the

end, and an agent that walks down the corridor. Assume

that the value function was initialized to a uniform zero

value. On each walk down the corridor, useful informa-

tion is only pushed one step back toward the start of the

corridor.

Eligibility traces try to alleviate this problem by

pushing information further back along the trajectory

of the agent with each update to V . An algorithm
incorporating eligibility traces can be seen as a mix-

ture of “pure” TD, as described above, and 7Monte-
Carlo estimation of the long term utility. In particu-

lar, the λ parameter to the TD(λ) family of algorithms

 T Temporal Difference Learning

speci�es where in the range from pure TD, when λ = ,
to pure Monte-Carlo, when λ = , a particular algo-
rithm falls.

Eligibility traces are implemented by keeping a sec-

ond function of the state space, є : S → R. �e є func-
tion represents how much an experience now should

a�ect the value of a state the agent has previously passed

through.When the agent performs anupdate, the values

of all states are changed according to their eligibility.

�e standard de�nition of the eligibility of a par-

ticular state uses an exponential decay over time, but

this is not a strict requirement and other de�nitions

of eligibility could be used. In addition, each time a

state is visited, its eligibility increases. Formally, on each

time step,

∀s∈S є(s) ← γλє(s) and then,

є(st) ← є(st) + 

�is eligibility is used to update all state values by

�rst calculating the delta for the current state as above,

but then applying it to all states according to the eligi-

bility values:

∆t = α(rt + γV(st+) −V(st))
∀s∈S V(s) ← V(s) + ∆tє(s)

Convergence

TD value function estimation has been shown to con-

verge under many conditions, but there are also well

known examples where it does not converge at all, or

does not converge to the correct long term reward (Tsit-

siklis & Van Roy, ).

In particular, temporal di�erencing has been shown

to converge to the correct value of the long term dis-

counted reward if,

● �e world is �nite.

● �e world state representation is Markovian.

● �e rewards are bounded.

● �e representation of the V function has no con-
straints (e.g., a tabular representation with an entry

for each state).

● �e learning rate, α, is reduced according to the
Robbins-Monro conditions: ∑∞t= αt = ∞, and
∑∞t= αt < ∞.

Much of the further work in TD learning since its

invention has been in �nding algorithms that provably

converge in more general cases.

�ese convergence results require that a Marko-

vian representation of state be available to the agent.

�ere has been research into how to acquire such a

representation from a sequence of observations. �e

approach of the Temporal Di�erencing community has

been to use TD-Networks (Sutton & Tanner, ).

Control of Systems

Temporal Di�erence Learning is used to estimate the

long term reward of a pattern of behavior. �is estima-

tion of utility can then be used to improve that behav-

ior, allowing TD to help solve a reinforcement learning

problem. �ere are two common ways to achieve this:

An Actor-Critic setup uses value function estimation as
one component of a larger system, and the Q-learning
and SARSA techniques can be viewed as slight modi�-
cations of the TD method which allow the extraction

of control information more directly from the value

function.

First we will formalise the concept of a pattern of

behavior. In the preceding text it was le� deliberately

vague as TD can be applied tomultiple de�nitions. Here

we will focus on discrete action spaces.

Assume there is a set of allowed actions for the

agent,A. We de�ne aMarkov policy as a function from
world states to actions, π : S → A. We also de�ne a
stochastic or mixed Markov policy as a function from
world states to probability distributions over actions,

π : S → A → [, ]. �e goal of the control algo-
rithm is to �nd an optimal policy: a policy that max-

imises long term reward in each state. (When function

approximation is used (see section “Approximation”),

this de�nition of an optimal policy no longer su�ces.

One can then either move to average reward if the sys-

tem is ergodic, or give a, possibly implicit, weighting

function specifying the relative importance of di�erent

states.)

Actor-Critic Control Systems Actor-Critic control is

closely related to mixed policy iteration from Markov
Decision Process theory.�ere are two parts to an actor-

critic system; the actor holds the current policy for the
agent, and the critic evaluates the actor and suggests
improvements to the current policy.

Temporal Difference Learning T 

T

�ere are a number of approaches that fall under this

model. One early approach stores a preference value for

each world state and action pair, p : S × A → R. �e
actor then uses a stochastic policy based on the Gibbs

so�max function applied to the preferences:

π(s, a) = ep(s,a)

∑x∈A ep(s,x)

�e critic then uses TD to estimate the long term

utility of the current policy, and also uses the TD update

to change the preference values.When the agent is posi-

tively surprised it increases the preference for an action,

when negatively surprised it decreases the preference

for an action. �e size of the increase or decrease is

modulated by a parameter, β:

p(st , at) ← p(st , at) + β∆t

Convergence of this algorithm to an optimal policy

is not guaranteed.

A second approach requires the agent to have an

accurate model of its environment. In this approach the

critic uses TD to learn a value function for the current

behavior. �e actor uses model based forward search to

choose an action likely to lead to a state with a high

expected long term utility. �is approach is common

in two player, zero sum, alternating move games such

as Chess or Checkers where the forward search is a

deterministic game tree search.

More modern approaches which guarantee conver-

gence are related to policy gradient approaches to rein-
forcement learning (Castro &Meir, ).�ese store a

stochastic policy in addition to the value function, and

then use the TD updates to estimate the gradient of the

long term utility with respect to that policy. �is allows

the critic to adjust the policy in the direction of the neg-

ative gradient with respect to long term value, and thus

improve the policy.

Other Value Functions �e second class of approaches

to using TD for control relies upon extending the

value function to estimate the value of multiple actions.

Instead of V we use a state-action value function, Q :

S × A → R. �e update rule for this function is min-
imally modi�ed from the TD update de�ned for V
above.

Once these state-action value functions have been

estimated, a policy can be selected by choosing for each

state the action that maximizes the state-action value

function, and then adding some exploration.

In order for this extended value function to be

learned, the agentmust explore each action in each state

in�nitely o�en. Traditionally this has been assured by

making the agent select random actions occasionally,

even when the agent believes that action would be sub-

optimal. In general the choice of when to explore using

a sub-optimal action, the exploration/exploitation trade-
o�, is di�cult to optimize. More recent approaches
to optimizing the exploration/exploitation trade-o� in

reinforcement learning estimate the variance of the

value function to decide where they need to explore

(Auer & Ortner, ).

�e requirement for exploration leads to two di�er-

ent value functions that could be estimated. �e agent

could estimate the value function of the pattern of

behavior currently being executed, which includes the

exploration.Or, the agent could estimate the value func-

tion of the current best policy, excluding the exploration

currently in use. �ese are referred to as on-policy and
of f-policymethods respectively.

Q-Learning is an o�-policy update rule:

Q(st , at) ← Q(st , at) + α(rt + γV(st+) −Q(st , at))

where V(st+) = max
a∈A

Q(st+, a)

SARSA is an on-policy update rule:

Q(st , at) ← Q(st , at) + α(rt + γQ(st+, at+) −Q(st , at))

�en for both:

π(s) = argmaxa∈AQ(s, a)

and some exploration.

As can be seen above, the update rules for SARSA

and Q-learning are very similar – they only di�er in the

value used for the resulting state. Q-learning uses the

value of the best action, whereas SARSA uses the value

of the action that will actually be chosen.

Q-Learning converges to the best policy to use once

you have converged and can stop exploring. SARSA

converges to the best policy to use if you want to keep

exploring as you follow the policy (Lagoudakis & Parr,

).

 T Temporal Difference Learning

Approximation

A major problem with many state based algorithms,

including TD learning, is the so-called 7curse of
dimensionality. In a factored state representation, the

number of states increases exponentially with the num-

ber of factors. �is explosion of states produces two

problems: it can be di�cult to store a function over the

state space, and even if the function can be stored, so

much data is required to learn the function that learning

is impractical.

�e standard response to the curse of dimensional-

ity is to apply function approximation to any function

of state.�is directly attacks the representation size, and

also allows information from one state to a�ect another

“similar” state allowing generalisation and learning.

While the addition of function approximation can

signi�cantly speed up learning, it also causes di�culty

with convergence. Some types of function approxima-

tion will stop TD from converging at all. �e resulting

algorithms can either oscillate forever or approach in�-

nite values. Other forms of approximation cause TD to

converge to a estimate of long term rewardwhich is only

weakly related to the true long term reward (Baird, ;

Boyan & Moore, ; Gordon, ).

Most styles of function approximation used in con-

junction with TD learning are parameterized, and the

output is di�erentiablewith respect to those parameters.

Formally we haveV : Θ → S → R, where Θ is the space
of possible parameter vectors, so that Vθ(s) is the value
of V at state s with parameter vector θ, and ∇Vθ(s) is
the gradient of V with respect to θ at s. �e TD update
then becomes:

∆t = α (rt + γVθ(st+) −Vθ(st))
θ ← θ + ∆t∇Vθ(st)

We describe three styles of approximation: state

abstraction, linear approximation, and smooth general

approximators (e.g., neural networks).

State abstraction refers to grouping states together

and therea�er using the groups, or abstract states,
instead of individual states.�is can signi�cantly reduce

the amount of storage required for the value function as

only values for abstract states need to be stored. It also

preserves convergence results. A slightlymore advanced

form of state abstraction is the tile coding or CMAC

(Albus, ). In this type of function approximation,

the state representation is assumed to be factored, i.e.,

each state is represented by a vector of values rather

than a single scalar value. �e CMAC represents the

value function as the sum of separate value functions;

one for each dimension of the state. �ose individual

dimensions can each have their own state abstraction.

Again, TD has been shown to converge when used with

a CMAC value function representation.

In general, any form of function approximation that

forms a contraction mapping will converge when used

with TD (see the entry on 7Markov Decision Pro-
cesses). Linear interpolation is a contraction mapping,

and hence converges. Linear extrapolation is not a con-

tractionmapping and care needs to be takenwhen using

general linear functions with TD. It has been shown that

general linear function approximation used with TD

will converge, but only when complete trajectories are

followed through the state space (Tsitsiklis & Van Roy,

).

It is not uncommon to use various types of

back-propagation neural nets with TD, e.g., Tesauro’s

TD-gammon. More recently, TD algorithms have been

proposed that converge for arbitrary di�erentiable func-

tion approximators (Maei et al., ; Papavassiliou and

Russell, ). �ese use more complex update tech-

niques than those shown above.

Related Differencing Systems

TD learning was originally developed for use in envi-

ronments where accurate models were unavailable. It

has a close relationship with the theory ofMarkovDeci-

sion Processes where an accurate model is assumed.

Using the notation V(st) ↝ V(st+) for a TD-style
update that moves the value at V(st) closer to the value
at V(st+) (including any discounting and intermediate
rewards), we can now consider many possible updates.

As noted above, one way of applying TD to control

is to use forward search. Forward search can be imple-

mented using dynamic programming, and the result is

closely related to TD. Let state c(s) be the best child of
state s in the forward search. We can then consider an
update,V(s) ↝ V(c(s)). If we let l(s) be the best leaf in
the forward search, we could then consider an update

V(s) ↝ V(l(s)). Neither of these updates consider
the world a�er an actual state transition, only simu-

lated state transitions, and so neither is technically a TD

update.

Temporal Difference Learning T 

T

Some work has combined both simulated time steps

and real time steps.�e TD-Leaf learning algorithm for

alternative move games uses the V(l(st)) ↝ V(l(st+))
update rule (Baxter et al., ).

An important issue to consider when using forward

search is whether the state distribution where learning

takes place is di�erent to the state distribution where

the value function is used. In particular, if updates only

occur for states the agent chooses to visit, but the search

is using estimates for states that the agent is not visit-

ing, then TDmay give poor results. To combat this, the

TreeStrap(α-β) algorithm for alternating move games
updates all nodes in the forward search tree to be closer

to the bound information provided by their children

(Veness et al., ).

Biological Links

�ere are strong relationships between TD learning

and the Rescorla–Wagner model of Pavlovian condi-

tioning. �e Rescorla–Wagner model is one way to

formalize the idea that learning occurs when the co-

occurence of two events is surprising rather than every

time a co-occurence is experienced. �e ∆t value cal-

culated in the TD update can be viewed as a measure

of surprise. �ese �ndings appear to have a neural sub-

strate in that dopamine cells react to reward when it

is unexpected and to the predictor when the reward is

expected (Schultz et al., ; Sutton & Barto, ).

Cross References
7Curse of Dimensionality
7Markov Decision Processes
7Monte-Carlo Simulation
7Reinforcement Learning

Recommended Reading
Albus, J. S. (). Brains, behavior, and robotics. Peterborough:

BYTE, ISBN: .

Auer, P., & Ortner, R. (). Logarithmic online regret bounds for

undiscounted reinforcement learning. Neural and Information
Processing Systems (NIPS).

Baird, L. C. (). Residual algorithms: reinforcement learning

with function approximation. In A. Prieditis & S. Russell

(Eds.), Machine Learning: Proceedings of the Twelfth Interna-
tional Conference (ICML) (pp. –). San Mateo: Morgan
Kaufmann.

Baxter, J., Tridgell, A., & Weaver, L. (). KnightCap: a chess pro-

gram that learns by combining TD(lambda) with game-tree

search. In J. W. Shavlik (Ed.), Proceedings of the Fifteenth Inter-
national Conference on Machine Learning (ICML ’) (pp. –
). San Francisco: Morgan Kaufmann.

Bellman, R. E. (). Dynamic programming. Princeton: Princeton
University Press.

Bertsekas, D. P., & Tsitsiklis, J. (). Neuro-dynamic program-

ming. Belmont: Athena Scientific.

Boyan, J. A., & Moore, A. W. (). Generalization in reinforce-

ment learning: safely approximating the value function. In

G. Tesauro, D. S. Touretzky, & T. K. Leen (Eds.), Advances in
neural information processing systems (Vol. ). Cambridge: MIT
Press.

Di Castro, D., & Meir, R. (). A convergent online single

time scale actor critic algorithm. Journal of Machine Learn-
ing Research, , –. http://jmlr.csail.mit.edu/papers/v/
dicastroa.html

Gordon, G. F. (). Stable function approximation in dynamic
programming (Technical report CMU-CS--). School of
Computer Science, Carnegie Mellon University.

Lagoudakis, M. G., & Parr, R. (). Least-squares policy iter-

ation. Journal of Machine Learning Research , –.
http://www.cs.duke.edu/~parr/jmlr.pdf

Maei, H. R. et al. (). Convergent temporal-difference learn-

ing with arbitrary smooth function approximation. Neural
and Information Processing Systems (NIPS), pp. –.
http://books.nips.cc/papers/files/nips/NIPS_.pdf

Mahadevan, S. (). Average reward reinforcement learning: foun-

dations, algorithms, and empirical results. Machine Learning,
, –, doi: ./A:.

Papavassiliou, V. A., & Russell, S. (). Convergence of

reinforcement learning with general function approxima-

tors. International Joint Conference on Artificial Intelligence,
Stockholm.

Puterman, M. L. ().Markov decision processes: discrete stochastic
dynamic programming. Wiley series in probability and math-
ematical statistics. Applied probability and statistics section.
New York: Wiley.

Samuel, A. L. (). Some studies in machine learning using the

game of checkers. IBM Journal on Research and Development,
(), –.

Schultz, W., Dayan, P., & Read Montague, P. (). A neural sub-

strate of prediction and reward. Science, (), –,
doi: ./science....

Sutton, R., & Tanner, B. (). Temporal difference networks.

Neural and Information Processing Systems (NIPS).
Sutton, R. S. (). Temporal credit assignment in reinforce-

ment learning. Ph.D. thesis, University of Massachusetts,

Amherst.

Sutton, R. S. (). Learning to predict by the method of temporal

differences.Machine learning, , –, doi: ./BF.
Sutton, R. S., & Barto, A. G. (). Reinforcement learning: an

introduction. Cambridge: MIT Press.
Sutton, R. S., & Barto, A. G. (). Time-derivative models of Pavlo-

vian reinforcement. In M. Gabriel & J. Moore (Eds.), Learn-
ing and computational neuroscience: foundations of adaptive
networks (pp. –). Cambridge: MIT Press.

Tesauro, G. (). Temporal difference learning and TD-gammon.

Communications of the ACM, (), –.
Tsitsiklis, J. N., & Van Roy, B. (). An analysis of temporal-

difference learning with function approximation. IEEE Trans-
actions on Automatic Control, (), –.

http://www.cs.duke.edu/~parr/jmlr03.pdf
http://books.nips.cc/papers/files/nips22/NIPS2009_1121.pdf
http://jmlr.csail.mit.edu/papers/v11/dicastro10a.html
http://jmlr.csail.mit.edu/papers/v11/dicastro10a.html

 T Test Data

Veness, J., et al. (). Bootstrapping from game tree search. Neural
and Information Processing Systems (NIPS).

Watkins, C. J. C. H. (). Learning with delayed rewards.
Ph.D. thesis, Cambridge University Psychology Department,

Cambridge.

Test Data

Synonyms
Evaluation data; Test instances

Definition
Test data are data to which a 7model is applied for the
purposes of7evaluation.When7holdout evaluation is
performed, test data are also called out-of-sample data,
holdout data, or the holdout set.

Cross References
7Test Set

Test Instances

7Test Data

Test Set

Synonyms
Evaluation data; Evaluation set; Test data

Definition
A test set is a 7data set containing data that are used
for 7evaluation by a 7learning system. Where the
7training set and the test set contain disjoint sets of
data, the test set is known as a7holdout set.

Cross References
7Data Set

Test Time

A learning algorithm is typically applied at two dis-

tinct times. Test time refers to the time when an algo-

rithm is applying a learned model to make predictions.

7Training time refers to the time when an algorithm is
learning a model from 7training data. 7Lazy learning
usually blurs the distinction between these two times,

deferring most learning until test time.

Test-Based Coevolution

Synonyms
Competitive coevolution

Definition
A coevolutionary system constructed to simultaneously

develop solutions to a problem and challenging tests for

candidate solutions. Here, individuals represent com-

plete solutions or their tests. �ough not precisely the

same as competitive coevolution, there is a signi�cant
overlap.

Text Clustering

7Document Clustering

Text Learning

7Text Mining

Text Mining

Dunja Mladenić

Jožef Stefan Insitute, Ljubljana, Slovenia

Synonyms
Analysis of text; Data mining on text; Text learning

Definition
�e term text mining is used analogous to 7data min-
ing when the data is text. As there are some data speci-

�cities when handling text compared to handling data

from databases, text mining has a number of speci�c

methods and approaches. Some of these are extensions

of data mining and machine learning methods, while

other are rather text-speci�c. Text mining approaches

Text Mining for Advertising T 

T

combine methods from several related �elds, including

machine learning, datamining,7information retrieval,
7natural language processing, 7statistical learning,
and the Semantic Web. Basic text mining approaches

are also extended to enable handling di�erent natural

languages (7cross-lingual text mining) and are com-
bined with methods for handling di�erent data types,

such as links and graphs (7link mining and link dis-
covery,7graphmining), images and video (multimedia
mining).

Cross References
7Cross-Lingual Text Mining
7Feature Construction In Text Mining
7Feature Selection In Text Mining
7Semi-Supervised Text Processing
7Text Mining For Advertising
7Text Mining For News and Blogs Analysis
7Text Mining for the Semantic Web
7Text Mining For Spam Filtering
7Text Visualization

Text Mining for Advertising

Massimiliano Ciaramita

Yahoo! Research Barcelona,

Barcelona, Spain

Synonyms
Content match; Contextual advertising; Sponsored

search; Web advertising

Definition
Text mining for advertising is an area of investigation

and application of text mining and machine learning

methods to problems such as Web advertising; e.g.,

automatically selecting the most appropriate ads with

respect to a Web page, or query submitted to a search

engine. Formally, the task can be framed as a rank-

ing or matching problem where the unit of retrieval,

rather than a Web page, is an advertisement. Most of

the time ads have simple and homogeneous prede-

�ned textual structures, however, formats can vary and

include audio and visual information. Advertising is

a challenging problem due to several factors such as

the economic nature of the transactions involved, engi-

neering issues concerning scalability, and the inherent

complexity of modeling the linguistic and multimedia

content of advertisements.

Motivation and Background
�e role of advertising in supporting and shaping the

development of the Web has substantially increased

over the past years. According to the Interactive Adver-

tisingBureau (IAB), Internet advertising revenues in the

USA totaled almost $ billion in the �rst  months of

, a .% increase over the same period in ,

the last in a series of consecutive growths. Search, i.e.,

ads placed by Internet companies in Web pages or in

response to speci�c queries, is the largest source of

revenue, accounting for % of total revenue (Inter-

net Advertising Bureau, ). �e most important

categories of Web advertising are keyword match, also
known as sponsored search or paid listing, which places
ads in the search results for speci�c queries (see Fain &

Pedersen,  for a brief history of sponsored search),

and content match, also called content-targeted advertis-
ing or contextual advertising, which places ads in Web
pages based on the page content. Figure  shows an

example of sponsored search and ads are listed on the

right side of the page.

Currently, most of the focus in Web advertising

involves sponsored search, because matching based

on keywords is a well-understood problem. Content

match has greater potential for content providers, pub-

lishers, and advertisers, because users spend most of

their time on the Web on content pages as opposed to

search engine result pages. However, content match is

a harder problem than sponsored search. Matching ads

with query terms is to a certain degree straightforward,

because advertisers themselves choose the keywords

that characterize their ads that are matched against

keywords chosen by users while searching. In con-

textual advertising, matching is determined automati-

cally by the page content, which complicates the task

considerably.

Advertising touches challenging problems concern-

ing how ads should be analyzed, and how the accurately

and e�ciently systems select the best ads. �is area of

research is developing rapidly in information retrieval.

 T Text Mining for Advertising

Text Mining for Advertising. Figure . Ads ranked next to a search results page for the query “Spain holidays”

How best to model the structure and components of

ads, and the interaction between the ads and the con-

texts in that they appear are open problems. Informa-

tion retrieval systems are designed to capture relevance,

which is a basic concept in advertising as well. Elements

of an ad such as text and images tend to be mutually

relevant, and o�en (in print media for example) ads are

placed in contexts that match a certain product at a top-

ical level; e.g., an ad for sneakers placed on a sport news

page. However, topical relevance is only one the basic

parameters which determine a successful advertisement

placement. For example, an ad for sneakers might be

appropriate and e�ective on a page comparing MP

players, because they may share a target audience (e.g.,

joggers) although they arguably refer to di�erent top-

ics, and it is possible they share no common vocabulary.

Conversely, there may be ads that are topically similar

to a Web page, but cannot be placed there because they

are inappropriate. An example might be placing ads for

a product in the page of a competitor.

�e language of advertising is rich and sophisti-

cated and can rely considerably on complex inferential

processes. A picture of a sunset in an ad for life insur-

ance carries a di�erent implication than a picture of

a sunset in an ad for beer. Layout and visual content

are designed to elicit inferences, possibly hinging on

cultural elements; e.g., the age, appearance, and gen-

der of people in an ad a�ect its meaning. Adequate

automatic modeling will likely involve, to a substantial

degree, understanding the language of advertisement

and the inferential processes involved (Vestergaard &

Schroeder, ). Today this seems beyond what tra-

ditional information retrieval systems are designed to

cope with. In addition, the global context can be cap-

tured only partially by modeling the text alone. As the

Web evolves into an immense infrastructure for social

interaction and multimedia information sharing the

need for modeling structured “content” becomes more

and more crucial. �is applies to information retrieval

and speci�cally to advertising. For this reason, the prob-

lem of content match is of particular interest and opens

new problems and opportunities for interdisciplinary

research.

Today, contextual advertising, the most interesting

sub-task from a mining perspective, consists mostly in

selecting ads from a pool to match the textual con-

tent of a particular Web page. Ads provide a limited

amount of text: typically a few keywords, a title, and

brief description. �e ad-placing system needs to iden-

tify relevant ads, from huge ad inventories, quickly

and e�ciently based on this very limited amount of

information. Current approaches have focused on aug-

menting the representation of the page to increase the

chance of a match (Ribeiro-Neto, Cristo, Golgher, and

de Moura, ), or by using machine learning to �nd

complex ranking functions (Lacerda et al., ), or

Text Mining for Advertising T 

T

by reducing the problem of content match to that of

sponsored search by extracting keywords from theWeb

page (Yih et al., ). All these approaches are based

on methods that quantify the similarity between the ad

and the target page on the basis of traditional informa-

tion retrieval notions such as cosine similarity and tf.idf
features. �e relevance of an ad for a page depends on

the number of overlapping words, weighted individu-

ally and independently as a function of their individual

distributional properties in the collection of documents

or ads.

Structure of Learning Problem
�e typical elements of an advertisement are a set of

keywords, a title, a textual description and a hyperlink
pointing to page, the landing page, relative to a product
or service, etc. In addition, an ad has an advertiser id and
can be part of a campaign, i.e., a subset of all the ads with
same advertiser id. �is latter information can be used,

for example, to impose constraints on the number of ads

to display relative to the campaign or advertiser. While

this is possibly the most common layout, it is important

to realize that ads structure can vary signi�cantly and

include relevant audio and visual content.

In general, the learning problem for an ad-placing

system can be formalized as a ranking task. Let A be a
set of ads, P the set of possible pages, and Q the set of
possible queries. In keyword match, the goal is to �nd

a function F : A × Q → R; e.g., a function that counts
the number of individual common terms or n-grams of
such terms. In content match, the objective is to �nd a

function F : A × P → R. �e keyword match prob-
lem is to a certain extent straightforward and amounts

to matching small set of terms de�ned manually by

both the user and the advertiser.�e contentmatch task

shares with the former task the peculiarities of the units

of retrieval (the ads), but introduces new and interest-

ing issues for text mining and learning because of the

more complex conditioning environment, theWeb page

content, which needs to modeled automatically.

In general terms, an ad can be represented as a fea-

ture vector x = Φ(ai, pj) such that ai ∈ A, pj ∈ P ,
and given a d-dimensional feature space X ⊂ Rd,

Φ :A×P →X . In the traditional machine learning set-
ting, one introduces a weight vector α ∈ Rd which

quanti�es each feature’s contribution individually. �e

vector’s weights can be learned from manually edited

rankings (Lacerda et al., ; Ribeiro-Neto et al., )

or from click-through data as in search results optimiza-

tion (Joachims, ). In the case of a linear classi�er the

score of an ad-target page pair xi would be:

F(x; α) =
d

∑
s=

αsxs. ()

Several methods can be used to learn similar or related

models such as perceptron, SVM, boosting, etc. Con-

straints on the number of advertisers or campaigns

could be easily implemented as post-ranking �lters on

the top of the ranked list of ads or included in a suitable

objective function.

A basic model for ranking ads can be de�ned in

the vector space model for information retrieval, using

a ranking function based on cosine similarity, where

ads and target pages are represented as vectors of terms

weighted by �xed schemes such as tf.idf. If only one fea-
ture is used, the cosine based on tf.idf between the ad
and the page, a standard vector space model baseline is

obtained, which is at the base of the ad-placing rank-

ing functions variants proposed by (Ribeiro-Neto et al.,

) Recent work has shown that machine learning-

based models are considerably more accurate than such

baselines. However, as in document retrieval, simple

feature maps which include mostly coarse-grained sta-

tistical properties of the ad-page pairs, such as t�df-
based cosine, are the most desirable for e�ciency and
bias reasons. Properties of the di�erent components of

the ad can be used and weighted in di�erent ways, and

so� or hard constraints introduced to model the pres-

ence of the ads keyword in the Web page. �e design

space for ad-place systems is vast and still little explored.

All systems presented so far in the literaturemake use of

manually annotated data for training and/or evaluating

a model.

Structure of Learning Systems
Web advertising presents peculiar engineering and

modeling challenges and has motivated research in dif-

ferent areas. Systems need to be able to deal in real time

with huge volumes of data and transactions involving

billions of ads, pages, and queries. Hence several engi-

neering constraints need to be taken into account; e�-

ciency and computational costs are crucial factors in the

 T Text Mining for Advertising

choice of matching algorithms (�e Yahoo! Research

Team, ). Ad-placing systems might require new

global architecture design; e.g., Attardi et al. ()

proposed an architecture for information retrieval sys-

tems that need to handle large-scale targeted advertising

based on an information �ltering model. �e ads that

appear on Web pages or search results pages will ulti-

mately be determined taking into account the expected

revenues and the price of the ads. Modeling the microe-

conomics factors of such processes is a complex area of

investigation in itself (Feng et al., ).

Another crucial issue is the evaluation of the

e�ectiveness of the ad-placing systems. Studies have

emphasized the impact of the quality of the match-

ing on the success of the ad in terms of click-through

rates (Gallagher et al., ; Sherman & Deighton,

). Although 7click-through rates (CTRs) provide
a traditional measure of e�ectiveness, it has been found

that ads can be e�ective even when they do not solicit

any conscious response and that the e�ectiveness of the

ad is mainly determined by the level of congruency

between the ad and the context inwhich it appears (Yoo,

).

Keyword Extraction Approaches

Since the query-based ranking problem is better under-

stood than contextual advertising, oneway of approach-

ing the latter would be to represent the content page as

a set of keywords and then ranking the ads based on the

keywords extracted from the content page. Carrasco et

al. () proposed clustering of bi-partite advertiser-

keyword graphs for keyword suggestion and identify-

ing groups of advertisers. Yih, Goodman, & Carvalho

() proposed a system for keyword extraction from

content pages. �e goal is to determine which key-

words, or key phrases, are more relevant in a Web

page. Yih et al. develop a supervised approach to this

task from a corpus of pages where keywords have been

manually identi�ed. �ey show that a model learned

with 7logistic regression outperforms traditional vec-
tor models based on �xed tf.idf weights. �e most use-
ful features to identify good keywords e�ciently are,

in this case, term frequency and document frequency

of the candidate keywords, and particularly the fre-

quency of the candidate keyword in a search engine

query log. Other useful features include the similarity

of the candidate with the page’s URL and the length, in

number of words, of the candidate keyword. In terms

of feature representation thus, they propose a feature

map Φ : A → Q, which represent a Web page as a
set of keywords. �e accuracy of the best learned sys-

tem is .%, in terms of the top predicted keyword

being in the set of manually generated keywords for a

page, against .% of the simpler tf.idf based model.
While this approach is simple to apply, it remains to

be seen how accurate it is at identifying good ads for a

page. It identi�es potentially useful sources of informa-

tion in automatically-generated keywords. An interest-

ing related �nding concerning keywords is that longer

keywords, about four words long, lead to increased

click-through rates (OneUpWeb, ).

The Vocabulary Impedance Problem

(Ribeiro-Neto et al., ) introduced an approach to

content match which focuses on the vocabulary mis-

match problem. �ey notice that there tends to be not

enough overlap in the text of the ad and the target page

to guarantee good accuracy; they call this the vocab-
ulary impedance problem. To overcome this limitation
they propose to generate an augmented representation

of the target page by means of a Bayesian model pre-

viously applied to document retrieval (Ribeiro-Neto &

Muntz, ). �e expanded vector representation of

the target page includes a signi�cant number of addi-

tional words which can potentially match some of the

terms in the ad. �ey �nd that such a model improves

over a standard vector space model baseline, evaluated

by means of -point average precision on a test bed

of  Web pages, from . to .. One possible

shortcoming of such an approach is that generating the

augmented representation involves crawling a signi�-

cant number of additional related pages. It has also been

argued (Yih et al., ) that this model complicates

pricing of the ads because the keywords chosen by the

advertisers might not be present in the content of the

matching page.

Learning with Genetic Programming

Lacerda et al. () proposed to use machine learn-

ing to �nd good ranking functions for contextual

advertising. �ey use the same data-set described

in Ribeiro-Neto et al. (), but use part of the data

for training a model and part for evaluation purposes.

�ey use a genetic programming algorithm to select a

Text Mining for Advertising T 

T

ranking function which maximizes the average preci-

sion on the training data.�e resulting ranking function

is a nonlinear combination of simple components based

on the frequency of ad terms in the target page, doc-

ument frequencies, document length, and size of the

collections. �us, in terms of the feature representa-

tion de�ned earlier, they choose a feature map which

extracts traditional features from the ad-page pair, but

then apply then genetic programmingmethods to select

complex nonlinear combinations of such features that

maximize a �tness function based on average precision.

Lacerda et al. () �nd that the ranking functions

selected in this way are considerablymore accurate than

the baseline proposed in Ribeiro-Neto et al. (); in

particular, the best function selected by genetic pro-

gramming achieves an average precision at position

three of ., against . of the baseline.

Semantic Approaches to Contextual Advertising

�e most common approaches to contextual adver-

tising are based on matching terms between the ad

and the content page. Broder, Fontoura, Josifovski, and

Riedel () notice that this approach (which they call

the “syntactic—” model), can be improved by adopt-

ing a matching model which additionally takes into

account topical proximity; i.e., a “semantic” model. In

their model the target page and the ad are classi�ed

with respect to a taxonomy of topics. �e similarity of

ad and target page estimated by means of the taxon-

omy provides an additional factor in the ads ranking

function.�e taxonomy,which has beenmanually built,

contains approximately , nodes, where each node

represents a set of queries. �e concatenation of all

queries at each node is used as a meta-document, ads

and target pages are associated with a node in the tax-

onomy using a nearest neighbor classi�er and tf .idf
weighting. �e ultimate score of an ad ai for a page
p is a weighted sum of the taxonomy similarity score
and the similarity of ai and p based on standard syn-
tactic measures (vector cosine). On evaluation, Broder

et al. () report a % improvement for mid-range

recalls of the syntactic-semantic model over the pure

syntactic one.

Cross References
7Boosting
7Genetic Programming

7Information Retrieval
7Perceptron
7SVM
7TF–IDF
7Vector Space Model

Recommended Reading
Attardi, G., Esuli, A., & Simi, M. (). Best bets, thousands of

queries in search of a client. In Proceedings of the th inter-
national conference on World Wide Web, alternate track papers
& posters. New York: ACM Press.

Broder, A., Fontoura, M., Josifovski, V., & Riedel, L. (). A

semantic approach to contextual advertising. In Proceedings
of the th annual international ACM SIGIR conference on
research and development in information retrieval. New York:
ACM Press.

Carrasco, J. J., Fain, D., Lang, K., & Zhukov, L. (). Clustering of

bipartite advertiser-keyword graph. In Workshop on clustering
large datasets, IEEE conference on data mining. New York: IEEE
Computer Society Press.

Fain, D., & Pedersen, J. (). Sponsored search: A brief history. In

Proceedings of the nd workshop on sponsored search auctions.
Web Publications.

Feng, J., Bhargava, H., & Pennock, D. (). Implementing spon-

sored search in Web search engines: Computational evalua-

tion of alternative mechanisms. Informs Journal on Computing
(forthcoming).

Gallagher, K., Foster, D., & Parsons, J. (). The medium is not

the message: Advertising effectiveness and content evaluation

in print and on the Web. Journal of Advertising Research, (),
–.

Internet Advertising Bureau (IAB). (). IAB Internet Advertising
Revenue Report. http://www.iab.net/resources/adrevenue/pdf/
IAB_PwC%Q.pdf

Joachims, T. (). Optimizing search engines using clickthrough

data. In Proceedings of the ACM conference on knowledge discov-
ery and data mining (KDD). New York: ACM Press.

Lacerda, A., Cristo, M., Gonçalves, M. A., Fan, W., Ziviani, N., &

Ribeiro-Neto, B. (). Learning to advertise. In Proceed-
ings of the th annual international ACM SIGIR conference
on research and development in information retrieval (pp. –
). New York: ACM Press.

OneUpWeb (). How keyword length affects conversion
rates. http://www.oneupweb.com/landing/keywordstudy_lan

ding.htm.

Ribeiro-Neto, B., Cristo, M., Golgher, P. B., & de Moura, E. S.

(). Impedance coupling in content-targeted advertising. In

Proceedings of the th annual international ACM SIGIR confer-
ence on research and development in information retrieval (pp.
–). New York: ACM Press.

Ribeiro-Neto, B., & Muntz, R. (). A belief network model for

IR. In Proceedings of the th annual international ACM SIGIR
conference on research and development in information retrieval
(pp. –). New York: ACM Press.

http://www,iab.net/resources/adrevenue/pdf/IAB_PwC%202006Q2.pdf
http://www.iab.net/resources/adrevenue/pdf/IAB_PwC%202006Q2.pdf
http://www.oneupweb.com/landing/keywordstudy_landing.htm.
http://www.oneupweb.com/landing/keywordstudy_landing.htm.

 T Text Mining for News and Blogs Analysis

Sherman, L., & Deighton, J. (). Banner advertising: Measuring

effectiveness and optimizing placement. Journal of Interactive
Marketing, (), –.

The Yahoo! Research Team. (). Content, metadata, and behav-

ioral information: Directions for Yahoo! Research. IEEE Data
Engineering Bulletin, (), –.

Vestergaard, T., & Schroeder, T. (). The language of advertising.
Oxford: Blackwell.

Yih, W., Goodman, J., & Carvalho, V. R. (). Finding advertising

keywords on web pages. In Proceedings of the th international
conference on World Wide Web (pp. –). New York: ACM
Press.

Yoo, C. Y. (). Preattentive processing of web advertising. PhD
thesis, University of Texas at Austin.

Text Mining for News and Blogs
Analysis

Bettina Berendt

Katholieke Universiteit Leuven, Heverlee, Belgium

Definition
News and blogs are two types ofmedia that generate and

o�er informational resources. News is any information
whose revelation is anticipated to have an intellectual

or actionable impact on the recipient. �e dominant

type of news in text analysis is that pertaining to cur-

rent events. Originally referring to print-based news

from press agencies or end-user news providers (like

individual newspapers or serials), it now increasingly

refers to Web-based news in the online editions of the

same providers or in online-only news media.�e term

is generally understood to denote only the reports in

news media, not opinion or comment pieces. A blog is
a (more or less) frequently updated publication on the

Web, sorted in (usually reverse) chronological order of

the constituent blog posts. �e content may re�ect any
interest including personal, journalistic, or corporate.

Blogs were originally called weblogs. To avoid confu-

sion with web server log �les that are also known by

this term, the abbreviation “blog”was coined and is now

commonly used.

News and blogs consist of textual and (in some

cases) pictorial content, and, when Web-based, may

contain additional content in any other format (e.g.,

video, audio) and hyperlinks. �ey are indexed by

time and structured into smaller units: news media

into articles, blogs into blog posts. In most news and

blogs, textual content dominates. �erefore, text anal-

ysis is the most o�en applied form of knowledge

discovery. �is comprises tasks and methods from

data/text mining, 7information retrieval, and related
�elds. In accordance with the increasing convergence

of these �elds, this article refers to all of them as 7text
mining.

Motivation and Background
News and blogs are today’s most common sources

for learning about current events and also, in the

case of blogs, for uttering opinions about current

events. In addition, they may deal with topics of

more long-term interest. Both re�ect and form soci-

eties’, groups’ and individuals’ views of the world, fast

or even instantaneous with the events triggering the

reporting.

However, there are di�erences between these two

types of media regarding authoring, content, and form.

News is generally authored by people with journalistic

training who abide by journalistic standards regarding

the style and language of reporting. Topics and ways of

reporting are circumscribed by general societal consen-

sus and the policies of the news provider. In contrast,

everybody with Internet access can start a blog, and

there are no restrictions on content and style (beyond

the applicable types of censorship).�us, blogs o�er end

users a wider range of topics and views on them. On the

one hand, this implies that journalistic blogs, which cor-

respondmost closely to news, are only one type of blogs.

Other frequent types are diary-like personal blogs, cor-

porate blogs for public relations, and blogs focusing on

special-interest topics. On the other hand, their com-

parative lack of restrictions has helped to establish blogs

as an important alternative source of information, as a

form of grassroots journalism that may give rise to a

counterpublic. An example are the warblogs published
during the early years of the Iraq War (+) by inde-
pendent sources (o�en civilian individuals) both in the

West and in the Middle East.

�ese application characteristics lead to various lin-

guistic and computational challenges for text-mining

analyses of news and blogs:

● Indexing, taxonomic categorization, partial redun-
dancy, and data streams: News is indexed by time

Text Mining for News and Blogs Analysis T 

T

and by source (news agency or provider). In a mul-

tisource corpus, many articles published at about

the same time (in the same or in other languages)

describe the same events. Over time, a story may

develop in the articles. Such multiple reporting and

temporal structures are also observed for popular

topics in blogs.

● Language and meaning: News is written in clear,
correct, “objective,” and somewhat schematized lan-

guage. Usually, the start of a news article summarizes

the whole article (feeds are a partial analogue of this

in blogs). Information from external sources such as

press agencies is generally reused rather than refer-

enced. In sum, newsmakes fewer assumptions about

the reader’s background and context knowledge than

many other texts.

● Nonstandard language and subjectivity: �e lan-
guage in blogs ranges from high-quality “news-like”

language through poor-quality, restricted-code lan-

guage with many spelling and grammatical errors

to creative, sometimes literary, language. Jargon is

very common in blogs, and new linguistic develop-

ments are adopted far more quickly than could be

re�ected in external resources such as lexica. Many

blog authors strive not for objectivity, but for subjec-

tivity and emotionality.

● �ematic diversity and new forms of categorization:
News are generally categorized by topic area (“pol-

itics,” “business,” etc.). In contrast, a blog author

may choose to write about di�ering, arbitrary top-

ics. When blogs are labeled, it is usually not with

reference to a stable, taxonomic system, but with an

arbitrary number of tags: free-form, o�en informal
labels chosen by the user.

● Social structure and its impact on content and mean-
ing: �e content of a blog (post) is o�en not con-
tained in the text alone. Rather, blog so�ware

supports “Social Web” behavior, and bloggers prac-

tice it: multiway communication rather than broad-

casting, and semantics-inducing referencing of both

content and people. Speci�cally, hyperlinks to other

resources provide not only context but also content;

“blogrolls” (hyperlinks to other blogs) supply con-

text in terms of other blogs/bloggers recommended

by the author; comments to blog posts are inte-

gral part of the communication that the post trig-

gered. “Trackback” links, indicating hyperlinks set

to the blog, may be automatically added by blog-

ging so�ware and thus, create a dynamic citation

context.

Structure of the Learning System
Tasks

News and blogs may serve many di�erent interests, for

example, those of:

● End users who want to know what is happening in

given universes of discourse, to follow developments

within these areas, or to identify sources that are

of long-term interest to them. �ese users di�er by

their preferences, their educational level, the pur-

poses of their searches, and other factors. �is calls

for search engines, temporal analyses, topic identi�-

cation, personalization, and related functionalities.

● Companies that want to learn about their target

groups’ views and opinions of their products and

activities, detect trends and make predictions. Simi-

lar market research may be carried out by nonpro�t

organizations or politicians.

● People who use blogs to gain insights about spe-

ci�c blog author(s) as background knowledge for

decisions on befriending, hiring, or insuring these

individuals (see Nowson &Oberlander ) on the

textual analysis of blogs for determining personality

features).

�e literature on news and blogs analysis re�ects

these and other possible uses. A number of standard

tasks are emerging, furthered by the competitions

at events such as the Topic Detection and Track-

ing (TDT) research program and workshops (http:

//www.itl.nist.gov/iad/mig/tests/tdt, Allan, ), Text

Retrieval Conference (TREC, http://trec.nist.gov/, e.g.,

MacDonald, Ounis, & Soboro�, ), and Document

Understanding/Text Analysis Conference (DUC/TAC,

http://www.nist.gov/tac/). Other initiatives also provide

and encourage the usage of standardized real-world

7datasets, but instigate research on novel questions
by standardizing neither tasks nor 7algorithm evalua-
tion. Prominent examples are the Reuters- dataset,

which is not only a collection of newswire articles

but also the most classical dataset for text mining in

general (http://kdd.ics.uci/edu/databases/reuters/

reuters.html), and the blog datasets provided by

http://www.itl.nist.gov/iad/mig/tests/tdt
http://www.itl.nist.gov/iad/mig/tests/tdt
http://trec.nist.gov/
http://kdd.ics.uci/edu/databases/reuters21578/reuters21578.html
http://kdd.ics.uci/edu/databases/reuters21578/reuters21578.html
http://www.nist.gov/tac/

 T Text Mining for News and Blogs Analysis

International Conference onWeblogs and Social Media

(ICWSM, http://www.icwsm.org) and its precursors.

Tasks can be grouped by di�erent criteria:

● Use case and type of result: description and predic-
tion (supervised or unsupervised, may include topic

identi�cation, tracking, and/or novelty detection);

search (ad hoc or �ltering); recommendation (of

blogs, blog posts, or tags); summarization

● Higher-order characterization to be extracted: topic;
opinion

● Time dimension: nontemporal; temporal (stream
mining); multiple streams (e.g., in di�erent lan-

guages, see7cross-lingual text mining)
● User adaptation: none (no explicit mention of user
issues and/or general audience); customizable; per-

sonalized

Since the beginning of news mining in the s and of

blogmining in the early s, more complex combina-

tions of these dimensions have been explored. Examples

include (a) the TDT research program (/–

) required an explicit focus on temporal analyses

and called for topic description and prediction in a

news stream; (b) “bursty” topics in a stream of blogs

were used to predict peaks in a stream of online sales

(Gruhl, Guha, Kumar, Novak, & Tomkins, ); (c) the

role of opinion mining as a key question in blog anal-

ysis was manifested by the �rst TREC blog track in

 (see also MacDonald et al., ); it is now a

standard task, also for analysing microblogs (Jansen,

Zhang, Sobel, & Chowdury, ); (d) a recommen-

dation method on a document stream based on track-

ing multiple topics over time, personalized to a user

whose interests may change over time was developed

in (Pon, Cardenas, Buttler, & Critchlow, ); (e) in

(Lu & Zhai, ), opinions were summarized in a set

of non–time-indexed texts, for a general audience; and

(f) in (Subašić & Berendt, ), bursty topics in a news

streamwere summarized into graph patterns that can be

interactively explored and customized.

Another important task is spam detection and

blocking (Kolari, Java, Finin, Oates, & Joshi, ).

While basically nonexistent in news mining (news are

identi�ed by their sources, which are “white-listed” and

thus credible), spamming has become a severe problem

in the blogosphere, ranging from comment spam via

“�ogs” (e.g., ghostwritten by a marketing department

but pretending to be an enduser), to “splogs” (arti�cially

created blogs used to increase the visibility and search

engine rankings of associated sites). (cf. 7text mining
for spam detection).

Solution Approaches

Solution approaches are based on general 7data-
miningmethods and adapted to the conceptual speci�cs

of news and blogs and their mining tasks (see list of

tasks above). Methods include (7document) classi�ca-
tion and7clustering, latent-variable techniques such as
(P)LSA or LDA (cf. 7feature construction), 7mixture
models, 7time series, and 7stream mining methods.
Named-entity recognition may be an important part or

companion of topic detection (cf.7information extrac-
tion). Opinion mining o�en relies on word class iden-

ti�cation and7part-of-speech tagging, and it generally
employs lexica (e.g., of typical opinionated words and

their positive or negative polarity). Data cleaning is

similar to that of other Web documents; in particular,

it requires the provision or learning of wrappers for

removing markup elements.

In addition, many solution approaches exploit the

speci�c formatting and/or linguistic features of blogs.

For example, to improve the retrieval of blogs about

a queried event, the format elements “timestamp” and

“number of comments” can be treated as indicators

of increased topical relevance and likelihood of being

opinionated, respectively (Mishne, ). Structural

elements of blogs such as length and representation in

post title versus post body have been used for blog dis-

tillation (�ltering out those blogs that are principally

devoted to a topic rather than just mentioning it in

passing) (Weerkamp, Balog, & de Rijke, ). Text-

based statistical topic modeling can be enhanced by

7regularizing it with the (e.g., social) network struc-
ture associated with blog data (Mei, Cai, Zhang, & Zhai,

) (cf. 7link mining and link discovery). However,
many blogs are not strongly hyperlinked – but tags also

carry “Social Web” information: A combination of text

clustering and tag analysis can serve to identify topics

as well as the blogs that are on-topic and likely to retain

this focus over time (Hayes, Avesani, & Bojars, ).

Due to blog writing style, standard indicators of rel-

evance may not be applicable. For example, a term’s

http://www.icwsm.org

Text Mining for News and Blogs Analysis T 

T

TF.IDF score, which is commonly used as a7weight in
a 7feature vector representing the document, assumes
that important terms are mentioned (frequently) in the

document and infrequently elsewhere. However, blogs

o�en rely on implicit context – established by hyper-

links or by the history of the discussion. Solution pro-

posals include the integration of the text from previous

blog posts with the same tag (Hayes et al., ); in

addition, terms from hyperlinked documents could be

taken into account. In addition, while blogs may be

more opinionated than news texts, their language may

make it more di�cult to extract topics and argumenta-

tion vis-à-vis that topic. Speci�cally, blogs o�en contain

irony and other indirect uses of language for expressing

appreciation or discontent. �e “emotional charge” of a

text has, therefore, been proposed as a better target for

blog classi�cation (Gamon et al., ).

Viewed in relation to each other, news and blogs

pose some additional challenges for automated anal-

ysis and text mining. Several studies (e.g., Adamic

& Glance ) address questions such as: How are

blogs linked to news media (and possibly vice versa)?

Do they form a coherent whole, “the blogosphere,” or

rather a loose connection of mutually unrelated, polit-

ical, national, linguistic, etc., blogospheres? What are

the topics investigated in blogs versus news? Are sto-

ries reported by news or blogs �rst, and how does the

other side follow up reporting? In general, how do blogs

and news refer to and contextualize each other (e.g.,

Gamon et al. ; Berendt & Trümper ; Leskovec,

Backstrom, & Kleinberg )?

Finally, text mining faces a further challenge: while

news are always meant to be read, many blogs are not

(e.g., because they are a personal journal) – even if they

are accessible over the Web. �is raises the question of

whether text mining could or should become privacy-

aware (cf.7privacy-related aspects and techniques).

Recommended Reading
Adamic, L., & Glance, N. (). The political blogosphere and the

 U.S. election: Divided they blog. In E. Adar, N. Glance, &

M. Hurst (Eds.), Proceedings of the WWW  nd annual
workshop on the weblogging ecosystem: Aggregation, analy-
sis and dynamics. Chiba, Japan. http://doi.acm.org/./
. New York, NY, –.

Allan, J. (Ed.). (). Topic detection and tracking: Event-based
information organization. Norwell, MA: Kluwer Academic Pub-
lishers.

Berendt, B., & Trümper, D. (). Semantics-based analysis

and navigation of heterogeneous text corpora: The Porpoise
news and blogs engine. In I.-H. Ting & H.-J. Wu (Eds.),

Web mining applications in e-commerce and e-services Berlin:
Springer.

Gamon, M., Basu, S., Belenko, D., Fisher, D., Hurst, M., & König,

A. C. (). BLEWS: Using blogs to provide context for

news articles. In E. Adar, M. Hurst, T. Finin, N. Glance,

N. Nicolov, B. Tseng, & F. Salvetti (Eds.), Proceedings of the
second international conference on weblogs and social media
(ICWSM’). Seattle, WA. Menlo Park, CA. http://www.aaai.
org/Papers/ICWSM//ICWSM-.pdf

Gruhl, D., Guha, R., Kumar, R., Novak, J., & Tomkins, A. ().

The predictive power of online chatter. In R. Grossman,

R. J. Bayardo, & K. P. Bennett (Eds.), Proceedings of the th
ACM SIGKDD international conference on knowledge discovery
and data mining. Chicago, IL. New York, NY.

Hayes, C., Avesani, P., & Bojars, U. (). An analysis of bloggers,

topics and tags for a blog recommender system. In B. Berendt,

A. Hotho, D. Mladeniè, & G. Semeraro (Eds.), From web to social
web: Discovering and deploying user and content profiles. LNAI
. Berlin: Springer.

Jansen, B.J., Zhang, M., Sobel, K., & Chowdury, A. (). Twit-

ter Power: Tweets as electronic word of mouth. Journal of the
American Society for Information Science and Technology, ():
–.

Kolari, P., Java, A., Finin, T., Oates, T., & Joshi, A. (). Detecting

spam blogs: A machine learning approach. In Proceedings of the
st national conference on artificial intelligence. Boston: AAAI.

Leskovec, J., Backstrom, L., & Kleinberg, J. (). Meme-tracking

and the dynamics of the news cycle. In J.F. Elder IV, F. Fogelman-

Soulié, P.A. Flach, & M.J. Zaki (Eds.), Proceedings of the th
ACM SIGKDD international conference on knowledge discovery
and data mining, Paris, France. New York, NY.

Lu, Y., & Zhai, C. (). Opinion integration through semi-

supervised topic modeling. In J. Huai & R. Chen (Eds.), Pro-
ceeding of the th international conference on world wide web
(WWW’). Beijing, China. New York, NY.

MacDonald, C., Ounis, I., & Soboroff, I. (). Overview

of the TREC- blog track. In E. M. Voorhees & L.

P. Buckland (Eds.), NIST special publication: SP -:
The sixteenth text REtrieval conference (TREC ) Pro-
ceedings. Gaithersburg, MD. http://trec.nist.gov/pubs/trec/
papers/BLOG.OVERVIEW.pdf

Mei, Q., Cai, D., Zhang, D., & Zhai, C. (). Topic modeling

with network regularization. In J. Huai & R. Chen (Eds.), Pro-
ceeding of the th international conference on world wide web
(WWW’) Beijing, China. New York, NY.

Mishne, G. (). Using blog properties to improve retrieval. In

N. Glance, N. Nicolov, E. Adar, M. Hurst, M. Liberman, &

F. Salvetto (Eds.), Proceedings of the international conference on
weblogs and social media (ICWSM). Boulder, CO. http://www.
icwsm.org/papers/paper.html

Nowson, S., & Oberlander, J. (). Identifying more blog-

gers: Towards large scale personality classification of per-

sonal weblogs. In N. Glance, N. Nicolov, E. Adar, M. Hurst,

M. Liberman, & F. Salvetto (Eds.), Proceedings of the inter-
national conference on weblogs and social media (ICWSM).
Boulder, CO. http://www.icwsm.org/papers/paper.html.

Pon, R. K., Cardenas, A. F., Buttler, D., & Critchlow, T. (). Track-

ing multiple topics for finding interesting articles. In P. Berkhin,

http://doi.acm.org/10.1145/1134271.1134277
http://doi.acm.org/10.1145/1134271.1134277
http://www.aaai.org/Papers/ICWSM/2008/ICWSM08-015.pdf
http://www.aaai.org/Papers/ICWSM/2008/ICWSM08-015.pdf
http://trec.nist.gov/pubs/trec16/papers/BLOG.OVERVIEW16.pdf
http://trec.nist.gov/pubs/trec16/papers/BLOG.OVERVIEW16.pdf
http://www.icwsm.org/papers/paper25.html
http://www.icwsm.org/papers/paper25.html
http://www.icwsm.org/papers/paper4.html.

 T Text Mining for Spam Filtering

R. Caruana, & X. Wu (Eds.), Proceedings of the th ACM
SIGKDD international conference on knowledge discovery and
data mining. San Jose, CA. New York, NY.

Subašić, I., & Berendt, B. (). Web mining for understanding

stories through graph visualisation. In F. Giannotti,

D. Gunopoulos, F. Turini, C. Zaniolo, N. Ramakrishnan, & X.

Wu (Eds.), Proceedings of the IEEE international conference on
data mining (ICDM ). Pisa, Italy. Los Alamitos, CA.

Weerkamp, W., Balog, K., & de Rijke, M. (). Finding key blog-

gers, one post at a time. In M. Ghallab, C. D. Spyropoulos,

N. Fakotakis, & N. Avouris (Eds.), Proceedings of the th Euro-
pean conference on artificial intelligence (ECAI ). Greece:
Patras. Amsterdam, The Netherlands.

Text Mining for Spam Filtering

Aleksander Kołcz

Microso� One Microso� Way,

Redmond, WA, USA

Synonyms
Commerical email �ltering; Junk email �ltering; Spam

detection; Unsolicited commercial email �ltering

Definition
Spam �ltering is the process of detecting unsolicited

commercial email (UCE) messages on behalf of an

individual recipient or a group of recipients. Machine

learning applied to this problem is used to create dis-

criminating models based on labeled and unlabeled

examples of spam and nonspam. Suchmodels can serve

populations of users (e.g., departments, corporations,

ISP customers) or they can be personalized to re�ect

the judgments of an individual. An important aspect of

spam detection is the way in which textual information

contained in email is extracted and used for the purpose

of discrimination.

Motivation and Background
Spam has become the bane of existence for both Inter-

net users and entities providing email services. Time

is lost when si�ing through unwanted messages and

important emails may be lost through omission or acci-

dental deletion. According to various statistics, spam

constitutes the majority of emails sent today and a large

portion of emails actually delivered. �is translates to

large costs related to bandwidth and storage use. Spam

detection systems help to alleviate these issues, but they

may introduce problems of their own, such as more

complex user interfaces, delayed message delivery, and

accidental �ltering of legitimate messages. It is not clear

if any one approach to �ghting spam can lead to its com-

plete eradication and a multitude of approaches have

been proposed and implemented. Among existing tech-

niques are those relying on the use of supervised and

unsupervised machine learning techniques, which aim

to derive a model di�erentiating spam from legitimate

content using textual and nontextual attributes. �ese

methods have become an important component of the

antispam arsenal and draw from the body of related

research such as text classi�cation, fraud detection and

cost-sensitive learning. �e text mining component of

these techniques is of particular prominence given that

email messages are primarily composed of text. Appli-

cation of machine learning and data mining to the

spam domain is challenging, however, due, among oth-

ers, to the adversarial nature of the problem (Dalvi,

Domingos, Sanghai, & Verma, ; Fawcett, ).

Structure of the Learning System
Overview

A machine-learning approach to spam �ltering relies

on the acquisition of a learning sample of email data,

which is then used to induce a classi�cation or scor-

ing model, followed by tuning and setup to satisfy the

desired operating conditions. Domain knowledge may

be injected at various stages into the induction process.

For example, it is common to a priori speci�c features
that are known be highly correlated with the spam label,

e.g., certain patterns contained in email headers or cer-

tain words or phrases. Depending on the application

environment, messages classi�ed as spam are prevented

from being delivered (e.g., are blocked or “bounced”),

or are delivered with a mechanism to alert users to their

likely spam nature. Filter deployment is followed by

continuous evaluation of its performance, o�en accom-

panied by the collection of error feedback from its users.

Data Acquisition

A spam �ltering system relies on the presence of labeled

training data, which are used to induce a model of what

constitutes spam and what is legitimate email. Spam

detection represents a two-class problem, although it

may sometimes be desired to introduce special handling

Text Mining for Spam Filtering T 

T

of messages for which a con�dent decision, either way,

cannot bemade.Depending on the application environ-

ment, the training data may represent emails received

by one individual or a group of users. Ideally, the

data should correspond to a uniform sample acquired

over some period of time preceding �lter deployment.

Typical problems with data collection revolve around

privacy issues, whereby users are unwilling to donate

emails of personal or sensitive nature. Additionally, lab-

eling mistakes are common where legitimate emails

may be erroneously marked as spam or vice versa. Also,

since for certain types of emails, the spam/legitimate

distinction is personal, one may �nd that the same

message content is labeled in a con�icting manner by

di�erent users (or even by the same user at di�erent

times). �erefore, data cleaning and con�ict resolu-

tion techniques may need to be deployed, especially

when building �lters that serve a large and diverse user

population.

Due to privacy concerns, few large publicly email

corpora exist.�eones created for theTRECSpamTrack

(TREC data is available from: http://plg.uwaterloo.ca/~

gvcormac/treccorpus/). stand out in terms of size and

availability of published comparative results.

Content Encoding and Deobfuscation

Spam has been evolving in many ways over the course

of time. Some changes re�ect the shi� in content adver-

tised in such messages (e.g., from pornography and

pharmaceuticals to stock schemes and phish). Others
re�ect the formatting of content. While early spam

was sent in the form of plain text, it subsequently

evolved into more complex HTML, with deliberate

attempts to make extraction of meaningful textual

features as di�cult as possible. Typically, obfusca-

tion (a list of obfuscation techniques is maintained at

http://www.jgc.org/tsc.html) aims at

(a) Altering the text extracted from the message for

words visible to the user (e.g., by breaking up

the characters in message source by HTML tags,

encoding the characters in various ways, using

character look-alikes, wrapping the display of text

using script code executed by the message viewer).

�is tactic is used to hide the message “payload.”

(b) Adding content that is not visible to the user (e.g.,

using the background color or zero-width font to

render certain characters/words). �is tactic typi-

cally attempts to add “legitimate content.”

(c) Purposefulmisspelling of words known to be fairly

incriminating (e.g., Viagra as Vagr@), in a way
that allows the email recipient to still understand

the spammer’s message.

�e line of detection countermeasures aiming at pre-

venting e�ective content extraction continues in the

form of image spam, where the payload message is

encoded in the form of an image that is easily legi-

ble to a human but poses challenges to an automatic

content extraction system. To the extent that rich and

multimedia content gets sent out by legitimate users in

increasing proportions, spammers are likely to use the

complexity of these media to obfuscate their messages

even further.�every fact that obfuscation is attempted,

however, provides an opportunity for machine learn-

ing techniques to use obfuscation presence as a fea-

ture. �us, even if payload content cannot be faithfully

decoded, the very presence of elaborate encoding may

help in identifying spam.

Feature Extraction and Selection

An email message represents a semistructured docu-

ment, commonly following the rfc standard

(www.faqs.org/rfcs/rfc.html). Its header consists of

�elds indicative of formatting, authorship, and delivery

information, while its body contains the actual content

being sent. �ere can be little correctness enforcement

of the header �elds and spamming techniques o�en rely

on spoo�ng and forging of the header data, although

this may provide evidence of tempering. Many early

approaches to detect spam depended predominantly

on hand-cra�ed rules identifying inconsistencies and

peculiarities of spam email headers. Manually or auto-

matically generated header features continue to be rel-

evant even when other features (e.g., message text) are

considered.

Given that an email message tends to be primar-

ily text, features traditionally useful in text categoriza-

tion have also been found useful in spam detection.

�ese include individual words, phrases, character n-

grams, and other textual components (Siefkes, Assis,

Chhabra, & Yerazunis, ). Natural language pro-

cessing (NLP) techniques such as stemming, stop-word

removal, and case folding are also sometimes applied to

http://www.jgc.org/tsc.html
www.faqs.org/rfcs/rfc822.html
http://plg.uwaterloo.ca/~gvcormac/treccorpus/
http://plg.uwaterloo.ca/~gvcormac/treccorpus/

 T Text Mining for Spam Filtering

normalize the features further. Text extraction is o�en

nontrivial due to the application of content obfusca-

tion techniques. For example, standard lexical feature

extractors may need to be strengthened to correctly

identify word boundaries (e.g., in cases where groups

of characters within a word are separated by zero-width

HTML tags).

Extraction of features from nontextual attachments

(e.g., images, audio, and video) is also possible but

tends to be more computationally demanding. Other

types of features capture the way amessage if formatted,

encoded in HTML, composed of multiple parts, etc.

Although nontextual features have di�erent proper-

ties than text, it is common practice to combine them

with textual features and present a single uni�ed rep-

resentation to the classi�er. Indeed, some approaches

make no distinction between text and formatting even

during the process of feature extraction, and apply

pattern discovery techniques to identifying complex

features automatically (Rigoutsos & Huynh, ). �e

advantage of such techniques is that they do not require

rich domain knowledge and can discover new useful

patterns. Due to the large space of possible patterns they

can potentially be computationally expensive. However,

even the seemingly simplistic treatment of an email

message as a plain-text document with “words” delim-

ited by white space o�en leads to very good results.

Even though typical text documents are already very

sparse, the problem is even more pronounced for the

email medium due to frequent misspelling and delib-

erate randomization performed by spammers. Insisting

on using all such variations may lead to over�tting

for some classi�ers, and it leads to large �lter mem-

ory footprints that are undesirable from an operational

standpoint. However, due to the constantly changing

distribution of content, it may be dangerous to rely

on very few features. Traditional approaches to feature

selection based on measures such as Information Gain

have been reported as successful in the spam �ltering

domain, but even simple rudimentary attribute selec-

tion based on removing very rare and/or very frequent

features tends to work well.

�ere are a number of entities that can be extracted

from message text and that tend to be of relevance

in spam detection. Among others, there are telephone

numbers and URLs. In commercial email and in spam,

these provide ameans of ordering products and services

and thus, o�er important information for vendor and

campaign tracking. Detection of signature and mailing

address blocks can also be of interest, even if only to

indicate their presence or absence.

Learning Algorithms

A variety of learning algorithms have been applied in

the spam �ltering domain. �ese range from linear

classi�ers such as Naive Bayes (Metsis, Androutsopou-

los, & Paliouras, ), logistic regression (Goodman&

Yih, ), or linear support vector machines (Drucker,

Wu, & Vapnik, ; Kołcz & Alspector, ; Scul-

ley & Wachman, ) to nonlinear ones such as

boosted decision trees (Carreras & Màrquez, ).

Language modeling and statistical compression tech-

niques have also been found quite e�ective (Bratko,

Cormack, Filipic, Lynam, & Zupan, ). In general,

due to the high dimensionality of the feature space, the

classi�er chosen should be able to handle tens of thou-

sand, ormore, attributeswithout over�tting the training

data.

It is usually required that the learned model pro-

vides a scoring function, such that for email message

x score(x) ∈ R, with higher score values correspond-
ing to higher probability of the message being spam.

�e score function can also be calibrated to represent

the posterior probability P (spam∣x) ∈ [, ], although
accurate calibration is di�cult due to constantly chang-

ing class and content distributions.�e scoring function

is used to establish a decision rule:

score (x) ≥ th→ spam

where the choice of the decision threshold th is driven
by the minimization of the expected cost. In the linear

case, the scoring function takes the form

score(x) = w ⋅ x + b

wherew is the weight vectors, and x is a vector represen-
tation of the message. Sometimes scores are normalized

with a monotonic function, e.g., to give an estimate of

the probability of x being spam.
Linear classi�ers tend to provide su�ciently high

accuracy, which is also consistent with other applica-

tion domains involving the text medium. In particular,

Text Mining for Spam Filtering T 

T

many variants of the relatively simple Naive Bayes clas-

si�er have been found successful in detecting spam,

and Naive Bayes o�en provides a baseline for sys-

tems employingmore complex classi�cation algorithms

(Metsis et al., ).

One Model versus Multiple Models

It o�en pays o� to combine di�erent types of classi�ers

(even di�erent linear ones) in a sequential or parallel

fashion to bene�t from the fact that di�erent classi�ers

may provide an advantage in di�erent regions of the

feature space. Stacking via 7linear regression has been
reported to be e�ective for this purpose (Sakkis et al.,

; Segal, Crawford, Kephart, & Leiba, ). One

can generally distinguish between cases where all clas-

si�ers are induced over the same data and cases where

several di�erent datasets are used. In the former case,

the combination process exploits the biases of di�erent

learning algorithms. In the latter case, one can consider

building amultitude of detectors, each targeting a di�er-

ent subclass of spam (e.g., phish, pharmaceutical spam,

“Nigerian” scams, etc.). Datasets can also be de�ned on

a temporal basis, so that di�erent classi�ers have shorter

or longer memory spans. Other criteria of providing

di�erent datasets are also possible (e.g., based on the

language of the message).

Additional levels of complexity in the classi�er com-

bination process can be introduced by considering

alternative feature representations for each dataset. For

example, a single data collection and a single learning

method can be used to create several di�erent classi�ers,

based upon alternative representations of the same data

(e.g., using just the header features or just the message

text features).

�e method of classi�er combination will necessar-

ily depend on their performance and intended area of

applications. �e combination regimes can range from

simple logical-OR through linear combinations to com-

plex nonlinear rules, either derived automatically to

maximize the desired performance or speci�ed manu-

ally with the guidance of expert domain knowledge.

Off-line Adaptation Versus Online Adaptation

A spam �ltering system can be con�gured to receive

instant feedback from its users, informing it when-

ever certain messages get misdelivered (this necessarily

does not include cases where misclassi�ed legitimate

messages are simply blocked). In the case of online �l-

ters, the feedback informationmay be immediately used

to update the �ltering pro�le. �is allows a �lter to

adjust to the changing distribution of email content and

to detection countermeasures employed by spammers.

Not all classi�ers are easily amenable to the online learn-

ing update, although online versions of well-known

learners such as logistic regression (Goodman & Yih,

) and linear SVMs (Sculley & Wachman, )

have been proposed. �e distinguishing factor is the

amount of the original training data that needs to be

retained in addition to the model itself to perform

future updates. In this respect, Naive Bayes is particu-

larly attractive since it does not require any of the origi-

nal data for adaptation, with the model itself providing

all the necessary information.

One issue with the user feedback signal, however, is

its bias toward current errors of the classi�er, which for

learners depending on the training data being an unbi-

ased sample drawn from the underlying distribution

may lead to overcompensation rather than an improve-

ment in �ltering accuracy. As an alternative, unbiased

feedback can be obtained by either selectively querying

users about the nature of uniformly sampled messages

or by deriving the labels implicitly.

In the case where o�-line adaptation is in use,

the feedback data is collected and saved for later use,

whereby the �ltering models are retrained periodically

or only as needed using the data collected. �e advan-

tage of o�-line adaptation is that it o�ersmore �exibility

in terms of the learning algorithm and its optimization.

In particular, model retraining can take advantage of a

larger quantity of data, and does not have to be con-

strained to be an extension of the current version of the

model. As a result, it is, e.g., possible to rede�ne the fea-

tures fromone version of the spam�lter to the next.One

disadvantage is that model updates are likely to be per-

formed less frequently and may be lagging behind the

most recent spam trends.

User-specific Versus User-independent Spam Detection

What constitutes a spam message tends to be personal,

at least for some types of spam. Various commercial

messages, such as promotions and advertisements, e.g.,

may be distributed in a solicited or unsolicited manner,

and sometimes only the end recipient may be able to

 T Text Mining for Spam Filtering

judge which. In that sense, user-speci�c spam detection

has the potential of being most accurate, since a user’s

own judgments are used to drive the training process.

Since the nonspam content received by any particu-

lar user is likely to be more narrowly distributed when

compared a larger user population, this makes the dis-

crimination problemmuch simpler. Additionally, in the

adversarial context, a spammer should �nd itmore di�-

cult to measure the success of penetrating personalized

�lter defenses, which makes it more di�cult to cra� a

campaign that reaches su�cientlymanymail inboxes to

be pro�table.

One potential disadvantage of such solutions is the

need for acquiring labeled data on a user by user basis,

which may be challenging. For some users historical

data may not yet exist (or has already been destroyed),

for others even if such data exist, labeling may seem too

much of a burden for the users. Aside from the data col-

lection issues, personal spam �ltering faces maintain-

ability issues, as the �lter is inherently controlled by its

user. �is may result in less-than-perfect performance,

e.g., if the user misdirects �lter training.

From the perspective of institutions and email ser-

vice providers, it is o�enmore attractive tomaintain just

one set of spam �lters that service a larger user popula-

tion.�is makes them simpler to operate and maintain,

but their accuracy may depend on the context of any

particular user. �e advantage of centralized �ltering

when serving large user populations is that global trends

can be more readily spotted and any particular user

may be automatically protected against spam, a�ecting

other users. Also, the domain knowledge of the spam-

�ltering analysts can be readily injected into the �ltering

pipeline.

To the extent that a service provider maintains

personal �lters for its population of users, there are

potential large system costs to account for, so that a

complete cost-bene�t analysis needs to be performed to

assess the suitability of such as solution as opposed to

a user-independent �ltering complex. More details on

the nature of such trade-o�s can be found in (Kołcz,

Bond, & Sargent, ).

Clustering and Volumetric Techniques

Content clustering can serve as an important data

understanding technique in spam�ltering. For example,

large clusters can justify the use of specialized classi�ers

and/or the use of cost-sensitive approaches in classi�er

learning and evaluation (e.g., where di�erent costs are

assigned to di�erent groups of content within each class

(Kołcz & Alspector, ).

Both spam and legitimate commercial emails are

o�en sent in large campaigns, where the same or highly

similar content is sent to a large number of recipients,

sometimes over prolonged periods of time. Detection of

email campaigns can therefore play an important role

in spam �ltering. Since individual messages of a cam-

paign are highly similar to one another, this can be

considered a variant of near-replica document detec-

tion (Kołcz, ). It can also be seen as relying on

identi�cation of highly localized spikes in the content

density distribution. As found in (Yoshida et al., ),

density distribution approaches can be highly e�ec-

tive, which is especially attractive given that they do

not require the explicitly labeled training data. Track-

ing of spam campaigns may be made di�cult due to

content randomization, and some research has been

directed at making the detection methods robust in the

presence such countermeasures (Kołcz, ; Kołcz &

Chowdhury, ).

Misclassification Costs and Filter Evaluation

An important aspect of spam �ltering is that the costs

of misclassifying spam as legitimate email are not the

same as the costs of making the opposite mistake. It is

thus commonly assumed that the costs of a false posi-

tive mistake (i.e., a legitimate email being misclassi�ed

as spam) are much higher than the cost of mistak-

ing spam for legitimate email. Given the prevalence of

spam π and the false-spam (FS) and false-legitimate
(FL) rates of the classi�er, themisclassi�cation cost c can
be expressed as

c = CFS ⋅ ( − π) ⋅ FS + CFL ⋅ π ⋅ FL

where CFS and CFL are the costs of making a false-spam
and false-legitimate mistake, respectively (there is no

penalty for making the correct decision). Since actual

values of CFS and CFL are di�cult to quantify, one typ-
ically sees them combined in the form of a ratio, λ =
CFS/CFL, and the overall cost can be expressed as rel-
ative to the cost of a false-legitimate misclassi�cation

e.g.,

Text Mining for Spam Filtering T 

T

crel = λ ⋅ ( − π) ⋅ FS + π ⋅ FL

Practical choices of λ tend to range from  to ,.
Nonuniform misclassi�cation costs can be used dur-

ing the process of model induction or in postprocessing

when setting up the operating parameters of a spam

�lter, e.g., using the receiver operating characteristic

(ROC) analysis.

Since the costs and cost ratios are sometimes hard to

de�ne, some approaches to evaluation favor direct val-

ues of the false-spam and false-legitimate error rates.

�is captures the intuitive requirement that an e�ec-

tive spam �lter should provide high detection rate at

a close-to-zero false-spam rate. Alternatively, threshold

independent metrics such as the area under the ROC

(AUC) can be used (Bratko et al., ; Cormack &

Lynam, ), although other measures have also been

proposed (Sakkis et al., ).

Adaptation to Countermeasures

Spam �ltering is an inherently adversarial task, where

any solution deployed on a large scale is likely to be

met with a response on the part of the spammers. To

that extent that the success of a spam �lter can be pin-

pointed to any particular component (e.g., the type of

features used), that prominent component is likely to

be attacked directly and may become a victim of its

own success. For example, the use of word features

in spam �ltering encourages countermeasures in the

form of deliberate misspellings, word fragmentation,

and “invisible ink” in HTML documents. Also, since

some words are considered by a model inherently more

legitimate than others, “word stu�ng” has been used

to inject large blocks of potentially legitimate vocab-

ulary into an otherwise spammy message in the hope

that this information outweighs the evidence provided

by the spam content (Lowd &Meek, ).

Some authors have attempted to put the adversar-

ial nature of spam �ltering in the formal context of

game theory (Dalvi et al., ). One di�culty of draw-

ing broad conclusion based on such analyses is the

breadth of the potential attack/defense front, of which

only small sections have been successfully captured in

the game-theory formalism.�e research on countering

the countermeasures points at using multiple diverse

�ltering components, normalization of features to keep

them invariant to irrelevant alterations. A key point is

that frequent �lter retraining is likely to help in keeping

up with the shi�s in content distribution, both natural

and due to countermeasures.

Future Directions
Reputation Systems and Social Networks

�ere has been a growing interest in developing reputa-

tion systems capturing the trustworthiness of a sender

with respect to a particular user or group of users.

To this end however, the identity of the sender needs to

be reliably veri�ed, which poses challenges and presents

a target for potential abuses of such systems. Never-

theless, reputation systems are likely to grow in impor-

tance, since they are intuitive from the user perspective

in capturing the communication relationships between

users. Sender reputation can be hard or so�. In the hard

variant, the recipient always accepts or declines mes-

sages from a given sender. In the so� variant, the repu-

tation re�ects the level of trustworthiness of the sender

in the context of the given recipient. When sender

identities resolve to individual email addresses, the rep-

utation system can be learned via analysis of a large

social network that documents who exchanges email

with whom. �e sender identities can also be broader

however, e.g., assigning reputation to a particular mail

server or all mail servers responsible for handling the

outbound tra�c for a particular domain. On the recip-

ient side, reputation can also be understood globally to

represent the trustworthiness of the sender with respect

to all recipients hosted by the system. Many open ques-

tions remain with regard to computing and maintain-

ing reputations as well as using them e�ectively to

improve spam detection. In the context of text mining,

one such question is the extent to which email content

analysis can be used to aid the process of reputation

assessment.

Cross References
7Cost-Sensitive Learning
7Logistic Regression
7Naive Bayes
7Support Vector Machines
7Text Categorization

 T Text Mining for the Semantic Web

Recommended Reading
Bratko, A., Cormack, G. V., Filipic, B., Lynam, T. R., & Zupan, B.

(). Spam filtering using statistical data compression mod-

els. Journal of Machine Learning Research, , –.
Carreras, X., & Màrquez, L. (). Boosting trees for anti-spam

email filtering. In Proceedings of RANLP-, the th interna-
tional conference on recent advances in natural language process-
ing. New York: ACM.

Cormack, G. V., & Lynam, T. R. (). On-line supervised spam

filter evaluation. ACM Transactions on Information Systems,
(), .

Dalvi, N., Domingos, P., Sanghai, M. S., & Verma, D. (). Adver-

sarial classification. In Proceedings of the tenth international
conference on knowledge discovery and data mining (Vol. ,
pp. –). New York: ACM.

Drucker, H., Wu, D., & Vapnik, V. N. (). Support vector

machines for spam categorization. IEEE Transactions on Neural
Networks, (), –.

Fawcett, T. (). In vivo’ spam filtering: A challenge problem for

data mining. KDD Explorations, (), –.
Goodman, J., & Yih, W. (). Online discriminative spam filter

training. In Proceedings of the third conference on email and anti-
spam.Mountain View, CA. (CEAS-).

Kołcz, A. (). Local sparsity control for naive bayes with extreme

misclassification costs. In Proceedings of the eleventh ACM
SIGKDD international conference on knowledge discovery and
data mining. New York: ACM.

Kołcz, A., & Alspector, J. (). SVM-based filtering of e-mail spam
with content-specific misclassification costs. TextDM’ (IEEE
ICDM- workshop on text mining), San Jose, CA.

Kołcz, A., Bond, M., & Sargent, J. (). The challenges of service-

side personalized spam filtering: Scalability and beyond. In

Proceedings of the first international conference on scalable infor-
mation systems (INFOSCALE). New York: ACM.

Kołcz, A. M., & Chowdhury, A. (). Hardening fingerprinting by

context. In Proceedings of the fourth international conference on
email and anti-spam.

Lowd, D., & Meek, C. (). Good word attacks on statistical spam

filters. In Proceedings of the second conference on email and anti-
spam. Mountain View, CA. (CEAS-).

Metsis, V., Androutsopoulos, I., & Paliouras, G. (). Spam filter-

ing with naive bayes - which naive bayes? In Proceedings of the
third conference on email and anti-spam. (CEAS-).

Rigoutsos, I., & Huynh, T. (). Chung-Kwei: a pattern-discovery-

based system for the automatic identification of unsolicited

e-mail messages (SPAM). In Proceedings of the first conference
on email and anti-spam. (CEAS-).

Sahami, M., Dumais, S., Heckerman, D., & Horvitz, E. ().

A Bayesian approach to filtering junk email. AAAI workshop
on learning for text categorization, Madison, Wisconsin. AAAI

Technical Report WS--.

Sakkis, G., Androutsopoulos, I., Paliouras, G., Karkaletsis, V.,

Spyropoulos, C. D., & Stamatopoulos, P. (). Stacking clas-

sifiers for anti-spam filtering of e-mail. In L. Lee & D. Harman

(Eds.). Proceedings of empirical methods in natural language pro-
cessing (EMNLP ) (pp. –). http://www.cs.cornell.edu/
home/llee/emnlp/proceeding.html.

Sculley, D., & Wachman, G. (). Relaxed online support vec-

tor machines for spam filtering. In Proceedings of the th

annual international ACM SIGIR conference on research and
development in information retrieval. New York: ACM.

Segal, R., Crawford, J., Kephart, J., & Leiba, B. (). SpamGuru:

An enterprise anti-spam filtering system. In Proceedings of the
first conference on email and anti-spam. (CEAS-).

Siefkes, C., Assis, F., Chhabra, S., & Yerazunis, W. (). Combining

winnow and orthogonal sparse bigrams for incremental spam

filtering. In Proceedings of the european conference on princi-
ple and practice of knowledge discovery in databases. New York:
Springer.

Yoshida, K., Adachi, F., Washio, T., Motoda, H., Homma, T.,

Nakashima, A., et al. (). Densitiy-based spam detection.

In Proceedings of the tenth ACM SIGKDD international confer-
ence on knowledge discovery and data mining (pp. –).
New York: ACM.

Text Mining for the Semantic Web

Marko Grobelnik, Dunja Mladenić,

Michael Witbrock

Jožef Stefan Institute
Cycorp Inc

Executive Center Drive, Austin, TX, USA

Definition
7Text mining methods allow for the incorporation of
textual data within applications of semantic technolo-

gies on the Web. Application of these techniques is

appropriate when some of the data needed for a Seman-

ticWeb use scenario are in textual form.�e techniques

range from simple processing of text to reducing vocab-

ulary size, through applying shallow natural language

processing to constructing new semantic features or

applying information retrieval to selecting relevant texts

for analysis, through complex methods involving inte-

grated visualization of semantic information, seman-

tic search, semiautomatic ontology construction, and

large-scale reasoning.

Motivation and Background
Semantic Web applications usually involve deep struc-

tured knowledge integrated by means of some kind

of ontology. Text mining methods, on the other hand,

support the discovery of structure in data and e�ec-

tively support semantic technologies on data-driven

tasks such as, (semi)automatic ontology acquisition,

extension, and mapping. Fully automatic text mining

http://www.cs.cornell.edu/home/llee/emnlp/proceeding.html
http://www.cs.cornell.edu/home/llee/emnlp/proceeding.html

Text Mining for the Semantic Web T 

T

approaches are not always themost appropriate because

o�en it is too di�cult or too costly to fully integrate the

available background domain knowledge into a suitable

representation. For such cases semiautomatic methods,

such as7active learning and7semisupervised text pro-
cessing (7Semisupervised Learning), can be applied
to make use of small pieces of human knowledge to

provide guidance toward the desired ontology or other

model. Application of these semiautomated techniques

can reduce the amount of human e�ort required to

produce training data by an order of magnitude while

preserving the quality of results.

To date, Semantic Web applications have typically

been associated with data, such as text documents and

corresponding metadata that have been designed to be

relatively easily manageable by humans. Humans are,

for example, very good at reading and understanding

text and tables. General semantic technologies, on the

other hand, aim more broadly at handling data modal-

ities including multimedia, signals from emplaced or

remote sensors, and the structure and content of com-

munication and transportation graphs and networks.

In handling such multimodal data, much of which is

not readily comprehensible by unaugmented humans,

there must be signi�cant emphasis on fully- or semi-

automatic methods o�ered by knowledge discovery

technologies whose application is not limited to a spe-

ci�c data representation (Grobelnik &Mladenic, ).

Data and the corresponding semantic structures

change over time, and semantic technologies also aim at

adapting the ontologies thatmodel the data accordingly.

For most such scenarios extensive human involvement

in building models and adapting them according to the

data is too costly, too inaccurate, and too slow. Stream

mining (Gaber, Zaslavsky,&Krishnaswamy, ) tech-

niques (7Data Streams: Clustering) allow text mining
of dynamic data (e.g., notably in handling a stream of

news or of public commentary).

Structure of Learning System
Ontology is a fundamental method for organizing

knowledge in a structured way, and is applied, along

with formalized reasoning, in areas from philosophy

to scienti�c discovery to knowledge management and

the Semantic Web. In computer science, an ontology

generally refers to a graph or network structure con-

sisting of a set of concepts (vertices in a graph), a set of

relationships connecting those concepts (directed edges

in a graph) and, possibly, a set of distinguished instance

concepts assigned to particular class concepts (data

records assigned to vertices in a graph). In many cases,

knowledge is structured in this way to allow for auto-

mated inference based on a logical formalism such as

the predicate calculus (Barwise & Etchemendy, );

for these applications, an ontology o�en further com-

prises a set of rules or produces new knowledge within

the representation from existing knowledge. An ontol-

ogy containing instance data and rules is o�en referred

to as a knowledge base (KB) (e.g., Lenat, ).

Machine learning practitioners refer to the task

of constructing these ontologies as ontology learn-
ing. From this point of view, an ontology is seen

a class of models – somewhat more complex than

most used in machine learning – which need to be

expressed in some 7hypothesis language. �is de�ni-
tion of ontology learning (from Grobelnik &Mladenic,

) enables a decomposition into several machine

learning tasks, including learning concepts, identi-

fying relationships between existing concepts, popu-

lating an existing ontology/structure with instances,

identifying change in dynamic ontologies, and induc-

ing rules over concepts, background knowledge, and

instances.

Following this scheme, text mining methods have

been applied to extending existing ontologies based

on Web documents, learning semantic relations from

text based on collocations, semiautomatic data driven

ontology construction based on document clustering

and classi�cation, extracting semantic graphs from

text, transforming text into RDF triples (a commonly

used Semantic Web data representation), and mapping

triplets to semantic classes using several kinds of lexi-

cal and ontological background knowledge. Text min-

ing is also intensively used in the e�ort to produce a

SemanticWeb for annotation of text with concepts from

ontology. For instance, a text document is split into sen-

tences, each sentence is represented as a word-vector,

sentences are clustered, and each cluster is labeled by

the most characteristic words from its sentences and

mapped upon the concepts of a general ontology. Sev-

eral approaches that integrate ontology management,

knowledge discovery, and human language technolo-

gies are described in (Davies, Grobelnik, & Mladenić,

).

 T Text Spatialization

Extending the text mining paradigm, current e�orts

are beginning to aim at giving machines an approxima-

tion of the full human ability to acquire knowledge from

text. Machine reading aims at full text understanding

by integrating knowledge-based construction and use

into syntactically sophisticated natural language analy-

sis, leading to systems that autonomously improve their

ability to extract further knowledge from text (e.g.,

Curtis et al., ; Etzioni, Banko, & Cafarella, ;

Mitchell, ).

Cross References
7Active Learning
7Classi�cation
7Document Clustering
7Semisupervised Learning
7Semisupervised Text Processing
7Text Mining
7Text Visualization

Recommended Reading
Barwise, J., & Etchemendy, J. (). Language proof and logic.

Center for the Study of Language and Information. ISBN,

X.

Buitelaar, P., Cimiano, P., & Magnini, B. (). Ontology learn-
ing from text: Methods, applications and evaluation, frontiers
in artificial intelligence and applications. The Netherlands: IOS
Press.

Curtis, J., Baxter, D., Wagner, P., Cabral, J., Schneider, D., &

Witbrock, M. (). Methods of rule acquisition in the

TextLearner system. In Proceedings of the  AAAI spring
symposium on learning by reading and learning to read
(pp. –). Palo Alto, CA: AAAI Press.

Davies, J., Grobelnik, M., & Mladenić, D. (). Semantic knowl-
edge management. Berlin: Springer.

Etzioni, O., Banko, M., & Cafarella, M. J. (). Machine Read-

ing. In Proceedings of the  AAAI spring symposium on

machine reading.

Gaber, M. M., Zaslavsky, A., & Krishnaswamy, S. ().Mining data

streams: A review. ACM SIGMOD Record, (), –. ISSN:
-

Grobelnik, M., & Mladenic, D. (). Automated knowledge dis-

covery in advanced knowledge management. Journal of Knowl-
edge Management, , –.

Lenat, D. B. (). Cyc: A large-scale investment in knowl-

edge infrastructure. Communications of the ACM, (),
–.

Mitchell, T. (). Reading the web: A breakthrough goal for AI.

celebrating twenty-five years of AAAI: Notes from the AAAI-

and IAAI- conferences. AI Magazine, (), –.

Text Spatialization

7Text Visualization

Text Visualization

John Risch, Shawn Bohn, Steve Poteet,

Anne Kao, Lesley Quach, Jason Wu

Paci�c Northwest National Laboratory
Boeing PhantomWorks, Seattle, WA, USA

Synonyms
Semantic mapping; Text spatialization; Topic mapping

Definition
�e term text visualization describes a class of knowl-
edge discovery techniques that use interactive graphi-

cal representations of textual data to enable knowledge

discovery via recruitment of human visual pattern

recognition and spatial reasoning capabilities. It is

a subclass of information visualization, which more
generally encompasses visualization of nonphysically

based (or “abstract”) data of all types. Text visualiza-

tion is distinguished by its focus on the unstructured

(or free text) component of information.While the term
“text visualization” has been used to describe a vari-

ety of graphical methods for deriving knowledge from

text, it is most closely associated with techniques for

depicting the semantic characteristics of large docu-

ment collections. Text visualization systems commonly

employ unsupervised machine learning techniques as

part of broader strategies for organizing and graphically

representing such collections.

Motivation and Background
�e Internet enables universal access to vast quantities

of information,most ofwhich (despite admirable e�orts

(Berners-Lee, Hendler, & Lassila, )) exists in the

form of unstructured and unorganized text. Advance-

ments in search technology make it possible to retrieve

large quantities of this information with reasonable

precision; however, only a tiny fraction of the infor-

mation available on any given topic can be e�ectively

exploited.

Text Visualization T 

T

Text visualization technologies, as forms of

computer-supported knowledge discovery, aim to

improve our ability to understand and utilize the wealth

of text-based information available to us. While the

term “text visualization” has been used to describe

a variety of techniques for graphically depicting the

characteristics of free-text data (Havre, Hetzler, Whit-

ney, & Nowell, ; Small, ), it is most closely

associated with the so-called semantic clustering or
semantic mapping techniques (Chalmers & Chitson,
; Kohonen et al., ; Lin, Soergel, & Marchion-

ini, ; Wise et al., ). �ese methods attempt to

generate summary representations of document col-

lections that convey information about their general

topical content and similarity structure, facilitating gen-

eral domain understanding and analytical reasoning

processes.

Text visualization methods are generally based on

vector-space models of text collections (Salton, ),

which are commonly used in information retrieval,

clustering, and categorization. Such models repre-

sent the text content of individual documents in the

form of vectors of frequencies of the terms (text fea-
tures) they contain. A document collection is therefore
represented as a collection of vectors. Because the num-

ber of unique terms present in a document collec-

tion generally is in the range of tens of thousands, a

dimensionality reductionmethod such as singular value

decomposition (SVD) (Deerwester, Dumais, Furnas,

Landauer, & Harshman, ) or other matrix decom-

position method (Kao, Poteet, Ferng, Wu, & Quach,

; Booker et al., ) is typically used to eliminate

noise terms and reduce the length of the document vec-

tors to a tractable size (e.g., – dimensions). Some

systems attempt to �rst identify discriminating features

in the text and then use mutual probabilities to spec-

ify the vector space (York, Bohn, Pennock, & Lantrip,

).

To enable visualization, the dimensionsmust be fur-

ther reduced to two or three. �e goal is a graphical

representation that employs a “spatial proximity means

conceptual similarity”metaphorwhere topically similar

text documents are represented as nearby points in the

display. Various regions of the semantic map are subse-

quently labeled with descriptive terms that convey the

primary concepts described by nearby documents. �e

text visualization can thus serve as a kind of graphical

“table of contents” depicting the conceptual similarity

structure of the collection.

Text visualization systems therefore typically imple-

ment four key functional components, namely,

. A tokenization component that characterizes the
lexical content of text units via extraction, normal-

ization, and selection of key terms

. A vector-space modeling component that generates
a computationally tractable vector space represen-

tation of a collection of text units

. A spatialization component that uses the vector
space model to generate a D or D spatial con�g-

uration that places the points representing concep-

tually similar text units in near spatial proximity

. A labeling component that assigns characteristic
text labels to various regions of the semantic map

Although machine learning techniques can be used in

several of these steps, their primary usage is in the spa-

tialization stage. An unsupervised learning algorithm

is typically used to �nd meaningful low-dimensional

structures hidden in high-dimensional document fea-

ture spaces.

Structure of Learning System
Spatialization is a termgenerically used in7information
visualization to describe the process of generating a

spatial representation of inherently nonspatial infor-

mation. In the context of text visualization, this term

generally refers to the application of a nonlinear dimen-

sionality reduction algorithm to a collection of text

vectors in order to generate a visually interpretable two-

or three-dimensional representation of the similarity

structure of the collection. �e goal is the creation of a

semantic similaritymap that positions graphical features
representing text units (e.g., documents) conceptually

similar to one another near one another in the visual-

ization display.�esemapsmay be further abstracted to

produce more general summary representations of text

collections that do not explicitly depict the individual

text units themselves (Wise et al., ).

A key assumption in text visualization is that text

units which express similar concepts will employ sim-

ilar word patterns, and that the existence of these

 T Text Visualization

word correlations creates coherent structures in high-

dimensional text feature spaces. A further assumption

is that text feature spaces are nonlinear, but that their

structural characteristics can be approximated by a

smoothly varying low-dimensional manifold. �e text

spatialization problem thus becomes one of �nding an

embedding of the feature vectors in a two- or three-

dimensionalmanifold that best approximates this struc-

ture. Because the intrinsic dimensionality of the data is

invariably much larger than two (or three), signi�cant

distortion is unavoidable. However, because the goal of

text visualization is not necessarily the development of

an accurate representation of interdocument similari-

ties, but rather the depiction of broad (and ambigu-

ously de�ned) semantic relationships, this distortion is

generally considered acceptable.

Text vector spatialization therefore involves the �t-

ting of a model into a collection of observations.

Most text visualization systems developed to date have

employed some type of unsupervised learning algo-

rithm for this purpose. In general, the desired character-

istics of an algorithm used for text spatialization include

that it () preserves global properties of the input space,

() preserves the pairwise input distances to the greatest

extent possible, () supports out-of-sample extension

(i.e., the incremental addition of new documents), and

() has low computational and memory complexity.

Computational and memory costs are key considera-

tions, as a primary goal of text visualization is the man-

agement and interpretation of extremely large quanti-

ties of textual information.

A leading approach is to iteratively adapt the nodes

of a �xed topology mesh to the high-dimensional fea-

ture space via adaptive re�nement. �is is the basis of

the well-known Kohonen feature mapping algorithm,

more commonly referred to as the 7self-organizing
map (SOM) (Kohonen, ). In a competitive learn-

ing process, text vectors are presented one at a time to

a (typically triangular) grid, the nodes of which have

been randomly initialized to points in the term space.

�e Euclidean distance to each node is computed, and

the node closest to the sample is identi�ed. �e posi-

tion of the winning node, along with those of it’s topo-

logically nearest neighbors, is incrementally adjusted

toward the sample vector. �e magnitude of the adjust-

ments is gradually decreased over time. �e process

is generally repeated using every vector in the set for

many hundreds or thousands of cycles until the mesh

converges on a solution. At the conclusion, the sam-

ples are assigned to their nearest nodes, and the results

are presented as a uniform grid. In the �nal step, the

nodes of the grid are labeledwith summary termswhich

describe the key concepts associated with the text units

that have been assigned to them.

Although self-organizing maps can be considered

primarily a clustering technique, the grid itself theoret-

ically preserves the topological properties of the input

feature space. As a consequence, samples that are near-

est neighbors in the feature space generally end up in

topologically adjacent nodes. However, while SOMs are

topology-preserving, they are not distance-preserving.

Vectors that are spatially distant in the input space

may be presented as proximal in the output, which

may be semantically undesirable. SOMs have a num-

ber of attractive characteristics, including straightfor-

ward out-of-sample extension and low computational

and memory complexity. Examples of the use of SOMs

in text visualization applications can be found in (Lin

et al., ; Kaski, Honkela, Lagus, & Kohonen, ;

Kohonen et al., ).

O�en, it is considered desirable to attempt to pre-

serve the distances among the samples in the input

space to the greatest extent possible in the output. �e

rationale is that the spatial proximities of the text vectors

capture important and meaningful characteristics of

the associated text units: spatial “nearness” corresponds

to conceptual “nearness.” As a consequence, many

text visualization systems employ distance-preserving

dimensionality reduction algorithms. By far the most

commonly used among these is the class of algo-

rithms known as multidimensional scaling (MDS)
algorithms.

Multidimensional scaling is “a term used to describe

any procedure which starts with the ‘distances’ between

a set of points (or individuals or objects) and �nds

a con�guration of the points, preferably in a smaller

number of dimensions, usually  or ” ((Chat�eld &

Collins, ), quoted in Chalmers & Chitson, ).

�ere are two main subclasses of MDS algorithms.

Metric (quantitative, also known as classical) MDS

algorithms attempt to preserve the pairwise input dis-

tances to the greatest extent possible in the output

Text Visualization T 

T

con�guration, while nonmetric (qualitative) techniques

attempt only to preserve the rank order of the distances.

Metric techniques aremost commonly employed in text

visualization.

Metric MDS maps the points in the input space to

the output space while maintaining the pairwise dis-

tances among the points to the greatest extent possi-

ble. �e quality of the mapping is expressed in a stress

function which is minimized using any of a variety

of optimization methods, e.g., via eigen decomposi-

tion of a pairwise dissimilarity matrix, or using itera-

tive techniques such as generalized Newton–Raphson,

simulated annealing, or genetic algorithms. A simple

example of a stress function is the raw stress function

(Kruskal, ) de�ned by

ϕ(Y) = ∑
ij

(∣∣xi − xj∣∣ − ∣∣yi − yj∣∣)

in which ∣∣xi − xj∣∣ is the Euclidean distance between
points xi and xj in the high-dimensional space, and ∣∣yi−
yj∣∣ is the distance between the corresponding points in
the output space. A variety of alternative stress func-

tions have been proposed (Cox & Cox, ). In addi-

tion to its distance-preserving characteristics, MDS has

the added advantage of preserving the global proper-

ties of the input space. A major disadvantage of MDS,

however, is its high computational complexity, which is

approximately O(kN), where N is the number of data
points and k is the dimensionality of the embedding.
Although computationally expensive, MDS can be used

practically on data sets of up to several hundred docu-

ments in size. Another disadvantage is that out-of-core

extension requires reprocessing of the full data set if

an optimization method which computes the output

coordinates all at once is used.

�epopularity ofMDSmethods has led to the devel-

opment of a range of strategies for improving on its

computational e�ciency to enable scaling of the tech-

nique to text collections of larger size. One approach

is to use either cluster centroids or a randomly sam-

pled subset of input vectors as surrogates for the full

set. �e surrogates are down-projected independently

using MDS, then the remainder of the data is pro-

jected relative to this “framework” using a less expensive

algorithm, e.g., distance-based triangulation.�is is the

basis for the anchored least stress algorithm used in the

SPIRE text visualization system (York et al., ), as

well as themore recently developed LandmarkMDS (de

Silva & Tenenbaum, ) algorithm.

While self-organizing maps and multidimensional

scaling techniques have received the most attention to

date, a number of other machine learning techniques

have also been used for text spatialization.�e Starlight

system (Risch et al., ) uses stochastic proximity
embedding (Agra�otis, ), a high-speed nonlinear
manifold learning algorithm. Other approaches have

employed methods based on graph layout techniques

(Fabrikant, ). Generally speaking, any of a num-

ber of techniques for performing dimensionality reduc-

tion in a correlated system of measurements (classi�ed

under the rubric of factor analysis in statistics) may be

employed for this purpose.

Machine learning algorithms can also be used in

text visualization for tasks other than text vector spa-

tialization. For example, generation of descriptive labels

for semantic maps requires partitioning of the text

units into related sets. Typically, a partitioning-type

7clustering algorithm such as K-means is used for

this purpose (see 7Partitional Clustering), either as an
element of the spatialization strategy (see York et al.,

), or as a postspatialization step. �e labeling pro-

cess itself may also employ machine learning algo-

rithms. For instance, the TRUST system (Booker et al.,

; Kao et al., ) employed by Starlight gener-

ates meaningful labels for document clusters using a

kind of 7unsupervised learning. By projecting a clus-
ter centroid de�ned in the reduced dimensional repre-

sentation (e.g., – dimensions) back into the full

term space, terms related to the content of the docu-

ments in the cluster are identi�ed and used as sum-

mary terms. Machine learning techniques can also be

applied indirectly during the tokenization phase of text

visualization. For example, information extraction sys-

tems commonly employ rule sets that have been gen-

erated by a supervised learning algorithm (Mooney &

Bunescu, ). Such systems may be used to iden-

tify tokens that are most characteristic of the over-

all topic of a text unit, or are otherwise of interest

(e.g., the names of people or places). In this way, the

dimensionality of the input space can be drastically

reduced, accelerating downstream processing while

 T Text Visualization

simultaneously improving the quality of the resulting

visualizations.

Applications

Sammon

�e �rst text visualization system based on a text vec-

tor space model was likely a prototype developed in

the s by John Sammon’s “nonlinear mapping,” or

NLM, algorithm (today referred to as organizing text
data). �e con�guration depicted here is the result of

applying Sammon’s algorithm to a collection of  doc-

uments represented as -dimensional vectors deter-

mined according to document relevance to , key

words and phrases. Among other interesting and pre-

scient ideas, Sammon describes techniques for interact-

ing with text visualizations depicted on a “CRT display”

using a light pen (Fig. ).

Lin

Lin’s  prototype (Lin et al., ) was one of the �rst

to demonstrate the use of self-organizingmaps for orga-

nizing text documents. Lin formed a -dimensional

vector space model of a  document collection using

 key index terms extracted from the text. �e doc-

ument vectors were used to train a  node feature

map, generating the result shown here (the fact that the

Text Visualization. Figure .

number of nodes matches the number of documents is

coincidental). Lin was also among the �rst to assign text

labels to various regions of the resultingmap to improve

the interpretability and utility of the resulting product

(Fig. ).

BEAD

�e BEAD system (Chalmers & Chitson, ) was a

text visualization prototype developed during the early

s at Rank Xerox EuroPARC. BEAD employed a

vector space model constructed using document key-

words and a hybrid MDS algorithm based on an opti-

mized form of simulated annealing. Although it did not

include a region labeling component, BEAD did sup-

port highlighting of visualization features in response to

query operations, a now standard text visualization sys-

tem feature.�eBEADproject also pioneered a number

of now common interaction techniques, andwas among

the �rst to explore D representations of document

collections (Fig. ).

IN-SPIRE

IN-SPIRE (formerly SPIRE, Spatial Paradigm for Infor-

mation Retrieval and Exploration) (Wise et al., ),

was originally developed in  at Paci�c North-

west National Laboratory (PNNL). Over the years, IN-

SPIRE has evolved from usingMDS, to Anchored Least

Stress, to a hybrid clustering/PCA projection scheme.

�e SPIRE/IN-SPIRE system introduced several new

concepts, including the use of a D “landscape” abstrac-

tion (called a �emeView) for depicting the general
characteristics of large text collections. A recently devel-

oped parallelized version of the so�ware is capable of

Text Visualization. Figure .

Text Visualization T 

T

generating visualizations of document collections con-

taining millions of items (Fig. ).

WEBSOM

WEBSOM (Kaski et al., ) was another early appli-

cation of Kohonnen self-organizing maps to text data.

Early versions of WEBSOM used an independent SOM

to generate reduced dimensionality text vectors which

were then mapped with a second SOM for visualiza-

tion purposes. More recent SOM-based text visualiza-

tion experiments have employed vectors constructed

via random projections of weighted word histograms

(Kohonen et al., ). SOMs have been used to gen-

erate semantic maps containing millions of documents

(Fig. ).

Text Visualization. Figure .

Text Visualization. Figure .

Starlight

Starlight (Risch et al., ) is a general-purpose infor-

mation visualization system developed at PNNL that

includes a text visualization component. Starlight’s text

visualization system uses the Boeing Text Represen-
tation Using Subspace Transformation (TRUST) text
engine for vector space modeling and text summariza-

tion. Text vectors generated by TRUST are clustered,

and the cluster centroids are down-projected to D and

Dusing a nonlinearmanifold learning algorithm. Indi-

vidual document vectors associated with each cluster

are likewise projected within a local coordinate system

established at the projected coordinates of their asso-

ciated cluster centroid, and TRUST is used to generate

topical labels for each cluster. Starlight is unique in that

Text Visualization. Figure .

Text Visualization. Figure .

 T TF–IDF

it couples text visualization with a range of other infor-

mation visualization techniques (such as link displays)

to depict multiple aspects of information simultane-

ously (Fig. ).

Cross References
7Dimensionality Reduction
7Document Classi�cation/Clustering
7Feature Selection/Construction
7Information Extraction/Visualization
7Self-Organizing Maps
7Text Preprocessing

Recommended Reading
Agrafiotis, D. K. (). Stochastic proximity embedding. Journal of

Computational Chemistry, (), –.
Berners-Lee, T., Hendler, J., & Lassila, O. (). The semantic web.

Scientific American, (), –.
Booker, A., Condliff, M., Greaves, M., Holt, F. B., Kao, A.,

Pierce, D. J., et al. (). Visualizing text data sets. Computing
in Science & Engineering, (), –.

Chalmers, M., & Chitson, P. (). Bead: Explorations in informa-

tion visualization. In SIGIR ’: Proceedings of the th annual
international ACM SIGIR conference on research and develop-
ment in information retrieval (pp. –). New York: ACM.

Chatfield, C., & Collins, A. (). Introduction to multivariate
analysis. London: Chapman & Hall.

Cox, M. F., & Cox, M. A. A. (). Multidimensional scaling.
London: Chapman & Hall.

Crouch, D. (). The visual display of information in an informa-

tion retrieval environment. In Proceedings of the ACM SIGIR
conference on research and development in information retrieval
(pp. –). New York: ACM.

Deerwester, S., Dumais, S., Furnas, G., Landauer, T., &

Harshman, R. (). Indexing by latent semantic analy-

sis. Journal of American Society for Information Science, (),
–.

de Silva, V., & Tenenbaum, J. B. (). Global versus local meth-

ods in nonlinear dimensionality reduction. In S. Becker, S.

Thrun, & K. Obermayer (Eds.), Proceedings of the NIPS (Vol. ,
pp. –).

Doyle, L. (). Semantic roadmaps for literature searchers. Journal
of the Association for Computing Machinery, (), –.

Fabrikant, S. I. (). Visualizing region and scale in information

spaces. In Proceedings of the th international cartographic
conference, ICC  (pp. –). Beijing, China.

Havre, S., Hetzler, E., Whitney, P., & Nowell, L. (). ThemeRiver:

Visualizing thematic changes in large document collections.

IEEE Transactions on Visualization and Computer Graphics,
(), –.

Huang, S., Ward, M., & Rundensteiner, E. (). Exploration
of dimensionality reduction for text visualization (Tech. Rep.
TR--). Worcester, MA: Worcester Polytechnic Institute,

Department of Computer Science.

Kao, A., Poteet, S., Ferng, W., Wu, J., & Quach, L. (). Latent

semantic indexing and beyond, to appear. In M. Song &

Y. F. Wu (Eds.), Handbook of research on text and web mining
technologies. Hershey, PA: Idea Group Inc.

Kaski, S., Honkela, T., Lagus, K., & Kohonen, T. (). WEBSOM-

self-organizing maps of document collections. Neurocomput-
ing, , –.

Kohonen, T. (). Self-organizing maps. Series in information sci-
ences (nd ed., Vol. ). Heidelberg: Springer.

Kohonen, T., Kaski, S., Lagus, K., Salojärvi, J., Honkela, J.,

Paatero, V., et al. (). Self organization of a massive doc-

ument collection. IEEE Transactions on Neural Networks, (),
–.

Kruskal, J. B. (). Multidimensional scaling by optimizing good-

ness of fit to a nonmetric hypothesis. Psychometrika, (),
–.

Lin, X., Soergel, D., & Marchionini, D. A. (). Self-organizing

semantic map for information retrieval. In Proceedings
of the fourteenth annual international ACM/SIGIR confer-
ence on research and development in information retrieval
(pp. –). Chicago.

Mooney, R. J., & Bunescu, R. (). Mining knowledge from text

using information extraction. In K. Kao & S. Poteet (Eds.),

SigKDD explorations (pp. –).
Paulovich, F. V., Nonato, L. G., & Minghim, R. (). Visual map-

ping of text collections through a fast high precision projection

technique. In Proceedings of the tenth international conference
on information visualisation (IV’) (pp. –).

Risch, J. S., Rex, D. B., Dowson, S. T., Walters, T. B., May, R. A., &

Moon, B. D. (). The STARLIGHT information visualiza-

tion system. In S. Card, J. Mackinlay, & B. Shneiderman (Eds.),

Readings in information visualization: Using vision to think
(pp. –). San Francisco: Morgan Kaufmann.

Salton, G. (). Automatic text processing. Reading, MA: Addison-
Wesley.

Sammon, J. W. (). A nonlinear mapping for data structure

analysis. IEEE Transactions on Computer, (), –.
Small, D. (). Navigating large bodies of text. IBM Systems

Journal, (&), –.
Wise, J. A., Thomas, J. J., Pennock, K., Lantrip, D., Pottier, M.,

Schur, A., et al. (). Visualizing the non-visual: Spatial anal-

ysis and interaction with information from text documents. In

Proceedings of the IEEE information visualization symposium ’
(pp. –). Atlanta, GA.

York, J., Bohn, S., Pennock, K., & Lantrip, D. (). Clustering

and dimensionality reduction in SPIRE. In Proceedings, sympo-
sium on advanced information processing and analysis, AIPA.
Tysons Corner, VA.

TF–IDF

TF–IDF (term frequency–inverse document frequency) is
a term weighting scheme commonly used to represent

textual documents as vectors (for purposes of classi�-

cation, clustering, visualization, retrieval, etc.). Let T =
{t,…, tn} be the set of all terms occurring in the doc-
ument corpus under consideration. �en a document

Time Series T 

T

di is represented by a n-dimensional real-valued vector
xi = (xi,…, xin)with one component for each possible
term from T.

�e weight xij corresponding to term tj in docu-
ment di is usually a product of three parts: one which
depends on the presence or frequency of tj in di, one
which depends on tj’s presence in the corpus as a whole,
and a normalization part which depends on dj. �e
most common TF–IDF weighting is de�ned by xij =
TFi ⋅ IDFj ⋅ (∑j (TFijIDFj))−/, where TFij is the term
frequency (i.e., number of occurrences) of tj in di, and
IDFj is the IDF of tj, de�ned as log(N/DFj), where N
is the number of documents in the corpus and DFj

is the document frequency of tj (i.e., the number of
documents in which tj occurs). �e normalization part
ensures that the vector has a Euclidean length of .

Several variations on this weighting scheme are

also known. Possible alternatives for TFij include min

{, TFij} (to obtain binary vectors) and ( + TFij/maxj
TFij)/ (to normalize TF within the document).
Possible alternatives for IDFj include  (to obtain

plain TF vectors instead of TF–IDF vectors) and log

(∑i∑k TFik/∑i TFij). �e normalization part can be
omitted altogether or modi�ed to use some other norm

than the Euclidean one.

Threshold Phenomena in Learning

7Phase Transitions in Machine Learning

Time Sequence

7Time Series

Time Series

Eamonn Keogh

University of California

Riverside, CA, USA

Synonyms
Temporal data; Time sequence; Trajectory data

Definition
A Time Series is a sequence T = (t, t,…,tn)which is an
ordered set of n real-valued numbers. �e ordering is
typically temporal; however, other kinds of data such

as color distributions (Hafner, Sawhney, Equitz, Flick-

ner, & Niblack, ), shapes (Ueno, Xi, Keogh, &

Lee, ), and spectrographs also have a well-de�ned

ordering and can be fruitfully considered “time series”

for the purposes of machine learning algorithms.

Motivation and Background
�e special structure of time series produces unique

challenges for machine learning researchers.

It is o�en the case that each individual time series

object has a very high dimensionality. Whereas classic

algorithms o�en assume a relatively low dimensional-

ity (for example, a few dozen measurements such as

“height, weight, blood sugar,” etc.), time series learning

algorithms must be able to deal with dimensionalities

in hundreds or thousands. �e problems created by

high-dimensional data are more than mere computa-

tion time considerations; the very meaning of normally

intuitive terms, such as “similar to” and “cluster form-

ing,” become unclear in high-dimensional space. �e

reason for this is that as dimensionality increases, all

objects become essentially equidistant to each other

and thus classi�cation and clustering lose their mean-

ing. �is surprising result is known as the 7curse of
dimensionality and has been the subject of extensive
research. �e key insight that allows meaningful time

series machine learning is that although the actual

dimensionality may be high, the intrinsic dimension-
ality is typically much lower. For this reason, virtually

all time series data mining algorithms avoid operat-

ing on the original “raw” data; instead, they consider

some higher level representation or abstraction of the

data. Such algorithms are known as 7dimensionality
reduction algorithms. �ere are many general dimen-
sionality reduction algorithms, such as singular value

decomposition and random projections, in addition

to many reduction algorithms speci�cally designed for

time series, including piecewise liner approximations,

Fourier transforms, wavelets, and symbol approxima-

tions (Ding, Trajcevski, Scheuermann,Wang, & Keogh,

).

In addition to the high dimensionality of individual

time series objects, many time series datasets have very

 T Topic Mapping

high numerosity, resulting in a large volume of data.

One implication of high numerosity combined with the

high dimensionality of this is that the entire dataset

may not �t in main memory. �is requires an e�cient

disk-aware learning algorithm or a careful sampling
approach.

A �nal consideration due to the special nature

of time series is the fact that individual datapoints

are typically highly correlated with their neighbors

(a phenomenon known as autocorrelation). Indeed, it
is this correlation that makes most time series excellent

candidates for dimensionality reduction. However, for

learning algorithms that assume the independence of

features (i.e., 7Naïve Bayes), this lack of independence
must be countered or mitigated in some way.

While virtually every machine learning method has

been used to classify time series, the current state-of-

the-artmethod is the nearest neighbor algorithm (Ueno

et al., ) with a suitable distance measure (Ding

et al., ). �is simple method outperforms neutral

networks and Bayesian classi�ers.

�e major database (SIGMOD, VLDB, PODS) and

data mining (SIGKDD, ICDM, SDM) conferences

typically feature several time series machine learn-

ing/data mining papers each year. In addition, because

of the ubiquity of time series, several other commu-

nities have active subgroups that conduct research on

time series; for example, the SIGGRAPH conference

typically has papers on learning or indexing or motion

capture time series, and most medical conferences have

tracks devoted to medical time series, such as electro-

cardiograms and electroencephalograms.

�e UCR Time Series Archive has several dozen

time series datasets which are widely used to test clas-

si�cation and clustering algorithms, and the UCI Data

Mining archive has several additional datasets.

Recommended Reading
Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., & Keogh, E.

A. (). Querying and mining of time series data: Experi-

mental comparison of representations and distance measures.

In Proceeding of the VLDB. VLDB Endowment.
Hafner, J., Sawhney, H., Equitz, W., Flickner, M., & Niblack, W.

(). Efficient color histogram indexing for quadratic form

distance functions. IEEE Transactions on Pattern Analysis and
Machine Intelligence, (), –.

Ueno, K., Xi, X., Keogh, E., & Lee, D. (). Anytime classi-

fication using the nearest neighbor algorithm with applica-

tions to stream mining. In Proceedings of IEEE international

conference on data mining (ICDM).

Topic Mapping

7Text Visualization

Topology of a Neural Network

Risto Miikkulainen

�e University of Texas at Austin

Austin, TX, USA

Synonyms
Connectivity; Neural network architecture; Structure

Definition
Topology of a neural network refers to the way the

7Neurons are connected, and it is an important fac-
tor in network functioning and learning. A com-

mon topology in unsupervised learning is a direct

mapping of inputs to a collection of units that rep-

resents categories (e.g., 7Self-organizing maps). �e
most common topology in supervised learning is the

fully connected, three-layer, feedforward network (see

7Backpropagation, Radial Basis Function Networks).
All input values to the network are connected to all

neurons in the hidden layer (hidden because they are

not visible in the input or the output), the outputs of

the hidden neurons are connected to all neurons in the

output layer, and the activations of the output neurons

constitute the output of the whole network. Such net-

works are popular partly because theoretically they are

known to be universal function approximators (with

e.g., a sigmoid or gaussian nonlinearity in the hid-

den layer neurons), although in practice networks with

more layers may be easier to train (see 7Cascade Cor-
relation, Deep Belief Networks). Layered networks can

be extended to processing sequential input and/or out-

put by saving a copy of the hidden layer activations

and using it as additional input to the hidden layer in

the next time step (see 7Simple Recurrent Networks).

Training Examples T 

T

Fully recurrent topologies, where each neuron is con-

nected to all other neurons (and possibly to itself) can

also be used to model time-varying behavior, although

such networks may be unstable and di�cult to train

(e.g., with backpropagation; but see also 7Boltzmann
Machines). Modular topologies, where di�erent parts

of the networks perform distinctly di�erent tasks, can

improve stability and can also be used to model high-

level behavior (e.g.,7Reservoir Computing,7Adaptive
Resonance �eory). Whatever the topology, in most

cases, learning involves modifying the 7Weights on
the network connections. However, arbitrary network

topologies are possible as well and can be constructed

as part of the learning (e.g. with backpropagation or

7Neuroevolution) to enhance feature selection, recur-
rent memory, abstraction, or generalization.

Trace-Based Programming

Pierre Flener ,, Ute Schmid

Sabancı University, Orhanlı, Tuzla,

İstanbul, Turkey
Uppsala University

Uppsala, Sweden
University of Bamberg

Bamberg, Germany

Synonyms
Programming from traces; Trace-based programming

Definition
Trace-based programming addresses the inference of

a program from a small set of example computation

traces.�e induced program is typically a recursive pro-

gram. A computation trace is a nonrecursive expression
that describes the transformation of some speci�c input

into the desired output with help of a prede�ned set of

primitive functions. While the construction of traces is

highly dependent on background knowledge or even on

knowledge about the program searched for, the induc-

tive7generalization is based on syntactical methods of
detecting regularities and dependencies between traces,

as proposed in classical approaches to 7inductive pro-
gramming (see Example  of that encyclopedia entry) or

7explanation-based learning (EBL). As an alternative
to providing traces by hand-simulation, AI planning

techniques or7programming by demonstration (PBD)
can be used.

Cross References
7Inductive Programming
7Programming by Demonstration

Recommended Reading
Biermann, A. W. (). On the inference of Turing machines from

sample computations. Artificial Intelligence, (), –.
Schmid, U., & Wysotzki, F. (). Induction of recursive pro-

gram schemes. In Proceedings of the tenth european conference
on machine learning (ECML ): Lecture notes in artificial
intelligence (Vol. , pp. –). Berlin: Springer.

Schrödl, S., & Edelkamp, S. (). Inferring flow of control in pro-

gram synthesis by example. In Proceedings of the rd annual
german conference on artificial intelligence (KI ): Lecture
notes in artificial intelligence (Vol. , pp. –). Berlin:
Springer.

Shavlik, J. W. (). Acquiring recursive and iterative concepts with

explanation-based learning. Machine Learning, , –.
Wysotzki, F. (). Representation and induction of infinite con-

cepts and recursive action sequences. In Proceedings of the
eighth international joint conference on artificial intelligence
(IJCAI ) (pp. –). San Mateo, CA: Morgan Kaufmann.

Training Curve

7Learning Curves in Machine Learning

Training Data

Synonyms
Training examples; Training instances; Training set

Definition
Training data are data to which a7learner is applied.

Training Examples

7Training Data

 T Training Instances

Training Instances

7Training Data

Training Set

Synonyms
Training data

Definition
A training set is a 7data set containing data that are
used for learning by a 7learning system. A training
set may be divided further into a 7growing set and a
7pruning set.

Cross References
7Data Set
7Training Data

Training Time

A learning algorithm is typically applied at two distinct

times. Training time refers to the time when an algo-

rithm is learning a model from 7training data. 7Test
time refers to the time when an algorithm is applying

a learned model to make predictions. 7Lazy learning
usually blurs the distinction between these two times,

deferring most learning until test time.

Trait

7Attribute

Trajectory Data

7Time Series

Transductive Learning

7Semi-Supervised Learning
7Semi-Supervised Text Processing

Transfer of Knowledge Across
Domains

7Inductive Transfer

Transition Probabilities

In a7Markov decision process, the transition probabil-
ities represent the probability of being in state s′ at time
t + , given you take action a from state s at time t for all
s, a and t.

Tree Augmented Naive Bayes

Fei Zheng, Geoffrey I. Webb

Monash University

Synonyms
TAN

Definition
Tree augmented naive Bayes is a7semi-naive Bayesian
Learning method. It relaxes the 7naive Bayes attribute
independence assumption by employing a tree struc-

ture, in which each attribute only depends on the class

and one other attribute. A maximum weighted span-

ning tree that maximizes the likelihood of the training

data is used to perform classi�cation.

Classification with TAN
Interdependencies between attributes can be addressed

directly by allowing an attribute to depend on other

non-class attributes. However, techniques for learning

unrestricted 7Bayesian networks o�en fail to deliver
lower zero-one loss than naive Bayes (Friedman,Geiger,

& Goldszmidt, ). One possible reason for this is

that full Bayesian networks are oriented toward opti-

mizing the likelihood of the training data rather than

the conditional likelihood of the class attribute given

a full set of other attributes. Another possible reason

is that full Bayesian networks have high variance due

Tree Mining T 

T

Y

NB

X1 X2 Xi Xi+1 Xn

Y

TAN

X1 X2 Xi Xi+1 Xn

Tree Augmented Naive Bayes. Figure . Bayesian net-

work examples of the forms of model created by NB and

TAN

to the large number of parameters estimated. An inter-

mediate alternative technique is to use a less restrict

structure than naive Bayes. Tree augmented naive Bayes

(TAN) (Friedman et al., ) employs a tree structure,

allowing each attribute to depend on the class and at

most one other attribute. Figure  shows Bayesian net-

work representations of the types of model that NB and

TAN respectively create.

Chow and Liu () proposed a method that e�-

ciently constructs a maximum weighted spanning tree

which maximizes the likelihood that the training data

was generated from the tree.�eweight of an edge in the

tree is themutual information of the two attributes con-

nected by the edge. TAN extends this method by using

conditional mutual information as weights. Since the

selection of root does not a�ect the log-likelihood of the

tree, TAN randomly selects a root attribute and directs

all edges away from it. �e parent of each attribute Xi

is indicated as π(Xi) and the parent of the class is ∅.
It assumes that attributes are independent given the

class and their parents and classi�es the test instance

x = ⟨x, . . . , xn⟩ by selecting

argmax
y

P̂(y) ∏
≤i≤n

P̂(xi ∣ y, π(xi)), ()

where π(xi) is a value of π(Xi) and y is a class label.

Due to the relaxed attribute independence assump-

tion, TAN considerably reduces the 7bias of naive
Bayes at the cost of an increase in7variance. Empirical
results (Friedman et al., ) show that it substan-

tially reduces zero-one loss of naive Bayes on many

data sets and that of all data sets examined it achieves

lower zero-one loss than naive Bayes more o�en

than not.

Cross References
7Averaged One-Dependence Estimators
7Bayesian Network
7Naive Bayes
7Semi-Naive Bayesian Learning

Recommended Reading
Chow, C. K., & Liu, C. N. (). Approximating discrete probabil-

ity distributions with dependence trees. IEEE Transactions on
Information Theory, , –.

Friedman, N., Geiger, D., & Goldszmidt, M. (). Bayesian net-

work classifiers. Machine Learning, (), –.

Tree Mining

Siegfried Nijssen

Katholieke Universiteit Leuven,

Belgium

Definition
Tree mining is an instance of constraint-based pattern

mining and studies the discovery of tree patterns in

data that is represented as a tree structure or as a set

of trees structures. Minimum frequency is the most

studied constraint.

Motivation and Background
Tree mining is motivated by the availability of many

types of data that can be represented as tree struc-

tures. �ere is a large variety in tree types, for instance,

ordered trees, unordered trees, rooted trees, unrooted

(free) trees, labeled trees, unlabeled trees, and binary

trees; each of these has its own application areas.

An example are trees in tree banks, which store sen-

tences annotated with parse trees. In such data, it is

 T Tree Mining

not only of interest to �nd commonly occurring sets

of words (for which frequent itemset miners could be

used), but also to �nd commonly occurring parses of

these words. Tree miners aim at �nding patterns in this

structured information. �e patterns can be interest-

ing in their own right, or can be used as features in

classi�cation algorithms.

Structure of Problem
All tree miners share a similar problem setting. �eir

input consists of a set of trees and a set of con-

straints, usually a minimum frequency constraint, and

their output consists of all subtrees that ful�ll the

constraints.

Tree miners di�er in the constraints that they are

able to deal with, and the types of trees that they operate

on. �e following types of trees can be distinguished:

Free trees, which are graphs without cycles, and no
order on the nodes or edges;

Unordered trees, which are free trees in which one
node is chosen to be the root of the tree;

Ordered trees, which are rooted trees in which the
nodes are totally ordered.

For each of these types of tree, we can choose to have

labels on the nodes, or on the edges, or on both.

�e di�erences between these types of trees are

illustrated in Fig. . Every graph in this �gure can be

interpreted as a free tree Fi, an unordered tree Ui, or

an ordered tree Ti. When interpreted as ordered trees,

none of the trees are equivalent. When we interpret

them as unordered trees, U and U are equivalent rep-
resentations of the same unordered tree that has B as

its root and C and D as its children. Finally, as free
trees, not only F and F are equivalent, but also F
and F.
Intuitively, a free tree requires less speci�cation than

an ordered tree. �e number of possible free trees is

smaller than the number of possible ordered trees. On

the other hand, to test if two trees are equivalent we

need a more elaborate computation for free trees than

for ordered trees.

Assume that we have data represented as (a set of)

trees, then the data mining problem is to �nd patterns,

represented as trees, that ful�ll constraints based on this

data. To express these constraints, we need a coverage

relation that expresses when one tree can be considered

to occur in another tree.Di�erent coverage relations can

be expressed for free trees, ordered trees, and unordered

trees. We will introduce these relations through opera-

tions that can be used to transform trees. As an example,

consider the operation that removes a leaf from a tree.

We can repeatedly apply this operation to turn a large

tree into a smaller one. Given two trees A and B, we say
that A occurs in B as

Induced subtree, ifA can be obtained fromB by repeat-
edly removing leaves from B. When dealing with
rooted trees, the root is here also considered to be

a leaf if it has one child;

Root-induced subtree, if A can be obtained from B
by repeatedly removing leaves from B. When deal-
ing with rooted trees, the root is not allowed to be

removed;

Embedded subtree, if A can be obtained from B by
repeatedly either () removing a leaf or () remov-

ing an internal node, reconnecting the children of

A

B E

C D

T , U , F

B

C D
T1 , U1 , F1

B

D C
T2 , U2 , F2

A

E

T3 , U3 , F3

A

D E
T4 , U4 , F4

B

A C D
T5 , U5 , F5

A

B D
T6 , U6 , F6

A

B

C D

T7 , U7 , F7

Tree Mining. Figure . The leftmost tree is part of the data, the other trees could be patterns in this tree, depending on

the subtree relation that is used

Tree Mining T 

T

the removed node with the parent of the removed

node;

Bottom-up subtree, if there is a node v in B such that if
we remove all nodes fromB that are not a descendant
of v, we obtain A;

Pre�x, if A can be obtained from B by repeatedly
removing the last node from the ordered tree B;

Leaf set, if A can be obtained from B by selecting a set
of leaves from B, and all their ancestors in B.

For free trees, only the induced subtree relation is well-

de�ned. A pre�x is only well-de�ned for ordered trees,

the other relations apply both to ordered and unordered

trees. In the case of unordered trees, we assume that

each operation maintains the order of the original

tree B. �e relations are also illustrated in Fig. .
Intuitively, we can speak of occurrences (also called

embeddings by some authors) of a small tree in a larger
tree. Each such occurrence (or embedding) can be

thought of as a function φ that maps every node in the
small tree to a node in the large tree.

Using an occurrence relation, we can de�ne fre-

quency measures. Assume given a forest F of trees, all

T
re

e

In
du

ce
d

E
m

be
dd

ed

R
oo

t-
In

du
ce

d

B
ot

to
m

-u
p

P
re

fix

L
ea

f-
se

t

T1

T2

T3

T4

T5

T6

T7

yes yes no yes no no
no no no no no no
yes yes yes no no yes
no yes no no no no
no no no no no no
no no no no no no
yes yes yes no yes yes

T
re

e

In
du

ce
d

E
m

be
dd

ed

R
oo

t-
In

du
ce

d

B
ot

to
m

-u
p

L
ea

f-
se

t

U1 yes yes no yes no
U2 yes yes no yes no
U3 yes yes yes no yes
U4 no yes no no no
U5 no no no no no
U6 no no no no no
U7 yes yes yes no yes

T
re

e

In
du

ce
d

F1 yes
F2 yes
F3 yes
F4 no
F5 yes
F6 no
F7 yes

Tree Mining. Figure . Relations between the trees of

Fig. 

ordered, unordered, or free.�en the frequency of a tree

A can be de�ned

Transaction-based, where we count the number of
trees B ∈ F such that A is a subtree of B;

Node-based, where we count the number of nodes v in
F such that A is a subtree of the bottom-up subtree
below v.

Node-based frequency is only applicable in rooted trees,

in combination with the root-induced, bottom-up, pre-

�x, or leaf set subtree relations.

Given a de�nition of frequency, constraints on trees

of interest can be expressed:

Minimum frequency, to specify that only trees with
a certain minimum number of occurrences are of

interest;

Closedness, to specify that a tree is only of interest if its
frequency is di�erent from all its supertrees;

Maximality, to specify that a tree is only of interest if
none of its supertrees is frequent.

Observe that in all of these constraints, the subtree rela-

tion is again important. �e subtree relation is not only

used to compare patterns with data, but also patterns

among themselves.

�e tree mining problem can now be stated as fol-

lows. Given a forest of trees F (ordered, unordered, or
free) and a set of constraints, based on a subtree rela-

tion, the task is to �nd all trees that satisfy the given

constraints.

Theory/Solution
�e treemining problem is an instance of themore gen-

eral problem of constraint-based pattern mining under

constraints. For more information about the general

setting, see the sections on constraint-based mining,

itemset mining, and graph mining.

All algorithms iterate a process of generating can-

didate patterns, and testing if these candidates satisfy

the constraints. Essential is to avoid that every possible

tree is considered as a candidate. To this purpose, the

algorithms exploit that many frequency measures are

anti-monotonic. �is property states that for two given

 T Tree Mining

trees A and B, where A is a subtree of B, if A is infre-
quent, then also B is infrequent, and therefore, we do
not need to consider it as a candidate.

�is observation canmake it possible to �nd all trees

that satisfy the constraints, if these requirements are

ful�lled:

● We have an algorithm to enumerate candidate sub-

trees, which satis�es these properties:

– It should be able to enumerate all trees in the

search space;

– It should avoid that no two equivalent subtrees

are listed;

– It should only list a tree a�er at least one of

its subtrees has been listed, to exploit the anti-

monotonicity of the frequency constraint;

● We have an algorithm to e�ciently compute in how

many database trees a pattern tree occurs.

�e algorithmic solutions to these problems depend on

the type of tree and the subtree relation.

Encoding and Enumerating Trees

We will �rst consider how tree miners internally repre-

sent trees. Two types of encodings have been proposed,

both of which are string-based. We will illustrate these

encodings for node-labeled trees, and start with ordered
trees.

�e �rst encoding is based on a preorder listing of
nodes: () for a rooted ordered tree T with a single ver-
tex r, the preorder string of T is ST ,r = lr − , where lr
is the label for the single vertex r, and () for a rooted
ordered tree T withmore than one vertex, assuming the
root of T is r (with label lr) and the children of r are
r, . . . , rK from le� to right, then the preorder string for
T is ST ,r = lrST ,r⋯ST ,rK − , where ST ,r , . . . , ST ,rK are
the preorder strings for the bottom-up subtrees below

nodes r, . . . , rK in T.
�e second encoding is based on listing the depths

of the nodes together with their labels in pre�x-order.

�e depth of a node v is the length of the path from
the root to the node v. �e code for a tree is ST ,r =
drlrST ,r⋯ST ,rK , where dr is the depth of the node r in
tree T.
Both encodings are illustrated in Fig. .

Tree Depth-sequence Preorder string

T ABD AB-D-

T ABCD ABC-D---

T ABCDE ABC-D--E-

T ADE AD-E--

T AE AE--

T BACD BA-C-D--

T BCD BC-D--

T BDC BD-C--

Tree Mining. Figure . Depth sequences for all the trees

of Fig. , sorted in lexicographical order. Tree T is

the canonical form of unordered tree U, as its depth

sequence is the highest among equivalent representa-

tions

A search space of trees can be visualized as in Fig. .

In this �gure, every node corresponds to the depth

encoding of a tree, while the edges visualize the partial

order de�ned by the subtree relation. It can be seen that

the number of induced subtree relations between trees is

smaller than the number of embedded subtree relations.

�e task of the enumeration algorithm is to traverse

this search space starting from trees that contain only

one node.Most algorithms perform the search by build-

ing an enumeration tree over the search space. In this

enumeration tree every pattern should have a single par-

ent. �e children of a pattern in the enumeration tree

are called its extensions or its re�nements. An example
of an enumeration tree for the induced subtree relation

is given in Fig. .

In the enumeration tree that is given here, the parent

of a tree is its pre�x in the depth encoding. An alterna-

tive de�nition is that the parent of a tree can be obtained

by removing the last node in a pre�x order traversal

of the ordered tree. Every re�nement in the enumera-

tion has one additional node that is connected to the

rightmost path of the parent.
�e enumeration problem is more complicated for

unordered trees. In this case, the trees represented by
the strings AAB and ABA are equivalent, and we

Tree Mining T 

T

1A 1B

1A2A 1A2B 1B2A 1B2B

1A2A2A

1A2A3A

1A2A2B 1A2A3B1A2B2A

1A2B2B

1A2B3A 1A2B3B

.

Induced/Embedded Subtree
Embedded Subtree only

Tree Mining. Figure . A search space of ordered trees, where edges denote subtree relationships

1A 1B

1A2A 1A2B 1B2A 1B2B

1A2A2A

1A2A3A

1A2A2B 1A2A3B1A2B2A

1A2B2B

1A2B3A 1A2B3B

.

Tree Mining. Figure . Part of an enumeration tree for the search space of Fig. 

only wish to enumerate one of these strings. �is can

be achieved by de�ning a total order on all strings that

represent trees, and to de�ne that only the highest (or

lowest) string of a set of equivalent strings should be

considered.

For depth encodings, the ordering is usually lexi-

cographical, and the highest string is chosen to be the

canonical encoding. In our example, ABA would be
canonical. �is code has the desirable property that

every pre�x of a canonical code is also a canonical code.

Furthermore it can be determined in polynomial time

which extensions of a canonical code lead to a canon-

ical code, such that it is not necessary to consider any

code that is not canonical.

Alternative codes have also been proposed, which

are not based on a preorder, depth-�rst traversal of

a tree, but on a level-wise listing of the nodes in

a tree.

Finally, for free treeswe have the additional problem
that we de not have a root for the tree. Fortunately, it is

known that every free tree either has a uniquely deter-

mined center or a uniquely determined bicenter. �is
(bi)center can be found by determining the longest path

between two nodes in a free tree: the node(s) in themid-

dle of this path are the center of the tree. It can be shown

that if multiple paths have the same maximal length,

they will have the same (bi)center. By appointing one

center to be the root, we obtain a rooted tree, for which

we can compute a code.

To avoid that two codes are listed that represent

equivalent free trees, several solutions have been pro-

posed. One is based on the idea of �rst enumerat-

ing paths (thus �xing the center of a tree), and for

each of these paths enumerating all trees that can be

grown around them. Another solution is based on enu-

merating all rooted, unordered trees under the con-

straint that at least two di�erent children of the root

have a bottom-up subtree of equal, maximal depth.

In the �rst approach, a preorder depth encoding was

used; in the second approach a level-wise encoding

was used.

Counting Trees

To evaluate the frequency of a tree the subtree rela-

tion between a candidate pattern tree and all trees

in the database has to be computed. For each of our

subtree relations, polynomial algorithms are known

to decide the relation, which are summarized in

Table .

 T Tree Mining

Tree Mining. Table  Worst case complexities of the best known algorithms that determine whether a tree relation

holds between two trees; m is the number of nodes in the pattern tree, l is the number of leafs in the pattern tree,

n the number of nodes in the database tree

Ordered

Embedding O(nl)

Induced O(nm)

Root-induced O(n)

Leaf-set O(n)

Bottom-up O(n)

Pre�x O(m)

Unordered

Embedding NP-complete

Induced O(nm  / logm)

Root-induced O(nm  / logm)

Leaf-set O(nm  / logm)

Bottom-up O(n)

Even though a subtree testing algorithm and an

algorithm for enumerating trees are su�cient to com-

pute all frequent subtrees correctly, in practice �ne-

tuning is needed to obtain an e�cient method. �ere

are two reasons for this:

● In some databases, the number of candidates can

by far exceed the number of trees that are actually

frequent. One way to reduce the number of candi-

dates is to only generate a particular candidate a�er

we have encountered at least one occurrence of it in

the data (this is called pattern growth); another way
is to require that a candidate is only generated if at

least two of its subtrees satisfy the constraints (this

is called pattern joining).
● �e trees in the search space are very similar to each

other: a parent only di�ers from its children by the

absence of a single node. If memory allows, it is

desirable to reuse the subtree matching information,
instead of starting the matching from scratch.

A large number of data structures have been proposed

to exploit these observations. We will illustrate these

ideas using the FreqT algorithm, whichmines induced,

ordered subtrees, and uses a depth encoding for the

trees.

In FreqT, for a given pattern tree A, a list of
(database tree, database node) pointers is stored. Every
element (B, v) in this list corresponds to an occurrence

of treeA in tree B in which the last node (in terms of the
preorder) of A is mapped to node v in database tree B.
For a database and three example trees this is illustrated

in Fig. .

Every tree in the database is stored as follows. Every

node is given an index, and for every node, we store

the index of its parent, its righthand sibling, and its �rst

child.

Let us consider how we can compute the occur-

rences of the subtree ABB from the occurrences of
the tree AB. �e �rst occurrence of AB is (t, ),
which means that the B labeled node can be mapped to
node  in t. Using the arrays that store the database tree,
we can then conclude that node , which is the right-

hand sibling of node , corresponds to an occurence

of the subtree ABB. �erefore, we add (t, ) to the
occurrence list of ABB. Similarly, by scanning the
data we �nd out that the �rst child of node  corre-

sponds to an occurrence of the subree ABC, and we
add (t, ) to the occurrence list of ABC.
Overall, using the parent, sibling and child point-

ers we can scan every node in the data that could

correspond to a valid expansion of the subtree AB,
and update the corresponding lists. A�er we have done

this for every occurrence of the subtree, we know the

occurrence lists of all possible extensions.

From an occurrence list we can determine the fre-

quency of a tree. For instance, the transaction-based

frequency can be computed by counting the number of

di�erent database trees occurring in the list.

Tree Mining T 

T

A

B B

DC E

t1

A

B B

DC

E

t2

2

1 1

6

3 4 5

2

3

4

6

5

Node
Label A B C D E B
Parent

1 2 3 4 5 6

- 1 2 2 2 1
Sibling - 6 4 5 - -
Child 2 3 - - - -

A

A

B

A

BB

(t1,1)(t2,1)

(t1,2)(t1,6)(t2,2)(t2,6)

(t1,6)(t2,6)

Tree Mining. Figure . A tree database (left) and three ordered trees with their occurrence lists according to the FreqT

algorithm (right). The datastructure that stores t in FreqT is given in the table (right)

As we claimed, this example illustrates two features

that are commonly seen in tree miners: �rst, the occur-

rence list of one tree is used to compute the occurrence

list of another tree, thus reusing information; second,

the candidates are collected from the data by scanning

the nodes that connect to the occurrence of a tree in the

data. Furthermore, this example illustrates that a careful

design of the datastructure that stores the data can ease

the frequency evaluation considerably.

FreqT does not perform pattern joining. �e most

well-known example of an algorithm that performs

tree joining is the embedded TreeMiner (Zaki, ).

Both the FreqT and the TreeMiner perform the search

depth-�rst, but also tree miners that use the traditional

level-wise approach of theApriori algorithmhave been

proposed. �e FreqT and the TreeMiner have been

extended to unordered trees.

Other Constraints

As the number of frequent subtrees can be very large,

approaches have been studied to reduce the number of

trees returned by the algorithm, of which closed and

maximal trees are the most popular. To �nd closed or

maximal trees, two issues need to be addressed:

● How do we make sure that we only output a tree if it

is closed or maximal, that is, how do we determine

that none of its supertrees has the same support, or

is frequent?

● Can we conclude that some parts of the search space

will never contain a closed or maximal tree, thus

making the search more e�cient?

Two approaches can be used to address the �rst issue:

● All closed patterns can be stored, and every new pat-

tern can be compared with the stored set of patterns;

● When we evaluate the frequency of a pattern in the

data, we also (re)evaluate the frequency of all its pos-

sible extensions, and only output the pattern if its

support is di�erent.

�e second approach requires less memory, but in some

cases requires more computations.

To prune the search space, a common approach is

to check all occurrences of a tree in the data. If every

occurrence of a tree can be extended into an occurrence

of another tree, the small tree should not be considered,

and the search should continue with the tree that con-

tains all common edges and nodes. Contrary to graph

mining, it can be shown that this kind of pruning can

safely be done in most cases.

Applications
Examples of databases to which tree mining algorithms

have been applied are

Parse tree analysis: Since the early s large Tree-
bank datasets have been collected consisting of

 T Tree Mining

sentences and their grammatical structure. An

example is the Penn TreeBank (Marcus, Santorini,

& Marcinkiewicz, ). �ese databases contain

rooted, ordered trees. To discover di�erences in

domain languages it is useful to compare commonly

occurring grammatical constructions in two di�er-

ent sets of parsed texts, for which tree miners can be

used (Sekine, ).

Computer network analysis: IP multicast is a protocol
for sending data tomultiple receivers. In an IPmulti-

cast session a webserver sends a packet once; routers

copy a packet if two di�erent routes are required to

reach multiple receivers. During a multicast session

rooted trees are obtained in which the root is the

sender and the leaves are the receivers. Commonly

occurring patterns in the routing data can be dis-

covered by analyzing these unordered rooted trees

(Chalmers & Almeroth, ).

Webserver access log analysis: Whenusers browse aweb-
site, this behavior is re�ected in the access log �les

of the webserver. Servers collect information such as

the webpage that was visited, the time of the visit,

and the webpage that was clicked to reach the web-

page. �e access logs can be transformed into a set

of ordered trees, each of which corresponds to a vis-

itor. Nodes in these trees correspond to webpages;

edges are inserted if a user browses from one web-

page to another. Nodes are ordered in viewing order.

A tool was developed to perform this transformation

in a sensible way (Punin, Krishnamoorthy, & Zaki,

).

Phylogenetic trees: One of the largest tree databases cur-
rently under construction is the TreeBASE database,

which is comprised of a large number of phyloge-

netic trees (Morell, ). �e trees in the TreeBASE

database are submitted by researchers and are col-

lected from publications. Originating from multiple

sources, they can disagree on parts of the phylo-

genetic tree. To �nd common agreements between

the trees, tree miners have been used (Zhang &

Wang, ). �e phylogenetic trees are typically

unordered; labels among siblings are unique.

Hypergraph mining: Hypergraphs are graphs in which
one edge can have more than two endpoints. �ose

hypergraphs in which no two nodes share the same

label can be transformed into unordered trees, as fol-

lows. First, an arti�cial root is inserted. Second, for

each edge of the hypergraph a child node is added

to the root, labeled with the label of the hyperedge.

Finally, the labels of nodes within hyperedges are

added as leaves to the tree. An example of hyper-

graph data is bibliographic data: if each example cor-

responds to a paper, nodes in the hypergraph corre-

spond to authors cited by the paper, and hyperedges

connect coauthors of cited papers.

Multi-relational data mining : Many multi-relational
databases are tree shaped, or a tree-shaped view can

be created. For instance, a transaction database in

which every transaction is associatedwith customers

and their information, can be represented as a tree

(Berka, ).

XML data mining: Several authors have stressed that
tree mining algorithms are most suitable for mining

XML data. XML is a tree–shaped data format,

and tree miners can be helpful when trying to

(re)construct Document Type De�nitions (DTDs)

for such documents.

Cross References
7Constraint-based Mining
7Graph Mining

Further Reading
�e FreqT algorithm was introduced in (Asai, Abe,

Kawasoe, Arimura, Satamoto, & Arikawa, ; Wang

& Liu, ; Zaki, ). �e most popular tree miner

is the embedded tree miner by Zaki (). A more

detailed overview of tree miners can be found in Chi,

Nijssen, Muntz, and Kok (). Most implementa-

tions of tree miners are available on request from their

authors.

Recommended Reading
Asai, T., Abe, K., Kawasoe, S., Arimura, H., Satamoto, H., &

Arikawa, S. (). Efficient substructure discovery from large

semi-structured data. In Proceedings of the second SIAM inter-
national conference on data mining (pp. –). SIAM.

Berka, P. (). Workshop notes on discovery challenge PKDD-
(Tech. Rep.). Prague, Czech Republic: University of Economics.

Chalmers, R., & Almeroth, K. (). On the topology of multi-

cast trees. In IEEE/ACM transactions on networking (Vol. ,
pp. –). IEEE Press/ACM Press.

Chi, Y., Nijssen, S., Muntz, R. R., & Kok, J. N. (). Frequent

subtree mining—An overview. In Fundamenta Informaticae
(Vol. , pp. –). IOS Press.

Typical Complexity of Learning T 

T

Marcus, M. P., Santorini, B., & Marcinkiewicz, M. A. (). Build-

ing a large annotated corpus of English: The Penn Treebank. In

Computational linguistics (Vol. , pp. –). MIT Press.
Morell, V. (). TreeBASE: The roots of phylogeny. In Science

(Vol. , p. ).

Punin, J., Krishnamoorthy, M., & Zaki, M. J. (). LOGML—log

markup language for web usage mining. In WEBKDD —
mining web log data across all customers touch points. Third
international workshop. Lecture notes in artificial intelligence
(Vol. , pp. –). Springer.

Sekine, S. (). Corpus-based parsing and sublanguages studies.
Ph.D. dissertation. New York University, New York.

Wang, K., & Liu, H. (). Discovering typical structures of docu-

ments: A road map approach. In Proceedings of the st annual
international ACM SIGIR conference on research and develop-
ment in information retrieval (pp. –). ACM Press.

Zaki, M. J. (). Efficiently mining frequent trees in a forest.

In Proceedings of the th international conference knowledge
discovery and data mining (KDD) (pp. –). ACM Press.

Zhang, S., & Wang, J. (). Frequent agreement subtree mining.

http://aria.njit.edu/mediadb/fast/.

Tree-Based Regression

7Regression Trees

True Negative

True negatives are the negative examples that are
correctly classi�ed by a classi�cation model. See

7confusion matrix for a complete range of related
terms.

True Negative Rate

7Speci�city

True Positive

True positives are the positive examples that are correctly
classi�ed by a classi�cation model. See 7confusion
matrix for a complete range of related terms.

True Positive Rate

7Sensitivity

Type

7Class

Typical Complexity of Learning

7Phase Transitions in Machine Learning

http://aria.njit.edu/mediadb/fast/

	T
	Tagging
	TAN
	Taxicab Norm Distance
	TD-Gammon
	Definition
	Description of the Learning System
	Cross References
	Recommended Reading

	TDIDT Strategy
	Temporal Credit Assignment
	Temporal Data
	Temporal Difference Learning
	Definition
	Formal Definitions
	Estimating Discounted Sum of Reward

	Eligibility Traces and TD(bold0mu mumu)
	Convergence
	Control of Systems
	Actor-Critic Control Systems
	Other Value Functions

	Approximation
	Related Differencing Systems
	Biological Links

	Cross References
	Recommended Reading

	Test Data
	Synonyms
	Definition
	Cross References

	Test Instances
	Test Set
	Synonyms
	Definition
	Cross References

	Test Time
	Test-Based Coevolution
	Synonyms
	Definition

	Text Clustering
	Text Learning
	Text Mining
	Synonyms
	Definition
	Cross References

	Text Mining for Advertising
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning Problem
	Structure of Learning Systems
	Keyword Extraction Approaches
	The Vocabulary Impedance Problem
	Learning with Genetic Programming
	Semantic Approaches to Contextual Advertising

	Cross References
	Recommended Reading

	Text Mining for News and Blogs Analysis
	Definition
	Motivation and Background
	Structure of the Learning System
	Tasks
	Solution Approaches

	Recommended Reading

	Text Mining for Spam Filtering
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Overview
	Data Acquisition
	Content Encoding and Deobfuscation
	Feature Extraction and Selection
	Learning Algorithms
	One Model versus Multiple Models
	Off-line Adaptation Versus Online Adaptation
	User-specific Versus User-independent Spam Detection
	Clustering and Volumetric Techniques
	Misclassification Costs and Filter Evaluation
	Adaptation to Countermeasures

	Future Directions
	Reputation Systems and Social Networks

	Cross References
	Recommended Reading

	Text Mining for the Semantic Web
	Definition
	Motivation and Background
	Structure of Learning System
	Cross References
	Recommended Reading

	Text Spatialization
	Text Visualization
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	Applications
	Sammon
	Lin
	BEAD
	IN-SPIRE
	WEBSOM
	Starlight

	Cross References
	Recommended Reading

	TF–IDF
	Threshold Phenomena in Learning
	Time Sequence
	Time Series
	Synonyms
	Definition
	Motivation and Background
	Recommended Reading

	Topic Mapping
	Topology of a Neural Network
	Synonyms
	Definition

	Trace-Based Programming
	Synonyms
	Definition
	Cross References
	Recommended Reading

	Training Curve
	Training Data
	Synonyms
	Definition

	Training Examples
	Training Instances
	Training Set
	Synonyms
	Definition
	Cross References

	Training Time
	Trait
	Trajectory Data
	Transductive Learning
	Transfer of Knowledge Across Domains
	Transition Probabilities
	Tree Augmented Naive Bayes
	Synonyms
	Definition
	Classification with TAN
	Cross References
	Recommended Reading

	Tree Mining
	Definition
	Motivation and Background
	Structure of Problem
	Theory/Solution
	Encoding and Enumerating Trees
	Counting Trees
	Other Constraints

	Applications
	Cross References
	Further Reading
	Recommended Reading

	Tree-Based Regression
	True Negative
	True Negative Rate
	True Positive
	True Positive Rate
	Type
	Typical Complexity of Learning

