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Definition

The goal in sequential decision making under uncer-
tainty is to find good or optimal policies for selecting
actions in stochastic environments in order to achieve a
long term goal; such problems are typically modeled as
»Markov Decision Processes (MDPs). A key concept
in MDPs is the value function, a real-valued function
that summarizes the long-term goodness of a decision
into a single number and allows the formulation of opti-
mal decision making as an optimization problem. Exact
representation of value functions in large real-world
problems is infeasible, therefore a large body of research
has been devoted to value function approximation meth-
ods, which sacrifice some representation accuracy for
the sake of scalability. These approaches have delivered
effective approaches to deriving good policies in hard
decision problems and laid the foundation for efficient
reinforcement learning algorithms, which learn good
policies in unknown stochastic environments through
interaction.

Motivation and Background

Markov Decision Processes

A Markov Decision Process (MDP) is a six-tuple
(S, AP, R,y,D), where S is the state space of the
process, A is a finite set of actions, P is a Markovian
transition model (P(s'[s,a) denotes the probability of
a transition to state s’ when taking action a in state s),
R is a reward function (R(s,a) is the reward for tak-
ing action a in state s), y € (0,1] is the discount factor

for future rewards (a reward received after ¢ steps is
weighted by y’), and D is the initial state distribution
(Puterman, 1994). MDPs are discrete-time processes.
The process begins at time ¢t = 0 in some state sp € S
drawn from D. At each time step ¢, the decision maker
observes the current state of the process s; € S and
chooses an action a; € A. The next state of the process
se41 is drawn stochastically according to the transition
model P(st41]s1, a;) and the reward r; at that time step is
determined by the reward function R (s;, a;). The hori-
zon h is the temporal extent of each run of the process
and is typically infinite. A complete run of the process
over its horizon is called an episode and consists of a long
sequence of states, actions, and rewards:
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The quantity of interest is the expected total dis-
counted reward from any state s:
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h
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=0
where the expectation is taken with respect to all
possible trajectories of the process in the state space
under the decisions made and the transition model,
assuming that the process is initialized in state s. The
goal of the decision maker is to make decisions so
that the expected total discounted reward, when s is
drawn from D, is optimized. (The optimization objec-
tive could be maximization or minimization depending
on the problem. Here, we adopt a reward maximization
viewpoint, but there are analogous definitions for cost
minimization. There are also other popular optimality
measures, such as maximization/minimization of the
average reward/cost per step.)
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A policy dictates how the decision maker chooses
actions in each state. A stationary, deterministic policy
7 is a mapping 7 : S — A from states to actions; 7(s)
denotes the action the agent takes in state s. In this case,
there is a single action choice for each state, and this
choice does not change over time. In contrast, a station-
ary, stochastic policy 7 is a mapping 7 : S — Q(A),
where Q(A) is the set of all probability distributions
over A. Stochastic policies are also called soft, for they
do not commit to a single action per state; 77(als) stands
for the probability of choosing action a in state s under
policy 7. Each policy 7 (deterministic or stochastic) is
characterized by the expected total discounted reward
it accumulates during an episode. An optimal policy m*
for an MDP is a policy that maximizes the expected total
discounted reward from any state s € S. It is well-known
that for every MDP there exists at least one, not nec-
essarily unique, optimal policy, which is stationary and
deterministic.

The quality of any policy 7 can be quantified formally
through a value function, which measures the expected
return of the policy under different process initializa-
tions. For any MDP and any policy 7, the state value
function V assigns a numeric value to each state. The
value V7 (s) of a state s under a policy 7 is the expected
return, when the process starts in state s and the deci-
sion maker follows policy 7 (all decisions at all steps are
made according to 7):

V™(s) = Egjurr s sioP s 11~R (Z y're | So = s) .
=0

Similarly, the state-action value function Q assigns a
numeric value to each pair (s,a) of states and actions.
The value Q”(s,a) of taking action a in state s under a
policy 7 is the expected return when the process starts
in state s, and the decision maker takes action a for the
first step and follows policy 7 thereafter:

t=0

oo
Q"(s,a) = Egyr ;5P i rinR (Z y're | S =5, g = a) .

The state and the state-action value functions for a
deterministic policy 7 are related as follows:

V(s) = Q" (s7(s)).

For a stochastic policy 7 this relationship needs to take
into account the probability distribution over actions:

V(s) = > n(als)Q" (s, a).

ac A

The state-action value function of a policy 7 (either
deterministic or stochastic) can also be expressed in
terms of the state value function:

Q" (s,a) =R(s,a) +y > P(s'|s,a) V" (s").

s'eS

The optimal value functions V* = V™ and Q* = Q"
are the state and the state-action value functions of any
optimal policy 7*. Even if there are several distinct opti-
mal policies, they all share the same unique optimal
value functions.

Given the full MDP model, the state or the state-action
value function of any given policy can be computed by
solving a linear system formed using the linear Bell-
man equations. In general, the linear Bellman equation
relates the value of the function at any point to the val-
ues of the function at several - in fact, all - other points.
This is achieved by separating the first step of an episode
from the rest and using the definition of the value func-
tion recursively in the next step. In particular, for any
deterministic policy 7, the linear Bellman equation for
the state value function is

V*(s) =R(s,m(s)) +y Z;S’P(s'|s,ﬂ(s))V”(s'),

whereas for a stochastic policy 7, it becomes

V(s) =Y. n(als) (’R(s,a) +y > ’P(s'|s,a)V”(s')).

ac A s'eS

The exact V” values for all states can be found by solving
the (|S| x |S|) linear system that results from writing
down the linear Bellman equation for all states.

Similarly, the linear Bellman equation for the
state-action value function given any deterministic
policy 7 is

Q"(s,a) =R(s,a) +y Z P(s's,a)Q" (s',n(s")),

s'eS
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whereas for a stochastic policy 7, it becomes

Q" (s,a)=R(s,a)+y Y. P(s'|s,a) > n(d'|s)Q"(s',a").

s'eS a'e A

The exact Q" values for all state-action pairs can be
found by solving the (|S||.A| x |S||.A|) linear system that
results from writing down the linear Bellman equation
for all state-action pairs.

The unique optimal state or state-action value func-
tion can be computed even for an unknown optimal
policy 7* using the non-linear Bellman optimality equa-
tion, which relates values of the function at differ-
ent points while exploiting the fact that there exists
a deterministic optimal policy that achieves the max-
imum value at each point. In particular, the non-
linear Bellman optimality equation for the state value
function is

V*(s) = max {R(s,a) +y ). P(s'|s,a)V*(s')},

s'eS

whereas for the state-action value function is

Q*(s,a) =R(s,a) +y > P(s'|s,a) rarlleai({Q*(s',a')}.

s'eS

The functions V* and Q* can be approximated arbi-

trarily closely by the iterative application of the oper-
ator formed by the right-hand side of the equations
above (Bellman optimality operator). This iteration is a
contraction with rate y, so starting with any arbitrary
initialization it eventually converges to V* or Q.

Value functions play a critical role in sequential deci-
sion making because they address two core problems:
policy evaluation and policy improvement. Policy eval-
uation refers to the problem of quantifying the quality
of any given policy 7 in a given MDP. Apparently, com-
puting the value function V”* or Q" using the Bellman
equations provides the solution to this problem. Policy
improvement, on the other hand, refers to the problem
of deriving an improved policy 7’ given any base policy
7, so that 7’ is at least as good as 7 and possibly better.
The knowledge of V" or Q" allows for the derivation of

an improved deterministic policy 7’ through a simple
one-step look-ahead maximization procedure:

n'(s) = ar§ max {’R(s,a) +y > ’P(s’|s,a)V"(s')}

s'eS
7' (s) = arg max {Q"(s,a)}.
acA

Note that this maximization does not need the MDP
model when using the state-action value function. Once
policy evaluation and policy improvement have been
addressed, the derivation of an optimal policy for any
MDP is straightforward. One can alternate between
policy evaluation and policy improvement producing
a sequence of improving policies until convergence to
an optimal policy; this algorithm is known as policy
iteration. Alternatively, one can iteratively compute an
optimal value function V* or Q" and extract an optimal
policy through a trivial step of policy improvement on
top of V* or Q*; this algorithm is known as value iter-
ation. In either case, value functions provide the means
to the end.

The problem of deriving an optimal policy using
the full MDP model is known as planning. Neverthe-
less, in many real-world sequential decision domains
the model is unknown. The problem of optimal deci-
sion making in an unknown stochastic environment
is known as reinforcement learning, because the deci-
sion maker relies on the feedback received through
interaction with the environment to reinforce or dis-
courage past decisions. More specifically, the learner
interacts with an unknown MDP and typically observes
the state of the process and the immediate reward at
every step, however P and R are not accessible. At
each step of interaction, the learner observes the current
state s, chooses an action a, and observes the resulting
next state s’ and the reward received r, thus learning
is based on (s,a,r,s") samples. The core problems in
reinforcement learning are known as prediction and
control. Prediction refers to the problem of learning
the value function of a given policy 7 in an unknown
MDP through interaction. Well-known algorithms for
the prediction problem are Monte-Carlo Estimation
and Temporal Difference (TD) learning. Control, on the
other hand, refers to the problem of gradually learn-
ing a good or even optimal policy in an unknown
MDP through interaction. Well-known algorithms for
the control problem are SARSA and Q-learning. Again,
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value functions play a critical role in reinforcement
learning; they are absolutely necessary for the predic-
tion problem and the majority of control approaches are
value-function-based.

Structure of Learning System

Most algorithms for planning or learning in MDPs
rely on computing or learning a value function. How-
ever, if the state space of the process is fairly large,
the exact (tabular) representation of a value function
becomes problematic. Not only does memory space
become insufficient very quickly, but also computing or
learning accurately all the distinct entries of the func-
tion requires a tremendous amount of computation and
data. This is known as the »curse of dimensionality: the
exponential growth of the state or action space as a func-
tion of the dimensionality of the state or action. The
urgent need for solutions to large real-world sequential
decision problems has drawn attention to approximate
methods. These methods use function approximation
techniques for approximating value functions, there-
fore they sacrifice some representational accuracy in
order to make the representation manageable in prac-
tice. Sacrificing accuracy in the representation of the
value function is acceptable, since the ultimate goal is
to find a good policy and not necessarily an accurate
value function. As a result, value function approxima-
tion methods cannot guarantee optimal solutions, but
only good solutions. This is not to say that they are
doomed to always finding suboptimal solutions; if an
optimal solution lies within the space spanned by the
value function approximation scheme, it is possible that
an optimal solution will be discovered.

Let V7 (s; w) be an approximation to the state value
function V" (s) represented by a parametric approxima-
tion architecture with free parameters w. The key idea of
value function approximation is that the parameters w
can be adjusted appropriately so that the approximate
values are “close enough” to the original values,

V™ (s;w) » V7(s),

and, therefore, V" can be used in place of the
exact value function V7. Similarly, let Q" (s,a; w) be

an approximation to the state-action value function
Q" (s,a). Again, the goal is to adjust the parameters w
so that

Q" (s, a;w) ~ Q" (s,a),

and, therefore, Q" can be used in place of the exact value
function Q”. Approximations V* and Q* of the optimal
value functions V* and Q* are defined similarly. The
characterization “close enough” () accepts a variety of
interpretations in this context and it does not neces-
sarily refer to the minimization of some norm. Value
function approximation should be regarded as a func-
tional approximation rather than as a pure numerical
approximation, where “functional” refers to the ability
of the approximation to play closely the functional role
of the original value function within a decision making
algorithm.

The benefits of value function approximation are
obvious. The storage requirements are much smaller
compared to the tabular case, since only the parameters
w need to be stored along with a compact description
of the functional form of the architecture. In general,
for most approximation architectures, the storage needs
are independent of the size of the state space and/or
the size of the action space. Furthermore, for most
approximation architectures there is no restriction on
the state space to be a finite set; it could be an infinite,
or even a continuous, space. This flexibility neverthe-
less reveals the need for good generalization abilities on
behalf of the architecture, since the approximate value
function will have to provide good values over the entire
state/state-action space, using data only from a limited
subset of the space.

The main difficulty associated with value function
approximation, beyond the loss in accuracy, is the
choice of the projection method, which is the method of
finding appropriate parameters that maximize the accu-
racy of the approximation according to certain criteria
and with respect to the target function. Typically, for
ordinary function approximation, this is accomplished
using a training set of examples of the form {s, V" (s)},
{s; V*(s)}, {(s,a),Q"(s,a)}, or {(s,a),Q*(s,a)} that
provide the true value of the target function at certain
sample points s or (s,a) (supervised learning). Unfor-
tunately, in the context of sequential decision making,
the target value function is completely unknown. Had
it been possible to compute it easily, value function
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approximation would have been unnecessary. In fact,
it is not possible to analytically compute the true value
of the target value function even at certain isolated
sample points due to interdependencies between the
values at all points. The implication of this difficulty
is that evaluation and projection to the approximation
architecture must be blended together. This is usually
achieved by trying to find values for the free param-
eters so that the approximate function retains some
properties of the original exact value function. Another
implication of using approximation for value functions
is that all convergence properties of exact planning or
learning algorithms are compromised. Therefore, sig-
nificant attention must be paid to the choice of the
approximation architecture and the evaluation and pro-
jection method to minimize the chances for divergence
or oscillations.

There is a variety of architectures available for value
function approximation: »perceptrons, »neural net-
works, splines, polynomials, »radial basis functions,
»support vector machines, »decision trees, CMACs,
wavelets, etc. These architectures have diverse represen-
tational power and generalization abilities and the most
appropriate choice will heavily depend on the properties
of the decision making problem at hand. The projection
methods associated with these approximation architec-
tures are typically designed for a supervised learning
setting. For successful use in the context of decision
making, combined evaluation and projection methods
are necessary.

A broad categorization of approximation architec-
tures distinguishes between nonlinear and linear archi-
tectures. The characterization “nonlinear” or “linear”
refers to the way the free parameters enter into the
architecture and not to the approximation ability of
the architecture. Nonlinear architectures are usually
more expressive than the linear ones, due to the com-
plex interactions among their free parameters, how-
ever tuning their parameters is a much more elaborate
task compared to tuning the parameters of their lin-
ear counterparts. Linear architectures are perhaps the
most popular choice for value function approximation;
interestingly, most theoretical results on convergence

properties in the context of value function approxima-
tion are restricted to linear architectures.

A linear approximation architecture approximates a
function V" (s) or Q"(s,a) as a linear weighted combi-
nation of k basis functions (also called features):

k
V7(sw) = Y. dy(s)w; = 9(s) w
j=1

k
Q (s w) = quj(s,a)wj = ¢(s,a)"w.
j=1

The free parameters of the architecture are the coeffi-
cients w; of the combination (also called weights). The
basis functions ¢; are fixed, but arbitrary and, in gen-
eral, nonlinear, functions of s or (s, ). It is required that
the basis functions ¢; are linearly independent to ensure
that there are no redundant parameters and that the
matrices involved in the computations are full rank. In
general, k « |S| and k <« |S||.A| and the basis functions
¢; have small compact descriptions. As a result, the stor-
age requirements of a linear approximation architecture
are much smaller than those of the tabular representa-
tion of a value function. There is a large variety of linear
approximation architectures and in fact many common
schemes for value function approximation can be cast
as linear architectures.

o Look-up table: This is the exact tabular representa-
tion (There is no approximation under this scheme;
it is included only to illustrate that exact represen-
tation belongs in the family of linear architectures.)
suitable for problems with discrete state variables.
Each basis function is an indicator function whose
value is 1 only for a specific discrete input point (state
or state-action) and 0 otherwise. Each parameter
stores one value/entry of the table.

e Discretization: This is a common technique for
turning a continuous space into discrete using a
uniform- or variable-resolution grid. One indicator
basis function is assigned to each cell of the dis-
cretization and the corresponding parameter holds
the value of that cell.

e Tile coding (CMAC): This scheme utilizes several
overlapping discretizations (tilings) for better accu-
racy. It generates indicator basis functions for each
cell of each tiling and concatenates the basis func-
tions for all tilings. Each parameter corresponds to
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one cell in one tiling, but the value at each input
point is computed additively from the values of all
containing cells from all tilings.

o State aggregation: This is a family of schemes
where “similar” (by some metric) states are grouped
together and are treated as one state. The similar-
ity metric is usually formed through dimensional-
ity reduction techniques for identifying the most
significant dimensions in a high-dimensional input
space, unlike conventional proximity measures in
the same space. There is one indicator basis function
for each group and a single value for all states in the
group.

o Polynomials: This is a generic approximation scheme
suitable for problems with several (continuous)
state variables. Each basis function is a polynomial
term composed of state variables up to a certain
degree.

e Radial basis functions (RBFs): This is another generic
approximation scheme suitable for continuous state
variables. Each basis function is a Gaussian with
fixed mean and variance; the Gaussians are topologi-
cally arranged so that they cover the input space with
some overlap.

e Kernel methods: Kernels are symmetric functions
between two points and they are used to represent
compactly dot products of feature vectors in high- or
even infinite-dimensional spaces. The compactness
of kernels allows for approximation schemes that
essentially enjoy the flexibility provided by a huge or
infinite number of basis functions. The basis func-
tions, in this case, are implicitly defined through the
choice of the kernel.

o Partitioning: This technique is used for construct-
ing complex approximators by partitioning the state
space in several subsets and using a different approx-
imator in each one of them. If linear architec-
tures are used in all partitions, then a set of basis
functions for the global architecture can be con-
structed by concatenating the basis functions of the
smaller linear architectures multiplying each sub-
set with an indicator function for the corresponding
partition.

Linear architectures offer several advantages: they are
easy to implement and use, and their behavior is fairly
transparent, both from an analysis standpoint and from

a debugging and feature engineering standpoint. It is
usually relatively easy to get some insight into the
reasons for which a particular choice of features suc-
ceeds or fails. This is facilitated by the fact that the
magnitude of each parameter is related to the impor-
tance of the corresponding feature in the approximation
(assuming normalized features).

A nonlinear approximation architecture approxi-
mates a function V"(s) or Q"(s,a) using arbitrary
parametric functions of s and (s,a), possibly in con-
junction with some features ¢ computed over s and
(s,a). The best-known representative of this cate-
gory are the multi-layer feed-forward neural networks,
which use one or more layers of linear combina-
tions followed by a nonlinear sigmoidal transforma-
tions (thresholding). In their simplest form (one layer),
neural networks approximate value functions as

m k
V™ (ssw,0) = Z 00 (Z ¢j(S)Wji)
i=1 j=1

= i Bi0 (¢(s) wi)

i=1

m k
Q" (s,a;w,0) = Z 0;0 (Z (/)j(s,a)wﬁ)
i=1 =

3

=) 0,0 ((/)(s,a)Tw,»).

Il
—

Common choices for the differentiable, bounded, and
monotonically increasing function o are the hyperbolic
tangent function ¢ (x) = tanh(x) = (e*—e™)/(e*+e7)
and the logistic function o(x) = 1/(1 + e™). The free
parameters of the architecture (also called weights) are
the coefficients wj; of the linear combinations of the
inputs and the coefficients 6; of the linear combina-
tion of the sigmoidal transformations for the output.
Notice that the parameters w;; enter non-linearly into
the approximation.

A key question in all approximation architectures is
how features are generated and selected. The feature gen-
eration and selection problem is an open question that
spans most of machine learning research and admits no
easy and general answer. Prior domain-specific knowl-
edge and experience can be very helpful in choosing
appropriate features. Several recent studies also describe
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methods for automatically generating features targeted
for value function approximation (Menache et al., 2005;
Mahadevan and Maggioni, 2007; Parr et al., 2007).

Learning (or training, or parameter estimation) in value
function approximation refers to parameter tuninlg
methods that take as input a policy m, an approxima-
tion architecture for V"/Q", and the full MDP model
or samples of interaction with the process and output a
set of parameters w” such that V"/Q" is a good approxi-
mation to V”/Q”. Learning also covers methods for the
harder problem of taking an approximation architecture
for V*/Q* and the model or samples and outputting a
set of parameters w* such that V*/Q* is a good approx-
imation to V*/Q*. The former problem is somewhat
easier because the policy 7, unlike an optimal policy 7%,
is known and therefore in the presence of a simulator of
the process the value function can be estimated at any
isolated point using Monte-Carlo estimation techniques
based on repeated policy rollouts from that point. Each
rollout is an execution of an episode starting from a
state s (or state-action (s, a)) using policy 7 to obtain an
unbiased estimate of the return of the policy from s (or
(s,a)). In this case, value function approximation can
be cast as a classic supervised learning problem; the true
value of V7/Q" is estimated at a subset of points to form
a training set, which can be subsequently used to train
the approximation architecture using supervised learn-
ing techniques. However, in the absence of a simulator
or when seeking approximations to V*/Q*, evaluation
and projection into the architecture have to be carried
out simultaneously.

The true value function has two key properties:
it satisfies the Bellman equations and it is the fixed
point of the Bellman operator. Learning in value func-
tion approximation strives to find values for the free
parameters so that the approximate function retains at
least one of these properties to the extent this is pos-
sible. Learning methods that focus on satisfying the
Bellman equations attempt to find an approximate func-
tion that minimizes the Bellman residual, the difference
between the left- and the right-hand sides of the sys-
tem of Bellman equations. On the other hand, learn-
ing methods that focus on the fixed point property
attempt to find an approximate function that exhibits

a fixed point behavior under the combined applica-
tion of the Bellman operator and projection onto the
space spanned by the basis functions. Experimental
evidence suggests that it is really hard to satisfy both
properties under approximation and therefore these
two approaches differ significantly in their solutions.
The majority of existing learning methods focus on
fixed point approximation, which experimentally has
been shown to exhibit more stable behavior and delivers
better policies. There are also proposals for combining
the benefits of both approaches into a hybrid method
(Johns et al., 2009).

The most widely-used learning approach is based
on gradient descent and is applicable to any approxi-
mation architecture that is differentiable with respect
to its parameters. Any stochastic approximation learn-
ing method for tabular representations of value func-
tions can be extended to approximate representations.
For example, given any sample (s,a,r,s’) of interac-
tion with the process, the Temporal Difference (TD)
learning update rule

Vi(s) < Vi(s) +a(r+yV7(s") = V"(s))

for tabular representations, where a € (0,1] is the
learning rate, becomes

wew +a (r+y V(5w )=V (W) ) Viur V(5 w")

under an approximation scheme V7. Similarly, the
SARSA update rule

Q"(s,a) < Q" (s,a) + a (r +yQ"(s', n(s")) - Q"(s,a))
for tabular representations, becomes

W w" +a(r+yQ (s, n(s);w") - Q" (s,a;w"))

vw”aﬂ(5> a; Wﬂ)

under an approximation scheme Q”. Finally, the Q-
learning update rule

Q' ()@ (s (ry max Q" (+40)} - @' (s.0)
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for tabular representations, under an approximation
scheme Q* becomes

2 I
W'~ w* +oc(r+ yﬂr}ea}{Q*(s,a ;w*)}

-Q* (s, w*)) Vo Q* (s, w*).

These rules are applicable to any approximation archi-
tecture, linear or non-linear. However, when using lin-
ear architectures they can be greatly simplified, because
the gradient with respect to a parameter w; is simply the
corresponding basis function ¢js forj=1,2,...,k.

TD: ) < w] +a (r +y(s)Tw”"
—¢(s)"w") ¢;(s)
SARSA: W}T ~w+a (7' + Y‘P(S,) ”(Sl))TWﬂ

j
~¢(s,a)"w") ¢;(s,a)

_1 : . >(> >(> ( I’ INT *
Q-learning: w < wi + r+y1a1,13({¢(s a)'w}

~$(sa)w") gi(s.0)

More sophisticated learning approaches rely on retain-
ing the desired value function property in a batch
manner by processing several samples collectively. A
variety of least-squares techniques have been pro-
posed for linear architectures giving rise to several
least-squares reinforcement learning methods, such as
Least-Squares Temporal Difference (LSTD) learning
(Bradtke and Barto, 1996), Least-Squares Policy Eval-
uation (LSPE) (Nedi¢ and Bertsekas, 2003), Hybrid
Least-Squares Approximation (Johns et al., 2009), and
Least-Squares Policy Iteration (LSPI) (Lagoudakis and
Parr, 2003). The parameters of a linear architecture
can also be estimated using Linear Programming (de
Farias and Van Roy, 2003). Specialized learning algo-
rithms have been proposed when using a kernel-based
approximation architecture, based either on Gaussian
Process TD (GPTD) (Engel et al, 2003), Gaussian
Process SARSA (GPSARSA) (Engel et al.,, 2005), ker-
nelized LSTD (KLSTD) and LSPI (KLSPI) (Xu et al.,
2005), Support Vector Regression (Bethkeh et al., 2008),
or Gaussian Process regression (Rasmussen and Kuss,
2004; Bethke and How, 2009). A unified view of kernel-
ized value function approximation is offered by Taylor

and Parr (2009). On the other hand, boot-strapping -
the updating of a value estimate based on other value
estimates — is the main learning approach behind batch
methods for non-linear architectures, such as Fitted
Q-Iteration (FQI) (Ernst et al., 2005).

Examples

Very close approximations of the state value function
of optimal policies in two well-known problems are
presented to illustrate the difficulty of value function
approximation. To obtain these close approximations,
a fine discretization of the two-dimensional state space
into a uniform grid of 250 x 250 was used for represen-
tation. The state-action value function Q was initially
computed using approximate policy iteration (a sparse-
matrix version of LSPI) with a set of indicator basis
functions over the state grid and all actions and 500
(s,a,7,5") samples for each one of the 187,500 discrete
cells (s,a), until convergence to a near-optimal policy;
the state value function V was extracted from the Q
values.

The inverted pendulum problem is to balance a pendu-
lum of unknown length and mass at the upright position
by applying forces to the cart it is attached to (Fig. 1, left).
Three actions are allowed: left force LF (-50 N), right
force RF (+50 N), or no force NF (0 N). All three actions
are noisy; Gaussian noise with ¢ = 0 and ¢* = 10 is
added to the chosen action. The state space of the prob-
lem is continuous and consists of the vertical angle
and the angular velocity  of the pendulum. The tran-
sitions are governed by the nonlinear dynamics of the
system and depend on the current state and the current
(noisy) control u:

. gsin(0) — aml(0)?sin(20)/2 — a cos(8)u
- 41/3 — amlcos?(0)

>

where g is the gravity constant (g = 9.8 m/s’), m is
the mass of the pendulum (default: m = 2.0 kg), M
is the mass of the cart (default: M = 8.0 kg), [ is the
length of the pendulum (default: I = 0.5 m), and & =
1/(m + M). The simulation step is 0.1s, thus the con-
trol input is given at a rate of 10 Hz, at the beginning
of each time step, and is kept constant during any time
step. A reward of 0 is given as long as the angle of the



Value Function Approximation

1019

[ T

=
-2
Pt d(e)

~ 5,0

Value Function Approximation. Figure 1. Inverted pendulum: state value function of an optimal policy (3D and 2D)
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Value Function Approximation. Figure 2. Mountain car: state value function of an optimal policy (3D and 2D)

(Courtesy of loannis Rexakis)

pendulum does not exceed 7/2 in absolute value (the
pendulum is above the horizontal line). An angle greater
than 7/2 in absolute value signals the end of the episode
and a reward (penalty) of —1. The discount factor of the
process is 0.95.

Figure 1 shows a close approximation to the state
value function V* of an optimal policy for the inverted
pendulum domain over the two-dimensional state
space (6,0). The value function indicates that states
which potentially offer high return are clustered within
a zone where 6 and 6 have different signs and therefore
the gravity force can be counteracted. Notice the non-
linearity of the function and the difficult approximation
problem it presents.

Mountain Car

The mountain car problem is to drive an underpowered
car from the bottom of a valley between two mountains
to the top of the mountain on the right (Fig. 2, left).
The car is not powerful enough to climb any of the hills

directly from the bottom of the valley even at full throt-
tle; it must build some energy by climbing first to the
left (moving away from the goal) and then to the right.
Three actions are allowed: forward throttle FT (+1),
reverse throttle RT (-1), or no throttle NT (0). All three
actions are noisy; Gaussian noise with g =0 and % =0.2
is added to the chosen action. The state space of the
problem is continuous and consists of the position x and
the velocity % of the car along the horizontal axis. The
transitions are governed by the nonlinear dynamics of
the system and depend on the current state (x(t),x(t))
and the current (noisy) control u(t):

x(t+1) = Bounp,[x(t) + x(¢ +1)]
x(t+1) = Bounp[x(t) + 0.001u(t)
- 0.0025 cos(3x(t))],

where BounD, is a function that keeps x within
[-1.2,0.5], while Bounp; keeps x within [-0.07,0.07].
If the car hits the bounds of the position x, the velocity x
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is set to zero. A penalty of —11is given at each step as long
as the position of the car is below the right bound (0.5).
As soon as the car position hits the right bound of the
position, it has reached the goal; the episode ends suc-
cessfully and a reward of 0 is given. The discount factor
of the process is 0.99.

Figure 2 shows a close approximation to the state
value function V* of an optimal policy for the mountain
car domain over the two-dimensional state space (x, x).
The value function indicates that in order to gain high
return the car has to follow a spiral in the state space that
goes through states with progressively higher value. In
practice, this means that the car has to move back and
forth between the two mountains until sufficient energy
is built to escape from the valley.

Again, notice the high non-linearity of the function
and the hard approximation problem it presents.

Definitions

The table summarizes the differences in names and
symbols between the common notation (adopted here)
and the alternative notation used in the literature.

State space S S States

State s, s’ i j State

Action space A V) Controls
Action a u Control
Transition P(s'|s,a) | py(u) | Transition prob-
model abilities
Reward R g Cost function
function

Discount factor | y o Discount factor
Policy 7 u Policy

State value % J Cost-to-go
function function
State-action Q Q Q-factors

value function

Parameters/ w r Parameters
weights

Learning rate o y Step size
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Motivation and Background

We define an important combinatorial parameter that
measures the combinatorial complexity of a fam-
ily of subsets taken from a given universe (learning

domain) X. This parameter was originally defined by
Vapnik and Chervonenkis (1971) and is thus commonly
referred to as Vapnik-Chervonenkis dimension, abbre-
viated as VC dimension. Subsequently, Dudley (1978,
1979) generalized Vapnik and Chervonenkis (1971)
results. The reader is also referred to Vapniks (2000)
book in which he greatly extends the original ideas.
This results in a theory which is called »structural risk
minimization.

The importance of the VC dimension for »PAC
Learning was discovered by Blumer, Ehrenfeucht,
Haussler, & Warmuth (1989), who introduced the
notion to computational learning theory.

As Anthony and Biggs (1992, p. 71) have put it,
“The development of this notion is probably the most
significant contribution that mathematics has made to
Computational Learning Theory”

Recall that we use |S| and g(S) to denote the car-
dinality and the power set of any set S, respectively.
We first define the VC dimension and provide a short
explanation of its importance for »PAC learning. Then
we present some examples.

Definition

Let X # @ be any learning domain, let C cp(X)
be any nonempty concept class, and let SCX be any
finite set. We set

Ie(S) ={Snc| ceC}.

1. Sis said to be shattered by C iff I1¢ (S) = p(S).
2. The VC dimension of C is the cardinality of the
largest finite set S € X that is shattered by C.

If arbitrary large finite sets S are shattered by C, then
the VC dimension of C is defined to be infinite.
Notation: By VC(C) we denote the VC dimension of C.

As far as »PAC Learning is concerned, for a sample set
S, the notion IT¢(S) has the following meaning. Essen-
tially, ITc (S) collects the set of all subsets of the sample
set S which are made positive by some concept ¢ € C.
Consequently, SN ¢ represents the elements of S that are
labeled as to be positive by the concept c. Hence, I1¢(S)
is the collection of all such subsets taken overall c € C. If
every subset of S can be labeled as to be positive by some
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concept ¢ € C and ¢ does not make any other element of
S positive, then S is shattered.

If VC(C) = d then there exists a finite set SC X such
that |S| = d, and S is shattered by C. Moreover, every set
Sc X with |S| > d is not shattered by C.

It is intuitively clear that an infinite VC dimen-
sion might enormously complicate learning. On the
other hand, it is by no means obvious that a finite VC
dimension may always guarantee the learnability of the
corresponding concept class. However, this is a cen-
tral theorem of the »PAC Learning theory. Moreover,
the value of the VC dimension is a measure of the
sample complexity. This holds for PAC Learning and
beyond. Further models where this is true comprise the
»Online Learning models (cf. Haussler, Littlestone, &
Warmuth (1994), Maass and Turdn (1990); Littlestone
(1988), models of Query Based Learning (cf. Maass and
Turan, 1990), and others.

Examples

First, let C be any finite concept class. Then, since it
requires 2¢ distinct concepts to shatter a set of cardi-
nality d, no set of cardinality larger than log|C| can be
shattered. Thus, log|C| is always an upper bound for
the VC dimension of finite concept classes. Here log
denotes the logarithm to the base 2.

However, if the VC dimension can be determined,
it usually gives a better bound than log|C|. To see this, let
Ly = {x,X,%,% ..., XnXn}> n > 1be a set of literals
and let X = {0,1}" be the n-dimensional Boolean learn-
ing domain. Furthermore, let C, Cg(X) be the class of
all concepts describable by a monomial, including the
empty monomial (representing {0,1}") and the con-
junction of all literals (representing @). Then |C, | = 3" +1
and thus VC(C) < n(log3) + 1. But VC(C,) = n for
all n > 2 and VC(C;) = 2 as shown by Natschlager
and Schmitt (1996). Note that the same is true for the
class of all concepts describable by monotone mono-
mials, i.e., monomials containing only non-negated
literals.

Next, we consider the concept class C of all axis-
parallel rectangles. So let X = FE? be the two-
dimensional Euclidean space and C € p(E?) be the set
of all axis-parallel rectangles, i.e., products of intervals
on the x-axis with intervals on the y-axis. Then, it is not
hard to see that VC(C) = 4.

X X

VC Dimension. Figure 1. No set of cardinality 5 can be
shattered by axis-parallel rectangles

Clearly, we can shatter the empty set and sets of car-
dinality 1, 2, and 3. Now, let S = {r1, 12,73, 74} be such
that ry,7,,73,r4 are the middle points of the sides of
some square. Then it is not hard to see that there are
16 concepts ¢;, 1 < i <16, in C such that p(S) = {Sn¢; |
1<i<16}. Hence, VC(C) > 4.

Next, let S = {r,r,,13,74,75} be any set of five
pairwise different points. Let ¢ be the smallest closed
axis-parallel rectangle containing the points of S. Since
¢ has only four sides, there must be some point r € S, say
15, such that r5 lies either in the interior of ¢ or rs5 lies on
some side of ¢ along with another point of S (cf. Fig. 1).
Suppose S is shattered by C. Then, there has to be a con-
cept ¢ € C such that {r,r,,73,74} = S N c. However, by
construction we obtain that {ry,r,, 13,74} = Sncimplies
15 € SN ¢, a contradiction. Thus, no set of cardinality 5
is shattered. Hence, VC(C) = 4.

The latter result can be easily generalized. Let X =
[E", and let C be the set of all axis-parallel parallelepipeds
in E”. Then VC(C) = 2n.

A further generalization is as follows. Let X be the
real line (one-dimensional Eucleadean space), i.e., X =
E, and let C be the set of all unions of at most s (closed
or open) intervals for some fixed constant s > 1. Let S =
{xi | 1<i<2s, x;j <x;4; foralll < i< 2s}. Then one
easily verifies that S is shattered by C. Hence, VC(C) >
2s. On the other hand, if S is any set of 2s + 1 pairwise
different points with x; < x;,; forall 1 < i < 2s, then
no concept in C contains xj, X3, . .
containing a point in X3, Xy, . . ., X3,. Thus, no such S is
shattered. Consequently, VC(C) = 2s.

Furthermore, we can generalize the observations
made above by deriving some rules that turn out to
be very useful to estimate the VC dimension of more
complicated concept classes, provided they can be con-
structed from simpler classes.

., X25+1 without also
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First, let C; and C, be concept classes such that
C, €C;. Then we clearly have

VC(G) < VC(G,).

Second, let X be any learning domain, let C S p(X)
and define the complement of C to be C = {X\c | c € C}.
Then we have

VC(C) = VC(C).

Third, consider two concept classes C; and C,
defined over the same learning domain X. Let C = C,uC,
be the union of C; and C,. Then,

VC(C) < VC(C) + VC(Cy) + 1.

Fourth, let C be any concept class such that
VC(C) =d. Consider the C; union (or intersection) of
at most s concepts from C, where s > 1 is any fixed
constant, i.e., Cs = {c¢ | ¢ = Uicics€i» ¢ € C} (or

s ={c| ¢=Nii< i ¢ € C}). Then one can show
that

VC(C) < 2ds - log(3s).

Numerous further examples can be found in, e.g.,
Vapnik and Chervonenkis (1974), Haussler and Welz
(1987), Anthony and Bartlett (1999), Wenocur and
Dudley (1981), Karpinski and Werther (1994), Karpin-
ski and Macintyre (1995), Sakurai (1995), and Mitchell,
Scheffer, Sharma, & Stephan (1999).

Applications

Let us return to the notion I1¢(S) and generalize it a
bit as follows. For any natural number m € N and any
nonempty concept class C S p(S), we set:

e (m) = max{|IIc(S)|| ScX, |S] = m}.

We can use the new notion to give an equivalent defini-
tion of the VC dimension of a concept class C, i.e.,

VC(C) = max{d | d e N, Tl¢(d) = 2}.

Looking at II¢(m) from the perspective of learn-
ing, we see the following. The argument m refers to the

sample size. I1¢(m) is describing the maximum num-
ber of ways a sample of size m can be labeled by concepts
taken from C. Hence, the number Iz (m) behaves as a
measure of concept class complexity. What can be said
about IT¢ (m)? Suppose, d = VC(C); then m < d implies
IIc(m) = 2". On the other hand, m > d directly implies
IIc(m) < 2™. Therefore, we are interested in learning
how fast I1¢(m) really grows provided m > d. The key
ingredient to obtain the desired information is usually
referred to as Sauer’s Lemma Sauer (1972). Under the
assumptions made above, it states that

d
Me(m) <), (T), where (T) =0 ifi>m.
i=0

Like many important results, Sauer’s Lemma Sauer
(1972) has several proofs and generalizations have been
studied, too. We refer the reader to Anthony and Biggs
(1992), Kearns and Vazirani (1994), and Gurvits (1997)
for a more detailed exposition.

Let us first look at the case m < d already considered.
For this case, Sauer’s Lemma is telling us that

d (m
i=o \ !
and thus, we get an exponential bound. The interest-
ing aspect is that in the remaining cases the bound is
polynomial. For simplifying notation, we set

d
m
O(d,m) - Z( )
i=o \ !
Using combinatorial arguments and Stirling approxi-
mation, one can show that

") =1forallmeN.
2. CD(d,l):()+(i):2foralldeN,d21.
3. ®(d,m) = ®(dm-1)+®(d-1m-1) for all
dmeN,d>1, m>2.
®(d,m) <m®+1foralld >0, m > 0.
®(d,m) <m foralld>2,m>2.

®(d,m) < (%)d forallm>d>1.

L ®(0,m)=(

That is, (4) through (6) provide a bound polynomial
in m for I1¢ (m) whenever VC(C) is finite. This insight
is fundamental for »PAC Learning and other learning
models.
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Finally, we refer the reader to Schaefer (1999), who
has determined the complexity of computing the VC
dimension and to Goldberg and Jerrum (1995), who
succeeded in bounding the VC dimension of concept
classes parameterized by real numbers.

Cross References
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»Statistical Machine Learning
» Structural Risk Minimization
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Definition

Mitchell (1977, 1982) defines the version space for a
learning algorithm as the subset of hypotheses consis-
tent with the training examples. That is, the »hypothesis
language is capable of describing a large, possibly infi-
nite, number of concepts. When searching for the target
concept, we are only interested in the subset of sen-
tences in the hypothesis language that are consistent
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with the training examples, where consistent means that
the examples are correctly classified (assuming deter-
ministic concepts and no »noise in the data). While
the version space may be infinite, it can often be rep-
resented in a compact manner by maintaining only its
bounds, the »most specific (»>Most Specific Hypothe-
sis) and »most general hypotheses. Any hypothesis that
is more general than a hypothesis in the most specific
bound and more specific than a hypothesis in the most
general bound is in the version space.

Cross References
» Learning as Search
»Noise
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! Viterbi Algorithm

A dynamic programming algorithm for finding the
most likely sequence of hidden states resulting in an
observed sequence of output events. The most likely
sequence is called the Viterbi path. The Viterbi algo-
rithm was popularized due to its usability in Hidden
Markov models (HMM).

The Viterbi algorithm was initially proposed by
Andrew Viterbi as an error-correction scheme for noisy
digital communication links. It is now also commonly
used in speech recognition, natural language process-
ing, and bioinformatics.
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